Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Access kernel memory without faulting -- s390 specific implementation.
  3 *
  4 * Copyright IBM Corp. 2009, 2015
  5 *
  6 *   Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>,
  7 *
  8 */
  9
 10#include <linux/uaccess.h>
 11#include <linux/kernel.h>
 12#include <linux/types.h>
 13#include <linux/errno.h>
 14#include <linux/gfp.h>
 15#include <linux/cpu.h>
 16#include <asm/ctl_reg.h>
 17#include <asm/io.h>
 
 
 
 
 
 
 
 
 
 18
 19static notrace long s390_kernel_write_odd(void *dst, const void *src, size_t size)
 20{
 21	unsigned long aligned, offset, count;
 22	char tmp[8];
 23
 24	aligned = (unsigned long) dst & ~7UL;
 25	offset = (unsigned long) dst & 7UL;
 26	size = min(8UL - offset, size);
 27	count = size - 1;
 28	asm volatile(
 29		"	bras	1,0f\n"
 30		"	mvc	0(1,%4),0(%5)\n"
 31		"0:	mvc	0(8,%3),0(%0)\n"
 32		"	ex	%1,0(1)\n"
 33		"	lg	%1,0(%3)\n"
 34		"	lra	%0,0(%0)\n"
 35		"	sturg	%1,%0\n"
 36		: "+&a" (aligned), "+&a" (count), "=m" (tmp)
 37		: "a" (&tmp), "a" (&tmp[offset]), "a" (src)
 38		: "cc", "memory", "1");
 39	return size;
 40}
 41
 42/*
 43 * s390_kernel_write - write to kernel memory bypassing DAT
 44 * @dst: destination address
 45 * @src: source address
 46 * @size: number of bytes to copy
 47 *
 48 * This function writes to kernel memory bypassing DAT and possible page table
 49 * write protection. It writes to the destination using the sturg instruction.
 50 * Therefore we have a read-modify-write sequence: the function reads eight
 51 * bytes from destination at an eight byte boundary, modifies the bytes
 52 * requested and writes the result back in a loop.
 53 *
 54 * Note: this means that this function may not be called concurrently on
 55 *	 several cpus with overlapping words, since this may potentially
 56 *	 cause data corruption.
 57 */
 58void notrace s390_kernel_write(void *dst, const void *src, size_t size)
 
 
 59{
 
 
 60	long copied;
 61
 
 62	while (size) {
 63		copied = s390_kernel_write_odd(dst, src, size);
 64		dst += copied;
 65		src += copied;
 66		size -= copied;
 67	}
 68}
 69
 70static int __memcpy_real(void *dest, void *src, size_t count)
 71{
 72	register unsigned long _dest asm("2") = (unsigned long) dest;
 73	register unsigned long _len1 asm("3") = (unsigned long) count;
 74	register unsigned long _src  asm("4") = (unsigned long) src;
 75	register unsigned long _len2 asm("5") = (unsigned long) count;
 76	int rc = -EFAULT;
 77
 78	asm volatile (
 79		"0:	mvcle	%1,%2,0x0\n"
 80		"1:	jo	0b\n"
 81		"	lhi	%0,0x0\n"
 82		"2:\n"
 83		EX_TABLE(1b,2b)
 84		: "+d" (rc), "+d" (_dest), "+d" (_src), "+d" (_len1),
 85		  "+d" (_len2), "=m" (*((long *) dest))
 86		: "m" (*((long *) src))
 87		: "cc", "memory");
 88	return rc;
 89}
 90
 91/*
 92 * Copy memory in real mode (kernel to kernel)
 93 */
 94int memcpy_real(void *dest, void *src, size_t count)
 95{
 96	int irqs_disabled, rc;
 97	unsigned long flags;
 98
 99	if (!count)
100		return 0;
101	flags = __arch_local_irq_stnsm(0xf8UL);
102	irqs_disabled = arch_irqs_disabled_flags(flags);
103	if (!irqs_disabled)
104		trace_hardirqs_off();
105	rc = __memcpy_real(dest, src, count);
106	if (!irqs_disabled)
107		trace_hardirqs_on();
108	__arch_local_irq_ssm(flags);
109	return rc;
110}
111
112/*
113 * Copy memory in absolute mode (kernel to kernel)
114 */
115void memcpy_absolute(void *dest, void *src, size_t count)
116{
117	unsigned long cr0, flags, prefix;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119	flags = arch_local_irq_save();
120	__ctl_store(cr0, 0, 0);
121	__ctl_clear_bit(0, 28); /* disable lowcore protection */
122	prefix = store_prefix();
123	if (prefix) {
124		local_mcck_disable();
125		set_prefix(0);
126		memcpy(dest, src, count);
127		set_prefix(prefix);
128		local_mcck_enable();
129	} else {
130		memcpy(dest, src, count);
131	}
132	__ctl_load(cr0, 0, 0);
133	arch_local_irq_restore(flags);
134}
135
136/*
137 * Copy memory from kernel (real) to user (virtual)
138 */
139int copy_to_user_real(void __user *dest, void *src, unsigned long count)
140{
141	int offs = 0, size, rc;
142	char *buf;
143
144	buf = (char *) __get_free_page(GFP_KERNEL);
145	if (!buf)
146		return -ENOMEM;
147	rc = -EFAULT;
148	while (offs < count) {
149		size = min(PAGE_SIZE, count - offs);
150		if (memcpy_real(buf, src + offs, size))
151			goto out;
152		if (copy_to_user(dest + offs, buf, size))
153			goto out;
154		offs += size;
155	}
156	rc = 0;
157out:
158	free_page((unsigned long) buf);
159	return rc;
160}
161
162/*
163 * Check if physical address is within prefix or zero page
164 */
165static int is_swapped(unsigned long addr)
166{
167	unsigned long lc;
168	int cpu;
169
170	if (addr < sizeof(struct lowcore))
171		return 1;
172	for_each_online_cpu(cpu) {
173		lc = (unsigned long) lowcore_ptr[cpu];
174		if (addr > lc + sizeof(struct lowcore) - 1 || addr < lc)
175			continue;
176		return 1;
177	}
178	return 0;
179}
180
181/*
182 * Convert a physical pointer for /dev/mem access
183 *
184 * For swapped prefix pages a new buffer is returned that contains a copy of
185 * the absolute memory. The buffer size is maximum one page large.
186 */
187void *xlate_dev_mem_ptr(phys_addr_t addr)
188{
189	void *bounce = (void *) addr;
 
 
190	unsigned long size;
 
191
192	get_online_cpus();
193	preempt_disable();
194	if (is_swapped(addr)) {
195		size = PAGE_SIZE - (addr & ~PAGE_MASK);
196		bounce = (void *) __get_free_page(GFP_ATOMIC);
197		if (bounce)
198			memcpy_absolute(bounce, (void *) addr, size);
199	}
200	preempt_enable();
201	put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202	return bounce;
203}
204
205/*
206 * Free converted buffer for /dev/mem access (if necessary)
207 */
208void unxlate_dev_mem_ptr(phys_addr_t addr, void *buf)
209{
210	if ((void *) addr != buf)
211		free_page((unsigned long) buf);
212}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Access kernel memory without faulting -- s390 specific implementation.
  4 *
  5 * Copyright IBM Corp. 2009, 2015
  6 *
 
 
  7 */
  8
  9#include <linux/uaccess.h>
 10#include <linux/kernel.h>
 11#include <linux/types.h>
 12#include <linux/errno.h>
 13#include <linux/gfp.h>
 14#include <linux/cpu.h>
 15#include <linux/uio.h>
 16#include <linux/io.h>
 17#include <asm/asm-extable.h>
 18#include <asm/abs_lowcore.h>
 19#include <asm/stacktrace.h>
 20#include <asm/maccess.h>
 21#include <asm/ctlreg.h>
 22
 23unsigned long __bootdata_preserved(__memcpy_real_area);
 24pte_t *__bootdata_preserved(memcpy_real_ptep);
 25static DEFINE_MUTEX(memcpy_real_mutex);
 26
 27static notrace long s390_kernel_write_odd(void *dst, const void *src, size_t size)
 28{
 29	unsigned long aligned, offset, count;
 30	char tmp[8];
 31
 32	aligned = (unsigned long) dst & ~7UL;
 33	offset = (unsigned long) dst & 7UL;
 34	size = min(8UL - offset, size);
 35	count = size - 1;
 36	asm volatile(
 37		"	bras	1,0f\n"
 38		"	mvc	0(1,%4),0(%5)\n"
 39		"0:	mvc	0(8,%3),0(%0)\n"
 40		"	ex	%1,0(1)\n"
 41		"	lg	%1,0(%3)\n"
 42		"	lra	%0,0(%0)\n"
 43		"	sturg	%1,%0\n"
 44		: "+&a" (aligned), "+&a" (count), "=m" (tmp)
 45		: "a" (&tmp), "a" (&tmp[offset]), "a" (src)
 46		: "cc", "memory", "1");
 47	return size;
 48}
 49
 50/*
 51 * s390_kernel_write - write to kernel memory bypassing DAT
 52 * @dst: destination address
 53 * @src: source address
 54 * @size: number of bytes to copy
 55 *
 56 * This function writes to kernel memory bypassing DAT and possible page table
 57 * write protection. It writes to the destination using the sturg instruction.
 58 * Therefore we have a read-modify-write sequence: the function reads eight
 59 * bytes from destination at an eight byte boundary, modifies the bytes
 60 * requested and writes the result back in a loop.
 
 
 
 
 61 */
 62static DEFINE_SPINLOCK(s390_kernel_write_lock);
 63
 64notrace void *s390_kernel_write(void *dst, const void *src, size_t size)
 65{
 66	void *tmp = dst;
 67	unsigned long flags;
 68	long copied;
 69
 70	spin_lock_irqsave(&s390_kernel_write_lock, flags);
 71	while (size) {
 72		copied = s390_kernel_write_odd(tmp, src, size);
 73		tmp += copied;
 74		src += copied;
 75		size -= copied;
 76	}
 77	spin_unlock_irqrestore(&s390_kernel_write_lock, flags);
 78
 79	return dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80}
 81
 82size_t memcpy_real_iter(struct iov_iter *iter, unsigned long src, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83{
 84	size_t len, copied, res = 0;
 85	unsigned long phys, offset;
 86	void *chunk;
 87	pte_t pte;
 88
 89	BUILD_BUG_ON(MEMCPY_REAL_SIZE != PAGE_SIZE);
 90	while (count) {
 91		phys = src & MEMCPY_REAL_MASK;
 92		offset = src & ~MEMCPY_REAL_MASK;
 93		chunk = (void *)(__memcpy_real_area + offset);
 94		len = min(count, MEMCPY_REAL_SIZE - offset);
 95		pte = mk_pte_phys(phys, PAGE_KERNEL_RO);
 96
 97		mutex_lock(&memcpy_real_mutex);
 98		if (pte_val(pte) != pte_val(*memcpy_real_ptep)) {
 99			__ptep_ipte(__memcpy_real_area, memcpy_real_ptep, 0, 0, IPTE_GLOBAL);
100			set_pte(memcpy_real_ptep, pte);
101		}
102		copied = copy_to_iter(chunk, len, iter);
103		mutex_unlock(&memcpy_real_mutex);
104
105		count -= copied;
106		src += copied;
107		res += copied;
108		if (copied < len)
109			break;
 
 
 
 
 
 
 
110	}
111	return res;
 
112}
113
114int memcpy_real(void *dest, unsigned long src, size_t count)
 
 
 
115{
116	struct iov_iter iter;
117	struct kvec kvec;
118
119	kvec.iov_base = dest;
120	kvec.iov_len = count;
121	iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
122	if (memcpy_real_iter(&iter, src, count) < count)
123		return -EFAULT;
124	return 0;
 
 
 
 
 
 
 
 
 
 
125}
126
127/*
128 * Find CPU that owns swapped prefix page
129 */
130static int get_swapped_owner(phys_addr_t addr)
131{
132	phys_addr_t lc;
133	int cpu;
134
 
 
135	for_each_online_cpu(cpu) {
136		lc = virt_to_phys(lowcore_ptr[cpu]);
137		if (addr > lc + sizeof(struct lowcore) - 1 || addr < lc)
138			continue;
139		return cpu;
140	}
141	return -1;
142}
143
144/*
145 * Convert a physical pointer for /dev/mem access
146 *
147 * For swapped prefix pages a new buffer is returned that contains a copy of
148 * the absolute memory. The buffer size is maximum one page large.
149 */
150void *xlate_dev_mem_ptr(phys_addr_t addr)
151{
152	void *ptr = phys_to_virt(addr);
153	void *bounce = ptr;
154	struct lowcore *abs_lc;
155	unsigned long size;
156	int this_cpu, cpu;
157
158	cpus_read_lock();
159	this_cpu = get_cpu();
160	if (addr >= sizeof(struct lowcore)) {
161		cpu = get_swapped_owner(addr);
162		if (cpu < 0)
163			goto out;
 
164	}
165	bounce = (void *)__get_free_page(GFP_ATOMIC);
166	if (!bounce)
167		goto out;
168	size = PAGE_SIZE - (addr & ~PAGE_MASK);
169	if (addr < sizeof(struct lowcore)) {
170		abs_lc = get_abs_lowcore();
171		ptr = (void *)abs_lc + addr;
172		memcpy(bounce, ptr, size);
173		put_abs_lowcore(abs_lc);
174	} else if (cpu == this_cpu) {
175		ptr = (void *)(addr - virt_to_phys(lowcore_ptr[cpu]));
176		memcpy(bounce, ptr, size);
177	} else {
178		memcpy(bounce, ptr, size);
179	}
180out:
181	put_cpu();
182	cpus_read_unlock();
183	return bounce;
184}
185
186/*
187 * Free converted buffer for /dev/mem access (if necessary)
188 */
189void unxlate_dev_mem_ptr(phys_addr_t addr, void *ptr)
190{
191	if (addr != virt_to_phys(ptr))
192		free_page((unsigned long)ptr);
193}