Loading...
Note: File does not exist in v4.6.
1/*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/display/drm_dp_helper.h>
29#include <drm/display/drm_dsc_helper.h>
30#include <drm/drm_edid.h>
31
32#include "i915_drv.h"
33#include "i915_reg.h"
34#include "intel_display.h"
35#include "intel_display_types.h"
36#include "intel_gmbus.h"
37
38#define _INTEL_BIOS_PRIVATE
39#include "intel_vbt_defs.h"
40
41/**
42 * DOC: Video BIOS Table (VBT)
43 *
44 * The Video BIOS Table, or VBT, provides platform and board specific
45 * configuration information to the driver that is not discoverable or available
46 * through other means. The configuration is mostly related to display
47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48 * the PCI ROM.
49 *
50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52 * contain the actual configuration information. The VBT Header, and thus the
53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54 * BDB Header. The data blocks are concatenated after the BDB Header. The data
55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56 * data. (Block 53, the MIPI Sequence Block is an exception.)
57 *
58 * The driver parses the VBT during load. The relevant information is stored in
59 * driver private data for ease of use, and the actual VBT is not read after
60 * that.
61 */
62
63/* Wrapper for VBT child device config */
64struct intel_bios_encoder_data {
65 struct drm_i915_private *i915;
66
67 struct child_device_config child;
68 struct dsc_compression_parameters_entry *dsc;
69 struct list_head node;
70};
71
72#define SLAVE_ADDR1 0x70
73#define SLAVE_ADDR2 0x72
74
75/* Get BDB block size given a pointer to Block ID. */
76static u32 _get_blocksize(const u8 *block_base)
77{
78 /* The MIPI Sequence Block v3+ has a separate size field. */
79 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 return *((const u32 *)(block_base + 4));
81 else
82 return *((const u16 *)(block_base + 1));
83}
84
85/* Get BDB block size give a pointer to data after Block ID and Block Size. */
86static u32 get_blocksize(const void *block_data)
87{
88 return _get_blocksize(block_data - 3);
89}
90
91static const void *
92find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93{
94 const struct bdb_header *bdb = _bdb;
95 const u8 *base = _bdb;
96 int index = 0;
97 u32 total, current_size;
98 enum bdb_block_id current_id;
99
100 /* skip to first section */
101 index += bdb->header_size;
102 total = bdb->bdb_size;
103
104 /* walk the sections looking for section_id */
105 while (index + 3 < total) {
106 current_id = *(base + index);
107 current_size = _get_blocksize(base + index);
108 index += 3;
109
110 if (index + current_size > total)
111 return NULL;
112
113 if (current_id == section_id)
114 return base + index;
115
116 index += current_size;
117 }
118
119 return NULL;
120}
121
122/*
123 * Offset from the start of BDB to the start of the
124 * block data (just past the block header).
125 */
126static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127{
128 const void *block;
129
130 block = find_raw_section(bdb, section_id);
131 if (!block)
132 return 0;
133
134 return block - bdb;
135}
136
137struct bdb_block_entry {
138 struct list_head node;
139 enum bdb_block_id section_id;
140 u8 data[];
141};
142
143static const void *
144bdb_find_section(struct drm_i915_private *i915,
145 enum bdb_block_id section_id)
146{
147 struct bdb_block_entry *entry;
148
149 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150 if (entry->section_id == section_id)
151 return entry->data + 3;
152 }
153
154 return NULL;
155}
156
157static const struct {
158 enum bdb_block_id section_id;
159 size_t min_size;
160} bdb_blocks[] = {
161 { .section_id = BDB_GENERAL_FEATURES,
162 .min_size = sizeof(struct bdb_general_features), },
163 { .section_id = BDB_GENERAL_DEFINITIONS,
164 .min_size = sizeof(struct bdb_general_definitions), },
165 { .section_id = BDB_PSR,
166 .min_size = sizeof(struct bdb_psr), },
167 { .section_id = BDB_DRIVER_FEATURES,
168 .min_size = sizeof(struct bdb_driver_features), },
169 { .section_id = BDB_SDVO_LVDS_OPTIONS,
170 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171 { .section_id = BDB_SDVO_PANEL_DTDS,
172 .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173 { .section_id = BDB_EDP,
174 .min_size = sizeof(struct bdb_edp), },
175 { .section_id = BDB_LVDS_OPTIONS,
176 .min_size = sizeof(struct bdb_lvds_options), },
177 /*
178 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179 * so keep the two ordered.
180 */
181 { .section_id = BDB_LVDS_LFP_DATA_PTRS,
182 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183 { .section_id = BDB_LVDS_LFP_DATA,
184 .min_size = 0, /* special case */ },
185 { .section_id = BDB_LVDS_BACKLIGHT,
186 .min_size = sizeof(struct bdb_lfp_backlight_data), },
187 { .section_id = BDB_LFP_POWER,
188 .min_size = sizeof(struct bdb_lfp_power), },
189 { .section_id = BDB_MIPI_CONFIG,
190 .min_size = sizeof(struct bdb_mipi_config), },
191 { .section_id = BDB_MIPI_SEQUENCE,
192 .min_size = sizeof(struct bdb_mipi_sequence) },
193 { .section_id = BDB_COMPRESSION_PARAMETERS,
194 .min_size = sizeof(struct bdb_compression_parameters), },
195 { .section_id = BDB_GENERIC_DTD,
196 .min_size = sizeof(struct bdb_generic_dtd), },
197};
198
199static size_t lfp_data_min_size(struct drm_i915_private *i915)
200{
201 const struct bdb_lvds_lfp_data_ptrs *ptrs;
202 size_t size;
203
204 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205 if (!ptrs)
206 return 0;
207
208 size = sizeof(struct bdb_lvds_lfp_data);
209 if (ptrs->panel_name.table_size)
210 size = max(size, ptrs->panel_name.offset +
211 sizeof(struct bdb_lvds_lfp_data_tail));
212
213 return size;
214}
215
216static bool validate_lfp_data_ptrs(const void *bdb,
217 const struct bdb_lvds_lfp_data_ptrs *ptrs)
218{
219 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220 int data_block_size, lfp_data_size;
221 const void *data_block;
222 int i;
223
224 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225 if (!data_block)
226 return false;
227
228 data_block_size = get_blocksize(data_block);
229 if (data_block_size == 0)
230 return false;
231
232 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233 if (ptrs->lvds_entries != 3)
234 return false;
235
236 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239 panel_name_size = ptrs->panel_name.table_size;
240
241 /* fp_timing has variable size */
242 if (fp_timing_size < 32 ||
243 dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244 panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245 return false;
246
247 /* panel_name is not present in old VBTs */
248 if (panel_name_size != 0 &&
249 panel_name_size != sizeof(struct lvds_lfp_panel_name))
250 return false;
251
252 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253 if (16 * lfp_data_size > data_block_size)
254 return false;
255
256 /* make sure the table entries have uniform size */
257 for (i = 1; i < 16; i++) {
258 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261 return false;
262
263 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266 return false;
267 }
268
269 /*
270 * Except for vlv/chv machines all real VBTs seem to have 6
271 * unaccounted bytes in the fp_timing table. And it doesn't
272 * appear to be a really intentional hole as the fp_timing
273 * 0xffff terminator is always within those 6 missing bytes.
274 */
275 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276 fp_timing_size += 6;
277
278 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279 return false;
280
281 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284 return false;
285
286 /* make sure the tables fit inside the data block */
287 for (i = 0; i < 16; i++) {
288 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291 return false;
292 }
293
294 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295 return false;
296
297 /* make sure fp_timing terminators are present at expected locations */
298 for (i = 0; i < 16; i++) {
299 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300 fp_timing_size - 2;
301
302 if (*t != 0xffff)
303 return false;
304 }
305
306 return true;
307}
308
309/* make the data table offsets relative to the data block */
310static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311{
312 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313 u32 offset;
314 int i;
315
316 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317
318 for (i = 0; i < 16; i++) {
319 if (ptrs->ptr[i].fp_timing.offset < offset ||
320 ptrs->ptr[i].dvo_timing.offset < offset ||
321 ptrs->ptr[i].panel_pnp_id.offset < offset)
322 return false;
323
324 ptrs->ptr[i].fp_timing.offset -= offset;
325 ptrs->ptr[i].dvo_timing.offset -= offset;
326 ptrs->ptr[i].panel_pnp_id.offset -= offset;
327 }
328
329 if (ptrs->panel_name.table_size) {
330 if (ptrs->panel_name.offset < offset)
331 return false;
332
333 ptrs->panel_name.offset -= offset;
334 }
335
336 return validate_lfp_data_ptrs(bdb, ptrs);
337}
338
339static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340 int table_size, int total_size)
341{
342 if (total_size < table_size)
343 return total_size;
344
345 table->table_size = table_size;
346 table->offset = total_size - table_size;
347
348 return total_size - table_size;
349}
350
351static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352 const struct lvds_lfp_data_ptr_table *prev,
353 int size)
354{
355 next->table_size = prev->table_size;
356 next->offset = prev->offset + size;
357}
358
359static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360 const void *bdb)
361{
362 int i, size, table_size, block_size, offset, fp_timing_size;
363 struct bdb_lvds_lfp_data_ptrs *ptrs;
364 const void *block;
365 void *ptrs_block;
366
367 /*
368 * The hardcoded fp_timing_size is only valid for
369 * modernish VBTs. All older VBTs definitely should
370 * include block 41 and thus we don't need to
371 * generate one.
372 */
373 if (i915->display.vbt.version < 155)
374 return NULL;
375
376 fp_timing_size = 38;
377
378 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379 if (!block)
380 return NULL;
381
382 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383
384 block_size = get_blocksize(block);
385
386 size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387 sizeof(struct lvds_pnp_id);
388 if (size * 16 > block_size)
389 return NULL;
390
391 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392 if (!ptrs_block)
393 return NULL;
394
395 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397 ptrs = ptrs_block + 3;
398
399 table_size = sizeof(struct lvds_pnp_id);
400 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401
402 table_size = sizeof(struct lvds_dvo_timing);
403 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404
405 table_size = fp_timing_size;
406 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407
408 if (ptrs->ptr[0].fp_timing.table_size)
409 ptrs->lvds_entries++;
410 if (ptrs->ptr[0].dvo_timing.table_size)
411 ptrs->lvds_entries++;
412 if (ptrs->ptr[0].panel_pnp_id.table_size)
413 ptrs->lvds_entries++;
414
415 if (size != 0 || ptrs->lvds_entries != 3) {
416 kfree(ptrs_block);
417 return NULL;
418 }
419
420 size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421 sizeof(struct lvds_pnp_id);
422 for (i = 1; i < 16; i++) {
423 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426 }
427
428 table_size = sizeof(struct lvds_lfp_panel_name);
429
430 if (16 * (size + table_size) <= block_size) {
431 ptrs->panel_name.table_size = table_size;
432 ptrs->panel_name.offset = size * 16;
433 }
434
435 offset = block - bdb;
436
437 for (i = 0; i < 16; i++) {
438 ptrs->ptr[i].fp_timing.offset += offset;
439 ptrs->ptr[i].dvo_timing.offset += offset;
440 ptrs->ptr[i].panel_pnp_id.offset += offset;
441 }
442
443 if (ptrs->panel_name.table_size)
444 ptrs->panel_name.offset += offset;
445
446 return ptrs_block;
447}
448
449static void
450init_bdb_block(struct drm_i915_private *i915,
451 const void *bdb, enum bdb_block_id section_id,
452 size_t min_size)
453{
454 struct bdb_block_entry *entry;
455 void *temp_block = NULL;
456 const void *block;
457 size_t block_size;
458
459 block = find_raw_section(bdb, section_id);
460
461 /* Modern VBTs lack the LFP data table pointers block, make one up */
462 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463 temp_block = generate_lfp_data_ptrs(i915, bdb);
464 if (temp_block)
465 block = temp_block + 3;
466 }
467 if (!block)
468 return;
469
470 drm_WARN(&i915->drm, min_size == 0,
471 "Block %d min_size is zero\n", section_id);
472
473 block_size = get_blocksize(block);
474
475 /*
476 * Version number and new block size are considered
477 * part of the header for MIPI sequenece block v3+.
478 */
479 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480 block_size += 5;
481
482 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483 GFP_KERNEL);
484 if (!entry) {
485 kfree(temp_block);
486 return;
487 }
488
489 entry->section_id = section_id;
490 memcpy(entry->data, block - 3, block_size + 3);
491
492 kfree(temp_block);
493
494 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495 section_id, block_size, min_size);
496
497 if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500 kfree(entry);
501 return;
502 }
503
504 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505}
506
507static void init_bdb_blocks(struct drm_i915_private *i915,
508 const void *bdb)
509{
510 int i;
511
512 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513 enum bdb_block_id section_id = bdb_blocks[i].section_id;
514 size_t min_size = bdb_blocks[i].min_size;
515
516 if (section_id == BDB_LVDS_LFP_DATA)
517 min_size = lfp_data_min_size(i915);
518
519 init_bdb_block(i915, bdb, section_id, min_size);
520 }
521}
522
523static void
524fill_detail_timing_data(struct drm_i915_private *i915,
525 struct drm_display_mode *panel_fixed_mode,
526 const struct lvds_dvo_timing *dvo_timing)
527{
528 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529 dvo_timing->hactive_lo;
530 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533 ((dvo_timing->hsync_pulse_width_hi << 8) |
534 dvo_timing->hsync_pulse_width_lo);
535 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537
538 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539 dvo_timing->vactive_lo;
540 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543 ((dvo_timing->vsync_pulse_width_hi << 4) |
544 dvo_timing->vsync_pulse_width_lo);
545 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547 panel_fixed_mode->clock = dvo_timing->clock * 10;
548 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549
550 if (dvo_timing->hsync_positive)
551 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552 else
553 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554
555 if (dvo_timing->vsync_positive)
556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557 else
558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559
560 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561 dvo_timing->himage_lo;
562 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563 dvo_timing->vimage_lo;
564
565 /* Some VBTs have bogus h/vsync_end values */
566 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) {
567 drm_dbg_kms(&i915->drm, "reducing hsync_end %d->%d\n",
568 panel_fixed_mode->hsync_end, panel_fixed_mode->htotal);
569 panel_fixed_mode->hsync_end = panel_fixed_mode->htotal;
570 }
571 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) {
572 drm_dbg_kms(&i915->drm, "reducing vsync_end %d->%d\n",
573 panel_fixed_mode->vsync_end, panel_fixed_mode->vtotal);
574 panel_fixed_mode->vsync_end = panel_fixed_mode->vtotal;
575 }
576
577 drm_mode_set_name(panel_fixed_mode);
578}
579
580static const struct lvds_dvo_timing *
581get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
582 const struct bdb_lvds_lfp_data_ptrs *ptrs,
583 int index)
584{
585 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
586}
587
588static const struct lvds_fp_timing *
589get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
590 const struct bdb_lvds_lfp_data_ptrs *ptrs,
591 int index)
592{
593 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
594}
595
596static const struct lvds_pnp_id *
597get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
598 const struct bdb_lvds_lfp_data_ptrs *ptrs,
599 int index)
600{
601 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
602}
603
604static const struct bdb_lvds_lfp_data_tail *
605get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
606 const struct bdb_lvds_lfp_data_ptrs *ptrs)
607{
608 if (ptrs->panel_name.table_size)
609 return (const void *)data + ptrs->panel_name.offset;
610 else
611 return NULL;
612}
613
614static void dump_pnp_id(struct drm_i915_private *i915,
615 const struct lvds_pnp_id *pnp_id,
616 const char *name)
617{
618 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
619 char vend[4];
620
621 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
622 name, drm_edid_decode_mfg_id(mfg_name, vend),
623 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
624 pnp_id->mfg_week, pnp_id->mfg_year + 1990);
625}
626
627static int opregion_get_panel_type(struct drm_i915_private *i915,
628 const struct intel_bios_encoder_data *devdata,
629 const struct drm_edid *drm_edid, bool use_fallback)
630{
631 return intel_opregion_get_panel_type(i915);
632}
633
634static int vbt_get_panel_type(struct drm_i915_private *i915,
635 const struct intel_bios_encoder_data *devdata,
636 const struct drm_edid *drm_edid, bool use_fallback)
637{
638 const struct bdb_lvds_options *lvds_options;
639
640 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
641 if (!lvds_options)
642 return -1;
643
644 if (lvds_options->panel_type > 0xf &&
645 lvds_options->panel_type != 0xff) {
646 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
647 lvds_options->panel_type);
648 return -1;
649 }
650
651 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
652 return lvds_options->panel_type2;
653
654 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
655
656 return lvds_options->panel_type;
657}
658
659static int pnpid_get_panel_type(struct drm_i915_private *i915,
660 const struct intel_bios_encoder_data *devdata,
661 const struct drm_edid *drm_edid, bool use_fallback)
662{
663 const struct bdb_lvds_lfp_data *data;
664 const struct bdb_lvds_lfp_data_ptrs *ptrs;
665 const struct lvds_pnp_id *edid_id;
666 struct lvds_pnp_id edid_id_nodate;
667 const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
668 int i, best = -1;
669
670 if (!edid)
671 return -1;
672
673 edid_id = (const void *)&edid->mfg_id[0];
674
675 edid_id_nodate = *edid_id;
676 edid_id_nodate.mfg_week = 0;
677 edid_id_nodate.mfg_year = 0;
678
679 dump_pnp_id(i915, edid_id, "EDID");
680
681 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
682 if (!ptrs)
683 return -1;
684
685 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
686 if (!data)
687 return -1;
688
689 for (i = 0; i < 16; i++) {
690 const struct lvds_pnp_id *vbt_id =
691 get_lvds_pnp_id(data, ptrs, i);
692
693 /* full match? */
694 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
695 return i;
696
697 /*
698 * Accept a match w/o date if no full match is found,
699 * and the VBT entry does not specify a date.
700 */
701 if (best < 0 &&
702 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
703 best = i;
704 }
705
706 return best;
707}
708
709static int fallback_get_panel_type(struct drm_i915_private *i915,
710 const struct intel_bios_encoder_data *devdata,
711 const struct drm_edid *drm_edid, bool use_fallback)
712{
713 return use_fallback ? 0 : -1;
714}
715
716enum panel_type {
717 PANEL_TYPE_OPREGION,
718 PANEL_TYPE_VBT,
719 PANEL_TYPE_PNPID,
720 PANEL_TYPE_FALLBACK,
721};
722
723static int get_panel_type(struct drm_i915_private *i915,
724 const struct intel_bios_encoder_data *devdata,
725 const struct drm_edid *drm_edid, bool use_fallback)
726{
727 struct {
728 const char *name;
729 int (*get_panel_type)(struct drm_i915_private *i915,
730 const struct intel_bios_encoder_data *devdata,
731 const struct drm_edid *drm_edid, bool use_fallback);
732 int panel_type;
733 } panel_types[] = {
734 [PANEL_TYPE_OPREGION] = {
735 .name = "OpRegion",
736 .get_panel_type = opregion_get_panel_type,
737 },
738 [PANEL_TYPE_VBT] = {
739 .name = "VBT",
740 .get_panel_type = vbt_get_panel_type,
741 },
742 [PANEL_TYPE_PNPID] = {
743 .name = "PNPID",
744 .get_panel_type = pnpid_get_panel_type,
745 },
746 [PANEL_TYPE_FALLBACK] = {
747 .name = "fallback",
748 .get_panel_type = fallback_get_panel_type,
749 },
750 };
751 int i;
752
753 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
754 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
755 drm_edid, use_fallback);
756
757 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
758 panel_types[i].panel_type != 0xff);
759
760 if (panel_types[i].panel_type >= 0)
761 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
762 panel_types[i].name, panel_types[i].panel_type);
763 }
764
765 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
766 i = PANEL_TYPE_OPREGION;
767 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
768 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
769 i = PANEL_TYPE_PNPID;
770 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
771 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
772 i = PANEL_TYPE_VBT;
773 else
774 i = PANEL_TYPE_FALLBACK;
775
776 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
777 panel_types[i].name, panel_types[i].panel_type);
778
779 return panel_types[i].panel_type;
780}
781
782static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
783{
784 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
785}
786
787static bool panel_bool(unsigned int value, int panel_type)
788{
789 return panel_bits(value, panel_type, 1);
790}
791
792/* Parse general panel options */
793static void
794parse_panel_options(struct drm_i915_private *i915,
795 struct intel_panel *panel)
796{
797 const struct bdb_lvds_options *lvds_options;
798 int panel_type = panel->vbt.panel_type;
799 int drrs_mode;
800
801 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
802 if (!lvds_options)
803 return;
804
805 panel->vbt.lvds_dither = lvds_options->pixel_dither;
806
807 /*
808 * Empirical evidence indicates the block size can be
809 * either 4,14,16,24+ bytes. For older VBTs no clear
810 * relationship between the block size vs. BDB version.
811 */
812 if (get_blocksize(lvds_options) < 16)
813 return;
814
815 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
816 panel_type, 2);
817 /*
818 * VBT has static DRRS = 0 and seamless DRRS = 2.
819 * The below piece of code is required to adjust vbt.drrs_type
820 * to match the enum drrs_support_type.
821 */
822 switch (drrs_mode) {
823 case 0:
824 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
825 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
826 break;
827 case 2:
828 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
829 drm_dbg_kms(&i915->drm,
830 "DRRS supported mode is seamless\n");
831 break;
832 default:
833 panel->vbt.drrs_type = DRRS_TYPE_NONE;
834 drm_dbg_kms(&i915->drm,
835 "DRRS not supported (VBT input)\n");
836 break;
837 }
838}
839
840static void
841parse_lfp_panel_dtd(struct drm_i915_private *i915,
842 struct intel_panel *panel,
843 const struct bdb_lvds_lfp_data *lvds_lfp_data,
844 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
845{
846 const struct lvds_dvo_timing *panel_dvo_timing;
847 const struct lvds_fp_timing *fp_timing;
848 struct drm_display_mode *panel_fixed_mode;
849 int panel_type = panel->vbt.panel_type;
850
851 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
852 lvds_lfp_data_ptrs,
853 panel_type);
854
855 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
856 if (!panel_fixed_mode)
857 return;
858
859 fill_detail_timing_data(i915, panel_fixed_mode, panel_dvo_timing);
860
861 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
862
863 drm_dbg_kms(&i915->drm,
864 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
865 DRM_MODE_ARG(panel_fixed_mode));
866
867 fp_timing = get_lvds_fp_timing(lvds_lfp_data,
868 lvds_lfp_data_ptrs,
869 panel_type);
870
871 /* check the resolution, just to be sure */
872 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
873 fp_timing->y_res == panel_fixed_mode->vdisplay) {
874 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
875 drm_dbg_kms(&i915->drm,
876 "VBT initial LVDS value %x\n",
877 panel->vbt.bios_lvds_val);
878 }
879}
880
881static void
882parse_lfp_data(struct drm_i915_private *i915,
883 struct intel_panel *panel)
884{
885 const struct bdb_lvds_lfp_data *data;
886 const struct bdb_lvds_lfp_data_tail *tail;
887 const struct bdb_lvds_lfp_data_ptrs *ptrs;
888 const struct lvds_pnp_id *pnp_id;
889 int panel_type = panel->vbt.panel_type;
890
891 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
892 if (!ptrs)
893 return;
894
895 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
896 if (!data)
897 return;
898
899 if (!panel->vbt.lfp_lvds_vbt_mode)
900 parse_lfp_panel_dtd(i915, panel, data, ptrs);
901
902 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
903 dump_pnp_id(i915, pnp_id, "Panel");
904
905 tail = get_lfp_data_tail(data, ptrs);
906 if (!tail)
907 return;
908
909 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
910 (int)sizeof(tail->panel_name[0].name),
911 tail->panel_name[panel_type].name);
912
913 if (i915->display.vbt.version >= 188) {
914 panel->vbt.seamless_drrs_min_refresh_rate =
915 tail->seamless_drrs_min_refresh_rate[panel_type];
916 drm_dbg_kms(&i915->drm,
917 "Seamless DRRS min refresh rate: %d Hz\n",
918 panel->vbt.seamless_drrs_min_refresh_rate);
919 }
920}
921
922static void
923parse_generic_dtd(struct drm_i915_private *i915,
924 struct intel_panel *panel)
925{
926 const struct bdb_generic_dtd *generic_dtd;
927 const struct generic_dtd_entry *dtd;
928 struct drm_display_mode *panel_fixed_mode;
929 int num_dtd;
930
931 /*
932 * Older VBTs provided DTD information for internal displays through
933 * the "LFP panel tables" block (42). As of VBT revision 229 the
934 * DTD information should be provided via a newer "generic DTD"
935 * block (58). Just to be safe, we'll try the new generic DTD block
936 * first on VBT >= 229, but still fall back to trying the old LFP
937 * block if that fails.
938 */
939 if (i915->display.vbt.version < 229)
940 return;
941
942 generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
943 if (!generic_dtd)
944 return;
945
946 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
947 drm_err(&i915->drm, "GDTD size %u is too small.\n",
948 generic_dtd->gdtd_size);
949 return;
950 } else if (generic_dtd->gdtd_size !=
951 sizeof(struct generic_dtd_entry)) {
952 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
953 generic_dtd->gdtd_size);
954 /* DTD has unknown fields, but keep going */
955 }
956
957 num_dtd = (get_blocksize(generic_dtd) -
958 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
959 if (panel->vbt.panel_type >= num_dtd) {
960 drm_err(&i915->drm,
961 "Panel type %d not found in table of %d DTD's\n",
962 panel->vbt.panel_type, num_dtd);
963 return;
964 }
965
966 dtd = &generic_dtd->dtd[panel->vbt.panel_type];
967
968 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
969 if (!panel_fixed_mode)
970 return;
971
972 panel_fixed_mode->hdisplay = dtd->hactive;
973 panel_fixed_mode->hsync_start =
974 panel_fixed_mode->hdisplay + dtd->hfront_porch;
975 panel_fixed_mode->hsync_end =
976 panel_fixed_mode->hsync_start + dtd->hsync;
977 panel_fixed_mode->htotal =
978 panel_fixed_mode->hdisplay + dtd->hblank;
979
980 panel_fixed_mode->vdisplay = dtd->vactive;
981 panel_fixed_mode->vsync_start =
982 panel_fixed_mode->vdisplay + dtd->vfront_porch;
983 panel_fixed_mode->vsync_end =
984 panel_fixed_mode->vsync_start + dtd->vsync;
985 panel_fixed_mode->vtotal =
986 panel_fixed_mode->vdisplay + dtd->vblank;
987
988 panel_fixed_mode->clock = dtd->pixel_clock;
989 panel_fixed_mode->width_mm = dtd->width_mm;
990 panel_fixed_mode->height_mm = dtd->height_mm;
991
992 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
993 drm_mode_set_name(panel_fixed_mode);
994
995 if (dtd->hsync_positive_polarity)
996 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
997 else
998 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
999
1000 if (dtd->vsync_positive_polarity)
1001 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
1002 else
1003 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
1004
1005 drm_dbg_kms(&i915->drm,
1006 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1007 DRM_MODE_ARG(panel_fixed_mode));
1008
1009 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1010}
1011
1012static void
1013parse_lfp_backlight(struct drm_i915_private *i915,
1014 struct intel_panel *panel)
1015{
1016 const struct bdb_lfp_backlight_data *backlight_data;
1017 const struct lfp_backlight_data_entry *entry;
1018 int panel_type = panel->vbt.panel_type;
1019 u16 level;
1020
1021 backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1022 if (!backlight_data)
1023 return;
1024
1025 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1026 drm_dbg_kms(&i915->drm,
1027 "Unsupported backlight data entry size %u\n",
1028 backlight_data->entry_size);
1029 return;
1030 }
1031
1032 entry = &backlight_data->data[panel_type];
1033
1034 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1035 if (!panel->vbt.backlight.present) {
1036 drm_dbg_kms(&i915->drm,
1037 "PWM backlight not present in VBT (type %u)\n",
1038 entry->type);
1039 return;
1040 }
1041
1042 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1043 panel->vbt.backlight.controller = 0;
1044 if (i915->display.vbt.version >= 191) {
1045 const struct lfp_backlight_control_method *method;
1046
1047 method = &backlight_data->backlight_control[panel_type];
1048 panel->vbt.backlight.type = method->type;
1049 panel->vbt.backlight.controller = method->controller;
1050 }
1051
1052 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1053 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1054
1055 if (i915->display.vbt.version >= 234) {
1056 u16 min_level;
1057 bool scale;
1058
1059 level = backlight_data->brightness_level[panel_type].level;
1060 min_level = backlight_data->brightness_min_level[panel_type].level;
1061
1062 if (i915->display.vbt.version >= 236)
1063 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1064 else
1065 scale = level > 255;
1066
1067 if (scale)
1068 min_level = min_level / 255;
1069
1070 if (min_level > 255) {
1071 drm_warn(&i915->drm, "Brightness min level > 255\n");
1072 level = 255;
1073 }
1074 panel->vbt.backlight.min_brightness = min_level;
1075
1076 panel->vbt.backlight.brightness_precision_bits =
1077 backlight_data->brightness_precision_bits[panel_type];
1078 } else {
1079 level = backlight_data->level[panel_type];
1080 panel->vbt.backlight.min_brightness = entry->min_brightness;
1081 }
1082
1083 if (i915->display.vbt.version >= 239)
1084 panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1085 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1086 else
1087 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1088
1089 drm_dbg_kms(&i915->drm,
1090 "VBT backlight PWM modulation frequency %u Hz, "
1091 "active %s, min brightness %u, level %u, controller %u\n",
1092 panel->vbt.backlight.pwm_freq_hz,
1093 panel->vbt.backlight.active_low_pwm ? "low" : "high",
1094 panel->vbt.backlight.min_brightness,
1095 level,
1096 panel->vbt.backlight.controller);
1097}
1098
1099/* Try to find sdvo panel data */
1100static void
1101parse_sdvo_panel_data(struct drm_i915_private *i915,
1102 struct intel_panel *panel)
1103{
1104 const struct bdb_sdvo_panel_dtds *dtds;
1105 struct drm_display_mode *panel_fixed_mode;
1106 int index;
1107
1108 index = i915->display.params.vbt_sdvo_panel_type;
1109 if (index == -2) {
1110 drm_dbg_kms(&i915->drm,
1111 "Ignore SDVO panel mode from BIOS VBT tables.\n");
1112 return;
1113 }
1114
1115 if (index == -1) {
1116 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1117
1118 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1119 if (!sdvo_lvds_options)
1120 return;
1121
1122 index = sdvo_lvds_options->panel_type;
1123 }
1124
1125 dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1126 if (!dtds)
1127 return;
1128
1129 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1130 if (!panel_fixed_mode)
1131 return;
1132
1133 fill_detail_timing_data(i915, panel_fixed_mode, &dtds->dtds[index]);
1134
1135 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1136
1137 drm_dbg_kms(&i915->drm,
1138 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1139 DRM_MODE_ARG(panel_fixed_mode));
1140}
1141
1142static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1143 bool alternate)
1144{
1145 switch (DISPLAY_VER(i915)) {
1146 case 2:
1147 return alternate ? 66667 : 48000;
1148 case 3:
1149 case 4:
1150 return alternate ? 100000 : 96000;
1151 default:
1152 return alternate ? 100000 : 120000;
1153 }
1154}
1155
1156static void
1157parse_general_features(struct drm_i915_private *i915)
1158{
1159 const struct bdb_general_features *general;
1160
1161 general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1162 if (!general)
1163 return;
1164
1165 i915->display.vbt.int_tv_support = general->int_tv_support;
1166 /* int_crt_support can't be trusted on earlier platforms */
1167 if (i915->display.vbt.version >= 155 &&
1168 (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1169 i915->display.vbt.int_crt_support = general->int_crt_support;
1170 i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1171 i915->display.vbt.lvds_ssc_freq =
1172 intel_bios_ssc_frequency(i915, general->ssc_freq);
1173 i915->display.vbt.display_clock_mode = general->display_clock_mode;
1174 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1175 if (i915->display.vbt.version >= 181) {
1176 i915->display.vbt.orientation = general->rotate_180 ?
1177 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1178 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1179 } else {
1180 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1181 }
1182
1183 if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1184 i915->display.vbt.override_afc_startup = true;
1185 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1186 }
1187
1188 drm_dbg_kms(&i915->drm,
1189 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1190 i915->display.vbt.int_tv_support,
1191 i915->display.vbt.int_crt_support,
1192 i915->display.vbt.lvds_use_ssc,
1193 i915->display.vbt.lvds_ssc_freq,
1194 i915->display.vbt.display_clock_mode,
1195 i915->display.vbt.fdi_rx_polarity_inverted);
1196}
1197
1198static const struct child_device_config *
1199child_device_ptr(const struct bdb_general_definitions *defs, int i)
1200{
1201 return (const void *) &defs->devices[i * defs->child_dev_size];
1202}
1203
1204static void
1205parse_sdvo_device_mapping(struct drm_i915_private *i915)
1206{
1207 const struct intel_bios_encoder_data *devdata;
1208 int count = 0;
1209
1210 /*
1211 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1212 * accurate and doesn't have to be, as long as it's not too strict.
1213 */
1214 if (!IS_DISPLAY_VER(i915, 3, 7)) {
1215 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1216 return;
1217 }
1218
1219 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1220 const struct child_device_config *child = &devdata->child;
1221 struct sdvo_device_mapping *mapping;
1222
1223 if (child->slave_addr != SLAVE_ADDR1 &&
1224 child->slave_addr != SLAVE_ADDR2) {
1225 /*
1226 * If the slave address is neither 0x70 nor 0x72,
1227 * it is not a SDVO device. Skip it.
1228 */
1229 continue;
1230 }
1231 if (child->dvo_port != DEVICE_PORT_DVOB &&
1232 child->dvo_port != DEVICE_PORT_DVOC) {
1233 /* skip the incorrect SDVO port */
1234 drm_dbg_kms(&i915->drm,
1235 "Incorrect SDVO port. Skip it\n");
1236 continue;
1237 }
1238 drm_dbg_kms(&i915->drm,
1239 "the SDVO device with slave addr %2x is found on"
1240 " %s port\n",
1241 child->slave_addr,
1242 (child->dvo_port == DEVICE_PORT_DVOB) ?
1243 "SDVOB" : "SDVOC");
1244 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1245 if (!mapping->initialized) {
1246 mapping->dvo_port = child->dvo_port;
1247 mapping->slave_addr = child->slave_addr;
1248 mapping->dvo_wiring = child->dvo_wiring;
1249 mapping->ddc_pin = child->ddc_pin;
1250 mapping->i2c_pin = child->i2c_pin;
1251 mapping->initialized = 1;
1252 drm_dbg_kms(&i915->drm,
1253 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1254 mapping->dvo_port, mapping->slave_addr,
1255 mapping->dvo_wiring, mapping->ddc_pin,
1256 mapping->i2c_pin);
1257 } else {
1258 drm_dbg_kms(&i915->drm,
1259 "Maybe one SDVO port is shared by "
1260 "two SDVO device.\n");
1261 }
1262 if (child->slave2_addr) {
1263 /* Maybe this is a SDVO device with multiple inputs */
1264 /* And the mapping info is not added */
1265 drm_dbg_kms(&i915->drm,
1266 "there exists the slave2_addr. Maybe this"
1267 " is a SDVO device with multiple inputs.\n");
1268 }
1269 count++;
1270 }
1271
1272 if (!count) {
1273 /* No SDVO device info is found */
1274 drm_dbg_kms(&i915->drm,
1275 "No SDVO device info is found in VBT\n");
1276 }
1277}
1278
1279static void
1280parse_driver_features(struct drm_i915_private *i915)
1281{
1282 const struct bdb_driver_features *driver;
1283
1284 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1285 if (!driver)
1286 return;
1287
1288 if (DISPLAY_VER(i915) >= 5) {
1289 /*
1290 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1291 * to mean "eDP". The VBT spec doesn't agree with that
1292 * interpretation, but real world VBTs seem to.
1293 */
1294 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1295 i915->display.vbt.int_lvds_support = 0;
1296 } else {
1297 /*
1298 * FIXME it's not clear which BDB version has the LVDS config
1299 * bits defined. Revision history in the VBT spec says:
1300 * "0.92 | Add two definitions for VBT value of LVDS Active
1301 * Config (00b and 11b values defined) | 06/13/2005"
1302 * but does not the specify the BDB version.
1303 *
1304 * So far version 134 (on i945gm) is the oldest VBT observed
1305 * in the wild with the bits correctly populated. Version
1306 * 108 (on i85x) does not have the bits correctly populated.
1307 */
1308 if (i915->display.vbt.version >= 134 &&
1309 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1310 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1311 i915->display.vbt.int_lvds_support = 0;
1312 }
1313}
1314
1315static void
1316parse_panel_driver_features(struct drm_i915_private *i915,
1317 struct intel_panel *panel)
1318{
1319 const struct bdb_driver_features *driver;
1320
1321 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1322 if (!driver)
1323 return;
1324
1325 if (i915->display.vbt.version < 228) {
1326 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1327 driver->drrs_enabled);
1328 /*
1329 * If DRRS is not supported, drrs_type has to be set to 0.
1330 * This is because, VBT is configured in such a way that
1331 * static DRRS is 0 and DRRS not supported is represented by
1332 * driver->drrs_enabled=false
1333 */
1334 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1335 /*
1336 * FIXME Should DMRRS perhaps be treated as seamless
1337 * but without the automatic downclocking?
1338 */
1339 if (driver->dmrrs_enabled)
1340 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1341 else
1342 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1343 }
1344
1345 panel->vbt.psr.enable = driver->psr_enabled;
1346 }
1347}
1348
1349static void
1350parse_power_conservation_features(struct drm_i915_private *i915,
1351 struct intel_panel *panel)
1352{
1353 const struct bdb_lfp_power *power;
1354 u8 panel_type = panel->vbt.panel_type;
1355
1356 panel->vbt.vrr = true; /* matches Windows behaviour */
1357
1358 if (i915->display.vbt.version < 228)
1359 return;
1360
1361 power = bdb_find_section(i915, BDB_LFP_POWER);
1362 if (!power)
1363 return;
1364
1365 panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1366
1367 /*
1368 * If DRRS is not supported, drrs_type has to be set to 0.
1369 * This is because, VBT is configured in such a way that
1370 * static DRRS is 0 and DRRS not supported is represented by
1371 * power->drrs & BIT(panel_type)=false
1372 */
1373 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1374 /*
1375 * FIXME Should DMRRS perhaps be treated as seamless
1376 * but without the automatic downclocking?
1377 */
1378 if (panel_bool(power->dmrrs, panel_type))
1379 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1380 else
1381 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1382 }
1383
1384 if (i915->display.vbt.version >= 232)
1385 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1386
1387 if (i915->display.vbt.version >= 233)
1388 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1389 panel_type);
1390}
1391
1392static void
1393parse_edp(struct drm_i915_private *i915,
1394 struct intel_panel *panel)
1395{
1396 const struct bdb_edp *edp;
1397 const struct edp_power_seq *edp_pps;
1398 const struct edp_fast_link_params *edp_link_params;
1399 int panel_type = panel->vbt.panel_type;
1400
1401 edp = bdb_find_section(i915, BDB_EDP);
1402 if (!edp)
1403 return;
1404
1405 switch (panel_bits(edp->color_depth, panel_type, 2)) {
1406 case EDP_18BPP:
1407 panel->vbt.edp.bpp = 18;
1408 break;
1409 case EDP_24BPP:
1410 panel->vbt.edp.bpp = 24;
1411 break;
1412 case EDP_30BPP:
1413 panel->vbt.edp.bpp = 30;
1414 break;
1415 }
1416
1417 /* Get the eDP sequencing and link info */
1418 edp_pps = &edp->power_seqs[panel_type];
1419 edp_link_params = &edp->fast_link_params[panel_type];
1420
1421 panel->vbt.edp.pps = *edp_pps;
1422
1423 if (i915->display.vbt.version >= 224) {
1424 panel->vbt.edp.rate =
1425 edp->edp_fast_link_training_rate[panel_type] * 20;
1426 } else {
1427 switch (edp_link_params->rate) {
1428 case EDP_RATE_1_62:
1429 panel->vbt.edp.rate = 162000;
1430 break;
1431 case EDP_RATE_2_7:
1432 panel->vbt.edp.rate = 270000;
1433 break;
1434 case EDP_RATE_5_4:
1435 panel->vbt.edp.rate = 540000;
1436 break;
1437 default:
1438 drm_dbg_kms(&i915->drm,
1439 "VBT has unknown eDP link rate value %u\n",
1440 edp_link_params->rate);
1441 break;
1442 }
1443 }
1444
1445 switch (edp_link_params->lanes) {
1446 case EDP_LANE_1:
1447 panel->vbt.edp.lanes = 1;
1448 break;
1449 case EDP_LANE_2:
1450 panel->vbt.edp.lanes = 2;
1451 break;
1452 case EDP_LANE_4:
1453 panel->vbt.edp.lanes = 4;
1454 break;
1455 default:
1456 drm_dbg_kms(&i915->drm,
1457 "VBT has unknown eDP lane count value %u\n",
1458 edp_link_params->lanes);
1459 break;
1460 }
1461
1462 switch (edp_link_params->preemphasis) {
1463 case EDP_PREEMPHASIS_NONE:
1464 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1465 break;
1466 case EDP_PREEMPHASIS_3_5dB:
1467 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1468 break;
1469 case EDP_PREEMPHASIS_6dB:
1470 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1471 break;
1472 case EDP_PREEMPHASIS_9_5dB:
1473 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1474 break;
1475 default:
1476 drm_dbg_kms(&i915->drm,
1477 "VBT has unknown eDP pre-emphasis value %u\n",
1478 edp_link_params->preemphasis);
1479 break;
1480 }
1481
1482 switch (edp_link_params->vswing) {
1483 case EDP_VSWING_0_4V:
1484 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1485 break;
1486 case EDP_VSWING_0_6V:
1487 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1488 break;
1489 case EDP_VSWING_0_8V:
1490 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1491 break;
1492 case EDP_VSWING_1_2V:
1493 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1494 break;
1495 default:
1496 drm_dbg_kms(&i915->drm,
1497 "VBT has unknown eDP voltage swing value %u\n",
1498 edp_link_params->vswing);
1499 break;
1500 }
1501
1502 if (i915->display.vbt.version >= 173) {
1503 u8 vswing;
1504
1505 /* Don't read from VBT if module parameter has valid value*/
1506 if (i915->display.params.edp_vswing) {
1507 panel->vbt.edp.low_vswing =
1508 i915->display.params.edp_vswing == 1;
1509 } else {
1510 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1511 panel->vbt.edp.low_vswing = vswing == 0;
1512 }
1513 }
1514
1515 panel->vbt.edp.drrs_msa_timing_delay =
1516 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1517
1518 if (i915->display.vbt.version >= 244)
1519 panel->vbt.edp.max_link_rate =
1520 edp->edp_max_port_link_rate[panel_type] * 20;
1521}
1522
1523static void
1524parse_psr(struct drm_i915_private *i915,
1525 struct intel_panel *panel)
1526{
1527 const struct bdb_psr *psr;
1528 const struct psr_table *psr_table;
1529 int panel_type = panel->vbt.panel_type;
1530
1531 psr = bdb_find_section(i915, BDB_PSR);
1532 if (!psr) {
1533 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1534 return;
1535 }
1536
1537 psr_table = &psr->psr_table[panel_type];
1538
1539 panel->vbt.psr.full_link = psr_table->full_link;
1540 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1541
1542 /* Allowed VBT values goes from 0 to 15 */
1543 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1544 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1545
1546 /*
1547 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1548 * Old decimal value is wake up time in multiples of 100 us.
1549 */
1550 if (i915->display.vbt.version >= 205 &&
1551 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1552 switch (psr_table->tp1_wakeup_time) {
1553 case 0:
1554 panel->vbt.psr.tp1_wakeup_time_us = 500;
1555 break;
1556 case 1:
1557 panel->vbt.psr.tp1_wakeup_time_us = 100;
1558 break;
1559 case 3:
1560 panel->vbt.psr.tp1_wakeup_time_us = 0;
1561 break;
1562 default:
1563 drm_dbg_kms(&i915->drm,
1564 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1565 psr_table->tp1_wakeup_time);
1566 fallthrough;
1567 case 2:
1568 panel->vbt.psr.tp1_wakeup_time_us = 2500;
1569 break;
1570 }
1571
1572 switch (psr_table->tp2_tp3_wakeup_time) {
1573 case 0:
1574 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1575 break;
1576 case 1:
1577 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1578 break;
1579 case 3:
1580 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1581 break;
1582 default:
1583 drm_dbg_kms(&i915->drm,
1584 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1585 psr_table->tp2_tp3_wakeup_time);
1586 fallthrough;
1587 case 2:
1588 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1589 break;
1590 }
1591 } else {
1592 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1593 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1594 }
1595
1596 if (i915->display.vbt.version >= 226) {
1597 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1598
1599 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1600 switch (wakeup_time) {
1601 case 0:
1602 wakeup_time = 500;
1603 break;
1604 case 1:
1605 wakeup_time = 100;
1606 break;
1607 case 3:
1608 wakeup_time = 50;
1609 break;
1610 default:
1611 case 2:
1612 wakeup_time = 2500;
1613 break;
1614 }
1615 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1616 } else {
1617 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1618 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1619 }
1620}
1621
1622static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1623 struct intel_panel *panel,
1624 enum port port)
1625{
1626 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1627
1628 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1629 panel->vbt.dsi.bl_ports = BIT(port);
1630 if (panel->vbt.dsi.config->cabc_supported)
1631 panel->vbt.dsi.cabc_ports = BIT(port);
1632
1633 return;
1634 }
1635
1636 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1637 case DL_DCS_PORT_A:
1638 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1639 break;
1640 case DL_DCS_PORT_C:
1641 panel->vbt.dsi.bl_ports = BIT(port_bc);
1642 break;
1643 default:
1644 case DL_DCS_PORT_A_AND_C:
1645 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1646 break;
1647 }
1648
1649 if (!panel->vbt.dsi.config->cabc_supported)
1650 return;
1651
1652 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1653 case DL_DCS_PORT_A:
1654 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1655 break;
1656 case DL_DCS_PORT_C:
1657 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1658 break;
1659 default:
1660 case DL_DCS_PORT_A_AND_C:
1661 panel->vbt.dsi.cabc_ports =
1662 BIT(PORT_A) | BIT(port_bc);
1663 break;
1664 }
1665}
1666
1667static void
1668parse_mipi_config(struct drm_i915_private *i915,
1669 struct intel_panel *panel)
1670{
1671 const struct bdb_mipi_config *start;
1672 const struct mipi_config *config;
1673 const struct mipi_pps_data *pps;
1674 int panel_type = panel->vbt.panel_type;
1675 enum port port;
1676
1677 /* parse MIPI blocks only if LFP type is MIPI */
1678 if (!intel_bios_is_dsi_present(i915, &port))
1679 return;
1680
1681 /* Initialize this to undefined indicating no generic MIPI support */
1682 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1683
1684 /* Block #40 is already parsed and panel_fixed_mode is
1685 * stored in i915->lfp_lvds_vbt_mode
1686 * resuse this when needed
1687 */
1688
1689 /* Parse #52 for panel index used from panel_type already
1690 * parsed
1691 */
1692 start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1693 if (!start) {
1694 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1695 return;
1696 }
1697
1698 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1699 panel_type);
1700
1701 /*
1702 * get hold of the correct configuration block and pps data as per
1703 * the panel_type as index
1704 */
1705 config = &start->config[panel_type];
1706 pps = &start->pps[panel_type];
1707
1708 /* store as of now full data. Trim when we realise all is not needed */
1709 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1710 if (!panel->vbt.dsi.config)
1711 return;
1712
1713 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1714 if (!panel->vbt.dsi.pps) {
1715 kfree(panel->vbt.dsi.config);
1716 return;
1717 }
1718
1719 parse_dsi_backlight_ports(i915, panel, port);
1720
1721 /* FIXME is the 90 vs. 270 correct? */
1722 switch (config->rotation) {
1723 case ENABLE_ROTATION_0:
1724 /*
1725 * Most (all?) VBTs claim 0 degrees despite having
1726 * an upside down panel, thus we do not trust this.
1727 */
1728 panel->vbt.dsi.orientation =
1729 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1730 break;
1731 case ENABLE_ROTATION_90:
1732 panel->vbt.dsi.orientation =
1733 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1734 break;
1735 case ENABLE_ROTATION_180:
1736 panel->vbt.dsi.orientation =
1737 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1738 break;
1739 case ENABLE_ROTATION_270:
1740 panel->vbt.dsi.orientation =
1741 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1742 break;
1743 }
1744
1745 /* We have mandatory mipi config blocks. Initialize as generic panel */
1746 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1747}
1748
1749/* Find the sequence block and size for the given panel. */
1750static const u8 *
1751find_panel_sequence_block(struct drm_i915_private *i915,
1752 const struct bdb_mipi_sequence *sequence,
1753 u16 panel_id, u32 *seq_size)
1754{
1755 u32 total = get_blocksize(sequence);
1756 const u8 *data = &sequence->data[0];
1757 u8 current_id;
1758 u32 current_size;
1759 int header_size = sequence->version >= 3 ? 5 : 3;
1760 int index = 0;
1761 int i;
1762
1763 /* skip new block size */
1764 if (sequence->version >= 3)
1765 data += 4;
1766
1767 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1768 if (index + header_size > total) {
1769 drm_err(&i915->drm, "Invalid sequence block (header)\n");
1770 return NULL;
1771 }
1772
1773 current_id = *(data + index);
1774 if (sequence->version >= 3)
1775 current_size = *((const u32 *)(data + index + 1));
1776 else
1777 current_size = *((const u16 *)(data + index + 1));
1778
1779 index += header_size;
1780
1781 if (index + current_size > total) {
1782 drm_err(&i915->drm, "Invalid sequence block\n");
1783 return NULL;
1784 }
1785
1786 if (current_id == panel_id) {
1787 *seq_size = current_size;
1788 return data + index;
1789 }
1790
1791 index += current_size;
1792 }
1793
1794 drm_err(&i915->drm, "Sequence block detected but no valid configuration\n");
1795
1796 return NULL;
1797}
1798
1799static int goto_next_sequence(struct drm_i915_private *i915,
1800 const u8 *data, int index, int total)
1801{
1802 u16 len;
1803
1804 /* Skip Sequence Byte. */
1805 for (index = index + 1; index < total; index += len) {
1806 u8 operation_byte = *(data + index);
1807 index++;
1808
1809 switch (operation_byte) {
1810 case MIPI_SEQ_ELEM_END:
1811 return index;
1812 case MIPI_SEQ_ELEM_SEND_PKT:
1813 if (index + 4 > total)
1814 return 0;
1815
1816 len = *((const u16 *)(data + index + 2)) + 4;
1817 break;
1818 case MIPI_SEQ_ELEM_DELAY:
1819 len = 4;
1820 break;
1821 case MIPI_SEQ_ELEM_GPIO:
1822 len = 2;
1823 break;
1824 case MIPI_SEQ_ELEM_I2C:
1825 if (index + 7 > total)
1826 return 0;
1827 len = *(data + index + 6) + 7;
1828 break;
1829 default:
1830 drm_err(&i915->drm, "Unknown operation byte\n");
1831 return 0;
1832 }
1833 }
1834
1835 return 0;
1836}
1837
1838static int goto_next_sequence_v3(struct drm_i915_private *i915,
1839 const u8 *data, int index, int total)
1840{
1841 int seq_end;
1842 u16 len;
1843 u32 size_of_sequence;
1844
1845 /*
1846 * Could skip sequence based on Size of Sequence alone, but also do some
1847 * checking on the structure.
1848 */
1849 if (total < 5) {
1850 drm_err(&i915->drm, "Too small sequence size\n");
1851 return 0;
1852 }
1853
1854 /* Skip Sequence Byte. */
1855 index++;
1856
1857 /*
1858 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1859 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1860 * byte.
1861 */
1862 size_of_sequence = *((const u32 *)(data + index));
1863 index += 4;
1864
1865 seq_end = index + size_of_sequence;
1866 if (seq_end > total) {
1867 drm_err(&i915->drm, "Invalid sequence size\n");
1868 return 0;
1869 }
1870
1871 for (; index < total; index += len) {
1872 u8 operation_byte = *(data + index);
1873 index++;
1874
1875 if (operation_byte == MIPI_SEQ_ELEM_END) {
1876 if (index != seq_end) {
1877 drm_err(&i915->drm, "Invalid element structure\n");
1878 return 0;
1879 }
1880 return index;
1881 }
1882
1883 len = *(data + index);
1884 index++;
1885
1886 /*
1887 * FIXME: Would be nice to check elements like for v1/v2 in
1888 * goto_next_sequence() above.
1889 */
1890 switch (operation_byte) {
1891 case MIPI_SEQ_ELEM_SEND_PKT:
1892 case MIPI_SEQ_ELEM_DELAY:
1893 case MIPI_SEQ_ELEM_GPIO:
1894 case MIPI_SEQ_ELEM_I2C:
1895 case MIPI_SEQ_ELEM_SPI:
1896 case MIPI_SEQ_ELEM_PMIC:
1897 break;
1898 default:
1899 drm_err(&i915->drm, "Unknown operation byte %u\n",
1900 operation_byte);
1901 break;
1902 }
1903 }
1904
1905 return 0;
1906}
1907
1908/*
1909 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1910 * skip all delay + gpio operands and stop at the first DSI packet op.
1911 */
1912static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1913 struct intel_panel *panel)
1914{
1915 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1916 int index, len;
1917
1918 if (drm_WARN_ON(&i915->drm,
1919 !data || panel->vbt.dsi.seq_version != 1))
1920 return 0;
1921
1922 /* index = 1 to skip sequence byte */
1923 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1924 switch (data[index]) {
1925 case MIPI_SEQ_ELEM_SEND_PKT:
1926 return index == 1 ? 0 : index;
1927 case MIPI_SEQ_ELEM_DELAY:
1928 len = 5; /* 1 byte for operand + uint32 */
1929 break;
1930 case MIPI_SEQ_ELEM_GPIO:
1931 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1932 break;
1933 default:
1934 return 0;
1935 }
1936 }
1937
1938 return 0;
1939}
1940
1941/*
1942 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1943 * The deassert must be done before calling intel_dsi_device_ready, so for
1944 * these devices we split the init OTP sequence into a deassert sequence and
1945 * the actual init OTP part.
1946 */
1947static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915,
1948 struct intel_panel *panel)
1949{
1950 u8 *init_otp;
1951 int len;
1952
1953 /* Limit this to v1 vid-mode sequences */
1954 if (panel->vbt.dsi.config->is_cmd_mode ||
1955 panel->vbt.dsi.seq_version != 1)
1956 return;
1957
1958 /* Only do this if there are otp and assert seqs and no deassert seq */
1959 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1960 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1961 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1962 return;
1963
1964 /* The deassert-sequence ends at the first DSI packet */
1965 len = get_init_otp_deassert_fragment_len(i915, panel);
1966 if (!len)
1967 return;
1968
1969 drm_dbg_kms(&i915->drm,
1970 "Using init OTP fragment to deassert reset\n");
1971
1972 /* Copy the fragment, update seq byte and terminate it */
1973 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1974 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1975 if (!panel->vbt.dsi.deassert_seq)
1976 return;
1977 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1978 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1979 /* Use the copy for deassert */
1980 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1981 panel->vbt.dsi.deassert_seq;
1982 /* Replace the last byte of the fragment with init OTP seq byte */
1983 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1984 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1985 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1986}
1987
1988/*
1989 * Some machines (eg. Lenovo 82TQ) appear to have broken
1990 * VBT sequences:
1991 * - INIT_OTP is not present at all
1992 * - what should be in INIT_OTP is in DISPLAY_ON
1993 * - what should be in DISPLAY_ON is in BACKLIGHT_ON
1994 * (along with the actual backlight stuff)
1995 *
1996 * To make those work we simply swap DISPLAY_ON and INIT_OTP.
1997 *
1998 * TODO: Do we need to limit this to specific machines,
1999 * or examine the contents of the sequences to
2000 * avoid false positives?
2001 */
2002static void icl_fixup_mipi_sequences(struct drm_i915_private *i915,
2003 struct intel_panel *panel)
2004{
2005 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
2006 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
2007 drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
2008
2009 swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2010 panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2011 }
2012}
2013
2014static void fixup_mipi_sequences(struct drm_i915_private *i915,
2015 struct intel_panel *panel)
2016{
2017 if (DISPLAY_VER(i915) >= 11)
2018 icl_fixup_mipi_sequences(i915, panel);
2019 else if (IS_VALLEYVIEW(i915))
2020 vlv_fixup_mipi_sequences(i915, panel);
2021}
2022
2023static void
2024parse_mipi_sequence(struct drm_i915_private *i915,
2025 struct intel_panel *panel)
2026{
2027 int panel_type = panel->vbt.panel_type;
2028 const struct bdb_mipi_sequence *sequence;
2029 const u8 *seq_data;
2030 u32 seq_size;
2031 u8 *data;
2032 int index = 0;
2033
2034 /* Only our generic panel driver uses the sequence block. */
2035 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2036 return;
2037
2038 sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2039 if (!sequence) {
2040 drm_dbg_kms(&i915->drm,
2041 "No MIPI Sequence found, parsing complete\n");
2042 return;
2043 }
2044
2045 /* Fail gracefully for forward incompatible sequence block. */
2046 if (sequence->version >= 4) {
2047 drm_err(&i915->drm,
2048 "Unable to parse MIPI Sequence Block v%u\n",
2049 sequence->version);
2050 return;
2051 }
2052
2053 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2054 sequence->version);
2055
2056 seq_data = find_panel_sequence_block(i915, sequence, panel_type, &seq_size);
2057 if (!seq_data)
2058 return;
2059
2060 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2061 if (!data)
2062 return;
2063
2064 /* Parse the sequences, store pointers to each sequence. */
2065 for (;;) {
2066 u8 seq_id = *(data + index);
2067 if (seq_id == MIPI_SEQ_END)
2068 break;
2069
2070 if (seq_id >= MIPI_SEQ_MAX) {
2071 drm_err(&i915->drm, "Unknown sequence %u\n",
2072 seq_id);
2073 goto err;
2074 }
2075
2076 /* Log about presence of sequences we won't run. */
2077 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2078 drm_dbg_kms(&i915->drm,
2079 "Unsupported sequence %u\n", seq_id);
2080
2081 panel->vbt.dsi.sequence[seq_id] = data + index;
2082
2083 if (sequence->version >= 3)
2084 index = goto_next_sequence_v3(i915, data, index, seq_size);
2085 else
2086 index = goto_next_sequence(i915, data, index, seq_size);
2087 if (!index) {
2088 drm_err(&i915->drm, "Invalid sequence %u\n",
2089 seq_id);
2090 goto err;
2091 }
2092 }
2093
2094 panel->vbt.dsi.data = data;
2095 panel->vbt.dsi.size = seq_size;
2096 panel->vbt.dsi.seq_version = sequence->version;
2097
2098 fixup_mipi_sequences(i915, panel);
2099
2100 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2101 return;
2102
2103err:
2104 kfree(data);
2105 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2106}
2107
2108static void
2109parse_compression_parameters(struct drm_i915_private *i915)
2110{
2111 const struct bdb_compression_parameters *params;
2112 struct intel_bios_encoder_data *devdata;
2113 u16 block_size;
2114 int index;
2115
2116 if (i915->display.vbt.version < 198)
2117 return;
2118
2119 params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2120 if (params) {
2121 /* Sanity checks */
2122 if (params->entry_size != sizeof(params->data[0])) {
2123 drm_dbg_kms(&i915->drm,
2124 "VBT: unsupported compression param entry size\n");
2125 return;
2126 }
2127
2128 block_size = get_blocksize(params);
2129 if (block_size < sizeof(*params)) {
2130 drm_dbg_kms(&i915->drm,
2131 "VBT: expected 16 compression param entries\n");
2132 return;
2133 }
2134 }
2135
2136 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2137 const struct child_device_config *child = &devdata->child;
2138
2139 if (!child->compression_enable)
2140 continue;
2141
2142 if (!params) {
2143 drm_dbg_kms(&i915->drm,
2144 "VBT: compression params not available\n");
2145 continue;
2146 }
2147
2148 if (child->compression_method_cps) {
2149 drm_dbg_kms(&i915->drm,
2150 "VBT: CPS compression not supported\n");
2151 continue;
2152 }
2153
2154 index = child->compression_structure_index;
2155
2156 devdata->dsc = kmemdup(¶ms->data[index],
2157 sizeof(*devdata->dsc), GFP_KERNEL);
2158 }
2159}
2160
2161static u8 translate_iboost(struct drm_i915_private *i915, u8 val)
2162{
2163 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2164
2165 if (val >= ARRAY_SIZE(mapping)) {
2166 drm_dbg_kms(&i915->drm,
2167 "Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2168 return 0;
2169 }
2170 return mapping[val];
2171}
2172
2173static const u8 cnp_ddc_pin_map[] = {
2174 [0] = 0, /* N/A */
2175 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2176 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2177 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2178 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2179};
2180
2181static const u8 icp_ddc_pin_map[] = {
2182 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2183 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2184 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2185 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2186 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2187 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2188 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2189 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2190 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2191};
2192
2193static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2194 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2195 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2196 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2197 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2198};
2199
2200static const u8 adls_ddc_pin_map[] = {
2201 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2202 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2203 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2204 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2205 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2206};
2207
2208static const u8 gen9bc_tgp_ddc_pin_map[] = {
2209 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2210 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2211 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2212};
2213
2214static const u8 adlp_ddc_pin_map[] = {
2215 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2216 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2217 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2218 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2219 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2220 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2221};
2222
2223static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2224{
2225 const u8 *ddc_pin_map;
2226 int i, n_entries;
2227
2228 if (IS_DGFX(i915))
2229 return vbt_pin;
2230
2231 if (INTEL_PCH_TYPE(i915) >= PCH_MTL || IS_ALDERLAKE_P(i915)) {
2232 ddc_pin_map = adlp_ddc_pin_map;
2233 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2234 } else if (IS_ALDERLAKE_S(i915)) {
2235 ddc_pin_map = adls_ddc_pin_map;
2236 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2237 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2238 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2239 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2240 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2241 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2242 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2243 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2244 ddc_pin_map = icp_ddc_pin_map;
2245 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2246 } else if (HAS_PCH_CNP(i915)) {
2247 ddc_pin_map = cnp_ddc_pin_map;
2248 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2249 } else {
2250 /* Assuming direct map */
2251 return vbt_pin;
2252 }
2253
2254 for (i = 0; i < n_entries; i++) {
2255 if (ddc_pin_map[i] == vbt_pin)
2256 return i;
2257 }
2258
2259 drm_dbg_kms(&i915->drm,
2260 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2261 vbt_pin);
2262 return 0;
2263}
2264
2265static u8 dvo_port_type(u8 dvo_port)
2266{
2267 switch (dvo_port) {
2268 case DVO_PORT_HDMIA:
2269 case DVO_PORT_HDMIB:
2270 case DVO_PORT_HDMIC:
2271 case DVO_PORT_HDMID:
2272 case DVO_PORT_HDMIE:
2273 case DVO_PORT_HDMIF:
2274 case DVO_PORT_HDMIG:
2275 case DVO_PORT_HDMIH:
2276 case DVO_PORT_HDMII:
2277 return DVO_PORT_HDMIA;
2278 case DVO_PORT_DPA:
2279 case DVO_PORT_DPB:
2280 case DVO_PORT_DPC:
2281 case DVO_PORT_DPD:
2282 case DVO_PORT_DPE:
2283 case DVO_PORT_DPF:
2284 case DVO_PORT_DPG:
2285 case DVO_PORT_DPH:
2286 case DVO_PORT_DPI:
2287 return DVO_PORT_DPA;
2288 case DVO_PORT_MIPIA:
2289 case DVO_PORT_MIPIB:
2290 case DVO_PORT_MIPIC:
2291 case DVO_PORT_MIPID:
2292 return DVO_PORT_MIPIA;
2293 default:
2294 return dvo_port;
2295 }
2296}
2297
2298static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2299 const int port_mapping[][3], u8 dvo_port)
2300{
2301 enum port port;
2302 int i;
2303
2304 for (port = PORT_A; port < n_ports; port++) {
2305 for (i = 0; i < n_dvo; i++) {
2306 if (port_mapping[port][i] == -1)
2307 break;
2308
2309 if (dvo_port == port_mapping[port][i])
2310 return port;
2311 }
2312 }
2313
2314 return PORT_NONE;
2315}
2316
2317static enum port dvo_port_to_port(struct drm_i915_private *i915,
2318 u8 dvo_port)
2319{
2320 /*
2321 * Each DDI port can have more than one value on the "DVO Port" field,
2322 * so look for all the possible values for each port.
2323 */
2324 static const int port_mapping[][3] = {
2325 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2326 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2327 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2328 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2329 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2330 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2331 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2332 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2333 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2334 };
2335 /*
2336 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2337 * map to DDI A,B,TC1,TC2 respectively.
2338 */
2339 static const int rkl_port_mapping[][3] = {
2340 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2341 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2342 [PORT_C] = { -1 },
2343 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2344 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2345 };
2346 /*
2347 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2348 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2349 */
2350 static const int adls_port_mapping[][3] = {
2351 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2352 [PORT_B] = { -1 },
2353 [PORT_C] = { -1 },
2354 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2355 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2356 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2357 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2358 };
2359 static const int xelpd_port_mapping[][3] = {
2360 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2361 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2362 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2363 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2364 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2365 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2366 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2367 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2368 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2369 };
2370
2371 if (DISPLAY_VER(i915) >= 13)
2372 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2373 ARRAY_SIZE(xelpd_port_mapping[0]),
2374 xelpd_port_mapping,
2375 dvo_port);
2376 else if (IS_ALDERLAKE_S(i915))
2377 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2378 ARRAY_SIZE(adls_port_mapping[0]),
2379 adls_port_mapping,
2380 dvo_port);
2381 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2382 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2383 ARRAY_SIZE(rkl_port_mapping[0]),
2384 rkl_port_mapping,
2385 dvo_port);
2386 else
2387 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2388 ARRAY_SIZE(port_mapping[0]),
2389 port_mapping,
2390 dvo_port);
2391}
2392
2393static enum port
2394dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2395{
2396 switch (dvo_port) {
2397 case DVO_PORT_MIPIA:
2398 return PORT_A;
2399 case DVO_PORT_MIPIC:
2400 if (DISPLAY_VER(i915) >= 11)
2401 return PORT_B;
2402 else
2403 return PORT_C;
2404 default:
2405 return PORT_NONE;
2406 }
2407}
2408
2409enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2410{
2411 struct drm_i915_private *i915 = devdata->i915;
2412 const struct child_device_config *child = &devdata->child;
2413 enum port port;
2414
2415 port = dvo_port_to_port(i915, child->dvo_port);
2416 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2417 port = dsi_dvo_port_to_port(i915, child->dvo_port);
2418
2419 return port;
2420}
2421
2422static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2423{
2424 switch (vbt_max_link_rate) {
2425 default:
2426 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2427 return 0;
2428 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2429 return 2000000;
2430 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2431 return 1350000;
2432 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2433 return 1000000;
2434 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2435 return 810000;
2436 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2437 return 540000;
2438 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2439 return 270000;
2440 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2441 return 162000;
2442 }
2443}
2444
2445static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2446{
2447 switch (vbt_max_link_rate) {
2448 default:
2449 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2450 return 810000;
2451 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2452 return 540000;
2453 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2454 return 270000;
2455 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2456 return 162000;
2457 }
2458}
2459
2460int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2461{
2462 if (!devdata || devdata->i915->display.vbt.version < 216)
2463 return 0;
2464
2465 if (devdata->i915->display.vbt.version >= 230)
2466 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2467 else
2468 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2469}
2470
2471int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2472{
2473 if (!devdata || devdata->i915->display.vbt.version < 244)
2474 return 0;
2475
2476 return devdata->child.dp_max_lane_count + 1;
2477}
2478
2479static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2480 enum port port)
2481{
2482 struct drm_i915_private *i915 = devdata->i915;
2483 bool is_hdmi;
2484
2485 if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2486 return;
2487
2488 if (!intel_bios_encoder_supports_dvi(devdata))
2489 return;
2490
2491 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2492
2493 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2494 is_hdmi ? "/HDMI" : "");
2495
2496 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2497 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2498}
2499
2500static void sanitize_hdmi_level_shift(struct intel_bios_encoder_data *devdata,
2501 enum port port)
2502{
2503 struct drm_i915_private *i915 = devdata->i915;
2504
2505 if (!intel_bios_encoder_supports_dvi(devdata))
2506 return;
2507
2508 /*
2509 * Some BDW machines (eg. HP Pavilion 15-ab) shipped
2510 * with a HSW VBT where the level shifter value goes
2511 * up to 11, whereas the BDW max is 9.
2512 */
2513 if (IS_BROADWELL(i915) && devdata->child.hdmi_level_shifter_value > 9) {
2514 drm_dbg_kms(&i915->drm, "Bogus port %c VBT HDMI level shift %d, adjusting to %d\n",
2515 port_name(port), devdata->child.hdmi_level_shifter_value, 9);
2516
2517 devdata->child.hdmi_level_shifter_value = 9;
2518 }
2519}
2520
2521static bool
2522intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2523{
2524 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2525}
2526
2527bool
2528intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2529{
2530 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2531}
2532
2533bool
2534intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2535{
2536 return intel_bios_encoder_supports_dvi(devdata) &&
2537 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2538}
2539
2540bool
2541intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2542{
2543 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2544}
2545
2546bool
2547intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2548{
2549 return intel_bios_encoder_supports_dp(devdata) &&
2550 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2551}
2552
2553bool
2554intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2555{
2556 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2557}
2558
2559bool
2560intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2561{
2562 return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2563}
2564
2565/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2566int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2567{
2568 if (!devdata || devdata->i915->display.vbt.version < 158 ||
2569 DISPLAY_VER(devdata->i915) >= 14)
2570 return -1;
2571
2572 return devdata->child.hdmi_level_shifter_value;
2573}
2574
2575int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2576{
2577 if (!devdata || devdata->i915->display.vbt.version < 204)
2578 return 0;
2579
2580 switch (devdata->child.hdmi_max_data_rate) {
2581 default:
2582 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2583 fallthrough;
2584 case HDMI_MAX_DATA_RATE_PLATFORM:
2585 return 0;
2586 case HDMI_MAX_DATA_RATE_594:
2587 return 594000;
2588 case HDMI_MAX_DATA_RATE_340:
2589 return 340000;
2590 case HDMI_MAX_DATA_RATE_300:
2591 return 300000;
2592 case HDMI_MAX_DATA_RATE_297:
2593 return 297000;
2594 case HDMI_MAX_DATA_RATE_165:
2595 return 165000;
2596 }
2597}
2598
2599static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2600{
2601 /*
2602 * On some ICL SKUs port F is not present, but broken VBTs mark
2603 * the port as present. Only try to initialize port F for the
2604 * SKUs that may actually have it.
2605 */
2606 if (port == PORT_F && IS_ICELAKE(i915))
2607 return IS_ICL_WITH_PORT_F(i915);
2608
2609 return true;
2610}
2611
2612static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2613{
2614 struct drm_i915_private *i915 = devdata->i915;
2615 const struct child_device_config *child = &devdata->child;
2616 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2617 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2618 enum port port;
2619
2620 port = intel_bios_encoder_port(devdata);
2621 if (port == PORT_NONE)
2622 return;
2623
2624 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2625 is_dp = intel_bios_encoder_supports_dp(devdata);
2626 is_crt = intel_bios_encoder_supports_crt(devdata);
2627 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2628 is_edp = intel_bios_encoder_supports_edp(devdata);
2629 is_dsi = intel_bios_encoder_supports_dsi(devdata);
2630
2631 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2632 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2633
2634 drm_dbg_kms(&i915->drm,
2635 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2636 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2637 intel_bios_encoder_supports_dp_dual_mode(devdata),
2638 intel_bios_encoder_is_lspcon(devdata),
2639 supports_typec_usb, supports_tbt,
2640 devdata->dsc != NULL);
2641
2642 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2643 if (hdmi_level_shift >= 0) {
2644 drm_dbg_kms(&i915->drm,
2645 "Port %c VBT HDMI level shift: %d\n",
2646 port_name(port), hdmi_level_shift);
2647 }
2648
2649 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2650 if (max_tmds_clock)
2651 drm_dbg_kms(&i915->drm,
2652 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2653 port_name(port), max_tmds_clock);
2654
2655 /* I_boost config for SKL and above */
2656 dp_boost_level = intel_bios_dp_boost_level(devdata);
2657 if (dp_boost_level)
2658 drm_dbg_kms(&i915->drm,
2659 "Port %c VBT (e)DP boost level: %d\n",
2660 port_name(port), dp_boost_level);
2661
2662 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2663 if (hdmi_boost_level)
2664 drm_dbg_kms(&i915->drm,
2665 "Port %c VBT HDMI boost level: %d\n",
2666 port_name(port), hdmi_boost_level);
2667
2668 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2669 if (dp_max_link_rate)
2670 drm_dbg_kms(&i915->drm,
2671 "Port %c VBT DP max link rate: %d\n",
2672 port_name(port), dp_max_link_rate);
2673
2674 /*
2675 * FIXME need to implement support for VBT
2676 * vswing/preemph tables should this ever trigger.
2677 */
2678 drm_WARN(&i915->drm, child->use_vbt_vswing,
2679 "Port %c asks to use VBT vswing/preemph tables\n",
2680 port_name(port));
2681}
2682
2683static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2684{
2685 struct drm_i915_private *i915 = devdata->i915;
2686 enum port port;
2687
2688 port = intel_bios_encoder_port(devdata);
2689 if (port == PORT_NONE)
2690 return;
2691
2692 if (!is_port_valid(i915, port)) {
2693 drm_dbg_kms(&i915->drm,
2694 "VBT reports port %c as supported, but that can't be true: skipping\n",
2695 port_name(port));
2696 return;
2697 }
2698
2699 sanitize_device_type(devdata, port);
2700 sanitize_hdmi_level_shift(devdata, port);
2701}
2702
2703static bool has_ddi_port_info(struct drm_i915_private *i915)
2704{
2705 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2706}
2707
2708static void parse_ddi_ports(struct drm_i915_private *i915)
2709{
2710 struct intel_bios_encoder_data *devdata;
2711
2712 if (!has_ddi_port_info(i915))
2713 return;
2714
2715 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2716 parse_ddi_port(devdata);
2717
2718 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2719 print_ddi_port(devdata);
2720}
2721
2722static void
2723parse_general_definitions(struct drm_i915_private *i915)
2724{
2725 const struct bdb_general_definitions *defs;
2726 struct intel_bios_encoder_data *devdata;
2727 const struct child_device_config *child;
2728 int i, child_device_num;
2729 u8 expected_size;
2730 u16 block_size;
2731 int bus_pin;
2732
2733 defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2734 if (!defs) {
2735 drm_dbg_kms(&i915->drm,
2736 "No general definition block is found, no devices defined.\n");
2737 return;
2738 }
2739
2740 block_size = get_blocksize(defs);
2741 if (block_size < sizeof(*defs)) {
2742 drm_dbg_kms(&i915->drm,
2743 "General definitions block too small (%u)\n",
2744 block_size);
2745 return;
2746 }
2747
2748 bus_pin = defs->crt_ddc_gmbus_pin;
2749 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2750 if (intel_gmbus_is_valid_pin(i915, bus_pin))
2751 i915->display.vbt.crt_ddc_pin = bus_pin;
2752
2753 if (i915->display.vbt.version < 106) {
2754 expected_size = 22;
2755 } else if (i915->display.vbt.version < 111) {
2756 expected_size = 27;
2757 } else if (i915->display.vbt.version < 195) {
2758 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2759 } else if (i915->display.vbt.version == 195) {
2760 expected_size = 37;
2761 } else if (i915->display.vbt.version <= 215) {
2762 expected_size = 38;
2763 } else if (i915->display.vbt.version <= 250) {
2764 expected_size = 39;
2765 } else {
2766 expected_size = sizeof(*child);
2767 BUILD_BUG_ON(sizeof(*child) < 39);
2768 drm_dbg(&i915->drm,
2769 "Expected child device config size for VBT version %u not known; assuming %u\n",
2770 i915->display.vbt.version, expected_size);
2771 }
2772
2773 /* Flag an error for unexpected size, but continue anyway. */
2774 if (defs->child_dev_size != expected_size)
2775 drm_err(&i915->drm,
2776 "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2777 defs->child_dev_size, expected_size, i915->display.vbt.version);
2778
2779 /* The legacy sized child device config is the minimum we need. */
2780 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2781 drm_dbg_kms(&i915->drm,
2782 "Child device config size %u is too small.\n",
2783 defs->child_dev_size);
2784 return;
2785 }
2786
2787 /* get the number of child device */
2788 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2789
2790 for (i = 0; i < child_device_num; i++) {
2791 child = child_device_ptr(defs, i);
2792 if (!child->device_type)
2793 continue;
2794
2795 drm_dbg_kms(&i915->drm,
2796 "Found VBT child device with type 0x%x\n",
2797 child->device_type);
2798
2799 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2800 if (!devdata)
2801 break;
2802
2803 devdata->i915 = i915;
2804
2805 /*
2806 * Copy as much as we know (sizeof) and is available
2807 * (child_dev_size) of the child device config. Accessing the
2808 * data must depend on VBT version.
2809 */
2810 memcpy(&devdata->child, child,
2811 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2812
2813 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2814 }
2815
2816 if (list_empty(&i915->display.vbt.display_devices))
2817 drm_dbg_kms(&i915->drm,
2818 "no child dev is parsed from VBT\n");
2819}
2820
2821/* Common defaults which may be overridden by VBT. */
2822static void
2823init_vbt_defaults(struct drm_i915_private *i915)
2824{
2825 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2826
2827 /* general features */
2828 i915->display.vbt.int_tv_support = 1;
2829 i915->display.vbt.int_crt_support = 1;
2830
2831 /* driver features */
2832 i915->display.vbt.int_lvds_support = 1;
2833
2834 /* Default to using SSC */
2835 i915->display.vbt.lvds_use_ssc = 1;
2836 /*
2837 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2838 * clock for LVDS.
2839 */
2840 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2841 !HAS_PCH_SPLIT(i915));
2842 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2843 i915->display.vbt.lvds_ssc_freq);
2844}
2845
2846/* Common defaults which may be overridden by VBT. */
2847static void
2848init_vbt_panel_defaults(struct intel_panel *panel)
2849{
2850 /* Default to having backlight */
2851 panel->vbt.backlight.present = true;
2852
2853 /* LFP panel data */
2854 panel->vbt.lvds_dither = true;
2855}
2856
2857/* Defaults to initialize only if there is no VBT. */
2858static void
2859init_vbt_missing_defaults(struct drm_i915_private *i915)
2860{
2861 enum port port;
2862 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2863 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2864
2865 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2866 return;
2867
2868 for_each_port_masked(port, ports) {
2869 struct intel_bios_encoder_data *devdata;
2870 struct child_device_config *child;
2871 enum phy phy = intel_port_to_phy(i915, port);
2872
2873 /*
2874 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2875 * to detect it.
2876 */
2877 if (intel_phy_is_tc(i915, phy))
2878 continue;
2879
2880 /* Create fake child device config */
2881 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2882 if (!devdata)
2883 break;
2884
2885 devdata->i915 = i915;
2886 child = &devdata->child;
2887
2888 if (port == PORT_F)
2889 child->dvo_port = DVO_PORT_HDMIF;
2890 else if (port == PORT_E)
2891 child->dvo_port = DVO_PORT_HDMIE;
2892 else
2893 child->dvo_port = DVO_PORT_HDMIA + port;
2894
2895 if (port != PORT_A && port != PORT_E)
2896 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2897
2898 if (port != PORT_E)
2899 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2900
2901 if (port == PORT_A)
2902 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2903
2904 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2905
2906 drm_dbg_kms(&i915->drm,
2907 "Generating default VBT child device with type 0x04%x on port %c\n",
2908 child->device_type, port_name(port));
2909 }
2910
2911 /* Bypass some minimum baseline VBT version checks */
2912 i915->display.vbt.version = 155;
2913}
2914
2915static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2916{
2917 const void *_vbt = vbt;
2918
2919 return _vbt + vbt->bdb_offset;
2920}
2921
2922/**
2923 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2924 * @i915: the device
2925 * @buf: pointer to a buffer to validate
2926 * @size: size of the buffer
2927 *
2928 * Returns true on valid VBT.
2929 */
2930bool intel_bios_is_valid_vbt(struct drm_i915_private *i915,
2931 const void *buf, size_t size)
2932{
2933 const struct vbt_header *vbt = buf;
2934 const struct bdb_header *bdb;
2935
2936 if (!vbt)
2937 return false;
2938
2939 if (sizeof(struct vbt_header) > size) {
2940 drm_dbg_kms(&i915->drm, "VBT header incomplete\n");
2941 return false;
2942 }
2943
2944 if (memcmp(vbt->signature, "$VBT", 4)) {
2945 drm_dbg_kms(&i915->drm, "VBT invalid signature\n");
2946 return false;
2947 }
2948
2949 if (vbt->vbt_size > size) {
2950 drm_dbg_kms(&i915->drm, "VBT incomplete (vbt_size overflows)\n");
2951 return false;
2952 }
2953
2954 size = vbt->vbt_size;
2955
2956 if (range_overflows_t(size_t,
2957 vbt->bdb_offset,
2958 sizeof(struct bdb_header),
2959 size)) {
2960 drm_dbg_kms(&i915->drm, "BDB header incomplete\n");
2961 return false;
2962 }
2963
2964 bdb = get_bdb_header(vbt);
2965 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2966 drm_dbg_kms(&i915->drm, "BDB incomplete\n");
2967 return false;
2968 }
2969
2970 return vbt;
2971}
2972
2973static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2974{
2975 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2976
2977 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2978}
2979
2980static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2981{
2982 u32 count, data, found, store = 0;
2983 u32 static_region, oprom_offset;
2984 u32 oprom_size = 0x200000;
2985 u16 vbt_size;
2986 u32 *vbt;
2987
2988 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2989 static_region &= OPTIONROM_SPI_REGIONID_MASK;
2990 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2991
2992 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2993 oprom_offset &= OROM_OFFSET_MASK;
2994
2995 for (count = 0; count < oprom_size; count += 4) {
2996 data = intel_spi_read(&i915->uncore, oprom_offset + count);
2997 if (data == *((const u32 *)"$VBT")) {
2998 found = oprom_offset + count;
2999 break;
3000 }
3001 }
3002
3003 if (count >= oprom_size)
3004 goto err_not_found;
3005
3006 /* Get VBT size and allocate space for the VBT */
3007 vbt_size = intel_spi_read(&i915->uncore,
3008 found + offsetof(struct vbt_header, vbt_size));
3009 vbt_size &= 0xffff;
3010
3011 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3012 if (!vbt)
3013 goto err_not_found;
3014
3015 for (count = 0; count < vbt_size; count += 4)
3016 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
3017
3018 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3019 goto err_free_vbt;
3020
3021 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3022
3023 return (struct vbt_header *)vbt;
3024
3025err_free_vbt:
3026 kfree(vbt);
3027err_not_found:
3028 return NULL;
3029}
3030
3031static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3032{
3033 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3034 void __iomem *p = NULL, *oprom;
3035 struct vbt_header *vbt;
3036 u16 vbt_size;
3037 size_t i, size;
3038
3039 oprom = pci_map_rom(pdev, &size);
3040 if (!oprom)
3041 return NULL;
3042
3043 /* Scour memory looking for the VBT signature. */
3044 for (i = 0; i + 4 < size; i += 4) {
3045 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3046 continue;
3047
3048 p = oprom + i;
3049 size -= i;
3050 break;
3051 }
3052
3053 if (!p)
3054 goto err_unmap_oprom;
3055
3056 if (sizeof(struct vbt_header) > size) {
3057 drm_dbg(&i915->drm, "VBT header incomplete\n");
3058 goto err_unmap_oprom;
3059 }
3060
3061 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3062 if (vbt_size > size) {
3063 drm_dbg(&i915->drm,
3064 "VBT incomplete (vbt_size overflows)\n");
3065 goto err_unmap_oprom;
3066 }
3067
3068 /* The rest will be validated by intel_bios_is_valid_vbt() */
3069 vbt = kmalloc(vbt_size, GFP_KERNEL);
3070 if (!vbt)
3071 goto err_unmap_oprom;
3072
3073 memcpy_fromio(vbt, p, vbt_size);
3074
3075 if (!intel_bios_is_valid_vbt(i915, vbt, vbt_size))
3076 goto err_free_vbt;
3077
3078 pci_unmap_rom(pdev, oprom);
3079
3080 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3081
3082 return vbt;
3083
3084err_free_vbt:
3085 kfree(vbt);
3086err_unmap_oprom:
3087 pci_unmap_rom(pdev, oprom);
3088
3089 return NULL;
3090}
3091
3092/**
3093 * intel_bios_init - find VBT and initialize settings from the BIOS
3094 * @i915: i915 device instance
3095 *
3096 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3097 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3098 * initialize some defaults if the VBT is not present at all.
3099 */
3100void intel_bios_init(struct drm_i915_private *i915)
3101{
3102 const struct vbt_header *vbt;
3103 struct vbt_header *oprom_vbt = NULL;
3104 const struct bdb_header *bdb;
3105
3106 INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3107 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3108
3109 if (!HAS_DISPLAY(i915)) {
3110 drm_dbg_kms(&i915->drm,
3111 "Skipping VBT init due to disabled display.\n");
3112 return;
3113 }
3114
3115 init_vbt_defaults(i915);
3116
3117 vbt = intel_opregion_get_vbt(i915, NULL);
3118
3119 /*
3120 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3121 * PCI mapping
3122 */
3123 if (!vbt && IS_DGFX(i915)) {
3124 oprom_vbt = spi_oprom_get_vbt(i915);
3125 vbt = oprom_vbt;
3126 }
3127
3128 if (!vbt) {
3129 oprom_vbt = oprom_get_vbt(i915);
3130 vbt = oprom_vbt;
3131 }
3132
3133 if (!vbt)
3134 goto out;
3135
3136 bdb = get_bdb_header(vbt);
3137 i915->display.vbt.version = bdb->version;
3138
3139 drm_dbg_kms(&i915->drm,
3140 "VBT signature \"%.*s\", BDB version %d\n",
3141 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3142
3143 init_bdb_blocks(i915, bdb);
3144
3145 /* Grab useful general definitions */
3146 parse_general_features(i915);
3147 parse_general_definitions(i915);
3148 parse_driver_features(i915);
3149
3150 /* Depends on child device list */
3151 parse_compression_parameters(i915);
3152
3153out:
3154 if (!vbt) {
3155 drm_info(&i915->drm,
3156 "Failed to find VBIOS tables (VBT)\n");
3157 init_vbt_missing_defaults(i915);
3158 }
3159
3160 /* Further processing on pre-parsed or generated child device data */
3161 parse_sdvo_device_mapping(i915);
3162 parse_ddi_ports(i915);
3163
3164 kfree(oprom_vbt);
3165}
3166
3167static void intel_bios_init_panel(struct drm_i915_private *i915,
3168 struct intel_panel *panel,
3169 const struct intel_bios_encoder_data *devdata,
3170 const struct drm_edid *drm_edid,
3171 bool use_fallback)
3172{
3173 /* already have it? */
3174 if (panel->vbt.panel_type >= 0) {
3175 drm_WARN_ON(&i915->drm, !use_fallback);
3176 return;
3177 }
3178
3179 panel->vbt.panel_type = get_panel_type(i915, devdata,
3180 drm_edid, use_fallback);
3181 if (panel->vbt.panel_type < 0) {
3182 drm_WARN_ON(&i915->drm, use_fallback);
3183 return;
3184 }
3185
3186 init_vbt_panel_defaults(panel);
3187
3188 parse_panel_options(i915, panel);
3189 parse_generic_dtd(i915, panel);
3190 parse_lfp_data(i915, panel);
3191 parse_lfp_backlight(i915, panel);
3192 parse_sdvo_panel_data(i915, panel);
3193 parse_panel_driver_features(i915, panel);
3194 parse_power_conservation_features(i915, panel);
3195 parse_edp(i915, panel);
3196 parse_psr(i915, panel);
3197 parse_mipi_config(i915, panel);
3198 parse_mipi_sequence(i915, panel);
3199}
3200
3201void intel_bios_init_panel_early(struct drm_i915_private *i915,
3202 struct intel_panel *panel,
3203 const struct intel_bios_encoder_data *devdata)
3204{
3205 intel_bios_init_panel(i915, panel, devdata, NULL, false);
3206}
3207
3208void intel_bios_init_panel_late(struct drm_i915_private *i915,
3209 struct intel_panel *panel,
3210 const struct intel_bios_encoder_data *devdata,
3211 const struct drm_edid *drm_edid)
3212{
3213 intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3214}
3215
3216/**
3217 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3218 * @i915: i915 device instance
3219 */
3220void intel_bios_driver_remove(struct drm_i915_private *i915)
3221{
3222 struct intel_bios_encoder_data *devdata, *nd;
3223 struct bdb_block_entry *entry, *ne;
3224
3225 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3226 list_del(&devdata->node);
3227 kfree(devdata->dsc);
3228 kfree(devdata);
3229 }
3230
3231 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3232 list_del(&entry->node);
3233 kfree(entry);
3234 }
3235}
3236
3237void intel_bios_fini_panel(struct intel_panel *panel)
3238{
3239 kfree(panel->vbt.sdvo_lvds_vbt_mode);
3240 panel->vbt.sdvo_lvds_vbt_mode = NULL;
3241 kfree(panel->vbt.lfp_lvds_vbt_mode);
3242 panel->vbt.lfp_lvds_vbt_mode = NULL;
3243 kfree(panel->vbt.dsi.data);
3244 panel->vbt.dsi.data = NULL;
3245 kfree(panel->vbt.dsi.pps);
3246 panel->vbt.dsi.pps = NULL;
3247 kfree(panel->vbt.dsi.config);
3248 panel->vbt.dsi.config = NULL;
3249 kfree(panel->vbt.dsi.deassert_seq);
3250 panel->vbt.dsi.deassert_seq = NULL;
3251}
3252
3253/**
3254 * intel_bios_is_tv_present - is integrated TV present in VBT
3255 * @i915: i915 device instance
3256 *
3257 * Return true if TV is present. If no child devices were parsed from VBT,
3258 * assume TV is present.
3259 */
3260bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3261{
3262 const struct intel_bios_encoder_data *devdata;
3263
3264 if (!i915->display.vbt.int_tv_support)
3265 return false;
3266
3267 if (list_empty(&i915->display.vbt.display_devices))
3268 return true;
3269
3270 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3271 const struct child_device_config *child = &devdata->child;
3272
3273 /*
3274 * If the device type is not TV, continue.
3275 */
3276 switch (child->device_type) {
3277 case DEVICE_TYPE_INT_TV:
3278 case DEVICE_TYPE_TV:
3279 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3280 break;
3281 default:
3282 continue;
3283 }
3284 /* Only when the addin_offset is non-zero, it is regarded
3285 * as present.
3286 */
3287 if (child->addin_offset)
3288 return true;
3289 }
3290
3291 return false;
3292}
3293
3294/**
3295 * intel_bios_is_lvds_present - is LVDS present in VBT
3296 * @i915: i915 device instance
3297 * @i2c_pin: i2c pin for LVDS if present
3298 *
3299 * Return true if LVDS is present. If no child devices were parsed from VBT,
3300 * assume LVDS is present.
3301 */
3302bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3303{
3304 const struct intel_bios_encoder_data *devdata;
3305
3306 if (list_empty(&i915->display.vbt.display_devices))
3307 return true;
3308
3309 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3310 const struct child_device_config *child = &devdata->child;
3311
3312 /* If the device type is not LFP, continue.
3313 * We have to check both the new identifiers as well as the
3314 * old for compatibility with some BIOSes.
3315 */
3316 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3317 child->device_type != DEVICE_TYPE_LFP)
3318 continue;
3319
3320 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3321 *i2c_pin = child->i2c_pin;
3322
3323 /* However, we cannot trust the BIOS writers to populate
3324 * the VBT correctly. Since LVDS requires additional
3325 * information from AIM blocks, a non-zero addin offset is
3326 * a good indicator that the LVDS is actually present.
3327 */
3328 if (child->addin_offset)
3329 return true;
3330
3331 /* But even then some BIOS writers perform some black magic
3332 * and instantiate the device without reference to any
3333 * additional data. Trust that if the VBT was written into
3334 * the OpRegion then they have validated the LVDS's existence.
3335 */
3336 if (intel_opregion_get_vbt(i915, NULL))
3337 return true;
3338 }
3339
3340 return false;
3341}
3342
3343/**
3344 * intel_bios_is_port_present - is the specified digital port present
3345 * @i915: i915 device instance
3346 * @port: port to check
3347 *
3348 * Return true if the device in %port is present.
3349 */
3350bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3351{
3352 const struct intel_bios_encoder_data *devdata;
3353
3354 if (WARN_ON(!has_ddi_port_info(i915)))
3355 return true;
3356
3357 if (!is_port_valid(i915, port))
3358 return false;
3359
3360 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3361 const struct child_device_config *child = &devdata->child;
3362
3363 if (dvo_port_to_port(i915, child->dvo_port) == port)
3364 return true;
3365 }
3366
3367 return false;
3368}
3369
3370bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3371{
3372 const struct child_device_config *child = &devdata->child;
3373
3374 if (!devdata)
3375 return false;
3376
3377 if (!intel_bios_encoder_supports_dp(devdata) ||
3378 !intel_bios_encoder_supports_hdmi(devdata))
3379 return false;
3380
3381 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3382 return true;
3383
3384 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3385 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3386 child->aux_channel != 0)
3387 return true;
3388
3389 return false;
3390}
3391
3392/**
3393 * intel_bios_is_dsi_present - is DSI present in VBT
3394 * @i915: i915 device instance
3395 * @port: port for DSI if present
3396 *
3397 * Return true if DSI is present, and return the port in %port.
3398 */
3399bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3400 enum port *port)
3401{
3402 const struct intel_bios_encoder_data *devdata;
3403
3404 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3405 const struct child_device_config *child = &devdata->child;
3406 u8 dvo_port = child->dvo_port;
3407
3408 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3409 continue;
3410
3411 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3412 drm_dbg_kms(&i915->drm,
3413 "VBT has unsupported DSI port %c\n",
3414 port_name(dvo_port - DVO_PORT_MIPIA));
3415 continue;
3416 }
3417
3418 if (port)
3419 *port = dsi_dvo_port_to_port(i915, dvo_port);
3420 return true;
3421 }
3422
3423 return false;
3424}
3425
3426static void fill_dsc(struct intel_crtc_state *crtc_state,
3427 struct dsc_compression_parameters_entry *dsc,
3428 int dsc_max_bpc)
3429{
3430 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
3431 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3432 int bpc = 8;
3433
3434 vdsc_cfg->dsc_version_major = dsc->version_major;
3435 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3436
3437 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3438 bpc = 12;
3439 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3440 bpc = 10;
3441 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3442 bpc = 8;
3443 else
3444 drm_dbg_kms(&i915->drm, "VBT: Unsupported BPC %d for DCS\n",
3445 dsc_max_bpc);
3446
3447 crtc_state->pipe_bpp = bpc * 3;
3448
3449 crtc_state->dsc.compressed_bpp_x16 = to_bpp_x16(min(crtc_state->pipe_bpp,
3450 VBT_DSC_MAX_BPP(dsc->max_bpp)));
3451
3452 /*
3453 * FIXME: This is ugly, and slice count should take DSC engine
3454 * throughput etc. into account.
3455 *
3456 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3457 */
3458 if (dsc->slices_per_line & BIT(2)) {
3459 crtc_state->dsc.slice_count = 4;
3460 } else if (dsc->slices_per_line & BIT(1)) {
3461 crtc_state->dsc.slice_count = 2;
3462 } else {
3463 /* FIXME */
3464 if (!(dsc->slices_per_line & BIT(0)))
3465 drm_dbg_kms(&i915->drm, "VBT: Unsupported DSC slice count for DSI\n");
3466
3467 crtc_state->dsc.slice_count = 1;
3468 }
3469
3470 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3471 crtc_state->dsc.slice_count != 0)
3472 drm_dbg_kms(&i915->drm, "VBT: DSC hdisplay %d not divisible by slice count %d\n",
3473 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3474 crtc_state->dsc.slice_count);
3475
3476 /*
3477 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3478 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3479 */
3480 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3481 dsc->rc_buffer_size);
3482
3483 /* FIXME: DSI spec says bpc + 1 for this one */
3484 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3485
3486 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3487
3488 vdsc_cfg->slice_height = dsc->slice_height;
3489}
3490
3491/* FIXME: initially DSI specific */
3492bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3493 struct intel_crtc_state *crtc_state,
3494 int dsc_max_bpc)
3495{
3496 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3497 const struct intel_bios_encoder_data *devdata;
3498
3499 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3500 const struct child_device_config *child = &devdata->child;
3501
3502 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3503 continue;
3504
3505 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3506 if (!devdata->dsc)
3507 return false;
3508
3509 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3510
3511 return true;
3512 }
3513 }
3514
3515 return false;
3516}
3517
3518static const u8 adlp_aux_ch_map[] = {
3519 [AUX_CH_A] = DP_AUX_A,
3520 [AUX_CH_B] = DP_AUX_B,
3521 [AUX_CH_C] = DP_AUX_C,
3522 [AUX_CH_D_XELPD] = DP_AUX_D,
3523 [AUX_CH_E_XELPD] = DP_AUX_E,
3524 [AUX_CH_USBC1] = DP_AUX_F,
3525 [AUX_CH_USBC2] = DP_AUX_G,
3526 [AUX_CH_USBC3] = DP_AUX_H,
3527 [AUX_CH_USBC4] = DP_AUX_I,
3528};
3529
3530/*
3531 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3532 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3533 */
3534static const u8 adls_aux_ch_map[] = {
3535 [AUX_CH_A] = DP_AUX_A,
3536 [AUX_CH_USBC1] = DP_AUX_B,
3537 [AUX_CH_USBC2] = DP_AUX_C,
3538 [AUX_CH_USBC3] = DP_AUX_D,
3539 [AUX_CH_USBC4] = DP_AUX_E,
3540};
3541
3542/*
3543 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3544 * map to DDI A,B,TC1,TC2 respectively.
3545 */
3546static const u8 rkl_aux_ch_map[] = {
3547 [AUX_CH_A] = DP_AUX_A,
3548 [AUX_CH_B] = DP_AUX_B,
3549 [AUX_CH_USBC1] = DP_AUX_C,
3550 [AUX_CH_USBC2] = DP_AUX_D,
3551};
3552
3553static const u8 direct_aux_ch_map[] = {
3554 [AUX_CH_A] = DP_AUX_A,
3555 [AUX_CH_B] = DP_AUX_B,
3556 [AUX_CH_C] = DP_AUX_C,
3557 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3558 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3559 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3560 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3561 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3562 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3563};
3564
3565static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3566{
3567 const u8 *aux_ch_map;
3568 int i, n_entries;
3569
3570 if (DISPLAY_VER(i915) >= 13) {
3571 aux_ch_map = adlp_aux_ch_map;
3572 n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3573 } else if (IS_ALDERLAKE_S(i915)) {
3574 aux_ch_map = adls_aux_ch_map;
3575 n_entries = ARRAY_SIZE(adls_aux_ch_map);
3576 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3577 aux_ch_map = rkl_aux_ch_map;
3578 n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3579 } else {
3580 aux_ch_map = direct_aux_ch_map;
3581 n_entries = ARRAY_SIZE(direct_aux_ch_map);
3582 }
3583
3584 for (i = 0; i < n_entries; i++) {
3585 if (aux_ch_map[i] == aux_channel)
3586 return i;
3587 }
3588
3589 drm_dbg_kms(&i915->drm,
3590 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3591 aux_channel);
3592
3593 return AUX_CH_NONE;
3594}
3595
3596enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3597{
3598 if (!devdata || !devdata->child.aux_channel)
3599 return AUX_CH_NONE;
3600
3601 return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3602}
3603
3604bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3605{
3606 struct drm_i915_private *i915;
3607 u8 aux_channel;
3608 int count = 0;
3609
3610 if (!devdata || !devdata->child.aux_channel)
3611 return false;
3612
3613 i915 = devdata->i915;
3614 aux_channel = devdata->child.aux_channel;
3615
3616 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3617 if (intel_bios_encoder_supports_dp(devdata) &&
3618 aux_channel == devdata->child.aux_channel)
3619 count++;
3620 }
3621
3622 return count > 1;
3623}
3624
3625int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3626{
3627 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3628 return 0;
3629
3630 return translate_iboost(devdata->i915, devdata->child.dp_iboost_level);
3631}
3632
3633int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3634{
3635 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3636 return 0;
3637
3638 return translate_iboost(devdata->i915, devdata->child.hdmi_iboost_level);
3639}
3640
3641int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3642{
3643 if (!devdata || !devdata->child.ddc_pin)
3644 return 0;
3645
3646 return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3647}
3648
3649bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3650{
3651 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3652}
3653
3654bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3655{
3656 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3657}
3658
3659bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3660{
3661 return devdata && devdata->child.lane_reversal;
3662}
3663
3664bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3665{
3666 return devdata && devdata->child.hpd_invert;
3667}
3668
3669const struct intel_bios_encoder_data *
3670intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3671{
3672 struct intel_bios_encoder_data *devdata;
3673
3674 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3675 if (intel_bios_encoder_port(devdata) == port)
3676 return devdata;
3677 }
3678
3679 return NULL;
3680}
3681
3682void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3683 void (*func)(struct drm_i915_private *i915,
3684 const struct intel_bios_encoder_data *devdata))
3685{
3686 struct intel_bios_encoder_data *devdata;
3687
3688 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3689 func(i915, devdata);
3690}
3691
3692static int intel_bios_vbt_show(struct seq_file *m, void *unused)
3693{
3694 struct drm_i915_private *i915 = m->private;
3695 const void *vbt;
3696 size_t vbt_size;
3697
3698 /*
3699 * FIXME: VBT might originate from other places than opregion, and then
3700 * this would be incorrect.
3701 */
3702 vbt = intel_opregion_get_vbt(i915, &vbt_size);
3703 if (vbt)
3704 seq_write(m, vbt, vbt_size);
3705
3706 return 0;
3707}
3708
3709DEFINE_SHOW_ATTRIBUTE(intel_bios_vbt);
3710
3711void intel_bios_debugfs_register(struct drm_i915_private *i915)
3712{
3713 struct drm_minor *minor = i915->drm.primary;
3714
3715 debugfs_create_file("i915_vbt", 0444, minor->debugfs_root,
3716 i915, &intel_bios_vbt_fops);
3717}