Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | /* * Implement the default iomap interfaces * * (C) Copyright 2004 Linus Torvalds * (C) Copyright 2006 Ralf Baechle <ralf@linux-mips.org> * (C) Copyright 2007 MIPS Technologies, Inc. * written by Ralf Baechle <ralf@linux-mips.org> */ #include <linux/module.h> #include <asm/io.h> /* * Read/write from/to an (offsettable) iomem cookie. It might be a PIO * access or a MMIO access, these functions don't care. The info is * encoded in the hardware mapping set up by the mapping functions * (or the cookie itself, depending on implementation and hw). * * The generic routines don't assume any hardware mappings, and just * encode the PIO/MMIO as part of the cookie. They coldly assume that * the MMIO IO mappings are not in the low address range. * * Architectures for which this is not true can't use this generic * implementation and should do their own copy. */ #define PIO_MASK 0x0ffffUL unsigned int ioread8(void __iomem *addr) { return readb(addr); } EXPORT_SYMBOL(ioread8); unsigned int ioread16(void __iomem *addr) { return readw(addr); } EXPORT_SYMBOL(ioread16); unsigned int ioread16be(void __iomem *addr) { return be16_to_cpu(__raw_readw(addr)); } EXPORT_SYMBOL(ioread16be); unsigned int ioread32(void __iomem *addr) { return readl(addr); } EXPORT_SYMBOL(ioread32); unsigned int ioread32be(void __iomem *addr) { return be32_to_cpu(__raw_readl(addr)); } EXPORT_SYMBOL(ioread32be); void iowrite8(u8 val, void __iomem *addr) { writeb(val, addr); } EXPORT_SYMBOL(iowrite8); void iowrite16(u16 val, void __iomem *addr) { writew(val, addr); } EXPORT_SYMBOL(iowrite16); void iowrite16be(u16 val, void __iomem *addr) { __raw_writew(cpu_to_be16(val), addr); } EXPORT_SYMBOL(iowrite16be); void iowrite32(u32 val, void __iomem *addr) { writel(val, addr); } EXPORT_SYMBOL(iowrite32); void iowrite32be(u32 val, void __iomem *addr) { __raw_writel(cpu_to_be32(val), addr); } EXPORT_SYMBOL(iowrite32be); /* * These are the "repeat MMIO read/write" functions. * Note the "__mem" accesses, since we want to convert * to CPU byte order if the host bus happens to not match the * endianness of PCI/ISA (see mach-generic/mangle-port.h). */ static inline void mmio_insb(void __iomem *addr, u8 *dst, int count) { while (--count >= 0) { u8 data = __mem_readb(addr); *dst = data; dst++; } } static inline void mmio_insw(void __iomem *addr, u16 *dst, int count) { while (--count >= 0) { u16 data = __mem_readw(addr); *dst = data; dst++; } } static inline void mmio_insl(void __iomem *addr, u32 *dst, int count) { while (--count >= 0) { u32 data = __mem_readl(addr); *dst = data; dst++; } } static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) { while (--count >= 0) { __mem_writeb(*src, addr); src++; } } static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) { while (--count >= 0) { __mem_writew(*src, addr); src++; } } static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) { while (--count >= 0) { __mem_writel(*src, addr); src++; } } void ioread8_rep(void __iomem *addr, void *dst, unsigned long count) { mmio_insb(addr, dst, count); } EXPORT_SYMBOL(ioread8_rep); void ioread16_rep(void __iomem *addr, void *dst, unsigned long count) { mmio_insw(addr, dst, count); } EXPORT_SYMBOL(ioread16_rep); void ioread32_rep(void __iomem *addr, void *dst, unsigned long count) { mmio_insl(addr, dst, count); } EXPORT_SYMBOL(ioread32_rep); void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) { mmio_outsb(addr, src, count); } EXPORT_SYMBOL(iowrite8_rep); void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) { mmio_outsw(addr, src, count); } EXPORT_SYMBOL(iowrite16_rep); void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) { mmio_outsl(addr, src, count); } EXPORT_SYMBOL(iowrite32_rep); /* * Create a virtual mapping cookie for an IO port range * * This uses the same mapping are as the in/out family which has to be setup * by the platform initialization code. * * Just to make matters somewhat more interesting on MIPS systems with * multiple host bridge each will have it's own ioport address space. */ static void __iomem *ioport_map_legacy(unsigned long port, unsigned int nr) { return (void __iomem *) (mips_io_port_base + port); } void __iomem *ioport_map(unsigned long port, unsigned int nr) { if (port > PIO_MASK) return NULL; return ioport_map_legacy(port, nr); } EXPORT_SYMBOL(ioport_map); void ioport_unmap(void __iomem *addr) { /* Nothing to do */ } EXPORT_SYMBOL(ioport_unmap); |