Linux Audio

Check our new training course

Loading...
v4.6
 
  1#ifndef BLK_INTERNAL_H
  2#define BLK_INTERNAL_H
  3
  4#include <linux/idr.h>
  5#include <linux/blk-mq.h>
  6#include "blk-mq.h"
 
 
 
  7
  8/* Amount of time in which a process may batch requests */
  9#define BLK_BATCH_TIME	(HZ/50UL)
 10
 11/* Number of requests a "batching" process may submit */
 12#define BLK_BATCH_REQ	32
 13
 14/* Max future timer expiry for timeouts */
 15#define BLK_MAX_TIMEOUT		(5 * HZ)
 16
 
 
 17struct blk_flush_queue {
 18	unsigned int		flush_queue_delayed:1;
 19	unsigned int		flush_pending_idx:1;
 20	unsigned int		flush_running_idx:1;
 
 21	unsigned long		flush_pending_since;
 22	struct list_head	flush_queue[2];
 23	struct list_head	flush_data_in_flight;
 24	struct request		*flush_rq;
 25
 26	/*
 27	 * flush_rq shares tag with this rq, both can't be active
 28	 * at the same time
 29	 */
 30	struct request		*orig_rq;
 31	spinlock_t		mq_flush_lock;
 32};
 33
 34extern struct kmem_cache *blk_requestq_cachep;
 35extern struct kmem_cache *request_cachep;
 36extern struct kobj_type blk_queue_ktype;
 37extern struct ida blk_queue_ida;
 38
 39static inline struct blk_flush_queue *blk_get_flush_queue(
 40		struct request_queue *q, struct blk_mq_ctx *ctx)
 41{
 42	struct blk_mq_hw_ctx *hctx;
 
 
 
 
 
 
 
 
 
 
 
 43
 44	if (!q->mq_ops)
 45		return q->fq;
 
 
 
 
 
 46
 47	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 48
 49	return hctx->fq;
 
 
 
 
 50}
 51
 52static inline void __blk_get_queue(struct request_queue *q)
 53{
 54	kobject_get(&q->kobj);
 
 
 
 
 55}
 56
 57struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
 58		int node, int cmd_size);
 59void blk_free_flush_queue(struct blk_flush_queue *q);
 
 60
 61int blk_init_rl(struct request_list *rl, struct request_queue *q,
 
 
 
 
 
 
 
 
 62		gfp_t gfp_mask);
 63void blk_exit_rl(struct request_list *rl);
 64void init_request_from_bio(struct request *req, struct bio *bio);
 65void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
 66			struct bio *bio);
 67int blk_rq_append_bio(struct request_queue *q, struct request *rq,
 68		      struct bio *bio);
 69void blk_queue_bypass_start(struct request_queue *q);
 70void blk_queue_bypass_end(struct request_queue *q);
 71void blk_dequeue_request(struct request *rq);
 72void __blk_queue_free_tags(struct request_queue *q);
 73bool __blk_end_bidi_request(struct request *rq, int error,
 74			    unsigned int nr_bytes, unsigned int bidi_bytes);
 75void blk_freeze_queue(struct request_queue *q);
 76
 77static inline void blk_queue_enter_live(struct request_queue *q)
 78{
 79	/*
 80	 * Given that running in generic_make_request() context
 81	 * guarantees that a live reference against q_usage_counter has
 82	 * been established, further references under that same context
 83	 * need not check that the queue has been frozen (marked dead).
 84	 */
 85	percpu_ref_get(&q->q_usage_counter);
 
 
 
 
 
 
 
 
 
 86}
 87
 88#ifdef CONFIG_BLK_DEV_INTEGRITY
 89void blk_flush_integrity(void);
 90#else
 91static inline void blk_flush_integrity(void)
 92{
 
 
 93}
 94#endif
 95
 96void blk_timeout_work(struct work_struct *work);
 97unsigned long blk_rq_timeout(unsigned long timeout);
 98void blk_add_timer(struct request *req);
 99void blk_delete_timer(struct request *);
 
 
 
 
 
 
 
100
 
 
 
 
101
102bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
103			     struct bio *bio);
104bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
105			    struct bio *bio);
106bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
107			    unsigned int *request_count,
108			    struct request **same_queue_rq);
109unsigned int blk_plug_queued_count(struct request_queue *q);
110
111void blk_account_io_start(struct request *req, bool new_io);
112void blk_account_io_completion(struct request *req, unsigned int bytes);
113void blk_account_io_done(struct request *req);
114
115/*
116 * Internal atomic flags for request handling
117 */
118enum rq_atomic_flags {
119	REQ_ATOM_COMPLETE = 0,
120	REQ_ATOM_STARTED,
121};
 
 
 
 
 
 
122
123/*
124 * EH timer and IO completion will both attempt to 'grab' the request, make
125 * sure that only one of them succeeds
 
 
 
 
126 */
127static inline int blk_mark_rq_complete(struct request *rq)
128{
129	return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 
 
 
130}
131
132static inline void blk_clear_rq_complete(struct request *rq)
133{
134	clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 
 
135}
136
137/*
138 * Internal elevator interface
139 */
140#define ELV_ON_HASH(rq) ((rq)->cmd_flags & REQ_HASHED)
 
 
141
142void blk_insert_flush(struct request *rq);
 
143
144static inline struct request *__elv_next_request(struct request_queue *q)
 
 
 
 
 
 
 
145{
146	struct request *rq;
147	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 
 
148
149	while (1) {
150		if (!list_empty(&q->queue_head)) {
151			rq = list_entry_rq(q->queue_head.next);
152			return rq;
153		}
154
155		/*
156		 * Flush request is running and flush request isn't queueable
157		 * in the drive, we can hold the queue till flush request is
158		 * finished. Even we don't do this, driver can't dispatch next
159		 * requests and will requeue them. And this can improve
160		 * throughput too. For example, we have request flush1, write1,
161		 * flush 2. flush1 is dispatched, then queue is hold, write1
162		 * isn't inserted to queue. After flush1 is finished, flush2
163		 * will be dispatched. Since disk cache is already clean,
164		 * flush2 will be finished very soon, so looks like flush2 is
165		 * folded to flush1.
166		 * Since the queue is hold, a flag is set to indicate the queue
167		 * should be restarted later. Please see flush_end_io() for
168		 * details.
169		 */
170		if (fq->flush_pending_idx != fq->flush_running_idx &&
171				!queue_flush_queueable(q)) {
172			fq->flush_queue_delayed = 1;
173			return NULL;
174		}
175		if (unlikely(blk_queue_bypass(q)) ||
176		    !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
177			return NULL;
178	}
179}
180
181static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
 
182{
183	struct elevator_queue *e = q->elevator;
 
184
185	if (e->type->ops.elevator_activate_req_fn)
186		e->type->ops.elevator_activate_req_fn(q, rq);
 
187}
188
189static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
 
 
 
 
 
 
 
 
190{
191	struct elevator_queue *e = q->elevator;
 
 
 
 
 
 
 
 
 
 
 
192
193	if (e->type->ops.elevator_deactivate_req_fn)
194		e->type->ops.elevator_deactivate_req_fn(q, rq);
195}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
197#ifdef CONFIG_FAIL_IO_TIMEOUT
198int blk_should_fake_timeout(struct request_queue *);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
200ssize_t part_timeout_store(struct device *, struct device_attribute *,
201				const char *, size_t);
202#else
203static inline int blk_should_fake_timeout(struct request_queue *q)
 
204{
205	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206}
207#endif
208
209int ll_back_merge_fn(struct request_queue *q, struct request *req,
210		     struct bio *bio);
211int ll_front_merge_fn(struct request_queue *q, struct request *req, 
212		      struct bio *bio);
213int attempt_back_merge(struct request_queue *q, struct request *rq);
214int attempt_front_merge(struct request_queue *q, struct request *rq);
215int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
216				struct request *next);
217void blk_recalc_rq_segments(struct request *rq);
218void blk_rq_set_mixed_merge(struct request *rq);
219bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
220int blk_try_merge(struct request *rq, struct bio *bio);
221
222void blk_queue_congestion_threshold(struct request_queue *q);
223
 
224int blk_dev_init(void);
225
226
227/*
228 * Return the threshold (number of used requests) at which the queue is
229 * considered to be congested.  It include a little hysteresis to keep the
230 * context switch rate down.
 
231 */
232static inline int queue_congestion_on_threshold(struct request_queue *q)
 
 
 
 
 
 
 
 
233{
234	return q->nr_congestion_on;
 
 
235}
236
237/*
238 * The threshold at which a queue is considered to be uncongested
239 */
240static inline int queue_congestion_off_threshold(struct request_queue *q)
 
 
 
 
 
241{
242	return q->nr_congestion_off;
243}
 
244
245extern int blk_update_nr_requests(struct request_queue *, unsigned int);
 
 
 
 
 
 
 
 
 
246
247/*
248 * Contribute to IO statistics IFF:
249 *
250 *	a) it's attached to a gendisk, and
251 *	b) the queue had IO stats enabled when this request was started, and
252 *	c) it's a file system request
253 */
254static inline int blk_do_io_stat(struct request *rq)
255{
256	return rq->rq_disk &&
257	       (rq->cmd_flags & REQ_IO_STAT) &&
258		(rq->cmd_type == REQ_TYPE_FS);
259}
260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261/*
262 * Internal io_context interface
 
263 */
264void get_io_context(struct io_context *ioc);
265struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
266struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
267			     gfp_t gfp_mask);
268void ioc_clear_queue(struct request_queue *q);
269
270int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
271
272/**
273 * create_io_context - try to create task->io_context
274 * @gfp_mask: allocation mask
275 * @node: allocation node
276 *
277 * If %current->io_context is %NULL, allocate a new io_context and install
278 * it.  Returns the current %current->io_context which may be %NULL if
279 * allocation failed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280 *
281 * Note that this function can't be called with IRQ disabled because
282 * task_lock which protects %current->io_context is IRQ-unsafe.
283 */
284static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285{
286	WARN_ON_ONCE(irqs_disabled());
287	if (unlikely(!current->io_context))
288		create_task_io_context(current, gfp_mask, node);
289	return current->io_context;
290}
291
292/*
293 * Internal throttling interface
 
 
 
294 */
295#ifdef CONFIG_BLK_DEV_THROTTLING
296extern void blk_throtl_drain(struct request_queue *q);
297extern int blk_throtl_init(struct request_queue *q);
298extern void blk_throtl_exit(struct request_queue *q);
299#else /* CONFIG_BLK_DEV_THROTTLING */
300static inline void blk_throtl_drain(struct request_queue *q) { }
301static inline int blk_throtl_init(struct request_queue *q) { return 0; }
302static inline void blk_throtl_exit(struct request_queue *q) { }
303#endif /* CONFIG_BLK_DEV_THROTTLING */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
305#endif /* BLK_INTERNAL_H */
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef BLK_INTERNAL_H
  3#define BLK_INTERNAL_H
  4
  5#include <linux/blk-crypto.h>
  6#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
  7#include <linux/sched/sysctl.h>
  8#include <linux/timekeeping.h>
  9#include <xen/xen.h>
 10#include "blk-crypto-internal.h"
 11
 12struct elevator_type;
 
 
 
 
 13
 14/* Max future timer expiry for timeouts */
 15#define BLK_MAX_TIMEOUT		(5 * HZ)
 16
 17extern struct dentry *blk_debugfs_root;
 18
 19struct blk_flush_queue {
 20	spinlock_t		mq_flush_lock;
 21	unsigned int		flush_pending_idx:1;
 22	unsigned int		flush_running_idx:1;
 23	blk_status_t 		rq_status;
 24	unsigned long		flush_pending_since;
 25	struct list_head	flush_queue[2];
 26	unsigned long		flush_data_in_flight;
 27	struct request		*flush_rq;
 
 
 
 
 
 
 
 28};
 29
 30bool is_flush_rq(struct request *req);
 
 
 
 31
 32struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
 33					      gfp_t flags);
 34void blk_free_flush_queue(struct blk_flush_queue *q);
 35
 36void blk_freeze_queue(struct request_queue *q);
 37void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
 38void blk_queue_start_drain(struct request_queue *q);
 39int __bio_queue_enter(struct request_queue *q, struct bio *bio);
 40void submit_bio_noacct_nocheck(struct bio *bio);
 41
 42static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
 43{
 44	rcu_read_lock();
 45	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
 46		goto fail;
 47
 48	/*
 49	 * The code that increments the pm_only counter must ensure that the
 50	 * counter is globally visible before the queue is unfrozen.
 51	 */
 52	if (blk_queue_pm_only(q) &&
 53	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
 54		goto fail_put;
 55
 56	rcu_read_unlock();
 57	return true;
 58
 59fail_put:
 60	blk_queue_exit(q);
 61fail:
 62	rcu_read_unlock();
 63	return false;
 64}
 65
 66static inline int bio_queue_enter(struct bio *bio)
 67{
 68	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 69
 70	if (blk_try_enter_queue(q, false))
 71		return 0;
 72	return __bio_queue_enter(q, bio);
 73}
 74
 75static inline void blk_wait_io(struct completion *done)
 76{
 77	/* Prevent hang_check timer from firing at us during very long I/O */
 78	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
 79
 80	if (timeout)
 81		while (!wait_for_completion_io_timeout(done, timeout))
 82			;
 83	else
 84		wait_for_completion_io(done);
 85}
 86
 87#define BIO_INLINE_VECS 4
 88struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
 89		gfp_t gfp_mask);
 90void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
 91
 92bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
 93		struct page *page, unsigned len, unsigned offset,
 94		bool *same_page);
 95
 96static inline bool biovec_phys_mergeable(struct request_queue *q,
 97		struct bio_vec *vec1, struct bio_vec *vec2)
 98{
 99	unsigned long mask = queue_segment_boundary(q);
100	phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
101	phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
 
102
 
 
103	/*
104	 * Merging adjacent physical pages may not work correctly under KMSAN
105	 * if their metadata pages aren't adjacent. Just disable merging.
 
 
106	 */
107	if (IS_ENABLED(CONFIG_KMSAN))
108		return false;
109
110	if (addr1 + vec1->bv_len != addr2)
111		return false;
112	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
113		return false;
114	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
115		return false;
116	return true;
117}
118
119static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
120		struct bio_vec *bprv, unsigned int offset)
 
 
121{
122	return (offset & lim->virt_boundary_mask) ||
123		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
124}
 
125
126/*
127 * Check if adding a bio_vec after bprv with offset would create a gap in
128 * the SG list. Most drivers don't care about this, but some do.
129 */
130static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
131		struct bio_vec *bprv, unsigned int offset)
132{
133	if (!lim->virt_boundary_mask)
134		return false;
135	return __bvec_gap_to_prev(lim, bprv, offset);
136}
137
138static inline bool rq_mergeable(struct request *rq)
139{
140	if (blk_rq_is_passthrough(rq))
141		return false;
142
143	if (req_op(rq) == REQ_OP_FLUSH)
144		return false;
 
 
 
 
 
 
 
 
 
 
145
146	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
147		return false;
148
149	if (req_op(rq) == REQ_OP_ZONE_APPEND)
150		return false;
151
152	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
153		return false;
154	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
155		return false;
156
157	return true;
158}
159
160/*
161 * There are two different ways to handle DISCARD merges:
162 *  1) If max_discard_segments > 1, the driver treats every bio as a range and
163 *     send the bios to controller together. The ranges don't need to be
164 *     contiguous.
165 *  2) Otherwise, the request will be normal read/write requests.  The ranges
166 *     need to be contiguous.
167 */
168static inline bool blk_discard_mergable(struct request *req)
169{
170	if (req_op(req) == REQ_OP_DISCARD &&
171	    queue_max_discard_segments(req->q) > 1)
172		return true;
173	return false;
174}
175
176static inline unsigned int blk_rq_get_max_segments(struct request *rq)
177{
178	if (req_op(rq) == REQ_OP_DISCARD)
179		return queue_max_discard_segments(rq->q);
180	return queue_max_segments(rq->q);
181}
182
183static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
184						     enum req_op op)
185{
186	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
187		return min(q->limits.max_discard_sectors,
188			   UINT_MAX >> SECTOR_SHIFT);
189
190	if (unlikely(op == REQ_OP_WRITE_ZEROES))
191		return q->limits.max_write_zeroes_sectors;
192
193	return q->limits.max_sectors;
194}
195
196#ifdef CONFIG_BLK_DEV_INTEGRITY
197void blk_flush_integrity(void);
198bool __bio_integrity_endio(struct bio *);
199void bio_integrity_free(struct bio *bio);
200static inline bool bio_integrity_endio(struct bio *bio)
201{
202	if (bio_integrity(bio))
203		return __bio_integrity_endio(bio);
204	return true;
205}
206
207bool blk_integrity_merge_rq(struct request_queue *, struct request *,
208		struct request *);
209bool blk_integrity_merge_bio(struct request_queue *, struct request *,
210		struct bio *);
211
212static inline bool integrity_req_gap_back_merge(struct request *req,
213		struct bio *next)
214{
215	struct bio_integrity_payload *bip = bio_integrity(req->bio);
216	struct bio_integrity_payload *bip_next = bio_integrity(next);
217
218	return bvec_gap_to_prev(&req->q->limits,
219				&bip->bip_vec[bip->bip_vcnt - 1],
220				bip_next->bip_vec[0].bv_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221}
222
223static inline bool integrity_req_gap_front_merge(struct request *req,
224		struct bio *bio)
225{
226	struct bio_integrity_payload *bip = bio_integrity(bio);
227	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
228
229	return bvec_gap_to_prev(&req->q->limits,
230				&bip->bip_vec[bip->bip_vcnt - 1],
231				bip_next->bip_vec[0].bv_offset);
232}
233
234extern const struct attribute_group blk_integrity_attr_group;
235#else /* CONFIG_BLK_DEV_INTEGRITY */
236static inline bool blk_integrity_merge_rq(struct request_queue *rq,
237		struct request *r1, struct request *r2)
238{
239	return true;
240}
241static inline bool blk_integrity_merge_bio(struct request_queue *rq,
242		struct request *r, struct bio *b)
243{
244	return true;
245}
246static inline bool integrity_req_gap_back_merge(struct request *req,
247		struct bio *next)
248{
249	return false;
250}
251static inline bool integrity_req_gap_front_merge(struct request *req,
252		struct bio *bio)
253{
254	return false;
255}
256
257static inline void blk_flush_integrity(void)
258{
259}
260static inline bool bio_integrity_endio(struct bio *bio)
261{
262	return true;
263}
264static inline void bio_integrity_free(struct bio *bio)
265{
266}
267#endif /* CONFIG_BLK_DEV_INTEGRITY */
268
269unsigned long blk_rq_timeout(unsigned long timeout);
270void blk_add_timer(struct request *req);
271
272bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
273		unsigned int nr_segs);
274bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
275			struct bio *bio, unsigned int nr_segs);
276
277/*
278 * Plug flush limits
279 */
280#define BLK_MAX_REQUEST_COUNT	32
281#define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
282
283/*
284 * Internal elevator interface
285 */
286#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
287
288bool blk_insert_flush(struct request *rq);
289
290int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
291void elevator_disable(struct request_queue *q);
292void elevator_exit(struct request_queue *q);
293int elv_register_queue(struct request_queue *q, bool uevent);
294void elv_unregister_queue(struct request_queue *q);
295
296ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
297		char *buf);
298ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
299		char *buf);
300ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
301		char *buf);
302ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
303		char *buf);
304ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
305		const char *buf, size_t count);
306ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
307ssize_t part_timeout_store(struct device *, struct device_attribute *,
308				const char *, size_t);
309
310static inline bool bio_may_exceed_limits(struct bio *bio,
311					 const struct queue_limits *lim)
312{
313	switch (bio_op(bio)) {
314	case REQ_OP_DISCARD:
315	case REQ_OP_SECURE_ERASE:
316	case REQ_OP_WRITE_ZEROES:
317		return true; /* non-trivial splitting decisions */
318	default:
319		break;
320	}
321
322	/*
323	 * All drivers must accept single-segments bios that are <= PAGE_SIZE.
324	 * This is a quick and dirty check that relies on the fact that
325	 * bi_io_vec[0] is always valid if a bio has data.  The check might
326	 * lead to occasional false negatives when bios are cloned, but compared
327	 * to the performance impact of cloned bios themselves the loop below
328	 * doesn't matter anyway.
329	 */
330	return lim->chunk_sectors || bio->bi_vcnt != 1 ||
331		bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
332}
 
333
334struct bio *__bio_split_to_limits(struct bio *bio,
335				  const struct queue_limits *lim,
336				  unsigned int *nr_segs);
337int ll_back_merge_fn(struct request *req, struct bio *bio,
338		unsigned int nr_segs);
339bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 
340				struct request *next);
341unsigned int blk_recalc_rq_segments(struct request *rq);
 
342bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
343enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
 
 
344
345int blk_set_default_limits(struct queue_limits *lim);
346int blk_dev_init(void);
347
 
348/*
349 * Contribute to IO statistics IFF:
350 *
351 *	a) it's attached to a gendisk, and
352 *	b) the queue had IO stats enabled when this request was started
353 */
354static inline bool blk_do_io_stat(struct request *rq)
355{
356	return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
357}
358
359void update_io_ticks(struct block_device *part, unsigned long now, bool end);
360unsigned int part_in_flight(struct block_device *part);
361
362static inline void req_set_nomerge(struct request_queue *q, struct request *req)
363{
364	req->cmd_flags |= REQ_NOMERGE;
365	if (req == q->last_merge)
366		q->last_merge = NULL;
367}
368
369/*
370 * Internal io_context interface
371 */
372struct io_cq *ioc_find_get_icq(struct request_queue *q);
373struct io_cq *ioc_lookup_icq(struct request_queue *q);
374#ifdef CONFIG_BLK_ICQ
375void ioc_clear_queue(struct request_queue *q);
376#else
377static inline void ioc_clear_queue(struct request_queue *q)
378{
 
379}
380#endif /* CONFIG_BLK_ICQ */
381
382#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
383extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
384extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
385	const char *page, size_t count);
386extern void blk_throtl_bio_endio(struct bio *bio);
387extern void blk_throtl_stat_add(struct request *rq, u64 time);
388#else
389static inline void blk_throtl_bio_endio(struct bio *bio) { }
390static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
391#endif
392
393struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
394
395static inline bool blk_queue_may_bounce(struct request_queue *q)
 
 
 
 
 
396{
397	return IS_ENABLED(CONFIG_BOUNCE) &&
398		q->limits.bounce == BLK_BOUNCE_HIGH &&
399		max_low_pfn >= max_pfn;
400}
401
402static inline struct bio *blk_queue_bounce(struct bio *bio,
403		struct request_queue *q)
404{
405	if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
406		return __blk_queue_bounce(bio, q);
407	return bio;
408}
409
410#ifdef CONFIG_BLK_DEV_ZONED
411void disk_free_zone_bitmaps(struct gendisk *disk);
412int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
413		unsigned long arg);
414int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
415		unsigned int cmd, unsigned long arg);
416#else /* CONFIG_BLK_DEV_ZONED */
417static inline void disk_free_zone_bitmaps(struct gendisk *disk) {}
418static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
419		unsigned int cmd, unsigned long arg)
420{
421	return -ENOTTY;
422}
423static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
424		blk_mode_t mode, unsigned int cmd, unsigned long arg)
425{
426	return -ENOTTY;
427}
428#endif /* CONFIG_BLK_DEV_ZONED */
429
430struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
431void bdev_add(struct block_device *bdev, dev_t dev);
432
433int blk_alloc_ext_minor(void);
434void blk_free_ext_minor(unsigned int minor);
435#define ADDPART_FLAG_NONE	0
436#define ADDPART_FLAG_RAID	1
437#define ADDPART_FLAG_WHOLEDISK	2
438int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
439		sector_t length);
440int bdev_del_partition(struct gendisk *disk, int partno);
441int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
442		sector_t length);
443void drop_partition(struct block_device *part);
444
445void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
446
447struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
448		struct lock_class_key *lkclass);
449
450int bio_add_hw_page(struct request_queue *q, struct bio *bio,
451		struct page *page, unsigned int len, unsigned int offset,
452		unsigned int max_sectors, bool *same_page);
453
454/*
455 * Clean up a page appropriately, where the page may be pinned, may have a
456 * ref taken on it or neither.
457 */
458static inline void bio_release_page(struct bio *bio, struct page *page)
459{
460	if (bio_flagged(bio, BIO_PAGE_PINNED))
461		unpin_user_page(page);
462}
463
464struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
465
466int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
467
468int disk_alloc_events(struct gendisk *disk);
469void disk_add_events(struct gendisk *disk);
470void disk_del_events(struct gendisk *disk);
471void disk_release_events(struct gendisk *disk);
472void disk_block_events(struct gendisk *disk);
473void disk_unblock_events(struct gendisk *disk);
474void disk_flush_events(struct gendisk *disk, unsigned int mask);
475extern struct device_attribute dev_attr_events;
476extern struct device_attribute dev_attr_events_async;
477extern struct device_attribute dev_attr_events_poll_msecs;
478
479extern struct attribute_group blk_trace_attr_group;
480
481blk_mode_t file_to_blk_mode(struct file *file);
482int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
483		loff_t lstart, loff_t lend);
484long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
485long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
486
487extern const struct address_space_operations def_blk_aops;
488
489int disk_register_independent_access_ranges(struct gendisk *disk);
490void disk_unregister_independent_access_ranges(struct gendisk *disk);
491
492#ifdef CONFIG_FAIL_MAKE_REQUEST
493bool should_fail_request(struct block_device *part, unsigned int bytes);
494#else /* CONFIG_FAIL_MAKE_REQUEST */
495static inline bool should_fail_request(struct block_device *part,
496					unsigned int bytes)
497{
498	return false;
499}
500#endif /* CONFIG_FAIL_MAKE_REQUEST */
501
502/*
503 * Optimized request reference counting. Ideally we'd make timeouts be more
504 * clever, as that's the only reason we need references at all... But until
505 * this happens, this is faster than using refcount_t. Also see:
506 *
507 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
 
508 */
509#define req_ref_zero_or_close_to_overflow(req)	\
510	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
511
512static inline bool req_ref_inc_not_zero(struct request *req)
513{
514	return atomic_inc_not_zero(&req->ref);
515}
516
517static inline bool req_ref_put_and_test(struct request *req)
518{
519	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
520	return atomic_dec_and_test(&req->ref);
521}
522
523static inline void req_ref_set(struct request *req, int value)
524{
525	atomic_set(&req->ref, value);
526}
527
528static inline int req_ref_read(struct request *req)
529{
530	return atomic_read(&req->ref);
531}
532
533static inline u64 blk_time_get_ns(void)
534{
535	struct blk_plug *plug = current->plug;
536
537	if (!plug || !in_task())
538		return ktime_get_ns();
539
540	/*
541	 * 0 could very well be a valid time, but rather than flag "this is
542	 * a valid timestamp" separately, just accept that we'll do an extra
543	 * ktime_get_ns() if we just happen to get 0 as the current time.
544	 */
545	if (!plug->cur_ktime) {
546		plug->cur_ktime = ktime_get_ns();
547		current->flags |= PF_BLOCK_TS;
548	}
549	return plug->cur_ktime;
550}
551
552static inline ktime_t blk_time_get(void)
553{
554	return ns_to_ktime(blk_time_get_ns());
 
 
 
555}
556
557/*
558 * From most significant bit:
559 * 1 bit: reserved for other usage, see below
560 * 12 bits: original size of bio
561 * 51 bits: issue time of bio
562 */
563#define BIO_ISSUE_RES_BITS      1
564#define BIO_ISSUE_SIZE_BITS     12
565#define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
566#define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
567#define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
568#define BIO_ISSUE_SIZE_MASK     \
569	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
570#define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
571
572/* Reserved bit for blk-throtl */
573#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
574
575static inline u64 __bio_issue_time(u64 time)
576{
577	return time & BIO_ISSUE_TIME_MASK;
578}
579
580static inline u64 bio_issue_time(struct bio_issue *issue)
581{
582	return __bio_issue_time(issue->value);
583}
584
585static inline sector_t bio_issue_size(struct bio_issue *issue)
586{
587	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
588}
589
590static inline void bio_issue_init(struct bio_issue *issue,
591				       sector_t size)
592{
593	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
594	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
595			(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
596			((u64)size << BIO_ISSUE_SIZE_SHIFT));
597}
598
599void bdev_release(struct file *bdev_file);
600int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
601	      const struct blk_holder_ops *hops, struct file *bdev_file);
602int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
603
604#endif /* BLK_INTERNAL_H */