Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (c) 2009, Microsoft Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  15 * Place - Suite 330, Boston, MA 02111-1307 USA.
  16 *
  17 * Authors:
  18 *   Haiyang Zhang <haiyangz@microsoft.com>
  19 *   Hank Janssen  <hjanssen@microsoft.com>
  20 *   K. Y. Srinivasan <kys@microsoft.com>
  21 *
  22 */
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/device.h>
 
  28#include <linux/interrupt.h>
  29#include <linux/sysctl.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/completion.h>
  33#include <linux/hyperv.h>
  34#include <linux/kernel_stat.h>
 
  35#include <linux/clockchips.h>
  36#include <linux/cpu.h>
  37#include <asm/hyperv.h>
  38#include <asm/hypervisor.h>
  39#include <asm/mshyperv.h>
  40#include <linux/notifier.h>
 
  41#include <linux/ptrace.h>
  42#include <linux/screen_info.h>
  43#include <linux/kdebug.h>
 
 
 
 
 
 
 
  44#include "hyperv_vmbus.h"
  45
  46static struct acpi_device  *hv_acpi_dev;
  47
  48static struct completion probe_event;
  49
  50
  51static void hyperv_report_panic(struct pt_regs *regs)
  52{
  53	static bool panic_reported;
  54
  55	/*
  56	 * We prefer to report panic on 'die' chain as we have proper
  57	 * registers to report, but if we miss it (e.g. on BUG()) we need
  58	 * to report it on 'panic'.
  59	 */
  60	if (panic_reported)
  61		return;
  62	panic_reported = true;
  63
  64	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
  65	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
  66	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
  67	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
  68	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
  69
  70	/*
  71	 * Let Hyper-V know there is crash data available
  72	 */
  73	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
  74}
  75
  76static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
 
 
 
 
 
 
 
 
 
  77			      void *args)
  78{
  79	struct pt_regs *regs;
  80
  81	regs = current_pt_regs();
  82
  83	hyperv_report_panic(regs);
  84	return NOTIFY_DONE;
  85}
  86
  87static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
  88			    void *args)
  89{
  90	struct die_args *die = (struct die_args *)args;
  91	struct pt_regs *regs = die->regs;
  92
  93	hyperv_report_panic(regs);
  94	return NOTIFY_DONE;
  95}
  96
  97static struct notifier_block hyperv_die_block = {
  98	.notifier_call = hyperv_die_event,
  99};
 100static struct notifier_block hyperv_panic_block = {
 101	.notifier_call = hyperv_panic_event,
 102};
 103
 104struct resource *hyperv_mmio;
 
 
 
 105
 106static int vmbus_exists(void)
 107{
 108	if (hv_acpi_dev == NULL)
 109		return -ENODEV;
 110
 111	return 0;
 112}
 113
 114#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
 115static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
 116{
 117	int i;
 118	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
 119		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
 120}
 121
 122static u8 channel_monitor_group(struct vmbus_channel *channel)
 123{
 124	return (u8)channel->offermsg.monitorid / 32;
 125}
 126
 127static u8 channel_monitor_offset(struct vmbus_channel *channel)
 128{
 129	return (u8)channel->offermsg.monitorid % 32;
 130}
 131
 132static u32 channel_pending(struct vmbus_channel *channel,
 133			   struct hv_monitor_page *monitor_page)
 134{
 135	u8 monitor_group = channel_monitor_group(channel);
 
 136	return monitor_page->trigger_group[monitor_group].pending;
 137}
 138
 139static u32 channel_latency(struct vmbus_channel *channel,
 140			   struct hv_monitor_page *monitor_page)
 141{
 142	u8 monitor_group = channel_monitor_group(channel);
 143	u8 monitor_offset = channel_monitor_offset(channel);
 
 144	return monitor_page->latency[monitor_group][monitor_offset];
 145}
 146
 147static u32 channel_conn_id(struct vmbus_channel *channel,
 148			   struct hv_monitor_page *monitor_page)
 149{
 150	u8 monitor_group = channel_monitor_group(channel);
 151	u8 monitor_offset = channel_monitor_offset(channel);
 
 152	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
 153}
 154
 155static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
 156		       char *buf)
 157{
 158	struct hv_device *hv_dev = device_to_hv_device(dev);
 159
 160	if (!hv_dev->channel)
 161		return -ENODEV;
 162	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
 163}
 164static DEVICE_ATTR_RO(id);
 165
 166static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
 167			  char *buf)
 168{
 169	struct hv_device *hv_dev = device_to_hv_device(dev);
 170
 171	if (!hv_dev->channel)
 172		return -ENODEV;
 173	return sprintf(buf, "%d\n", hv_dev->channel->state);
 174}
 175static DEVICE_ATTR_RO(state);
 176
 177static ssize_t monitor_id_show(struct device *dev,
 178			       struct device_attribute *dev_attr, char *buf)
 179{
 180	struct hv_device *hv_dev = device_to_hv_device(dev);
 181
 182	if (!hv_dev->channel)
 183		return -ENODEV;
 184	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
 185}
 186static DEVICE_ATTR_RO(monitor_id);
 187
 188static ssize_t class_id_show(struct device *dev,
 189			       struct device_attribute *dev_attr, char *buf)
 190{
 191	struct hv_device *hv_dev = device_to_hv_device(dev);
 192
 193	if (!hv_dev->channel)
 194		return -ENODEV;
 195	return sprintf(buf, "{%pUl}\n",
 196		       hv_dev->channel->offermsg.offer.if_type.b);
 197}
 198static DEVICE_ATTR_RO(class_id);
 199
 200static ssize_t device_id_show(struct device *dev,
 201			      struct device_attribute *dev_attr, char *buf)
 202{
 203	struct hv_device *hv_dev = device_to_hv_device(dev);
 204
 205	if (!hv_dev->channel)
 206		return -ENODEV;
 207	return sprintf(buf, "{%pUl}\n",
 208		       hv_dev->channel->offermsg.offer.if_instance.b);
 209}
 210static DEVICE_ATTR_RO(device_id);
 211
 212static ssize_t modalias_show(struct device *dev,
 213			     struct device_attribute *dev_attr, char *buf)
 214{
 215	struct hv_device *hv_dev = device_to_hv_device(dev);
 216	char alias_name[VMBUS_ALIAS_LEN + 1];
 217
 218	print_alias_name(hv_dev, alias_name);
 219	return sprintf(buf, "vmbus:%s\n", alias_name);
 220}
 221static DEVICE_ATTR_RO(modalias);
 222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223static ssize_t server_monitor_pending_show(struct device *dev,
 224					   struct device_attribute *dev_attr,
 225					   char *buf)
 226{
 227	struct hv_device *hv_dev = device_to_hv_device(dev);
 228
 229	if (!hv_dev->channel)
 230		return -ENODEV;
 231	return sprintf(buf, "%d\n",
 232		       channel_pending(hv_dev->channel,
 233				       vmbus_connection.monitor_pages[1]));
 234}
 235static DEVICE_ATTR_RO(server_monitor_pending);
 236
 237static ssize_t client_monitor_pending_show(struct device *dev,
 238					   struct device_attribute *dev_attr,
 239					   char *buf)
 240{
 241	struct hv_device *hv_dev = device_to_hv_device(dev);
 242
 243	if (!hv_dev->channel)
 244		return -ENODEV;
 245	return sprintf(buf, "%d\n",
 246		       channel_pending(hv_dev->channel,
 247				       vmbus_connection.monitor_pages[1]));
 248}
 249static DEVICE_ATTR_RO(client_monitor_pending);
 250
 251static ssize_t server_monitor_latency_show(struct device *dev,
 252					   struct device_attribute *dev_attr,
 253					   char *buf)
 254{
 255	struct hv_device *hv_dev = device_to_hv_device(dev);
 256
 257	if (!hv_dev->channel)
 258		return -ENODEV;
 259	return sprintf(buf, "%d\n",
 260		       channel_latency(hv_dev->channel,
 261				       vmbus_connection.monitor_pages[0]));
 262}
 263static DEVICE_ATTR_RO(server_monitor_latency);
 264
 265static ssize_t client_monitor_latency_show(struct device *dev,
 266					   struct device_attribute *dev_attr,
 267					   char *buf)
 268{
 269	struct hv_device *hv_dev = device_to_hv_device(dev);
 270
 271	if (!hv_dev->channel)
 272		return -ENODEV;
 273	return sprintf(buf, "%d\n",
 274		       channel_latency(hv_dev->channel,
 275				       vmbus_connection.monitor_pages[1]));
 276}
 277static DEVICE_ATTR_RO(client_monitor_latency);
 278
 279static ssize_t server_monitor_conn_id_show(struct device *dev,
 280					   struct device_attribute *dev_attr,
 281					   char *buf)
 282{
 283	struct hv_device *hv_dev = device_to_hv_device(dev);
 284
 285	if (!hv_dev->channel)
 286		return -ENODEV;
 287	return sprintf(buf, "%d\n",
 288		       channel_conn_id(hv_dev->channel,
 289				       vmbus_connection.monitor_pages[0]));
 290}
 291static DEVICE_ATTR_RO(server_monitor_conn_id);
 292
 293static ssize_t client_monitor_conn_id_show(struct device *dev,
 294					   struct device_attribute *dev_attr,
 295					   char *buf)
 296{
 297	struct hv_device *hv_dev = device_to_hv_device(dev);
 298
 299	if (!hv_dev->channel)
 300		return -ENODEV;
 301	return sprintf(buf, "%d\n",
 302		       channel_conn_id(hv_dev->channel,
 303				       vmbus_connection.monitor_pages[1]));
 304}
 305static DEVICE_ATTR_RO(client_monitor_conn_id);
 306
 307static ssize_t out_intr_mask_show(struct device *dev,
 308				  struct device_attribute *dev_attr, char *buf)
 309{
 310	struct hv_device *hv_dev = device_to_hv_device(dev);
 311	struct hv_ring_buffer_debug_info outbound;
 
 312
 313	if (!hv_dev->channel)
 314		return -ENODEV;
 315	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
 316	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
 
 
 
 
 
 317}
 318static DEVICE_ATTR_RO(out_intr_mask);
 319
 320static ssize_t out_read_index_show(struct device *dev,
 321				   struct device_attribute *dev_attr, char *buf)
 322{
 323	struct hv_device *hv_dev = device_to_hv_device(dev);
 324	struct hv_ring_buffer_debug_info outbound;
 
 325
 326	if (!hv_dev->channel)
 327		return -ENODEV;
 328	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
 329	return sprintf(buf, "%d\n", outbound.current_read_index);
 
 
 
 
 330}
 331static DEVICE_ATTR_RO(out_read_index);
 332
 333static ssize_t out_write_index_show(struct device *dev,
 334				    struct device_attribute *dev_attr,
 335				    char *buf)
 336{
 337	struct hv_device *hv_dev = device_to_hv_device(dev);
 338	struct hv_ring_buffer_debug_info outbound;
 
 339
 340	if (!hv_dev->channel)
 341		return -ENODEV;
 342	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
 343	return sprintf(buf, "%d\n", outbound.current_write_index);
 
 
 
 
 344}
 345static DEVICE_ATTR_RO(out_write_index);
 346
 347static ssize_t out_read_bytes_avail_show(struct device *dev,
 348					 struct device_attribute *dev_attr,
 349					 char *buf)
 350{
 351	struct hv_device *hv_dev = device_to_hv_device(dev);
 352	struct hv_ring_buffer_debug_info outbound;
 
 353
 354	if (!hv_dev->channel)
 355		return -ENODEV;
 356	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
 357	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
 
 
 
 
 358}
 359static DEVICE_ATTR_RO(out_read_bytes_avail);
 360
 361static ssize_t out_write_bytes_avail_show(struct device *dev,
 362					  struct device_attribute *dev_attr,
 363					  char *buf)
 364{
 365	struct hv_device *hv_dev = device_to_hv_device(dev);
 366	struct hv_ring_buffer_debug_info outbound;
 
 367
 368	if (!hv_dev->channel)
 369		return -ENODEV;
 370	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
 371	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
 
 
 
 
 372}
 373static DEVICE_ATTR_RO(out_write_bytes_avail);
 374
 375static ssize_t in_intr_mask_show(struct device *dev,
 376				 struct device_attribute *dev_attr, char *buf)
 377{
 378	struct hv_device *hv_dev = device_to_hv_device(dev);
 379	struct hv_ring_buffer_debug_info inbound;
 
 380
 381	if (!hv_dev->channel)
 382		return -ENODEV;
 383	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 384	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
 
 
 
 
 385}
 386static DEVICE_ATTR_RO(in_intr_mask);
 387
 388static ssize_t in_read_index_show(struct device *dev,
 389				  struct device_attribute *dev_attr, char *buf)
 390{
 391	struct hv_device *hv_dev = device_to_hv_device(dev);
 392	struct hv_ring_buffer_debug_info inbound;
 
 393
 394	if (!hv_dev->channel)
 395		return -ENODEV;
 396	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 397	return sprintf(buf, "%d\n", inbound.current_read_index);
 
 
 
 
 398}
 399static DEVICE_ATTR_RO(in_read_index);
 400
 401static ssize_t in_write_index_show(struct device *dev,
 402				   struct device_attribute *dev_attr, char *buf)
 403{
 404	struct hv_device *hv_dev = device_to_hv_device(dev);
 405	struct hv_ring_buffer_debug_info inbound;
 
 406
 407	if (!hv_dev->channel)
 408		return -ENODEV;
 409	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 410	return sprintf(buf, "%d\n", inbound.current_write_index);
 
 
 
 
 411}
 412static DEVICE_ATTR_RO(in_write_index);
 413
 414static ssize_t in_read_bytes_avail_show(struct device *dev,
 415					struct device_attribute *dev_attr,
 416					char *buf)
 417{
 418	struct hv_device *hv_dev = device_to_hv_device(dev);
 419	struct hv_ring_buffer_debug_info inbound;
 
 420
 421	if (!hv_dev->channel)
 422		return -ENODEV;
 423	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 424	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
 
 
 
 
 425}
 426static DEVICE_ATTR_RO(in_read_bytes_avail);
 427
 428static ssize_t in_write_bytes_avail_show(struct device *dev,
 429					 struct device_attribute *dev_attr,
 430					 char *buf)
 431{
 432	struct hv_device *hv_dev = device_to_hv_device(dev);
 433	struct hv_ring_buffer_debug_info inbound;
 
 434
 435	if (!hv_dev->channel)
 436		return -ENODEV;
 437	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 438	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
 
 
 
 
 439}
 440static DEVICE_ATTR_RO(in_write_bytes_avail);
 441
 442static ssize_t channel_vp_mapping_show(struct device *dev,
 443				       struct device_attribute *dev_attr,
 444				       char *buf)
 445{
 446	struct hv_device *hv_dev = device_to_hv_device(dev);
 447	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
 448	unsigned long flags;
 449	int buf_size = PAGE_SIZE, n_written, tot_written;
 450	struct list_head *cur;
 451
 452	if (!channel)
 453		return -ENODEV;
 454
 455	tot_written = snprintf(buf, buf_size, "%u:%u\n",
 456		channel->offermsg.child_relid, channel->target_cpu);
 457
 458	spin_lock_irqsave(&channel->lock, flags);
 
 
 459
 460	list_for_each(cur, &channel->sc_list) {
 461		if (tot_written >= buf_size - 1)
 462			break;
 463
 464		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
 465		n_written = scnprintf(buf + tot_written,
 466				     buf_size - tot_written,
 467				     "%u:%u\n",
 468				     cur_sc->offermsg.child_relid,
 469				     cur_sc->target_cpu);
 470		tot_written += n_written;
 471	}
 472
 473	spin_unlock_irqrestore(&channel->lock, flags);
 474
 475	return tot_written;
 476}
 477static DEVICE_ATTR_RO(channel_vp_mapping);
 478
 479static ssize_t vendor_show(struct device *dev,
 480			   struct device_attribute *dev_attr,
 481			   char *buf)
 482{
 483	struct hv_device *hv_dev = device_to_hv_device(dev);
 484	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
 
 485}
 486static DEVICE_ATTR_RO(vendor);
 487
 488static ssize_t device_show(struct device *dev,
 489			   struct device_attribute *dev_attr,
 490			   char *buf)
 491{
 492	struct hv_device *hv_dev = device_to_hv_device(dev);
 493	return sprintf(buf, "0x%x\n", hv_dev->device_id);
 
 494}
 495static DEVICE_ATTR_RO(device);
 496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
 498static struct attribute *vmbus_attrs[] = {
 499	&dev_attr_id.attr,
 500	&dev_attr_state.attr,
 501	&dev_attr_monitor_id.attr,
 502	&dev_attr_class_id.attr,
 503	&dev_attr_device_id.attr,
 504	&dev_attr_modalias.attr,
 
 
 
 505	&dev_attr_server_monitor_pending.attr,
 506	&dev_attr_client_monitor_pending.attr,
 507	&dev_attr_server_monitor_latency.attr,
 508	&dev_attr_client_monitor_latency.attr,
 509	&dev_attr_server_monitor_conn_id.attr,
 510	&dev_attr_client_monitor_conn_id.attr,
 511	&dev_attr_out_intr_mask.attr,
 512	&dev_attr_out_read_index.attr,
 513	&dev_attr_out_write_index.attr,
 514	&dev_attr_out_read_bytes_avail.attr,
 515	&dev_attr_out_write_bytes_avail.attr,
 516	&dev_attr_in_intr_mask.attr,
 517	&dev_attr_in_read_index.attr,
 518	&dev_attr_in_write_index.attr,
 519	&dev_attr_in_read_bytes_avail.attr,
 520	&dev_attr_in_write_bytes_avail.attr,
 521	&dev_attr_channel_vp_mapping.attr,
 522	&dev_attr_vendor.attr,
 523	&dev_attr_device.attr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524	NULL,
 525};
 526ATTRIBUTE_GROUPS(vmbus);
 
 
 
 527
 528/*
 529 * vmbus_uevent - add uevent for our device
 530 *
 531 * This routine is invoked when a device is added or removed on the vmbus to
 532 * generate a uevent to udev in the userspace. The udev will then look at its
 533 * rule and the uevent generated here to load the appropriate driver
 534 *
 535 * The alias string will be of the form vmbus:guid where guid is the string
 536 * representation of the device guid (each byte of the guid will be
 537 * represented with two hex characters.
 538 */
 539static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
 540{
 541	struct hv_device *dev = device_to_hv_device(device);
 542	int ret;
 543	char alias_name[VMBUS_ALIAS_LEN + 1];
 544
 545	print_alias_name(dev, alias_name);
 546	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
 547	return ret;
 548}
 549
 550static const uuid_le null_guid;
 
 
 
 
 
 
 
 
 
 
 
 551
 552static inline bool is_null_guid(const uuid_le *guid)
 
 553{
 554	if (uuid_le_cmp(*guid, null_guid))
 555		return false;
 556	return true;
 
 
 
 
 
 
 
 
 
 
 557}
 558
 
 
 559/*
 560 * Return a matching hv_vmbus_device_id pointer.
 561 * If there is no match, return NULL.
 562 */
 563static const struct hv_vmbus_device_id *hv_vmbus_get_id(
 564					const struct hv_vmbus_device_id *id,
 565					const uuid_le *guid)
 566{
 567	for (; !is_null_guid(&id->guid); id++)
 568		if (!uuid_le_cmp(id->guid, *guid))
 569			return id;
 570
 571	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575
 576/*
 577 * vmbus_match - Attempt to match the specified device to the specified driver
 578 */
 579static int vmbus_match(struct device *device, struct device_driver *driver)
 580{
 581	struct hv_driver *drv = drv_to_hv_drv(driver);
 582	struct hv_device *hv_dev = device_to_hv_device(device);
 583
 584	/* The hv_sock driver handles all hv_sock offers. */
 585	if (is_hvsock_channel(hv_dev->channel))
 586		return drv->hvsock;
 587
 588	if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type))
 589		return 1;
 590
 591	return 0;
 592}
 593
 594/*
 595 * vmbus_probe - Add the new vmbus's child device
 596 */
 597static int vmbus_probe(struct device *child_device)
 598{
 599	int ret = 0;
 600	struct hv_driver *drv =
 601			drv_to_hv_drv(child_device->driver);
 602	struct hv_device *dev = device_to_hv_device(child_device);
 603	const struct hv_vmbus_device_id *dev_id;
 604
 605	dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type);
 606	if (drv->probe) {
 607		ret = drv->probe(dev, dev_id);
 608		if (ret != 0)
 609			pr_err("probe failed for device %s (%d)\n",
 610			       dev_name(child_device), ret);
 611
 612	} else {
 613		pr_err("probe not set for driver %s\n",
 614		       dev_name(child_device));
 615		ret = -ENODEV;
 616	}
 617	return ret;
 618}
 619
 620/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * vmbus_remove - Remove a vmbus device
 622 */
 623static int vmbus_remove(struct device *child_device)
 624{
 625	struct hv_driver *drv;
 626	struct hv_device *dev = device_to_hv_device(child_device);
 627
 628	if (child_device->driver) {
 629		drv = drv_to_hv_drv(child_device->driver);
 630		if (drv->remove)
 631			drv->remove(dev);
 632	}
 633
 634	return 0;
 635}
 636
 637
 638/*
 639 * vmbus_shutdown - Shutdown a vmbus device
 640 */
 641static void vmbus_shutdown(struct device *child_device)
 642{
 643	struct hv_driver *drv;
 644	struct hv_device *dev = device_to_hv_device(child_device);
 645
 646
 647	/* The device may not be attached yet */
 648	if (!child_device->driver)
 649		return;
 650
 651	drv = drv_to_hv_drv(child_device->driver);
 652
 653	if (drv->shutdown)
 654		drv->shutdown(dev);
 
 
 
 
 
 
 
 
 
 
 655
 656	return;
 
 
 
 
 
 
 
 
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659
 660/*
 661 * vmbus_device_release - Final callback release of the vmbus child device
 662 */
 663static void vmbus_device_release(struct device *device)
 664{
 665	struct hv_device *hv_dev = device_to_hv_device(device);
 666	struct vmbus_channel *channel = hv_dev->channel;
 667
 668	hv_process_channel_removal(channel,
 669				   channel->offermsg.child_relid);
 670	kfree(hv_dev);
 671
 
 
 
 
 672}
 673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674/* The one and only one */
 675static struct bus_type  hv_bus = {
 676	.name =		"vmbus",
 677	.match =		vmbus_match,
 678	.shutdown =		vmbus_shutdown,
 679	.remove =		vmbus_remove,
 680	.probe =		vmbus_probe,
 681	.uevent =		vmbus_uevent,
 682	.dev_groups =		vmbus_groups,
 
 
 
 
 683};
 684
 685struct onmessage_work_context {
 686	struct work_struct work;
 687	struct hv_message msg;
 
 
 
 688};
 689
 690static void vmbus_onmessage_work(struct work_struct *work)
 691{
 692	struct onmessage_work_context *ctx;
 693
 694	/* Do not process messages if we're in DISCONNECTED state */
 695	if (vmbus_connection.conn_state == DISCONNECTED)
 696		return;
 697
 698	ctx = container_of(work, struct onmessage_work_context,
 699			   work);
 700	vmbus_onmessage(&ctx->msg);
 
 701	kfree(ctx);
 702}
 703
 704static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
 705{
 706	struct clock_event_device *dev = hv_context.clk_evt[cpu];
 707
 708	if (dev->event_handler)
 709		dev->event_handler(dev);
 710
 711	vmbus_signal_eom(msg);
 712}
 713
 714void vmbus_on_msg_dpc(unsigned long data)
 715{
 716	int cpu = smp_processor_id();
 717	void *page_addr = hv_context.synic_message_page[cpu];
 718	struct hv_message *msg = (struct hv_message *)page_addr +
 719				  VMBUS_MESSAGE_SINT;
 720	struct vmbus_channel_message_header *hdr;
 721	struct vmbus_channel_message_table_entry *entry;
 
 722	struct onmessage_work_context *ctx;
 
 
 723
 724	if (msg->header.message_type == HVMSG_NONE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725		/* no msg */
 726		return;
 727
 728	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
 
 
 
 729
 730	if (hdr->msgtype >= CHANNELMSG_COUNT) {
 731		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732		goto msg_handled;
 733	}
 734
 735	entry = &channel_message_table[hdr->msgtype];
 736	if (entry->handler_type	== VMHT_BLOCKING) {
 737		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
 738		if (ctx == NULL)
 739			return;
 740
 741		INIT_WORK(&ctx->work, vmbus_onmessage_work);
 742		memcpy(&ctx->msg, msg, sizeof(*msg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744		queue_work(vmbus_connection.work_queue, &ctx->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745	} else
 746		entry->message_handler(hdr);
 747
 748msg_handled:
 749	vmbus_signal_eom(msg);
 750}
 751
 752static void vmbus_isr(void)
 
 
 
 
 
 753{
 754	int cpu = smp_processor_id();
 755	void *page_addr;
 756	struct hv_message *msg;
 757	union hv_synic_event_flags *event;
 758	bool handled = false;
 759
 760	page_addr = hv_context.synic_event_page[cpu];
 761	if (page_addr == NULL)
 762		return;
 763
 764	event = (union hv_synic_event_flags *)page_addr +
 765					 VMBUS_MESSAGE_SINT;
 766	/*
 767	 * Check for events before checking for messages. This is the order
 768	 * in which events and messages are checked in Windows guests on
 769	 * Hyper-V, and the Windows team suggested we do the same.
 770	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772	if ((vmbus_proto_version == VERSION_WS2008) ||
 773		(vmbus_proto_version == VERSION_WIN7)) {
 774
 775		/* Since we are a child, we only need to check bit 0 */
 776		if (sync_test_and_clear_bit(0,
 777			(unsigned long *) &event->flags32[0])) {
 778			handled = true;
 779		}
 780	} else {
 781		/*
 782		 * Our host is win8 or above. The signaling mechanism
 783		 * has changed and we can directly look at the event page.
 784		 * If bit n is set then we have an interrup on the channel
 785		 * whose id is n.
 786		 */
 787		handled = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788	}
 
 789
 790	if (handled)
 791		tasklet_schedule(hv_context.event_dpc[cpu]);
 
 
 
 
 792
 
 793
 794	page_addr = hv_context.synic_message_page[cpu];
 795	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
 796
 797	/* Check if there are actual msgs to be processed */
 798	if (msg->header.message_type != HVMSG_NONE) {
 799		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
 800			hv_process_timer_expiration(msg, cpu);
 801		else
 802			tasklet_schedule(hv_context.msg_dpc[cpu]);
 
 803	}
 
 
 804}
 805
 
 
 
 
 
 806
 807/*
 808 * vmbus_bus_init -Main vmbus driver initialization routine.
 809 *
 810 * Here, we
 811 *	- initialize the vmbus driver context
 812 *	- invoke the vmbus hv main init routine
 813 *	- retrieve the channel offers
 814 */
 815static int vmbus_bus_init(void)
 816{
 817	int ret;
 818
 819	/* Hypervisor initialization...setup hypercall page..etc */
 820	ret = hv_init();
 821	if (ret != 0) {
 822		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
 823		return ret;
 824	}
 825
 826	ret = bus_register(&hv_bus);
 827	if (ret)
 828		goto err_cleanup;
 829
 830	hv_setup_vmbus_irq(vmbus_isr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	ret = hv_synic_alloc();
 833	if (ret)
 834		goto err_alloc;
 
 835	/*
 836	 * Initialize the per-cpu interrupt state and
 837	 * connect to the host.
 838	 */
 839	on_each_cpu(hv_synic_init, NULL, 1);
 
 
 
 
 
 840	ret = vmbus_connect();
 841	if (ret)
 842		goto err_connect;
 843
 844	if (vmbus_proto_version > VERSION_WIN7)
 845		cpu_hotplug_disable();
 846
 847	/*
 848	 * Only register if the crash MSRs are available
 
 849	 */
 850	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
 851		register_die_notifier(&hyperv_die_block);
 852		atomic_notifier_chain_register(&panic_notifier_list,
 853					       &hyperv_panic_block);
 854	}
 855
 856	vmbus_request_offers();
 857
 858	return 0;
 859
 860err_connect:
 861	on_each_cpu(hv_synic_cleanup, NULL, 1);
 862err_alloc:
 863	hv_synic_free();
 864	hv_remove_vmbus_irq();
 865
 
 
 
 
 
 866	bus_unregister(&hv_bus);
 867
 868err_cleanup:
 869	hv_cleanup();
 870
 871	return ret;
 872}
 873
 874/**
 875 * __vmbus_child_driver_register() - Register a vmbus's driver
 876 * @hv_driver: Pointer to driver structure you want to register
 877 * @owner: owner module of the drv
 878 * @mod_name: module name string
 879 *
 880 * Registers the given driver with Linux through the 'driver_register()' call
 881 * and sets up the hyper-v vmbus handling for this driver.
 882 * It will return the state of the 'driver_register()' call.
 883 *
 884 */
 885int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
 886{
 887	int ret;
 888
 889	pr_info("registering driver %s\n", hv_driver->name);
 890
 891	ret = vmbus_exists();
 892	if (ret < 0)
 893		return ret;
 894
 895	hv_driver->driver.name = hv_driver->name;
 896	hv_driver->driver.owner = owner;
 897	hv_driver->driver.mod_name = mod_name;
 898	hv_driver->driver.bus = &hv_bus;
 899
 
 
 
 900	ret = driver_register(&hv_driver->driver);
 901
 902	return ret;
 903}
 904EXPORT_SYMBOL_GPL(__vmbus_driver_register);
 905
 906/**
 907 * vmbus_driver_unregister() - Unregister a vmbus's driver
 908 * @hv_driver: Pointer to driver structure you want to
 909 *             un-register
 910 *
 911 * Un-register the given driver that was previous registered with a call to
 912 * vmbus_driver_register()
 913 */
 914void vmbus_driver_unregister(struct hv_driver *hv_driver)
 915{
 916	pr_info("unregistering driver %s\n", hv_driver->name);
 917
 918	if (!vmbus_exists())
 919		driver_unregister(&hv_driver->driver);
 
 
 920}
 921EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
 922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923/*
 924 * vmbus_device_create - Creates and registers a new child device
 925 * on the vmbus.
 926 */
 927struct hv_device *vmbus_device_create(const uuid_le *type,
 928				      const uuid_le *instance,
 929				      struct vmbus_channel *channel)
 930{
 931	struct hv_device *child_device_obj;
 932
 933	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
 934	if (!child_device_obj) {
 935		pr_err("Unable to allocate device object for child device\n");
 936		return NULL;
 937	}
 938
 939	child_device_obj->channel = channel;
 940	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
 941	memcpy(&child_device_obj->dev_instance, instance,
 942	       sizeof(uuid_le));
 943	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
 944
 945
 946	return child_device_obj;
 947}
 948
 949/*
 950 * vmbus_device_register - Register the child device
 951 */
 952int vmbus_device_register(struct hv_device *child_device_obj)
 953{
 954	int ret = 0;
 
 955
 956	dev_set_name(&child_device_obj->device, "vmbus_%d",
 957		     child_device_obj->channel->id);
 958
 959	child_device_obj->device.bus = &hv_bus;
 960	child_device_obj->device.parent = &hv_acpi_dev->dev;
 961	child_device_obj->device.release = vmbus_device_release;
 962
 
 
 
 
 963	/*
 964	 * Register with the LDM. This will kick off the driver/device
 965	 * binding...which will eventually call vmbus_match() and vmbus_probe()
 966	 */
 967	ret = device_register(&child_device_obj->device);
 968
 969	if (ret)
 970		pr_err("Unable to register child device\n");
 971	else
 972		pr_debug("child device %s registered\n",
 973			dev_name(&child_device_obj->device));
 974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	return ret;
 976}
 977
 978/*
 979 * vmbus_device_unregister - Remove the specified child device
 980 * from the vmbus.
 981 */
 982void vmbus_device_unregister(struct hv_device *device_obj)
 983{
 984	pr_debug("child device %s unregistered\n",
 985		dev_name(&device_obj->device));
 986
 
 
 987	/*
 988	 * Kick off the process of unregistering the device.
 989	 * This will call vmbus_remove() and eventually vmbus_device_release()
 990	 */
 991	device_unregister(&device_obj->device);
 992}
 993
 994
 995/*
 996 * VMBUS is an acpi enumerated device. Get the information we
 997 * need from DSDT.
 998 */
 999#define VTPM_BASE_ADDRESS 0xfed40000
1000static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1001{
1002	resource_size_t start = 0;
1003	resource_size_t end = 0;
1004	struct resource *new_res;
1005	struct resource **old_res = &hyperv_mmio;
1006	struct resource **prev_res = NULL;
 
1007
1008	switch (res->type) {
1009
1010	/*
1011	 * "Address" descriptors are for bus windows. Ignore
1012	 * "memory" descriptors, which are for registers on
1013	 * devices.
1014	 */
1015	case ACPI_RESOURCE_TYPE_ADDRESS32:
1016		start = res->data.address32.address.minimum;
1017		end = res->data.address32.address.maximum;
1018		break;
1019
1020	case ACPI_RESOURCE_TYPE_ADDRESS64:
1021		start = res->data.address64.address.minimum;
1022		end = res->data.address64.address.maximum;
1023		break;
1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025	default:
1026		/* Unused resource type */
1027		return AE_OK;
1028
1029	}
1030	/*
1031	 * Ignore ranges that are below 1MB, as they're not
1032	 * necessary or useful here.
1033	 */
1034	if (end < 0x100000)
1035		return AE_OK;
1036
1037	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1038	if (!new_res)
1039		return AE_NO_MEMORY;
1040
1041	/* If this range overlaps the virtual TPM, truncate it. */
1042	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1043		end = VTPM_BASE_ADDRESS;
1044
1045	new_res->name = "hyperv mmio";
1046	new_res->flags = IORESOURCE_MEM;
1047	new_res->start = start;
1048	new_res->end = end;
1049
1050	/*
1051	 * Stick ranges from higher in address space at the front of the list.
1052	 * If two ranges are adjacent, merge them.
1053	 */
1054	do {
1055		if (!*old_res) {
1056			*old_res = new_res;
1057			break;
1058		}
1059
1060		if (((*old_res)->end + 1) == new_res->start) {
1061			(*old_res)->end = new_res->end;
1062			kfree(new_res);
1063			break;
1064		}
1065
1066		if ((*old_res)->start == new_res->end + 1) {
1067			(*old_res)->start = new_res->start;
1068			kfree(new_res);
1069			break;
1070		}
1071
1072		if ((*old_res)->end < new_res->start) {
1073			new_res->sibling = *old_res;
1074			if (prev_res)
1075				(*prev_res)->sibling = new_res;
1076			*old_res = new_res;
1077			break;
1078		}
1079
1080		prev_res = old_res;
1081		old_res = &(*old_res)->sibling;
1082
1083	} while (1);
1084
1085	return AE_OK;
1086}
 
1087
1088static int vmbus_acpi_remove(struct acpi_device *device)
1089{
1090	struct resource *cur_res;
1091	struct resource *next_res;
1092
1093	if (hyperv_mmio) {
 
 
 
 
 
 
1094		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1095			next_res = cur_res->sibling;
1096			kfree(cur_res);
1097		}
1098	}
 
1099
1100	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101}
1102
1103/**
1104 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1105 * @new:		If successful, supplied a pointer to the
1106 *			allocated MMIO space.
1107 * @device_obj:		Identifies the caller
1108 * @min:		Minimum guest physical address of the
1109 *			allocation
1110 * @max:		Maximum guest physical address
1111 * @size:		Size of the range to be allocated
1112 * @align:		Alignment of the range to be allocated
1113 * @fb_overlap_ok:	Whether this allocation can be allowed
1114 *			to overlap the video frame buffer.
1115 *
1116 * This function walks the resources granted to VMBus by the
1117 * _CRS object in the ACPI namespace underneath the parent
1118 * "bridge" whether that's a root PCI bus in the Generation 1
1119 * case or a Module Device in the Generation 2 case.  It then
1120 * attempts to allocate from the global MMIO pool in a way that
1121 * matches the constraints supplied in these parameters and by
1122 * that _CRS.
1123 *
1124 * Return: 0 on success, -errno on failure
1125 */
1126int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1127			resource_size_t min, resource_size_t max,
1128			resource_size_t size, resource_size_t align,
1129			bool fb_overlap_ok)
1130{
1131	struct resource *iter;
1132	resource_size_t range_min, range_max, start, local_min, local_max;
1133	const char *dev_n = dev_name(&device_obj->device);
1134	u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1135	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1138		if ((iter->start >= max) || (iter->end <= min))
1139			continue;
1140
1141		range_min = iter->start;
1142		range_max = iter->end;
1143
1144		/* If this range overlaps the frame buffer, split it into
1145		   two tries. */
1146		for (i = 0; i < 2; i++) {
1147			local_min = range_min;
1148			local_max = range_max;
1149			if (fb_overlap_ok || (range_min >= fb_end) ||
1150			    (range_max <= screen_info.lfb_base)) {
1151				i++;
1152			} else {
1153				if ((range_min <= screen_info.lfb_base) &&
1154				    (range_max >= screen_info.lfb_base)) {
1155					/*
1156					 * The frame buffer is in this window,
1157					 * so trim this into the part that
1158					 * preceeds the frame buffer.
1159					 */
1160					local_max = screen_info.lfb_base - 1;
1161					range_min = fb_end;
1162				} else {
1163					range_min = fb_end;
1164					continue;
1165				}
1166			}
1167
1168			start = (local_min + align - 1) & ~(align - 1);
1169			for (; start + size - 1 <= local_max; start += align) {
1170				*new = request_mem_region_exclusive(start, size,
1171								    dev_n);
1172				if (*new)
1173					return 0;
1174			}
1175		}
1176	}
1177
1178	return -ENXIO;
 
 
1179}
1180EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1181
1182/**
1183 * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1184 * @cpu_number: CPU number in Linux terms
1185 *
1186 * This function returns the mapping between the Linux processor
1187 * number and the hypervisor's virtual processor number, useful
1188 * in making hypercalls and such that talk about specific
1189 * processors.
1190 *
1191 * Return: Virtual processor number in Hyper-V terms
 
1192 */
1193int vmbus_cpu_number_to_vp_number(int cpu_number)
1194{
1195	return hv_context.vp_index[cpu_number];
 
 
 
 
 
 
 
 
 
 
 
1196}
1197EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1198
1199static int vmbus_acpi_add(struct acpi_device *device)
 
1200{
1201	acpi_status result;
1202	int ret_val = -ENODEV;
1203	struct acpi_device *ancestor;
 
1204
1205	hv_acpi_dev = device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206
1207	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1208					vmbus_walk_resources, NULL);
1209
1210	if (ACPI_FAILURE(result))
1211		goto acpi_walk_err;
1212	/*
1213	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1214	 * firmware) is the VMOD that has the mmio ranges. Get that.
1215	 */
1216	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
 
 
1217		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1218					     vmbus_walk_resources, NULL);
1219
1220		if (ACPI_FAILURE(result))
1221			continue;
1222		if (hyperv_mmio)
 
1223			break;
 
1224	}
1225	ret_val = 0;
1226
1227acpi_walk_err:
1228	complete(&probe_event);
1229	if (ret_val)
1230		vmbus_acpi_remove(device);
1231	return ret_val;
1232}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233
1234static const struct acpi_device_id vmbus_acpi_device_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235	{"VMBUS", 0},
1236	{"VMBus", 0},
1237	{"", 0},
1238};
1239MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1240
1241static struct acpi_driver vmbus_acpi_driver = {
1242	.name = "vmbus",
1243	.ids = vmbus_acpi_device_ids,
1244	.ops = {
1245		.add = vmbus_acpi_add,
1246		.remove = vmbus_acpi_remove,
1247	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248};
1249
1250static void hv_kexec_handler(void)
1251{
1252	int cpu;
1253
1254	hv_synic_clockevents_cleanup();
1255	vmbus_initiate_unload(false);
1256	for_each_online_cpu(cpu)
1257		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1258	hv_cleanup();
1259};
1260
1261static void hv_crash_handler(struct pt_regs *regs)
1262{
 
 
1263	vmbus_initiate_unload(true);
1264	/*
1265	 * In crash handler we can't schedule synic cleanup for all CPUs,
1266	 * doing the cleanup for current CPU only. This should be sufficient
1267	 * for kdump.
1268	 */
1269	hv_synic_cleanup(NULL);
1270	hv_cleanup();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271};
1272
1273static int __init hv_acpi_init(void)
1274{
1275	int ret, t;
1276
1277	if (x86_hyper != &x86_hyper_ms_hyperv)
1278		return -ENODEV;
1279
1280	init_completion(&probe_event);
 
1281
1282	/*
1283	 * Get ACPI resources first.
1284	 */
1285	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1286
1287	if (ret)
1288		return ret;
1289
1290	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1291	if (t == 0) {
1292		ret = -ETIMEDOUT;
1293		goto cleanup;
1294	}
1295
 
 
 
 
 
 
 
 
 
 
 
 
 
1296	ret = vmbus_bus_init();
1297	if (ret)
1298		goto cleanup;
1299
1300	hv_setup_kexec_handler(hv_kexec_handler);
1301	hv_setup_crash_handler(hv_crash_handler);
1302
 
 
1303	return 0;
1304
1305cleanup:
1306	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1307	hv_acpi_dev = NULL;
1308	return ret;
1309}
1310
1311static void __exit vmbus_exit(void)
1312{
1313	int cpu;
1314
 
 
1315	hv_remove_kexec_handler();
1316	hv_remove_crash_handler();
1317	vmbus_connection.conn_state = DISCONNECTED;
1318	hv_synic_clockevents_cleanup();
1319	vmbus_disconnect();
1320	hv_remove_vmbus_irq();
1321	for_each_online_cpu(cpu)
1322		tasklet_kill(hv_context.msg_dpc[cpu]);
1323	vmbus_free_channels();
1324	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1325		unregister_die_notifier(&hyperv_die_block);
1326		atomic_notifier_chain_unregister(&panic_notifier_list,
1327						 &hyperv_panic_block);
1328	}
1329	bus_unregister(&hv_bus);
1330	hv_cleanup();
1331	for_each_online_cpu(cpu) {
1332		tasklet_kill(hv_context.event_dpc[cpu]);
1333		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
 
 
1334	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	hv_synic_free();
1336	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1337	if (vmbus_proto_version > VERSION_WIN7)
1338		cpu_hotplug_enable();
1339}
1340
1341
1342MODULE_LICENSE("GPL");
 
1343
1344subsys_initcall(hv_acpi_init);
1345module_exit(vmbus_exit);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 *   K. Y. Srinivasan <kys@microsoft.com>
 
   9 */
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/device.h>
  15#include <linux/platform_device.h>
  16#include <linux/interrupt.h>
  17#include <linux/sysctl.h>
  18#include <linux/slab.h>
  19#include <linux/acpi.h>
  20#include <linux/completion.h>
  21#include <linux/hyperv.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/of_address.h>
  24#include <linux/clockchips.h>
  25#include <linux/cpu.h>
  26#include <linux/sched/isolation.h>
  27#include <linux/sched/task_stack.h>
  28
  29#include <linux/delay.h>
  30#include <linux/panic_notifier.h>
  31#include <linux/ptrace.h>
  32#include <linux/screen_info.h>
  33#include <linux/efi.h>
  34#include <linux/random.h>
  35#include <linux/kernel.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/dma-map-ops.h>
  38#include <linux/pci.h>
  39#include <clocksource/hyperv_timer.h>
  40#include <asm/mshyperv.h>
  41#include "hyperv_vmbus.h"
  42
  43struct vmbus_dynid {
  44	struct list_head node;
  45	struct hv_vmbus_device_id id;
  46};
  47
  48static struct device  *hv_dev;
 
 
  49
  50static int hyperv_cpuhp_online;
 
 
 
 
 
 
 
  51
  52static long __percpu *vmbus_evt;
 
 
 
 
  53
  54/* Values parsed from ACPI DSDT */
  55int vmbus_irq;
  56int vmbus_interrupt;
 
 
  57
  58/*
  59 * The panic notifier below is responsible solely for unloading the
  60 * vmbus connection, which is necessary in a panic event.
  61 *
  62 * Notice an intrincate relation of this notifier with Hyper-V
  63 * framebuffer panic notifier exists - we need vmbus connection alive
  64 * there in order to succeed, so we need to order both with each other
  65 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
  66 */
  67static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
  68			      void *args)
  69{
  70	vmbus_initiate_unload(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71	return NOTIFY_DONE;
  72}
  73static struct notifier_block hyperv_panic_vmbus_unload_block = {
  74	.notifier_call	= hv_panic_vmbus_unload,
  75	.priority	= INT_MIN + 1, /* almost the latest one to execute */
 
 
 
  76};
  77
  78static const char *fb_mmio_name = "fb_range";
  79static struct resource *fb_mmio;
  80static struct resource *hyperv_mmio;
  81static DEFINE_MUTEX(hyperv_mmio_lock);
  82
  83static int vmbus_exists(void)
  84{
  85	if (hv_dev == NULL)
  86		return -ENODEV;
  87
  88	return 0;
  89}
  90
  91static u8 channel_monitor_group(const struct vmbus_channel *channel)
 
 
 
 
 
 
 
 
  92{
  93	return (u8)channel->offermsg.monitorid / 32;
  94}
  95
  96static u8 channel_monitor_offset(const struct vmbus_channel *channel)
  97{
  98	return (u8)channel->offermsg.monitorid % 32;
  99}
 100
 101static u32 channel_pending(const struct vmbus_channel *channel,
 102			   const struct hv_monitor_page *monitor_page)
 103{
 104	u8 monitor_group = channel_monitor_group(channel);
 105
 106	return monitor_page->trigger_group[monitor_group].pending;
 107}
 108
 109static u32 channel_latency(const struct vmbus_channel *channel,
 110			   const struct hv_monitor_page *monitor_page)
 111{
 112	u8 monitor_group = channel_monitor_group(channel);
 113	u8 monitor_offset = channel_monitor_offset(channel);
 114
 115	return monitor_page->latency[monitor_group][monitor_offset];
 116}
 117
 118static u32 channel_conn_id(struct vmbus_channel *channel,
 119			   struct hv_monitor_page *monitor_page)
 120{
 121	u8 monitor_group = channel_monitor_group(channel);
 122	u8 monitor_offset = channel_monitor_offset(channel);
 123
 124	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
 125}
 126
 127static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
 128		       char *buf)
 129{
 130	struct hv_device *hv_dev = device_to_hv_device(dev);
 131
 132	if (!hv_dev->channel)
 133		return -ENODEV;
 134	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
 135}
 136static DEVICE_ATTR_RO(id);
 137
 138static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
 139			  char *buf)
 140{
 141	struct hv_device *hv_dev = device_to_hv_device(dev);
 142
 143	if (!hv_dev->channel)
 144		return -ENODEV;
 145	return sysfs_emit(buf, "%d\n", hv_dev->channel->state);
 146}
 147static DEVICE_ATTR_RO(state);
 148
 149static ssize_t monitor_id_show(struct device *dev,
 150			       struct device_attribute *dev_attr, char *buf)
 151{
 152	struct hv_device *hv_dev = device_to_hv_device(dev);
 153
 154	if (!hv_dev->channel)
 155		return -ENODEV;
 156	return sysfs_emit(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
 157}
 158static DEVICE_ATTR_RO(monitor_id);
 159
 160static ssize_t class_id_show(struct device *dev,
 161			       struct device_attribute *dev_attr, char *buf)
 162{
 163	struct hv_device *hv_dev = device_to_hv_device(dev);
 164
 165	if (!hv_dev->channel)
 166		return -ENODEV;
 167	return sysfs_emit(buf, "{%pUl}\n",
 168			  &hv_dev->channel->offermsg.offer.if_type);
 169}
 170static DEVICE_ATTR_RO(class_id);
 171
 172static ssize_t device_id_show(struct device *dev,
 173			      struct device_attribute *dev_attr, char *buf)
 174{
 175	struct hv_device *hv_dev = device_to_hv_device(dev);
 176
 177	if (!hv_dev->channel)
 178		return -ENODEV;
 179	return sysfs_emit(buf, "{%pUl}\n",
 180			  &hv_dev->channel->offermsg.offer.if_instance);
 181}
 182static DEVICE_ATTR_RO(device_id);
 183
 184static ssize_t modalias_show(struct device *dev,
 185			     struct device_attribute *dev_attr, char *buf)
 186{
 187	struct hv_device *hv_dev = device_to_hv_device(dev);
 
 188
 189	return sysfs_emit(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
 
 190}
 191static DEVICE_ATTR_RO(modalias);
 192
 193#ifdef CONFIG_NUMA
 194static ssize_t numa_node_show(struct device *dev,
 195			      struct device_attribute *attr, char *buf)
 196{
 197	struct hv_device *hv_dev = device_to_hv_device(dev);
 198
 199	if (!hv_dev->channel)
 200		return -ENODEV;
 201
 202	return sysfs_emit(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
 203}
 204static DEVICE_ATTR_RO(numa_node);
 205#endif
 206
 207static ssize_t server_monitor_pending_show(struct device *dev,
 208					   struct device_attribute *dev_attr,
 209					   char *buf)
 210{
 211	struct hv_device *hv_dev = device_to_hv_device(dev);
 212
 213	if (!hv_dev->channel)
 214		return -ENODEV;
 215	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
 216			  vmbus_connection.monitor_pages[0]));
 
 217}
 218static DEVICE_ATTR_RO(server_monitor_pending);
 219
 220static ssize_t client_monitor_pending_show(struct device *dev,
 221					   struct device_attribute *dev_attr,
 222					   char *buf)
 223{
 224	struct hv_device *hv_dev = device_to_hv_device(dev);
 225
 226	if (!hv_dev->channel)
 227		return -ENODEV;
 228	return sysfs_emit(buf, "%d\n", channel_pending(hv_dev->channel,
 229			  vmbus_connection.monitor_pages[1]));
 
 230}
 231static DEVICE_ATTR_RO(client_monitor_pending);
 232
 233static ssize_t server_monitor_latency_show(struct device *dev,
 234					   struct device_attribute *dev_attr,
 235					   char *buf)
 236{
 237	struct hv_device *hv_dev = device_to_hv_device(dev);
 238
 239	if (!hv_dev->channel)
 240		return -ENODEV;
 241	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
 242			  vmbus_connection.monitor_pages[0]));
 
 243}
 244static DEVICE_ATTR_RO(server_monitor_latency);
 245
 246static ssize_t client_monitor_latency_show(struct device *dev,
 247					   struct device_attribute *dev_attr,
 248					   char *buf)
 249{
 250	struct hv_device *hv_dev = device_to_hv_device(dev);
 251
 252	if (!hv_dev->channel)
 253		return -ENODEV;
 254	return sysfs_emit(buf, "%d\n", channel_latency(hv_dev->channel,
 255			  vmbus_connection.monitor_pages[1]));
 
 256}
 257static DEVICE_ATTR_RO(client_monitor_latency);
 258
 259static ssize_t server_monitor_conn_id_show(struct device *dev,
 260					   struct device_attribute *dev_attr,
 261					   char *buf)
 262{
 263	struct hv_device *hv_dev = device_to_hv_device(dev);
 264
 265	if (!hv_dev->channel)
 266		return -ENODEV;
 267	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
 268			  vmbus_connection.monitor_pages[0]));
 
 269}
 270static DEVICE_ATTR_RO(server_monitor_conn_id);
 271
 272static ssize_t client_monitor_conn_id_show(struct device *dev,
 273					   struct device_attribute *dev_attr,
 274					   char *buf)
 275{
 276	struct hv_device *hv_dev = device_to_hv_device(dev);
 277
 278	if (!hv_dev->channel)
 279		return -ENODEV;
 280	return sysfs_emit(buf, "%d\n", channel_conn_id(hv_dev->channel,
 281			  vmbus_connection.monitor_pages[1]));
 
 282}
 283static DEVICE_ATTR_RO(client_monitor_conn_id);
 284
 285static ssize_t out_intr_mask_show(struct device *dev,
 286				  struct device_attribute *dev_attr, char *buf)
 287{
 288	struct hv_device *hv_dev = device_to_hv_device(dev);
 289	struct hv_ring_buffer_debug_info outbound;
 290	int ret;
 291
 292	if (!hv_dev->channel)
 293		return -ENODEV;
 294
 295	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 296					  &outbound);
 297	if (ret < 0)
 298		return ret;
 299
 300	return sysfs_emit(buf, "%d\n", outbound.current_interrupt_mask);
 301}
 302static DEVICE_ATTR_RO(out_intr_mask);
 303
 304static ssize_t out_read_index_show(struct device *dev,
 305				   struct device_attribute *dev_attr, char *buf)
 306{
 307	struct hv_device *hv_dev = device_to_hv_device(dev);
 308	struct hv_ring_buffer_debug_info outbound;
 309	int ret;
 310
 311	if (!hv_dev->channel)
 312		return -ENODEV;
 313
 314	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 315					  &outbound);
 316	if (ret < 0)
 317		return ret;
 318	return sysfs_emit(buf, "%d\n", outbound.current_read_index);
 319}
 320static DEVICE_ATTR_RO(out_read_index);
 321
 322static ssize_t out_write_index_show(struct device *dev,
 323				    struct device_attribute *dev_attr,
 324				    char *buf)
 325{
 326	struct hv_device *hv_dev = device_to_hv_device(dev);
 327	struct hv_ring_buffer_debug_info outbound;
 328	int ret;
 329
 330	if (!hv_dev->channel)
 331		return -ENODEV;
 332
 333	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 334					  &outbound);
 335	if (ret < 0)
 336		return ret;
 337	return sysfs_emit(buf, "%d\n", outbound.current_write_index);
 338}
 339static DEVICE_ATTR_RO(out_write_index);
 340
 341static ssize_t out_read_bytes_avail_show(struct device *dev,
 342					 struct device_attribute *dev_attr,
 343					 char *buf)
 344{
 345	struct hv_device *hv_dev = device_to_hv_device(dev);
 346	struct hv_ring_buffer_debug_info outbound;
 347	int ret;
 348
 349	if (!hv_dev->channel)
 350		return -ENODEV;
 351
 352	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 353					  &outbound);
 354	if (ret < 0)
 355		return ret;
 356	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_toread);
 357}
 358static DEVICE_ATTR_RO(out_read_bytes_avail);
 359
 360static ssize_t out_write_bytes_avail_show(struct device *dev,
 361					  struct device_attribute *dev_attr,
 362					  char *buf)
 363{
 364	struct hv_device *hv_dev = device_to_hv_device(dev);
 365	struct hv_ring_buffer_debug_info outbound;
 366	int ret;
 367
 368	if (!hv_dev->channel)
 369		return -ENODEV;
 370
 371	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
 372					  &outbound);
 373	if (ret < 0)
 374		return ret;
 375	return sysfs_emit(buf, "%d\n", outbound.bytes_avail_towrite);
 376}
 377static DEVICE_ATTR_RO(out_write_bytes_avail);
 378
 379static ssize_t in_intr_mask_show(struct device *dev,
 380				 struct device_attribute *dev_attr, char *buf)
 381{
 382	struct hv_device *hv_dev = device_to_hv_device(dev);
 383	struct hv_ring_buffer_debug_info inbound;
 384	int ret;
 385
 386	if (!hv_dev->channel)
 387		return -ENODEV;
 388
 389	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 390	if (ret < 0)
 391		return ret;
 392
 393	return sysfs_emit(buf, "%d\n", inbound.current_interrupt_mask);
 394}
 395static DEVICE_ATTR_RO(in_intr_mask);
 396
 397static ssize_t in_read_index_show(struct device *dev,
 398				  struct device_attribute *dev_attr, char *buf)
 399{
 400	struct hv_device *hv_dev = device_to_hv_device(dev);
 401	struct hv_ring_buffer_debug_info inbound;
 402	int ret;
 403
 404	if (!hv_dev->channel)
 405		return -ENODEV;
 406
 407	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 408	if (ret < 0)
 409		return ret;
 410
 411	return sysfs_emit(buf, "%d\n", inbound.current_read_index);
 412}
 413static DEVICE_ATTR_RO(in_read_index);
 414
 415static ssize_t in_write_index_show(struct device *dev,
 416				   struct device_attribute *dev_attr, char *buf)
 417{
 418	struct hv_device *hv_dev = device_to_hv_device(dev);
 419	struct hv_ring_buffer_debug_info inbound;
 420	int ret;
 421
 422	if (!hv_dev->channel)
 423		return -ENODEV;
 424
 425	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 426	if (ret < 0)
 427		return ret;
 428
 429	return sysfs_emit(buf, "%d\n", inbound.current_write_index);
 430}
 431static DEVICE_ATTR_RO(in_write_index);
 432
 433static ssize_t in_read_bytes_avail_show(struct device *dev,
 434					struct device_attribute *dev_attr,
 435					char *buf)
 436{
 437	struct hv_device *hv_dev = device_to_hv_device(dev);
 438	struct hv_ring_buffer_debug_info inbound;
 439	int ret;
 440
 441	if (!hv_dev->channel)
 442		return -ENODEV;
 443
 444	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 445	if (ret < 0)
 446		return ret;
 447
 448	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_toread);
 449}
 450static DEVICE_ATTR_RO(in_read_bytes_avail);
 451
 452static ssize_t in_write_bytes_avail_show(struct device *dev,
 453					 struct device_attribute *dev_attr,
 454					 char *buf)
 455{
 456	struct hv_device *hv_dev = device_to_hv_device(dev);
 457	struct hv_ring_buffer_debug_info inbound;
 458	int ret;
 459
 460	if (!hv_dev->channel)
 461		return -ENODEV;
 462
 463	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
 464	if (ret < 0)
 465		return ret;
 466
 467	return sysfs_emit(buf, "%d\n", inbound.bytes_avail_towrite);
 468}
 469static DEVICE_ATTR_RO(in_write_bytes_avail);
 470
 471static ssize_t channel_vp_mapping_show(struct device *dev,
 472				       struct device_attribute *dev_attr,
 473				       char *buf)
 474{
 475	struct hv_device *hv_dev = device_to_hv_device(dev);
 476	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
 477	int n_written;
 
 478	struct list_head *cur;
 479
 480	if (!channel)
 481		return -ENODEV;
 482
 483	mutex_lock(&vmbus_connection.channel_mutex);
 
 484
 485	n_written = sysfs_emit(buf, "%u:%u\n",
 486			       channel->offermsg.child_relid,
 487			       channel->target_cpu);
 488
 489	list_for_each(cur, &channel->sc_list) {
 
 
 490
 491		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
 492		n_written += sysfs_emit_at(buf, n_written, "%u:%u\n",
 493					  cur_sc->offermsg.child_relid,
 494					  cur_sc->target_cpu);
 
 
 
 495	}
 496
 497	mutex_unlock(&vmbus_connection.channel_mutex);
 498
 499	return n_written;
 500}
 501static DEVICE_ATTR_RO(channel_vp_mapping);
 502
 503static ssize_t vendor_show(struct device *dev,
 504			   struct device_attribute *dev_attr,
 505			   char *buf)
 506{
 507	struct hv_device *hv_dev = device_to_hv_device(dev);
 508
 509	return sysfs_emit(buf, "0x%x\n", hv_dev->vendor_id);
 510}
 511static DEVICE_ATTR_RO(vendor);
 512
 513static ssize_t device_show(struct device *dev,
 514			   struct device_attribute *dev_attr,
 515			   char *buf)
 516{
 517	struct hv_device *hv_dev = device_to_hv_device(dev);
 518
 519	return sysfs_emit(buf, "0x%x\n", hv_dev->device_id);
 520}
 521static DEVICE_ATTR_RO(device);
 522
 523static ssize_t driver_override_store(struct device *dev,
 524				     struct device_attribute *attr,
 525				     const char *buf, size_t count)
 526{
 527	struct hv_device *hv_dev = device_to_hv_device(dev);
 528	int ret;
 529
 530	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
 531	if (ret)
 532		return ret;
 533
 534	return count;
 535}
 536
 537static ssize_t driver_override_show(struct device *dev,
 538				    struct device_attribute *attr, char *buf)
 539{
 540	struct hv_device *hv_dev = device_to_hv_device(dev);
 541	ssize_t len;
 542
 543	device_lock(dev);
 544	len = sysfs_emit(buf, "%s\n", hv_dev->driver_override);
 545	device_unlock(dev);
 546
 547	return len;
 548}
 549static DEVICE_ATTR_RW(driver_override);
 550
 551/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
 552static struct attribute *vmbus_dev_attrs[] = {
 553	&dev_attr_id.attr,
 554	&dev_attr_state.attr,
 555	&dev_attr_monitor_id.attr,
 556	&dev_attr_class_id.attr,
 557	&dev_attr_device_id.attr,
 558	&dev_attr_modalias.attr,
 559#ifdef CONFIG_NUMA
 560	&dev_attr_numa_node.attr,
 561#endif
 562	&dev_attr_server_monitor_pending.attr,
 563	&dev_attr_client_monitor_pending.attr,
 564	&dev_attr_server_monitor_latency.attr,
 565	&dev_attr_client_monitor_latency.attr,
 566	&dev_attr_server_monitor_conn_id.attr,
 567	&dev_attr_client_monitor_conn_id.attr,
 568	&dev_attr_out_intr_mask.attr,
 569	&dev_attr_out_read_index.attr,
 570	&dev_attr_out_write_index.attr,
 571	&dev_attr_out_read_bytes_avail.attr,
 572	&dev_attr_out_write_bytes_avail.attr,
 573	&dev_attr_in_intr_mask.attr,
 574	&dev_attr_in_read_index.attr,
 575	&dev_attr_in_write_index.attr,
 576	&dev_attr_in_read_bytes_avail.attr,
 577	&dev_attr_in_write_bytes_avail.attr,
 578	&dev_attr_channel_vp_mapping.attr,
 579	&dev_attr_vendor.attr,
 580	&dev_attr_device.attr,
 581	&dev_attr_driver_override.attr,
 582	NULL,
 583};
 584
 585/*
 586 * Device-level attribute_group callback function. Returns the permission for
 587 * each attribute, and returns 0 if an attribute is not visible.
 588 */
 589static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
 590					 struct attribute *attr, int idx)
 591{
 592	struct device *dev = kobj_to_dev(kobj);
 593	const struct hv_device *hv_dev = device_to_hv_device(dev);
 594
 595	/* Hide the monitor attributes if the monitor mechanism is not used. */
 596	if (!hv_dev->channel->offermsg.monitor_allocated &&
 597	    (attr == &dev_attr_monitor_id.attr ||
 598	     attr == &dev_attr_server_monitor_pending.attr ||
 599	     attr == &dev_attr_client_monitor_pending.attr ||
 600	     attr == &dev_attr_server_monitor_latency.attr ||
 601	     attr == &dev_attr_client_monitor_latency.attr ||
 602	     attr == &dev_attr_server_monitor_conn_id.attr ||
 603	     attr == &dev_attr_client_monitor_conn_id.attr))
 604		return 0;
 605
 606	return attr->mode;
 607}
 608
 609static const struct attribute_group vmbus_dev_group = {
 610	.attrs = vmbus_dev_attrs,
 611	.is_visible = vmbus_dev_attr_is_visible
 612};
 613__ATTRIBUTE_GROUPS(vmbus_dev);
 614
 615/* Set up the attribute for /sys/bus/vmbus/hibernation */
 616static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
 617{
 618	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
 619}
 620
 621static BUS_ATTR_RO(hibernation);
 622
 623static struct attribute *vmbus_bus_attrs[] = {
 624	&bus_attr_hibernation.attr,
 625	NULL,
 626};
 627static const struct attribute_group vmbus_bus_group = {
 628	.attrs = vmbus_bus_attrs,
 629};
 630__ATTRIBUTE_GROUPS(vmbus_bus);
 631
 632/*
 633 * vmbus_uevent - add uevent for our device
 634 *
 635 * This routine is invoked when a device is added or removed on the vmbus to
 636 * generate a uevent to udev in the userspace. The udev will then look at its
 637 * rule and the uevent generated here to load the appropriate driver
 638 *
 639 * The alias string will be of the form vmbus:guid where guid is the string
 640 * representation of the device guid (each byte of the guid will be
 641 * represented with two hex characters.
 642 */
 643static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
 644{
 645	const struct hv_device *dev = device_to_hv_device(device);
 646	const char *format = "MODALIAS=vmbus:%*phN";
 
 647
 648	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
 
 
 649}
 650
 651static const struct hv_vmbus_device_id *
 652hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
 653{
 654	if (id == NULL)
 655		return NULL; /* empty device table */
 656
 657	for (; !guid_is_null(&id->guid); id++)
 658		if (guid_equal(&id->guid, guid))
 659			return id;
 660
 661	return NULL;
 662}
 663
 664static const struct hv_vmbus_device_id *
 665hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
 666{
 667	const struct hv_vmbus_device_id *id = NULL;
 668	struct vmbus_dynid *dynid;
 669
 670	spin_lock(&drv->dynids.lock);
 671	list_for_each_entry(dynid, &drv->dynids.list, node) {
 672		if (guid_equal(&dynid->id.guid, guid)) {
 673			id = &dynid->id;
 674			break;
 675		}
 676	}
 677	spin_unlock(&drv->dynids.lock);
 678
 679	return id;
 680}
 681
 682static const struct hv_vmbus_device_id vmbus_device_null;
 683
 684/*
 685 * Return a matching hv_vmbus_device_id pointer.
 686 * If there is no match, return NULL.
 687 */
 688static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
 689							struct hv_device *dev)
 
 690{
 691	const guid_t *guid = &dev->dev_type;
 692	const struct hv_vmbus_device_id *id;
 
 693
 694	/* When driver_override is set, only bind to the matching driver */
 695	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
 696		return NULL;
 697
 698	/* Look at the dynamic ids first, before the static ones */
 699	id = hv_vmbus_dynid_match(drv, guid);
 700	if (!id)
 701		id = hv_vmbus_dev_match(drv->id_table, guid);
 702
 703	/* driver_override will always match, send a dummy id */
 704	if (!id && dev->driver_override)
 705		id = &vmbus_device_null;
 706
 707	return id;
 708}
 709
 710/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
 711static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
 712{
 713	struct vmbus_dynid *dynid;
 714
 715	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
 716	if (!dynid)
 717		return -ENOMEM;
 718
 719	dynid->id.guid = *guid;
 720
 721	spin_lock(&drv->dynids.lock);
 722	list_add_tail(&dynid->node, &drv->dynids.list);
 723	spin_unlock(&drv->dynids.lock);
 724
 725	return driver_attach(&drv->driver);
 726}
 727
 728static void vmbus_free_dynids(struct hv_driver *drv)
 729{
 730	struct vmbus_dynid *dynid, *n;
 731
 732	spin_lock(&drv->dynids.lock);
 733	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 734		list_del(&dynid->node);
 735		kfree(dynid);
 736	}
 737	spin_unlock(&drv->dynids.lock);
 738}
 739
 740/*
 741 * store_new_id - sysfs frontend to vmbus_add_dynid()
 742 *
 743 * Allow GUIDs to be added to an existing driver via sysfs.
 744 */
 745static ssize_t new_id_store(struct device_driver *driver, const char *buf,
 746			    size_t count)
 747{
 748	struct hv_driver *drv = drv_to_hv_drv(driver);
 749	guid_t guid;
 750	ssize_t retval;
 751
 752	retval = guid_parse(buf, &guid);
 753	if (retval)
 754		return retval;
 755
 756	if (hv_vmbus_dynid_match(drv, &guid))
 757		return -EEXIST;
 758
 759	retval = vmbus_add_dynid(drv, &guid);
 760	if (retval)
 761		return retval;
 762	return count;
 763}
 764static DRIVER_ATTR_WO(new_id);
 765
 766/*
 767 * store_remove_id - remove a PCI device ID from this driver
 768 *
 769 * Removes a dynamic pci device ID to this driver.
 770 */
 771static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
 772			       size_t count)
 773{
 774	struct hv_driver *drv = drv_to_hv_drv(driver);
 775	struct vmbus_dynid *dynid, *n;
 776	guid_t guid;
 777	ssize_t retval;
 778
 779	retval = guid_parse(buf, &guid);
 780	if (retval)
 781		return retval;
 782
 783	retval = -ENODEV;
 784	spin_lock(&drv->dynids.lock);
 785	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
 786		struct hv_vmbus_device_id *id = &dynid->id;
 787
 788		if (guid_equal(&id->guid, &guid)) {
 789			list_del(&dynid->node);
 790			kfree(dynid);
 791			retval = count;
 792			break;
 793		}
 794	}
 795	spin_unlock(&drv->dynids.lock);
 796
 797	return retval;
 798}
 799static DRIVER_ATTR_WO(remove_id);
 800
 801static struct attribute *vmbus_drv_attrs[] = {
 802	&driver_attr_new_id.attr,
 803	&driver_attr_remove_id.attr,
 804	NULL,
 805};
 806ATTRIBUTE_GROUPS(vmbus_drv);
 807
 808
 809/*
 810 * vmbus_match - Attempt to match the specified device to the specified driver
 811 */
 812static int vmbus_match(struct device *device, struct device_driver *driver)
 813{
 814	struct hv_driver *drv = drv_to_hv_drv(driver);
 815	struct hv_device *hv_dev = device_to_hv_device(device);
 816
 817	/* The hv_sock driver handles all hv_sock offers. */
 818	if (is_hvsock_channel(hv_dev->channel))
 819		return drv->hvsock;
 820
 821	if (hv_vmbus_get_id(drv, hv_dev))
 822		return 1;
 823
 824	return 0;
 825}
 826
 827/*
 828 * vmbus_probe - Add the new vmbus's child device
 829 */
 830static int vmbus_probe(struct device *child_device)
 831{
 832	int ret = 0;
 833	struct hv_driver *drv =
 834			drv_to_hv_drv(child_device->driver);
 835	struct hv_device *dev = device_to_hv_device(child_device);
 836	const struct hv_vmbus_device_id *dev_id;
 837
 838	dev_id = hv_vmbus_get_id(drv, dev);
 839	if (drv->probe) {
 840		ret = drv->probe(dev, dev_id);
 841		if (ret != 0)
 842			pr_err("probe failed for device %s (%d)\n",
 843			       dev_name(child_device), ret);
 844
 845	} else {
 846		pr_err("probe not set for driver %s\n",
 847		       dev_name(child_device));
 848		ret = -ENODEV;
 849	}
 850	return ret;
 851}
 852
 853/*
 854 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
 855 */
 856static int vmbus_dma_configure(struct device *child_device)
 857{
 858	/*
 859	 * On ARM64, propagate the DMA coherence setting from the top level
 860	 * VMbus ACPI device to the child VMbus device being added here.
 861	 * On x86/x64 coherence is assumed and these calls have no effect.
 862	 */
 863	hv_setup_dma_ops(child_device,
 864		device_get_dma_attr(hv_dev) == DEV_DMA_COHERENT);
 865	return 0;
 866}
 867
 868/*
 869 * vmbus_remove - Remove a vmbus device
 870 */
 871static void vmbus_remove(struct device *child_device)
 872{
 873	struct hv_driver *drv;
 874	struct hv_device *dev = device_to_hv_device(child_device);
 875
 876	if (child_device->driver) {
 877		drv = drv_to_hv_drv(child_device->driver);
 878		if (drv->remove)
 879			drv->remove(dev);
 880	}
 
 
 881}
 882
 
 883/*
 884 * vmbus_shutdown - Shutdown a vmbus device
 885 */
 886static void vmbus_shutdown(struct device *child_device)
 887{
 888	struct hv_driver *drv;
 889	struct hv_device *dev = device_to_hv_device(child_device);
 890
 891
 892	/* The device may not be attached yet */
 893	if (!child_device->driver)
 894		return;
 895
 896	drv = drv_to_hv_drv(child_device->driver);
 897
 898	if (drv->shutdown)
 899		drv->shutdown(dev);
 900}
 901
 902#ifdef CONFIG_PM_SLEEP
 903/*
 904 * vmbus_suspend - Suspend a vmbus device
 905 */
 906static int vmbus_suspend(struct device *child_device)
 907{
 908	struct hv_driver *drv;
 909	struct hv_device *dev = device_to_hv_device(child_device);
 910
 911	/* The device may not be attached yet */
 912	if (!child_device->driver)
 913		return 0;
 914
 915	drv = drv_to_hv_drv(child_device->driver);
 916	if (!drv->suspend)
 917		return -EOPNOTSUPP;
 918
 919	return drv->suspend(dev);
 920}
 921
 922/*
 923 * vmbus_resume - Resume a vmbus device
 924 */
 925static int vmbus_resume(struct device *child_device)
 926{
 927	struct hv_driver *drv;
 928	struct hv_device *dev = device_to_hv_device(child_device);
 929
 930	/* The device may not be attached yet */
 931	if (!child_device->driver)
 932		return 0;
 933
 934	drv = drv_to_hv_drv(child_device->driver);
 935	if (!drv->resume)
 936		return -EOPNOTSUPP;
 937
 938	return drv->resume(dev);
 939}
 940#else
 941#define vmbus_suspend NULL
 942#define vmbus_resume NULL
 943#endif /* CONFIG_PM_SLEEP */
 944
 945/*
 946 * vmbus_device_release - Final callback release of the vmbus child device
 947 */
 948static void vmbus_device_release(struct device *device)
 949{
 950	struct hv_device *hv_dev = device_to_hv_device(device);
 951	struct vmbus_channel *channel = hv_dev->channel;
 952
 953	hv_debug_rm_dev_dir(hv_dev);
 
 
 954
 955	mutex_lock(&vmbus_connection.channel_mutex);
 956	hv_process_channel_removal(channel);
 957	mutex_unlock(&vmbus_connection.channel_mutex);
 958	kfree(hv_dev);
 959}
 960
 961/*
 962 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
 963 *
 964 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
 965 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
 966 * is no way to wake up a Generation-2 VM.
 967 *
 968 * The other 4 ops are for hibernation.
 969 */
 970
 971static const struct dev_pm_ops vmbus_pm = {
 972	.suspend_noirq	= NULL,
 973	.resume_noirq	= NULL,
 974	.freeze_noirq	= vmbus_suspend,
 975	.thaw_noirq	= vmbus_resume,
 976	.poweroff_noirq	= vmbus_suspend,
 977	.restore_noirq	= vmbus_resume,
 978};
 979
 980/* The one and only one */
 981static const struct bus_type  hv_bus = {
 982	.name =		"vmbus",
 983	.match =		vmbus_match,
 984	.shutdown =		vmbus_shutdown,
 985	.remove =		vmbus_remove,
 986	.probe =		vmbus_probe,
 987	.uevent =		vmbus_uevent,
 988	.dma_configure =	vmbus_dma_configure,
 989	.dev_groups =		vmbus_dev_groups,
 990	.drv_groups =		vmbus_drv_groups,
 991	.bus_groups =		vmbus_bus_groups,
 992	.pm =			&vmbus_pm,
 993};
 994
 995struct onmessage_work_context {
 996	struct work_struct work;
 997	struct {
 998		struct hv_message_header header;
 999		u8 payload[];
1000	} msg;
1001};
1002
1003static void vmbus_onmessage_work(struct work_struct *work)
1004{
1005	struct onmessage_work_context *ctx;
1006
1007	/* Do not process messages if we're in DISCONNECTED state */
1008	if (vmbus_connection.conn_state == DISCONNECTED)
1009		return;
1010
1011	ctx = container_of(work, struct onmessage_work_context,
1012			   work);
1013	vmbus_onmessage((struct vmbus_channel_message_header *)
1014			&ctx->msg.payload);
1015	kfree(ctx);
1016}
1017
 
 
 
 
 
 
 
 
 
 
1018void vmbus_on_msg_dpc(unsigned long data)
1019{
1020	struct hv_per_cpu_context *hv_cpu = (void *)data;
1021	void *page_addr = hv_cpu->synic_message_page;
1022	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1023				  VMBUS_MESSAGE_SINT;
1024	struct vmbus_channel_message_header *hdr;
1025	enum vmbus_channel_message_type msgtype;
1026	const struct vmbus_channel_message_table_entry *entry;
1027	struct onmessage_work_context *ctx;
1028	__u8 payload_size;
1029	u32 message_type;
1030
1031	/*
1032	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1033	 * it is being used in 'struct vmbus_channel_message_header' definition
1034	 * which is supposed to match hypervisor ABI.
1035	 */
1036	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1037
1038	/*
1039	 * Since the message is in memory shared with the host, an erroneous or
1040	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1041	 * or individual message handlers are executing; to prevent this, copy
1042	 * the message into private memory.
1043	 */
1044	memcpy(&msg_copy, msg, sizeof(struct hv_message));
1045
1046	message_type = msg_copy.header.message_type;
1047	if (message_type == HVMSG_NONE)
1048		/* no msg */
1049		return;
1050
1051	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1052	msgtype = hdr->msgtype;
1053
1054	trace_vmbus_on_msg_dpc(hdr);
1055
1056	if (msgtype >= CHANNELMSG_COUNT) {
1057		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1058		goto msg_handled;
1059	}
1060
1061	payload_size = msg_copy.header.payload_size;
1062	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1063		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1064		goto msg_handled;
1065	}
1066
1067	entry = &channel_message_table[msgtype];
1068
1069	if (!entry->message_handler)
1070		goto msg_handled;
1071
1072	if (payload_size < entry->min_payload_len) {
1073		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1074		goto msg_handled;
1075	}
1076
 
1077	if (entry->handler_type	== VMHT_BLOCKING) {
1078		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1079		if (ctx == NULL)
1080			return;
1081
1082		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1083		ctx->msg.header = msg_copy.header;
1084		memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1085
1086		/*
1087		 * The host can generate a rescind message while we
1088		 * may still be handling the original offer. We deal with
1089		 * this condition by relying on the synchronization provided
1090		 * by offer_in_progress and by channel_mutex.  See also the
1091		 * inline comments in vmbus_onoffer_rescind().
1092		 */
1093		switch (msgtype) {
1094		case CHANNELMSG_RESCIND_CHANNELOFFER:
1095			/*
1096			 * If we are handling the rescind message;
1097			 * schedule the work on the global work queue.
1098			 *
1099			 * The OFFER message and the RESCIND message should
1100			 * not be handled by the same serialized work queue,
1101			 * because the OFFER handler may call vmbus_open(),
1102			 * which tries to open the channel by sending an
1103			 * OPEN_CHANNEL message to the host and waits for
1104			 * the host's response; however, if the host has
1105			 * rescinded the channel before it receives the
1106			 * OPEN_CHANNEL message, the host just silently
1107			 * ignores the OPEN_CHANNEL message; as a result,
1108			 * the guest's OFFER handler hangs for ever, if we
1109			 * handle the RESCIND message in the same serialized
1110			 * work queue: the RESCIND handler can not start to
1111			 * run before the OFFER handler finishes.
1112			 */
1113			if (vmbus_connection.ignore_any_offer_msg)
1114				break;
1115			queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1116			break;
1117
1118		case CHANNELMSG_OFFERCHANNEL:
1119			/*
1120			 * The host sends the offer message of a given channel
1121			 * before sending the rescind message of the same
1122			 * channel.  These messages are sent to the guest's
1123			 * connect CPU; the guest then starts processing them
1124			 * in the tasklet handler on this CPU:
1125			 *
1126			 * VMBUS_CONNECT_CPU
1127			 *
1128			 * [vmbus_on_msg_dpc()]
1129			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1130			 * queue_work()
1131			 * ...
1132			 * [vmbus_on_msg_dpc()]
1133			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1134			 *
1135			 * We rely on the memory-ordering properties of the
1136			 * queue_work() and schedule_work() primitives, which
1137			 * guarantee that the atomic increment will be visible
1138			 * to the CPUs which will execute the offer & rescind
1139			 * works by the time these works will start execution.
1140			 */
1141			if (vmbus_connection.ignore_any_offer_msg)
1142				break;
1143			atomic_inc(&vmbus_connection.offer_in_progress);
1144			fallthrough;
1145
1146		default:
1147			queue_work(vmbus_connection.work_queue, &ctx->work);
1148		}
1149	} else
1150		entry->message_handler(hdr);
1151
1152msg_handled:
1153	vmbus_signal_eom(msg, message_type);
1154}
1155
1156#ifdef CONFIG_PM_SLEEP
1157/*
1158 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1159 * hibernation, because hv_sock connections can not persist across hibernation.
1160 */
1161static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1162{
1163	struct onmessage_work_context *ctx;
1164	struct vmbus_channel_rescind_offer *rescind;
 
 
 
1165
1166	WARN_ON(!is_hvsock_channel(channel));
 
 
1167
 
 
1168	/*
1169	 * Allocation size is small and the allocation should really not fail,
1170	 * otherwise the state of the hv_sock connections ends up in limbo.
 
1171	 */
1172	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1173		      GFP_KERNEL | __GFP_NOFAIL);
1174
1175	/*
1176	 * So far, these are not really used by Linux. Just set them to the
1177	 * reasonable values conforming to the definitions of the fields.
1178	 */
1179	ctx->msg.header.message_type = 1;
1180	ctx->msg.header.payload_size = sizeof(*rescind);
1181
1182	/* These values are actually used by Linux. */
1183	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1184	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1185	rescind->child_relid = channel->offermsg.child_relid;
1186
1187	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1188
1189	queue_work(vmbus_connection.work_queue, &ctx->work);
1190}
1191#endif /* CONFIG_PM_SLEEP */
1192
1193/*
1194 * Schedule all channels with events pending
1195 */
1196static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1197{
1198	unsigned long *recv_int_page;
1199	u32 maxbits, relid;
1200
1201	/*
1202	 * The event page can be directly checked to get the id of
1203	 * the channel that has the interrupt pending.
1204	 */
1205	void *page_addr = hv_cpu->synic_event_page;
1206	union hv_synic_event_flags *event
1207		= (union hv_synic_event_flags *)page_addr +
1208					 VMBUS_MESSAGE_SINT;
1209
1210	maxbits = HV_EVENT_FLAGS_COUNT;
1211	recv_int_page = event->flags;
1212
1213	if (unlikely(!recv_int_page))
1214		return;
1215
1216	for_each_set_bit(relid, recv_int_page, maxbits) {
1217		void (*callback_fn)(void *context);
1218		struct vmbus_channel *channel;
1219
1220		if (!sync_test_and_clear_bit(relid, recv_int_page))
1221			continue;
1222
1223		/* Special case - vmbus channel protocol msg */
1224		if (relid == 0)
1225			continue;
1226
 
 
 
 
 
 
 
 
 
1227		/*
1228		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1229		 * Guarantees that the channel data structure doesn't
1230		 * get freed while the channel pointer below is being
1231		 * dereferenced.
1232		 */
1233		rcu_read_lock();
1234
1235		/* Find channel based on relid */
1236		channel = relid2channel(relid);
1237		if (channel == NULL)
1238			goto sched_unlock_rcu;
1239
1240		if (channel->rescind)
1241			goto sched_unlock_rcu;
1242
1243		/*
1244		 * Make sure that the ring buffer data structure doesn't get
1245		 * freed while we dereference the ring buffer pointer.  Test
1246		 * for the channel's onchannel_callback being NULL within a
1247		 * sched_lock critical section.  See also the inline comments
1248		 * in vmbus_reset_channel_cb().
1249		 */
1250		spin_lock(&channel->sched_lock);
1251
1252		callback_fn = channel->onchannel_callback;
1253		if (unlikely(callback_fn == NULL))
1254			goto sched_unlock;
1255
1256		trace_vmbus_chan_sched(channel);
1257
1258		++channel->interrupts;
1259
1260		switch (channel->callback_mode) {
1261		case HV_CALL_ISR:
1262			(*callback_fn)(channel->channel_callback_context);
1263			break;
1264
1265		case HV_CALL_BATCHED:
1266			hv_begin_read(&channel->inbound);
1267			fallthrough;
1268		case HV_CALL_DIRECT:
1269			tasklet_schedule(&channel->callback_event);
1270		}
1271
1272sched_unlock:
1273		spin_unlock(&channel->sched_lock);
1274sched_unlock_rcu:
1275		rcu_read_unlock();
1276	}
1277}
1278
1279static void vmbus_isr(void)
1280{
1281	struct hv_per_cpu_context *hv_cpu
1282		= this_cpu_ptr(hv_context.cpu_context);
1283	void *page_addr;
1284	struct hv_message *msg;
1285
1286	vmbus_chan_sched(hv_cpu);
1287
1288	page_addr = hv_cpu->synic_message_page;
1289	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1290
1291	/* Check if there are actual msgs to be processed */
1292	if (msg->header.message_type != HVMSG_NONE) {
1293		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1294			hv_stimer0_isr();
1295			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1296		} else
1297			tasklet_schedule(&hv_cpu->msg_dpc);
1298	}
1299
1300	add_interrupt_randomness(vmbus_interrupt);
1301}
1302
1303static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1304{
1305	vmbus_isr();
1306	return IRQ_HANDLED;
1307}
1308
1309/*
1310 * vmbus_bus_init -Main vmbus driver initialization routine.
1311 *
1312 * Here, we
1313 *	- initialize the vmbus driver context
1314 *	- invoke the vmbus hv main init routine
1315 *	- retrieve the channel offers
1316 */
1317static int vmbus_bus_init(void)
1318{
1319	int ret;
1320
 
1321	ret = hv_init();
1322	if (ret != 0) {
1323		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1324		return ret;
1325	}
1326
1327	ret = bus_register(&hv_bus);
1328	if (ret)
1329		return ret;
1330
1331	/*
1332	 * VMbus interrupts are best modeled as per-cpu interrupts. If
1333	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1334	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1335	 * If not on such an architecture (e.g., x86/x64), then rely on
1336	 * code in the arch-specific portion of the code tree to connect
1337	 * the VMbus interrupt handler.
1338	 */
1339
1340	if (vmbus_irq == -1) {
1341		hv_setup_vmbus_handler(vmbus_isr);
1342	} else {
1343		vmbus_evt = alloc_percpu(long);
1344		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1345				"Hyper-V VMbus", vmbus_evt);
1346		if (ret) {
1347			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1348					vmbus_irq, ret);
1349			free_percpu(vmbus_evt);
1350			goto err_setup;
1351		}
1352	}
1353
1354	ret = hv_synic_alloc();
1355	if (ret)
1356		goto err_alloc;
1357
1358	/*
1359	 * Initialize the per-cpu interrupt state and stimer state.
1360	 * Then connect to the host.
1361	 */
1362	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1363				hv_synic_init, hv_synic_cleanup);
1364	if (ret < 0)
1365		goto err_alloc;
1366	hyperv_cpuhp_online = ret;
1367
1368	ret = vmbus_connect();
1369	if (ret)
1370		goto err_connect;
1371
 
 
 
1372	/*
1373	 * Always register the vmbus unload panic notifier because we
1374	 * need to shut the VMbus channel connection on panic.
1375	 */
1376	atomic_notifier_chain_register(&panic_notifier_list,
1377			       &hyperv_panic_vmbus_unload_block);
 
 
 
1378
1379	vmbus_request_offers();
1380
1381	return 0;
1382
1383err_connect:
1384	cpuhp_remove_state(hyperv_cpuhp_online);
1385err_alloc:
1386	hv_synic_free();
1387	if (vmbus_irq == -1) {
1388		hv_remove_vmbus_handler();
1389	} else {
1390		free_percpu_irq(vmbus_irq, vmbus_evt);
1391		free_percpu(vmbus_evt);
1392	}
1393err_setup:
1394	bus_unregister(&hv_bus);
 
 
 
 
1395	return ret;
1396}
1397
1398/**
1399 * __vmbus_driver_register() - Register a vmbus's driver
1400 * @hv_driver: Pointer to driver structure you want to register
1401 * @owner: owner module of the drv
1402 * @mod_name: module name string
1403 *
1404 * Registers the given driver with Linux through the 'driver_register()' call
1405 * and sets up the hyper-v vmbus handling for this driver.
1406 * It will return the state of the 'driver_register()' call.
1407 *
1408 */
1409int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1410{
1411	int ret;
1412
1413	pr_info("registering driver %s\n", hv_driver->name);
1414
1415	ret = vmbus_exists();
1416	if (ret < 0)
1417		return ret;
1418
1419	hv_driver->driver.name = hv_driver->name;
1420	hv_driver->driver.owner = owner;
1421	hv_driver->driver.mod_name = mod_name;
1422	hv_driver->driver.bus = &hv_bus;
1423
1424	spin_lock_init(&hv_driver->dynids.lock);
1425	INIT_LIST_HEAD(&hv_driver->dynids.list);
1426
1427	ret = driver_register(&hv_driver->driver);
1428
1429	return ret;
1430}
1431EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1432
1433/**
1434 * vmbus_driver_unregister() - Unregister a vmbus's driver
1435 * @hv_driver: Pointer to driver structure you want to
1436 *             un-register
1437 *
1438 * Un-register the given driver that was previous registered with a call to
1439 * vmbus_driver_register()
1440 */
1441void vmbus_driver_unregister(struct hv_driver *hv_driver)
1442{
1443	pr_info("unregistering driver %s\n", hv_driver->name);
1444
1445	if (!vmbus_exists()) {
1446		driver_unregister(&hv_driver->driver);
1447		vmbus_free_dynids(hv_driver);
1448	}
1449}
1450EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1451
1452
1453/*
1454 * Called when last reference to channel is gone.
1455 */
1456static void vmbus_chan_release(struct kobject *kobj)
1457{
1458	struct vmbus_channel *channel
1459		= container_of(kobj, struct vmbus_channel, kobj);
1460
1461	kfree_rcu(channel, rcu);
1462}
1463
1464struct vmbus_chan_attribute {
1465	struct attribute attr;
1466	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1467	ssize_t (*store)(struct vmbus_channel *chan,
1468			 const char *buf, size_t count);
1469};
1470#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1471	struct vmbus_chan_attribute chan_attr_##_name \
1472		= __ATTR(_name, _mode, _show, _store)
1473#define VMBUS_CHAN_ATTR_RW(_name) \
1474	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1475#define VMBUS_CHAN_ATTR_RO(_name) \
1476	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1477#define VMBUS_CHAN_ATTR_WO(_name) \
1478	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1479
1480static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1481				    struct attribute *attr, char *buf)
1482{
1483	const struct vmbus_chan_attribute *attribute
1484		= container_of(attr, struct vmbus_chan_attribute, attr);
1485	struct vmbus_channel *chan
1486		= container_of(kobj, struct vmbus_channel, kobj);
1487
1488	if (!attribute->show)
1489		return -EIO;
1490
1491	return attribute->show(chan, buf);
1492}
1493
1494static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1495				     struct attribute *attr, const char *buf,
1496				     size_t count)
1497{
1498	const struct vmbus_chan_attribute *attribute
1499		= container_of(attr, struct vmbus_chan_attribute, attr);
1500	struct vmbus_channel *chan
1501		= container_of(kobj, struct vmbus_channel, kobj);
1502
1503	if (!attribute->store)
1504		return -EIO;
1505
1506	return attribute->store(chan, buf, count);
1507}
1508
1509static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1510	.show = vmbus_chan_attr_show,
1511	.store = vmbus_chan_attr_store,
1512};
1513
1514static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1515{
1516	struct hv_ring_buffer_info *rbi = &channel->outbound;
1517	ssize_t ret;
1518
1519	mutex_lock(&rbi->ring_buffer_mutex);
1520	if (!rbi->ring_buffer) {
1521		mutex_unlock(&rbi->ring_buffer_mutex);
1522		return -EINVAL;
1523	}
1524
1525	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1526	mutex_unlock(&rbi->ring_buffer_mutex);
1527	return ret;
1528}
1529static VMBUS_CHAN_ATTR_RO(out_mask);
1530
1531static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1532{
1533	struct hv_ring_buffer_info *rbi = &channel->inbound;
1534	ssize_t ret;
1535
1536	mutex_lock(&rbi->ring_buffer_mutex);
1537	if (!rbi->ring_buffer) {
1538		mutex_unlock(&rbi->ring_buffer_mutex);
1539		return -EINVAL;
1540	}
1541
1542	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1543	mutex_unlock(&rbi->ring_buffer_mutex);
1544	return ret;
1545}
1546static VMBUS_CHAN_ATTR_RO(in_mask);
1547
1548static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1549{
1550	struct hv_ring_buffer_info *rbi = &channel->inbound;
1551	ssize_t ret;
1552
1553	mutex_lock(&rbi->ring_buffer_mutex);
1554	if (!rbi->ring_buffer) {
1555		mutex_unlock(&rbi->ring_buffer_mutex);
1556		return -EINVAL;
1557	}
1558
1559	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1560	mutex_unlock(&rbi->ring_buffer_mutex);
1561	return ret;
1562}
1563static VMBUS_CHAN_ATTR_RO(read_avail);
1564
1565static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1566{
1567	struct hv_ring_buffer_info *rbi = &channel->outbound;
1568	ssize_t ret;
1569
1570	mutex_lock(&rbi->ring_buffer_mutex);
1571	if (!rbi->ring_buffer) {
1572		mutex_unlock(&rbi->ring_buffer_mutex);
1573		return -EINVAL;
1574	}
1575
1576	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1577	mutex_unlock(&rbi->ring_buffer_mutex);
1578	return ret;
1579}
1580static VMBUS_CHAN_ATTR_RO(write_avail);
1581
1582static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1583{
1584	return sprintf(buf, "%u\n", channel->target_cpu);
1585}
1586static ssize_t target_cpu_store(struct vmbus_channel *channel,
1587				const char *buf, size_t count)
1588{
1589	u32 target_cpu, origin_cpu;
1590	ssize_t ret = count;
1591
1592	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1593		return -EIO;
1594
1595	if (sscanf(buf, "%uu", &target_cpu) != 1)
1596		return -EIO;
1597
1598	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1599	if (target_cpu >= nr_cpumask_bits)
1600		return -EINVAL;
1601
1602	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1603		return -EINVAL;
1604
1605	/* No CPUs should come up or down during this. */
1606	cpus_read_lock();
1607
1608	if (!cpu_online(target_cpu)) {
1609		cpus_read_unlock();
1610		return -EINVAL;
1611	}
1612
1613	/*
1614	 * Synchronizes target_cpu_store() and channel closure:
1615	 *
1616	 * { Initially: state = CHANNEL_OPENED }
1617	 *
1618	 * CPU1				CPU2
1619	 *
1620	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1621	 *
1622	 * LOCK channel_mutex		LOCK channel_mutex
1623	 * LOAD r1 = state		LOAD r2 = state
1624	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1625	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1626	 *   [...]			  SEND CLOSECHANNEL
1627	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1628	 *
1629	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1630	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1631	 *
1632	 * Note.  The host processes the channel messages "sequentially", in
1633	 * the order in which they are received on a per-partition basis.
1634	 */
1635	mutex_lock(&vmbus_connection.channel_mutex);
1636
1637	/*
1638	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1639	 * avoid sending the message and fail here for such channels.
1640	 */
1641	if (channel->state != CHANNEL_OPENED_STATE) {
1642		ret = -EIO;
1643		goto cpu_store_unlock;
1644	}
1645
1646	origin_cpu = channel->target_cpu;
1647	if (target_cpu == origin_cpu)
1648		goto cpu_store_unlock;
1649
1650	if (vmbus_send_modifychannel(channel,
1651				     hv_cpu_number_to_vp_number(target_cpu))) {
1652		ret = -EIO;
1653		goto cpu_store_unlock;
1654	}
1655
1656	/*
1657	 * For version before VERSION_WIN10_V5_3, the following warning holds:
1658	 *
1659	 * Warning.  At this point, there is *no* guarantee that the host will
1660	 * have successfully processed the vmbus_send_modifychannel() request.
1661	 * See the header comment of vmbus_send_modifychannel() for more info.
1662	 *
1663	 * Lags in the processing of the above vmbus_send_modifychannel() can
1664	 * result in missed interrupts if the "old" target CPU is taken offline
1665	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1666	 * But apart from this offlining scenario, the code tolerates such
1667	 * lags.  It will function correctly even if a channel interrupt comes
1668	 * in on a CPU that is different from the channel target_cpu value.
1669	 */
1670
1671	channel->target_cpu = target_cpu;
1672
1673	/* See init_vp_index(). */
1674	if (hv_is_perf_channel(channel))
1675		hv_update_allocated_cpus(origin_cpu, target_cpu);
1676
1677	/* Currently set only for storvsc channels. */
1678	if (channel->change_target_cpu_callback) {
1679		(*channel->change_target_cpu_callback)(channel,
1680				origin_cpu, target_cpu);
1681	}
1682
1683cpu_store_unlock:
1684	mutex_unlock(&vmbus_connection.channel_mutex);
1685	cpus_read_unlock();
1686	return ret;
1687}
1688static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1689
1690static ssize_t channel_pending_show(struct vmbus_channel *channel,
1691				    char *buf)
1692{
1693	return sprintf(buf, "%d\n",
1694		       channel_pending(channel,
1695				       vmbus_connection.monitor_pages[1]));
1696}
1697static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1698
1699static ssize_t channel_latency_show(struct vmbus_channel *channel,
1700				    char *buf)
1701{
1702	return sprintf(buf, "%d\n",
1703		       channel_latency(channel,
1704				       vmbus_connection.monitor_pages[1]));
1705}
1706static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1707
1708static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1709{
1710	return sprintf(buf, "%llu\n", channel->interrupts);
1711}
1712static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1713
1714static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1715{
1716	return sprintf(buf, "%llu\n", channel->sig_events);
1717}
1718static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1719
1720static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1721					 char *buf)
1722{
1723	return sprintf(buf, "%llu\n",
1724		       (unsigned long long)channel->intr_in_full);
1725}
1726static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1727
1728static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1729					   char *buf)
1730{
1731	return sprintf(buf, "%llu\n",
1732		       (unsigned long long)channel->intr_out_empty);
1733}
1734static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1735
1736static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1737					   char *buf)
1738{
1739	return sprintf(buf, "%llu\n",
1740		       (unsigned long long)channel->out_full_first);
1741}
1742static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1743
1744static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1745					   char *buf)
1746{
1747	return sprintf(buf, "%llu\n",
1748		       (unsigned long long)channel->out_full_total);
1749}
1750static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1751
1752static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1753					  char *buf)
1754{
1755	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1756}
1757static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1758
1759static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1760				  char *buf)
1761{
1762	return sprintf(buf, "%u\n",
1763		       channel->offermsg.offer.sub_channel_index);
1764}
1765static VMBUS_CHAN_ATTR_RO(subchannel_id);
1766
1767static struct attribute *vmbus_chan_attrs[] = {
1768	&chan_attr_out_mask.attr,
1769	&chan_attr_in_mask.attr,
1770	&chan_attr_read_avail.attr,
1771	&chan_attr_write_avail.attr,
1772	&chan_attr_cpu.attr,
1773	&chan_attr_pending.attr,
1774	&chan_attr_latency.attr,
1775	&chan_attr_interrupts.attr,
1776	&chan_attr_events.attr,
1777	&chan_attr_intr_in_full.attr,
1778	&chan_attr_intr_out_empty.attr,
1779	&chan_attr_out_full_first.attr,
1780	&chan_attr_out_full_total.attr,
1781	&chan_attr_monitor_id.attr,
1782	&chan_attr_subchannel_id.attr,
1783	NULL
1784};
1785
1786/*
1787 * Channel-level attribute_group callback function. Returns the permission for
1788 * each attribute, and returns 0 if an attribute is not visible.
1789 */
1790static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1791					  struct attribute *attr, int idx)
1792{
1793	const struct vmbus_channel *channel =
1794		container_of(kobj, struct vmbus_channel, kobj);
1795
1796	/* Hide the monitor attributes if the monitor mechanism is not used. */
1797	if (!channel->offermsg.monitor_allocated &&
1798	    (attr == &chan_attr_pending.attr ||
1799	     attr == &chan_attr_latency.attr ||
1800	     attr == &chan_attr_monitor_id.attr))
1801		return 0;
1802
1803	return attr->mode;
1804}
1805
1806static struct attribute_group vmbus_chan_group = {
1807	.attrs = vmbus_chan_attrs,
1808	.is_visible = vmbus_chan_attr_is_visible
1809};
1810
1811static struct kobj_type vmbus_chan_ktype = {
1812	.sysfs_ops = &vmbus_chan_sysfs_ops,
1813	.release = vmbus_chan_release,
1814};
1815
1816/*
1817 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1818 */
1819int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1820{
1821	const struct device *device = &dev->device;
1822	struct kobject *kobj = &channel->kobj;
1823	u32 relid = channel->offermsg.child_relid;
1824	int ret;
1825
1826	kobj->kset = dev->channels_kset;
1827	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1828				   "%u", relid);
1829	if (ret) {
1830		kobject_put(kobj);
1831		return ret;
1832	}
1833
1834	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1835
1836	if (ret) {
1837		/*
1838		 * The calling functions' error handling paths will cleanup the
1839		 * empty channel directory.
1840		 */
1841		kobject_put(kobj);
1842		dev_err(device, "Unable to set up channel sysfs files\n");
1843		return ret;
1844	}
1845
1846	kobject_uevent(kobj, KOBJ_ADD);
1847
1848	return 0;
1849}
1850
1851/*
1852 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1853 */
1854void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1855{
1856	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1857}
1858
1859/*
1860 * vmbus_device_create - Creates and registers a new child device
1861 * on the vmbus.
1862 */
1863struct hv_device *vmbus_device_create(const guid_t *type,
1864				      const guid_t *instance,
1865				      struct vmbus_channel *channel)
1866{
1867	struct hv_device *child_device_obj;
1868
1869	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1870	if (!child_device_obj) {
1871		pr_err("Unable to allocate device object for child device\n");
1872		return NULL;
1873	}
1874
1875	child_device_obj->channel = channel;
1876	guid_copy(&child_device_obj->dev_type, type);
1877	guid_copy(&child_device_obj->dev_instance, instance);
1878	child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
 
 
1879
1880	return child_device_obj;
1881}
1882
1883/*
1884 * vmbus_device_register - Register the child device
1885 */
1886int vmbus_device_register(struct hv_device *child_device_obj)
1887{
1888	struct kobject *kobj = &child_device_obj->device.kobj;
1889	int ret;
1890
1891	dev_set_name(&child_device_obj->device, "%pUl",
1892		     &child_device_obj->channel->offermsg.offer.if_instance);
1893
1894	child_device_obj->device.bus = &hv_bus;
1895	child_device_obj->device.parent = hv_dev;
1896	child_device_obj->device.release = vmbus_device_release;
1897
1898	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1899	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1900	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
1901
1902	/*
1903	 * Register with the LDM. This will kick off the driver/device
1904	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1905	 */
1906	ret = device_register(&child_device_obj->device);
1907	if (ret) {
 
1908		pr_err("Unable to register child device\n");
1909		put_device(&child_device_obj->device);
1910		return ret;
1911	}
1912
1913	child_device_obj->channels_kset = kset_create_and_add("channels",
1914							      NULL, kobj);
1915	if (!child_device_obj->channels_kset) {
1916		ret = -ENOMEM;
1917		goto err_dev_unregister;
1918	}
1919
1920	ret = vmbus_add_channel_kobj(child_device_obj,
1921				     child_device_obj->channel);
1922	if (ret) {
1923		pr_err("Unable to register primary channeln");
1924		goto err_kset_unregister;
1925	}
1926	hv_debug_add_dev_dir(child_device_obj);
1927
1928	return 0;
1929
1930err_kset_unregister:
1931	kset_unregister(child_device_obj->channels_kset);
1932
1933err_dev_unregister:
1934	device_unregister(&child_device_obj->device);
1935	return ret;
1936}
1937
1938/*
1939 * vmbus_device_unregister - Remove the specified child device
1940 * from the vmbus.
1941 */
1942void vmbus_device_unregister(struct hv_device *device_obj)
1943{
1944	pr_debug("child device %s unregistered\n",
1945		dev_name(&device_obj->device));
1946
1947	kset_unregister(device_obj->channels_kset);
1948
1949	/*
1950	 * Kick off the process of unregistering the device.
1951	 * This will call vmbus_remove() and eventually vmbus_device_release()
1952	 */
1953	device_unregister(&device_obj->device);
1954}
1955
1956#ifdef CONFIG_ACPI
1957/*
1958 * VMBUS is an acpi enumerated device. Get the information we
1959 * need from DSDT.
1960 */
 
1961static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1962{
1963	resource_size_t start = 0;
1964	resource_size_t end = 0;
1965	struct resource *new_res;
1966	struct resource **old_res = &hyperv_mmio;
1967	struct resource **prev_res = NULL;
1968	struct resource r;
1969
1970	switch (res->type) {
1971
1972	/*
1973	 * "Address" descriptors are for bus windows. Ignore
1974	 * "memory" descriptors, which are for registers on
1975	 * devices.
1976	 */
1977	case ACPI_RESOURCE_TYPE_ADDRESS32:
1978		start = res->data.address32.address.minimum;
1979		end = res->data.address32.address.maximum;
1980		break;
1981
1982	case ACPI_RESOURCE_TYPE_ADDRESS64:
1983		start = res->data.address64.address.minimum;
1984		end = res->data.address64.address.maximum;
1985		break;
1986
1987	/*
1988	 * The IRQ information is needed only on ARM64, which Hyper-V
1989	 * sets up in the extended format. IRQ information is present
1990	 * on x86/x64 in the non-extended format but it is not used by
1991	 * Linux. So don't bother checking for the non-extended format.
1992	 */
1993	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
1994		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
1995			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
1996			return AE_ERROR;
1997		}
1998		/* ARM64 INTID for VMbus */
1999		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2000		/* Linux IRQ number */
2001		vmbus_irq = r.start;
2002		return AE_OK;
2003
2004	default:
2005		/* Unused resource type */
2006		return AE_OK;
2007
2008	}
2009	/*
2010	 * Ignore ranges that are below 1MB, as they're not
2011	 * necessary or useful here.
2012	 */
2013	if (end < 0x100000)
2014		return AE_OK;
2015
2016	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2017	if (!new_res)
2018		return AE_NO_MEMORY;
2019
2020	/* If this range overlaps the virtual TPM, truncate it. */
2021	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2022		end = VTPM_BASE_ADDRESS;
2023
2024	new_res->name = "hyperv mmio";
2025	new_res->flags = IORESOURCE_MEM;
2026	new_res->start = start;
2027	new_res->end = end;
2028
2029	/*
 
2030	 * If two ranges are adjacent, merge them.
2031	 */
2032	do {
2033		if (!*old_res) {
2034			*old_res = new_res;
2035			break;
2036		}
2037
2038		if (((*old_res)->end + 1) == new_res->start) {
2039			(*old_res)->end = new_res->end;
2040			kfree(new_res);
2041			break;
2042		}
2043
2044		if ((*old_res)->start == new_res->end + 1) {
2045			(*old_res)->start = new_res->start;
2046			kfree(new_res);
2047			break;
2048		}
2049
2050		if ((*old_res)->start > new_res->end) {
2051			new_res->sibling = *old_res;
2052			if (prev_res)
2053				(*prev_res)->sibling = new_res;
2054			*old_res = new_res;
2055			break;
2056		}
2057
2058		prev_res = old_res;
2059		old_res = &(*old_res)->sibling;
2060
2061	} while (1);
2062
2063	return AE_OK;
2064}
2065#endif
2066
2067static void vmbus_mmio_remove(void)
2068{
2069	struct resource *cur_res;
2070	struct resource *next_res;
2071
2072	if (hyperv_mmio) {
2073		if (fb_mmio) {
2074			__release_region(hyperv_mmio, fb_mmio->start,
2075					 resource_size(fb_mmio));
2076			fb_mmio = NULL;
2077		}
2078
2079		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2080			next_res = cur_res->sibling;
2081			kfree(cur_res);
2082		}
2083	}
2084}
2085
2086static void __maybe_unused vmbus_reserve_fb(void)
2087{
2088	resource_size_t start = 0, size;
2089	struct pci_dev *pdev;
2090
2091	if (efi_enabled(EFI_BOOT)) {
2092		/* Gen2 VM: get FB base from EFI framebuffer */
2093		if (IS_ENABLED(CONFIG_SYSFB)) {
2094			start = screen_info.lfb_base;
2095			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2096		}
2097	} else {
2098		/* Gen1 VM: get FB base from PCI */
2099		pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2100				      PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2101		if (!pdev)
2102			return;
2103
2104		if (pdev->resource[0].flags & IORESOURCE_MEM) {
2105			start = pci_resource_start(pdev, 0);
2106			size = pci_resource_len(pdev, 0);
2107		}
2108
2109		/*
2110		 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2111		 * grab it later.
2112		 */
2113		pci_dev_put(pdev);
2114	}
2115
2116	if (!start)
2117		return;
2118
2119	/*
2120	 * Make a claim for the frame buffer in the resource tree under the
2121	 * first node, which will be the one below 4GB.  The length seems to
2122	 * be underreported, particularly in a Generation 1 VM.  So start out
2123	 * reserving a larger area and make it smaller until it succeeds.
2124	 */
2125	for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2126		fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2127}
2128
2129/**
2130 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2131 * @new:		If successful, supplied a pointer to the
2132 *			allocated MMIO space.
2133 * @device_obj:		Identifies the caller
2134 * @min:		Minimum guest physical address of the
2135 *			allocation
2136 * @max:		Maximum guest physical address
2137 * @size:		Size of the range to be allocated
2138 * @align:		Alignment of the range to be allocated
2139 * @fb_overlap_ok:	Whether this allocation can be allowed
2140 *			to overlap the video frame buffer.
2141 *
2142 * This function walks the resources granted to VMBus by the
2143 * _CRS object in the ACPI namespace underneath the parent
2144 * "bridge" whether that's a root PCI bus in the Generation 1
2145 * case or a Module Device in the Generation 2 case.  It then
2146 * attempts to allocate from the global MMIO pool in a way that
2147 * matches the constraints supplied in these parameters and by
2148 * that _CRS.
2149 *
2150 * Return: 0 on success, -errno on failure
2151 */
2152int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2153			resource_size_t min, resource_size_t max,
2154			resource_size_t size, resource_size_t align,
2155			bool fb_overlap_ok)
2156{
2157	struct resource *iter, *shadow;
2158	resource_size_t range_min, range_max, start, end;
2159	const char *dev_n = dev_name(&device_obj->device);
2160	int retval;
2161
2162	retval = -ENXIO;
2163	mutex_lock(&hyperv_mmio_lock);
2164
2165	/*
2166	 * If overlaps with frame buffers are allowed, then first attempt to
2167	 * make the allocation from within the reserved region.  Because it
2168	 * is already reserved, no shadow allocation is necessary.
2169	 */
2170	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2171	    !(max < fb_mmio->start)) {
2172
2173		range_min = fb_mmio->start;
2174		range_max = fb_mmio->end;
2175		start = (range_min + align - 1) & ~(align - 1);
2176		for (; start + size - 1 <= range_max; start += align) {
2177			*new = request_mem_region_exclusive(start, size, dev_n);
2178			if (*new) {
2179				retval = 0;
2180				goto exit;
2181			}
2182		}
2183	}
2184
2185	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2186		if ((iter->start >= max) || (iter->end <= min))
2187			continue;
2188
2189		range_min = iter->start;
2190		range_max = iter->end;
2191		start = (range_min + align - 1) & ~(align - 1);
2192		for (; start + size - 1 <= range_max; start += align) {
2193			end = start + size - 1;
2194
2195			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2196			if (!fb_overlap_ok && fb_mmio &&
2197			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2198			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2199				continue;
2200
2201			shadow = __request_region(iter, start, size, NULL,
2202						  IORESOURCE_BUSY);
2203			if (!shadow)
2204				continue;
2205
2206			*new = request_mem_region_exclusive(start, size, dev_n);
2207			if (*new) {
2208				shadow->name = (char *)*new;
2209				retval = 0;
2210				goto exit;
 
 
 
2211			}
2212
2213			__release_region(iter, start, size);
 
 
 
 
 
 
2214		}
2215	}
2216
2217exit:
2218	mutex_unlock(&hyperv_mmio_lock);
2219	return retval;
2220}
2221EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2222
2223/**
2224 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2225 * @start:		Base address of region to release.
2226 * @size:		Size of the range to be allocated
 
 
 
 
2227 *
2228 * This function releases anything requested by
2229 * vmbus_mmio_allocate().
2230 */
2231void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2232{
2233	struct resource *iter;
2234
2235	mutex_lock(&hyperv_mmio_lock);
2236	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2237		if ((iter->start >= start + size) || (iter->end <= start))
2238			continue;
2239
2240		__release_region(iter, start, size);
2241	}
2242	release_mem_region(start, size);
2243	mutex_unlock(&hyperv_mmio_lock);
2244
2245}
2246EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2247
2248#ifdef CONFIG_ACPI
2249static int vmbus_acpi_add(struct platform_device *pdev)
2250{
2251	acpi_status result;
2252	int ret_val = -ENODEV;
2253	struct acpi_device *ancestor;
2254	struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2255
2256	hv_dev = &device->dev;
2257
2258	/*
2259	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2260	 * method on the top level VMbus device in the DSDT. But devices
2261	 * are hardware coherent in all current Hyper-V use cases, so fix
2262	 * up the ACPI device to behave as if _CCA is present and indicates
2263	 * hardware coherence.
2264	 */
2265	ACPI_COMPANION_SET(&device->dev, device);
2266	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2267	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2268		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2269		device->flags.cca_seen = true;
2270		device->flags.coherent_dma = true;
2271	}
2272
2273	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2274					vmbus_walk_resources, NULL);
2275
2276	if (ACPI_FAILURE(result))
2277		goto acpi_walk_err;
2278	/*
2279	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2280	 * firmware) is the VMOD that has the mmio ranges. Get that.
2281	 */
2282	for (ancestor = acpi_dev_parent(device);
2283	     ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2284	     ancestor = acpi_dev_parent(ancestor)) {
2285		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2286					     vmbus_walk_resources, NULL);
2287
2288		if (ACPI_FAILURE(result))
2289			continue;
2290		if (hyperv_mmio) {
2291			vmbus_reserve_fb();
2292			break;
2293		}
2294	}
2295	ret_val = 0;
2296
2297acpi_walk_err:
 
2298	if (ret_val)
2299		vmbus_mmio_remove();
2300	return ret_val;
2301}
2302#else
2303static int vmbus_acpi_add(struct platform_device *pdev)
2304{
2305	return 0;
2306}
2307#endif
2308
2309static int vmbus_device_add(struct platform_device *pdev)
2310{
2311	struct resource **cur_res = &hyperv_mmio;
2312	struct of_range range;
2313	struct of_range_parser parser;
2314	struct device_node *np = pdev->dev.of_node;
2315	int ret;
2316
2317	hv_dev = &pdev->dev;
2318
2319	ret = of_range_parser_init(&parser, np);
2320	if (ret)
2321		return ret;
2322
2323	for_each_of_range(&parser, &range) {
2324		struct resource *res;
2325
2326		res = kzalloc(sizeof(*res), GFP_KERNEL);
2327		if (!res) {
2328			vmbus_mmio_remove();
2329			return -ENOMEM;
2330		}
2331
2332		res->name = "hyperv mmio";
2333		res->flags = range.flags;
2334		res->start = range.cpu_addr;
2335		res->end = range.cpu_addr + range.size;
2336
2337		*cur_res = res;
2338		cur_res = &res->sibling;
2339	}
2340
2341	return ret;
2342}
2343
2344static int vmbus_platform_driver_probe(struct platform_device *pdev)
2345{
2346	if (acpi_disabled)
2347		return vmbus_device_add(pdev);
2348	else
2349		return vmbus_acpi_add(pdev);
2350}
2351
2352static void vmbus_platform_driver_remove(struct platform_device *pdev)
2353{
2354	vmbus_mmio_remove();
2355}
2356
2357#ifdef CONFIG_PM_SLEEP
2358static int vmbus_bus_suspend(struct device *dev)
2359{
2360	struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2361			hv_context.cpu_context, VMBUS_CONNECT_CPU);
2362	struct vmbus_channel *channel, *sc;
2363
2364	tasklet_disable(&hv_cpu->msg_dpc);
2365	vmbus_connection.ignore_any_offer_msg = true;
2366	/* The tasklet_enable() takes care of providing a memory barrier */
2367	tasklet_enable(&hv_cpu->msg_dpc);
2368
2369	/* Drain all the workqueues as we are in suspend */
2370	drain_workqueue(vmbus_connection.rescind_work_queue);
2371	drain_workqueue(vmbus_connection.work_queue);
2372	drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2373	drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2374
2375	mutex_lock(&vmbus_connection.channel_mutex);
2376	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2377		if (!is_hvsock_channel(channel))
2378			continue;
2379
2380		vmbus_force_channel_rescinded(channel);
2381	}
2382	mutex_unlock(&vmbus_connection.channel_mutex);
2383
2384	/*
2385	 * Wait until all the sub-channels and hv_sock channels have been
2386	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2387	 * they would conflict with the new sub-channels that will be created
2388	 * in the resume path. hv_sock channels should also be destroyed, but
2389	 * a hv_sock channel of an established hv_sock connection can not be
2390	 * really destroyed since it may still be referenced by the userspace
2391	 * application, so we just force the hv_sock channel to be rescinded
2392	 * by vmbus_force_channel_rescinded(), and the userspace application
2393	 * will thoroughly destroy the channel after hibernation.
2394	 *
2395	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2396	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2397	 */
2398	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2399		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2400
2401	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2402		pr_err("Can not suspend due to a previous failed resuming\n");
2403		return -EBUSY;
2404	}
2405
2406	mutex_lock(&vmbus_connection.channel_mutex);
2407
2408	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2409		/*
2410		 * Remove the channel from the array of channels and invalidate
2411		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2412		 * up the relid (and other fields, if necessary) and add the
2413		 * channel back to the array.
2414		 */
2415		vmbus_channel_unmap_relid(channel);
2416		channel->offermsg.child_relid = INVALID_RELID;
2417
2418		if (is_hvsock_channel(channel)) {
2419			if (!channel->rescind) {
2420				pr_err("hv_sock channel not rescinded!\n");
2421				WARN_ON_ONCE(1);
2422			}
2423			continue;
2424		}
2425
2426		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2427			pr_err("Sub-channel not deleted!\n");
2428			WARN_ON_ONCE(1);
2429		}
2430
2431		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2432	}
2433
2434	mutex_unlock(&vmbus_connection.channel_mutex);
2435
2436	vmbus_initiate_unload(false);
2437
2438	/* Reset the event for the next resume. */
2439	reinit_completion(&vmbus_connection.ready_for_resume_event);
2440
2441	return 0;
2442}
2443
2444static int vmbus_bus_resume(struct device *dev)
2445{
2446	struct vmbus_channel_msginfo *msginfo;
2447	size_t msgsize;
2448	int ret;
2449
2450	vmbus_connection.ignore_any_offer_msg = false;
2451
2452	/*
2453	 * We only use the 'vmbus_proto_version', which was in use before
2454	 * hibernation, to re-negotiate with the host.
2455	 */
2456	if (!vmbus_proto_version) {
2457		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2458		return -EINVAL;
2459	}
2460
2461	msgsize = sizeof(*msginfo) +
2462		  sizeof(struct vmbus_channel_initiate_contact);
2463
2464	msginfo = kzalloc(msgsize, GFP_KERNEL);
2465
2466	if (msginfo == NULL)
2467		return -ENOMEM;
2468
2469	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2470
2471	kfree(msginfo);
2472
2473	if (ret != 0)
2474		return ret;
2475
2476	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2477
2478	vmbus_request_offers();
2479
2480	if (wait_for_completion_timeout(
2481		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2482		pr_err("Some vmbus device is missing after suspending?\n");
2483
2484	/* Reset the event for the next suspend. */
2485	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2486
2487	return 0;
2488}
2489#else
2490#define vmbus_bus_suspend NULL
2491#define vmbus_bus_resume NULL
2492#endif /* CONFIG_PM_SLEEP */
2493
2494static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2495	{
2496		.compatible = "microsoft,vmbus",
2497	},
2498	{
2499		/* sentinel */
2500	},
2501};
2502MODULE_DEVICE_TABLE(of, vmbus_of_match);
2503
2504static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2505	{"VMBUS", 0},
2506	{"VMBus", 0},
2507	{"", 0},
2508};
2509MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2510
2511/*
2512 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2513 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2514 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2515 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2516 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2517 * resume callback must also run via the "noirq" ops.
2518 *
2519 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2520 * earlier in this file before vmbus_pm.
2521 */
2522
2523static const struct dev_pm_ops vmbus_bus_pm = {
2524	.suspend_noirq	= NULL,
2525	.resume_noirq	= NULL,
2526	.freeze_noirq	= vmbus_bus_suspend,
2527	.thaw_noirq	= vmbus_bus_resume,
2528	.poweroff_noirq	= vmbus_bus_suspend,
2529	.restore_noirq	= vmbus_bus_resume
2530};
2531
2532static struct platform_driver vmbus_platform_driver = {
2533	.probe = vmbus_platform_driver_probe,
2534	.remove_new = vmbus_platform_driver_remove,
2535	.driver = {
2536		.name = "vmbus",
2537		.acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2538		.of_match_table = of_match_ptr(vmbus_of_match),
2539		.pm = &vmbus_bus_pm,
2540		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2541	}
2542};
2543
2544static void hv_kexec_handler(void)
2545{
2546	hv_stimer_global_cleanup();
 
 
2547	vmbus_initiate_unload(false);
2548	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2549	mb();
2550	cpuhp_remove_state(hyperv_cpuhp_online);
2551};
2552
2553static void hv_crash_handler(struct pt_regs *regs)
2554{
2555	int cpu;
2556
2557	vmbus_initiate_unload(true);
2558	/*
2559	 * In crash handler we can't schedule synic cleanup for all CPUs,
2560	 * doing the cleanup for current CPU only. This should be sufficient
2561	 * for kdump.
2562	 */
2563	cpu = smp_processor_id();
2564	hv_stimer_cleanup(cpu);
2565	hv_synic_disable_regs(cpu);
2566};
2567
2568static int hv_synic_suspend(void)
2569{
2570	/*
2571	 * When we reach here, all the non-boot CPUs have been offlined.
2572	 * If we're in a legacy configuration where stimer Direct Mode is
2573	 * not enabled, the stimers on the non-boot CPUs have been unbound
2574	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2575	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2576	 *
2577	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2578	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2579	 * 1) it's unnecessary as interrupts remain disabled between
2580	 * syscore_suspend() and syscore_resume(): see create_image() and
2581	 * resume_target_kernel()
2582	 * 2) the stimer on CPU0 is automatically disabled later by
2583	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2584	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2585	 * 3) a warning would be triggered if we call
2586	 * clockevents_unbind_device(), which may sleep, in an
2587	 * interrupts-disabled context.
2588	 */
2589
2590	hv_synic_disable_regs(0);
2591
2592	return 0;
2593}
2594
2595static void hv_synic_resume(void)
2596{
2597	hv_synic_enable_regs(0);
2598
2599	/*
2600	 * Note: we don't need to call hv_stimer_init(0), because the timer
2601	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2602	 * automatically re-enabled in timekeeping_resume().
2603	 */
2604}
2605
2606/* The callbacks run only on CPU0, with irqs_disabled. */
2607static struct syscore_ops hv_synic_syscore_ops = {
2608	.suspend = hv_synic_suspend,
2609	.resume = hv_synic_resume,
2610};
2611
2612static int __init hv_acpi_init(void)
2613{
2614	int ret;
2615
2616	if (!hv_is_hyperv_initialized())
2617		return -ENODEV;
2618
2619	if (hv_root_partition && !hv_nested)
2620		return 0;
2621
2622	/*
2623	 * Get ACPI resources first.
2624	 */
2625	ret = platform_driver_register(&vmbus_platform_driver);
 
2626	if (ret)
2627		return ret;
2628
2629	if (!hv_dev) {
2630		ret = -ENODEV;
 
2631		goto cleanup;
2632	}
2633
2634	/*
2635	 * If we're on an architecture with a hardcoded hypervisor
2636	 * vector (i.e. x86/x64), override the VMbus interrupt found
2637	 * in the ACPI tables. Ensure vmbus_irq is not set since the
2638	 * normal Linux IRQ mechanism is not used in this case.
2639	 */
2640#ifdef HYPERVISOR_CALLBACK_VECTOR
2641	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2642	vmbus_irq = -1;
2643#endif
2644
2645	hv_debug_init();
2646
2647	ret = vmbus_bus_init();
2648	if (ret)
2649		goto cleanup;
2650
2651	hv_setup_kexec_handler(hv_kexec_handler);
2652	hv_setup_crash_handler(hv_crash_handler);
2653
2654	register_syscore_ops(&hv_synic_syscore_ops);
2655
2656	return 0;
2657
2658cleanup:
2659	platform_driver_unregister(&vmbus_platform_driver);
2660	hv_dev = NULL;
2661	return ret;
2662}
2663
2664static void __exit vmbus_exit(void)
2665{
2666	int cpu;
2667
2668	unregister_syscore_ops(&hv_synic_syscore_ops);
2669
2670	hv_remove_kexec_handler();
2671	hv_remove_crash_handler();
2672	vmbus_connection.conn_state = DISCONNECTED;
2673	hv_stimer_global_cleanup();
2674	vmbus_disconnect();
2675	if (vmbus_irq == -1) {
2676		hv_remove_vmbus_handler();
2677	} else {
2678		free_percpu_irq(vmbus_irq, vmbus_evt);
2679		free_percpu(vmbus_evt);
 
 
 
2680	}
 
 
2681	for_each_online_cpu(cpu) {
2682		struct hv_per_cpu_context *hv_cpu
2683			= per_cpu_ptr(hv_context.cpu_context, cpu);
2684
2685		tasklet_kill(&hv_cpu->msg_dpc);
2686	}
2687	hv_debug_rm_all_dir();
2688
2689	vmbus_free_channels();
2690	kfree(vmbus_connection.channels);
2691
2692	/*
2693	 * The vmbus panic notifier is always registered, hence we should
2694	 * also unconditionally unregister it here as well.
2695	 */
2696	atomic_notifier_chain_unregister(&panic_notifier_list,
2697					&hyperv_panic_vmbus_unload_block);
2698
2699	bus_unregister(&hv_bus);
2700
2701	cpuhp_remove_state(hyperv_cpuhp_online);
2702	hv_synic_free();
2703	platform_driver_unregister(&vmbus_platform_driver);
 
 
2704}
2705
2706
2707MODULE_LICENSE("GPL");
2708MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2709
2710subsys_initcall(hv_acpi_init);
2711module_exit(vmbus_exit);