Linux Audio

Check our new training course

Loading...
v4.6
 
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/nsproxy.h>
 
  10#include <linux/slab.h>
  11#include <linux/socket.h>
  12#include <linux/string.h>
  13#ifdef	CONFIG_BLOCK
  14#include <linux/bio.h>
  15#endif	/* CONFIG_BLOCK */
  16#include <linux/dns_resolver.h>
  17#include <net/tcp.h>
 
  18
  19#include <linux/ceph/ceph_features.h>
  20#include <linux/ceph/libceph.h>
  21#include <linux/ceph/messenger.h>
  22#include <linux/ceph/decode.h>
  23#include <linux/ceph/pagelist.h>
  24#include <linux/export.h>
  25
  26/*
  27 * Ceph uses the messenger to exchange ceph_msg messages with other
  28 * hosts in the system.  The messenger provides ordered and reliable
  29 * delivery.  We tolerate TCP disconnects by reconnecting (with
  30 * exponential backoff) in the case of a fault (disconnection, bad
  31 * crc, protocol error).  Acks allow sent messages to be discarded by
  32 * the sender.
  33 */
  34
  35/*
  36 * We track the state of the socket on a given connection using
  37 * values defined below.  The transition to a new socket state is
  38 * handled by a function which verifies we aren't coming from an
  39 * unexpected state.
  40 *
  41 *      --------
  42 *      | NEW* |  transient initial state
  43 *      --------
  44 *          | con_sock_state_init()
  45 *          v
  46 *      ----------
  47 *      | CLOSED |  initialized, but no socket (and no
  48 *      ----------  TCP connection)
  49 *       ^      \
  50 *       |       \ con_sock_state_connecting()
  51 *       |        ----------------------
  52 *       |                              \
  53 *       + con_sock_state_closed()       \
  54 *       |+---------------------------    \
  55 *       | \                          \    \
  56 *       |  -----------                \    \
  57 *       |  | CLOSING |  socket event;  \    \
  58 *       |  -----------  await close     \    \
  59 *       |       ^                        \   |
  60 *       |       |                         \  |
  61 *       |       + con_sock_state_closing() \ |
  62 *       |      / \                         | |
  63 *       |     /   ---------------          | |
  64 *       |    /                   \         v v
  65 *       |   /                    --------------
  66 *       |  /    -----------------| CONNECTING |  socket created, TCP
  67 *       |  |   /                 --------------  connect initiated
  68 *       |  |   | con_sock_state_connected()
  69 *       |  |   v
  70 *      -------------
  71 *      | CONNECTED |  TCP connection established
  72 *      -------------
  73 *
  74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  75 */
  76
  77#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  78#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  79#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  80#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  81#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  82
  83/*
  84 * connection states
  85 */
  86#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  87#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  88#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  89#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  90#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  91#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  92
  93/*
  94 * ceph_connection flag bits
  95 */
  96#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  97				       * messages on errors */
  98#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
  99#define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
 100#define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
 101#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 102
 103static bool con_flag_valid(unsigned long con_flag)
 104{
 105	switch (con_flag) {
 106	case CON_FLAG_LOSSYTX:
 107	case CON_FLAG_KEEPALIVE_PENDING:
 108	case CON_FLAG_WRITE_PENDING:
 109	case CON_FLAG_SOCK_CLOSED:
 110	case CON_FLAG_BACKOFF:
 111		return true;
 112	default:
 113		return false;
 114	}
 115}
 116
 117static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 118{
 119	BUG_ON(!con_flag_valid(con_flag));
 120
 121	clear_bit(con_flag, &con->flags);
 122}
 123
 124static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 125{
 126	BUG_ON(!con_flag_valid(con_flag));
 127
 128	set_bit(con_flag, &con->flags);
 129}
 130
 131static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 132{
 133	BUG_ON(!con_flag_valid(con_flag));
 134
 135	return test_bit(con_flag, &con->flags);
 136}
 137
 138static bool con_flag_test_and_clear(struct ceph_connection *con,
 139					unsigned long con_flag)
 140{
 141	BUG_ON(!con_flag_valid(con_flag));
 142
 143	return test_and_clear_bit(con_flag, &con->flags);
 144}
 145
 146static bool con_flag_test_and_set(struct ceph_connection *con,
 147					unsigned long con_flag)
 148{
 149	BUG_ON(!con_flag_valid(con_flag));
 150
 151	return test_and_set_bit(con_flag, &con->flags);
 152}
 153
 154/* Slab caches for frequently-allocated structures */
 155
 156static struct kmem_cache	*ceph_msg_cache;
 157static struct kmem_cache	*ceph_msg_data_cache;
 158
 159/* static tag bytes (protocol control messages) */
 160static char tag_msg = CEPH_MSGR_TAG_MSG;
 161static char tag_ack = CEPH_MSGR_TAG_ACK;
 162static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 163static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 164
 165#ifdef CONFIG_LOCKDEP
 166static struct lock_class_key socket_class;
 167#endif
 168
 169/*
 170 * When skipping (ignoring) a block of input we read it into a "skip
 171 * buffer," which is this many bytes in size.
 172 */
 173#define SKIP_BUF_SIZE	1024
 174
 175static void queue_con(struct ceph_connection *con);
 176static void cancel_con(struct ceph_connection *con);
 177static void ceph_con_workfn(struct work_struct *);
 178static void con_fault(struct ceph_connection *con);
 179
 180/*
 181 * Nicely render a sockaddr as a string.  An array of formatted
 182 * strings is used, to approximate reentrancy.
 183 */
 184#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 185#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 186#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 187#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 188
 189static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 190static atomic_t addr_str_seq = ATOMIC_INIT(0);
 191
 192static struct page *zero_page;		/* used in certain error cases */
 193
 194const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 195{
 196	int i;
 197	char *s;
 198	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 199	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 
 200
 201	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 202	s = addr_str[i];
 203
 204	switch (ss->ss_family) {
 205	case AF_INET:
 206		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 
 207			 ntohs(in4->sin_port));
 208		break;
 209
 210	case AF_INET6:
 211		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 
 212			 ntohs(in6->sin6_port));
 213		break;
 214
 215	default:
 216		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 217			 ss->ss_family);
 218	}
 219
 220	return s;
 221}
 222EXPORT_SYMBOL(ceph_pr_addr);
 223
 224static void encode_my_addr(struct ceph_messenger *msgr)
 225{
 226	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 227	ceph_encode_addr(&msgr->my_enc_addr);
 
 
 
 228}
 229
 230/*
 231 * work queue for all reading and writing to/from the socket.
 232 */
 233static struct workqueue_struct *ceph_msgr_wq;
 234
 235static int ceph_msgr_slab_init(void)
 236{
 237	BUG_ON(ceph_msg_cache);
 238	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 239	if (!ceph_msg_cache)
 240		return -ENOMEM;
 241
 242	BUG_ON(ceph_msg_data_cache);
 243	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 244	if (ceph_msg_data_cache)
 245		return 0;
 246
 247	kmem_cache_destroy(ceph_msg_cache);
 248	ceph_msg_cache = NULL;
 249
 250	return -ENOMEM;
 251}
 252
 253static void ceph_msgr_slab_exit(void)
 254{
 255	BUG_ON(!ceph_msg_data_cache);
 256	kmem_cache_destroy(ceph_msg_data_cache);
 257	ceph_msg_data_cache = NULL;
 258
 259	BUG_ON(!ceph_msg_cache);
 260	kmem_cache_destroy(ceph_msg_cache);
 261	ceph_msg_cache = NULL;
 262}
 263
 264static void _ceph_msgr_exit(void)
 265{
 266	if (ceph_msgr_wq) {
 267		destroy_workqueue(ceph_msgr_wq);
 268		ceph_msgr_wq = NULL;
 269	}
 270
 271	BUG_ON(zero_page == NULL);
 272	put_page(zero_page);
 273	zero_page = NULL;
 274
 275	ceph_msgr_slab_exit();
 276}
 277
 278int ceph_msgr_init(void)
 279{
 280	if (ceph_msgr_slab_init())
 281		return -ENOMEM;
 282
 283	BUG_ON(zero_page != NULL);
 284	zero_page = ZERO_PAGE(0);
 285	get_page(zero_page);
 286
 287	/*
 288	 * The number of active work items is limited by the number of
 289	 * connections, so leave @max_active at default.
 290	 */
 291	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 292	if (ceph_msgr_wq)
 293		return 0;
 294
 295	pr_err("msgr_init failed to create workqueue\n");
 296	_ceph_msgr_exit();
 297
 298	return -ENOMEM;
 299}
 300EXPORT_SYMBOL(ceph_msgr_init);
 301
 302void ceph_msgr_exit(void)
 303{
 304	BUG_ON(ceph_msgr_wq == NULL);
 305
 306	_ceph_msgr_exit();
 307}
 308EXPORT_SYMBOL(ceph_msgr_exit);
 309
 310void ceph_msgr_flush(void)
 311{
 312	flush_workqueue(ceph_msgr_wq);
 313}
 314EXPORT_SYMBOL(ceph_msgr_flush);
 315
 316/* Connection socket state transition functions */
 317
 318static void con_sock_state_init(struct ceph_connection *con)
 319{
 320	int old_state;
 321
 322	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 323	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 324		printk("%s: unexpected old state %d\n", __func__, old_state);
 325	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 326	     CON_SOCK_STATE_CLOSED);
 327}
 328
 329static void con_sock_state_connecting(struct ceph_connection *con)
 330{
 331	int old_state;
 332
 333	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 334	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CONNECTING);
 338}
 339
 340static void con_sock_state_connected(struct ceph_connection *con)
 341{
 342	int old_state;
 343
 344	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 345	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 346		printk("%s: unexpected old state %d\n", __func__, old_state);
 347	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 348	     CON_SOCK_STATE_CONNECTED);
 349}
 350
 351static void con_sock_state_closing(struct ceph_connection *con)
 352{
 353	int old_state;
 354
 355	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 356	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 357			old_state != CON_SOCK_STATE_CONNECTED &&
 358			old_state != CON_SOCK_STATE_CLOSING))
 359		printk("%s: unexpected old state %d\n", __func__, old_state);
 360	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 361	     CON_SOCK_STATE_CLOSING);
 362}
 363
 364static void con_sock_state_closed(struct ceph_connection *con)
 365{
 366	int old_state;
 367
 368	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 369	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 370		    old_state != CON_SOCK_STATE_CLOSING &&
 371		    old_state != CON_SOCK_STATE_CONNECTING &&
 372		    old_state != CON_SOCK_STATE_CLOSED))
 373		printk("%s: unexpected old state %d\n", __func__, old_state);
 374	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 375	     CON_SOCK_STATE_CLOSED);
 376}
 377
 378/*
 379 * socket callback functions
 380 */
 381
 382/* data available on socket, or listen socket received a connect */
 383static void ceph_sock_data_ready(struct sock *sk)
 384{
 385	struct ceph_connection *con = sk->sk_user_data;
 
 
 
 386	if (atomic_read(&con->msgr->stopping)) {
 387		return;
 388	}
 389
 390	if (sk->sk_state != TCP_CLOSE_WAIT) {
 391		dout("%s on %p state = %lu, queueing work\n", __func__,
 392		     con, con->state);
 393		queue_con(con);
 394	}
 395}
 396
 397/* socket has buffer space for writing */
 398static void ceph_sock_write_space(struct sock *sk)
 399{
 400	struct ceph_connection *con = sk->sk_user_data;
 401
 402	/* only queue to workqueue if there is data we want to write,
 403	 * and there is sufficient space in the socket buffer to accept
 404	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 405	 * doesn't get called again until try_write() fills the socket
 406	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 407	 * and net/core/stream.c:sk_stream_write_space().
 408	 */
 409	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 410		if (sk_stream_is_writeable(sk)) {
 411			dout("%s %p queueing write work\n", __func__, con);
 412			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 413			queue_con(con);
 414		}
 415	} else {
 416		dout("%s %p nothing to write\n", __func__, con);
 417	}
 418}
 419
 420/* socket's state has changed */
 421static void ceph_sock_state_change(struct sock *sk)
 422{
 423	struct ceph_connection *con = sk->sk_user_data;
 424
 425	dout("%s %p state = %lu sk_state = %u\n", __func__,
 426	     con, con->state, sk->sk_state);
 427
 428	switch (sk->sk_state) {
 429	case TCP_CLOSE:
 430		dout("%s TCP_CLOSE\n", __func__);
 
 431	case TCP_CLOSE_WAIT:
 432		dout("%s TCP_CLOSE_WAIT\n", __func__);
 433		con_sock_state_closing(con);
 434		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 435		queue_con(con);
 436		break;
 437	case TCP_ESTABLISHED:
 438		dout("%s TCP_ESTABLISHED\n", __func__);
 439		con_sock_state_connected(con);
 440		queue_con(con);
 441		break;
 442	default:	/* Everything else is uninteresting */
 443		break;
 444	}
 445}
 446
 447/*
 448 * set up socket callbacks
 449 */
 450static void set_sock_callbacks(struct socket *sock,
 451			       struct ceph_connection *con)
 452{
 453	struct sock *sk = sock->sk;
 454	sk->sk_user_data = con;
 455	sk->sk_data_ready = ceph_sock_data_ready;
 456	sk->sk_write_space = ceph_sock_write_space;
 457	sk->sk_state_change = ceph_sock_state_change;
 458}
 459
 460
 461/*
 462 * socket helpers
 463 */
 464
 465/*
 466 * initiate connection to a remote socket.
 467 */
 468static int ceph_tcp_connect(struct ceph_connection *con)
 469{
 470	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 471	struct socket *sock;
 
 472	int ret;
 473
 
 
 474	BUG_ON(con->sock);
 475	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 
 
 
 476			       SOCK_STREAM, IPPROTO_TCP, &sock);
 
 477	if (ret)
 478		return ret;
 479	sock->sk->sk_allocation = GFP_NOFS;
 
 480
 481#ifdef CONFIG_LOCKDEP
 482	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 483#endif
 484
 485	set_sock_callbacks(sock, con);
 486
 487	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 488
 489	con_sock_state_connecting(con);
 490	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 491				 O_NONBLOCK);
 492	if (ret == -EINPROGRESS) {
 493		dout("connect %s EINPROGRESS sk_state = %u\n",
 494		     ceph_pr_addr(&con->peer_addr.in_addr),
 495		     sock->sk->sk_state);
 496	} else if (ret < 0) {
 497		pr_err("connect %s error %d\n",
 498		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 499		sock_release(sock);
 500		return ret;
 501	}
 502
 503	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 504		int optval = 1;
 505
 506		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 507					(char *)&optval, sizeof(optval));
 508		if (ret)
 509			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 510			       ret);
 511	}
 512
 513	con->sock = sock;
 514	return 0;
 515}
 516
 517static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 518{
 519	struct kvec iov = {buf, len};
 520	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 521	int r;
 522
 523	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 524	if (r == -EAGAIN)
 525		r = 0;
 526	return r;
 527}
 528
 529static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 530		     int page_offset, size_t length)
 531{
 532	void *kaddr;
 533	int ret;
 534
 535	BUG_ON(page_offset + length > PAGE_SIZE);
 536
 537	kaddr = kmap(page);
 538	BUG_ON(!kaddr);
 539	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 540	kunmap(page);
 541
 542	return ret;
 543}
 544
 545/*
 546 * write something.  @more is true if caller will be sending more data
 547 * shortly.
 548 */
 549static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 550		     size_t kvlen, size_t len, int more)
 551{
 552	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 553	int r;
 554
 555	if (more)
 556		msg.msg_flags |= MSG_MORE;
 557	else
 558		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 559
 560	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 561	if (r == -EAGAIN)
 562		r = 0;
 563	return r;
 564}
 565
 566static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 567		     int offset, size_t size, bool more)
 568{
 569	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 570	int ret;
 571
 572	ret = kernel_sendpage(sock, page, offset, size, flags);
 573	if (ret == -EAGAIN)
 574		ret = 0;
 575
 576	return ret;
 577}
 578
 579static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 580		     int offset, size_t size, bool more)
 581{
 582	int ret;
 583	struct kvec iov;
 584
 585	/* sendpage cannot properly handle pages with page_count == 0,
 586	 * we need to fallback to sendmsg if that's the case */
 587	if (page_count(page) >= 1)
 588		return __ceph_tcp_sendpage(sock, page, offset, size, more);
 589
 590	iov.iov_base = kmap(page) + offset;
 591	iov.iov_len = size;
 592	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
 593	kunmap(page);
 594
 595	return ret;
 596}
 597
 598/*
 599 * Shutdown/close the socket for the given connection.
 600 */
 601static int con_close_socket(struct ceph_connection *con)
 602{
 603	int rc = 0;
 604
 605	dout("con_close_socket on %p sock %p\n", con, con->sock);
 606	if (con->sock) {
 607		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 608		sock_release(con->sock);
 609		con->sock = NULL;
 610	}
 611
 612	/*
 613	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 614	 * independent of the connection mutex, and we could have
 615	 * received a socket close event before we had the chance to
 616	 * shut the socket down.
 617	 */
 618	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 619
 620	con_sock_state_closed(con);
 621	return rc;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624/*
 625 * Reset a connection.  Discard all incoming and outgoing messages
 626 * and clear *_seq state.
 627 */
 628static void ceph_msg_remove(struct ceph_msg *msg)
 629{
 630	list_del_init(&msg->list_head);
 631
 632	ceph_msg_put(msg);
 633}
 
 634static void ceph_msg_remove_list(struct list_head *head)
 635{
 636	while (!list_empty(head)) {
 637		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 638							list_head);
 639		ceph_msg_remove(msg);
 640	}
 641}
 642
 643static void reset_connection(struct ceph_connection *con)
 644{
 645	/* reset connection, out_queue, msg_ and connect_seq */
 646	/* discard existing out_queue and msg_seq */
 647	dout("reset_connection %p\n", con);
 
 648	ceph_msg_remove_list(&con->out_queue);
 649	ceph_msg_remove_list(&con->out_sent);
 650
 651	if (con->in_msg) {
 652		BUG_ON(con->in_msg->con != con);
 653		ceph_msg_put(con->in_msg);
 654		con->in_msg = NULL;
 655	}
 656
 657	con->connect_seq = 0;
 658	con->out_seq = 0;
 659	if (con->out_msg) {
 660		BUG_ON(con->out_msg->con != con);
 661		ceph_msg_put(con->out_msg);
 662		con->out_msg = NULL;
 663	}
 664	con->in_seq = 0;
 665	con->in_seq_acked = 0;
 666
 667	con->out_skip = 0;
 
 
 
 668}
 669
 670/*
 671 * mark a peer down.  drop any open connections.
 672 */
 673void ceph_con_close(struct ceph_connection *con)
 674{
 675	mutex_lock(&con->mutex);
 676	dout("con_close %p peer %s\n", con,
 677	     ceph_pr_addr(&con->peer_addr.in_addr));
 678	con->state = CON_STATE_CLOSED;
 679
 680	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
 681	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 682	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 683	con_flag_clear(con, CON_FLAG_BACKOFF);
 684
 685	reset_connection(con);
 686	con->peer_global_seq = 0;
 687	cancel_con(con);
 688	con_close_socket(con);
 689	mutex_unlock(&con->mutex);
 690}
 691EXPORT_SYMBOL(ceph_con_close);
 692
 693/*
 694 * Reopen a closed connection, with a new peer address.
 695 */
 696void ceph_con_open(struct ceph_connection *con,
 697		   __u8 entity_type, __u64 entity_num,
 698		   struct ceph_entity_addr *addr)
 699{
 700	mutex_lock(&con->mutex);
 701	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 702
 703	WARN_ON(con->state != CON_STATE_CLOSED);
 704	con->state = CON_STATE_PREOPEN;
 705
 706	con->peer_name.type = (__u8) entity_type;
 707	con->peer_name.num = cpu_to_le64(entity_num);
 708
 709	memcpy(&con->peer_addr, addr, sizeof(*addr));
 710	con->delay = 0;      /* reset backoff memory */
 711	mutex_unlock(&con->mutex);
 712	queue_con(con);
 713}
 714EXPORT_SYMBOL(ceph_con_open);
 715
 716/*
 717 * return true if this connection ever successfully opened
 718 */
 719bool ceph_con_opened(struct ceph_connection *con)
 720{
 721	return con->connect_seq > 0;
 
 
 
 722}
 723
 724/*
 725 * initialize a new connection.
 726 */
 727void ceph_con_init(struct ceph_connection *con, void *private,
 728	const struct ceph_connection_operations *ops,
 729	struct ceph_messenger *msgr)
 730{
 731	dout("con_init %p\n", con);
 732	memset(con, 0, sizeof(*con));
 733	con->private = private;
 734	con->ops = ops;
 735	con->msgr = msgr;
 736
 737	con_sock_state_init(con);
 738
 739	mutex_init(&con->mutex);
 740	INIT_LIST_HEAD(&con->out_queue);
 741	INIT_LIST_HEAD(&con->out_sent);
 742	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 743
 744	con->state = CON_STATE_CLOSED;
 745}
 746EXPORT_SYMBOL(ceph_con_init);
 747
 748
 749/*
 750 * We maintain a global counter to order connection attempts.  Get
 751 * a unique seq greater than @gt.
 752 */
 753static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 754{
 755	u32 ret;
 756
 757	spin_lock(&msgr->global_seq_lock);
 758	if (msgr->global_seq < gt)
 759		msgr->global_seq = gt;
 760	ret = ++msgr->global_seq;
 761	spin_unlock(&msgr->global_seq_lock);
 762	return ret;
 763}
 764
 765static void con_out_kvec_reset(struct ceph_connection *con)
 766{
 767	BUG_ON(con->out_skip);
 768
 769	con->out_kvec_left = 0;
 770	con->out_kvec_bytes = 0;
 771	con->out_kvec_cur = &con->out_kvec[0];
 772}
 773
 774static void con_out_kvec_add(struct ceph_connection *con,
 775				size_t size, void *data)
 776{
 777	int index = con->out_kvec_left;
 
 778
 779	BUG_ON(con->out_skip);
 780	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 
 
 
 
 
 
 781
 782	con->out_kvec[index].iov_len = size;
 783	con->out_kvec[index].iov_base = data;
 784	con->out_kvec_left++;
 785	con->out_kvec_bytes += size;
 786}
 787
 788/*
 789 * Chop off a kvec from the end.  Return residual number of bytes for
 790 * that kvec, i.e. how many bytes would have been written if the kvec
 791 * hadn't been nuked.
 792 */
 793static int con_out_kvec_skip(struct ceph_connection *con)
 794{
 795	int off = con->out_kvec_cur - con->out_kvec;
 796	int skip = 0;
 797
 798	if (con->out_kvec_bytes > 0) {
 799		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 800		BUG_ON(con->out_kvec_bytes < skip);
 801		BUG_ON(!con->out_kvec_left);
 802		con->out_kvec_bytes -= skip;
 803		con->out_kvec_left--;
 804	}
 
 
 805
 806	return skip;
 
 
 
 807}
 808
 809#ifdef CONFIG_BLOCK
 810
 811/*
 812 * For a bio data item, a piece is whatever remains of the next
 813 * entry in the current bio iovec, or the first entry in the next
 814 * bio in the list.
 815 */
 816static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 817					size_t length)
 818{
 819	struct ceph_msg_data *data = cursor->data;
 820	struct bio *bio;
 821
 822	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 823
 824	bio = data->bio;
 825	BUG_ON(!bio);
 
 
 826
 827	cursor->resid = min(length, data->bio_length);
 828	cursor->bio = bio;
 829	cursor->bvec_iter = bio->bi_iter;
 830	cursor->last_piece =
 831		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 832}
 833
 834static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 835						size_t *page_offset,
 836						size_t *length)
 837{
 838	struct ceph_msg_data *data = cursor->data;
 839	struct bio *bio;
 840	struct bio_vec bio_vec;
 841
 842	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 
 
 
 843
 844	bio = cursor->bio;
 845	BUG_ON(!bio);
 
 
 
 846
 847	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 
 
 
 848
 849	*page_offset = (size_t) bio_vec.bv_offset;
 850	BUG_ON(*page_offset >= PAGE_SIZE);
 851	if (cursor->last_piece) /* pagelist offset is always 0 */
 852		*length = cursor->resid;
 853	else
 854		*length = (size_t) bio_vec.bv_len;
 855	BUG_ON(*length > cursor->resid);
 856	BUG_ON(*page_offset + *length > PAGE_SIZE);
 
 
 
 
 
 857
 858	return bio_vec.bv_page;
 
 859}
 
 860
 861static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 862					size_t bytes)
 863{
 864	struct bio *bio;
 865	struct bio_vec bio_vec;
 866
 867	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 
 
 868
 869	bio = cursor->bio;
 870	BUG_ON(!bio);
 871
 872	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 
 
 
 
 
 873
 874	/* Advance the cursor offset */
 
 
 
 
 
 
 
 
 
 875
 876	BUG_ON(cursor->resid < bytes);
 
 877	cursor->resid -= bytes;
 
 878
 879	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 
 880
 881	if (bytes < bio_vec.bv_len)
 
 882		return false;	/* more bytes to process in this segment */
 883
 884	/* Move on to the next segment, and possibly the next bio */
 885
 886	if (!cursor->bvec_iter.bi_size) {
 887		bio = bio->bi_next;
 888		cursor->bio = bio;
 889		if (bio)
 890			cursor->bvec_iter = bio->bi_iter;
 891		else
 892			memset(&cursor->bvec_iter, 0,
 893			       sizeof(cursor->bvec_iter));
 894	}
 895
 896	if (!cursor->last_piece) {
 897		BUG_ON(!cursor->resid);
 898		BUG_ON(!bio);
 899		/* A short read is OK, so use <= rather than == */
 900		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 901			cursor->last_piece = true;
 902	}
 903
 904	return true;
 905}
 906#endif /* CONFIG_BLOCK */
 907
 908/*
 909 * For a page array, a piece comes from the first page in the array
 910 * that has not already been fully consumed.
 911 */
 912static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 913					size_t length)
 914{
 915	struct ceph_msg_data *data = cursor->data;
 916	int page_count;
 917
 918	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 919
 920	BUG_ON(!data->pages);
 921	BUG_ON(!data->length);
 922
 923	cursor->resid = min(length, data->length);
 924	page_count = calc_pages_for(data->alignment, (u64)data->length);
 925	cursor->page_offset = data->alignment & ~PAGE_MASK;
 926	cursor->page_index = 0;
 927	BUG_ON(page_count > (int)USHRT_MAX);
 928	cursor->page_count = (unsigned short)page_count;
 929	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 930	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 931}
 932
 933static struct page *
 934ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 935					size_t *page_offset, size_t *length)
 936{
 937	struct ceph_msg_data *data = cursor->data;
 938
 939	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 940
 941	BUG_ON(cursor->page_index >= cursor->page_count);
 942	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 943
 944	*page_offset = cursor->page_offset;
 945	if (cursor->last_piece)
 946		*length = cursor->resid;
 947	else
 948		*length = PAGE_SIZE - *page_offset;
 949
 950	return data->pages[cursor->page_index];
 951}
 952
 953static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 954						size_t bytes)
 955{
 956	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 957
 958	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 959
 960	/* Advance the cursor page offset */
 961
 962	cursor->resid -= bytes;
 963	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 964	if (!bytes || cursor->page_offset)
 965		return false;	/* more bytes to process in the current page */
 966
 967	if (!cursor->resid)
 968		return false;   /* no more data */
 969
 970	/* Move on to the next page; offset is already at 0 */
 971
 972	BUG_ON(cursor->page_index >= cursor->page_count);
 973	cursor->page_index++;
 974	cursor->last_piece = cursor->resid <= PAGE_SIZE;
 975
 976	return true;
 977}
 978
 979/*
 980 * For a pagelist, a piece is whatever remains to be consumed in the
 981 * first page in the list, or the front of the next page.
 982 */
 983static void
 984ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 985					size_t length)
 986{
 987	struct ceph_msg_data *data = cursor->data;
 988	struct ceph_pagelist *pagelist;
 989	struct page *page;
 990
 991	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 992
 993	pagelist = data->pagelist;
 994	BUG_ON(!pagelist);
 995
 996	if (!length)
 997		return;		/* pagelist can be assigned but empty */
 998
 999	BUG_ON(list_empty(&pagelist->head));
1000	page = list_first_entry(&pagelist->head, struct page, lru);
1001
1002	cursor->resid = min(length, pagelist->length);
1003	cursor->page = page;
1004	cursor->offset = 0;
1005	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1006}
1007
1008static struct page *
1009ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1010				size_t *page_offset, size_t *length)
1011{
1012	struct ceph_msg_data *data = cursor->data;
1013	struct ceph_pagelist *pagelist;
1014
1015	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1016
1017	pagelist = data->pagelist;
1018	BUG_ON(!pagelist);
1019
1020	BUG_ON(!cursor->page);
1021	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1022
1023	/* offset of first page in pagelist is always 0 */
1024	*page_offset = cursor->offset & ~PAGE_MASK;
1025	if (cursor->last_piece)
1026		*length = cursor->resid;
1027	else
1028		*length = PAGE_SIZE - *page_offset;
1029
1030	return cursor->page;
1031}
1032
1033static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1034						size_t bytes)
1035{
1036	struct ceph_msg_data *data = cursor->data;
1037	struct ceph_pagelist *pagelist;
1038
1039	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1040
1041	pagelist = data->pagelist;
1042	BUG_ON(!pagelist);
1043
1044	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1045	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1046
1047	/* Advance the cursor offset */
1048
1049	cursor->resid -= bytes;
1050	cursor->offset += bytes;
1051	/* offset of first page in pagelist is always 0 */
1052	if (!bytes || cursor->offset & ~PAGE_MASK)
1053		return false;	/* more bytes to process in the current page */
1054
1055	if (!cursor->resid)
1056		return false;   /* no more data */
1057
1058	/* Move on to the next page */
1059
1060	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1061	cursor->page = list_next_entry(cursor->page, lru);
1062	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1063
1064	return true;
1065}
1066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067/*
1068 * Message data is handled (sent or received) in pieces, where each
1069 * piece resides on a single page.  The network layer might not
1070 * consume an entire piece at once.  A data item's cursor keeps
1071 * track of which piece is next to process and how much remains to
1072 * be processed in that piece.  It also tracks whether the current
1073 * piece is the last one in the data item.
1074 */
1075static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1076{
1077	size_t length = cursor->total_resid;
1078
1079	switch (cursor->data->type) {
1080	case CEPH_MSG_DATA_PAGELIST:
1081		ceph_msg_data_pagelist_cursor_init(cursor, length);
1082		break;
1083	case CEPH_MSG_DATA_PAGES:
1084		ceph_msg_data_pages_cursor_init(cursor, length);
1085		break;
1086#ifdef CONFIG_BLOCK
1087	case CEPH_MSG_DATA_BIO:
1088		ceph_msg_data_bio_cursor_init(cursor, length);
1089		break;
1090#endif /* CONFIG_BLOCK */
 
 
 
 
 
 
1091	case CEPH_MSG_DATA_NONE:
1092	default:
1093		/* BUG(); */
1094		break;
1095	}
1096	cursor->need_crc = true;
1097}
1098
1099static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
 
1100{
1101	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1102	struct ceph_msg_data *data;
1103
1104	BUG_ON(!length);
1105	BUG_ON(length > msg->data_length);
1106	BUG_ON(list_empty(&msg->data));
1107
1108	cursor->data_head = &msg->data;
1109	cursor->total_resid = length;
1110	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1111	cursor->data = data;
1112
1113	__ceph_msg_data_cursor_init(cursor);
1114}
1115
1116/*
1117 * Return the page containing the next piece to process for a given
1118 * data item, and supply the page offset and length of that piece.
1119 * Indicate whether this is the last piece in this data item.
1120 */
1121static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1122					size_t *page_offset, size_t *length,
1123					bool *last_piece)
1124{
1125	struct page *page;
1126
1127	switch (cursor->data->type) {
1128	case CEPH_MSG_DATA_PAGELIST:
1129		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1130		break;
1131	case CEPH_MSG_DATA_PAGES:
1132		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1133		break;
1134#ifdef CONFIG_BLOCK
1135	case CEPH_MSG_DATA_BIO:
1136		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1137		break;
1138#endif /* CONFIG_BLOCK */
 
 
 
 
 
 
1139	case CEPH_MSG_DATA_NONE:
1140	default:
1141		page = NULL;
1142		break;
1143	}
 
1144	BUG_ON(!page);
1145	BUG_ON(*page_offset + *length > PAGE_SIZE);
1146	BUG_ON(!*length);
1147	if (last_piece)
1148		*last_piece = cursor->last_piece;
1149
1150	return page;
1151}
1152
1153/*
1154 * Returns true if the result moves the cursor on to the next piece
1155 * of the data item.
1156 */
1157static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1158				size_t bytes)
1159{
1160	bool new_piece;
1161
1162	BUG_ON(bytes > cursor->resid);
1163	switch (cursor->data->type) {
1164	case CEPH_MSG_DATA_PAGELIST:
1165		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1166		break;
1167	case CEPH_MSG_DATA_PAGES:
1168		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1169		break;
1170#ifdef CONFIG_BLOCK
1171	case CEPH_MSG_DATA_BIO:
1172		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1173		break;
1174#endif /* CONFIG_BLOCK */
 
 
 
 
 
 
1175	case CEPH_MSG_DATA_NONE:
1176	default:
1177		BUG();
1178		break;
1179	}
1180	cursor->total_resid -= bytes;
1181
1182	if (!cursor->resid && cursor->total_resid) {
1183		WARN_ON(!cursor->last_piece);
1184		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1185		cursor->data = list_next_entry(cursor->data, links);
1186		__ceph_msg_data_cursor_init(cursor);
1187		new_piece = true;
1188	}
1189	cursor->need_crc = new_piece;
1190
1191	return new_piece;
1192}
1193
1194static size_t sizeof_footer(struct ceph_connection *con)
1195{
1196	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1197	    sizeof(struct ceph_msg_footer) :
1198	    sizeof(struct ceph_msg_footer_old);
1199}
1200
1201static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1202{
1203	BUG_ON(!msg);
1204	BUG_ON(!data_len);
1205
1206	/* Initialize data cursor */
1207
1208	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1209}
1210
1211/*
1212 * Prepare footer for currently outgoing message, and finish things
1213 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1214 */
1215static void prepare_write_message_footer(struct ceph_connection *con)
1216{
1217	struct ceph_msg *m = con->out_msg;
1218
1219	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220
1221	dout("prepare_write_message_footer %p\n", con);
1222	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1223	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224		if (con->ops->sign_message)
1225			con->ops->sign_message(m);
1226		else
1227			m->footer.sig = 0;
1228	} else {
1229		m->old_footer.flags = m->footer.flags;
1230	}
1231	con->out_more = m->more_to_follow;
1232	con->out_msg_done = true;
1233}
1234
1235/*
1236 * Prepare headers for the next outgoing message.
1237 */
1238static void prepare_write_message(struct ceph_connection *con)
1239{
1240	struct ceph_msg *m;
1241	u32 crc;
1242
1243	con_out_kvec_reset(con);
1244	con->out_msg_done = false;
1245
1246	/* Sneak an ack in there first?  If we can get it into the same
1247	 * TCP packet that's a good thing. */
1248	if (con->in_seq > con->in_seq_acked) {
1249		con->in_seq_acked = con->in_seq;
1250		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1251		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1252		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1253			&con->out_temp_ack);
1254	}
1255
1256	BUG_ON(list_empty(&con->out_queue));
1257	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1258	con->out_msg = m;
1259	BUG_ON(m->con != con);
1260
1261	/* put message on sent list */
1262	ceph_msg_get(m);
1263	list_move_tail(&m->list_head, &con->out_sent);
1264
1265	/*
1266	 * only assign outgoing seq # if we haven't sent this message
1267	 * yet.  if it is requeued, resend with it's original seq.
1268	 */
1269	if (m->needs_out_seq) {
1270		m->hdr.seq = cpu_to_le64(++con->out_seq);
1271		m->needs_out_seq = false;
1272	}
1273	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1274
1275	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1277	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1278	     m->data_length);
1279	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1280
1281	/* tag + hdr + front + middle */
1282	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1283	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1284	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1285
1286	if (m->middle)
1287		con_out_kvec_add(con, m->middle->vec.iov_len,
1288			m->middle->vec.iov_base);
1289
1290	/* fill in hdr crc and finalize hdr */
1291	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1292	con->out_msg->hdr.crc = cpu_to_le32(crc);
1293	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1294
1295	/* fill in front and middle crc, footer */
1296	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1297	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1298	if (m->middle) {
1299		crc = crc32c(0, m->middle->vec.iov_base,
1300				m->middle->vec.iov_len);
1301		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1302	} else
1303		con->out_msg->footer.middle_crc = 0;
1304	dout("%s front_crc %u middle_crc %u\n", __func__,
1305	     le32_to_cpu(con->out_msg->footer.front_crc),
1306	     le32_to_cpu(con->out_msg->footer.middle_crc));
1307	con->out_msg->footer.flags = 0;
1308
1309	/* is there a data payload? */
1310	con->out_msg->footer.data_crc = 0;
1311	if (m->data_length) {
1312		prepare_message_data(con->out_msg, m->data_length);
1313		con->out_more = 1;  /* data + footer will follow */
1314	} else {
1315		/* no, queue up footer too and be done */
1316		prepare_write_message_footer(con);
1317	}
1318
1319	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1320}
1321
1322/*
1323 * Prepare an ack.
1324 */
1325static void prepare_write_ack(struct ceph_connection *con)
1326{
1327	dout("prepare_write_ack %p %llu -> %llu\n", con,
1328	     con->in_seq_acked, con->in_seq);
1329	con->in_seq_acked = con->in_seq;
1330
1331	con_out_kvec_reset(con);
1332
1333	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1334
1335	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1336	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1337				&con->out_temp_ack);
1338
1339	con->out_more = 1;  /* more will follow.. eventually.. */
1340	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341}
1342
1343/*
1344 * Prepare to share the seq during handshake
1345 */
1346static void prepare_write_seq(struct ceph_connection *con)
1347{
1348	dout("prepare_write_seq %p %llu -> %llu\n", con,
1349	     con->in_seq_acked, con->in_seq);
1350	con->in_seq_acked = con->in_seq;
1351
1352	con_out_kvec_reset(con);
1353
1354	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356			 &con->out_temp_ack);
1357
1358	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359}
1360
1361/*
1362 * Prepare to write keepalive byte.
1363 */
1364static void prepare_write_keepalive(struct ceph_connection *con)
1365{
1366	dout("prepare_write_keepalive %p\n", con);
1367	con_out_kvec_reset(con);
1368	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1369		struct timespec now = CURRENT_TIME;
1370
1371		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1372		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1373		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1374				 &con->out_temp_keepalive2);
1375	} else {
1376		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1377	}
1378	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379}
1380
1381/*
1382 * Connection negotiation.
1383 */
1384
1385static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1386						int *auth_proto)
1387{
1388	struct ceph_auth_handshake *auth;
1389
1390	if (!con->ops->get_authorizer) {
1391		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1392		con->out_connect.authorizer_len = 0;
1393		return NULL;
1394	}
1395
1396	/* Can't hold the mutex while getting authorizer */
1397	mutex_unlock(&con->mutex);
1398	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1399	mutex_lock(&con->mutex);
1400
1401	if (IS_ERR(auth))
1402		return auth;
1403	if (con->state != CON_STATE_NEGOTIATING)
1404		return ERR_PTR(-EAGAIN);
1405
1406	con->auth_reply_buf = auth->authorizer_reply_buf;
1407	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1408	return auth;
1409}
1410
1411/*
1412 * We connected to a peer and are saying hello.
1413 */
1414static void prepare_write_banner(struct ceph_connection *con)
1415{
1416	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1417	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1418					&con->msgr->my_enc_addr);
1419
1420	con->out_more = 0;
1421	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1422}
1423
1424static int prepare_write_connect(struct ceph_connection *con)
1425{
1426	unsigned int global_seq = get_global_seq(con->msgr, 0);
1427	int proto;
1428	int auth_proto;
1429	struct ceph_auth_handshake *auth;
1430
1431	switch (con->peer_name.type) {
1432	case CEPH_ENTITY_TYPE_MON:
1433		proto = CEPH_MONC_PROTOCOL;
1434		break;
1435	case CEPH_ENTITY_TYPE_OSD:
1436		proto = CEPH_OSDC_PROTOCOL;
1437		break;
1438	case CEPH_ENTITY_TYPE_MDS:
1439		proto = CEPH_MDSC_PROTOCOL;
1440		break;
1441	default:
1442		BUG();
1443	}
1444
1445	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1446	     con->connect_seq, global_seq, proto);
1447
1448	con->out_connect.features =
1449	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1450	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1451	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1452	con->out_connect.global_seq = cpu_to_le32(global_seq);
1453	con->out_connect.protocol_version = cpu_to_le32(proto);
1454	con->out_connect.flags = 0;
1455
1456	auth_proto = CEPH_AUTH_UNKNOWN;
1457	auth = get_connect_authorizer(con, &auth_proto);
1458	if (IS_ERR(auth))
1459		return PTR_ERR(auth);
1460
1461	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1462	con->out_connect.authorizer_len = auth ?
1463		cpu_to_le32(auth->authorizer_buf_len) : 0;
1464
1465	con_out_kvec_add(con, sizeof (con->out_connect),
1466					&con->out_connect);
1467	if (auth && auth->authorizer_buf_len)
1468		con_out_kvec_add(con, auth->authorizer_buf_len,
1469					auth->authorizer_buf);
1470
1471	con->out_more = 0;
1472	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1473
1474	return 0;
1475}
1476
1477/*
1478 * write as much of pending kvecs to the socket as we can.
1479 *  1 -> done
1480 *  0 -> socket full, but more to do
1481 * <0 -> error
1482 */
1483static int write_partial_kvec(struct ceph_connection *con)
1484{
1485	int ret;
1486
1487	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1488	while (con->out_kvec_bytes > 0) {
1489		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1490				       con->out_kvec_left, con->out_kvec_bytes,
1491				       con->out_more);
1492		if (ret <= 0)
1493			goto out;
1494		con->out_kvec_bytes -= ret;
1495		if (con->out_kvec_bytes == 0)
1496			break;            /* done */
1497
1498		/* account for full iov entries consumed */
1499		while (ret >= con->out_kvec_cur->iov_len) {
1500			BUG_ON(!con->out_kvec_left);
1501			ret -= con->out_kvec_cur->iov_len;
1502			con->out_kvec_cur++;
1503			con->out_kvec_left--;
1504		}
1505		/* and for a partially-consumed entry */
1506		if (ret) {
1507			con->out_kvec_cur->iov_len -= ret;
1508			con->out_kvec_cur->iov_base += ret;
1509		}
1510	}
1511	con->out_kvec_left = 0;
1512	ret = 1;
1513out:
1514	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1515	     con->out_kvec_bytes, con->out_kvec_left, ret);
1516	return ret;  /* done! */
1517}
1518
1519static u32 ceph_crc32c_page(u32 crc, struct page *page,
1520				unsigned int page_offset,
1521				unsigned int length)
1522{
1523	char *kaddr;
1524
1525	kaddr = kmap(page);
1526	BUG_ON(kaddr == NULL);
1527	crc = crc32c(crc, kaddr + page_offset, length);
1528	kunmap(page);
1529
1530	return crc;
1531}
1532/*
1533 * Write as much message data payload as we can.  If we finish, queue
1534 * up the footer.
1535 *  1 -> done, footer is now queued in out_kvec[].
1536 *  0 -> socket full, but more to do
1537 * <0 -> error
1538 */
1539static int write_partial_message_data(struct ceph_connection *con)
1540{
1541	struct ceph_msg *msg = con->out_msg;
1542	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1543	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1544	u32 crc;
1545
1546	dout("%s %p msg %p\n", __func__, con, msg);
1547
1548	if (list_empty(&msg->data))
1549		return -EINVAL;
1550
1551	/*
1552	 * Iterate through each page that contains data to be
1553	 * written, and send as much as possible for each.
1554	 *
1555	 * If we are calculating the data crc (the default), we will
1556	 * need to map the page.  If we have no pages, they have
1557	 * been revoked, so use the zero page.
1558	 */
1559	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1560	while (cursor->resid) {
1561		struct page *page;
1562		size_t page_offset;
1563		size_t length;
1564		bool last_piece;
1565		bool need_crc;
1566		int ret;
1567
1568		page = ceph_msg_data_next(cursor, &page_offset, &length,
1569					  &last_piece);
1570		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1571					length, !last_piece);
1572		if (ret <= 0) {
1573			if (do_datacrc)
1574				msg->footer.data_crc = cpu_to_le32(crc);
1575
1576			return ret;
1577		}
1578		if (do_datacrc && cursor->need_crc)
1579			crc = ceph_crc32c_page(crc, page, page_offset, length);
1580		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1581	}
1582
1583	dout("%s %p msg %p done\n", __func__, con, msg);
1584
1585	/* prepare and queue up footer, too */
1586	if (do_datacrc)
1587		msg->footer.data_crc = cpu_to_le32(crc);
1588	else
1589		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1590	con_out_kvec_reset(con);
1591	prepare_write_message_footer(con);
1592
1593	return 1;	/* must return > 0 to indicate success */
1594}
1595
1596/*
1597 * write some zeros
1598 */
1599static int write_partial_skip(struct ceph_connection *con)
1600{
1601	int ret;
1602
1603	dout("%s %p %d left\n", __func__, con, con->out_skip);
1604	while (con->out_skip > 0) {
1605		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1606
1607		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1608		if (ret <= 0)
1609			goto out;
1610		con->out_skip -= ret;
1611	}
1612	ret = 1;
1613out:
1614	return ret;
1615}
1616
1617/*
1618 * Prepare to read connection handshake, or an ack.
1619 */
1620static void prepare_read_banner(struct ceph_connection *con)
1621{
1622	dout("prepare_read_banner %p\n", con);
1623	con->in_base_pos = 0;
1624}
1625
1626static void prepare_read_connect(struct ceph_connection *con)
1627{
1628	dout("prepare_read_connect %p\n", con);
1629	con->in_base_pos = 0;
1630}
1631
1632static void prepare_read_ack(struct ceph_connection *con)
1633{
1634	dout("prepare_read_ack %p\n", con);
1635	con->in_base_pos = 0;
1636}
1637
1638static void prepare_read_seq(struct ceph_connection *con)
1639{
1640	dout("prepare_read_seq %p\n", con);
1641	con->in_base_pos = 0;
1642	con->in_tag = CEPH_MSGR_TAG_SEQ;
1643}
1644
1645static void prepare_read_tag(struct ceph_connection *con)
1646{
1647	dout("prepare_read_tag %p\n", con);
1648	con->in_base_pos = 0;
1649	con->in_tag = CEPH_MSGR_TAG_READY;
1650}
1651
1652static void prepare_read_keepalive_ack(struct ceph_connection *con)
1653{
1654	dout("prepare_read_keepalive_ack %p\n", con);
1655	con->in_base_pos = 0;
1656}
1657
1658/*
1659 * Prepare to read a message.
1660 */
1661static int prepare_read_message(struct ceph_connection *con)
1662{
1663	dout("prepare_read_message %p\n", con);
1664	BUG_ON(con->in_msg != NULL);
1665	con->in_base_pos = 0;
1666	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1667	return 0;
1668}
1669
1670
1671static int read_partial(struct ceph_connection *con,
1672			int end, int size, void *object)
1673{
1674	while (con->in_base_pos < end) {
1675		int left = end - con->in_base_pos;
1676		int have = size - left;
1677		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1678		if (ret <= 0)
1679			return ret;
1680		con->in_base_pos += ret;
1681	}
1682	return 1;
1683}
1684
1685
1686/*
1687 * Read all or part of the connect-side handshake on a new connection
1688 */
1689static int read_partial_banner(struct ceph_connection *con)
1690{
1691	int size;
1692	int end;
1693	int ret;
1694
1695	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1696
1697	/* peer's banner */
1698	size = strlen(CEPH_BANNER);
1699	end = size;
1700	ret = read_partial(con, end, size, con->in_banner);
1701	if (ret <= 0)
1702		goto out;
1703
1704	size = sizeof (con->actual_peer_addr);
1705	end += size;
1706	ret = read_partial(con, end, size, &con->actual_peer_addr);
1707	if (ret <= 0)
1708		goto out;
1709
1710	size = sizeof (con->peer_addr_for_me);
1711	end += size;
1712	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1713	if (ret <= 0)
1714		goto out;
1715
1716out:
1717	return ret;
1718}
1719
1720static int read_partial_connect(struct ceph_connection *con)
1721{
1722	int size;
1723	int end;
1724	int ret;
1725
1726	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1727
1728	size = sizeof (con->in_reply);
1729	end = size;
1730	ret = read_partial(con, end, size, &con->in_reply);
1731	if (ret <= 0)
1732		goto out;
1733
1734	size = le32_to_cpu(con->in_reply.authorizer_len);
1735	end += size;
1736	ret = read_partial(con, end, size, con->auth_reply_buf);
1737	if (ret <= 0)
1738		goto out;
1739
1740	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1741	     con, (int)con->in_reply.tag,
1742	     le32_to_cpu(con->in_reply.connect_seq),
1743	     le32_to_cpu(con->in_reply.global_seq));
1744out:
1745	return ret;
1746
1747}
1748
1749/*
1750 * Verify the hello banner looks okay.
1751 */
1752static int verify_hello(struct ceph_connection *con)
1753{
1754	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1755		pr_err("connect to %s got bad banner\n",
1756		       ceph_pr_addr(&con->peer_addr.in_addr));
1757		con->error_msg = "protocol error, bad banner";
1758		return -1;
1759	}
1760	return 0;
1761}
1762
1763static bool addr_is_blank(struct sockaddr_storage *ss)
1764{
1765	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1766	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1767
1768	switch (ss->ss_family) {
1769	case AF_INET:
1770		return addr->s_addr == htonl(INADDR_ANY);
1771	case AF_INET6:
1772		return ipv6_addr_any(addr6);
1773	default:
1774		return true;
1775	}
1776}
 
1777
1778static int addr_port(struct sockaddr_storage *ss)
1779{
1780	switch (ss->ss_family) {
1781	case AF_INET:
1782		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1783	case AF_INET6:
1784		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1785	}
1786	return 0;
1787}
1788
1789static void addr_set_port(struct sockaddr_storage *ss, int p)
1790{
1791	switch (ss->ss_family) {
1792	case AF_INET:
1793		((struct sockaddr_in *)ss)->sin_port = htons(p);
1794		break;
1795	case AF_INET6:
1796		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1797		break;
1798	}
1799}
1800
1801/*
1802 * Unlike other *_pton function semantics, zero indicates success.
1803 */
1804static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1805		char delim, const char **ipend)
1806{
1807	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1808	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1809
1810	memset(ss, 0, sizeof(*ss));
1811
1812	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1813		ss->ss_family = AF_INET;
1814		return 0;
1815	}
1816
1817	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1818		ss->ss_family = AF_INET6;
1819		return 0;
1820	}
1821
1822	return -EINVAL;
1823}
1824
1825/*
1826 * Extract hostname string and resolve using kernel DNS facility.
1827 */
1828#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1829static int ceph_dns_resolve_name(const char *name, size_t namelen,
1830		struct sockaddr_storage *ss, char delim, const char **ipend)
1831{
1832	const char *end, *delim_p;
1833	char *colon_p, *ip_addr = NULL;
1834	int ip_len, ret;
1835
1836	/*
1837	 * The end of the hostname occurs immediately preceding the delimiter or
1838	 * the port marker (':') where the delimiter takes precedence.
1839	 */
1840	delim_p = memchr(name, delim, namelen);
1841	colon_p = memchr(name, ':', namelen);
1842
1843	if (delim_p && colon_p)
1844		end = delim_p < colon_p ? delim_p : colon_p;
1845	else if (!delim_p && colon_p)
1846		end = colon_p;
1847	else {
1848		end = delim_p;
1849		if (!end) /* case: hostname:/ */
1850			end = name + namelen;
1851	}
1852
1853	if (end <= name)
1854		return -EINVAL;
1855
1856	/* do dns_resolve upcall */
1857	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
 
1858	if (ip_len > 0)
1859		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1860	else
1861		ret = -ESRCH;
1862
1863	kfree(ip_addr);
1864
1865	*ipend = end;
1866
1867	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1868			ret, ret ? "failed" : ceph_pr_addr(ss));
1869
1870	return ret;
1871}
1872#else
1873static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1874		struct sockaddr_storage *ss, char delim, const char **ipend)
1875{
1876	return -EINVAL;
1877}
1878#endif
1879
1880/*
1881 * Parse a server name (IP or hostname). If a valid IP address is not found
1882 * then try to extract a hostname to resolve using userspace DNS upcall.
1883 */
1884static int ceph_parse_server_name(const char *name, size_t namelen,
1885			struct sockaddr_storage *ss, char delim, const char **ipend)
1886{
1887	int ret;
1888
1889	ret = ceph_pton(name, namelen, ss, delim, ipend);
1890	if (ret)
1891		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1892
1893	return ret;
1894}
1895
1896/*
1897 * Parse an ip[:port] list into an addr array.  Use the default
1898 * monitor port if a port isn't specified.
1899 */
1900int ceph_parse_ips(const char *c, const char *end,
1901		   struct ceph_entity_addr *addr,
1902		   int max_count, int *count)
1903{
1904	int i, ret = -EINVAL;
1905	const char *p = c;
1906
1907	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1908	for (i = 0; i < max_count; i++) {
 
1909		const char *ipend;
1910		struct sockaddr_storage *ss = &addr[i].in_addr;
1911		int port;
1912		char delim = ',';
1913
1914		if (*p == '[') {
1915			delim = ']';
1916			p++;
1917		}
1918
1919		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
 
1920		if (ret)
1921			goto bad;
1922		ret = -EINVAL;
1923
1924		p = ipend;
1925
1926		if (delim == ']') {
1927			if (*p != ']') {
1928				dout("missing matching ']'\n");
1929				goto bad;
1930			}
1931			p++;
1932		}
1933
1934		/* port? */
1935		if (p < end && *p == ':') {
1936			port = 0;
1937			p++;
1938			while (p < end && *p >= '0' && *p <= '9') {
1939				port = (port * 10) + (*p - '0');
1940				p++;
1941			}
1942			if (port == 0)
1943				port = CEPH_MON_PORT;
1944			else if (port > 65535)
1945				goto bad;
1946		} else {
1947			port = CEPH_MON_PORT;
1948		}
1949
1950		addr_set_port(ss, port);
 
 
 
 
 
 
 
 
 
 
1951
1952		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1953
1954		if (p == end)
1955			break;
1956		if (*p != ',')
1957			goto bad;
1958		p++;
1959	}
1960
1961	if (p != end)
1962		goto bad;
1963
1964	if (count)
1965		*count = i + 1;
1966	return 0;
1967
1968bad:
1969	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1970	return ret;
1971}
1972EXPORT_SYMBOL(ceph_parse_ips);
1973
1974static int process_banner(struct ceph_connection *con)
1975{
1976	dout("process_banner on %p\n", con);
1977
1978	if (verify_hello(con) < 0)
1979		return -1;
1980
1981	ceph_decode_addr(&con->actual_peer_addr);
1982	ceph_decode_addr(&con->peer_addr_for_me);
1983
1984	/*
1985	 * Make sure the other end is who we wanted.  note that the other
1986	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1987	 * them the benefit of the doubt.
1988	 */
1989	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1990		   sizeof(con->peer_addr)) != 0 &&
1991	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1992	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1993		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1994			ceph_pr_addr(&con->peer_addr.in_addr),
1995			(int)le32_to_cpu(con->peer_addr.nonce),
1996			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1997			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1998		con->error_msg = "wrong peer at address";
1999		return -1;
2000	}
2001
2002	/*
2003	 * did we learn our address?
2004	 */
2005	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2006		int port = addr_port(&con->msgr->inst.addr.in_addr);
2007
2008		memcpy(&con->msgr->inst.addr.in_addr,
2009		       &con->peer_addr_for_me.in_addr,
2010		       sizeof(con->peer_addr_for_me.in_addr));
2011		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2012		encode_my_addr(con->msgr);
2013		dout("process_banner learned my addr is %s\n",
2014		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2015	}
2016
2017	return 0;
2018}
2019
2020static int process_connect(struct ceph_connection *con)
2021{
2022	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2023	u64 req_feat = from_msgr(con->msgr)->required_features;
2024	u64 server_feat = ceph_sanitize_features(
2025				le64_to_cpu(con->in_reply.features));
2026	int ret;
2027
2028	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2029
2030	switch (con->in_reply.tag) {
2031	case CEPH_MSGR_TAG_FEATURES:
2032		pr_err("%s%lld %s feature set mismatch,"
2033		       " my %llx < server's %llx, missing %llx\n",
2034		       ENTITY_NAME(con->peer_name),
2035		       ceph_pr_addr(&con->peer_addr.in_addr),
2036		       sup_feat, server_feat, server_feat & ~sup_feat);
2037		con->error_msg = "missing required protocol features";
2038		reset_connection(con);
2039		return -1;
2040
2041	case CEPH_MSGR_TAG_BADPROTOVER:
2042		pr_err("%s%lld %s protocol version mismatch,"
2043		       " my %d != server's %d\n",
2044		       ENTITY_NAME(con->peer_name),
2045		       ceph_pr_addr(&con->peer_addr.in_addr),
2046		       le32_to_cpu(con->out_connect.protocol_version),
2047		       le32_to_cpu(con->in_reply.protocol_version));
2048		con->error_msg = "protocol version mismatch";
2049		reset_connection(con);
2050		return -1;
2051
2052	case CEPH_MSGR_TAG_BADAUTHORIZER:
2053		con->auth_retry++;
2054		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2055		     con->auth_retry);
2056		if (con->auth_retry == 2) {
2057			con->error_msg = "connect authorization failure";
2058			return -1;
2059		}
2060		con_out_kvec_reset(con);
2061		ret = prepare_write_connect(con);
2062		if (ret < 0)
2063			return ret;
2064		prepare_read_connect(con);
2065		break;
2066
2067	case CEPH_MSGR_TAG_RESETSESSION:
2068		/*
2069		 * If we connected with a large connect_seq but the peer
2070		 * has no record of a session with us (no connection, or
2071		 * connect_seq == 0), they will send RESETSESION to indicate
2072		 * that they must have reset their session, and may have
2073		 * dropped messages.
2074		 */
2075		dout("process_connect got RESET peer seq %u\n",
2076		     le32_to_cpu(con->in_reply.connect_seq));
2077		pr_err("%s%lld %s connection reset\n",
2078		       ENTITY_NAME(con->peer_name),
2079		       ceph_pr_addr(&con->peer_addr.in_addr));
2080		reset_connection(con);
2081		con_out_kvec_reset(con);
2082		ret = prepare_write_connect(con);
2083		if (ret < 0)
2084			return ret;
2085		prepare_read_connect(con);
2086
2087		/* Tell ceph about it. */
2088		mutex_unlock(&con->mutex);
2089		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2090		if (con->ops->peer_reset)
2091			con->ops->peer_reset(con);
2092		mutex_lock(&con->mutex);
2093		if (con->state != CON_STATE_NEGOTIATING)
2094			return -EAGAIN;
2095		break;
2096
2097	case CEPH_MSGR_TAG_RETRY_SESSION:
2098		/*
2099		 * If we sent a smaller connect_seq than the peer has, try
2100		 * again with a larger value.
2101		 */
2102		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2103		     le32_to_cpu(con->out_connect.connect_seq),
2104		     le32_to_cpu(con->in_reply.connect_seq));
2105		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2106		con_out_kvec_reset(con);
2107		ret = prepare_write_connect(con);
2108		if (ret < 0)
2109			return ret;
2110		prepare_read_connect(con);
2111		break;
2112
2113	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2114		/*
2115		 * If we sent a smaller global_seq than the peer has, try
2116		 * again with a larger value.
2117		 */
2118		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2119		     con->peer_global_seq,
2120		     le32_to_cpu(con->in_reply.global_seq));
2121		get_global_seq(con->msgr,
2122			       le32_to_cpu(con->in_reply.global_seq));
2123		con_out_kvec_reset(con);
2124		ret = prepare_write_connect(con);
2125		if (ret < 0)
2126			return ret;
2127		prepare_read_connect(con);
2128		break;
2129
2130	case CEPH_MSGR_TAG_SEQ:
2131	case CEPH_MSGR_TAG_READY:
2132		if (req_feat & ~server_feat) {
2133			pr_err("%s%lld %s protocol feature mismatch,"
2134			       " my required %llx > server's %llx, need %llx\n",
2135			       ENTITY_NAME(con->peer_name),
2136			       ceph_pr_addr(&con->peer_addr.in_addr),
2137			       req_feat, server_feat, req_feat & ~server_feat);
2138			con->error_msg = "missing required protocol features";
2139			reset_connection(con);
2140			return -1;
2141		}
2142
2143		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2144		con->state = CON_STATE_OPEN;
2145		con->auth_retry = 0;    /* we authenticated; clear flag */
2146		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2147		con->connect_seq++;
2148		con->peer_features = server_feat;
2149		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2150		     con->peer_global_seq,
2151		     le32_to_cpu(con->in_reply.connect_seq),
2152		     con->connect_seq);
2153		WARN_ON(con->connect_seq !=
2154			le32_to_cpu(con->in_reply.connect_seq));
2155
2156		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2157			con_flag_set(con, CON_FLAG_LOSSYTX);
2158
2159		con->delay = 0;      /* reset backoff memory */
2160
2161		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2162			prepare_write_seq(con);
2163			prepare_read_seq(con);
2164		} else {
2165			prepare_read_tag(con);
2166		}
2167		break;
2168
2169	case CEPH_MSGR_TAG_WAIT:
2170		/*
2171		 * If there is a connection race (we are opening
2172		 * connections to each other), one of us may just have
2173		 * to WAIT.  This shouldn't happen if we are the
2174		 * client.
2175		 */
2176		con->error_msg = "protocol error, got WAIT as client";
2177		return -1;
2178
2179	default:
2180		con->error_msg = "protocol error, garbage tag during connect";
2181		return -1;
2182	}
2183	return 0;
2184}
2185
2186
2187/*
2188 * read (part of) an ack
2189 */
2190static int read_partial_ack(struct ceph_connection *con)
2191{
2192	int size = sizeof (con->in_temp_ack);
2193	int end = size;
2194
2195	return read_partial(con, end, size, &con->in_temp_ack);
2196}
2197
2198/*
2199 * We can finally discard anything that's been acked.
2200 */
2201static void process_ack(struct ceph_connection *con)
2202{
2203	struct ceph_msg *m;
2204	u64 ack = le64_to_cpu(con->in_temp_ack);
2205	u64 seq;
2206
2207	while (!list_empty(&con->out_sent)) {
2208		m = list_first_entry(&con->out_sent, struct ceph_msg,
2209				     list_head);
2210		seq = le64_to_cpu(m->hdr.seq);
2211		if (seq > ack)
2212			break;
2213		dout("got ack for seq %llu type %d at %p\n", seq,
2214		     le16_to_cpu(m->hdr.type), m);
2215		m->ack_stamp = jiffies;
2216		ceph_msg_remove(m);
2217	}
2218	prepare_read_tag(con);
2219}
2220
2221
2222static int read_partial_message_section(struct ceph_connection *con,
2223					struct kvec *section,
2224					unsigned int sec_len, u32 *crc)
2225{
2226	int ret, left;
2227
2228	BUG_ON(!section);
2229
2230	while (section->iov_len < sec_len) {
2231		BUG_ON(section->iov_base == NULL);
2232		left = sec_len - section->iov_len;
2233		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2234				       section->iov_len, left);
2235		if (ret <= 0)
2236			return ret;
2237		section->iov_len += ret;
2238	}
2239	if (section->iov_len == sec_len)
2240		*crc = crc32c(0, section->iov_base, section->iov_len);
2241
2242	return 1;
2243}
2244
2245static int read_partial_msg_data(struct ceph_connection *con)
2246{
2247	struct ceph_msg *msg = con->in_msg;
2248	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2249	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2250	struct page *page;
2251	size_t page_offset;
2252	size_t length;
2253	u32 crc = 0;
2254	int ret;
2255
2256	BUG_ON(!msg);
2257	if (list_empty(&msg->data))
2258		return -EIO;
2259
2260	if (do_datacrc)
2261		crc = con->in_data_crc;
2262	while (cursor->resid) {
2263		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2264		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2265		if (ret <= 0) {
2266			if (do_datacrc)
2267				con->in_data_crc = crc;
2268
2269			return ret;
2270		}
2271
2272		if (do_datacrc)
2273			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2274		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2275	}
2276	if (do_datacrc)
2277		con->in_data_crc = crc;
2278
2279	return 1;	/* must return > 0 to indicate success */
2280}
2281
2282/*
2283 * read (part of) a message.
2284 */
2285static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2286
2287static int read_partial_message(struct ceph_connection *con)
2288{
2289	struct ceph_msg *m = con->in_msg;
2290	int size;
2291	int end;
2292	int ret;
2293	unsigned int front_len, middle_len, data_len;
2294	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2295	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2296	u64 seq;
2297	u32 crc;
2298
2299	dout("read_partial_message con %p msg %p\n", con, m);
2300
2301	/* header */
2302	size = sizeof (con->in_hdr);
2303	end = size;
2304	ret = read_partial(con, end, size, &con->in_hdr);
2305	if (ret <= 0)
2306		return ret;
2307
2308	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2309	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2310		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2311		       crc, con->in_hdr.crc);
2312		return -EBADMSG;
2313	}
2314
2315	front_len = le32_to_cpu(con->in_hdr.front_len);
2316	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2317		return -EIO;
2318	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2319	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2320		return -EIO;
2321	data_len = le32_to_cpu(con->in_hdr.data_len);
2322	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2323		return -EIO;
2324
2325	/* verify seq# */
2326	seq = le64_to_cpu(con->in_hdr.seq);
2327	if ((s64)seq - (s64)con->in_seq < 1) {
2328		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2329			ENTITY_NAME(con->peer_name),
2330			ceph_pr_addr(&con->peer_addr.in_addr),
2331			seq, con->in_seq + 1);
2332		con->in_base_pos = -front_len - middle_len - data_len -
2333			sizeof_footer(con);
2334		con->in_tag = CEPH_MSGR_TAG_READY;
2335		return 1;
2336	} else if ((s64)seq - (s64)con->in_seq > 1) {
2337		pr_err("read_partial_message bad seq %lld expected %lld\n",
2338		       seq, con->in_seq + 1);
2339		con->error_msg = "bad message sequence # for incoming message";
2340		return -EBADE;
2341	}
2342
2343	/* allocate message? */
2344	if (!con->in_msg) {
2345		int skip = 0;
2346
2347		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2348		     front_len, data_len);
2349		ret = ceph_con_in_msg_alloc(con, &skip);
2350		if (ret < 0)
2351			return ret;
2352
2353		BUG_ON(!con->in_msg ^ skip);
2354		if (skip) {
2355			/* skip this message */
2356			dout("alloc_msg said skip message\n");
2357			con->in_base_pos = -front_len - middle_len - data_len -
2358				sizeof_footer(con);
2359			con->in_tag = CEPH_MSGR_TAG_READY;
2360			con->in_seq++;
2361			return 1;
2362		}
2363
2364		BUG_ON(!con->in_msg);
2365		BUG_ON(con->in_msg->con != con);
2366		m = con->in_msg;
2367		m->front.iov_len = 0;    /* haven't read it yet */
2368		if (m->middle)
2369			m->middle->vec.iov_len = 0;
2370
2371		/* prepare for data payload, if any */
2372
2373		if (data_len)
2374			prepare_message_data(con->in_msg, data_len);
2375	}
2376
2377	/* front */
2378	ret = read_partial_message_section(con, &m->front, front_len,
2379					   &con->in_front_crc);
2380	if (ret <= 0)
2381		return ret;
2382
2383	/* middle */
2384	if (m->middle) {
2385		ret = read_partial_message_section(con, &m->middle->vec,
2386						   middle_len,
2387						   &con->in_middle_crc);
2388		if (ret <= 0)
2389			return ret;
2390	}
2391
2392	/* (page) data */
2393	if (data_len) {
2394		ret = read_partial_msg_data(con);
2395		if (ret <= 0)
2396			return ret;
2397	}
2398
2399	/* footer */
2400	size = sizeof_footer(con);
2401	end += size;
2402	ret = read_partial(con, end, size, &m->footer);
2403	if (ret <= 0)
2404		return ret;
2405
2406	if (!need_sign) {
2407		m->footer.flags = m->old_footer.flags;
2408		m->footer.sig = 0;
2409	}
2410
2411	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2412	     m, front_len, m->footer.front_crc, middle_len,
2413	     m->footer.middle_crc, data_len, m->footer.data_crc);
2414
2415	/* crc ok? */
2416	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2417		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2418		       m, con->in_front_crc, m->footer.front_crc);
2419		return -EBADMSG;
2420	}
2421	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2422		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2423		       m, con->in_middle_crc, m->footer.middle_crc);
2424		return -EBADMSG;
2425	}
2426	if (do_datacrc &&
2427	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2428	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2429		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2430		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2431		return -EBADMSG;
2432	}
2433
2434	if (need_sign && con->ops->check_message_signature &&
2435	    con->ops->check_message_signature(m)) {
2436		pr_err("read_partial_message %p signature check failed\n", m);
2437		return -EBADMSG;
2438	}
2439
2440	return 1; /* done! */
2441}
2442
2443/*
2444 * Process message.  This happens in the worker thread.  The callback should
2445 * be careful not to do anything that waits on other incoming messages or it
2446 * may deadlock.
2447 */
2448static void process_message(struct ceph_connection *con)
2449{
2450	struct ceph_msg *msg = con->in_msg;
2451
2452	BUG_ON(con->in_msg->con != con);
2453	con->in_msg = NULL;
2454
2455	/* if first message, set peer_name */
2456	if (con->peer_name.type == 0)
2457		con->peer_name = msg->hdr.src;
2458
2459	con->in_seq++;
2460	mutex_unlock(&con->mutex);
2461
2462	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2463	     msg, le64_to_cpu(msg->hdr.seq),
2464	     ENTITY_NAME(msg->hdr.src),
2465	     le16_to_cpu(msg->hdr.type),
2466	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2467	     le32_to_cpu(msg->hdr.front_len),
 
2468	     le32_to_cpu(msg->hdr.data_len),
2469	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2470	con->ops->dispatch(con, msg);
2471
2472	mutex_lock(&con->mutex);
2473}
2474
2475static int read_keepalive_ack(struct ceph_connection *con)
2476{
2477	struct ceph_timespec ceph_ts;
2478	size_t size = sizeof(ceph_ts);
2479	int ret = read_partial(con, size, size, &ceph_ts);
2480	if (ret <= 0)
2481		return ret;
2482	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2483	prepare_read_tag(con);
2484	return 1;
2485}
2486
2487/*
2488 * Write something to the socket.  Called in a worker thread when the
2489 * socket appears to be writeable and we have something ready to send.
2490 */
2491static int try_write(struct ceph_connection *con)
2492{
2493	int ret = 1;
2494
2495	dout("try_write start %p state %lu\n", con, con->state);
2496
2497more:
2498	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2499
2500	/* open the socket first? */
2501	if (con->state == CON_STATE_PREOPEN) {
2502		BUG_ON(con->sock);
2503		con->state = CON_STATE_CONNECTING;
2504
2505		con_out_kvec_reset(con);
2506		prepare_write_banner(con);
2507		prepare_read_banner(con);
2508
2509		BUG_ON(con->in_msg);
2510		con->in_tag = CEPH_MSGR_TAG_READY;
2511		dout("try_write initiating connect on %p new state %lu\n",
2512		     con, con->state);
2513		ret = ceph_tcp_connect(con);
2514		if (ret < 0) {
2515			con->error_msg = "connect error";
2516			goto out;
2517		}
2518	}
2519
2520more_kvec:
2521	/* kvec data queued? */
2522	if (con->out_kvec_left) {
2523		ret = write_partial_kvec(con);
2524		if (ret <= 0)
2525			goto out;
2526	}
2527	if (con->out_skip) {
2528		ret = write_partial_skip(con);
2529		if (ret <= 0)
2530			goto out;
2531	}
2532
2533	/* msg pages? */
2534	if (con->out_msg) {
2535		if (con->out_msg_done) {
2536			ceph_msg_put(con->out_msg);
2537			con->out_msg = NULL;   /* we're done with this one */
2538			goto do_next;
2539		}
2540
2541		ret = write_partial_message_data(con);
2542		if (ret == 1)
2543			goto more_kvec;  /* we need to send the footer, too! */
2544		if (ret == 0)
2545			goto out;
2546		if (ret < 0) {
2547			dout("try_write write_partial_message_data err %d\n",
2548			     ret);
2549			goto out;
2550		}
2551	}
2552
2553do_next:
2554	if (con->state == CON_STATE_OPEN) {
2555		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2556			prepare_write_keepalive(con);
2557			goto more;
2558		}
2559		/* is anything else pending? */
2560		if (!list_empty(&con->out_queue)) {
2561			prepare_write_message(con);
2562			goto more;
2563		}
2564		if (con->in_seq > con->in_seq_acked) {
2565			prepare_write_ack(con);
2566			goto more;
2567		}
2568	}
2569
2570	/* Nothing to do! */
2571	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2572	dout("try_write nothing else to write.\n");
2573	ret = 0;
2574out:
2575	dout("try_write done on %p ret %d\n", con, ret);
2576	return ret;
2577}
2578
2579
2580
2581/*
2582 * Read what we can from the socket.
2583 */
2584static int try_read(struct ceph_connection *con)
2585{
2586	int ret = -1;
2587
2588more:
2589	dout("try_read start on %p state %lu\n", con, con->state);
2590	if (con->state != CON_STATE_CONNECTING &&
2591	    con->state != CON_STATE_NEGOTIATING &&
2592	    con->state != CON_STATE_OPEN)
2593		return 0;
2594
2595	BUG_ON(!con->sock);
2596
2597	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2598	     con->in_base_pos);
2599
2600	if (con->state == CON_STATE_CONNECTING) {
2601		dout("try_read connecting\n");
2602		ret = read_partial_banner(con);
2603		if (ret <= 0)
2604			goto out;
2605		ret = process_banner(con);
2606		if (ret < 0)
2607			goto out;
2608
2609		con->state = CON_STATE_NEGOTIATING;
2610
2611		/*
2612		 * Received banner is good, exchange connection info.
2613		 * Do not reset out_kvec, as sending our banner raced
2614		 * with receiving peer banner after connect completed.
2615		 */
2616		ret = prepare_write_connect(con);
2617		if (ret < 0)
2618			goto out;
2619		prepare_read_connect(con);
2620
2621		/* Send connection info before awaiting response */
2622		goto out;
2623	}
2624
2625	if (con->state == CON_STATE_NEGOTIATING) {
2626		dout("try_read negotiating\n");
2627		ret = read_partial_connect(con);
2628		if (ret <= 0)
2629			goto out;
2630		ret = process_connect(con);
2631		if (ret < 0)
2632			goto out;
2633		goto more;
2634	}
2635
2636	WARN_ON(con->state != CON_STATE_OPEN);
2637
2638	if (con->in_base_pos < 0) {
2639		/*
2640		 * skipping + discarding content.
2641		 *
2642		 * FIXME: there must be a better way to do this!
2643		 */
2644		static char buf[SKIP_BUF_SIZE];
2645		int skip = min((int) sizeof (buf), -con->in_base_pos);
2646
2647		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2648		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2649		if (ret <= 0)
2650			goto out;
2651		con->in_base_pos += ret;
2652		if (con->in_base_pos)
2653			goto more;
2654	}
2655	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2656		/*
2657		 * what's next?
2658		 */
2659		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2660		if (ret <= 0)
2661			goto out;
2662		dout("try_read got tag %d\n", (int)con->in_tag);
2663		switch (con->in_tag) {
2664		case CEPH_MSGR_TAG_MSG:
2665			prepare_read_message(con);
2666			break;
2667		case CEPH_MSGR_TAG_ACK:
2668			prepare_read_ack(con);
2669			break;
2670		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2671			prepare_read_keepalive_ack(con);
2672			break;
2673		case CEPH_MSGR_TAG_CLOSE:
2674			con_close_socket(con);
2675			con->state = CON_STATE_CLOSED;
2676			goto out;
2677		default:
2678			goto bad_tag;
2679		}
2680	}
2681	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2682		ret = read_partial_message(con);
2683		if (ret <= 0) {
2684			switch (ret) {
2685			case -EBADMSG:
2686				con->error_msg = "bad crc/signature";
2687				/* fall through */
2688			case -EBADE:
2689				ret = -EIO;
2690				break;
2691			case -EIO:
2692				con->error_msg = "io error";
2693				break;
2694			}
2695			goto out;
2696		}
2697		if (con->in_tag == CEPH_MSGR_TAG_READY)
2698			goto more;
2699		process_message(con);
2700		if (con->state == CON_STATE_OPEN)
2701			prepare_read_tag(con);
2702		goto more;
2703	}
2704	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2705	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2706		/*
2707		 * the final handshake seq exchange is semantically
2708		 * equivalent to an ACK
2709		 */
2710		ret = read_partial_ack(con);
2711		if (ret <= 0)
2712			goto out;
2713		process_ack(con);
2714		goto more;
2715	}
2716	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2717		ret = read_keepalive_ack(con);
2718		if (ret <= 0)
2719			goto out;
2720		goto more;
2721	}
2722
2723out:
2724	dout("try_read done on %p ret %d\n", con, ret);
2725	return ret;
2726
2727bad_tag:
2728	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2729	con->error_msg = "protocol error, garbage tag";
2730	ret = -1;
2731	goto out;
2732}
2733
2734
2735/*
2736 * Atomically queue work on a connection after the specified delay.
2737 * Bump @con reference to avoid races with connection teardown.
2738 * Returns 0 if work was queued, or an error code otherwise.
2739 */
2740static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2741{
2742	if (!con->ops->get(con)) {
2743		dout("%s %p ref count 0\n", __func__, con);
2744		return -ENOENT;
2745	}
2746
 
 
 
 
2747	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2748		dout("%s %p - already queued\n", __func__, con);
2749		con->ops->put(con);
2750		return -EBUSY;
2751	}
2752
2753	dout("%s %p %lu\n", __func__, con, delay);
2754	return 0;
2755}
2756
2757static void queue_con(struct ceph_connection *con)
2758{
2759	(void) queue_con_delay(con, 0);
2760}
2761
2762static void cancel_con(struct ceph_connection *con)
2763{
2764	if (cancel_delayed_work(&con->work)) {
2765		dout("%s %p\n", __func__, con);
2766		con->ops->put(con);
2767	}
2768}
2769
2770static bool con_sock_closed(struct ceph_connection *con)
2771{
2772	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2773		return false;
2774
2775#define CASE(x)								\
2776	case CON_STATE_ ## x:						\
2777		con->error_msg = "socket closed (con state " #x ")";	\
2778		break;
2779
2780	switch (con->state) {
2781	CASE(CLOSED);
2782	CASE(PREOPEN);
2783	CASE(CONNECTING);
2784	CASE(NEGOTIATING);
 
 
 
 
 
 
 
2785	CASE(OPEN);
2786	CASE(STANDBY);
2787	default:
2788		pr_warn("%s con %p unrecognized state %lu\n",
2789			__func__, con, con->state);
2790		con->error_msg = "unrecognized con state";
2791		BUG();
2792		break;
2793	}
2794#undef CASE
2795
2796	return true;
2797}
2798
2799static bool con_backoff(struct ceph_connection *con)
2800{
2801	int ret;
2802
2803	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2804		return false;
2805
2806	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2807	if (ret) {
2808		dout("%s: con %p FAILED to back off %lu\n", __func__,
2809			con, con->delay);
2810		BUG_ON(ret == -ENOENT);
2811		con_flag_set(con, CON_FLAG_BACKOFF);
2812	}
2813
2814	return true;
2815}
2816
2817/* Finish fault handling; con->mutex must *not* be held here */
2818
2819static void con_fault_finish(struct ceph_connection *con)
2820{
2821	dout("%s %p\n", __func__, con);
2822
2823	/*
2824	 * in case we faulted due to authentication, invalidate our
2825	 * current tickets so that we can get new ones.
2826	 */
2827	if (con->auth_retry) {
2828		dout("auth_retry %d, invalidating\n", con->auth_retry);
2829		if (con->ops->invalidate_authorizer)
2830			con->ops->invalidate_authorizer(con);
2831		con->auth_retry = 0;
2832	}
2833
2834	if (con->ops->fault)
2835		con->ops->fault(con);
2836}
2837
2838/*
2839 * Do some work on a connection.  Drop a connection ref when we're done.
2840 */
2841static void ceph_con_workfn(struct work_struct *work)
2842{
2843	struct ceph_connection *con = container_of(work, struct ceph_connection,
2844						   work.work);
2845	bool fault;
2846
2847	mutex_lock(&con->mutex);
2848	while (true) {
2849		int ret;
2850
2851		if ((fault = con_sock_closed(con))) {
2852			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2853			break;
2854		}
2855		if (con_backoff(con)) {
2856			dout("%s: con %p BACKOFF\n", __func__, con);
2857			break;
2858		}
2859		if (con->state == CON_STATE_STANDBY) {
2860			dout("%s: con %p STANDBY\n", __func__, con);
2861			break;
2862		}
2863		if (con->state == CON_STATE_CLOSED) {
2864			dout("%s: con %p CLOSED\n", __func__, con);
2865			BUG_ON(con->sock);
2866			break;
2867		}
2868		if (con->state == CON_STATE_PREOPEN) {
2869			dout("%s: con %p PREOPEN\n", __func__, con);
2870			BUG_ON(con->sock);
2871		}
2872
2873		ret = try_read(con);
 
 
 
2874		if (ret < 0) {
2875			if (ret == -EAGAIN)
2876				continue;
2877			if (!con->error_msg)
2878				con->error_msg = "socket error on read";
2879			fault = true;
2880			break;
2881		}
2882
2883		ret = try_write(con);
 
 
 
2884		if (ret < 0) {
2885			if (ret == -EAGAIN)
2886				continue;
2887			if (!con->error_msg)
2888				con->error_msg = "socket error on write";
2889			fault = true;
2890		}
2891
2892		break;	/* If we make it to here, we're done */
2893	}
2894	if (fault)
2895		con_fault(con);
2896	mutex_unlock(&con->mutex);
2897
2898	if (fault)
2899		con_fault_finish(con);
2900
2901	con->ops->put(con);
2902}
2903
2904/*
2905 * Generic error/fault handler.  A retry mechanism is used with
2906 * exponential backoff
2907 */
2908static void con_fault(struct ceph_connection *con)
2909{
2910	dout("fault %p state %lu to peer %s\n",
2911	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2912
2913	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2914		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2915	con->error_msg = NULL;
2916
2917	WARN_ON(con->state != CON_STATE_CONNECTING &&
2918	       con->state != CON_STATE_NEGOTIATING &&
2919	       con->state != CON_STATE_OPEN);
2920
2921	con_close_socket(con);
2922
2923	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2924		dout("fault on LOSSYTX channel, marking CLOSED\n");
2925		con->state = CON_STATE_CLOSED;
2926		return;
2927	}
2928
2929	if (con->in_msg) {
2930		BUG_ON(con->in_msg->con != con);
2931		ceph_msg_put(con->in_msg);
2932		con->in_msg = NULL;
2933	}
2934
2935	/* Requeue anything that hasn't been acked */
2936	list_splice_init(&con->out_sent, &con->out_queue);
2937
2938	/* If there are no messages queued or keepalive pending, place
2939	 * the connection in a STANDBY state */
2940	if (list_empty(&con->out_queue) &&
2941	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2942		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2943		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2944		con->state = CON_STATE_STANDBY;
2945	} else {
2946		/* retry after a delay. */
2947		con->state = CON_STATE_PREOPEN;
2948		if (con->delay == 0)
2949			con->delay = BASE_DELAY_INTERVAL;
2950		else if (con->delay < MAX_DELAY_INTERVAL)
2951			con->delay *= 2;
2952		con_flag_set(con, CON_FLAG_BACKOFF);
 
 
 
2953		queue_con(con);
2954	}
2955}
2956
2957
 
 
 
 
 
2958
2959/*
2960 * initialize a new messenger instance
2961 */
2962void ceph_messenger_init(struct ceph_messenger *msgr,
2963			 struct ceph_entity_addr *myaddr)
2964{
2965	spin_lock_init(&msgr->global_seq_lock);
2966
2967	if (myaddr)
2968		msgr->inst.addr = *myaddr;
 
 
 
2969
2970	/* select a random nonce */
2971	msgr->inst.addr.type = 0;
2972	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2973	encode_my_addr(msgr);
 
 
 
 
 
 
 
 
2974
2975	atomic_set(&msgr->stopping, 0);
2976	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2977
2978	dout("%s %p\n", __func__, msgr);
2979}
2980EXPORT_SYMBOL(ceph_messenger_init);
2981
2982void ceph_messenger_fini(struct ceph_messenger *msgr)
2983{
2984	put_net(read_pnet(&msgr->net));
2985}
2986EXPORT_SYMBOL(ceph_messenger_fini);
2987
2988static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2989{
2990	if (msg->con)
2991		msg->con->ops->put(msg->con);
2992
2993	msg->con = con ? con->ops->get(con) : NULL;
2994	BUG_ON(msg->con != con);
2995}
2996
2997static void clear_standby(struct ceph_connection *con)
2998{
2999	/* come back from STANDBY? */
3000	if (con->state == CON_STATE_STANDBY) {
3001		dout("clear_standby %p and ++connect_seq\n", con);
3002		con->state = CON_STATE_PREOPEN;
3003		con->connect_seq++;
3004		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3005		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3006	}
3007}
3008
3009/*
3010 * Queue up an outgoing message on the given connection.
 
 
3011 */
3012void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3013{
3014	/* set src+dst */
3015	msg->hdr.src = con->msgr->inst.name;
3016	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3017	msg->needs_out_seq = true;
3018
3019	mutex_lock(&con->mutex);
3020
3021	if (con->state == CON_STATE_CLOSED) {
3022		dout("con_send %p closed, dropping %p\n", con, msg);
3023		ceph_msg_put(msg);
3024		mutex_unlock(&con->mutex);
3025		return;
3026	}
3027
3028	msg_con_set(msg, con);
3029
3030	BUG_ON(!list_empty(&msg->list_head));
3031	list_add_tail(&msg->list_head, &con->out_queue);
3032	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3033	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3034	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3035	     le32_to_cpu(msg->hdr.front_len),
3036	     le32_to_cpu(msg->hdr.middle_len),
3037	     le32_to_cpu(msg->hdr.data_len));
3038
3039	clear_standby(con);
3040	mutex_unlock(&con->mutex);
3041
3042	/* if there wasn't anything waiting to send before, queue
3043	 * new work */
3044	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3045		queue_con(con);
3046}
3047EXPORT_SYMBOL(ceph_con_send);
3048
3049/*
3050 * Revoke a message that was previously queued for send
3051 */
3052void ceph_msg_revoke(struct ceph_msg *msg)
3053{
3054	struct ceph_connection *con = msg->con;
3055
3056	if (!con) {
3057		dout("%s msg %p null con\n", __func__, msg);
3058		return;		/* Message not in our possession */
3059	}
3060
3061	mutex_lock(&con->mutex);
3062	if (!list_empty(&msg->list_head)) {
3063		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3064		list_del_init(&msg->list_head);
3065		msg->hdr.seq = 0;
3066
3067		ceph_msg_put(msg);
3068	}
 
 
 
 
 
3069	if (con->out_msg == msg) {
3070		BUG_ON(con->out_skip);
3071		/* footer */
3072		if (con->out_msg_done) {
3073			con->out_skip += con_out_kvec_skip(con);
3074		} else {
3075			BUG_ON(!msg->data_length);
3076			con->out_skip += sizeof_footer(con);
3077		}
3078		/* data, middle, front */
3079		if (msg->data_length)
3080			con->out_skip += msg->cursor.total_resid;
3081		if (msg->middle)
3082			con->out_skip += con_out_kvec_skip(con);
3083		con->out_skip += con_out_kvec_skip(con);
3084
3085		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3086		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3087		msg->hdr.seq = 0;
3088		con->out_msg = NULL;
3089		ceph_msg_put(msg);
 
 
3090	}
3091
3092	mutex_unlock(&con->mutex);
3093}
3094
3095/*
3096 * Revoke a message that we may be reading data into
3097 */
3098void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3099{
3100	struct ceph_connection *con = msg->con;
3101
3102	if (!con) {
3103		dout("%s msg %p null con\n", __func__, msg);
3104		return;		/* Message not in our possession */
3105	}
3106
3107	mutex_lock(&con->mutex);
3108	if (con->in_msg == msg) {
3109		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3110		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3111		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3112
3113		/* skip rest of message */
3114		dout("%s %p msg %p revoked\n", __func__, con, msg);
3115		con->in_base_pos = con->in_base_pos -
3116				sizeof(struct ceph_msg_header) -
3117				front_len -
3118				middle_len -
3119				data_len -
3120				sizeof(struct ceph_msg_footer);
3121		ceph_msg_put(con->in_msg);
3122		con->in_msg = NULL;
3123		con->in_tag = CEPH_MSGR_TAG_READY;
3124		con->in_seq++;
3125	} else {
3126		dout("%s %p in_msg %p msg %p no-op\n",
3127		     __func__, con, con->in_msg, msg);
3128	}
3129	mutex_unlock(&con->mutex);
3130}
3131
3132/*
3133 * Queue a keepalive byte to ensure the tcp connection is alive.
3134 */
3135void ceph_con_keepalive(struct ceph_connection *con)
3136{
3137	dout("con_keepalive %p\n", con);
3138	mutex_lock(&con->mutex);
3139	clear_standby(con);
 
3140	mutex_unlock(&con->mutex);
3141	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3142	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3143		queue_con(con);
3144}
3145EXPORT_SYMBOL(ceph_con_keepalive);
3146
3147bool ceph_con_keepalive_expired(struct ceph_connection *con,
3148			       unsigned long interval)
3149{
3150	if (interval > 0 &&
3151	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3152		struct timespec now = CURRENT_TIME;
3153		struct timespec ts;
3154		jiffies_to_timespec(interval, &ts);
3155		ts = timespec_add(con->last_keepalive_ack, ts);
3156		return timespec_compare(&now, &ts) >= 0;
 
3157	}
3158	return false;
3159}
3160
3161static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3162{
3163	struct ceph_msg_data *data;
3164
3165	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3166		return NULL;
3167
3168	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3169	if (data)
3170		data->type = type;
3171	INIT_LIST_HEAD(&data->links);
3172
3173	return data;
3174}
3175
3176static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3177{
3178	if (!data)
3179		return;
3180
3181	WARN_ON(!list_empty(&data->links));
3182	if (data->type == CEPH_MSG_DATA_PAGELIST)
3183		ceph_pagelist_release(data->pagelist);
3184	kmem_cache_free(ceph_msg_data_cache, data);
3185}
3186
3187void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3188		size_t length, size_t alignment)
3189{
3190	struct ceph_msg_data *data;
3191
3192	BUG_ON(!pages);
3193	BUG_ON(!length);
3194
3195	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3196	BUG_ON(!data);
3197	data->pages = pages;
3198	data->length = length;
3199	data->alignment = alignment & ~PAGE_MASK;
 
3200
3201	list_add_tail(&data->links, &msg->data);
3202	msg->data_length += length;
3203}
3204EXPORT_SYMBOL(ceph_msg_data_add_pages);
3205
3206void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3207				struct ceph_pagelist *pagelist)
3208{
3209	struct ceph_msg_data *data;
3210
3211	BUG_ON(!pagelist);
3212	BUG_ON(!pagelist->length);
3213
3214	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3215	BUG_ON(!data);
 
3216	data->pagelist = pagelist;
3217
3218	list_add_tail(&data->links, &msg->data);
3219	msg->data_length += pagelist->length;
3220}
3221EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3222
3223#ifdef	CONFIG_BLOCK
3224void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3225		size_t length)
3226{
3227	struct ceph_msg_data *data;
3228
3229	BUG_ON(!bio);
3230
3231	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3232	BUG_ON(!data);
3233	data->bio = bio;
3234	data->bio_length = length;
3235
3236	list_add_tail(&data->links, &msg->data);
3237	msg->data_length += length;
3238}
3239EXPORT_SYMBOL(ceph_msg_data_add_bio);
3240#endif	/* CONFIG_BLOCK */
3241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3242/*
3243 * construct a new message with given type, size
3244 * the new msg has a ref count of 1.
3245 */
3246struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3247			      bool can_fail)
3248{
3249	struct ceph_msg *m;
3250
3251	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3252	if (m == NULL)
3253		goto out;
3254
3255	m->hdr.type = cpu_to_le16(type);
3256	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3257	m->hdr.front_len = cpu_to_le32(front_len);
3258
3259	INIT_LIST_HEAD(&m->list_head);
3260	kref_init(&m->kref);
3261	INIT_LIST_HEAD(&m->data);
3262
3263	/* front */
3264	if (front_len) {
3265		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3266		if (m->front.iov_base == NULL) {
3267			dout("ceph_msg_new can't allocate %d bytes\n",
3268			     front_len);
3269			goto out2;
3270		}
3271	} else {
3272		m->front.iov_base = NULL;
3273	}
3274	m->front_alloc_len = m->front.iov_len = front_len;
3275
 
 
 
 
 
 
 
 
 
3276	dout("ceph_msg_new %p front %d\n", m, front_len);
3277	return m;
3278
3279out2:
3280	ceph_msg_put(m);
3281out:
3282	if (!can_fail) {
3283		pr_err("msg_new can't create type %d front %d\n", type,
3284		       front_len);
3285		WARN_ON(1);
3286	} else {
3287		dout("msg_new can't create type %d front %d\n", type,
3288		     front_len);
3289	}
3290	return NULL;
3291}
 
 
 
 
 
 
 
3292EXPORT_SYMBOL(ceph_msg_new);
3293
3294/*
3295 * Allocate "middle" portion of a message, if it is needed and wasn't
3296 * allocated by alloc_msg.  This allows us to read a small fixed-size
3297 * per-type header in the front and then gracefully fail (i.e.,
3298 * propagate the error to the caller based on info in the front) when
3299 * the middle is too large.
3300 */
3301static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3302{
3303	int type = le16_to_cpu(msg->hdr.type);
3304	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3305
3306	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3307	     ceph_msg_type_name(type), middle_len);
3308	BUG_ON(!middle_len);
3309	BUG_ON(msg->middle);
3310
3311	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3312	if (!msg->middle)
3313		return -ENOMEM;
3314	return 0;
3315}
3316
3317/*
3318 * Allocate a message for receiving an incoming message on a
3319 * connection, and save the result in con->in_msg.  Uses the
3320 * connection's private alloc_msg op if available.
3321 *
3322 * Returns 0 on success, or a negative error code.
3323 *
3324 * On success, if we set *skip = 1:
3325 *  - the next message should be skipped and ignored.
3326 *  - con->in_msg == NULL
3327 * or if we set *skip = 0:
3328 *  - con->in_msg is non-null.
3329 * On error (ENOMEM, EAGAIN, ...),
3330 *  - con->in_msg == NULL
3331 */
3332static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
 
3333{
3334	struct ceph_msg_header *hdr = &con->in_hdr;
3335	int middle_len = le32_to_cpu(hdr->middle_len);
3336	struct ceph_msg *msg;
3337	int ret = 0;
3338
3339	BUG_ON(con->in_msg != NULL);
3340	BUG_ON(!con->ops->alloc_msg);
3341
3342	mutex_unlock(&con->mutex);
3343	msg = con->ops->alloc_msg(con, hdr, skip);
3344	mutex_lock(&con->mutex);
3345	if (con->state != CON_STATE_OPEN) {
3346		if (msg)
3347			ceph_msg_put(msg);
3348		return -EAGAIN;
3349	}
3350	if (msg) {
3351		BUG_ON(*skip);
3352		msg_con_set(msg, con);
3353		con->in_msg = msg;
3354	} else {
3355		/*
3356		 * Null message pointer means either we should skip
3357		 * this message or we couldn't allocate memory.  The
3358		 * former is not an error.
3359		 */
3360		if (*skip)
3361			return 0;
3362
3363		con->error_msg = "error allocating memory for incoming message";
3364		return -ENOMEM;
3365	}
3366	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3367
3368	if (middle_len && !con->in_msg->middle) {
3369		ret = ceph_alloc_middle(con, con->in_msg);
3370		if (ret < 0) {
3371			ceph_msg_put(con->in_msg);
3372			con->in_msg = NULL;
3373		}
3374	}
3375
3376	return ret;
3377}
3378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3379
3380/*
3381 * Free a generically kmalloc'd message.
3382 */
3383static void ceph_msg_free(struct ceph_msg *m)
3384{
3385	dout("%s %p\n", __func__, m);
3386	kvfree(m->front.iov_base);
 
3387	kmem_cache_free(ceph_msg_cache, m);
3388}
3389
3390static void ceph_msg_release(struct kref *kref)
3391{
3392	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3393	struct ceph_msg_data *data, *next;
3394
3395	dout("%s %p\n", __func__, m);
3396	WARN_ON(!list_empty(&m->list_head));
3397
3398	msg_con_set(m, NULL);
3399
3400	/* drop middle, data, if any */
3401	if (m->middle) {
3402		ceph_buffer_put(m->middle);
3403		m->middle = NULL;
3404	}
3405
3406	list_for_each_entry_safe(data, next, &m->data, links) {
3407		list_del_init(&data->links);
3408		ceph_msg_data_destroy(data);
3409	}
3410	m->data_length = 0;
3411
3412	if (m->pool)
3413		ceph_msgpool_put(m->pool, m);
3414	else
3415		ceph_msg_free(m);
3416}
3417
3418struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3419{
3420	dout("%s %p (was %d)\n", __func__, msg,
3421	     atomic_read(&msg->kref.refcount));
3422	kref_get(&msg->kref);
3423	return msg;
3424}
3425EXPORT_SYMBOL(ceph_msg_get);
3426
3427void ceph_msg_put(struct ceph_msg *msg)
3428{
3429	dout("%s %p (was %d)\n", __func__, msg,
3430	     atomic_read(&msg->kref.refcount));
3431	kref_put(&msg->kref, ceph_msg_release);
3432}
3433EXPORT_SYMBOL(ceph_msg_put);
3434
3435void ceph_msg_dump(struct ceph_msg *msg)
3436{
3437	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3438		 msg->front_alloc_len, msg->data_length);
3439	print_hex_dump(KERN_DEBUG, "header: ",
3440		       DUMP_PREFIX_OFFSET, 16, 1,
3441		       &msg->hdr, sizeof(msg->hdr), true);
3442	print_hex_dump(KERN_DEBUG, " front: ",
3443		       DUMP_PREFIX_OFFSET, 16, 1,
3444		       msg->front.iov_base, msg->front.iov_len, true);
3445	if (msg->middle)
3446		print_hex_dump(KERN_DEBUG, "middle: ",
3447			       DUMP_PREFIX_OFFSET, 16, 1,
3448			       msg->middle->vec.iov_base,
3449			       msg->middle->vec.iov_len, true);
3450	print_hex_dump(KERN_DEBUG, "footer: ",
3451		       DUMP_PREFIX_OFFSET, 16, 1,
3452		       &msg->footer, sizeof(msg->footer), true);
3453}
3454EXPORT_SYMBOL(ceph_msg_dump);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef	CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif	/* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20#include <trace/events/sock.h>
  21
  22#include <linux/ceph/ceph_features.h>
  23#include <linux/ceph/libceph.h>
  24#include <linux/ceph/messenger.h>
  25#include <linux/ceph/decode.h>
  26#include <linux/ceph/pagelist.h>
  27#include <linux/export.h>
  28
  29/*
  30 * Ceph uses the messenger to exchange ceph_msg messages with other
  31 * hosts in the system.  The messenger provides ordered and reliable
  32 * delivery.  We tolerate TCP disconnects by reconnecting (with
  33 * exponential backoff) in the case of a fault (disconnection, bad
  34 * crc, protocol error).  Acks allow sent messages to be discarded by
  35 * the sender.
  36 */
  37
  38/*
  39 * We track the state of the socket on a given connection using
  40 * values defined below.  The transition to a new socket state is
  41 * handled by a function which verifies we aren't coming from an
  42 * unexpected state.
  43 *
  44 *      --------
  45 *      | NEW* |  transient initial state
  46 *      --------
  47 *          | con_sock_state_init()
  48 *          v
  49 *      ----------
  50 *      | CLOSED |  initialized, but no socket (and no
  51 *      ----------  TCP connection)
  52 *       ^      \
  53 *       |       \ con_sock_state_connecting()
  54 *       |        ----------------------
  55 *       |                              \
  56 *       + con_sock_state_closed()       \
  57 *       |+---------------------------    \
  58 *       | \                          \    \
  59 *       |  -----------                \    \
  60 *       |  | CLOSING |  socket event;  \    \
  61 *       |  -----------  await close     \    \
  62 *       |       ^                        \   |
  63 *       |       |                         \  |
  64 *       |       + con_sock_state_closing() \ |
  65 *       |      / \                         | |
  66 *       |     /   ---------------          | |
  67 *       |    /                   \         v v
  68 *       |   /                    --------------
  69 *       |  /    -----------------| CONNECTING |  socket created, TCP
  70 *       |  |   /                 --------------  connect initiated
  71 *       |  |   | con_sock_state_connected()
  72 *       |  |   v
  73 *      -------------
  74 *      | CONNECTED |  TCP connection established
  75 *      -------------
  76 *
  77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  78 */
  79
  80#define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
  81#define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
  82#define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
  83#define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
  84#define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static bool con_flag_valid(unsigned long con_flag)
  87{
  88	switch (con_flag) {
  89	case CEPH_CON_F_LOSSYTX:
  90	case CEPH_CON_F_KEEPALIVE_PENDING:
  91	case CEPH_CON_F_WRITE_PENDING:
  92	case CEPH_CON_F_SOCK_CLOSED:
  93	case CEPH_CON_F_BACKOFF:
  94		return true;
  95	default:
  96		return false;
  97	}
  98}
  99
 100void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 101{
 102	BUG_ON(!con_flag_valid(con_flag));
 103
 104	clear_bit(con_flag, &con->flags);
 105}
 106
 107void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 108{
 109	BUG_ON(!con_flag_valid(con_flag));
 110
 111	set_bit(con_flag, &con->flags);
 112}
 113
 114bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 115{
 116	BUG_ON(!con_flag_valid(con_flag));
 117
 118	return test_bit(con_flag, &con->flags);
 119}
 120
 121bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
 122				  unsigned long con_flag)
 123{
 124	BUG_ON(!con_flag_valid(con_flag));
 125
 126	return test_and_clear_bit(con_flag, &con->flags);
 127}
 128
 129bool ceph_con_flag_test_and_set(struct ceph_connection *con,
 130				unsigned long con_flag)
 131{
 132	BUG_ON(!con_flag_valid(con_flag));
 133
 134	return test_and_set_bit(con_flag, &con->flags);
 135}
 136
 137/* Slab caches for frequently-allocated structures */
 138
 139static struct kmem_cache	*ceph_msg_cache;
 
 
 
 
 
 
 
 140
 141#ifdef CONFIG_LOCKDEP
 142static struct lock_class_key socket_class;
 143#endif
 144
 
 
 
 
 
 
 145static void queue_con(struct ceph_connection *con);
 146static void cancel_con(struct ceph_connection *con);
 147static void ceph_con_workfn(struct work_struct *);
 148static void con_fault(struct ceph_connection *con);
 149
 150/*
 151 * Nicely render a sockaddr as a string.  An array of formatted
 152 * strings is used, to approximate reentrancy.
 153 */
 154#define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
 155#define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
 156#define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
 157#define MAX_ADDR_STR_LEN	64	/* 54 is enough */
 158
 159static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 160static atomic_t addr_str_seq = ATOMIC_INIT(0);
 161
 162struct page *ceph_zero_page;		/* used in certain error cases */
 163
 164const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
 165{
 166	int i;
 167	char *s;
 168	struct sockaddr_storage ss = addr->in_addr; /* align */
 169	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
 170	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
 171
 172	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 173	s = addr_str[i];
 174
 175	switch (ss.ss_family) {
 176	case AF_INET:
 177		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
 178			 le32_to_cpu(addr->type), &in4->sin_addr,
 179			 ntohs(in4->sin_port));
 180		break;
 181
 182	case AF_INET6:
 183		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
 184			 le32_to_cpu(addr->type), &in6->sin6_addr,
 185			 ntohs(in6->sin6_port));
 186		break;
 187
 188	default:
 189		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 190			 ss.ss_family);
 191	}
 192
 193	return s;
 194}
 195EXPORT_SYMBOL(ceph_pr_addr);
 196
 197void ceph_encode_my_addr(struct ceph_messenger *msgr)
 198{
 199	if (!ceph_msgr2(from_msgr(msgr))) {
 200		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
 201		       sizeof(msgr->my_enc_addr));
 202		ceph_encode_banner_addr(&msgr->my_enc_addr);
 203	}
 204}
 205
 206/*
 207 * work queue for all reading and writing to/from the socket.
 208 */
 209static struct workqueue_struct *ceph_msgr_wq;
 210
 211static int ceph_msgr_slab_init(void)
 212{
 213	BUG_ON(ceph_msg_cache);
 214	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 215	if (!ceph_msg_cache)
 216		return -ENOMEM;
 217
 218	return 0;
 
 
 
 
 
 
 
 
 219}
 220
 221static void ceph_msgr_slab_exit(void)
 222{
 
 
 
 
 223	BUG_ON(!ceph_msg_cache);
 224	kmem_cache_destroy(ceph_msg_cache);
 225	ceph_msg_cache = NULL;
 226}
 227
 228static void _ceph_msgr_exit(void)
 229{
 230	if (ceph_msgr_wq) {
 231		destroy_workqueue(ceph_msgr_wq);
 232		ceph_msgr_wq = NULL;
 233	}
 234
 235	BUG_ON(!ceph_zero_page);
 236	put_page(ceph_zero_page);
 237	ceph_zero_page = NULL;
 238
 239	ceph_msgr_slab_exit();
 240}
 241
 242int __init ceph_msgr_init(void)
 243{
 244	if (ceph_msgr_slab_init())
 245		return -ENOMEM;
 246
 247	BUG_ON(ceph_zero_page);
 248	ceph_zero_page = ZERO_PAGE(0);
 249	get_page(ceph_zero_page);
 250
 251	/*
 252	 * The number of active work items is limited by the number of
 253	 * connections, so leave @max_active at default.
 254	 */
 255	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 256	if (ceph_msgr_wq)
 257		return 0;
 258
 259	pr_err("msgr_init failed to create workqueue\n");
 260	_ceph_msgr_exit();
 261
 262	return -ENOMEM;
 263}
 
 264
 265void ceph_msgr_exit(void)
 266{
 267	BUG_ON(ceph_msgr_wq == NULL);
 268
 269	_ceph_msgr_exit();
 270}
 
 271
 272void ceph_msgr_flush(void)
 273{
 274	flush_workqueue(ceph_msgr_wq);
 275}
 276EXPORT_SYMBOL(ceph_msgr_flush);
 277
 278/* Connection socket state transition functions */
 279
 280static void con_sock_state_init(struct ceph_connection *con)
 281{
 282	int old_state;
 283
 284	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 285	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 286		printk("%s: unexpected old state %d\n", __func__, old_state);
 287	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 288	     CON_SOCK_STATE_CLOSED);
 289}
 290
 291static void con_sock_state_connecting(struct ceph_connection *con)
 292{
 293	int old_state;
 294
 295	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 296	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 297		printk("%s: unexpected old state %d\n", __func__, old_state);
 298	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 299	     CON_SOCK_STATE_CONNECTING);
 300}
 301
 302static void con_sock_state_connected(struct ceph_connection *con)
 303{
 304	int old_state;
 305
 306	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 307	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 308		printk("%s: unexpected old state %d\n", __func__, old_state);
 309	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 310	     CON_SOCK_STATE_CONNECTED);
 311}
 312
 313static void con_sock_state_closing(struct ceph_connection *con)
 314{
 315	int old_state;
 316
 317	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 318	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 319			old_state != CON_SOCK_STATE_CONNECTED &&
 320			old_state != CON_SOCK_STATE_CLOSING))
 321		printk("%s: unexpected old state %d\n", __func__, old_state);
 322	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 323	     CON_SOCK_STATE_CLOSING);
 324}
 325
 326static void con_sock_state_closed(struct ceph_connection *con)
 327{
 328	int old_state;
 329
 330	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 331	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 332		    old_state != CON_SOCK_STATE_CLOSING &&
 333		    old_state != CON_SOCK_STATE_CONNECTING &&
 334		    old_state != CON_SOCK_STATE_CLOSED))
 335		printk("%s: unexpected old state %d\n", __func__, old_state);
 336	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337	     CON_SOCK_STATE_CLOSED);
 338}
 339
 340/*
 341 * socket callback functions
 342 */
 343
 344/* data available on socket, or listen socket received a connect */
 345static void ceph_sock_data_ready(struct sock *sk)
 346{
 347	struct ceph_connection *con = sk->sk_user_data;
 348
 349	trace_sk_data_ready(sk);
 350
 351	if (atomic_read(&con->msgr->stopping)) {
 352		return;
 353	}
 354
 355	if (sk->sk_state != TCP_CLOSE_WAIT) {
 356		dout("%s %p state = %d, queueing work\n", __func__,
 357		     con, con->state);
 358		queue_con(con);
 359	}
 360}
 361
 362/* socket has buffer space for writing */
 363static void ceph_sock_write_space(struct sock *sk)
 364{
 365	struct ceph_connection *con = sk->sk_user_data;
 366
 367	/* only queue to workqueue if there is data we want to write,
 368	 * and there is sufficient space in the socket buffer to accept
 369	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 370	 * doesn't get called again until try_write() fills the socket
 371	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 372	 * and net/core/stream.c:sk_stream_write_space().
 373	 */
 374	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
 375		if (sk_stream_is_writeable(sk)) {
 376			dout("%s %p queueing write work\n", __func__, con);
 377			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 378			queue_con(con);
 379		}
 380	} else {
 381		dout("%s %p nothing to write\n", __func__, con);
 382	}
 383}
 384
 385/* socket's state has changed */
 386static void ceph_sock_state_change(struct sock *sk)
 387{
 388	struct ceph_connection *con = sk->sk_user_data;
 389
 390	dout("%s %p state = %d sk_state = %u\n", __func__,
 391	     con, con->state, sk->sk_state);
 392
 393	switch (sk->sk_state) {
 394	case TCP_CLOSE:
 395		dout("%s TCP_CLOSE\n", __func__);
 396		fallthrough;
 397	case TCP_CLOSE_WAIT:
 398		dout("%s TCP_CLOSE_WAIT\n", __func__);
 399		con_sock_state_closing(con);
 400		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
 401		queue_con(con);
 402		break;
 403	case TCP_ESTABLISHED:
 404		dout("%s TCP_ESTABLISHED\n", __func__);
 405		con_sock_state_connected(con);
 406		queue_con(con);
 407		break;
 408	default:	/* Everything else is uninteresting */
 409		break;
 410	}
 411}
 412
 413/*
 414 * set up socket callbacks
 415 */
 416static void set_sock_callbacks(struct socket *sock,
 417			       struct ceph_connection *con)
 418{
 419	struct sock *sk = sock->sk;
 420	sk->sk_user_data = con;
 421	sk->sk_data_ready = ceph_sock_data_ready;
 422	sk->sk_write_space = ceph_sock_write_space;
 423	sk->sk_state_change = ceph_sock_state_change;
 424}
 425
 426
 427/*
 428 * socket helpers
 429 */
 430
 431/*
 432 * initiate connection to a remote socket.
 433 */
 434int ceph_tcp_connect(struct ceph_connection *con)
 435{
 436	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
 437	struct socket *sock;
 438	unsigned int noio_flag;
 439	int ret;
 440
 441	dout("%s con %p peer_addr %s\n", __func__, con,
 442	     ceph_pr_addr(&con->peer_addr));
 443	BUG_ON(con->sock);
 444
 445	/* sock_create_kern() allocates with GFP_KERNEL */
 446	noio_flag = memalloc_noio_save();
 447	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
 448			       SOCK_STREAM, IPPROTO_TCP, &sock);
 449	memalloc_noio_restore(noio_flag);
 450	if (ret)
 451		return ret;
 452	sock->sk->sk_allocation = GFP_NOFS;
 453	sock->sk->sk_use_task_frag = false;
 454
 455#ifdef CONFIG_LOCKDEP
 456	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 457#endif
 458
 459	set_sock_callbacks(sock, con);
 460
 
 
 461	con_sock_state_connecting(con);
 462	ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
 463			     O_NONBLOCK);
 464	if (ret == -EINPROGRESS) {
 465		dout("connect %s EINPROGRESS sk_state = %u\n",
 466		     ceph_pr_addr(&con->peer_addr),
 467		     sock->sk->sk_state);
 468	} else if (ret < 0) {
 469		pr_err("connect %s error %d\n",
 470		       ceph_pr_addr(&con->peer_addr), ret);
 471		sock_release(sock);
 472		return ret;
 473	}
 474
 475	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
 476		tcp_sock_set_nodelay(sock->sk);
 
 
 
 
 
 
 
 477
 478	con->sock = sock;
 479	return 0;
 480}
 481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482/*
 483 * Shutdown/close the socket for the given connection.
 484 */
 485int ceph_con_close_socket(struct ceph_connection *con)
 486{
 487	int rc = 0;
 488
 489	dout("%s con %p sock %p\n", __func__, con, con->sock);
 490	if (con->sock) {
 491		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 492		sock_release(con->sock);
 493		con->sock = NULL;
 494	}
 495
 496	/*
 497	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
 498	 * independent of the connection mutex, and we could have
 499	 * received a socket close event before we had the chance to
 500	 * shut the socket down.
 501	 */
 502	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
 503
 504	con_sock_state_closed(con);
 505	return rc;
 506}
 507
 508static void ceph_con_reset_protocol(struct ceph_connection *con)
 509{
 510	dout("%s con %p\n", __func__, con);
 511
 512	ceph_con_close_socket(con);
 513	if (con->in_msg) {
 514		WARN_ON(con->in_msg->con != con);
 515		ceph_msg_put(con->in_msg);
 516		con->in_msg = NULL;
 517	}
 518	if (con->out_msg) {
 519		WARN_ON(con->out_msg->con != con);
 520		ceph_msg_put(con->out_msg);
 521		con->out_msg = NULL;
 522	}
 523	if (con->bounce_page) {
 524		__free_page(con->bounce_page);
 525		con->bounce_page = NULL;
 526	}
 527
 528	if (ceph_msgr2(from_msgr(con->msgr)))
 529		ceph_con_v2_reset_protocol(con);
 530	else
 531		ceph_con_v1_reset_protocol(con);
 532}
 533
 534/*
 535 * Reset a connection.  Discard all incoming and outgoing messages
 536 * and clear *_seq state.
 537 */
 538static void ceph_msg_remove(struct ceph_msg *msg)
 539{
 540	list_del_init(&msg->list_head);
 541
 542	ceph_msg_put(msg);
 543}
 544
 545static void ceph_msg_remove_list(struct list_head *head)
 546{
 547	while (!list_empty(head)) {
 548		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 549							list_head);
 550		ceph_msg_remove(msg);
 551	}
 552}
 553
 554void ceph_con_reset_session(struct ceph_connection *con)
 555{
 556	dout("%s con %p\n", __func__, con);
 557
 558	WARN_ON(con->in_msg);
 559	WARN_ON(con->out_msg);
 560	ceph_msg_remove_list(&con->out_queue);
 561	ceph_msg_remove_list(&con->out_sent);
 
 
 
 
 
 
 
 
 562	con->out_seq = 0;
 
 
 
 
 
 563	con->in_seq = 0;
 564	con->in_seq_acked = 0;
 565
 566	if (ceph_msgr2(from_msgr(con->msgr)))
 567		ceph_con_v2_reset_session(con);
 568	else
 569		ceph_con_v1_reset_session(con);
 570}
 571
 572/*
 573 * mark a peer down.  drop any open connections.
 574 */
 575void ceph_con_close(struct ceph_connection *con)
 576{
 577	mutex_lock(&con->mutex);
 578	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
 579	con->state = CEPH_CON_S_CLOSED;
 580
 581	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
 582							  connect */
 583	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
 584	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
 585	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
 586
 587	ceph_con_reset_protocol(con);
 588	ceph_con_reset_session(con);
 589	cancel_con(con);
 
 590	mutex_unlock(&con->mutex);
 591}
 592EXPORT_SYMBOL(ceph_con_close);
 593
 594/*
 595 * Reopen a closed connection, with a new peer address.
 596 */
 597void ceph_con_open(struct ceph_connection *con,
 598		   __u8 entity_type, __u64 entity_num,
 599		   struct ceph_entity_addr *addr)
 600{
 601	mutex_lock(&con->mutex);
 602	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
 603
 604	WARN_ON(con->state != CEPH_CON_S_CLOSED);
 605	con->state = CEPH_CON_S_PREOPEN;
 606
 607	con->peer_name.type = (__u8) entity_type;
 608	con->peer_name.num = cpu_to_le64(entity_num);
 609
 610	memcpy(&con->peer_addr, addr, sizeof(*addr));
 611	con->delay = 0;      /* reset backoff memory */
 612	mutex_unlock(&con->mutex);
 613	queue_con(con);
 614}
 615EXPORT_SYMBOL(ceph_con_open);
 616
 617/*
 618 * return true if this connection ever successfully opened
 619 */
 620bool ceph_con_opened(struct ceph_connection *con)
 621{
 622	if (ceph_msgr2(from_msgr(con->msgr)))
 623		return ceph_con_v2_opened(con);
 624
 625	return ceph_con_v1_opened(con);
 626}
 627
 628/*
 629 * initialize a new connection.
 630 */
 631void ceph_con_init(struct ceph_connection *con, void *private,
 632	const struct ceph_connection_operations *ops,
 633	struct ceph_messenger *msgr)
 634{
 635	dout("con_init %p\n", con);
 636	memset(con, 0, sizeof(*con));
 637	con->private = private;
 638	con->ops = ops;
 639	con->msgr = msgr;
 640
 641	con_sock_state_init(con);
 642
 643	mutex_init(&con->mutex);
 644	INIT_LIST_HEAD(&con->out_queue);
 645	INIT_LIST_HEAD(&con->out_sent);
 646	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 647
 648	con->state = CEPH_CON_S_CLOSED;
 649}
 650EXPORT_SYMBOL(ceph_con_init);
 651
 
 652/*
 653 * We maintain a global counter to order connection attempts.  Get
 654 * a unique seq greater than @gt.
 655 */
 656u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
 657{
 658	u32 ret;
 659
 660	spin_lock(&msgr->global_seq_lock);
 661	if (msgr->global_seq < gt)
 662		msgr->global_seq = gt;
 663	ret = ++msgr->global_seq;
 664	spin_unlock(&msgr->global_seq_lock);
 665	return ret;
 666}
 667
 668/*
 669 * Discard messages that have been acked by the server.
 670 */
 671void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
 
 
 
 
 
 
 
 672{
 673	struct ceph_msg *msg;
 674	u64 seq;
 675
 676	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
 677	while (!list_empty(&con->out_sent)) {
 678		msg = list_first_entry(&con->out_sent, struct ceph_msg,
 679				       list_head);
 680		WARN_ON(msg->needs_out_seq);
 681		seq = le64_to_cpu(msg->hdr.seq);
 682		if (seq > ack_seq)
 683			break;
 684
 685		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 686		     msg, seq);
 687		ceph_msg_remove(msg);
 688	}
 689}
 690
 691/*
 692 * Discard messages that have been requeued in con_fault(), up to
 693 * reconnect_seq.  This avoids gratuitously resending messages that
 694 * the server had received and handled prior to reconnect.
 695 */
 696void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
 697{
 698	struct ceph_msg *msg;
 699	u64 seq;
 700
 701	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
 702	while (!list_empty(&con->out_queue)) {
 703		msg = list_first_entry(&con->out_queue, struct ceph_msg,
 704				       list_head);
 705		if (msg->needs_out_seq)
 706			break;
 707		seq = le64_to_cpu(msg->hdr.seq);
 708		if (seq > reconnect_seq)
 709			break;
 710
 711		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
 712		     msg, seq);
 713		ceph_msg_remove(msg);
 714	}
 715}
 716
 717#ifdef CONFIG_BLOCK
 718
 719/*
 720 * For a bio data item, a piece is whatever remains of the next
 721 * entry in the current bio iovec, or the first entry in the next
 722 * bio in the list.
 723 */
 724static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 725					size_t length)
 726{
 727	struct ceph_msg_data *data = cursor->data;
 728	struct ceph_bio_iter *it = &cursor->bio_iter;
 
 
 729
 730	cursor->resid = min_t(size_t, length, data->bio_length);
 731	*it = data->bio_pos;
 732	if (cursor->resid < it->iter.bi_size)
 733		it->iter.bi_size = cursor->resid;
 734
 735	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 
 
 
 
 736}
 737
 738static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 739						size_t *page_offset,
 740						size_t *length)
 741{
 742	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
 743					   cursor->bio_iter.iter);
 
 744
 745	*page_offset = bv.bv_offset;
 746	*length = bv.bv_len;
 747	return bv.bv_page;
 748}
 749
 750static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 751					size_t bytes)
 752{
 753	struct ceph_bio_iter *it = &cursor->bio_iter;
 754	struct page *page = bio_iter_page(it->bio, it->iter);
 755
 756	BUG_ON(bytes > cursor->resid);
 757	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
 758	cursor->resid -= bytes;
 759	bio_advance_iter(it->bio, &it->iter, bytes);
 760
 761	if (!cursor->resid)
 762		return false;   /* no more data */
 763
 764	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
 765		       page == bio_iter_page(it->bio, it->iter)))
 766		return false;	/* more bytes to process in this segment */
 767
 768	if (!it->iter.bi_size) {
 769		it->bio = it->bio->bi_next;
 770		it->iter = it->bio->bi_iter;
 771		if (cursor->resid < it->iter.bi_size)
 772			it->iter.bi_size = cursor->resid;
 773	}
 774
 775	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
 776	return true;
 777}
 778#endif /* CONFIG_BLOCK */
 779
 780static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
 781					size_t length)
 782{
 783	struct ceph_msg_data *data = cursor->data;
 784	struct bio_vec *bvecs = data->bvec_pos.bvecs;
 785
 786	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
 787	cursor->bvec_iter = data->bvec_pos.iter;
 788	cursor->bvec_iter.bi_size = cursor->resid;
 789
 790	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 791}
 792
 793static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
 794						size_t *page_offset,
 795						size_t *length)
 796{
 797	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
 798					   cursor->bvec_iter);
 799
 800	*page_offset = bv.bv_offset;
 801	*length = bv.bv_len;
 802	return bv.bv_page;
 803}
 804
 805static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
 806					size_t bytes)
 807{
 808	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
 809	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
 810
 811	BUG_ON(bytes > cursor->resid);
 812	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
 813	cursor->resid -= bytes;
 814	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
 815
 816	if (!cursor->resid)
 817		return false;   /* no more data */
 818
 819	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
 820		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
 821		return false;	/* more bytes to process in this segment */
 822
 823	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824	return true;
 825}
 
 826
 827/*
 828 * For a page array, a piece comes from the first page in the array
 829 * that has not already been fully consumed.
 830 */
 831static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 832					size_t length)
 833{
 834	struct ceph_msg_data *data = cursor->data;
 835	int page_count;
 836
 837	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 838
 839	BUG_ON(!data->pages);
 840	BUG_ON(!data->length);
 841
 842	cursor->resid = min(length, data->length);
 843	page_count = calc_pages_for(data->alignment, (u64)data->length);
 844	cursor->page_offset = data->alignment & ~PAGE_MASK;
 845	cursor->page_index = 0;
 846	BUG_ON(page_count > (int)USHRT_MAX);
 847	cursor->page_count = (unsigned short)page_count;
 848	BUG_ON(length > SIZE_MAX - cursor->page_offset);
 
 849}
 850
 851static struct page *
 852ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 853					size_t *page_offset, size_t *length)
 854{
 855	struct ceph_msg_data *data = cursor->data;
 856
 857	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 858
 859	BUG_ON(cursor->page_index >= cursor->page_count);
 860	BUG_ON(cursor->page_offset >= PAGE_SIZE);
 861
 862	*page_offset = cursor->page_offset;
 863	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 864	return data->pages[cursor->page_index];
 865}
 866
 867static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 868						size_t bytes)
 869{
 870	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 871
 872	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 873
 874	/* Advance the cursor page offset */
 875
 876	cursor->resid -= bytes;
 877	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 878	if (!bytes || cursor->page_offset)
 879		return false;	/* more bytes to process in the current page */
 880
 881	if (!cursor->resid)
 882		return false;   /* no more data */
 883
 884	/* Move on to the next page; offset is already at 0 */
 885
 886	BUG_ON(cursor->page_index >= cursor->page_count);
 887	cursor->page_index++;
 
 
 888	return true;
 889}
 890
 891/*
 892 * For a pagelist, a piece is whatever remains to be consumed in the
 893 * first page in the list, or the front of the next page.
 894 */
 895static void
 896ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 897					size_t length)
 898{
 899	struct ceph_msg_data *data = cursor->data;
 900	struct ceph_pagelist *pagelist;
 901	struct page *page;
 902
 903	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 904
 905	pagelist = data->pagelist;
 906	BUG_ON(!pagelist);
 907
 908	if (!length)
 909		return;		/* pagelist can be assigned but empty */
 910
 911	BUG_ON(list_empty(&pagelist->head));
 912	page = list_first_entry(&pagelist->head, struct page, lru);
 913
 914	cursor->resid = min(length, pagelist->length);
 915	cursor->page = page;
 916	cursor->offset = 0;
 
 917}
 918
 919static struct page *
 920ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 921				size_t *page_offset, size_t *length)
 922{
 923	struct ceph_msg_data *data = cursor->data;
 924	struct ceph_pagelist *pagelist;
 925
 926	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 927
 928	pagelist = data->pagelist;
 929	BUG_ON(!pagelist);
 930
 931	BUG_ON(!cursor->page);
 932	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 933
 934	/* offset of first page in pagelist is always 0 */
 935	*page_offset = cursor->offset & ~PAGE_MASK;
 936	*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
 
 
 
 
 937	return cursor->page;
 938}
 939
 940static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
 941						size_t bytes)
 942{
 943	struct ceph_msg_data *data = cursor->data;
 944	struct ceph_pagelist *pagelist;
 945
 946	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 947
 948	pagelist = data->pagelist;
 949	BUG_ON(!pagelist);
 950
 951	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 952	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
 953
 954	/* Advance the cursor offset */
 955
 956	cursor->resid -= bytes;
 957	cursor->offset += bytes;
 958	/* offset of first page in pagelist is always 0 */
 959	if (!bytes || cursor->offset & ~PAGE_MASK)
 960		return false;	/* more bytes to process in the current page */
 961
 962	if (!cursor->resid)
 963		return false;   /* no more data */
 964
 965	/* Move on to the next page */
 966
 967	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
 968	cursor->page = list_next_entry(cursor->page, lru);
 
 
 969	return true;
 970}
 971
 972static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
 973					   size_t length)
 974{
 975	struct ceph_msg_data *data = cursor->data;
 976
 977	cursor->iov_iter = data->iter;
 978	cursor->lastlen = 0;
 979	iov_iter_truncate(&cursor->iov_iter, length);
 980	cursor->resid = iov_iter_count(&cursor->iov_iter);
 981}
 982
 983static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
 984					    size_t *page_offset, size_t *length)
 985{
 986	struct page *page;
 987	ssize_t len;
 988
 989	if (cursor->lastlen)
 990		iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
 991
 992	len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
 993				  1, page_offset);
 994	BUG_ON(len < 0);
 995
 996	cursor->lastlen = len;
 997
 998	/*
 999	 * FIXME: The assumption is that the pages represented by the iov_iter
1000	 *	  are pinned, with the references held by the upper-level
1001	 *	  callers, or by virtue of being under writeback. Eventually,
1002	 *	  we'll get an iov_iter_get_pages2 variant that doesn't take
1003	 *	  page refs. Until then, just put the page ref.
1004	 */
1005	VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006	put_page(page);
1007
1008	*length = min_t(size_t, len, cursor->resid);
1009	return page;
1010}
1011
1012static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013				       size_t bytes)
1014{
1015	BUG_ON(bytes > cursor->resid);
1016	cursor->resid -= bytes;
1017
1018	if (bytes < cursor->lastlen) {
1019		cursor->lastlen -= bytes;
1020	} else {
1021		iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022		cursor->lastlen = 0;
1023	}
1024
1025	return cursor->resid;
1026}
1027
1028/*
1029 * Message data is handled (sent or received) in pieces, where each
1030 * piece resides on a single page.  The network layer might not
1031 * consume an entire piece at once.  A data item's cursor keeps
1032 * track of which piece is next to process and how much remains to
1033 * be processed in that piece.  It also tracks whether the current
1034 * piece is the last one in the data item.
1035 */
1036static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037{
1038	size_t length = cursor->total_resid;
1039
1040	switch (cursor->data->type) {
1041	case CEPH_MSG_DATA_PAGELIST:
1042		ceph_msg_data_pagelist_cursor_init(cursor, length);
1043		break;
1044	case CEPH_MSG_DATA_PAGES:
1045		ceph_msg_data_pages_cursor_init(cursor, length);
1046		break;
1047#ifdef CONFIG_BLOCK
1048	case CEPH_MSG_DATA_BIO:
1049		ceph_msg_data_bio_cursor_init(cursor, length);
1050		break;
1051#endif /* CONFIG_BLOCK */
1052	case CEPH_MSG_DATA_BVECS:
1053		ceph_msg_data_bvecs_cursor_init(cursor, length);
1054		break;
1055	case CEPH_MSG_DATA_ITER:
1056		ceph_msg_data_iter_cursor_init(cursor, length);
1057		break;
1058	case CEPH_MSG_DATA_NONE:
1059	default:
1060		/* BUG(); */
1061		break;
1062	}
1063	cursor->need_crc = true;
1064}
1065
1066void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067			       struct ceph_msg *msg, size_t length)
1068{
 
 
 
1069	BUG_ON(!length);
1070	BUG_ON(length > msg->data_length);
1071	BUG_ON(!msg->num_data_items);
1072
 
1073	cursor->total_resid = length;
1074	cursor->data = msg->data;
1075	cursor->sr_resid = 0;
1076
1077	__ceph_msg_data_cursor_init(cursor);
1078}
1079
1080/*
1081 * Return the page containing the next piece to process for a given
1082 * data item, and supply the page offset and length of that piece.
1083 * Indicate whether this is the last piece in this data item.
1084 */
1085struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086				size_t *page_offset, size_t *length)
 
1087{
1088	struct page *page;
1089
1090	switch (cursor->data->type) {
1091	case CEPH_MSG_DATA_PAGELIST:
1092		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093		break;
1094	case CEPH_MSG_DATA_PAGES:
1095		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096		break;
1097#ifdef CONFIG_BLOCK
1098	case CEPH_MSG_DATA_BIO:
1099		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100		break;
1101#endif /* CONFIG_BLOCK */
1102	case CEPH_MSG_DATA_BVECS:
1103		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104		break;
1105	case CEPH_MSG_DATA_ITER:
1106		page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107		break;
1108	case CEPH_MSG_DATA_NONE:
1109	default:
1110		page = NULL;
1111		break;
1112	}
1113
1114	BUG_ON(!page);
1115	BUG_ON(*page_offset + *length > PAGE_SIZE);
1116	BUG_ON(!*length);
1117	BUG_ON(*length > cursor->resid);
 
1118
1119	return page;
1120}
1121
1122/*
1123 * Returns true if the result moves the cursor on to the next piece
1124 * of the data item.
1125 */
1126void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
 
1127{
1128	bool new_piece;
1129
1130	BUG_ON(bytes > cursor->resid);
1131	switch (cursor->data->type) {
1132	case CEPH_MSG_DATA_PAGELIST:
1133		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134		break;
1135	case CEPH_MSG_DATA_PAGES:
1136		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137		break;
1138#ifdef CONFIG_BLOCK
1139	case CEPH_MSG_DATA_BIO:
1140		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141		break;
1142#endif /* CONFIG_BLOCK */
1143	case CEPH_MSG_DATA_BVECS:
1144		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145		break;
1146	case CEPH_MSG_DATA_ITER:
1147		new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148		break;
1149	case CEPH_MSG_DATA_NONE:
1150	default:
1151		BUG();
1152		break;
1153	}
1154	cursor->total_resid -= bytes;
1155
1156	if (!cursor->resid && cursor->total_resid) {
1157		cursor->data++;
 
 
1158		__ceph_msg_data_cursor_init(cursor);
1159		new_piece = true;
1160	}
1161	cursor->need_crc = new_piece;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162}
1163
1164u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165		     unsigned int length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	char *kaddr;
1168
1169	kaddr = kmap(page);
1170	BUG_ON(kaddr == NULL);
1171	crc = crc32c(crc, kaddr + page_offset, length);
1172	kunmap(page);
1173
1174	return crc;
1175}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178{
1179	struct sockaddr_storage ss = addr->in_addr; /* align */
1180	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183	switch (ss.ss_family) {
1184	case AF_INET:
1185		return addr4->s_addr == htonl(INADDR_ANY);
1186	case AF_INET6:
1187		return ipv6_addr_any(addr6);
1188	default:
1189		return true;
1190	}
1191}
1192EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194int ceph_addr_port(const struct ceph_entity_addr *addr)
1195{
1196	switch (get_unaligned(&addr->in_addr.ss_family)) {
1197	case AF_INET:
1198		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199	case AF_INET6:
1200		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201	}
1202	return 0;
1203}
1204
1205void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206{
1207	switch (get_unaligned(&addr->in_addr.ss_family)) {
1208	case AF_INET:
1209		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210		break;
1211	case AF_INET6:
1212		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213		break;
1214	}
1215}
1216
1217/*
1218 * Unlike other *_pton function semantics, zero indicates success.
1219 */
1220static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221		char delim, const char **ipend)
1222{
1223	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
 
 
 
1224
1225	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227		return 0;
1228	}
1229
1230	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232		return 0;
1233	}
1234
1235	return -EINVAL;
1236}
1237
1238/*
1239 * Extract hostname string and resolve using kernel DNS facility.
1240 */
1241#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243		struct ceph_entity_addr *addr, char delim, const char **ipend)
1244{
1245	const char *end, *delim_p;
1246	char *colon_p, *ip_addr = NULL;
1247	int ip_len, ret;
1248
1249	/*
1250	 * The end of the hostname occurs immediately preceding the delimiter or
1251	 * the port marker (':') where the delimiter takes precedence.
1252	 */
1253	delim_p = memchr(name, delim, namelen);
1254	colon_p = memchr(name, ':', namelen);
1255
1256	if (delim_p && colon_p)
1257		end = delim_p < colon_p ? delim_p : colon_p;
1258	else if (!delim_p && colon_p)
1259		end = colon_p;
1260	else {
1261		end = delim_p;
1262		if (!end) /* case: hostname:/ */
1263			end = name + namelen;
1264	}
1265
1266	if (end <= name)
1267		return -EINVAL;
1268
1269	/* do dns_resolve upcall */
1270	ip_len = dns_query(current->nsproxy->net_ns,
1271			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272	if (ip_len > 0)
1273		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274	else
1275		ret = -ESRCH;
1276
1277	kfree(ip_addr);
1278
1279	*ipend = end;
1280
1281	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282			ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284	return ret;
1285}
1286#else
1287static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288		struct ceph_entity_addr *addr, char delim, const char **ipend)
1289{
1290	return -EINVAL;
1291}
1292#endif
1293
1294/*
1295 * Parse a server name (IP or hostname). If a valid IP address is not found
1296 * then try to extract a hostname to resolve using userspace DNS upcall.
1297 */
1298static int ceph_parse_server_name(const char *name, size_t namelen,
1299		struct ceph_entity_addr *addr, char delim, const char **ipend)
1300{
1301	int ret;
1302
1303	ret = ceph_pton(name, namelen, addr, delim, ipend);
1304	if (ret)
1305		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307	return ret;
1308}
1309
1310/*
1311 * Parse an ip[:port] list into an addr array.  Use the default
1312 * monitor port if a port isn't specified.
1313 */
1314int ceph_parse_ips(const char *c, const char *end,
1315		   struct ceph_entity_addr *addr,
1316		   int max_count, int *count, char delim)
1317{
1318	int i, ret = -EINVAL;
1319	const char *p = c;
1320
1321	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322	for (i = 0; i < max_count; i++) {
1323		char cur_delim = delim;
1324		const char *ipend;
 
1325		int port;
 
1326
1327		if (*p == '[') {
1328			cur_delim = ']';
1329			p++;
1330		}
1331
1332		ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333					     &ipend);
1334		if (ret)
1335			goto bad;
1336		ret = -EINVAL;
1337
1338		p = ipend;
1339
1340		if (cur_delim == ']') {
1341			if (*p != ']') {
1342				dout("missing matching ']'\n");
1343				goto bad;
1344			}
1345			p++;
1346		}
1347
1348		/* port? */
1349		if (p < end && *p == ':') {
1350			port = 0;
1351			p++;
1352			while (p < end && *p >= '0' && *p <= '9') {
1353				port = (port * 10) + (*p - '0');
1354				p++;
1355			}
1356			if (port == 0)
1357				port = CEPH_MON_PORT;
1358			else if (port > 65535)
1359				goto bad;
1360		} else {
1361			port = CEPH_MON_PORT;
1362		}
1363
1364		ceph_addr_set_port(&addr[i], port);
1365		/*
1366		 * We want the type to be set according to ms_mode
1367		 * option, but options are normally parsed after mon
1368		 * addresses.  Rather than complicating parsing, set
1369		 * to LEGACY and override in build_initial_monmap()
1370		 * for mon addresses and ceph_messenger_init() for
1371		 * ip option.
1372		 */
1373		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374		addr[i].nonce = 0;
1375
1376		dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378		if (p == end)
1379			break;
1380		if (*p != delim)
1381			goto bad;
1382		p++;
1383	}
1384
1385	if (p != end)
1386		goto bad;
1387
1388	if (count)
1389		*count = i + 1;
1390	return 0;
1391
1392bad:
 
1393	return ret;
1394}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395
1396/*
1397 * Process message.  This happens in the worker thread.  The callback should
1398 * be careful not to do anything that waits on other incoming messages or it
1399 * may deadlock.
1400 */
1401void ceph_con_process_message(struct ceph_connection *con)
1402{
1403	struct ceph_msg *msg = con->in_msg;
1404
1405	BUG_ON(con->in_msg->con != con);
1406	con->in_msg = NULL;
1407
1408	/* if first message, set peer_name */
1409	if (con->peer_name.type == 0)
1410		con->peer_name = msg->hdr.src;
1411
1412	con->in_seq++;
1413	mutex_unlock(&con->mutex);
1414
1415	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416	     msg, le64_to_cpu(msg->hdr.seq),
1417	     ENTITY_NAME(msg->hdr.src),
1418	     le16_to_cpu(msg->hdr.type),
1419	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420	     le32_to_cpu(msg->hdr.front_len),
1421	     le32_to_cpu(msg->hdr.middle_len),
1422	     le32_to_cpu(msg->hdr.data_len),
1423	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424	con->ops->dispatch(con, msg);
1425
1426	mutex_lock(&con->mutex);
1427}
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429/*
1430 * Atomically queue work on a connection after the specified delay.
1431 * Bump @con reference to avoid races with connection teardown.
1432 * Returns 0 if work was queued, or an error code otherwise.
1433 */
1434static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435{
1436	if (!con->ops->get(con)) {
1437		dout("%s %p ref count 0\n", __func__, con);
1438		return -ENOENT;
1439	}
1440
1441	if (delay >= HZ)
1442		delay = round_jiffies_relative(delay);
1443
1444	dout("%s %p %lu\n", __func__, con, delay);
1445	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446		dout("%s %p - already queued\n", __func__, con);
1447		con->ops->put(con);
1448		return -EBUSY;
1449	}
1450
 
1451	return 0;
1452}
1453
1454static void queue_con(struct ceph_connection *con)
1455{
1456	(void) queue_con_delay(con, 0);
1457}
1458
1459static void cancel_con(struct ceph_connection *con)
1460{
1461	if (cancel_delayed_work(&con->work)) {
1462		dout("%s %p\n", __func__, con);
1463		con->ops->put(con);
1464	}
1465}
1466
1467static bool con_sock_closed(struct ceph_connection *con)
1468{
1469	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470		return false;
1471
1472#define CASE(x)								\
1473	case CEPH_CON_S_ ## x:						\
1474		con->error_msg = "socket closed (con state " #x ")";	\
1475		break;
1476
1477	switch (con->state) {
1478	CASE(CLOSED);
1479	CASE(PREOPEN);
1480	CASE(V1_BANNER);
1481	CASE(V1_CONNECT_MSG);
1482	CASE(V2_BANNER_PREFIX);
1483	CASE(V2_BANNER_PAYLOAD);
1484	CASE(V2_HELLO);
1485	CASE(V2_AUTH);
1486	CASE(V2_AUTH_SIGNATURE);
1487	CASE(V2_SESSION_CONNECT);
1488	CASE(V2_SESSION_RECONNECT);
1489	CASE(OPEN);
1490	CASE(STANDBY);
1491	default:
 
 
 
1492		BUG();
 
1493	}
1494#undef CASE
1495
1496	return true;
1497}
1498
1499static bool con_backoff(struct ceph_connection *con)
1500{
1501	int ret;
1502
1503	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504		return false;
1505
1506	ret = queue_con_delay(con, con->delay);
1507	if (ret) {
1508		dout("%s: con %p FAILED to back off %lu\n", __func__,
1509			con, con->delay);
1510		BUG_ON(ret == -ENOENT);
1511		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512	}
1513
1514	return true;
1515}
1516
1517/* Finish fault handling; con->mutex must *not* be held here */
1518
1519static void con_fault_finish(struct ceph_connection *con)
1520{
1521	dout("%s %p\n", __func__, con);
1522
1523	/*
1524	 * in case we faulted due to authentication, invalidate our
1525	 * current tickets so that we can get new ones.
1526	 */
1527	if (con->v1.auth_retry) {
1528		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529		if (con->ops->invalidate_authorizer)
1530			con->ops->invalidate_authorizer(con);
1531		con->v1.auth_retry = 0;
1532	}
1533
1534	if (con->ops->fault)
1535		con->ops->fault(con);
1536}
1537
1538/*
1539 * Do some work on a connection.  Drop a connection ref when we're done.
1540 */
1541static void ceph_con_workfn(struct work_struct *work)
1542{
1543	struct ceph_connection *con = container_of(work, struct ceph_connection,
1544						   work.work);
1545	bool fault;
1546
1547	mutex_lock(&con->mutex);
1548	while (true) {
1549		int ret;
1550
1551		if ((fault = con_sock_closed(con))) {
1552			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553			break;
1554		}
1555		if (con_backoff(con)) {
1556			dout("%s: con %p BACKOFF\n", __func__, con);
1557			break;
1558		}
1559		if (con->state == CEPH_CON_S_STANDBY) {
1560			dout("%s: con %p STANDBY\n", __func__, con);
1561			break;
1562		}
1563		if (con->state == CEPH_CON_S_CLOSED) {
1564			dout("%s: con %p CLOSED\n", __func__, con);
1565			BUG_ON(con->sock);
1566			break;
1567		}
1568		if (con->state == CEPH_CON_S_PREOPEN) {
1569			dout("%s: con %p PREOPEN\n", __func__, con);
1570			BUG_ON(con->sock);
1571		}
1572
1573		if (ceph_msgr2(from_msgr(con->msgr)))
1574			ret = ceph_con_v2_try_read(con);
1575		else
1576			ret = ceph_con_v1_try_read(con);
1577		if (ret < 0) {
1578			if (ret == -EAGAIN)
1579				continue;
1580			if (!con->error_msg)
1581				con->error_msg = "socket error on read";
1582			fault = true;
1583			break;
1584		}
1585
1586		if (ceph_msgr2(from_msgr(con->msgr)))
1587			ret = ceph_con_v2_try_write(con);
1588		else
1589			ret = ceph_con_v1_try_write(con);
1590		if (ret < 0) {
1591			if (ret == -EAGAIN)
1592				continue;
1593			if (!con->error_msg)
1594				con->error_msg = "socket error on write";
1595			fault = true;
1596		}
1597
1598		break;	/* If we make it to here, we're done */
1599	}
1600	if (fault)
1601		con_fault(con);
1602	mutex_unlock(&con->mutex);
1603
1604	if (fault)
1605		con_fault_finish(con);
1606
1607	con->ops->put(con);
1608}
1609
1610/*
1611 * Generic error/fault handler.  A retry mechanism is used with
1612 * exponential backoff
1613 */
1614static void con_fault(struct ceph_connection *con)
1615{
1616	dout("fault %p state %d to peer %s\n",
1617	     con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620		ceph_pr_addr(&con->peer_addr), con->error_msg);
1621	con->error_msg = NULL;
1622
1623	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624		con->state == CEPH_CON_S_CLOSED);
 
1625
1626	ceph_con_reset_protocol(con);
1627
1628	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629		dout("fault on LOSSYTX channel, marking CLOSED\n");
1630		con->state = CEPH_CON_S_CLOSED;
1631		return;
1632	}
1633
 
 
 
 
 
 
1634	/* Requeue anything that hasn't been acked */
1635	list_splice_init(&con->out_sent, &con->out_queue);
1636
1637	/* If there are no messages queued or keepalive pending, place
1638	 * the connection in a STANDBY state */
1639	if (list_empty(&con->out_queue) &&
1640	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643		con->state = CEPH_CON_S_STANDBY;
1644	} else {
1645		/* retry after a delay. */
1646		con->state = CEPH_CON_S_PREOPEN;
1647		if (!con->delay) {
1648			con->delay = BASE_DELAY_INTERVAL;
1649		} else if (con->delay < MAX_DELAY_INTERVAL) {
1650			con->delay *= 2;
1651			if (con->delay > MAX_DELAY_INTERVAL)
1652				con->delay = MAX_DELAY_INTERVAL;
1653		}
1654		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655		queue_con(con);
1656	}
1657}
1658
1659void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660{
1661	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663	ceph_encode_my_addr(msgr);
1664}
1665
1666/*
1667 * initialize a new messenger instance
1668 */
1669void ceph_messenger_init(struct ceph_messenger *msgr,
1670			 struct ceph_entity_addr *myaddr)
1671{
1672	spin_lock_init(&msgr->global_seq_lock);
1673
1674	if (myaddr) {
1675		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676		       sizeof(msgr->inst.addr.in_addr));
1677		ceph_addr_set_port(&msgr->inst.addr, 0);
1678	}
1679
1680	/*
1681	 * Since nautilus, clients are identified using type ANY.
1682	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683	 */
1684	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686	/* generate a random non-zero nonce */
1687	do {
1688		get_random_bytes(&msgr->inst.addr.nonce,
1689				 sizeof(msgr->inst.addr.nonce));
1690	} while (!msgr->inst.addr.nonce);
1691	ceph_encode_my_addr(msgr);
1692
1693	atomic_set(&msgr->stopping, 0);
1694	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696	dout("%s %p\n", __func__, msgr);
1697}
 
1698
1699void ceph_messenger_fini(struct ceph_messenger *msgr)
1700{
1701	put_net(read_pnet(&msgr->net));
1702}
 
1703
1704static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705{
1706	if (msg->con)
1707		msg->con->ops->put(msg->con);
1708
1709	msg->con = con ? con->ops->get(con) : NULL;
1710	BUG_ON(msg->con != con);
1711}
1712
1713static void clear_standby(struct ceph_connection *con)
1714{
1715	/* come back from STANDBY? */
1716	if (con->state == CEPH_CON_S_STANDBY) {
1717		dout("clear_standby %p and ++connect_seq\n", con);
1718		con->state = CEPH_CON_S_PREOPEN;
1719		con->v1.connect_seq++;
1720		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722	}
1723}
1724
1725/*
1726 * Queue up an outgoing message on the given connection.
1727 *
1728 * Consumes a ref on @msg.
1729 */
1730void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731{
1732	/* set src+dst */
1733	msg->hdr.src = con->msgr->inst.name;
1734	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735	msg->needs_out_seq = true;
1736
1737	mutex_lock(&con->mutex);
1738
1739	if (con->state == CEPH_CON_S_CLOSED) {
1740		dout("con_send %p closed, dropping %p\n", con, msg);
1741		ceph_msg_put(msg);
1742		mutex_unlock(&con->mutex);
1743		return;
1744	}
1745
1746	msg_con_set(msg, con);
1747
1748	BUG_ON(!list_empty(&msg->list_head));
1749	list_add_tail(&msg->list_head, &con->out_queue);
1750	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753	     le32_to_cpu(msg->hdr.front_len),
1754	     le32_to_cpu(msg->hdr.middle_len),
1755	     le32_to_cpu(msg->hdr.data_len));
1756
1757	clear_standby(con);
1758	mutex_unlock(&con->mutex);
1759
1760	/* if there wasn't anything waiting to send before, queue
1761	 * new work */
1762	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763		queue_con(con);
1764}
1765EXPORT_SYMBOL(ceph_con_send);
1766
1767/*
1768 * Revoke a message that was previously queued for send
1769 */
1770void ceph_msg_revoke(struct ceph_msg *msg)
1771{
1772	struct ceph_connection *con = msg->con;
1773
1774	if (!con) {
1775		dout("%s msg %p null con\n", __func__, msg);
1776		return;		/* Message not in our possession */
1777	}
1778
1779	mutex_lock(&con->mutex);
1780	if (list_empty(&msg->list_head)) {
1781		WARN_ON(con->out_msg == msg);
1782		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783		mutex_unlock(&con->mutex);
1784		return;
 
1785	}
1786
1787	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788	msg->hdr.seq = 0;
1789	ceph_msg_remove(msg);
1790
1791	if (con->out_msg == msg) {
1792		WARN_ON(con->state != CEPH_CON_S_OPEN);
1793		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794		if (ceph_msgr2(from_msgr(con->msgr)))
1795			ceph_con_v2_revoke(con);
1796		else
1797			ceph_con_v1_revoke(con);
1798		ceph_msg_put(con->out_msg);
 
 
 
 
 
 
 
 
 
 
 
1799		con->out_msg = NULL;
1800	} else {
1801		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802		     con, msg, con->out_msg);
1803	}
 
1804	mutex_unlock(&con->mutex);
1805}
1806
1807/*
1808 * Revoke a message that we may be reading data into
1809 */
1810void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811{
1812	struct ceph_connection *con = msg->con;
1813
1814	if (!con) {
1815		dout("%s msg %p null con\n", __func__, msg);
1816		return;		/* Message not in our possession */
1817	}
1818
1819	mutex_lock(&con->mutex);
1820	if (con->in_msg == msg) {
1821		WARN_ON(con->state != CEPH_CON_S_OPEN);
1822		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823		if (ceph_msgr2(from_msgr(con->msgr)))
1824			ceph_con_v2_revoke_incoming(con);
1825		else
1826			ceph_con_v1_revoke_incoming(con);
 
 
 
 
 
 
1827		ceph_msg_put(con->in_msg);
1828		con->in_msg = NULL;
 
 
1829	} else {
1830		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831		     con, msg, con->in_msg);
1832	}
1833	mutex_unlock(&con->mutex);
1834}
1835
1836/*
1837 * Queue a keepalive byte to ensure the tcp connection is alive.
1838 */
1839void ceph_con_keepalive(struct ceph_connection *con)
1840{
1841	dout("con_keepalive %p\n", con);
1842	mutex_lock(&con->mutex);
1843	clear_standby(con);
1844	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845	mutex_unlock(&con->mutex);
1846
1847	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848		queue_con(con);
1849}
1850EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853			       unsigned long interval)
1854{
1855	if (interval > 0 &&
1856	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857		struct timespec64 now;
1858		struct timespec64 ts;
1859		ktime_get_real_ts64(&now);
1860		jiffies_to_timespec64(interval, &ts);
1861		ts = timespec64_add(con->last_keepalive_ack, ts);
1862		return timespec64_compare(&now, &ts) >= 0;
1863	}
1864	return false;
1865}
1866
1867static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868{
1869	BUG_ON(msg->num_data_items >= msg->max_data_items);
1870	return &msg->data[msg->num_data_items++];
 
 
 
 
 
 
 
 
 
1871}
1872
1873static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874{
1875	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876		int num_pages = calc_pages_for(data->alignment, data->length);
1877		ceph_release_page_vector(data->pages, num_pages);
1878	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
 
1879		ceph_pagelist_release(data->pagelist);
1880	}
1881}
1882
1883void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884			     size_t length, size_t alignment, bool own_pages)
1885{
1886	struct ceph_msg_data *data;
1887
1888	BUG_ON(!pages);
1889	BUG_ON(!length);
1890
1891	data = ceph_msg_data_add(msg);
1892	data->type = CEPH_MSG_DATA_PAGES;
1893	data->pages = pages;
1894	data->length = length;
1895	data->alignment = alignment & ~PAGE_MASK;
1896	data->own_pages = own_pages;
1897
 
1898	msg->data_length += length;
1899}
1900EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903				struct ceph_pagelist *pagelist)
1904{
1905	struct ceph_msg_data *data;
1906
1907	BUG_ON(!pagelist);
1908	BUG_ON(!pagelist->length);
1909
1910	data = ceph_msg_data_add(msg);
1911	data->type = CEPH_MSG_DATA_PAGELIST;
1912	refcount_inc(&pagelist->refcnt);
1913	data->pagelist = pagelist;
1914
 
1915	msg->data_length += pagelist->length;
1916}
1917EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919#ifdef	CONFIG_BLOCK
1920void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921			   u32 length)
1922{
1923	struct ceph_msg_data *data;
1924
1925	data = ceph_msg_data_add(msg);
1926	data->type = CEPH_MSG_DATA_BIO;
1927	data->bio_pos = *bio_pos;
 
 
1928	data->bio_length = length;
1929
 
1930	msg->data_length += length;
1931}
1932EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933#endif	/* CONFIG_BLOCK */
1934
1935void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936			     struct ceph_bvec_iter *bvec_pos)
1937{
1938	struct ceph_msg_data *data;
1939
1940	data = ceph_msg_data_add(msg);
1941	data->type = CEPH_MSG_DATA_BVECS;
1942	data->bvec_pos = *bvec_pos;
1943
1944	msg->data_length += bvec_pos->iter.bi_size;
1945}
1946EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949			    struct iov_iter *iter)
1950{
1951	struct ceph_msg_data *data;
1952
1953	data = ceph_msg_data_add(msg);
1954	data->type = CEPH_MSG_DATA_ITER;
1955	data->iter = *iter;
1956
1957	msg->data_length += iov_iter_count(&data->iter);
1958}
1959
1960/*
1961 * construct a new message with given type, size
1962 * the new msg has a ref count of 1.
1963 */
1964struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965			       gfp_t flags, bool can_fail)
1966{
1967	struct ceph_msg *m;
1968
1969	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970	if (m == NULL)
1971		goto out;
1972
1973	m->hdr.type = cpu_to_le16(type);
1974	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975	m->hdr.front_len = cpu_to_le32(front_len);
1976
1977	INIT_LIST_HEAD(&m->list_head);
1978	kref_init(&m->kref);
 
1979
1980	/* front */
1981	if (front_len) {
1982		m->front.iov_base = kvmalloc(front_len, flags);
1983		if (m->front.iov_base == NULL) {
1984			dout("ceph_msg_new can't allocate %d bytes\n",
1985			     front_len);
1986			goto out2;
1987		}
1988	} else {
1989		m->front.iov_base = NULL;
1990	}
1991	m->front_alloc_len = m->front.iov_len = front_len;
1992
1993	if (max_data_items) {
1994		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995					flags);
1996		if (!m->data)
1997			goto out2;
1998
1999		m->max_data_items = max_data_items;
2000	}
2001
2002	dout("ceph_msg_new %p front %d\n", m, front_len);
2003	return m;
2004
2005out2:
2006	ceph_msg_put(m);
2007out:
2008	if (!can_fail) {
2009		pr_err("msg_new can't create type %d front %d\n", type,
2010		       front_len);
2011		WARN_ON(1);
2012	} else {
2013		dout("msg_new can't create type %d front %d\n", type,
2014		     front_len);
2015	}
2016	return NULL;
2017}
2018EXPORT_SYMBOL(ceph_msg_new2);
2019
2020struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021			      bool can_fail)
2022{
2023	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024}
2025EXPORT_SYMBOL(ceph_msg_new);
2026
2027/*
2028 * Allocate "middle" portion of a message, if it is needed and wasn't
2029 * allocated by alloc_msg.  This allows us to read a small fixed-size
2030 * per-type header in the front and then gracefully fail (i.e.,
2031 * propagate the error to the caller based on info in the front) when
2032 * the middle is too large.
2033 */
2034static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035{
2036	int type = le16_to_cpu(msg->hdr.type);
2037	int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040	     ceph_msg_type_name(type), middle_len);
2041	BUG_ON(!middle_len);
2042	BUG_ON(msg->middle);
2043
2044	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045	if (!msg->middle)
2046		return -ENOMEM;
2047	return 0;
2048}
2049
2050/*
2051 * Allocate a message for receiving an incoming message on a
2052 * connection, and save the result in con->in_msg.  Uses the
2053 * connection's private alloc_msg op if available.
2054 *
2055 * Returns 0 on success, or a negative error code.
2056 *
2057 * On success, if we set *skip = 1:
2058 *  - the next message should be skipped and ignored.
2059 *  - con->in_msg == NULL
2060 * or if we set *skip = 0:
2061 *  - con->in_msg is non-null.
2062 * On error (ENOMEM, EAGAIN, ...),
2063 *  - con->in_msg == NULL
2064 */
2065int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066			  struct ceph_msg_header *hdr, int *skip)
2067{
 
2068	int middle_len = le32_to_cpu(hdr->middle_len);
2069	struct ceph_msg *msg;
2070	int ret = 0;
2071
2072	BUG_ON(con->in_msg != NULL);
2073	BUG_ON(!con->ops->alloc_msg);
2074
2075	mutex_unlock(&con->mutex);
2076	msg = con->ops->alloc_msg(con, hdr, skip);
2077	mutex_lock(&con->mutex);
2078	if (con->state != CEPH_CON_S_OPEN) {
2079		if (msg)
2080			ceph_msg_put(msg);
2081		return -EAGAIN;
2082	}
2083	if (msg) {
2084		BUG_ON(*skip);
2085		msg_con_set(msg, con);
2086		con->in_msg = msg;
2087	} else {
2088		/*
2089		 * Null message pointer means either we should skip
2090		 * this message or we couldn't allocate memory.  The
2091		 * former is not an error.
2092		 */
2093		if (*skip)
2094			return 0;
2095
2096		con->error_msg = "error allocating memory for incoming message";
2097		return -ENOMEM;
2098	}
2099	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101	if (middle_len && !con->in_msg->middle) {
2102		ret = ceph_alloc_middle(con, con->in_msg);
2103		if (ret < 0) {
2104			ceph_msg_put(con->in_msg);
2105			con->in_msg = NULL;
2106		}
2107	}
2108
2109	return ret;
2110}
2111
2112void ceph_con_get_out_msg(struct ceph_connection *con)
2113{
2114	struct ceph_msg *msg;
2115
2116	BUG_ON(list_empty(&con->out_queue));
2117	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118	WARN_ON(msg->con != con);
2119
2120	/*
2121	 * Put the message on "sent" list using a ref from ceph_con_send().
2122	 * It is put when the message is acked or revoked.
2123	 */
2124	list_move_tail(&msg->list_head, &con->out_sent);
2125
2126	/*
2127	 * Only assign outgoing seq # if we haven't sent this message
2128	 * yet.  If it is requeued, resend with it's original seq.
2129	 */
2130	if (msg->needs_out_seq) {
2131		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132		msg->needs_out_seq = false;
2133
2134		if (con->ops->reencode_message)
2135			con->ops->reencode_message(msg);
2136	}
2137
2138	/*
2139	 * Get a ref for out_msg.  It is put when we are done sending the
2140	 * message or in case of a fault.
2141	 */
2142	WARN_ON(con->out_msg);
2143	con->out_msg = ceph_msg_get(msg);
2144}
2145
2146/*
2147 * Free a generically kmalloc'd message.
2148 */
2149static void ceph_msg_free(struct ceph_msg *m)
2150{
2151	dout("%s %p\n", __func__, m);
2152	kvfree(m->front.iov_base);
2153	kfree(m->data);
2154	kmem_cache_free(ceph_msg_cache, m);
2155}
2156
2157static void ceph_msg_release(struct kref *kref)
2158{
2159	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160	int i;
2161
2162	dout("%s %p\n", __func__, m);
2163	WARN_ON(!list_empty(&m->list_head));
2164
2165	msg_con_set(m, NULL);
2166
2167	/* drop middle, data, if any */
2168	if (m->middle) {
2169		ceph_buffer_put(m->middle);
2170		m->middle = NULL;
2171	}
2172
2173	for (i = 0; i < m->num_data_items; i++)
2174		ceph_msg_data_destroy(&m->data[i]);
 
 
 
2175
2176	if (m->pool)
2177		ceph_msgpool_put(m->pool, m);
2178	else
2179		ceph_msg_free(m);
2180}
2181
2182struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183{
2184	dout("%s %p (was %d)\n", __func__, msg,
2185	     kref_read(&msg->kref));
2186	kref_get(&msg->kref);
2187	return msg;
2188}
2189EXPORT_SYMBOL(ceph_msg_get);
2190
2191void ceph_msg_put(struct ceph_msg *msg)
2192{
2193	dout("%s %p (was %d)\n", __func__, msg,
2194	     kref_read(&msg->kref));
2195	kref_put(&msg->kref, ceph_msg_release);
2196}
2197EXPORT_SYMBOL(ceph_msg_put);
2198
2199void ceph_msg_dump(struct ceph_msg *msg)
2200{
2201	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202		 msg->front_alloc_len, msg->data_length);
2203	print_hex_dump(KERN_DEBUG, "header: ",
2204		       DUMP_PREFIX_OFFSET, 16, 1,
2205		       &msg->hdr, sizeof(msg->hdr), true);
2206	print_hex_dump(KERN_DEBUG, " front: ",
2207		       DUMP_PREFIX_OFFSET, 16, 1,
2208		       msg->front.iov_base, msg->front.iov_len, true);
2209	if (msg->middle)
2210		print_hex_dump(KERN_DEBUG, "middle: ",
2211			       DUMP_PREFIX_OFFSET, 16, 1,
2212			       msg->middle->vec.iov_base,
2213			       msg->middle->vec.iov_len, true);
2214	print_hex_dump(KERN_DEBUG, "footer: ",
2215		       DUMP_PREFIX_OFFSET, 16, 1,
2216		       &msg->footer, sizeof(msg->footer), true);
2217}
2218EXPORT_SYMBOL(ceph_msg_dump);