Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
 
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_bit.h"
  24#include "xfs_sb.h"
  25#include "xfs_mount.h"
  26#include "xfs_trans.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_error.h"
 
 
 
 
 
  30#include "xfs_trace.h"
  31#include "xfs_log.h"
 
  32
  33
  34kmem_zone_t	*xfs_buf_item_zone;
  35
  36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  37{
  38	return container_of(lip, struct xfs_buf_log_item, bli_item);
  39}
  40
  41STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42
  43static inline int
  44xfs_buf_log_format_size(
  45	struct xfs_buf_log_format *blfp)
  46{
  47	return offsetof(struct xfs_buf_log_format, blf_data_map) +
  48			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  49}
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51/*
  52 * This returns the number of log iovecs needed to log the
  53 * given buf log item.
  54 *
  55 * It calculates this as 1 iovec for the buf log format structure
  56 * and 1 for each stretch of non-contiguous chunks to be logged.
  57 * Contiguous chunks are logged in a single iovec.
  58 *
  59 * If the XFS_BLI_STALE flag has been set, then log nothing.
  60 */
  61STATIC void
  62xfs_buf_item_size_segment(
  63	struct xfs_buf_log_item	*bip,
  64	struct xfs_buf_log_format *blfp,
  65	int			*nvecs,
  66	int			*nbytes)
  67{
  68	struct xfs_buf		*bp = bip->bli_buf;
  69	int			next_bit;
  70	int			last_bit;
 
 
 
  71
  72	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  73	if (last_bit == -1)
  74		return;
  75
  76	/*
  77	 * initial count for a dirty buffer is 2 vectors - the format structure
  78	 * and the first dirty region.
  79	 */
  80	*nvecs += 2;
  81	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
 
  82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83	while (last_bit != -1) {
  84		/*
  85		 * This takes the bit number to start looking from and
  86		 * returns the next set bit from there.  It returns -1
  87		 * if there are no more bits set or the start bit is
  88		 * beyond the end of the bitmap.
  89		 */
  90		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  91					last_bit + 1);
  92		/*
  93		 * If we run out of bits, leave the loop,
  94		 * else if we find a new set of bits bump the number of vecs,
  95		 * else keep scanning the current set of bits.
  96		 */
  97		if (next_bit == -1) {
  98			break;
  99		} else if (next_bit != last_bit + 1) {
 100			last_bit = next_bit;
 101			(*nvecs)++;
 102		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
 103			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
 104			    XFS_BLF_CHUNK)) {
 105			last_bit = next_bit;
 
 106			(*nvecs)++;
 
 107		} else {
 108			last_bit++;
 
 109		}
 110		*nbytes += XFS_BLF_CHUNK;
 111	}
 112}
 113
 114/*
 115 * This returns the number of log iovecs needed to log the given buf log item.
 116 *
 117 * It calculates this as 1 iovec for the buf log format structure and 1 for each
 118 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 119 * in a single iovec.
 120 *
 121 * Discontiguous buffers need a format structure per region that that is being
 122 * logged. This makes the changes in the buffer appear to log recovery as though
 123 * they came from separate buffers, just like would occur if multiple buffers
 124 * were used instead of a single discontiguous buffer. This enables
 125 * discontiguous buffers to be in-memory constructs, completely transparent to
 126 * what ends up on disk.
 127 *
 128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 129 * format structures.
 
 
 
 
 130 */
 131STATIC void
 132xfs_buf_item_size(
 133	struct xfs_log_item	*lip,
 134	int			*nvecs,
 135	int			*nbytes)
 136{
 137	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 
 138	int			i;
 
 
 139
 140	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 141	if (bip->bli_flags & XFS_BLI_STALE) {
 142		/*
 143		 * The buffer is stale, so all we need to log
 144		 * is the buf log format structure with the
 145		 * cancel flag in it.
 146		 */
 147		trace_xfs_buf_item_size_stale(bip);
 148		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 149		*nvecs += bip->bli_format_count;
 150		for (i = 0; i < bip->bli_format_count; i++) {
 151			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
 152		}
 153		return;
 154	}
 155
 156	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 157
 158	if (bip->bli_flags & XFS_BLI_ORDERED) {
 159		/*
 160		 * The buffer has been logged just to order it.
 161		 * It is not being included in the transaction
 162		 * commit, so no vectors are used at all.
 163		 */
 164		trace_xfs_buf_item_size_ordered(bip);
 165		*nvecs = XFS_LOG_VEC_ORDERED;
 166		return;
 167	}
 168
 169	/*
 170	 * the vector count is based on the number of buffer vectors we have
 171	 * dirty bits in. This will only be greater than one when we have a
 172	 * compound buffer with more than one segment dirty. Hence for compound
 173	 * buffers we need to track which segment the dirty bits correspond to,
 174	 * and when we move from one segment to the next increment the vector
 175	 * count for the extra buf log format structure that will need to be
 176	 * written.
 177	 */
 
 178	for (i = 0; i < bip->bli_format_count; i++) {
 179		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
 180					  nvecs, nbytes);
 
 181	}
 
 
 
 
 
 
 
 182	trace_xfs_buf_item_size(bip);
 183}
 184
 185static inline void
 186xfs_buf_item_copy_iovec(
 187	struct xfs_log_vec	*lv,
 188	struct xfs_log_iovec	**vecp,
 189	struct xfs_buf		*bp,
 190	uint			offset,
 191	int			first_bit,
 192	uint			nbits)
 193{
 194	offset += first_bit * XFS_BLF_CHUNK;
 195	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
 196			xfs_buf_offset(bp, offset),
 197			nbits * XFS_BLF_CHUNK);
 198}
 199
 200static inline bool
 201xfs_buf_item_straddle(
 202	struct xfs_buf		*bp,
 203	uint			offset,
 204	int			next_bit,
 205	int			last_bit)
 206{
 207	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
 208		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
 209		 XFS_BLF_CHUNK);
 210}
 211
 212static void
 213xfs_buf_item_format_segment(
 214	struct xfs_buf_log_item	*bip,
 215	struct xfs_log_vec	*lv,
 216	struct xfs_log_iovec	**vecp,
 217	uint			offset,
 218	struct xfs_buf_log_format *blfp)
 219{
 220	struct xfs_buf	*bp = bip->bli_buf;
 221	uint		base_size;
 222	int		first_bit;
 223	int		last_bit;
 224	int		next_bit;
 225	uint		nbits;
 226
 227	/* copy the flags across from the base format item */
 228	blfp->blf_flags = bip->__bli_format.blf_flags;
 229
 230	/*
 231	 * Base size is the actual size of the ondisk structure - it reflects
 232	 * the actual size of the dirty bitmap rather than the size of the in
 233	 * memory structure.
 234	 */
 235	base_size = xfs_buf_log_format_size(blfp);
 236
 237	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 238	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 239		/*
 240		 * If the map is not be dirty in the transaction, mark
 241		 * the size as zero and do not advance the vector pointer.
 242		 */
 243		return;
 244	}
 245
 246	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
 247	blfp->blf_size = 1;
 248
 249	if (bip->bli_flags & XFS_BLI_STALE) {
 250		/*
 251		 * The buffer is stale, so all we need to log
 252		 * is the buf log format structure with the
 253		 * cancel flag in it.
 254		 */
 255		trace_xfs_buf_item_format_stale(bip);
 256		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 257		return;
 258	}
 259
 260
 261	/*
 262	 * Fill in an iovec for each set of contiguous chunks.
 263	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264	last_bit = first_bit;
 265	nbits = 1;
 266	for (;;) {
 267		/*
 268		 * This takes the bit number to start looking from and
 269		 * returns the next set bit from there.  It returns -1
 270		 * if there are no more bits set or the start bit is
 271		 * beyond the end of the bitmap.
 272		 */
 273		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 274					(uint)last_bit + 1);
 275		/*
 276		 * If we run out of bits fill in the last iovec and get out of
 277		 * the loop.  Else if we start a new set of bits then fill in
 278		 * the iovec for the series we were looking at and start
 279		 * counting the bits in the new one.  Else we're still in the
 280		 * same set of bits so just keep counting and scanning.
 281		 */
 282		if (next_bit == -1) {
 283			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 284						first_bit, nbits);
 285			blfp->blf_size++;
 286			break;
 287		} else if (next_bit != last_bit + 1 ||
 288		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
 289			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 290						first_bit, nbits);
 291			blfp->blf_size++;
 292			first_bit = next_bit;
 293			last_bit = next_bit;
 294			nbits = 1;
 295		} else {
 296			last_bit++;
 297			nbits++;
 298		}
 299	}
 300}
 301
 302/*
 303 * This is called to fill in the vector of log iovecs for the
 304 * given log buf item.  It fills the first entry with a buf log
 305 * format structure, and the rest point to contiguous chunks
 306 * within the buffer.
 307 */
 308STATIC void
 309xfs_buf_item_format(
 310	struct xfs_log_item	*lip,
 311	struct xfs_log_vec	*lv)
 312{
 313	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 314	struct xfs_buf		*bp = bip->bli_buf;
 315	struct xfs_log_iovec	*vecp = NULL;
 316	uint			offset = 0;
 317	int			i;
 318
 319	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 320	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 321	       (bip->bli_flags & XFS_BLI_STALE));
 322	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
 323	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
 324	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
 
 
 325
 326
 327	/*
 328	 * If it is an inode buffer, transfer the in-memory state to the
 329	 * format flags and clear the in-memory state.
 330	 *
 331	 * For buffer based inode allocation, we do not transfer
 332	 * this state if the inode buffer allocation has not yet been committed
 333	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 334	 * correct replay of the inode allocation.
 335	 *
 336	 * For icreate item based inode allocation, the buffers aren't written
 337	 * to the journal during allocation, and hence we should always tag the
 338	 * buffer as an inode buffer so that the correct unlinked list replay
 339	 * occurs during recovery.
 340	 */
 341	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 342		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
 343		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 344		      xfs_log_item_in_current_chkpt(lip)))
 345			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 346		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 347	}
 348
 349	if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
 350							XFS_BLI_ORDERED) {
 351		/*
 352		 * The buffer has been logged just to order it.  It is not being
 353		 * included in the transaction commit, so don't format it.
 354		 */
 355		trace_xfs_buf_item_format_ordered(bip);
 356		return;
 357	}
 358
 359	for (i = 0; i < bip->bli_format_count; i++) {
 360		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
 361					    &bip->bli_formats[i]);
 362		offset += bp->b_maps[i].bm_len;
 363	}
 364
 365	/*
 366	 * Check to make sure everything is consistent.
 367	 */
 368	trace_xfs_buf_item_format(bip);
 369}
 370
 371/*
 372 * This is called to pin the buffer associated with the buf log item in memory
 373 * so it cannot be written out.
 374 *
 375 * We also always take a reference to the buffer log item here so that the bli
 376 * is held while the item is pinned in memory. This means that we can
 377 * unconditionally drop the reference count a transaction holds when the
 378 * transaction is completed.
 
 
 
 
 
 
 
 
 379 */
 380STATIC void
 381xfs_buf_item_pin(
 382	struct xfs_log_item	*lip)
 383{
 384	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 385
 386	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 387	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 388	       (bip->bli_flags & XFS_BLI_ORDERED) ||
 389	       (bip->bli_flags & XFS_BLI_STALE));
 390
 391	trace_xfs_buf_item_pin(bip);
 392
 
 393	atomic_inc(&bip->bli_refcount);
 394	atomic_inc(&bip->bli_buf->b_pin_count);
 395}
 396
 397/*
 398 * This is called to unpin the buffer associated with the buf log
 399 * item which was previously pinned with a call to xfs_buf_item_pin().
 
 400 *
 401 * Also drop the reference to the buf item for the current transaction.
 402 * If the XFS_BLI_STALE flag is set and we are the last reference,
 403 * then free up the buf log item and unlock the buffer.
 
 
 
 
 404 *
 405 * If the remove flag is set we are called from uncommit in the
 406 * forced-shutdown path.  If that is true and the reference count on
 407 * the log item is going to drop to zero we need to free the item's
 408 * descriptor in the transaction.
 
 
 409 */
 410STATIC void
 411xfs_buf_item_unpin(
 412	struct xfs_log_item	*lip,
 413	int			remove)
 414{
 415	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 416	xfs_buf_t	*bp = bip->bli_buf;
 417	struct xfs_ail	*ailp = lip->li_ailp;
 418	int		stale = bip->bli_flags & XFS_BLI_STALE;
 419	int		freed;
 420
 421	ASSERT(bp->b_fspriv == bip);
 422	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 423
 424	trace_xfs_buf_item_unpin(bip);
 425
 426	freed = atomic_dec_and_test(&bip->bli_refcount);
 427
 428	if (atomic_dec_and_test(&bp->b_pin_count))
 429		wake_up_all(&bp->b_waiters);
 430
 431	if (freed && stale) {
 
 
 
 
 
 
 
 
 
 432		ASSERT(bip->bli_flags & XFS_BLI_STALE);
 433		ASSERT(xfs_buf_islocked(bp));
 434		ASSERT(bp->b_flags & XBF_STALE);
 435		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 
 
 436
 437		trace_xfs_buf_item_unpin_stale(bip);
 438
 439		if (remove) {
 440			/*
 441			 * If we are in a transaction context, we have to
 442			 * remove the log item from the transaction as we are
 443			 * about to release our reference to the buffer.  If we
 444			 * don't, the unlock that occurs later in
 445			 * xfs_trans_uncommit() will try to reference the
 446			 * buffer which we no longer have a hold on.
 447			 */
 448			if (lip->li_desc)
 449				xfs_trans_del_item(lip);
 450
 451			/*
 452			 * Since the transaction no longer refers to the buffer,
 453			 * the buffer should no longer refer to the transaction.
 454			 */
 455			bp->b_transp = NULL;
 456		}
 457
 458		/*
 459		 * If we get called here because of an IO error, we may
 460		 * or may not have the item on the AIL. xfs_trans_ail_delete()
 461		 * will take care of that situation.
 462		 * xfs_trans_ail_delete() drops the AIL lock.
 463		 */
 464		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 465			xfs_buf_do_callbacks(bp);
 466			bp->b_fspriv = NULL;
 467			bp->b_iodone = NULL;
 468		} else {
 469			spin_lock(&ailp->xa_lock);
 470			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
 471			xfs_buf_item_relse(bp);
 472			ASSERT(bp->b_fspriv == NULL);
 473		}
 474		xfs_buf_relse(bp);
 475	} else if (freed && remove) {
 
 
 
 476		/*
 477		 * There are currently two references to the buffer - the active
 478		 * LRU reference and the buf log item. What we are about to do
 479		 * here - simulate a failed IO completion - requires 3
 480		 * references.
 481		 *
 482		 * The LRU reference is removed by the xfs_buf_stale() call. The
 483		 * buf item reference is removed by the xfs_buf_iodone()
 484		 * callback that is run by xfs_buf_do_callbacks() during ioend
 485		 * processing (via the bp->b_iodone callback), and then finally
 486		 * the ioend processing will drop the IO reference if the buffer
 487		 * is marked XBF_ASYNC.
 488		 *
 489		 * Hence we need to take an additional reference here so that IO
 490		 * completion processing doesn't free the buffer prematurely.
 491		 */
 492		xfs_buf_lock(bp);
 493		xfs_buf_hold(bp);
 494		bp->b_flags |= XBF_ASYNC;
 495		xfs_buf_ioerror(bp, -EIO);
 496		bp->b_flags &= ~XBF_DONE;
 497		xfs_buf_stale(bp);
 498		xfs_buf_ioend(bp);
 499	}
 500}
 501
 502/*
 503 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
 504 * seconds so as to not spam logs too much on repeated detection of the same
 505 * buffer being bad..
 506 */
 507
 508static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
 
 
 
 
 
 
 509
 510STATIC uint
 511xfs_buf_item_push(
 512	struct xfs_log_item	*lip,
 513	struct list_head	*buffer_list)
 514{
 515	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 516	struct xfs_buf		*bp = bip->bli_buf;
 517	uint			rval = XFS_ITEM_SUCCESS;
 518
 519	if (xfs_buf_ispinned(bp))
 520		return XFS_ITEM_PINNED;
 521	if (!xfs_buf_trylock(bp)) {
 522		/*
 523		 * If we have just raced with a buffer being pinned and it has
 524		 * been marked stale, we could end up stalling until someone else
 525		 * issues a log force to unpin the stale buffer. Check for the
 526		 * race condition here so xfsaild recognizes the buffer is pinned
 527		 * and queues a log force to move it along.
 528		 */
 529		if (xfs_buf_ispinned(bp))
 530			return XFS_ITEM_PINNED;
 531		return XFS_ITEM_LOCKED;
 532	}
 533
 534	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 535
 536	trace_xfs_buf_item_push(bip);
 537
 538	/* has a previous flush failed due to IO errors? */
 539	if ((bp->b_flags & XBF_WRITE_FAIL) &&
 540	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
 541		xfs_warn(bp->b_target->bt_mount,
 542"Failing async write on buffer block 0x%llx. Retrying async write.",
 543			 (long long)bp->b_bn);
 544	}
 545
 546	if (!xfs_buf_delwri_queue(bp, buffer_list))
 547		rval = XFS_ITEM_FLUSHING;
 548	xfs_buf_unlock(bp);
 549	return rval;
 550}
 551
 552/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553 * Release the buffer associated with the buf log item.  If there is no dirty
 554 * logged data associated with the buffer recorded in the buf log item, then
 555 * free the buf log item and remove the reference to it in the buffer.
 556 *
 557 * This call ignores the recursion count.  It is only called when the buffer
 558 * should REALLY be unlocked, regardless of the recursion count.
 559 *
 560 * We unconditionally drop the transaction's reference to the log item. If the
 561 * item was logged, then another reference was taken when it was pinned, so we
 562 * can safely drop the transaction reference now.  This also allows us to avoid
 563 * potential races with the unpin code freeing the bli by not referencing the
 564 * bli after we've dropped the reference count.
 565 *
 566 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 567 * if necessary but do not unlock the buffer.  This is for support of
 568 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 569 * free the item.
 570 */
 571STATIC void
 572xfs_buf_item_unlock(
 573	struct xfs_log_item	*lip)
 574{
 575	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 576	struct xfs_buf		*bp = bip->bli_buf;
 577	bool			clean;
 578	bool			aborted;
 579	int			flags;
 
 
 
 
 
 
 580
 581	/* Clear the buffer's association with this transaction. */
 582	bp->b_transp = NULL;
 583
 584	/*
 585	 * If this is a transaction abort, don't return early.  Instead, allow
 586	 * the brelse to happen.  Normally it would be done for stale
 587	 * (cancelled) buffers at unpin time, but we'll never go through the
 588	 * pin/unpin cycle if we abort inside commit.
 589	 */
 590	aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
 591	/*
 592	 * Before possibly freeing the buf item, copy the per-transaction state
 593	 * so we can reference it safely later after clearing it from the
 594	 * buffer log item.
 595	 */
 596	flags = bip->bli_flags;
 597	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
 598
 599	/*
 600	 * If the buf item is marked stale, then don't do anything.  We'll
 601	 * unlock the buffer and free the buf item when the buffer is unpinned
 602	 * for the last time.
 603	 */
 604	if (flags & XFS_BLI_STALE) {
 605		trace_xfs_buf_item_unlock_stale(bip);
 606		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 607		if (!aborted) {
 608			atomic_dec(&bip->bli_refcount);
 609			return;
 610		}
 611	}
 612
 613	trace_xfs_buf_item_unlock(bip);
 614
 615	/*
 616	 * If the buf item isn't tracking any data, free it, otherwise drop the
 617	 * reference we hold to it. If we are aborting the transaction, this may
 618	 * be the only reference to the buf item, so we free it anyway
 619	 * regardless of whether it is dirty or not. A dirty abort implies a
 620	 * shutdown, anyway.
 621	 *
 622	 * Ordered buffers are dirty but may have no recorded changes, so ensure
 623	 * we only release clean items here.
 624	 */
 625	clean = (flags & XFS_BLI_DIRTY) ? false : true;
 626	if (clean) {
 627		int i;
 628		for (i = 0; i < bip->bli_format_count; i++) {
 629			if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
 630				     bip->bli_formats[i].blf_map_size)) {
 631				clean = false;
 632				break;
 633			}
 634		}
 635	}
 636
 637	/*
 638	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
 639	 * buffers may be dirty and hence in the AIL. Therefore if we are
 640	 * aborting a buffer and we've just taken the last refernce away, we
 641	 * have to check if it is in the AIL before freeing it. We need to free
 642	 * it in this case, because an aborted transaction has already shut the
 643	 * filesystem down and this is the last chance we will have to do so.
 644	 */
 645	if (atomic_dec_and_test(&bip->bli_refcount)) {
 646		if (clean)
 647			xfs_buf_item_relse(bp);
 648		else if (aborted) {
 649			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
 650			xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
 651			xfs_buf_item_relse(bp);
 652		}
 653	}
 654
 655	if (!(flags & XFS_BLI_HOLD))
 656		xfs_buf_relse(bp);
 
 
 
 
 657}
 658
 659/*
 660 * This is called to find out where the oldest active copy of the
 661 * buf log item in the on disk log resides now that the last log
 662 * write of it completed at the given lsn.
 663 * We always re-log all the dirty data in a buffer, so usually the
 664 * latest copy in the on disk log is the only one that matters.  For
 665 * those cases we simply return the given lsn.
 666 *
 667 * The one exception to this is for buffers full of newly allocated
 668 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 669 * flag set, indicating that only the di_next_unlinked fields from the
 670 * inodes in the buffers will be replayed during recovery.  If the
 671 * original newly allocated inode images have not yet been flushed
 672 * when the buffer is so relogged, then we need to make sure that we
 673 * keep the old images in the 'active' portion of the log.  We do this
 674 * by returning the original lsn of that transaction here rather than
 675 * the current one.
 676 */
 677STATIC xfs_lsn_t
 678xfs_buf_item_committed(
 679	struct xfs_log_item	*lip,
 680	xfs_lsn_t		lsn)
 681{
 682	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 683
 684	trace_xfs_buf_item_committed(bip);
 685
 686	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 687		return lip->li_lsn;
 688	return lsn;
 689}
 690
 691STATIC void
 692xfs_buf_item_committing(
 693	struct xfs_log_item	*lip,
 694	xfs_lsn_t		commit_lsn)
 695{
 696}
 697
 698/*
 699 * This is the ops vector shared by all buf log items.
 700 */
 701static const struct xfs_item_ops xfs_buf_item_ops = {
 702	.iop_size	= xfs_buf_item_size,
 703	.iop_format	= xfs_buf_item_format,
 704	.iop_pin	= xfs_buf_item_pin,
 705	.iop_unpin	= xfs_buf_item_unpin,
 706	.iop_unlock	= xfs_buf_item_unlock,
 
 707	.iop_committed	= xfs_buf_item_committed,
 708	.iop_push	= xfs_buf_item_push,
 709	.iop_committing = xfs_buf_item_committing
 710};
 711
 712STATIC int
 713xfs_buf_item_get_format(
 714	struct xfs_buf_log_item	*bip,
 715	int			count)
 716{
 717	ASSERT(bip->bli_formats == NULL);
 718	bip->bli_format_count = count;
 719
 720	if (count == 1) {
 721		bip->bli_formats = &bip->__bli_format;
 722		return 0;
 723	}
 724
 725	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
 726				KM_SLEEP);
 727	if (!bip->bli_formats)
 728		return -ENOMEM;
 729	return 0;
 730}
 731
 732STATIC void
 733xfs_buf_item_free_format(
 734	struct xfs_buf_log_item	*bip)
 735{
 736	if (bip->bli_formats != &bip->__bli_format) {
 737		kmem_free(bip->bli_formats);
 738		bip->bli_formats = NULL;
 739	}
 740}
 741
 742/*
 743 * Allocate a new buf log item to go with the given buffer.
 744 * Set the buffer's b_fsprivate field to point to the new
 745 * buf log item.  If there are other item's attached to the
 746 * buffer (see xfs_buf_attach_iodone() below), then put the
 747 * buf log item at the front.
 748 */
 749int
 750xfs_buf_item_init(
 751	struct xfs_buf	*bp,
 752	struct xfs_mount *mp)
 753{
 754	struct xfs_log_item	*lip = bp->b_fspriv;
 755	struct xfs_buf_log_item	*bip;
 756	int			chunks;
 757	int			map_size;
 758	int			error;
 759	int			i;
 760
 761	/*
 762	 * Check to see if there is already a buf log item for
 763	 * this buffer.  If there is, it is guaranteed to be
 764	 * the first.  If we do already have one, there is
 765	 * nothing to do here so return.
 766	 */
 767	ASSERT(bp->b_target->bt_mount == mp);
 768	if (lip != NULL && lip->li_type == XFS_LI_BUF)
 
 
 
 769		return 0;
 
 770
 771	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
 772	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 773	bip->bli_buf = bp;
 774
 775	/*
 776	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 777	 * can be divided into. Make sure not to truncate any pieces.
 778	 * map_size is the size of the bitmap needed to describe the
 779	 * chunks of the buffer.
 780	 *
 781	 * Discontiguous buffer support follows the layout of the underlying
 782	 * buffer. This makes the implementation as simple as possible.
 783	 */
 784	error = xfs_buf_item_get_format(bip, bp->b_map_count);
 785	ASSERT(error == 0);
 786	if (error) {	/* to stop gcc throwing set-but-unused warnings */
 787		kmem_zone_free(xfs_buf_item_zone, bip);
 788		return error;
 789	}
 790
 791
 792	for (i = 0; i < bip->bli_format_count; i++) {
 793		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 794				      XFS_BLF_CHUNK);
 795		map_size = DIV_ROUND_UP(chunks, NBWORD);
 796
 
 
 
 
 
 
 
 
 
 797		bip->bli_formats[i].blf_type = XFS_LI_BUF;
 798		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 799		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 800		bip->bli_formats[i].blf_map_size = map_size;
 801	}
 802
 803	/*
 804	 * Put the buf item into the list of items attached to the
 805	 * buffer at the front.
 806	 */
 807	if (bp->b_fspriv)
 808		bip->bli_item.li_bio_list = bp->b_fspriv;
 809	bp->b_fspriv = bip;
 810	xfs_buf_hold(bp);
 811	return 0;
 812}
 813
 814
 815/*
 816 * Mark bytes first through last inclusive as dirty in the buf
 817 * item's bitmap.
 818 */
 819static void
 820xfs_buf_item_log_segment(
 821	uint			first,
 822	uint			last,
 823	uint			*map)
 824{
 825	uint		first_bit;
 826	uint		last_bit;
 827	uint		bits_to_set;
 828	uint		bits_set;
 829	uint		word_num;
 830	uint		*wordp;
 831	uint		bit;
 832	uint		end_bit;
 833	uint		mask;
 834
 
 
 
 835	/*
 836	 * Convert byte offsets to bit numbers.
 837	 */
 838	first_bit = first >> XFS_BLF_SHIFT;
 839	last_bit = last >> XFS_BLF_SHIFT;
 840
 841	/*
 842	 * Calculate the total number of bits to be set.
 843	 */
 844	bits_to_set = last_bit - first_bit + 1;
 845
 846	/*
 847	 * Get a pointer to the first word in the bitmap
 848	 * to set a bit in.
 849	 */
 850	word_num = first_bit >> BIT_TO_WORD_SHIFT;
 851	wordp = &map[word_num];
 852
 853	/*
 854	 * Calculate the starting bit in the first word.
 855	 */
 856	bit = first_bit & (uint)(NBWORD - 1);
 857
 858	/*
 859	 * First set any bits in the first word of our range.
 860	 * If it starts at bit 0 of the word, it will be
 861	 * set below rather than here.  That is what the variable
 862	 * bit tells us. The variable bits_set tracks the number
 863	 * of bits that have been set so far.  End_bit is the number
 864	 * of the last bit to be set in this word plus one.
 865	 */
 866	if (bit) {
 867		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
 868		mask = ((1 << (end_bit - bit)) - 1) << bit;
 869		*wordp |= mask;
 870		wordp++;
 871		bits_set = end_bit - bit;
 872	} else {
 873		bits_set = 0;
 874	}
 875
 876	/*
 877	 * Now set bits a whole word at a time that are between
 878	 * first_bit and last_bit.
 879	 */
 880	while ((bits_to_set - bits_set) >= NBWORD) {
 881		*wordp |= 0xffffffff;
 882		bits_set += NBWORD;
 883		wordp++;
 884	}
 885
 886	/*
 887	 * Finally, set any bits left to be set in one last partial word.
 888	 */
 889	end_bit = bits_to_set - bits_set;
 890	if (end_bit) {
 891		mask = (1 << end_bit) - 1;
 892		*wordp |= mask;
 893	}
 894}
 895
 896/*
 897 * Mark bytes first through last inclusive as dirty in the buf
 898 * item's bitmap.
 899 */
 900void
 901xfs_buf_item_log(
 902	xfs_buf_log_item_t	*bip,
 903	uint			first,
 904	uint			last)
 905{
 906	int			i;
 907	uint			start;
 908	uint			end;
 909	struct xfs_buf		*bp = bip->bli_buf;
 910
 911	/*
 912	 * walk each buffer segment and mark them dirty appropriately.
 913	 */
 914	start = 0;
 915	for (i = 0; i < bip->bli_format_count; i++) {
 916		if (start > last)
 917			break;
 918		end = start + BBTOB(bp->b_maps[i].bm_len);
 
 
 919		if (first > end) {
 920			start += BBTOB(bp->b_maps[i].bm_len);
 921			continue;
 922		}
 
 
 
 
 
 
 
 923		if (first < start)
 924			first = start;
 925		if (end > last)
 926			end = last;
 927
 928		xfs_buf_item_log_segment(first, end,
 929					 &bip->bli_formats[i].blf_data_map[0]);
 930
 931		start += bp->b_maps[i].bm_len;
 932	}
 933}
 934
 935
 936/*
 937 * Return 1 if the buffer has been logged or ordered in a transaction (at any
 938 * point, not just the current transaction) and 0 if not.
 939 */
 940uint
 941xfs_buf_item_dirty(
 942	xfs_buf_log_item_t	*bip)
 943{
 944	return (bip->bli_flags & XFS_BLI_DIRTY);
 
 
 
 
 
 
 
 
 945}
 946
 947STATIC void
 948xfs_buf_item_free(
 949	xfs_buf_log_item_t	*bip)
 950{
 951	xfs_buf_item_free_format(bip);
 952	kmem_zone_free(xfs_buf_item_zone, bip);
 
 953}
 954
 955/*
 956 * This is called when the buf log item is no longer needed.  It should
 957 * free the buf log item associated with the given buffer and clear
 958 * the buffer's pointer to the buf log item.  If there are no more
 959 * items in the list, clear the b_iodone field of the buffer (see
 960 * xfs_buf_attach_iodone() below).
 961 */
 962void
 963xfs_buf_item_relse(
 964	xfs_buf_t	*bp)
 965{
 966	xfs_buf_log_item_t	*bip = bp->b_fspriv;
 967
 968	trace_xfs_buf_item_relse(bp, _RET_IP_);
 969	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
 970
 971	bp->b_fspriv = bip->bli_item.li_bio_list;
 972	if (bp->b_fspriv == NULL)
 973		bp->b_iodone = NULL;
 974
 
 
 
 975	xfs_buf_rele(bp);
 976	xfs_buf_item_free(bip);
 977}
 978
 979
 980/*
 981 * Add the given log item with its callback to the list of callbacks
 982 * to be called when the buffer's I/O completes.  If it is not set
 983 * already, set the buffer's b_iodone() routine to be
 984 * xfs_buf_iodone_callbacks() and link the log item into the list of
 985 * items rooted at b_fsprivate.  Items are always added as the second
 986 * entry in the list if there is a first, because the buf item code
 987 * assumes that the buf log item is first.
 988 */
 989void
 990xfs_buf_attach_iodone(
 991	xfs_buf_t	*bp,
 992	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
 993	xfs_log_item_t	*lip)
 994{
 995	xfs_log_item_t	*head_lip;
 996
 997	ASSERT(xfs_buf_islocked(bp));
 998
 999	lip->li_cb = cb;
1000	head_lip = bp->b_fspriv;
1001	if (head_lip) {
1002		lip->li_bio_list = head_lip->li_bio_list;
1003		head_lip->li_bio_list = lip;
1004	} else {
1005		bp->b_fspriv = lip;
1006	}
1007
1008	ASSERT(bp->b_iodone == NULL ||
1009	       bp->b_iodone == xfs_buf_iodone_callbacks);
1010	bp->b_iodone = xfs_buf_iodone_callbacks;
1011}
1012
1013/*
1014 * We can have many callbacks on a buffer. Running the callbacks individually
1015 * can cause a lot of contention on the AIL lock, so we allow for a single
1016 * callback to be able to scan the remaining lip->li_bio_list for other items
1017 * of the same type and callback to be processed in the first call.
1018 *
1019 * As a result, the loop walking the callback list below will also modify the
1020 * list. it removes the first item from the list and then runs the callback.
1021 * The loop then restarts from the new head of the list. This allows the
1022 * callback to scan and modify the list attached to the buffer and we don't
1023 * have to care about maintaining a next item pointer.
1024 */
1025STATIC void
1026xfs_buf_do_callbacks(
1027	struct xfs_buf		*bp)
1028{
1029	struct xfs_log_item	*lip;
1030
1031	while ((lip = bp->b_fspriv) != NULL) {
1032		bp->b_fspriv = lip->li_bio_list;
1033		ASSERT(lip->li_cb != NULL);
1034		/*
1035		 * Clear the next pointer so we don't have any
1036		 * confusion if the item is added to another buf.
1037		 * Don't touch the log item after calling its
1038		 * callback, because it could have freed itself.
1039		 */
1040		lip->li_bio_list = NULL;
1041		lip->li_cb(bp, lip);
1042	}
1043}
1044
1045/*
1046 * This is the iodone() function for buffers which have had callbacks
1047 * attached to them by xfs_buf_attach_iodone().  It should remove each
1048 * log item from the buffer's list and call the callback of each in turn.
1049 * When done, the buffer's fsprivate field is set to NULL and the buffer
1050 * is unlocked with a call to iodone().
1051 */
1052void
1053xfs_buf_iodone_callbacks(
1054	struct xfs_buf		*bp)
1055{
1056	struct xfs_log_item	*lip = bp->b_fspriv;
1057	struct xfs_mount	*mp = lip->li_mountp;
1058	static ulong		lasttime;
1059	static xfs_buftarg_t	*lasttarg;
1060
1061	if (likely(!bp->b_error))
1062		goto do_callbacks;
1063
1064	/*
1065	 * If we've already decided to shutdown the filesystem because of
1066	 * I/O errors, there's no point in giving this a retry.
1067	 */
1068	if (XFS_FORCED_SHUTDOWN(mp)) {
1069		xfs_buf_stale(bp);
1070		bp->b_flags |= XBF_DONE;
1071		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1072		goto do_callbacks;
1073	}
1074
1075	if (bp->b_target != lasttarg ||
1076	    time_after(jiffies, (lasttime + 5*HZ))) {
1077		lasttime = jiffies;
1078		xfs_buf_ioerror_alert(bp, __func__);
1079	}
1080	lasttarg = bp->b_target;
1081
1082	/*
1083	 * If the write was asynchronous then no one will be looking for the
1084	 * error.  Clear the error state and write the buffer out again.
1085	 *
1086	 * XXX: This helps against transient write errors, but we need to find
1087	 * a way to shut the filesystem down if the writes keep failing.
1088	 *
1089	 * In practice we'll shut the filesystem down soon as non-transient
1090	 * errors tend to affect the whole device and a failing log write
1091	 * will make us give up.  But we really ought to do better here.
1092	 */
1093	if (bp->b_flags & XBF_ASYNC) {
1094		ASSERT(bp->b_iodone != NULL);
1095
1096		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1097
1098		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1099
1100		if (!(bp->b_flags & (XBF_STALE|XBF_WRITE_FAIL))) {
1101			bp->b_flags |= XBF_WRITE | XBF_ASYNC |
1102				       XBF_DONE | XBF_WRITE_FAIL;
1103			xfs_buf_submit(bp);
1104		} else {
1105			xfs_buf_relse(bp);
1106		}
1107
1108		return;
1109	}
1110
1111	/*
1112	 * If the write of the buffer was synchronous, we want to make
1113	 * sure to return the error to the caller of xfs_bwrite().
1114	 */
1115	xfs_buf_stale(bp);
1116	bp->b_flags |= XBF_DONE;
1117
1118	trace_xfs_buf_error_relse(bp, _RET_IP_);
1119
1120do_callbacks:
1121	xfs_buf_do_callbacks(bp);
1122	bp->b_fspriv = NULL;
1123	bp->b_iodone = NULL;
1124	xfs_buf_ioend(bp);
1125}
1126
1127/*
1128 * This is the iodone() function for buffers which have been
1129 * logged.  It is called when they are eventually flushed out.
1130 * It should remove the buf item from the AIL, and free the buf item.
1131 * It is called by xfs_buf_iodone_callbacks() above which will take
1132 * care of cleaning up the buffer itself.
1133 */
1134void
1135xfs_buf_iodone(
1136	struct xfs_buf		*bp,
1137	struct xfs_log_item	*lip)
1138{
1139	struct xfs_ail		*ailp = lip->li_ailp;
1140
1141	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1142
1143	xfs_buf_rele(bp);
1144
1145	/*
1146	 * If we are forcibly shutting down, this may well be
1147	 * off the AIL already. That's because we simulate the
1148	 * log-committed callbacks to unpin these buffers. Or we may never
1149	 * have put this item on AIL because of the transaction was
1150	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1151	 *
1152	 * Either way, AIL is useless if we're forcing a shutdown.
 
 
 
1153	 */
1154	spin_lock(&ailp->xa_lock);
1155	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1156	xfs_buf_item_free(BUF_ITEM(lip));
 
1157}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
 
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
 
  15#include "xfs_trans_priv.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_inode.h"
  18#include "xfs_inode_item.h"
  19#include "xfs_quota.h"
  20#include "xfs_dquot_item.h"
  21#include "xfs_dquot.h"
  22#include "xfs_trace.h"
  23#include "xfs_log.h"
  24#include "xfs_log_priv.h"
  25
  26
  27struct kmem_cache	*xfs_buf_item_cache;
  28
  29static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  30{
  31	return container_of(lip, struct xfs_buf_log_item, bli_item);
  32}
  33
  34/* Is this log iovec plausibly large enough to contain the buffer log format? */
  35bool
  36xfs_buf_log_check_iovec(
  37	struct xfs_log_iovec		*iovec)
  38{
  39	struct xfs_buf_log_format	*blfp = iovec->i_addr;
  40	char				*bmp_end;
  41	char				*item_end;
  42
  43	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
  44		return false;
  45
  46	item_end = (char *)iovec->i_addr + iovec->i_len;
  47	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
  48	return bmp_end <= item_end;
  49}
  50
  51static inline int
  52xfs_buf_log_format_size(
  53	struct xfs_buf_log_format *blfp)
  54{
  55	return offsetof(struct xfs_buf_log_format, blf_data_map) +
  56			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  57}
  58
  59static inline bool
  60xfs_buf_item_straddle(
  61	struct xfs_buf		*bp,
  62	uint			offset,
  63	int			first_bit,
  64	int			nbits)
  65{
  66	void			*first, *last;
  67
  68	first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
  69	last = xfs_buf_offset(bp,
  70			offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
  71
  72	if (last - first != nbits * XFS_BLF_CHUNK)
  73		return true;
  74	return false;
  75}
  76
  77/*
  78 * Return the number of log iovecs and space needed to log the given buf log
  79 * item segment.
  80 *
  81 * It calculates this as 1 iovec for the buf log format structure and 1 for each
  82 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
  83 * in a single iovec.
 
 
  84 */
  85STATIC void
  86xfs_buf_item_size_segment(
  87	struct xfs_buf_log_item		*bip,
  88	struct xfs_buf_log_format	*blfp,
  89	uint				offset,
  90	int				*nvecs,
  91	int				*nbytes)
  92{
  93	struct xfs_buf			*bp = bip->bli_buf;
  94	int				first_bit;
  95	int				nbits;
  96	int				next_bit;
  97	int				last_bit;
  98
  99	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 100	if (first_bit == -1)
 101		return;
 102
 103	(*nvecs)++;
 104	*nbytes += xfs_buf_log_format_size(blfp);
 105
 106	do {
 107		nbits = xfs_contig_bits(blfp->blf_data_map,
 108					blfp->blf_map_size, first_bit);
 109		ASSERT(nbits > 0);
 110
 111		/*
 112		 * Straddling a page is rare because we don't log contiguous
 113		 * chunks of unmapped buffers anywhere.
 114		 */
 115		if (nbits > 1 &&
 116		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
 117			goto slow_scan;
 118
 119		(*nvecs)++;
 120		*nbytes += nbits * XFS_BLF_CHUNK;
 121
 122		/*
 123		 * This takes the bit number to start looking from and
 124		 * returns the next set bit from there.  It returns -1
 125		 * if there are no more bits set or the start bit is
 126		 * beyond the end of the bitmap.
 127		 */
 128		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 129					(uint)first_bit + nbits + 1);
 130	} while (first_bit != -1);
 131
 132	return;
 133
 134slow_scan:
 135	/* Count the first bit we jumped out of the above loop from */
 136	(*nvecs)++;
 137	*nbytes += XFS_BLF_CHUNK;
 138	last_bit = first_bit;
 139	while (last_bit != -1) {
 140		/*
 141		 * This takes the bit number to start looking from and
 142		 * returns the next set bit from there.  It returns -1
 143		 * if there are no more bits set or the start bit is
 144		 * beyond the end of the bitmap.
 145		 */
 146		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 147					last_bit + 1);
 148		/*
 149		 * If we run out of bits, leave the loop,
 150		 * else if we find a new set of bits bump the number of vecs,
 151		 * else keep scanning the current set of bits.
 152		 */
 153		if (next_bit == -1) {
 154			break;
 155		} else if (next_bit != last_bit + 1 ||
 156		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
 
 
 
 
 157			last_bit = next_bit;
 158			first_bit = next_bit;
 159			(*nvecs)++;
 160			nbits = 1;
 161		} else {
 162			last_bit++;
 163			nbits++;
 164		}
 165		*nbytes += XFS_BLF_CHUNK;
 166	}
 167}
 168
 169/*
 170 * Return the number of log iovecs and space needed to log the given buf log
 171 * item.
 
 
 
 172 *
 173 * Discontiguous buffers need a format structure per region that is being
 174 * logged. This makes the changes in the buffer appear to log recovery as though
 175 * they came from separate buffers, just like would occur if multiple buffers
 176 * were used instead of a single discontiguous buffer. This enables
 177 * discontiguous buffers to be in-memory constructs, completely transparent to
 178 * what ends up on disk.
 179 *
 180 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 181 * format structures. If the item has previously been logged and has dirty
 182 * regions, we do not relog them in stale buffers. This has the effect of
 183 * reducing the size of the relogged item by the amount of dirty data tracked
 184 * by the log item. This can result in the committing transaction reducing the
 185 * amount of space being consumed by the CIL.
 186 */
 187STATIC void
 188xfs_buf_item_size(
 189	struct xfs_log_item	*lip,
 190	int			*nvecs,
 191	int			*nbytes)
 192{
 193	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 194	struct xfs_buf		*bp = bip->bli_buf;
 195	int			i;
 196	int			bytes;
 197	uint			offset = 0;
 198
 199	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 200	if (bip->bli_flags & XFS_BLI_STALE) {
 201		/*
 202		 * The buffer is stale, so all we need to log is the buf log
 203		 * format structure with the cancel flag in it as we are never
 204		 * going to replay the changes tracked in the log item.
 205		 */
 206		trace_xfs_buf_item_size_stale(bip);
 207		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 208		*nvecs += bip->bli_format_count;
 209		for (i = 0; i < bip->bli_format_count; i++) {
 210			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
 211		}
 212		return;
 213	}
 214
 215	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 216
 217	if (bip->bli_flags & XFS_BLI_ORDERED) {
 218		/*
 219		 * The buffer has been logged just to order it. It is not being
 220		 * included in the transaction commit, so no vectors are used at
 221		 * all.
 222		 */
 223		trace_xfs_buf_item_size_ordered(bip);
 224		*nvecs = XFS_LOG_VEC_ORDERED;
 225		return;
 226	}
 227
 228	/*
 229	 * The vector count is based on the number of buffer vectors we have
 230	 * dirty bits in. This will only be greater than one when we have a
 231	 * compound buffer with more than one segment dirty. Hence for compound
 232	 * buffers we need to track which segment the dirty bits correspond to,
 233	 * and when we move from one segment to the next increment the vector
 234	 * count for the extra buf log format structure that will need to be
 235	 * written.
 236	 */
 237	bytes = 0;
 238	for (i = 0; i < bip->bli_format_count; i++) {
 239		xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
 240					  nvecs, &bytes);
 241		offset += BBTOB(bp->b_maps[i].bm_len);
 242	}
 243
 244	/*
 245	 * Round up the buffer size required to minimise the number of memory
 246	 * allocations that need to be done as this item grows when relogged by
 247	 * repeated modifications.
 248	 */
 249	*nbytes = round_up(bytes, 512);
 250	trace_xfs_buf_item_size(bip);
 251}
 252
 253static inline void
 254xfs_buf_item_copy_iovec(
 255	struct xfs_log_vec	*lv,
 256	struct xfs_log_iovec	**vecp,
 257	struct xfs_buf		*bp,
 258	uint			offset,
 259	int			first_bit,
 260	uint			nbits)
 261{
 262	offset += first_bit * XFS_BLF_CHUNK;
 263	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
 264			xfs_buf_offset(bp, offset),
 265			nbits * XFS_BLF_CHUNK);
 266}
 267
 
 
 
 
 
 
 
 
 
 
 
 
 268static void
 269xfs_buf_item_format_segment(
 270	struct xfs_buf_log_item	*bip,
 271	struct xfs_log_vec	*lv,
 272	struct xfs_log_iovec	**vecp,
 273	uint			offset,
 274	struct xfs_buf_log_format *blfp)
 275{
 276	struct xfs_buf		*bp = bip->bli_buf;
 277	uint			base_size;
 278	int			first_bit;
 279	int			last_bit;
 280	int			next_bit;
 281	uint			nbits;
 282
 283	/* copy the flags across from the base format item */
 284	blfp->blf_flags = bip->__bli_format.blf_flags;
 285
 286	/*
 287	 * Base size is the actual size of the ondisk structure - it reflects
 288	 * the actual size of the dirty bitmap rather than the size of the in
 289	 * memory structure.
 290	 */
 291	base_size = xfs_buf_log_format_size(blfp);
 292
 293	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 294	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 295		/*
 296		 * If the map is not be dirty in the transaction, mark
 297		 * the size as zero and do not advance the vector pointer.
 298		 */
 299		return;
 300	}
 301
 302	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
 303	blfp->blf_size = 1;
 304
 305	if (bip->bli_flags & XFS_BLI_STALE) {
 306		/*
 307		 * The buffer is stale, so all we need to log
 308		 * is the buf log format structure with the
 309		 * cancel flag in it.
 310		 */
 311		trace_xfs_buf_item_format_stale(bip);
 312		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 313		return;
 314	}
 315
 316
 317	/*
 318	 * Fill in an iovec for each set of contiguous chunks.
 319	 */
 320	do {
 321		ASSERT(first_bit >= 0);
 322		nbits = xfs_contig_bits(blfp->blf_data_map,
 323					blfp->blf_map_size, first_bit);
 324		ASSERT(nbits > 0);
 325
 326		/*
 327		 * Straddling a page is rare because we don't log contiguous
 328		 * chunks of unmapped buffers anywhere.
 329		 */
 330		if (nbits > 1 &&
 331		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
 332			goto slow_scan;
 333
 334		xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 335					first_bit, nbits);
 336		blfp->blf_size++;
 337
 338		/*
 339		 * This takes the bit number to start looking from and
 340		 * returns the next set bit from there.  It returns -1
 341		 * if there are no more bits set or the start bit is
 342		 * beyond the end of the bitmap.
 343		 */
 344		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 345					(uint)first_bit + nbits + 1);
 346	} while (first_bit != -1);
 347
 348	return;
 349
 350slow_scan:
 351	ASSERT(bp->b_addr == NULL);
 352	last_bit = first_bit;
 353	nbits = 1;
 354	for (;;) {
 355		/*
 356		 * This takes the bit number to start looking from and
 357		 * returns the next set bit from there.  It returns -1
 358		 * if there are no more bits set or the start bit is
 359		 * beyond the end of the bitmap.
 360		 */
 361		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 362					(uint)last_bit + 1);
 363		/*
 364		 * If we run out of bits fill in the last iovec and get out of
 365		 * the loop.  Else if we start a new set of bits then fill in
 366		 * the iovec for the series we were looking at and start
 367		 * counting the bits in the new one.  Else we're still in the
 368		 * same set of bits so just keep counting and scanning.
 369		 */
 370		if (next_bit == -1) {
 371			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 372						first_bit, nbits);
 373			blfp->blf_size++;
 374			break;
 375		} else if (next_bit != last_bit + 1 ||
 376		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
 377			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 378						first_bit, nbits);
 379			blfp->blf_size++;
 380			first_bit = next_bit;
 381			last_bit = next_bit;
 382			nbits = 1;
 383		} else {
 384			last_bit++;
 385			nbits++;
 386		}
 387	}
 388}
 389
 390/*
 391 * This is called to fill in the vector of log iovecs for the
 392 * given log buf item.  It fills the first entry with a buf log
 393 * format structure, and the rest point to contiguous chunks
 394 * within the buffer.
 395 */
 396STATIC void
 397xfs_buf_item_format(
 398	struct xfs_log_item	*lip,
 399	struct xfs_log_vec	*lv)
 400{
 401	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 402	struct xfs_buf		*bp = bip->bli_buf;
 403	struct xfs_log_iovec	*vecp = NULL;
 404	uint			offset = 0;
 405	int			i;
 406
 407	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 408	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 409	       (bip->bli_flags & XFS_BLI_STALE));
 410	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
 411	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
 412	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
 413	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
 414	       (bip->bli_flags & XFS_BLI_STALE));
 415
 416
 417	/*
 418	 * If it is an inode buffer, transfer the in-memory state to the
 419	 * format flags and clear the in-memory state.
 420	 *
 421	 * For buffer based inode allocation, we do not transfer
 422	 * this state if the inode buffer allocation has not yet been committed
 423	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 424	 * correct replay of the inode allocation.
 425	 *
 426	 * For icreate item based inode allocation, the buffers aren't written
 427	 * to the journal during allocation, and hence we should always tag the
 428	 * buffer as an inode buffer so that the correct unlinked list replay
 429	 * occurs during recovery.
 430	 */
 431	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 432		if (xfs_has_v3inodes(lip->li_log->l_mp) ||
 433		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 434		      xfs_log_item_in_current_chkpt(lip)))
 435			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 436		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 437	}
 438
 
 
 
 
 
 
 
 
 
 
 439	for (i = 0; i < bip->bli_format_count; i++) {
 440		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
 441					    &bip->bli_formats[i]);
 442		offset += BBTOB(bp->b_maps[i].bm_len);
 443	}
 444
 445	/*
 446	 * Check to make sure everything is consistent.
 447	 */
 448	trace_xfs_buf_item_format(bip);
 449}
 450
 451/*
 452 * This is called to pin the buffer associated with the buf log item in memory
 453 * so it cannot be written out.
 454 *
 455 * We take a reference to the buffer log item here so that the BLI life cycle
 456 * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and
 457 * inserted into the AIL.
 458 *
 459 * We also need to take a reference to the buffer itself as the BLI unpin
 460 * processing requires accessing the buffer after the BLI has dropped the final
 461 * BLI reference. See xfs_buf_item_unpin() for an explanation.
 462 * If unpins race to drop the final BLI reference and only the
 463 * BLI owns a reference to the buffer, then the loser of the race can have the
 464 * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per
 465 * pin count ensures the life cycle of the buffer extends for as
 466 * long as we hold the buffer pin reference in xfs_buf_item_unpin().
 467 */
 468STATIC void
 469xfs_buf_item_pin(
 470	struct xfs_log_item	*lip)
 471{
 472	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 473
 474	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 475	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 476	       (bip->bli_flags & XFS_BLI_ORDERED) ||
 477	       (bip->bli_flags & XFS_BLI_STALE));
 478
 479	trace_xfs_buf_item_pin(bip);
 480
 481	xfs_buf_hold(bip->bli_buf);
 482	atomic_inc(&bip->bli_refcount);
 483	atomic_inc(&bip->bli_buf->b_pin_count);
 484}
 485
 486/*
 487 * This is called to unpin the buffer associated with the buf log item which was
 488 * previously pinned with a call to xfs_buf_item_pin().  We enter this function
 489 * with a buffer pin count, a buffer reference and a BLI reference.
 490 *
 491 * We must drop the BLI reference before we unpin the buffer because the AIL
 492 * doesn't acquire a BLI reference whenever it accesses it. Therefore if the
 493 * refcount drops to zero, the bli could still be AIL resident and the buffer
 494 * submitted for I/O at any point before we return. This can result in IO
 495 * completion freeing the buffer while we are still trying to access it here.
 496 * This race condition can also occur in shutdown situations where we abort and
 497 * unpin buffers from contexts other that journal IO completion.
 498 *
 499 * Hence we have to hold a buffer reference per pin count to ensure that the
 500 * buffer cannot be freed until we have finished processing the unpin operation.
 501 * The reference is taken in xfs_buf_item_pin(), and we must hold it until we
 502 * are done processing the buffer state. In the case of an abort (remove =
 503 * true) then we re-use the current pin reference as the IO reference we hand
 504 * off to IO failure handling.
 505 */
 506STATIC void
 507xfs_buf_item_unpin(
 508	struct xfs_log_item	*lip,
 509	int			remove)
 510{
 511	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 512	struct xfs_buf		*bp = bip->bli_buf;
 513	int			stale = bip->bli_flags & XFS_BLI_STALE;
 514	int			freed;
 
 515
 516	ASSERT(bp->b_log_item == bip);
 517	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 518
 519	trace_xfs_buf_item_unpin(bip);
 520
 521	freed = atomic_dec_and_test(&bip->bli_refcount);
 
 522	if (atomic_dec_and_test(&bp->b_pin_count))
 523		wake_up_all(&bp->b_waiters);
 524
 525	/*
 526	 * Nothing to do but drop the buffer pin reference if the BLI is
 527	 * still active.
 528	 */
 529	if (!freed) {
 530		xfs_buf_rele(bp);
 531		return;
 532	}
 533
 534	if (stale) {
 535		ASSERT(bip->bli_flags & XFS_BLI_STALE);
 536		ASSERT(xfs_buf_islocked(bp));
 537		ASSERT(bp->b_flags & XBF_STALE);
 538		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 539		ASSERT(list_empty(&lip->li_trans));
 540		ASSERT(!bp->b_transp);
 541
 542		trace_xfs_buf_item_unpin_stale(bip);
 543
 544		/*
 545		 * The buffer has been locked and referenced since it was marked
 546		 * stale so we own both lock and reference exclusively here. We
 547		 * do not need the pin reference any more, so drop it now so
 548		 * that we only have one reference to drop once item completion
 549		 * processing is complete.
 550		 */
 551		xfs_buf_rele(bp);
 
 
 
 
 
 
 
 
 
 
 552
 553		/*
 554		 * If we get called here because of an IO error, we may or may
 555		 * not have the item on the AIL. xfs_trans_ail_delete() will
 556		 * take care of that situation. xfs_trans_ail_delete() drops
 557		 * the AIL lock.
 558		 */
 559		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 560			xfs_buf_item_done(bp);
 561			xfs_buf_inode_iodone(bp);
 562			ASSERT(list_empty(&bp->b_li_list));
 563		} else {
 564			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
 
 565			xfs_buf_item_relse(bp);
 566			ASSERT(bp->b_log_item == NULL);
 567		}
 568		xfs_buf_relse(bp);
 569		return;
 570	}
 571
 572	if (remove) {
 573		/*
 574		 * We need to simulate an async IO failures here to ensure that
 575		 * the correct error completion is run on this buffer. This
 576		 * requires a reference to the buffer and for the buffer to be
 577		 * locked. We can safely pass ownership of the pin reference to
 578		 * the IO to ensure that nothing can free the buffer while we
 579		 * wait for the lock and then run the IO failure completion.
 
 
 
 
 
 
 
 
 580		 */
 581		xfs_buf_lock(bp);
 
 582		bp->b_flags |= XBF_ASYNC;
 583		xfs_buf_ioend_fail(bp);
 584		return;
 
 
 585	}
 
 
 
 
 
 
 
 586
 587	/*
 588	 * BLI has no more active references - it will be moved to the AIL to
 589	 * manage the remaining BLI/buffer life cycle. There is nothing left for
 590	 * us to do here so drop the pin reference to the buffer.
 591	 */
 592	xfs_buf_rele(bp);
 593}
 594
 595STATIC uint
 596xfs_buf_item_push(
 597	struct xfs_log_item	*lip,
 598	struct list_head	*buffer_list)
 599{
 600	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 601	struct xfs_buf		*bp = bip->bli_buf;
 602	uint			rval = XFS_ITEM_SUCCESS;
 603
 604	if (xfs_buf_ispinned(bp))
 605		return XFS_ITEM_PINNED;
 606	if (!xfs_buf_trylock(bp)) {
 607		/*
 608		 * If we have just raced with a buffer being pinned and it has
 609		 * been marked stale, we could end up stalling until someone else
 610		 * issues a log force to unpin the stale buffer. Check for the
 611		 * race condition here so xfsaild recognizes the buffer is pinned
 612		 * and queues a log force to move it along.
 613		 */
 614		if (xfs_buf_ispinned(bp))
 615			return XFS_ITEM_PINNED;
 616		return XFS_ITEM_LOCKED;
 617	}
 618
 619	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 620
 621	trace_xfs_buf_item_push(bip);
 622
 623	/* has a previous flush failed due to IO errors? */
 624	if (bp->b_flags & XBF_WRITE_FAIL) {
 625		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
 626	    "Failing async write on buffer block 0x%llx. Retrying async write.",
 627					  (long long)xfs_buf_daddr(bp));
 
 628	}
 629
 630	if (!xfs_buf_delwri_queue(bp, buffer_list))
 631		rval = XFS_ITEM_FLUSHING;
 632	xfs_buf_unlock(bp);
 633	return rval;
 634}
 635
 636/*
 637 * Drop the buffer log item refcount and take appropriate action. This helper
 638 * determines whether the bli must be freed or not, since a decrement to zero
 639 * does not necessarily mean the bli is unused.
 640 *
 641 * Return true if the bli is freed, false otherwise.
 642 */
 643bool
 644xfs_buf_item_put(
 645	struct xfs_buf_log_item	*bip)
 646{
 647	struct xfs_log_item	*lip = &bip->bli_item;
 648	bool			aborted;
 649	bool			dirty;
 650
 651	/* drop the bli ref and return if it wasn't the last one */
 652	if (!atomic_dec_and_test(&bip->bli_refcount))
 653		return false;
 654
 655	/*
 656	 * We dropped the last ref and must free the item if clean or aborted.
 657	 * If the bli is dirty and non-aborted, the buffer was clean in the
 658	 * transaction but still awaiting writeback from previous changes. In
 659	 * that case, the bli is freed on buffer writeback completion.
 660	 */
 661	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
 662			xlog_is_shutdown(lip->li_log);
 663	dirty = bip->bli_flags & XFS_BLI_DIRTY;
 664	if (dirty && !aborted)
 665		return false;
 666
 667	/*
 668	 * The bli is aborted or clean. An aborted item may be in the AIL
 669	 * regardless of dirty state.  For example, consider an aborted
 670	 * transaction that invalidated a dirty bli and cleared the dirty
 671	 * state.
 672	 */
 673	if (aborted)
 674		xfs_trans_ail_delete(lip, 0);
 675	xfs_buf_item_relse(bip->bli_buf);
 676	return true;
 677}
 678
 679/*
 680 * Release the buffer associated with the buf log item.  If there is no dirty
 681 * logged data associated with the buffer recorded in the buf log item, then
 682 * free the buf log item and remove the reference to it in the buffer.
 683 *
 684 * This call ignores the recursion count.  It is only called when the buffer
 685 * should REALLY be unlocked, regardless of the recursion count.
 686 *
 687 * We unconditionally drop the transaction's reference to the log item. If the
 688 * item was logged, then another reference was taken when it was pinned, so we
 689 * can safely drop the transaction reference now.  This also allows us to avoid
 690 * potential races with the unpin code freeing the bli by not referencing the
 691 * bli after we've dropped the reference count.
 692 *
 693 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 694 * if necessary but do not unlock the buffer.  This is for support of
 695 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 696 * free the item.
 697 */
 698STATIC void
 699xfs_buf_item_release(
 700	struct xfs_log_item	*lip)
 701{
 702	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 703	struct xfs_buf		*bp = bip->bli_buf;
 704	bool			released;
 705	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
 706	bool			stale = bip->bli_flags & XFS_BLI_STALE;
 707#if defined(DEBUG) || defined(XFS_WARN)
 708	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
 709	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
 710	bool			aborted = test_bit(XFS_LI_ABORTED,
 711						   &lip->li_flags);
 712#endif
 713
 714	trace_xfs_buf_item_release(bip);
 
 715
 716	/*
 717	 * The bli dirty state should match whether the blf has logged segments
 718	 * except for ordered buffers, where only the bli should be dirty.
 
 
 
 
 
 
 
 
 719	 */
 720	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
 721	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
 722	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724	/*
 725	 * Clear the buffer's association with this transaction and
 726	 * per-transaction state from the bli, which has been copied above.
 
 
 
 
 
 
 727	 */
 728	bp->b_transp = NULL;
 729	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
 
 
 
 
 
 
 
 
 
 730
 731	/*
 732	 * Unref the item and unlock the buffer unless held or stale. Stale
 733	 * buffers remain locked until final unpin unless the bli is freed by
 734	 * the unref call. The latter implies shutdown because buffer
 735	 * invalidation dirties the bli and transaction.
 
 
 736	 */
 737	released = xfs_buf_item_put(bip);
 738	if (hold || (stale && !released))
 739		return;
 740	ASSERT(!stale || aborted);
 741	xfs_buf_relse(bp);
 742}
 
 
 
 743
 744STATIC void
 745xfs_buf_item_committing(
 746	struct xfs_log_item	*lip,
 747	xfs_csn_t		seq)
 748{
 749	return xfs_buf_item_release(lip);
 750}
 751
 752/*
 753 * This is called to find out where the oldest active copy of the
 754 * buf log item in the on disk log resides now that the last log
 755 * write of it completed at the given lsn.
 756 * We always re-log all the dirty data in a buffer, so usually the
 757 * latest copy in the on disk log is the only one that matters.  For
 758 * those cases we simply return the given lsn.
 759 *
 760 * The one exception to this is for buffers full of newly allocated
 761 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 762 * flag set, indicating that only the di_next_unlinked fields from the
 763 * inodes in the buffers will be replayed during recovery.  If the
 764 * original newly allocated inode images have not yet been flushed
 765 * when the buffer is so relogged, then we need to make sure that we
 766 * keep the old images in the 'active' portion of the log.  We do this
 767 * by returning the original lsn of that transaction here rather than
 768 * the current one.
 769 */
 770STATIC xfs_lsn_t
 771xfs_buf_item_committed(
 772	struct xfs_log_item	*lip,
 773	xfs_lsn_t		lsn)
 774{
 775	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 776
 777	trace_xfs_buf_item_committed(bip);
 778
 779	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 780		return lip->li_lsn;
 781	return lsn;
 782}
 783
 
 
 
 
 
 
 
 
 
 
 784static const struct xfs_item_ops xfs_buf_item_ops = {
 785	.iop_size	= xfs_buf_item_size,
 786	.iop_format	= xfs_buf_item_format,
 787	.iop_pin	= xfs_buf_item_pin,
 788	.iop_unpin	= xfs_buf_item_unpin,
 789	.iop_release	= xfs_buf_item_release,
 790	.iop_committing	= xfs_buf_item_committing,
 791	.iop_committed	= xfs_buf_item_committed,
 792	.iop_push	= xfs_buf_item_push,
 
 793};
 794
 795STATIC void
 796xfs_buf_item_get_format(
 797	struct xfs_buf_log_item	*bip,
 798	int			count)
 799{
 800	ASSERT(bip->bli_formats == NULL);
 801	bip->bli_format_count = count;
 802
 803	if (count == 1) {
 804		bip->bli_formats = &bip->__bli_format;
 805		return;
 806	}
 807
 808	bip->bli_formats = kzalloc(count * sizeof(struct xfs_buf_log_format),
 809				GFP_KERNEL | __GFP_NOFAIL);
 
 
 
 810}
 811
 812STATIC void
 813xfs_buf_item_free_format(
 814	struct xfs_buf_log_item	*bip)
 815{
 816	if (bip->bli_formats != &bip->__bli_format) {
 817		kfree(bip->bli_formats);
 818		bip->bli_formats = NULL;
 819	}
 820}
 821
 822/*
 823 * Allocate a new buf log item to go with the given buffer.
 824 * Set the buffer's b_log_item field to point to the new
 825 * buf log item.
 
 
 826 */
 827int
 828xfs_buf_item_init(
 829	struct xfs_buf	*bp,
 830	struct xfs_mount *mp)
 831{
 832	struct xfs_buf_log_item	*bip = bp->b_log_item;
 
 833	int			chunks;
 834	int			map_size;
 
 835	int			i;
 836
 837	/*
 838	 * Check to see if there is already a buf log item for
 839	 * this buffer. If we do already have one, there is
 
 840	 * nothing to do here so return.
 841	 */
 842	ASSERT(bp->b_mount == mp);
 843	if (bip) {
 844		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 845		ASSERT(!bp->b_transp);
 846		ASSERT(bip->bli_buf == bp);
 847		return 0;
 848	}
 849
 850	bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
 851	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 852	bip->bli_buf = bp;
 853
 854	/*
 855	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 856	 * can be divided into. Make sure not to truncate any pieces.
 857	 * map_size is the size of the bitmap needed to describe the
 858	 * chunks of the buffer.
 859	 *
 860	 * Discontiguous buffer support follows the layout of the underlying
 861	 * buffer. This makes the implementation as simple as possible.
 862	 */
 863	xfs_buf_item_get_format(bip, bp->b_map_count);
 
 
 
 
 
 
 864
 865	for (i = 0; i < bip->bli_format_count; i++) {
 866		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 867				      XFS_BLF_CHUNK);
 868		map_size = DIV_ROUND_UP(chunks, NBWORD);
 869
 870		if (map_size > XFS_BLF_DATAMAP_SIZE) {
 871			kmem_cache_free(xfs_buf_item_cache, bip);
 872			xfs_err(mp,
 873	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
 874					map_size,
 875					BBTOB(bp->b_maps[i].bm_len));
 876			return -EFSCORRUPTED;
 877		}
 878
 879		bip->bli_formats[i].blf_type = XFS_LI_BUF;
 880		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 881		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 882		bip->bli_formats[i].blf_map_size = map_size;
 883	}
 884
 885	bp->b_log_item = bip;
 
 
 
 
 
 
 886	xfs_buf_hold(bp);
 887	return 0;
 888}
 889
 890
 891/*
 892 * Mark bytes first through last inclusive as dirty in the buf
 893 * item's bitmap.
 894 */
 895static void
 896xfs_buf_item_log_segment(
 897	uint			first,
 898	uint			last,
 899	uint			*map)
 900{
 901	uint		first_bit;
 902	uint		last_bit;
 903	uint		bits_to_set;
 904	uint		bits_set;
 905	uint		word_num;
 906	uint		*wordp;
 907	uint		bit;
 908	uint		end_bit;
 909	uint		mask;
 910
 911	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
 912	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
 913
 914	/*
 915	 * Convert byte offsets to bit numbers.
 916	 */
 917	first_bit = first >> XFS_BLF_SHIFT;
 918	last_bit = last >> XFS_BLF_SHIFT;
 919
 920	/*
 921	 * Calculate the total number of bits to be set.
 922	 */
 923	bits_to_set = last_bit - first_bit + 1;
 924
 925	/*
 926	 * Get a pointer to the first word in the bitmap
 927	 * to set a bit in.
 928	 */
 929	word_num = first_bit >> BIT_TO_WORD_SHIFT;
 930	wordp = &map[word_num];
 931
 932	/*
 933	 * Calculate the starting bit in the first word.
 934	 */
 935	bit = first_bit & (uint)(NBWORD - 1);
 936
 937	/*
 938	 * First set any bits in the first word of our range.
 939	 * If it starts at bit 0 of the word, it will be
 940	 * set below rather than here.  That is what the variable
 941	 * bit tells us. The variable bits_set tracks the number
 942	 * of bits that have been set so far.  End_bit is the number
 943	 * of the last bit to be set in this word plus one.
 944	 */
 945	if (bit) {
 946		end_bit = min(bit + bits_to_set, (uint)NBWORD);
 947		mask = ((1U << (end_bit - bit)) - 1) << bit;
 948		*wordp |= mask;
 949		wordp++;
 950		bits_set = end_bit - bit;
 951	} else {
 952		bits_set = 0;
 953	}
 954
 955	/*
 956	 * Now set bits a whole word at a time that are between
 957	 * first_bit and last_bit.
 958	 */
 959	while ((bits_to_set - bits_set) >= NBWORD) {
 960		*wordp = 0xffffffff;
 961		bits_set += NBWORD;
 962		wordp++;
 963	}
 964
 965	/*
 966	 * Finally, set any bits left to be set in one last partial word.
 967	 */
 968	end_bit = bits_to_set - bits_set;
 969	if (end_bit) {
 970		mask = (1U << end_bit) - 1;
 971		*wordp |= mask;
 972	}
 973}
 974
 975/*
 976 * Mark bytes first through last inclusive as dirty in the buf
 977 * item's bitmap.
 978 */
 979void
 980xfs_buf_item_log(
 981	struct xfs_buf_log_item	*bip,
 982	uint			first,
 983	uint			last)
 984{
 985	int			i;
 986	uint			start;
 987	uint			end;
 988	struct xfs_buf		*bp = bip->bli_buf;
 989
 990	/*
 991	 * walk each buffer segment and mark them dirty appropriately.
 992	 */
 993	start = 0;
 994	for (i = 0; i < bip->bli_format_count; i++) {
 995		if (start > last)
 996			break;
 997		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
 998
 999		/* skip to the map that includes the first byte to log */
1000		if (first > end) {
1001			start += BBTOB(bp->b_maps[i].bm_len);
1002			continue;
1003		}
1004
1005		/*
1006		 * Trim the range to this segment and mark it in the bitmap.
1007		 * Note that we must convert buffer offsets to segment relative
1008		 * offsets (e.g., the first byte of each segment is byte 0 of
1009		 * that segment).
1010		 */
1011		if (first < start)
1012			first = start;
1013		if (end > last)
1014			end = last;
1015		xfs_buf_item_log_segment(first - start, end - start,
 
1016					 &bip->bli_formats[i].blf_data_map[0]);
1017
1018		start += BBTOB(bp->b_maps[i].bm_len);
1019	}
1020}
1021
1022
1023/*
1024 * Return true if the buffer has any ranges logged/dirtied by a transaction,
1025 * false otherwise.
1026 */
1027bool
1028xfs_buf_item_dirty_format(
1029	struct xfs_buf_log_item	*bip)
1030{
1031	int			i;
1032
1033	for (i = 0; i < bip->bli_format_count; i++) {
1034		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
1035			     bip->bli_formats[i].blf_map_size))
1036			return true;
1037	}
1038
1039	return false;
1040}
1041
1042STATIC void
1043xfs_buf_item_free(
1044	struct xfs_buf_log_item	*bip)
1045{
1046	xfs_buf_item_free_format(bip);
1047	kvfree(bip->bli_item.li_lv_shadow);
1048	kmem_cache_free(xfs_buf_item_cache, bip);
1049}
1050
1051/*
1052 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
 
 
 
 
1053 */
1054void
1055xfs_buf_item_relse(
1056	struct xfs_buf	*bp)
1057{
1058	struct xfs_buf_log_item	*bip = bp->b_log_item;
1059
1060	trace_xfs_buf_item_relse(bp, _RET_IP_);
1061	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
 
 
 
 
1062
1063	if (atomic_read(&bip->bli_refcount))
1064		return;
1065	bp->b_log_item = NULL;
1066	xfs_buf_rele(bp);
1067	xfs_buf_item_free(bip);
1068}
1069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070void
1071xfs_buf_item_done(
1072	struct xfs_buf		*bp)
1073{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	/*
1075	 * If we are forcibly shutting down, this may well be off the AIL
1076	 * already. That's because we simulate the log-committed callbacks to
1077	 * unpin these buffers. Or we may never have put this item on AIL
1078	 * because of the transaction was aborted forcibly.
1079	 * xfs_trans_ail_delete() takes care of these.
1080	 *
1081	 * Either way, AIL is useless if we're forcing a shutdown.
1082	 *
1083	 * Note that log recovery writes might have buffer items that are not on
1084	 * the AIL even when the file system is not shut down.
1085	 */
1086	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1087			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1088			     SHUTDOWN_CORRUPT_INCORE);
1089	xfs_buf_item_relse(bp);
1090}