Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Intel Core SoC Power Management Controller Driver
   4 *
   5 * Copyright (c) 2016, Intel Corporation.
   6 * All Rights Reserved.
   7 *
   8 * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
   9 *          Vishwanath Somayaji <vishwanath.somayaji@intel.com>
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/bitfield.h>
  15#include <linux/debugfs.h>
  16#include <linux/delay.h>
  17#include <linux/dmi.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/pci.h>
  21#include <linux/slab.h>
  22#include <linux/suspend.h>
  23#include <linux/units.h>
  24
  25#include <asm/cpu_device_id.h>
  26#include <asm/intel-family.h>
  27#include <asm/msr.h>
  28#include <asm/tsc.h>
  29
  30#include "core.h"
  31#include "../pmt/telemetry.h"
  32
  33/* Maximum number of modes supported by platfoms that has low power mode capability */
  34const char *pmc_lpm_modes[] = {
  35	"S0i2.0",
  36	"S0i2.1",
  37	"S0i2.2",
  38	"S0i3.0",
  39	"S0i3.1",
  40	"S0i3.2",
  41	"S0i3.3",
  42	"S0i3.4",
  43	NULL
  44};
  45
  46/* PKGC MSRs are common across Intel Core SoCs */
  47const struct pmc_bit_map msr_map[] = {
  48	{"Package C2",                  MSR_PKG_C2_RESIDENCY},
  49	{"Package C3",                  MSR_PKG_C3_RESIDENCY},
  50	{"Package C6",                  MSR_PKG_C6_RESIDENCY},
  51	{"Package C7",                  MSR_PKG_C7_RESIDENCY},
  52	{"Package C8",                  MSR_PKG_C8_RESIDENCY},
  53	{"Package C9",                  MSR_PKG_C9_RESIDENCY},
  54	{"Package C10",                 MSR_PKG_C10_RESIDENCY},
  55	{}
  56};
  57
  58static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
  59{
  60	return readl(pmc->regbase + reg_offset);
  61}
  62
  63static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
  64				      u32 val)
  65{
  66	writel(val, pmc->regbase + reg_offset);
  67}
  68
  69static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
  70{
  71	/*
  72	 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
  73	 * used as a workaround which uses 30.5 usec tick. All other client
  74	 * programs have the legacy SLP_S0 residency counter that is using the 122
  75	 * usec tick.
  76	 */
  77	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
  78
  79	if (pmc->map == &adl_reg_map)
  80		return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
  81	else
  82		return (u64)value * pmc->map->slp_s0_res_counter_step;
  83}
  84
  85static int set_etr3(struct pmc_dev *pmcdev)
  86{
  87	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
  88	const struct pmc_reg_map *map = pmc->map;
  89	u32 reg;
  90	int err;
  91
  92	if (!map->etr3_offset)
  93		return -EOPNOTSUPP;
  94
  95	mutex_lock(&pmcdev->lock);
  96
  97	/* check if CF9 is locked */
  98	reg = pmc_core_reg_read(pmc, map->etr3_offset);
  99	if (reg & ETR3_CF9LOCK) {
 100		err = -EACCES;
 101		goto out_unlock;
 102	}
 103
 104	/* write CF9 global reset bit */
 105	reg |= ETR3_CF9GR;
 106	pmc_core_reg_write(pmc, map->etr3_offset, reg);
 107
 108	reg = pmc_core_reg_read(pmc, map->etr3_offset);
 109	if (!(reg & ETR3_CF9GR)) {
 110		err = -EIO;
 111		goto out_unlock;
 112	}
 113
 114	err = 0;
 115
 116out_unlock:
 117	mutex_unlock(&pmcdev->lock);
 118	return err;
 119}
 120static umode_t etr3_is_visible(struct kobject *kobj,
 121				struct attribute *attr,
 122				int idx)
 123{
 124	struct device *dev = kobj_to_dev(kobj);
 125	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
 126	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 127	const struct pmc_reg_map *map = pmc->map;
 128	u32 reg;
 129
 130	mutex_lock(&pmcdev->lock);
 131	reg = pmc_core_reg_read(pmc, map->etr3_offset);
 132	mutex_unlock(&pmcdev->lock);
 133
 134	return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
 135}
 136
 137static ssize_t etr3_show(struct device *dev,
 138				 struct device_attribute *attr, char *buf)
 139{
 140	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
 141	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 142	const struct pmc_reg_map *map = pmc->map;
 143	u32 reg;
 144
 145	if (!map->etr3_offset)
 146		return -EOPNOTSUPP;
 147
 148	mutex_lock(&pmcdev->lock);
 149
 150	reg = pmc_core_reg_read(pmc, map->etr3_offset);
 151	reg &= ETR3_CF9GR | ETR3_CF9LOCK;
 152
 153	mutex_unlock(&pmcdev->lock);
 154
 155	return sysfs_emit(buf, "0x%08x", reg);
 156}
 157
 158static ssize_t etr3_store(struct device *dev,
 159				  struct device_attribute *attr,
 160				  const char *buf, size_t len)
 161{
 162	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
 163	int err;
 164	u32 reg;
 165
 166	err = kstrtouint(buf, 16, &reg);
 167	if (err)
 168		return err;
 169
 170	/* allow only CF9 writes */
 171	if (reg != ETR3_CF9GR)
 172		return -EINVAL;
 173
 174	err = set_etr3(pmcdev);
 175	if (err)
 176		return err;
 177
 178	return len;
 179}
 180static DEVICE_ATTR_RW(etr3);
 181
 182static struct attribute *pmc_attrs[] = {
 183	&dev_attr_etr3.attr,
 184	NULL
 185};
 186
 187static const struct attribute_group pmc_attr_group = {
 188	.attrs = pmc_attrs,
 189	.is_visible = etr3_is_visible,
 190};
 191
 192static const struct attribute_group *pmc_dev_groups[] = {
 193	&pmc_attr_group,
 194	NULL
 195};
 196
 197static int pmc_core_dev_state_get(void *data, u64 *val)
 198{
 199	struct pmc *pmc = data;
 200	const struct pmc_reg_map *map = pmc->map;
 201	u32 value;
 202
 203	value = pmc_core_reg_read(pmc, map->slp_s0_offset);
 204	*val = pmc_core_adjust_slp_s0_step(pmc, value);
 205
 206	return 0;
 207}
 208
 209DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
 210
 211static int pmc_core_pson_residency_get(void *data, u64 *val)
 212{
 213	struct pmc *pmc = data;
 214	const struct pmc_reg_map *map = pmc->map;
 215	u32 value;
 216
 217	value = pmc_core_reg_read(pmc, map->pson_residency_offset);
 218	*val = (u64)value * map->pson_residency_counter_step;
 219
 220	return 0;
 221}
 222
 223DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_pson_residency, pmc_core_pson_residency_get, NULL, "%llu\n");
 224
 225static int pmc_core_check_read_lock_bit(struct pmc *pmc)
 226{
 227	u32 value;
 228
 229	value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
 230	return value & BIT(pmc->map->pm_read_disable_bit);
 231}
 232
 233static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
 234				   struct seq_file *s)
 235{
 236	const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
 237	const struct pmc_bit_map *map;
 238	int offset = pmc->map->slps0_dbg_offset;
 239	u32 data;
 240
 241	while (*maps) {
 242		map = *maps;
 243		data = pmc_core_reg_read(pmc, offset);
 244		offset += 4;
 245		while (map->name) {
 246			if (dev)
 247				dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
 248					map->name,
 249					data & map->bit_mask ? "Yes" : "No");
 250			if (s)
 251				seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
 252					   map->name,
 253					   data & map->bit_mask ? "Yes" : "No");
 254			++map;
 255		}
 256		++maps;
 257	}
 258}
 259
 260static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
 261{
 262	int idx;
 263
 264	for (idx = 0; maps[idx]; idx++)
 265		;/* Nothing */
 266
 267	return idx;
 268}
 269
 270static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
 271				 struct seq_file *s, u32 offset, int pmc_index,
 272				 const char *str,
 273				 const struct pmc_bit_map **maps)
 274{
 275	int index, idx, len = 32, bit_mask, arr_size;
 276	u32 *lpm_regs;
 277
 278	arr_size = pmc_core_lpm_get_arr_size(maps);
 279	lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
 280	if (!lpm_regs)
 281		return;
 282
 283	for (index = 0; index < arr_size; index++) {
 284		lpm_regs[index] = pmc_core_reg_read(pmc, offset);
 285		offset += 4;
 286	}
 287
 288	for (idx = 0; idx < arr_size; idx++) {
 289		if (dev)
 290			dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
 291				lpm_regs[idx]);
 292		if (s)
 293			seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
 294				   lpm_regs[idx]);
 295		for (index = 0; maps[idx][index].name && index < len; index++) {
 296			bit_mask = maps[idx][index].bit_mask;
 297			if (dev)
 298				dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
 299					maps[idx][index].name,
 300					lpm_regs[idx] & bit_mask ? 1 : 0);
 301			if (s)
 302				seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
 303					   maps[idx][index].name,
 304					   lpm_regs[idx] & bit_mask ? 1 : 0);
 305		}
 306	}
 307
 308	kfree(lpm_regs);
 309}
 310
 311static bool slps0_dbg_latch;
 312
 313static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
 314{
 315	return readb(pmc->regbase + offset);
 316}
 317
 318static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
 319				 int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map)
 320{
 321	seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
 322		   pmc_index, ip, pf_map[idx][index].name,
 323		   pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
 324}
 325
 326static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
 327{
 328	struct pmc_dev *pmcdev = s->private;
 329	int i;
 330
 331	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
 332		struct pmc *pmc = pmcdev->pmcs[i];
 333		const struct pmc_bit_map **maps;
 334		u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
 335		int index, iter, idx, ip = 0;
 336
 337		if (!pmc)
 338			continue;
 339
 340		maps = pmc->map->pfear_sts;
 341		iter = pmc->map->ppfear0_offset;
 342
 343		for (index = 0; index < pmc->map->ppfear_buckets &&
 344		     index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
 345			pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
 346
 347		for (idx = 0; maps[idx]; idx++) {
 348			for (index = 0; maps[idx][index].name &&
 349			     index < pmc->map->ppfear_buckets * 8; ip++, index++)
 350				pmc_core_display_map(s, index, idx, ip, i,
 351						     pf_regs[index / 8], maps);
 352		}
 353	}
 354
 355	return 0;
 356}
 357DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
 358
 359/* This function should return link status, 0 means ready */
 360static int pmc_core_mtpmc_link_status(struct pmc *pmc)
 361{
 362	u32 value;
 363
 364	value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
 365	return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
 366}
 367
 368static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
 369{
 370	u32 dest;
 371	int timeout;
 372
 373	for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
 374		if (pmc_core_mtpmc_link_status(pmc) == 0)
 375			break;
 376		msleep(5);
 377	}
 378
 379	if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
 380		return -EBUSY;
 381
 382	dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
 383	pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
 384	return 0;
 385}
 386
 387static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
 388{
 389	struct pmc_dev *pmcdev = s->private;
 390	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 391	const struct pmc_bit_map *map = pmc->map->mphy_sts;
 392	u32 mphy_core_reg_low, mphy_core_reg_high;
 393	u32 val_low, val_high;
 394	int index, err = 0;
 395
 396	if (pmcdev->pmc_xram_read_bit) {
 397		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
 398		return 0;
 399	}
 400
 401	mphy_core_reg_low  = (SPT_PMC_MPHY_CORE_STS_0 << 16);
 402	mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
 403
 404	mutex_lock(&pmcdev->lock);
 405
 406	if (pmc_core_send_msg(pmc, &mphy_core_reg_low) != 0) {
 407		err = -EBUSY;
 408		goto out_unlock;
 409	}
 410
 411	msleep(10);
 412	val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
 413
 414	if (pmc_core_send_msg(pmc, &mphy_core_reg_high) != 0) {
 415		err = -EBUSY;
 416		goto out_unlock;
 417	}
 418
 419	msleep(10);
 420	val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
 421
 422	for (index = 0; index < 8 && map[index].name; index++) {
 423		seq_printf(s, "%-32s\tState: %s\n",
 424			   map[index].name,
 425			   map[index].bit_mask & val_low ? "Not power gated" :
 426			   "Power gated");
 427	}
 428
 429	for (index = 8; map[index].name; index++) {
 430		seq_printf(s, "%-32s\tState: %s\n",
 431			   map[index].name,
 432			   map[index].bit_mask & val_high ? "Not power gated" :
 433			   "Power gated");
 434	}
 435
 436out_unlock:
 437	mutex_unlock(&pmcdev->lock);
 438	return err;
 439}
 440DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
 441
 442static int pmc_core_pll_show(struct seq_file *s, void *unused)
 443{
 444	struct pmc_dev *pmcdev = s->private;
 445	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 446	const struct pmc_bit_map *map = pmc->map->pll_sts;
 447	u32 mphy_common_reg, val;
 448	int index, err = 0;
 449
 450	if (pmcdev->pmc_xram_read_bit) {
 451		seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
 452		return 0;
 453	}
 454
 455	mphy_common_reg  = (SPT_PMC_MPHY_COM_STS_0 << 16);
 456	mutex_lock(&pmcdev->lock);
 457
 458	if (pmc_core_send_msg(pmc, &mphy_common_reg) != 0) {
 459		err = -EBUSY;
 460		goto out_unlock;
 461	}
 462
 463	/* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
 464	msleep(10);
 465	val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
 466
 467	for (index = 0; map[index].name ; index++) {
 468		seq_printf(s, "%-32s\tState: %s\n",
 469			   map[index].name,
 470			   map[index].bit_mask & val ? "Active" : "Idle");
 471	}
 472
 473out_unlock:
 474	mutex_unlock(&pmcdev->lock);
 475	return err;
 476}
 477DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
 478
 479int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
 480{
 481	struct pmc *pmc;
 482	const struct pmc_reg_map *map;
 483	u32 reg;
 484	int pmc_index, ltr_index;
 485
 486	ltr_index = value;
 487	/* For platforms with multiple pmcs, ltr index value given by user
 488	 * is based on the contiguous indexes from ltr_show output.
 489	 * pmc index and ltr index needs to be calculated from it.
 490	 */
 491	for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_index++) {
 492		pmc = pmcdev->pmcs[pmc_index];
 493
 494		if (!pmc)
 495			continue;
 496
 497		map = pmc->map;
 498		if (ltr_index <= map->ltr_ignore_max)
 499			break;
 500
 501		/* Along with IP names, ltr_show map includes CURRENT_PLATFORM
 502		 * and AGGREGATED_SYSTEM values per PMC. Take these two index
 503		 * values into account in ltr_index calculation. Also, to start
 504		 * ltr index from zero for next pmc, subtract it by 1.
 505		 */
 506		ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
 507	}
 508
 509	if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
 510		return -EINVAL;
 511
 512	pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index);
 513
 514	mutex_lock(&pmcdev->lock);
 515
 516	reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
 517	if (ignore)
 518		reg |= BIT(ltr_index);
 519	else
 520		reg &= ~BIT(ltr_index);
 521	pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
 522
 523	mutex_unlock(&pmcdev->lock);
 524
 525	return 0;
 526}
 527
 528static ssize_t pmc_core_ltr_ignore_write(struct file *file,
 529					 const char __user *userbuf,
 530					 size_t count, loff_t *ppos)
 531{
 532	struct seq_file *s = file->private_data;
 533	struct pmc_dev *pmcdev = s->private;
 534	u32 buf_size, value;
 535	int err;
 536
 537	buf_size = min_t(u32, count, 64);
 538
 539	err = kstrtou32_from_user(userbuf, buf_size, 10, &value);
 540	if (err)
 541		return err;
 542
 543	err = pmc_core_send_ltr_ignore(pmcdev, value, 1);
 544
 545	return err == 0 ? count : err;
 546}
 547
 548static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
 549{
 550	return 0;
 551}
 552
 553static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file)
 554{
 555	return single_open(file, pmc_core_ltr_ignore_show, inode->i_private);
 556}
 557
 558static const struct file_operations pmc_core_ltr_ignore_ops = {
 559	.open           = pmc_core_ltr_ignore_open,
 560	.read           = seq_read,
 561	.write          = pmc_core_ltr_ignore_write,
 562	.llseek         = seq_lseek,
 563	.release        = single_release,
 564};
 565
 566static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
 567{
 568	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 569	const struct pmc_reg_map *map = pmc->map;
 570	u32 fd;
 571
 572	mutex_lock(&pmcdev->lock);
 573
 574	if (!reset && !slps0_dbg_latch)
 575		goto out_unlock;
 576
 577	fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
 578	if (reset)
 579		fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
 580	else
 581		fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
 582	pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
 583
 584	slps0_dbg_latch = false;
 585
 586out_unlock:
 587	mutex_unlock(&pmcdev->lock);
 588}
 589
 590static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
 591{
 592	struct pmc_dev *pmcdev = s->private;
 593
 594	pmc_core_slps0_dbg_latch(pmcdev, false);
 595	pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
 596	pmc_core_slps0_dbg_latch(pmcdev, true);
 597
 598	return 0;
 599}
 600DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
 601
 602static u32 convert_ltr_scale(u32 val)
 603{
 604	/*
 605	 * As per PCIE specification supporting document
 606	 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
 607	 * Tolerance Reporting data payload is encoded in a
 608	 * 3 bit scale and 10 bit value fields. Values are
 609	 * multiplied by the indicated scale to yield an absolute time
 610	 * value, expressible in a range from 1 nanosecond to
 611	 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
 612	 *
 613	 * scale encoding is as follows:
 614	 *
 615	 * ----------------------------------------------
 616	 * |scale factor	|	Multiplier (ns)	|
 617	 * ----------------------------------------------
 618	 * |	0		|	1		|
 619	 * |	1		|	32		|
 620	 * |	2		|	1024		|
 621	 * |	3		|	32768		|
 622	 * |	4		|	1048576		|
 623	 * |	5		|	33554432	|
 624	 * |	6		|	Invalid		|
 625	 * |	7		|	Invalid		|
 626	 * ----------------------------------------------
 627	 */
 628	if (val > 5) {
 629		pr_warn("Invalid LTR scale factor.\n");
 630		return 0;
 631	}
 632
 633	return 1U << (5 * val);
 634}
 635
 636static int pmc_core_ltr_show(struct seq_file *s, void *unused)
 637{
 638	struct pmc_dev *pmcdev = s->private;
 639	u64 decoded_snoop_ltr, decoded_non_snoop_ltr;
 640	u32 ltr_raw_data, scale, val;
 641	u16 snoop_ltr, nonsnoop_ltr;
 642	int i, index, ltr_index = 0;
 643
 644	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
 645		struct pmc *pmc = pmcdev->pmcs[i];
 646		const struct pmc_bit_map *map;
 647
 648		if (!pmc)
 649			continue;
 650
 651		map = pmc->map->ltr_show_sts;
 652		for (index = 0; map[index].name; index++) {
 653			decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
 654			ltr_raw_data = pmc_core_reg_read(pmc,
 655							 map[index].bit_mask);
 656			snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
 657			nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
 658
 659			if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
 660				scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
 661				val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
 662				decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
 663			}
 664			if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
 665				scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
 666				val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
 667				decoded_snoop_ltr = val * convert_ltr_scale(scale);
 668			}
 669
 670			seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n",
 671				   ltr_index, i, map[index].name, ltr_raw_data,
 672				   decoded_non_snoop_ltr,
 673				   decoded_snoop_ltr);
 674			ltr_index++;
 675		}
 676	}
 677	return 0;
 678}
 679DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
 680
 681static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
 682				       const int lpm_adj_x2)
 683{
 684	u64 lpm_res = pmc_core_reg_read(pmc, offset);
 685
 686	return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
 687}
 688
 689static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
 690{
 691	struct pmc_dev *pmcdev = s->private;
 692	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 693	const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
 694	u32 offset = pmc->map->lpm_residency_offset;
 695	int i, mode;
 696
 697	seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
 698
 699	pmc_for_each_mode(i, mode, pmcdev) {
 700		seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
 701			   adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
 702	}
 703
 704	return 0;
 705}
 706DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
 707
 708static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
 709{
 710	struct pmc_dev *pmcdev = s->private;
 711	int i;
 712
 713	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
 714		struct pmc *pmc = pmcdev->pmcs[i];
 715		const struct pmc_bit_map **maps;
 716		u32 offset;
 717
 718		if (!pmc)
 719			continue;
 720		maps = pmc->map->lpm_sts;
 721		offset = pmc->map->lpm_status_offset;
 722		pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps);
 723	}
 724
 725	return 0;
 726}
 727DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
 728
 729static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
 730{
 731	struct pmc_dev *pmcdev = s->private;
 732	int i;
 733
 734	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
 735		struct pmc *pmc = pmcdev->pmcs[i];
 736		const struct pmc_bit_map **maps;
 737		u32 offset;
 738
 739		if (!pmc)
 740			continue;
 741		maps = pmc->map->lpm_sts;
 742		offset = pmc->map->lpm_live_status_offset;
 743		pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps);
 744	}
 745
 746	return 0;
 747}
 748DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
 749
 750static void pmc_core_substate_req_header_show(struct seq_file *s, int pmc_index)
 751{
 752	struct pmc_dev *pmcdev = s->private;
 753	int i, mode;
 754
 755	seq_printf(s, "%30s |", "Element");
 756	pmc_for_each_mode(i, mode, pmcdev)
 757		seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
 758
 759	seq_printf(s, " %9s |\n", "Status");
 760}
 761
 762static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
 763{
 764	struct pmc_dev *pmcdev = s->private;
 765	u32 sts_offset;
 766	u32 *lpm_req_regs;
 767	int num_maps, mp, pmc_index;
 768
 769	for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs); ++pmc_index) {
 770		struct pmc *pmc = pmcdev->pmcs[pmc_index];
 771		const struct pmc_bit_map **maps;
 772
 773		if (!pmc)
 774			continue;
 775
 776		maps = pmc->map->lpm_sts;
 777		num_maps = pmc->map->lpm_num_maps;
 778		sts_offset = pmc->map->lpm_status_offset;
 779		lpm_req_regs = pmc->lpm_req_regs;
 780
 781		/*
 782		 * When there are multiple PMCs, though the PMC may exist, the
 783		 * requirement register discovery could have failed so check
 784		 * before accessing.
 785		 */
 786		if (!lpm_req_regs)
 787			continue;
 788
 789		/* Display the header */
 790		pmc_core_substate_req_header_show(s, pmc_index);
 791
 792		/* Loop over maps */
 793		for (mp = 0; mp < num_maps; mp++) {
 794			u32 req_mask = 0;
 795			u32 lpm_status;
 796			const struct pmc_bit_map *map;
 797			int mode, idx, i, len = 32;
 798
 799			/*
 800			 * Capture the requirements and create a mask so that we only
 801			 * show an element if it's required for at least one of the
 802			 * enabled low power modes
 803			 */
 804			pmc_for_each_mode(idx, mode, pmcdev)
 805				req_mask |= lpm_req_regs[mp + (mode * num_maps)];
 806
 807			/* Get the last latched status for this map */
 808			lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
 809
 810			/*  Loop over elements in this map */
 811			map = maps[mp];
 812			for (i = 0; map[i].name && i < len; i++) {
 813				u32 bit_mask = map[i].bit_mask;
 814
 815				if (!(bit_mask & req_mask)) {
 816					/*
 817					 * Not required for any enabled states
 818					 * so don't display
 819					 */
 820					continue;
 821				}
 822
 823				/* Display the element name in the first column */
 824				seq_printf(s, "pmc%d: %26s |", pmc_index, map[i].name);
 825
 826				/* Loop over the enabled states and display if required */
 827				pmc_for_each_mode(idx, mode, pmcdev) {
 828					bool required = lpm_req_regs[mp + (mode * num_maps)] &
 829							bit_mask;
 830					seq_printf(s, " %9s |", required ? "Required" : " ");
 831				}
 832
 833				/* In Status column, show the last captured state of this agent */
 834				seq_printf(s, " %9s |", lpm_status & bit_mask ? "Yes" : " ");
 835
 836				seq_puts(s, "\n");
 837			}
 838		}
 839	}
 840	return 0;
 841}
 842DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs);
 843
 844static unsigned int pmc_core_get_crystal_freq(void)
 845{
 846	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 847
 848	if (boot_cpu_data.cpuid_level < 0x15)
 849		return 0;
 850
 851	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 852
 853	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 854	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 855
 856	if (ebx_numerator == 0 || eax_denominator == 0)
 857		return 0;
 858
 859	return ecx_hz;
 860}
 861
 862static int pmc_core_die_c6_us_show(struct seq_file *s, void *unused)
 863{
 864	struct pmc_dev *pmcdev = s->private;
 865	u64 die_c6_res, count;
 866	int ret;
 867
 868	if (!pmcdev->crystal_freq) {
 869		dev_warn_once(&pmcdev->pdev->dev, "Crystal frequency unavailable\n");
 870		return -ENXIO;
 871	}
 872
 873	ret = pmt_telem_read(pmcdev->punit_ep, pmcdev->die_c6_offset,
 874			     &count, 1);
 875	if (ret)
 876		return ret;
 877
 878	die_c6_res = div64_u64(count * HZ_PER_MHZ, pmcdev->crystal_freq);
 879	seq_printf(s, "%llu\n", die_c6_res);
 880
 881	return 0;
 882}
 883DEFINE_SHOW_ATTRIBUTE(pmc_core_die_c6_us);
 884
 885static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
 886{
 887	struct pmc_dev *pmcdev = s->private;
 888	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 889	bool c10;
 890	u32 reg;
 891	int idx, mode;
 892
 893	reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
 894	if (reg & LPM_STS_LATCH_MODE) {
 895		seq_puts(s, "c10");
 896		c10 = false;
 897	} else {
 898		seq_puts(s, "[c10]");
 899		c10 = true;
 900	}
 901
 902	pmc_for_each_mode(idx, mode, pmcdev) {
 903		if ((BIT(mode) & reg) && !c10)
 904			seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
 905		else
 906			seq_printf(s, " %s", pmc_lpm_modes[mode]);
 907	}
 908
 909	seq_puts(s, " clear\n");
 910
 911	return 0;
 912}
 913
 914static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
 915					     const char __user *userbuf,
 916					     size_t count, loff_t *ppos)
 917{
 918	struct seq_file *s = file->private_data;
 919	struct pmc_dev *pmcdev = s->private;
 920	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
 921	bool clear = false, c10 = false;
 922	unsigned char buf[8];
 923	int idx, m, mode;
 924	u32 reg;
 925
 926	if (count > sizeof(buf) - 1)
 927		return -EINVAL;
 928	if (copy_from_user(buf, userbuf, count))
 929		return -EFAULT;
 930	buf[count] = '\0';
 931
 932	/*
 933	 * Allowed strings are:
 934	 *	Any enabled substate, e.g. 'S0i2.0'
 935	 *	'c10'
 936	 *	'clear'
 937	 */
 938	mode = sysfs_match_string(pmc_lpm_modes, buf);
 939
 940	/* Check string matches enabled mode */
 941	pmc_for_each_mode(idx, m, pmcdev)
 942		if (mode == m)
 943			break;
 944
 945	if (mode != m || mode < 0) {
 946		if (sysfs_streq(buf, "clear"))
 947			clear = true;
 948		else if (sysfs_streq(buf, "c10"))
 949			c10 = true;
 950		else
 951			return -EINVAL;
 952	}
 953
 954	if (clear) {
 955		mutex_lock(&pmcdev->lock);
 956
 957		reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
 958		reg |= ETR3_CLEAR_LPM_EVENTS;
 959		pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
 960
 961		mutex_unlock(&pmcdev->lock);
 962
 963		return count;
 964	}
 965
 966	if (c10) {
 967		mutex_lock(&pmcdev->lock);
 968
 969		reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
 970		reg &= ~LPM_STS_LATCH_MODE;
 971		pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
 972
 973		mutex_unlock(&pmcdev->lock);
 974
 975		return count;
 976	}
 977
 978	/*
 979	 * For LPM mode latching we set the latch enable bit and selected mode
 980	 * and clear everything else.
 981	 */
 982	reg = LPM_STS_LATCH_MODE | BIT(mode);
 983	mutex_lock(&pmcdev->lock);
 984	pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
 985	mutex_unlock(&pmcdev->lock);
 986
 987	return count;
 988}
 989DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
 990
 991static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
 992{
 993	struct pmc *pmc = s->private;
 994	const struct pmc_bit_map *map = pmc->map->msr_sts;
 995	u64 pcstate_count;
 996	int index;
 997
 998	for (index = 0; map[index].name ; index++) {
 999		if (rdmsrl_safe(map[index].bit_mask, &pcstate_count))
1000			continue;
1001
1002		pcstate_count *= 1000;
1003		do_div(pcstate_count, tsc_khz);
1004		seq_printf(s, "%-8s : %llu\n", map[index].name,
1005			   pcstate_count);
1006	}
1007
1008	return 0;
1009}
1010DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
1011
1012static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
1013{
1014	int i, j;
1015
1016	if (!lpm_pri)
1017		return false;
1018	/*
1019	 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
1020	 * In a 32 bit register this allows for describing 8 modes. Store the
1021	 * levels and look for values out of range.
1022	 */
1023	for (i = 0; i < 8; i++) {
1024		int level = lpm_pri & GENMASK(3, 0);
1025
1026		if (level >= LPM_MAX_NUM_MODES)
1027			return false;
1028
1029		mode_order[i] = level;
1030		lpm_pri >>= 4;
1031	}
1032
1033	/* Check that we have unique values */
1034	for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
1035		for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
1036			if (mode_order[i] == mode_order[j])
1037				return false;
1038
1039	return true;
1040}
1041
1042void pmc_core_get_low_power_modes(struct pmc_dev *pmcdev)
1043{
1044	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1045	u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
1046	u8 mode_order[LPM_MAX_NUM_MODES];
1047	u32 lpm_pri;
1048	u32 lpm_en;
1049	int mode, i, p;
1050
1051	/* Use LPM Maps to indicate support for substates */
1052	if (!pmc->map->lpm_num_maps)
1053		return;
1054
1055	lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
1056	/* For MTL, BIT 31 is not an lpm mode but a enable bit.
1057	 * Lower byte is enough to cover the number of lpm modes for all
1058	 * platforms and hence mask the upper 3 bytes.
1059	 */
1060	pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
1061
1062	/* Read 32 bit LPM_PRI register */
1063	lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
1064
1065
1066	/*
1067	 * If lpm_pri value passes verification, then override the default
1068	 * modes here. Otherwise stick with the default.
1069	 */
1070	if (pmc_core_pri_verify(lpm_pri, mode_order))
1071		/* Get list of modes in priority order */
1072		for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1073			pri_order[mode_order[mode]] = mode;
1074	else
1075		dev_warn(&pmcdev->pdev->dev,
1076			 "Assuming a default substate order for this platform\n");
1077
1078	/*
1079	 * Loop through all modes from lowest to highest priority,
1080	 * and capture all enabled modes in order
1081	 */
1082	i = 0;
1083	for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1084		int mode = pri_order[p];
1085
1086		if (!(BIT(mode) & lpm_en))
1087			continue;
1088
1089		pmcdev->lpm_en_modes[i++] = mode;
1090	}
1091}
1092
1093int get_primary_reg_base(struct pmc *pmc)
1094{
1095	u64 slp_s0_addr;
1096
1097	if (lpit_read_residency_count_address(&slp_s0_addr)) {
1098		pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1099
1100		if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1101			return -ENODEV;
1102	} else {
1103		pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1104	}
1105
1106	pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1107	if (!pmc->regbase)
1108		return -ENOMEM;
1109	return 0;
1110}
1111
1112void pmc_core_punit_pmt_init(struct pmc_dev *pmcdev, u32 guid)
1113{
1114	struct telem_endpoint *ep;
1115	struct pci_dev *pcidev;
1116
1117	pcidev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(10, 0));
1118	if (!pcidev) {
1119		dev_err(&pmcdev->pdev->dev, "PUNIT PMT device not found.");
1120		return;
1121	}
1122
1123	ep = pmt_telem_find_and_register_endpoint(pcidev, guid, 0);
1124	pci_dev_put(pcidev);
1125	if (IS_ERR(ep)) {
1126		dev_err(&pmcdev->pdev->dev,
1127			"pmc_core: couldn't get DMU telem endpoint %ld",
1128			PTR_ERR(ep));
1129		return;
1130	}
1131
1132	pmcdev->punit_ep = ep;
1133
1134	pmcdev->has_die_c6 = true;
1135	pmcdev->die_c6_offset = MTL_PMT_DMU_DIE_C6_OFFSET;
1136}
1137
1138void pmc_core_set_device_d3(unsigned int device)
1139{
1140	struct pci_dev *pcidev;
1141
1142	pcidev = pci_get_device(PCI_VENDOR_ID_INTEL, device, NULL);
1143	if (pcidev) {
1144		if (!device_trylock(&pcidev->dev)) {
1145			pci_dev_put(pcidev);
1146			return;
1147		}
1148		if (!pcidev->dev.driver) {
1149			dev_info(&pcidev->dev, "Setting to D3hot\n");
1150			pci_set_power_state(pcidev, PCI_D3hot);
1151		}
1152		device_unlock(&pcidev->dev);
1153		pci_dev_put(pcidev);
1154	}
1155}
1156
1157static bool pmc_core_is_pson_residency_enabled(struct pmc_dev *pmcdev)
1158{
1159	struct platform_device *pdev = pmcdev->pdev;
1160	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1161	u8 val;
1162
1163	if (!adev)
1164		return false;
1165
1166	if (fwnode_property_read_u8(acpi_fwnode_handle(adev),
1167				    "intel-cec-pson-switching-enabled-in-s0",
1168				    &val))
1169		return false;
1170
1171	return val == 1;
1172}
1173
1174
1175static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1176{
1177	debugfs_remove_recursive(pmcdev->dbgfs_dir);
1178}
1179
1180static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev)
1181{
1182	struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1183	struct dentry *dir;
1184
1185	dir = debugfs_create_dir("pmc_core", NULL);
1186	pmcdev->dbgfs_dir = dir;
1187
1188	debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1189			    &pmc_core_dev_state);
1190
1191	if (primary_pmc->map->pfear_sts)
1192		debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1193				    pmcdev, &pmc_core_ppfear_fops);
1194
1195	debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1196			    &pmc_core_ltr_ignore_ops);
1197
1198	debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1199
1200	debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1201			    &pmc_core_pkgc_fops);
1202
1203	if (primary_pmc->map->pll_sts)
1204		debugfs_create_file("pll_status", 0444, dir, pmcdev,
1205				    &pmc_core_pll_fops);
1206
1207	if (primary_pmc->map->mphy_sts)
1208		debugfs_create_file("mphy_core_lanes_power_gating_status",
1209				    0444, dir, pmcdev,
1210				    &pmc_core_mphy_pg_fops);
1211
1212	if (primary_pmc->map->slps0_dbg_maps) {
1213		debugfs_create_file("slp_s0_debug_status", 0444,
1214				    dir, pmcdev,
1215				    &pmc_core_slps0_dbg_fops);
1216
1217		debugfs_create_bool("slp_s0_dbg_latch", 0644,
1218				    dir, &slps0_dbg_latch);
1219	}
1220
1221	if (primary_pmc->map->lpm_en_offset) {
1222		debugfs_create_file("substate_residencies", 0444,
1223				    pmcdev->dbgfs_dir, pmcdev,
1224				    &pmc_core_substate_res_fops);
1225	}
1226
1227	if (primary_pmc->map->lpm_status_offset) {
1228		debugfs_create_file("substate_status_registers", 0444,
1229				    pmcdev->dbgfs_dir, pmcdev,
1230				    &pmc_core_substate_sts_regs_fops);
1231		debugfs_create_file("substate_live_status_registers", 0444,
1232				    pmcdev->dbgfs_dir, pmcdev,
1233				    &pmc_core_substate_l_sts_regs_fops);
1234		debugfs_create_file("lpm_latch_mode", 0644,
1235				    pmcdev->dbgfs_dir, pmcdev,
1236				    &pmc_core_lpm_latch_mode_fops);
1237	}
1238
1239	if (primary_pmc->lpm_req_regs) {
1240		debugfs_create_file("substate_requirements", 0444,
1241				    pmcdev->dbgfs_dir, pmcdev,
1242				    &pmc_core_substate_req_regs_fops);
1243	}
1244
1245	if (primary_pmc->map->pson_residency_offset && pmc_core_is_pson_residency_enabled(pmcdev)) {
1246		debugfs_create_file("pson_residency_usec", 0444,
1247				    pmcdev->dbgfs_dir, primary_pmc, &pmc_core_pson_residency);
1248	}
1249
1250	if (pmcdev->has_die_c6) {
1251		debugfs_create_file("die_c6_us_show", 0444,
1252				    pmcdev->dbgfs_dir, pmcdev,
1253				    &pmc_core_die_c6_us_fops);
1254	}
1255}
1256
1257static const struct x86_cpu_id intel_pmc_core_ids[] = {
1258	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		spt_core_init),
1259	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		spt_core_init),
1260	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		spt_core_init),
1261	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		spt_core_init),
1262	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	cnp_core_init),
1263	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		icl_core_init),
1264	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	icl_core_init),
1265	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		cnp_core_init),
1266	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		cnp_core_init),
1267	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		tgl_l_core_init),
1268	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		tgl_core_init),
1269	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	tgl_l_core_init),
1270	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	icl_core_init),
1271	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		tgl_core_init),
1272	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		tgl_l_core_init),
1273	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT,	tgl_l_core_init),
1274	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		adl_core_init),
1275	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        tgl_l_core_init),
1276	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		adl_core_init),
1277	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	adl_core_init),
1278	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	mtl_core_init),
1279	X86_MATCH_INTEL_FAM6_MODEL(ARROWLAKE,		arl_core_init),
1280	X86_MATCH_INTEL_FAM6_MODEL(LUNARLAKE_M,         lnl_core_init),
1281	{}
1282};
1283
1284MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1285
1286static const struct pci_device_id pmc_pci_ids[] = {
1287	{ PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) },
1288	{ }
1289};
1290
1291/*
1292 * This quirk can be used on those platforms where
1293 * the platform BIOS enforces 24Mhz crystal to shutdown
1294 * before PMC can assert SLP_S0#.
1295 */
1296static bool xtal_ignore;
1297static int quirk_xtal_ignore(const struct dmi_system_id *id)
1298{
1299	xtal_ignore = true;
1300	return 0;
1301}
1302
1303static void pmc_core_xtal_ignore(struct pmc *pmc)
1304{
1305	u32 value;
1306
1307	value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1308	/* 24MHz Crystal Shutdown Qualification Disable */
1309	value |= SPT_PMC_VRIC1_XTALSDQDIS;
1310	/* Low Voltage Mode Enable */
1311	value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1312	pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1313}
1314
1315static const struct dmi_system_id pmc_core_dmi_table[]  = {
1316	{
1317	.callback = quirk_xtal_ignore,
1318	.ident = "HP Elite x2 1013 G3",
1319	.matches = {
1320		DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1321		DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1322		},
1323	},
1324	{}
1325};
1326
1327static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1328{
1329	dmi_check_system(pmc_core_dmi_table);
1330
1331	if (xtal_ignore)
1332		pmc_core_xtal_ignore(pmc);
1333}
1334
1335static void pmc_core_clean_structure(struct platform_device *pdev)
1336{
1337	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1338	int i;
1339
1340	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1341		struct pmc *pmc = pmcdev->pmcs[i];
1342
1343		if (pmc)
1344			iounmap(pmc->regbase);
1345	}
1346
1347	if (pmcdev->ssram_pcidev) {
1348		pci_dev_put(pmcdev->ssram_pcidev);
1349		pci_disable_device(pmcdev->ssram_pcidev);
1350	}
1351
1352	if (pmcdev->punit_ep)
1353		pmt_telem_unregister_endpoint(pmcdev->punit_ep);
1354
1355	platform_set_drvdata(pdev, NULL);
1356	mutex_destroy(&pmcdev->lock);
1357}
1358
1359static int pmc_core_probe(struct platform_device *pdev)
1360{
1361	static bool device_initialized;
1362	struct pmc_dev *pmcdev;
1363	const struct x86_cpu_id *cpu_id;
1364	int (*core_init)(struct pmc_dev *pmcdev);
1365	struct pmc *primary_pmc;
1366	int ret;
1367
1368	if (device_initialized)
1369		return -ENODEV;
1370
1371	pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1372	if (!pmcdev)
1373		return -ENOMEM;
1374
1375	pmcdev->crystal_freq = pmc_core_get_crystal_freq();
1376
1377	platform_set_drvdata(pdev, pmcdev);
1378	pmcdev->pdev = pdev;
1379
1380	cpu_id = x86_match_cpu(intel_pmc_core_ids);
1381	if (!cpu_id)
1382		return -ENODEV;
1383
1384	core_init = (int (*)(struct pmc_dev *))cpu_id->driver_data;
1385
1386	/* Primary PMC */
1387	primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1388	if (!primary_pmc)
1389		return -ENOMEM;
1390	pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1391
1392	/* The last element in msr_map is empty */
1393	pmcdev->num_of_pkgc = ARRAY_SIZE(msr_map) - 1;
1394	pmcdev->pkgc_res_cnt = devm_kcalloc(&pdev->dev,
1395					    pmcdev->num_of_pkgc,
1396					    sizeof(*pmcdev->pkgc_res_cnt),
1397					    GFP_KERNEL);
1398	if (!pmcdev->pkgc_res_cnt)
1399		return -ENOMEM;
1400
1401	/*
1402	 * Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here
1403	 * Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap
1404	 * in this case.
1405	 */
1406	if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids))
1407		core_init = cnp_core_init;
1408
1409	mutex_init(&pmcdev->lock);
1410	ret = core_init(pmcdev);
1411	if (ret) {
1412		pmc_core_clean_structure(pdev);
1413		return ret;
1414	}
1415
1416	pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1417	pmc_core_do_dmi_quirks(primary_pmc);
1418
1419	pmc_core_dbgfs_register(pmcdev);
1420	pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1421			       pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1422
1423	device_initialized = true;
1424	dev_info(&pdev->dev, " initialized\n");
1425
1426	return 0;
1427}
1428
1429static void pmc_core_remove(struct platform_device *pdev)
1430{
1431	struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1432	pmc_core_dbgfs_unregister(pmcdev);
1433	pmc_core_clean_structure(pdev);
1434}
1435
1436static bool warn_on_s0ix_failures;
1437module_param(warn_on_s0ix_failures, bool, 0644);
1438MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1439
1440static __maybe_unused int pmc_core_suspend(struct device *dev)
1441{
1442	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1443	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1444	unsigned int i;
1445
1446	if (pmcdev->suspend)
1447		pmcdev->suspend(pmcdev);
1448
1449	/* Check if the syspend will actually use S0ix */
1450	if (pm_suspend_via_firmware())
1451		return 0;
1452
1453	/* Save PKGC residency for checking later */
1454	for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1455		if (rdmsrl_safe(msr_map[i].bit_mask, &pmcdev->pkgc_res_cnt[i]))
1456			return -EIO;
1457	}
1458
1459	/* Save S0ix residency for checking later */
1460	if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1461		return -EIO;
1462
1463	return 0;
1464}
1465
1466static inline bool pmc_core_is_deepest_pkgc_failed(struct pmc_dev *pmcdev)
1467{
1468	u32 deepest_pkgc_msr = msr_map[pmcdev->num_of_pkgc - 1].bit_mask;
1469	u64 deepest_pkgc_residency;
1470
1471	if (rdmsrl_safe(deepest_pkgc_msr, &deepest_pkgc_residency))
1472		return false;
1473
1474	if (deepest_pkgc_residency == pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1])
1475		return true;
1476
1477	return false;
1478}
1479
1480static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1481{
1482	u64 s0ix_counter;
1483
1484	if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1485		return false;
1486
1487	pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1488
1489	if (s0ix_counter == pmcdev->s0ix_counter)
1490		return true;
1491
1492	return false;
1493}
1494
1495int pmc_core_resume_common(struct pmc_dev *pmcdev)
1496{
1497	struct device *dev = &pmcdev->pdev->dev;
1498	struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1499	const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1500	int offset = pmc->map->lpm_status_offset;
1501	int i;
1502
1503	/* Check if the syspend used S0ix */
1504	if (pm_suspend_via_firmware())
1505		return 0;
1506
1507	if (!pmc_core_is_s0ix_failed(pmcdev))
1508		return 0;
1509
1510	if (!warn_on_s0ix_failures)
1511		return 0;
1512
1513	if (pmc_core_is_deepest_pkgc_failed(pmcdev)) {
1514		/* S0ix failed because of deepest PKGC entry failure */
1515		dev_info(dev, "CPU did not enter %s!!! (%s cnt=0x%llx)\n",
1516			 msr_map[pmcdev->num_of_pkgc - 1].name,
1517			 msr_map[pmcdev->num_of_pkgc - 1].name,
1518			 pmcdev->pkgc_res_cnt[pmcdev->num_of_pkgc - 1]);
1519
1520		for (i = 0; i < pmcdev->num_of_pkgc; i++) {
1521			u64 pc_cnt;
1522
1523			if (!rdmsrl_safe(msr_map[i].bit_mask, &pc_cnt)) {
1524				dev_info(dev, "Prev %s cnt = 0x%llx, Current %s cnt = 0x%llx\n",
1525					 msr_map[i].name, pmcdev->pkgc_res_cnt[i],
1526					 msr_map[i].name, pc_cnt);
1527			}
1528		}
1529		return 0;
1530	}
1531
1532	/* The real interesting case - S0ix failed - lets ask PMC why. */
1533	dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1534		 pmcdev->s0ix_counter);
1535
1536	if (pmc->map->slps0_dbg_maps)
1537		pmc_core_slps0_display(pmc, dev, NULL);
1538
1539	for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1540		struct pmc *pmc = pmcdev->pmcs[i];
1541
1542		if (!pmc)
1543			continue;
1544		if (pmc->map->lpm_sts)
1545			pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps);
1546	}
1547
1548	return 0;
1549}
1550
1551static __maybe_unused int pmc_core_resume(struct device *dev)
1552{
1553	struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1554
1555	if (pmcdev->resume)
1556		return pmcdev->resume(pmcdev);
1557
1558	return pmc_core_resume_common(pmcdev);
1559}
1560
1561static const struct dev_pm_ops pmc_core_pm_ops = {
1562	SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
1563};
1564
1565static const struct acpi_device_id pmc_core_acpi_ids[] = {
1566	{"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
1567	{ }
1568};
1569MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
1570
1571static struct platform_driver pmc_core_driver = {
1572	.driver = {
1573		.name = "intel_pmc_core",
1574		.acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
1575		.pm = &pmc_core_pm_ops,
1576		.dev_groups = pmc_dev_groups,
1577	},
1578	.probe = pmc_core_probe,
1579	.remove_new = pmc_core_remove,
1580};
1581
1582module_platform_driver(pmc_core_driver);
1583
1584MODULE_LICENSE("GPL v2");
1585MODULE_DESCRIPTION("Intel PMC Core Driver");