Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * Copyright (c) 2008 Dave Chinner
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19#include "xfs_log.h"
20
21#ifdef DEBUG
22/*
23 * Check that the list is sorted as it should be.
24 *
25 * Called with the ail lock held, but we don't want to assert fail with it
26 * held otherwise we'll lock everything up and won't be able to debug the
27 * cause. Hence we sample and check the state under the AIL lock and return if
28 * everything is fine, otherwise we drop the lock and run the ASSERT checks.
29 * Asserts may not be fatal, so pick the lock back up and continue onwards.
30 */
31STATIC void
32xfs_ail_check(
33 struct xfs_ail *ailp,
34 struct xfs_log_item *lip)
35 __must_hold(&ailp->ail_lock)
36{
37 struct xfs_log_item *prev_lip;
38 struct xfs_log_item *next_lip;
39 xfs_lsn_t prev_lsn = NULLCOMMITLSN;
40 xfs_lsn_t next_lsn = NULLCOMMITLSN;
41 xfs_lsn_t lsn;
42 bool in_ail;
43
44
45 if (list_empty(&ailp->ail_head))
46 return;
47
48 /*
49 * Sample then check the next and previous entries are valid.
50 */
51 in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
52 prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
53 if (&prev_lip->li_ail != &ailp->ail_head)
54 prev_lsn = prev_lip->li_lsn;
55 next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
56 if (&next_lip->li_ail != &ailp->ail_head)
57 next_lsn = next_lip->li_lsn;
58 lsn = lip->li_lsn;
59
60 if (in_ail &&
61 (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
62 (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
63 return;
64
65 spin_unlock(&ailp->ail_lock);
66 ASSERT(in_ail);
67 ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
68 ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
69 spin_lock(&ailp->ail_lock);
70}
71#else /* !DEBUG */
72#define xfs_ail_check(a,l)
73#endif /* DEBUG */
74
75/*
76 * Return a pointer to the last item in the AIL. If the AIL is empty, then
77 * return NULL.
78 */
79static struct xfs_log_item *
80xfs_ail_max(
81 struct xfs_ail *ailp)
82{
83 if (list_empty(&ailp->ail_head))
84 return NULL;
85
86 return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
87}
88
89/*
90 * Return a pointer to the item which follows the given item in the AIL. If
91 * the given item is the last item in the list, then return NULL.
92 */
93static struct xfs_log_item *
94xfs_ail_next(
95 struct xfs_ail *ailp,
96 struct xfs_log_item *lip)
97{
98 if (lip->li_ail.next == &ailp->ail_head)
99 return NULL;
100
101 return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
102}
103
104/*
105 * This is called by the log manager code to determine the LSN of the tail of
106 * the log. This is exactly the LSN of the first item in the AIL. If the AIL
107 * is empty, then this function returns 0.
108 *
109 * We need the AIL lock in order to get a coherent read of the lsn of the last
110 * item in the AIL.
111 */
112static xfs_lsn_t
113__xfs_ail_min_lsn(
114 struct xfs_ail *ailp)
115{
116 struct xfs_log_item *lip = xfs_ail_min(ailp);
117
118 if (lip)
119 return lip->li_lsn;
120 return 0;
121}
122
123xfs_lsn_t
124xfs_ail_min_lsn(
125 struct xfs_ail *ailp)
126{
127 xfs_lsn_t lsn;
128
129 spin_lock(&ailp->ail_lock);
130 lsn = __xfs_ail_min_lsn(ailp);
131 spin_unlock(&ailp->ail_lock);
132
133 return lsn;
134}
135
136/*
137 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
138 */
139static xfs_lsn_t
140xfs_ail_max_lsn(
141 struct xfs_ail *ailp)
142{
143 xfs_lsn_t lsn = 0;
144 struct xfs_log_item *lip;
145
146 spin_lock(&ailp->ail_lock);
147 lip = xfs_ail_max(ailp);
148 if (lip)
149 lsn = lip->li_lsn;
150 spin_unlock(&ailp->ail_lock);
151
152 return lsn;
153}
154
155/*
156 * The cursor keeps track of where our current traversal is up to by tracking
157 * the next item in the list for us. However, for this to be safe, removing an
158 * object from the AIL needs to invalidate any cursor that points to it. hence
159 * the traversal cursor needs to be linked to the struct xfs_ail so that
160 * deletion can search all the active cursors for invalidation.
161 */
162STATIC void
163xfs_trans_ail_cursor_init(
164 struct xfs_ail *ailp,
165 struct xfs_ail_cursor *cur)
166{
167 cur->item = NULL;
168 list_add_tail(&cur->list, &ailp->ail_cursors);
169}
170
171/*
172 * Get the next item in the traversal and advance the cursor. If the cursor
173 * was invalidated (indicated by a lip of 1), restart the traversal.
174 */
175struct xfs_log_item *
176xfs_trans_ail_cursor_next(
177 struct xfs_ail *ailp,
178 struct xfs_ail_cursor *cur)
179{
180 struct xfs_log_item *lip = cur->item;
181
182 if ((uintptr_t)lip & 1)
183 lip = xfs_ail_min(ailp);
184 if (lip)
185 cur->item = xfs_ail_next(ailp, lip);
186 return lip;
187}
188
189/*
190 * When the traversal is complete, we need to remove the cursor from the list
191 * of traversing cursors.
192 */
193void
194xfs_trans_ail_cursor_done(
195 struct xfs_ail_cursor *cur)
196{
197 cur->item = NULL;
198 list_del_init(&cur->list);
199}
200
201/*
202 * Invalidate any cursor that is pointing to this item. This is called when an
203 * item is removed from the AIL. Any cursor pointing to this object is now
204 * invalid and the traversal needs to be terminated so it doesn't reference a
205 * freed object. We set the low bit of the cursor item pointer so we can
206 * distinguish between an invalidation and the end of the list when getting the
207 * next item from the cursor.
208 */
209STATIC void
210xfs_trans_ail_cursor_clear(
211 struct xfs_ail *ailp,
212 struct xfs_log_item *lip)
213{
214 struct xfs_ail_cursor *cur;
215
216 list_for_each_entry(cur, &ailp->ail_cursors, list) {
217 if (cur->item == lip)
218 cur->item = (struct xfs_log_item *)
219 ((uintptr_t)cur->item | 1);
220 }
221}
222
223/*
224 * Find the first item in the AIL with the given @lsn by searching in ascending
225 * LSN order and initialise the cursor to point to the next item for a
226 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
227 * first item in the AIL. Returns NULL if the list is empty.
228 */
229struct xfs_log_item *
230xfs_trans_ail_cursor_first(
231 struct xfs_ail *ailp,
232 struct xfs_ail_cursor *cur,
233 xfs_lsn_t lsn)
234{
235 struct xfs_log_item *lip;
236
237 xfs_trans_ail_cursor_init(ailp, cur);
238
239 if (lsn == 0) {
240 lip = xfs_ail_min(ailp);
241 goto out;
242 }
243
244 list_for_each_entry(lip, &ailp->ail_head, li_ail) {
245 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
246 goto out;
247 }
248 return NULL;
249
250out:
251 if (lip)
252 cur->item = xfs_ail_next(ailp, lip);
253 return lip;
254}
255
256static struct xfs_log_item *
257__xfs_trans_ail_cursor_last(
258 struct xfs_ail *ailp,
259 xfs_lsn_t lsn)
260{
261 struct xfs_log_item *lip;
262
263 list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
264 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
265 return lip;
266 }
267 return NULL;
268}
269
270/*
271 * Find the last item in the AIL with the given @lsn by searching in descending
272 * LSN order and initialise the cursor to point to that item. If there is no
273 * item with the value of @lsn, then it sets the cursor to the last item with an
274 * LSN lower than @lsn. Returns NULL if the list is empty.
275 */
276struct xfs_log_item *
277xfs_trans_ail_cursor_last(
278 struct xfs_ail *ailp,
279 struct xfs_ail_cursor *cur,
280 xfs_lsn_t lsn)
281{
282 xfs_trans_ail_cursor_init(ailp, cur);
283 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
284 return cur->item;
285}
286
287/*
288 * Splice the log item list into the AIL at the given LSN. We splice to the
289 * tail of the given LSN to maintain insert order for push traversals. The
290 * cursor is optional, allowing repeated updates to the same LSN to avoid
291 * repeated traversals. This should not be called with an empty list.
292 */
293static void
294xfs_ail_splice(
295 struct xfs_ail *ailp,
296 struct xfs_ail_cursor *cur,
297 struct list_head *list,
298 xfs_lsn_t lsn)
299{
300 struct xfs_log_item *lip;
301
302 ASSERT(!list_empty(list));
303
304 /*
305 * Use the cursor to determine the insertion point if one is
306 * provided. If not, or if the one we got is not valid,
307 * find the place in the AIL where the items belong.
308 */
309 lip = cur ? cur->item : NULL;
310 if (!lip || (uintptr_t)lip & 1)
311 lip = __xfs_trans_ail_cursor_last(ailp, lsn);
312
313 /*
314 * If a cursor is provided, we know we're processing the AIL
315 * in lsn order, and future items to be spliced in will
316 * follow the last one being inserted now. Update the
317 * cursor to point to that last item, now while we have a
318 * reliable pointer to it.
319 */
320 if (cur)
321 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
322
323 /*
324 * Finally perform the splice. Unless the AIL was empty,
325 * lip points to the item in the AIL _after_ which the new
326 * items should go. If lip is null the AIL was empty, so
327 * the new items go at the head of the AIL.
328 */
329 if (lip)
330 list_splice(list, &lip->li_ail);
331 else
332 list_splice(list, &ailp->ail_head);
333}
334
335/*
336 * Delete the given item from the AIL. Return a pointer to the item.
337 */
338static void
339xfs_ail_delete(
340 struct xfs_ail *ailp,
341 struct xfs_log_item *lip)
342{
343 xfs_ail_check(ailp, lip);
344 list_del(&lip->li_ail);
345 xfs_trans_ail_cursor_clear(ailp, lip);
346}
347
348/*
349 * Requeue a failed buffer for writeback.
350 *
351 * We clear the log item failed state here as well, but we have to be careful
352 * about reference counts because the only active reference counts on the buffer
353 * may be the failed log items. Hence if we clear the log item failed state
354 * before queuing the buffer for IO we can release all active references to
355 * the buffer and free it, leading to use after free problems in
356 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
357 * order we process them in - the buffer is locked, and we own the buffer list
358 * so nothing on them is going to change while we are performing this action.
359 *
360 * Hence we can safely queue the buffer for IO before we clear the failed log
361 * item state, therefore always having an active reference to the buffer and
362 * avoiding the transient zero-reference state that leads to use-after-free.
363 */
364static inline int
365xfsaild_resubmit_item(
366 struct xfs_log_item *lip,
367 struct list_head *buffer_list)
368{
369 struct xfs_buf *bp = lip->li_buf;
370
371 if (!xfs_buf_trylock(bp))
372 return XFS_ITEM_LOCKED;
373
374 if (!xfs_buf_delwri_queue(bp, buffer_list)) {
375 xfs_buf_unlock(bp);
376 return XFS_ITEM_FLUSHING;
377 }
378
379 /* protected by ail_lock */
380 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
381 if (bp->b_flags & _XBF_INODES)
382 clear_bit(XFS_LI_FAILED, &lip->li_flags);
383 else
384 xfs_clear_li_failed(lip);
385 }
386
387 xfs_buf_unlock(bp);
388 return XFS_ITEM_SUCCESS;
389}
390
391static inline uint
392xfsaild_push_item(
393 struct xfs_ail *ailp,
394 struct xfs_log_item *lip)
395{
396 /*
397 * If log item pinning is enabled, skip the push and track the item as
398 * pinned. This can help induce head-behind-tail conditions.
399 */
400 if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
401 return XFS_ITEM_PINNED;
402
403 /*
404 * Consider the item pinned if a push callback is not defined so the
405 * caller will force the log. This should only happen for intent items
406 * as they are unpinned once the associated done item is committed to
407 * the on-disk log.
408 */
409 if (!lip->li_ops->iop_push)
410 return XFS_ITEM_PINNED;
411 if (test_bit(XFS_LI_FAILED, &lip->li_flags))
412 return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
413 return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
414}
415
416static long
417xfsaild_push(
418 struct xfs_ail *ailp)
419{
420 xfs_mount_t *mp = ailp->ail_mount;
421 struct xfs_ail_cursor cur;
422 struct xfs_log_item *lip;
423 xfs_lsn_t lsn;
424 xfs_lsn_t target;
425 long tout;
426 int stuck = 0;
427 int flushing = 0;
428 int count = 0;
429
430 /*
431 * If we encountered pinned items or did not finish writing out all
432 * buffers the last time we ran, force the log first and wait for it
433 * before pushing again.
434 */
435 if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
436 (!list_empty_careful(&ailp->ail_buf_list) ||
437 xfs_ail_min_lsn(ailp))) {
438 ailp->ail_log_flush = 0;
439
440 XFS_STATS_INC(mp, xs_push_ail_flush);
441 xfs_log_force(mp, XFS_LOG_SYNC);
442 }
443
444 spin_lock(&ailp->ail_lock);
445
446 /* barrier matches the ail_target update in xfs_ail_push() */
447 smp_rmb();
448 target = ailp->ail_target;
449 ailp->ail_target_prev = target;
450
451 /* we're done if the AIL is empty or our push has reached the end */
452 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
453 if (!lip)
454 goto out_done;
455
456 XFS_STATS_INC(mp, xs_push_ail);
457
458 lsn = lip->li_lsn;
459 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
460 int lock_result;
461
462 /*
463 * Note that iop_push may unlock and reacquire the AIL lock. We
464 * rely on the AIL cursor implementation to be able to deal with
465 * the dropped lock.
466 */
467 lock_result = xfsaild_push_item(ailp, lip);
468 switch (lock_result) {
469 case XFS_ITEM_SUCCESS:
470 XFS_STATS_INC(mp, xs_push_ail_success);
471 trace_xfs_ail_push(lip);
472
473 ailp->ail_last_pushed_lsn = lsn;
474 break;
475
476 case XFS_ITEM_FLUSHING:
477 /*
478 * The item or its backing buffer is already being
479 * flushed. The typical reason for that is that an
480 * inode buffer is locked because we already pushed the
481 * updates to it as part of inode clustering.
482 *
483 * We do not want to stop flushing just because lots
484 * of items are already being flushed, but we need to
485 * re-try the flushing relatively soon if most of the
486 * AIL is being flushed.
487 */
488 XFS_STATS_INC(mp, xs_push_ail_flushing);
489 trace_xfs_ail_flushing(lip);
490
491 flushing++;
492 ailp->ail_last_pushed_lsn = lsn;
493 break;
494
495 case XFS_ITEM_PINNED:
496 XFS_STATS_INC(mp, xs_push_ail_pinned);
497 trace_xfs_ail_pinned(lip);
498
499 stuck++;
500 ailp->ail_log_flush++;
501 break;
502 case XFS_ITEM_LOCKED:
503 XFS_STATS_INC(mp, xs_push_ail_locked);
504 trace_xfs_ail_locked(lip);
505
506 stuck++;
507 break;
508 default:
509 ASSERT(0);
510 break;
511 }
512
513 count++;
514
515 /*
516 * Are there too many items we can't do anything with?
517 *
518 * If we are skipping too many items because we can't flush
519 * them or they are already being flushed, we back off and
520 * given them time to complete whatever operation is being
521 * done. i.e. remove pressure from the AIL while we can't make
522 * progress so traversals don't slow down further inserts and
523 * removals to/from the AIL.
524 *
525 * The value of 100 is an arbitrary magic number based on
526 * observation.
527 */
528 if (stuck > 100)
529 break;
530
531 lip = xfs_trans_ail_cursor_next(ailp, &cur);
532 if (lip == NULL)
533 break;
534 lsn = lip->li_lsn;
535 }
536
537out_done:
538 xfs_trans_ail_cursor_done(&cur);
539 spin_unlock(&ailp->ail_lock);
540
541 if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
542 ailp->ail_log_flush++;
543
544 if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
545 /*
546 * We reached the target or the AIL is empty, so wait a bit
547 * longer for I/O to complete and remove pushed items from the
548 * AIL before we start the next scan from the start of the AIL.
549 */
550 tout = 50;
551 ailp->ail_last_pushed_lsn = 0;
552 } else if (((stuck + flushing) * 100) / count > 90) {
553 /*
554 * Either there is a lot of contention on the AIL or we are
555 * stuck due to operations in progress. "Stuck" in this case
556 * is defined as >90% of the items we tried to push were stuck.
557 *
558 * Backoff a bit more to allow some I/O to complete before
559 * restarting from the start of the AIL. This prevents us from
560 * spinning on the same items, and if they are pinned will all
561 * the restart to issue a log force to unpin the stuck items.
562 */
563 tout = 20;
564 ailp->ail_last_pushed_lsn = 0;
565 } else {
566 /*
567 * Assume we have more work to do in a short while.
568 */
569 tout = 10;
570 }
571
572 return tout;
573}
574
575static int
576xfsaild(
577 void *data)
578{
579 struct xfs_ail *ailp = data;
580 long tout = 0; /* milliseconds */
581 unsigned int noreclaim_flag;
582
583 noreclaim_flag = memalloc_noreclaim_save();
584 set_freezable();
585
586 while (1) {
587 if (tout && tout <= 20)
588 set_current_state(TASK_KILLABLE);
589 else
590 set_current_state(TASK_INTERRUPTIBLE);
591
592 /*
593 * Check kthread_should_stop() after we set the task state to
594 * guarantee that we either see the stop bit and exit or the
595 * task state is reset to runnable such that it's not scheduled
596 * out indefinitely and detects the stop bit at next iteration.
597 * A memory barrier is included in above task state set to
598 * serialize again kthread_stop().
599 */
600 if (kthread_should_stop()) {
601 __set_current_state(TASK_RUNNING);
602
603 /*
604 * The caller forces out the AIL before stopping the
605 * thread in the common case, which means the delwri
606 * queue is drained. In the shutdown case, the queue may
607 * still hold relogged buffers that haven't been
608 * submitted because they were pinned since added to the
609 * queue.
610 *
611 * Log I/O error processing stales the underlying buffer
612 * and clears the delwri state, expecting the buf to be
613 * removed on the next submission attempt. That won't
614 * happen if we're shutting down, so this is the last
615 * opportunity to release such buffers from the queue.
616 */
617 ASSERT(list_empty(&ailp->ail_buf_list) ||
618 XFS_FORCED_SHUTDOWN(ailp->ail_mount));
619 xfs_buf_delwri_cancel(&ailp->ail_buf_list);
620 break;
621 }
622
623 spin_lock(&ailp->ail_lock);
624
625 /*
626 * Idle if the AIL is empty and we are not racing with a target
627 * update. We check the AIL after we set the task to a sleep
628 * state to guarantee that we either catch an ail_target update
629 * or that a wake_up resets the state to TASK_RUNNING.
630 * Otherwise, we run the risk of sleeping indefinitely.
631 *
632 * The barrier matches the ail_target update in xfs_ail_push().
633 */
634 smp_rmb();
635 if (!xfs_ail_min(ailp) &&
636 ailp->ail_target == ailp->ail_target_prev &&
637 list_empty(&ailp->ail_buf_list)) {
638 spin_unlock(&ailp->ail_lock);
639 freezable_schedule();
640 tout = 0;
641 continue;
642 }
643 spin_unlock(&ailp->ail_lock);
644
645 if (tout)
646 freezable_schedule_timeout(msecs_to_jiffies(tout));
647
648 __set_current_state(TASK_RUNNING);
649
650 try_to_freeze();
651
652 tout = xfsaild_push(ailp);
653 }
654
655 memalloc_noreclaim_restore(noreclaim_flag);
656 return 0;
657}
658
659/*
660 * This routine is called to move the tail of the AIL forward. It does this by
661 * trying to flush items in the AIL whose lsns are below the given
662 * threshold_lsn.
663 *
664 * The push is run asynchronously in a workqueue, which means the caller needs
665 * to handle waiting on the async flush for space to become available.
666 * We don't want to interrupt any push that is in progress, hence we only queue
667 * work if we set the pushing bit appropriately.
668 *
669 * We do this unlocked - we only need to know whether there is anything in the
670 * AIL at the time we are called. We don't need to access the contents of
671 * any of the objects, so the lock is not needed.
672 */
673void
674xfs_ail_push(
675 struct xfs_ail *ailp,
676 xfs_lsn_t threshold_lsn)
677{
678 struct xfs_log_item *lip;
679
680 lip = xfs_ail_min(ailp);
681 if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
682 XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
683 return;
684
685 /*
686 * Ensure that the new target is noticed in push code before it clears
687 * the XFS_AIL_PUSHING_BIT.
688 */
689 smp_wmb();
690 xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
691 smp_wmb();
692
693 wake_up_process(ailp->ail_task);
694}
695
696/*
697 * Push out all items in the AIL immediately
698 */
699void
700xfs_ail_push_all(
701 struct xfs_ail *ailp)
702{
703 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
704
705 if (threshold_lsn)
706 xfs_ail_push(ailp, threshold_lsn);
707}
708
709/*
710 * Push out all items in the AIL immediately and wait until the AIL is empty.
711 */
712void
713xfs_ail_push_all_sync(
714 struct xfs_ail *ailp)
715{
716 struct xfs_log_item *lip;
717 DEFINE_WAIT(wait);
718
719 spin_lock(&ailp->ail_lock);
720 while ((lip = xfs_ail_max(ailp)) != NULL) {
721 prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
722 ailp->ail_target = lip->li_lsn;
723 wake_up_process(ailp->ail_task);
724 spin_unlock(&ailp->ail_lock);
725 schedule();
726 spin_lock(&ailp->ail_lock);
727 }
728 spin_unlock(&ailp->ail_lock);
729
730 finish_wait(&ailp->ail_empty, &wait);
731}
732
733void
734xfs_ail_update_finish(
735 struct xfs_ail *ailp,
736 xfs_lsn_t old_lsn) __releases(ailp->ail_lock)
737{
738 struct xfs_mount *mp = ailp->ail_mount;
739
740 /* if the tail lsn hasn't changed, don't do updates or wakeups. */
741 if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
742 spin_unlock(&ailp->ail_lock);
743 return;
744 }
745
746 if (!XFS_FORCED_SHUTDOWN(mp))
747 xlog_assign_tail_lsn_locked(mp);
748
749 if (list_empty(&ailp->ail_head))
750 wake_up_all(&ailp->ail_empty);
751 spin_unlock(&ailp->ail_lock);
752 xfs_log_space_wake(mp);
753}
754
755/*
756 * xfs_trans_ail_update - bulk AIL insertion operation.
757 *
758 * @xfs_trans_ail_update takes an array of log items that all need to be
759 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
760 * be added. Otherwise, it will be repositioned by removing it and re-adding
761 * it to the AIL. If we move the first item in the AIL, update the log tail to
762 * match the new minimum LSN in the AIL.
763 *
764 * This function takes the AIL lock once to execute the update operations on
765 * all the items in the array, and as such should not be called with the AIL
766 * lock held. As a result, once we have the AIL lock, we need to check each log
767 * item LSN to confirm it needs to be moved forward in the AIL.
768 *
769 * To optimise the insert operation, we delete all the items from the AIL in
770 * the first pass, moving them into a temporary list, then splice the temporary
771 * list into the correct position in the AIL. This avoids needing to do an
772 * insert operation on every item.
773 *
774 * This function must be called with the AIL lock held. The lock is dropped
775 * before returning.
776 */
777void
778xfs_trans_ail_update_bulk(
779 struct xfs_ail *ailp,
780 struct xfs_ail_cursor *cur,
781 struct xfs_log_item **log_items,
782 int nr_items,
783 xfs_lsn_t lsn) __releases(ailp->ail_lock)
784{
785 struct xfs_log_item *mlip;
786 xfs_lsn_t tail_lsn = 0;
787 int i;
788 LIST_HEAD(tmp);
789
790 ASSERT(nr_items > 0); /* Not required, but true. */
791 mlip = xfs_ail_min(ailp);
792
793 for (i = 0; i < nr_items; i++) {
794 struct xfs_log_item *lip = log_items[i];
795 if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
796 /* check if we really need to move the item */
797 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
798 continue;
799
800 trace_xfs_ail_move(lip, lip->li_lsn, lsn);
801 if (mlip == lip && !tail_lsn)
802 tail_lsn = lip->li_lsn;
803
804 xfs_ail_delete(ailp, lip);
805 } else {
806 trace_xfs_ail_insert(lip, 0, lsn);
807 }
808 lip->li_lsn = lsn;
809 list_add(&lip->li_ail, &tmp);
810 }
811
812 if (!list_empty(&tmp))
813 xfs_ail_splice(ailp, cur, &tmp, lsn);
814
815 xfs_ail_update_finish(ailp, tail_lsn);
816}
817
818/* Insert a log item into the AIL. */
819void
820xfs_trans_ail_insert(
821 struct xfs_ail *ailp,
822 struct xfs_log_item *lip,
823 xfs_lsn_t lsn)
824{
825 spin_lock(&ailp->ail_lock);
826 xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
827}
828
829/*
830 * Delete one log item from the AIL.
831 *
832 * If this item was at the tail of the AIL, return the LSN of the log item so
833 * that we can use it to check if the LSN of the tail of the log has moved
834 * when finishing up the AIL delete process in xfs_ail_update_finish().
835 */
836xfs_lsn_t
837xfs_ail_delete_one(
838 struct xfs_ail *ailp,
839 struct xfs_log_item *lip)
840{
841 struct xfs_log_item *mlip = xfs_ail_min(ailp);
842 xfs_lsn_t lsn = lip->li_lsn;
843
844 trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
845 xfs_ail_delete(ailp, lip);
846 clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
847 lip->li_lsn = 0;
848
849 if (mlip == lip)
850 return lsn;
851 return 0;
852}
853
854void
855xfs_trans_ail_delete(
856 struct xfs_log_item *lip,
857 int shutdown_type)
858{
859 struct xfs_ail *ailp = lip->li_ailp;
860 struct xfs_mount *mp = ailp->ail_mount;
861 xfs_lsn_t tail_lsn;
862
863 spin_lock(&ailp->ail_lock);
864 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
865 spin_unlock(&ailp->ail_lock);
866 if (shutdown_type && !XFS_FORCED_SHUTDOWN(mp)) {
867 xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
868 "%s: attempting to delete a log item that is not in the AIL",
869 __func__);
870 xfs_force_shutdown(mp, shutdown_type);
871 }
872 return;
873 }
874
875 /* xfs_ail_update_finish() drops the AIL lock */
876 xfs_clear_li_failed(lip);
877 tail_lsn = xfs_ail_delete_one(ailp, lip);
878 xfs_ail_update_finish(ailp, tail_lsn);
879}
880
881int
882xfs_trans_ail_init(
883 xfs_mount_t *mp)
884{
885 struct xfs_ail *ailp;
886
887 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
888 if (!ailp)
889 return -ENOMEM;
890
891 ailp->ail_mount = mp;
892 INIT_LIST_HEAD(&ailp->ail_head);
893 INIT_LIST_HEAD(&ailp->ail_cursors);
894 spin_lock_init(&ailp->ail_lock);
895 INIT_LIST_HEAD(&ailp->ail_buf_list);
896 init_waitqueue_head(&ailp->ail_empty);
897
898 ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
899 ailp->ail_mount->m_super->s_id);
900 if (IS_ERR(ailp->ail_task))
901 goto out_free_ailp;
902
903 mp->m_ail = ailp;
904 return 0;
905
906out_free_ailp:
907 kmem_free(ailp);
908 return -ENOMEM;
909}
910
911void
912xfs_trans_ail_destroy(
913 xfs_mount_t *mp)
914{
915 struct xfs_ail *ailp = mp->m_ail;
916
917 kthread_stop(ailp->ail_task);
918 kmem_free(ailp);
919}
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * Copyright (c) 2008 Dave Chinner
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_types.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
29#include "xfs_error.h"
30
31#ifdef DEBUG
32/*
33 * Check that the list is sorted as it should be.
34 */
35STATIC void
36xfs_ail_check(
37 struct xfs_ail *ailp,
38 xfs_log_item_t *lip)
39{
40 xfs_log_item_t *prev_lip;
41
42 if (list_empty(&ailp->xa_ail))
43 return;
44
45 /*
46 * Check the next and previous entries are valid.
47 */
48 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 if (&prev_lip->li_ail != &ailp->xa_ail)
51 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52
53 prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 if (&prev_lip->li_ail != &ailp->xa_ail)
55 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56
57
58#ifdef XFS_TRANS_DEBUG
59 /*
60 * Walk the list checking lsn ordering, and that every entry has the
61 * XFS_LI_IN_AIL flag set. This is really expensive, so only do it
62 * when specifically debugging the transaction subsystem.
63 */
64 prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
65 list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
66 if (&prev_lip->li_ail != &ailp->xa_ail)
67 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
68 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
69 prev_lip = lip;
70 }
71#endif /* XFS_TRANS_DEBUG */
72}
73#else /* !DEBUG */
74#define xfs_ail_check(a,l)
75#endif /* DEBUG */
76
77/*
78 * Return a pointer to the first item in the AIL. If the AIL is empty, then
79 * return NULL.
80 */
81static xfs_log_item_t *
82xfs_ail_min(
83 struct xfs_ail *ailp)
84{
85 if (list_empty(&ailp->xa_ail))
86 return NULL;
87
88 return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
89}
90
91 /*
92 * Return a pointer to the last item in the AIL. If the AIL is empty, then
93 * return NULL.
94 */
95static xfs_log_item_t *
96xfs_ail_max(
97 struct xfs_ail *ailp)
98{
99 if (list_empty(&ailp->xa_ail))
100 return NULL;
101
102 return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
103}
104
105/*
106 * Return a pointer to the item which follows the given item in the AIL. If
107 * the given item is the last item in the list, then return NULL.
108 */
109static xfs_log_item_t *
110xfs_ail_next(
111 struct xfs_ail *ailp,
112 xfs_log_item_t *lip)
113{
114 if (lip->li_ail.next == &ailp->xa_ail)
115 return NULL;
116
117 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
118}
119
120/*
121 * This is called by the log manager code to determine the LSN of the tail of
122 * the log. This is exactly the LSN of the first item in the AIL. If the AIL
123 * is empty, then this function returns 0.
124 *
125 * We need the AIL lock in order to get a coherent read of the lsn of the last
126 * item in the AIL.
127 */
128xfs_lsn_t
129xfs_ail_min_lsn(
130 struct xfs_ail *ailp)
131{
132 xfs_lsn_t lsn = 0;
133 xfs_log_item_t *lip;
134
135 spin_lock(&ailp->xa_lock);
136 lip = xfs_ail_min(ailp);
137 if (lip)
138 lsn = lip->li_lsn;
139 spin_unlock(&ailp->xa_lock);
140
141 return lsn;
142}
143
144/*
145 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
146 */
147static xfs_lsn_t
148xfs_ail_max_lsn(
149 struct xfs_ail *ailp)
150{
151 xfs_lsn_t lsn = 0;
152 xfs_log_item_t *lip;
153
154 spin_lock(&ailp->xa_lock);
155 lip = xfs_ail_max(ailp);
156 if (lip)
157 lsn = lip->li_lsn;
158 spin_unlock(&ailp->xa_lock);
159
160 return lsn;
161}
162
163/*
164 * The cursor keeps track of where our current traversal is up to by tracking
165 * the next item in the list for us. However, for this to be safe, removing an
166 * object from the AIL needs to invalidate any cursor that points to it. hence
167 * the traversal cursor needs to be linked to the struct xfs_ail so that
168 * deletion can search all the active cursors for invalidation.
169 */
170STATIC void
171xfs_trans_ail_cursor_init(
172 struct xfs_ail *ailp,
173 struct xfs_ail_cursor *cur)
174{
175 cur->item = NULL;
176 list_add_tail(&cur->list, &ailp->xa_cursors);
177}
178
179/*
180 * Get the next item in the traversal and advance the cursor. If the cursor
181 * was invalidated (indicated by a lip of 1), restart the traversal.
182 */
183struct xfs_log_item *
184xfs_trans_ail_cursor_next(
185 struct xfs_ail *ailp,
186 struct xfs_ail_cursor *cur)
187{
188 struct xfs_log_item *lip = cur->item;
189
190 if ((__psint_t)lip & 1)
191 lip = xfs_ail_min(ailp);
192 if (lip)
193 cur->item = xfs_ail_next(ailp, lip);
194 return lip;
195}
196
197/*
198 * When the traversal is complete, we need to remove the cursor from the list
199 * of traversing cursors.
200 */
201void
202xfs_trans_ail_cursor_done(
203 struct xfs_ail *ailp,
204 struct xfs_ail_cursor *cur)
205{
206 cur->item = NULL;
207 list_del_init(&cur->list);
208}
209
210/*
211 * Invalidate any cursor that is pointing to this item. This is called when an
212 * item is removed from the AIL. Any cursor pointing to this object is now
213 * invalid and the traversal needs to be terminated so it doesn't reference a
214 * freed object. We set the low bit of the cursor item pointer so we can
215 * distinguish between an invalidation and the end of the list when getting the
216 * next item from the cursor.
217 */
218STATIC void
219xfs_trans_ail_cursor_clear(
220 struct xfs_ail *ailp,
221 struct xfs_log_item *lip)
222{
223 struct xfs_ail_cursor *cur;
224
225 list_for_each_entry(cur, &ailp->xa_cursors, list) {
226 if (cur->item == lip)
227 cur->item = (struct xfs_log_item *)
228 ((__psint_t)cur->item | 1);
229 }
230}
231
232/*
233 * Find the first item in the AIL with the given @lsn by searching in ascending
234 * LSN order and initialise the cursor to point to the next item for a
235 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
236 * first item in the AIL. Returns NULL if the list is empty.
237 */
238xfs_log_item_t *
239xfs_trans_ail_cursor_first(
240 struct xfs_ail *ailp,
241 struct xfs_ail_cursor *cur,
242 xfs_lsn_t lsn)
243{
244 xfs_log_item_t *lip;
245
246 xfs_trans_ail_cursor_init(ailp, cur);
247
248 if (lsn == 0) {
249 lip = xfs_ail_min(ailp);
250 goto out;
251 }
252
253 list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
254 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
255 goto out;
256 }
257 return NULL;
258
259out:
260 if (lip)
261 cur->item = xfs_ail_next(ailp, lip);
262 return lip;
263}
264
265static struct xfs_log_item *
266__xfs_trans_ail_cursor_last(
267 struct xfs_ail *ailp,
268 xfs_lsn_t lsn)
269{
270 xfs_log_item_t *lip;
271
272 list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
273 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
274 return lip;
275 }
276 return NULL;
277}
278
279/*
280 * Find the last item in the AIL with the given @lsn by searching in descending
281 * LSN order and initialise the cursor to point to that item. If there is no
282 * item with the value of @lsn, then it sets the cursor to the last item with an
283 * LSN lower than @lsn. Returns NULL if the list is empty.
284 */
285struct xfs_log_item *
286xfs_trans_ail_cursor_last(
287 struct xfs_ail *ailp,
288 struct xfs_ail_cursor *cur,
289 xfs_lsn_t lsn)
290{
291 xfs_trans_ail_cursor_init(ailp, cur);
292 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
293 return cur->item;
294}
295
296/*
297 * Splice the log item list into the AIL at the given LSN. We splice to the
298 * tail of the given LSN to maintain insert order for push traversals. The
299 * cursor is optional, allowing repeated updates to the same LSN to avoid
300 * repeated traversals. This should not be called with an empty list.
301 */
302static void
303xfs_ail_splice(
304 struct xfs_ail *ailp,
305 struct xfs_ail_cursor *cur,
306 struct list_head *list,
307 xfs_lsn_t lsn)
308{
309 struct xfs_log_item *lip;
310
311 ASSERT(!list_empty(list));
312
313 /*
314 * Use the cursor to determine the insertion point if one is
315 * provided. If not, or if the one we got is not valid,
316 * find the place in the AIL where the items belong.
317 */
318 lip = cur ? cur->item : NULL;
319 if (!lip || (__psint_t) lip & 1)
320 lip = __xfs_trans_ail_cursor_last(ailp, lsn);
321
322 /*
323 * If a cursor is provided, we know we're processing the AIL
324 * in lsn order, and future items to be spliced in will
325 * follow the last one being inserted now. Update the
326 * cursor to point to that last item, now while we have a
327 * reliable pointer to it.
328 */
329 if (cur)
330 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
331
332 /*
333 * Finally perform the splice. Unless the AIL was empty,
334 * lip points to the item in the AIL _after_ which the new
335 * items should go. If lip is null the AIL was empty, so
336 * the new items go at the head of the AIL.
337 */
338 if (lip)
339 list_splice(list, &lip->li_ail);
340 else
341 list_splice(list, &ailp->xa_ail);
342}
343
344/*
345 * Delete the given item from the AIL. Return a pointer to the item.
346 */
347static void
348xfs_ail_delete(
349 struct xfs_ail *ailp,
350 xfs_log_item_t *lip)
351{
352 xfs_ail_check(ailp, lip);
353 list_del(&lip->li_ail);
354 xfs_trans_ail_cursor_clear(ailp, lip);
355}
356
357static long
358xfsaild_push(
359 struct xfs_ail *ailp)
360{
361 xfs_mount_t *mp = ailp->xa_mount;
362 struct xfs_ail_cursor cur;
363 xfs_log_item_t *lip;
364 xfs_lsn_t lsn;
365 xfs_lsn_t target;
366 long tout = 10;
367 int flush_log = 0;
368 int stuck = 0;
369 int count = 0;
370 int push_xfsbufd = 0;
371
372 spin_lock(&ailp->xa_lock);
373 target = ailp->xa_target;
374 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
375 if (!lip || XFS_FORCED_SHUTDOWN(mp)) {
376 /*
377 * AIL is empty or our push has reached the end.
378 */
379 xfs_trans_ail_cursor_done(ailp, &cur);
380 spin_unlock(&ailp->xa_lock);
381 goto out_done;
382 }
383
384 XFS_STATS_INC(xs_push_ail);
385
386 /*
387 * While the item we are looking at is below the given threshold
388 * try to flush it out. We'd like not to stop until we've at least
389 * tried to push on everything in the AIL with an LSN less than
390 * the given threshold.
391 *
392 * However, we will stop after a certain number of pushes and wait
393 * for a reduced timeout to fire before pushing further. This
394 * prevents use from spinning when we can't do anything or there is
395 * lots of contention on the AIL lists.
396 */
397 lsn = lip->li_lsn;
398 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
399 int lock_result;
400 /*
401 * If we can lock the item without sleeping, unlock the AIL
402 * lock and flush the item. Then re-grab the AIL lock so we
403 * can look for the next item on the AIL. List changes are
404 * handled by the AIL lookup functions internally
405 *
406 * If we can't lock the item, either its holder will flush it
407 * or it is already being flushed or it is being relogged. In
408 * any of these case it is being taken care of and we can just
409 * skip to the next item in the list.
410 */
411 lock_result = IOP_TRYLOCK(lip);
412 spin_unlock(&ailp->xa_lock);
413 switch (lock_result) {
414 case XFS_ITEM_SUCCESS:
415 XFS_STATS_INC(xs_push_ail_success);
416 IOP_PUSH(lip);
417 ailp->xa_last_pushed_lsn = lsn;
418 break;
419
420 case XFS_ITEM_PUSHBUF:
421 XFS_STATS_INC(xs_push_ail_pushbuf);
422
423 if (!IOP_PUSHBUF(lip)) {
424 stuck++;
425 flush_log = 1;
426 } else {
427 ailp->xa_last_pushed_lsn = lsn;
428 }
429 push_xfsbufd = 1;
430 break;
431
432 case XFS_ITEM_PINNED:
433 XFS_STATS_INC(xs_push_ail_pinned);
434 stuck++;
435 flush_log = 1;
436 break;
437
438 case XFS_ITEM_LOCKED:
439 XFS_STATS_INC(xs_push_ail_locked);
440 stuck++;
441 break;
442
443 default:
444 ASSERT(0);
445 break;
446 }
447
448 spin_lock(&ailp->xa_lock);
449 /* should we bother continuing? */
450 if (XFS_FORCED_SHUTDOWN(mp))
451 break;
452 ASSERT(mp->m_log);
453
454 count++;
455
456 /*
457 * Are there too many items we can't do anything with?
458 * If we we are skipping too many items because we can't flush
459 * them or they are already being flushed, we back off and
460 * given them time to complete whatever operation is being
461 * done. i.e. remove pressure from the AIL while we can't make
462 * progress so traversals don't slow down further inserts and
463 * removals to/from the AIL.
464 *
465 * The value of 100 is an arbitrary magic number based on
466 * observation.
467 */
468 if (stuck > 100)
469 break;
470
471 lip = xfs_trans_ail_cursor_next(ailp, &cur);
472 if (lip == NULL)
473 break;
474 lsn = lip->li_lsn;
475 }
476 xfs_trans_ail_cursor_done(ailp, &cur);
477 spin_unlock(&ailp->xa_lock);
478
479 if (flush_log) {
480 /*
481 * If something we need to push out was pinned, then
482 * push out the log so it will become unpinned and
483 * move forward in the AIL.
484 */
485 XFS_STATS_INC(xs_push_ail_flush);
486 xfs_log_force(mp, 0);
487 }
488
489 if (push_xfsbufd) {
490 /* we've got delayed write buffers to flush */
491 wake_up_process(mp->m_ddev_targp->bt_task);
492 }
493
494 /* assume we have more work to do in a short while */
495out_done:
496 if (!count) {
497 /* We're past our target or empty, so idle */
498 ailp->xa_last_pushed_lsn = 0;
499
500 tout = 50;
501 } else if (XFS_LSN_CMP(lsn, target) >= 0) {
502 /*
503 * We reached the target so wait a bit longer for I/O to
504 * complete and remove pushed items from the AIL before we
505 * start the next scan from the start of the AIL.
506 */
507 tout = 50;
508 ailp->xa_last_pushed_lsn = 0;
509 } else if ((stuck * 100) / count > 90) {
510 /*
511 * Either there is a lot of contention on the AIL or we
512 * are stuck due to operations in progress. "Stuck" in this
513 * case is defined as >90% of the items we tried to push
514 * were stuck.
515 *
516 * Backoff a bit more to allow some I/O to complete before
517 * continuing from where we were.
518 */
519 tout = 20;
520 }
521
522 return tout;
523}
524
525static int
526xfsaild(
527 void *data)
528{
529 struct xfs_ail *ailp = data;
530 long tout = 0; /* milliseconds */
531
532 while (!kthread_should_stop()) {
533 if (tout && tout <= 20)
534 __set_current_state(TASK_KILLABLE);
535 else
536 __set_current_state(TASK_INTERRUPTIBLE);
537 schedule_timeout(tout ?
538 msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT);
539
540 try_to_freeze();
541
542 tout = xfsaild_push(ailp);
543 }
544
545 return 0;
546}
547
548/*
549 * This routine is called to move the tail of the AIL forward. It does this by
550 * trying to flush items in the AIL whose lsns are below the given
551 * threshold_lsn.
552 *
553 * The push is run asynchronously in a workqueue, which means the caller needs
554 * to handle waiting on the async flush for space to become available.
555 * We don't want to interrupt any push that is in progress, hence we only queue
556 * work if we set the pushing bit approriately.
557 *
558 * We do this unlocked - we only need to know whether there is anything in the
559 * AIL at the time we are called. We don't need to access the contents of
560 * any of the objects, so the lock is not needed.
561 */
562void
563xfs_ail_push(
564 struct xfs_ail *ailp,
565 xfs_lsn_t threshold_lsn)
566{
567 xfs_log_item_t *lip;
568
569 lip = xfs_ail_min(ailp);
570 if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
571 XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
572 return;
573
574 /*
575 * Ensure that the new target is noticed in push code before it clears
576 * the XFS_AIL_PUSHING_BIT.
577 */
578 smp_wmb();
579 xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
580 smp_wmb();
581
582 wake_up_process(ailp->xa_task);
583}
584
585/*
586 * Push out all items in the AIL immediately
587 */
588void
589xfs_ail_push_all(
590 struct xfs_ail *ailp)
591{
592 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
593
594 if (threshold_lsn)
595 xfs_ail_push(ailp, threshold_lsn);
596}
597
598/*
599 * This is to be called when an item is unlocked that may have
600 * been in the AIL. It will wake up the first member of the AIL
601 * wait list if this item's unlocking might allow it to progress.
602 * If the item is in the AIL, then we need to get the AIL lock
603 * while doing our checking so we don't race with someone going
604 * to sleep waiting for this event in xfs_trans_push_ail().
605 */
606void
607xfs_trans_unlocked_item(
608 struct xfs_ail *ailp,
609 xfs_log_item_t *lip)
610{
611 xfs_log_item_t *min_lip;
612
613 /*
614 * If we're forcibly shutting down, we may have
615 * unlocked log items arbitrarily. The last thing
616 * we want to do is to move the tail of the log
617 * over some potentially valid data.
618 */
619 if (!(lip->li_flags & XFS_LI_IN_AIL) ||
620 XFS_FORCED_SHUTDOWN(ailp->xa_mount)) {
621 return;
622 }
623
624 /*
625 * This is the one case where we can call into xfs_ail_min()
626 * without holding the AIL lock because we only care about the
627 * case where we are at the tail of the AIL. If the object isn't
628 * at the tail, it doesn't matter what result we get back. This
629 * is slightly racy because since we were just unlocked, we could
630 * go to sleep between the call to xfs_ail_min and the call to
631 * xfs_log_move_tail, have someone else lock us, commit to us disk,
632 * move us out of the tail of the AIL, and then we wake up. However,
633 * the call to xfs_log_move_tail() doesn't do anything if there's
634 * not enough free space to wake people up so we're safe calling it.
635 */
636 min_lip = xfs_ail_min(ailp);
637
638 if (min_lip == lip)
639 xfs_log_move_tail(ailp->xa_mount, 1);
640} /* xfs_trans_unlocked_item */
641
642/*
643 * xfs_trans_ail_update - bulk AIL insertion operation.
644 *
645 * @xfs_trans_ail_update takes an array of log items that all need to be
646 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
647 * be added. Otherwise, it will be repositioned by removing it and re-adding
648 * it to the AIL. If we move the first item in the AIL, update the log tail to
649 * match the new minimum LSN in the AIL.
650 *
651 * This function takes the AIL lock once to execute the update operations on
652 * all the items in the array, and as such should not be called with the AIL
653 * lock held. As a result, once we have the AIL lock, we need to check each log
654 * item LSN to confirm it needs to be moved forward in the AIL.
655 *
656 * To optimise the insert operation, we delete all the items from the AIL in
657 * the first pass, moving them into a temporary list, then splice the temporary
658 * list into the correct position in the AIL. This avoids needing to do an
659 * insert operation on every item.
660 *
661 * This function must be called with the AIL lock held. The lock is dropped
662 * before returning.
663 */
664void
665xfs_trans_ail_update_bulk(
666 struct xfs_ail *ailp,
667 struct xfs_ail_cursor *cur,
668 struct xfs_log_item **log_items,
669 int nr_items,
670 xfs_lsn_t lsn) __releases(ailp->xa_lock)
671{
672 xfs_log_item_t *mlip;
673 xfs_lsn_t tail_lsn;
674 int mlip_changed = 0;
675 int i;
676 LIST_HEAD(tmp);
677
678 ASSERT(nr_items > 0); /* Not required, but true. */
679 mlip = xfs_ail_min(ailp);
680
681 for (i = 0; i < nr_items; i++) {
682 struct xfs_log_item *lip = log_items[i];
683 if (lip->li_flags & XFS_LI_IN_AIL) {
684 /* check if we really need to move the item */
685 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
686 continue;
687
688 xfs_ail_delete(ailp, lip);
689 if (mlip == lip)
690 mlip_changed = 1;
691 } else {
692 lip->li_flags |= XFS_LI_IN_AIL;
693 }
694 lip->li_lsn = lsn;
695 list_add(&lip->li_ail, &tmp);
696 }
697
698 if (!list_empty(&tmp))
699 xfs_ail_splice(ailp, cur, &tmp, lsn);
700
701 if (!mlip_changed) {
702 spin_unlock(&ailp->xa_lock);
703 return;
704 }
705
706 /*
707 * It is not safe to access mlip after the AIL lock is dropped, so we
708 * must get a copy of li_lsn before we do so. This is especially
709 * important on 32-bit platforms where accessing and updating 64-bit
710 * values like li_lsn is not atomic.
711 */
712 mlip = xfs_ail_min(ailp);
713 tail_lsn = mlip->li_lsn;
714 spin_unlock(&ailp->xa_lock);
715 xfs_log_move_tail(ailp->xa_mount, tail_lsn);
716}
717
718/*
719 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
720 *
721 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
722 * removed from the AIL. The caller is already holding the AIL lock, and done
723 * all the checks necessary to ensure the items passed in via @log_items are
724 * ready for deletion. This includes checking that the items are in the AIL.
725 *
726 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL
727 * flag from the item and reset the item's lsn to 0. If we remove the first
728 * item in the AIL, update the log tail to match the new minimum LSN in the
729 * AIL.
730 *
731 * This function will not drop the AIL lock until all items are removed from
732 * the AIL to minimise the amount of lock traffic on the AIL. This does not
733 * greatly increase the AIL hold time, but does significantly reduce the amount
734 * of traffic on the lock, especially during IO completion.
735 *
736 * This function must be called with the AIL lock held. The lock is dropped
737 * before returning.
738 */
739void
740xfs_trans_ail_delete_bulk(
741 struct xfs_ail *ailp,
742 struct xfs_log_item **log_items,
743 int nr_items) __releases(ailp->xa_lock)
744{
745 xfs_log_item_t *mlip;
746 xfs_lsn_t tail_lsn;
747 int mlip_changed = 0;
748 int i;
749
750 mlip = xfs_ail_min(ailp);
751
752 for (i = 0; i < nr_items; i++) {
753 struct xfs_log_item *lip = log_items[i];
754 if (!(lip->li_flags & XFS_LI_IN_AIL)) {
755 struct xfs_mount *mp = ailp->xa_mount;
756
757 spin_unlock(&ailp->xa_lock);
758 if (!XFS_FORCED_SHUTDOWN(mp)) {
759 xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
760 "%s: attempting to delete a log item that is not in the AIL",
761 __func__);
762 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
763 }
764 return;
765 }
766
767 xfs_ail_delete(ailp, lip);
768 lip->li_flags &= ~XFS_LI_IN_AIL;
769 lip->li_lsn = 0;
770 if (mlip == lip)
771 mlip_changed = 1;
772 }
773
774 if (!mlip_changed) {
775 spin_unlock(&ailp->xa_lock);
776 return;
777 }
778
779 /*
780 * It is not safe to access mlip after the AIL lock is dropped, so we
781 * must get a copy of li_lsn before we do so. This is especially
782 * important on 32-bit platforms where accessing and updating 64-bit
783 * values like li_lsn is not atomic. It is possible we've emptied the
784 * AIL here, so if that is the case, pass an LSN of 0 to the tail move.
785 */
786 mlip = xfs_ail_min(ailp);
787 tail_lsn = mlip ? mlip->li_lsn : 0;
788 spin_unlock(&ailp->xa_lock);
789 xfs_log_move_tail(ailp->xa_mount, tail_lsn);
790}
791
792/*
793 * The active item list (AIL) is a doubly linked list of log
794 * items sorted by ascending lsn. The base of the list is
795 * a forw/back pointer pair embedded in the xfs mount structure.
796 * The base is initialized with both pointers pointing to the
797 * base. This case always needs to be distinguished, because
798 * the base has no lsn to look at. We almost always insert
799 * at the end of the list, so on inserts we search from the
800 * end of the list to find where the new item belongs.
801 */
802
803/*
804 * Initialize the doubly linked list to point only to itself.
805 */
806int
807xfs_trans_ail_init(
808 xfs_mount_t *mp)
809{
810 struct xfs_ail *ailp;
811
812 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
813 if (!ailp)
814 return ENOMEM;
815
816 ailp->xa_mount = mp;
817 INIT_LIST_HEAD(&ailp->xa_ail);
818 INIT_LIST_HEAD(&ailp->xa_cursors);
819 spin_lock_init(&ailp->xa_lock);
820
821 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
822 ailp->xa_mount->m_fsname);
823 if (IS_ERR(ailp->xa_task))
824 goto out_free_ailp;
825
826 mp->m_ail = ailp;
827 return 0;
828
829out_free_ailp:
830 kmem_free(ailp);
831 return ENOMEM;
832}
833
834void
835xfs_trans_ail_destroy(
836 xfs_mount_t *mp)
837{
838 struct xfs_ail *ailp = mp->m_ail;
839
840 kthread_stop(ailp->xa_task);
841 kmem_free(ailp);
842}