Linux Audio

Check our new training course

Loading...
v4.6
 
  1#ifndef _ASM_POWERPC_IO_H
  2#define _ASM_POWERPC_IO_H
  3#ifdef __KERNEL__
  4
  5#define ARCH_HAS_IOREMAP_WC
  6
  7/*
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; either version
 11 * 2 of the License, or (at your option) any later version.
 12 */
 13
 14/* Check of existence of legacy devices */
 15extern int check_legacy_ioport(unsigned long base_port);
 16#define I8042_DATA_REG	0x60
 17#define FDC_BASE	0x3f0
 18
 19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
 20extern struct pci_dev *isa_bridge_pcidev;
 21/*
 22 * has legacy ISA devices ?
 23 */
 24#define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
 25#endif
 26
 27#include <linux/device.h>
 28#include <linux/io.h>
 29
 30#include <linux/compiler.h>
 
 31#include <asm/page.h>
 32#include <asm/byteorder.h>
 33#include <asm/synch.h>
 34#include <asm/delay.h>
 
 35#include <asm/mmu.h>
 36
 37#include <asm-generic/iomap.h>
 38
 39#ifdef CONFIG_PPC64
 40#include <asm/paca.h>
 41#endif
 42
 43#define SIO_CONFIG_RA	0x398
 44#define SIO_CONFIG_RD	0x399
 45
 46#define SLOW_DOWN_IO
 47
 48/* 32 bits uses slightly different variables for the various IO
 49 * bases. Most of this file only uses _IO_BASE though which we
 50 * define properly based on the platform
 51 */
 52#ifndef CONFIG_PCI
 53#define _IO_BASE	0
 54#define _ISA_MEM_BASE	0
 55#define PCI_DRAM_OFFSET 0
 56#elif defined(CONFIG_PPC32)
 57#define _IO_BASE	isa_io_base
 58#define _ISA_MEM_BASE	isa_mem_base
 59#define PCI_DRAM_OFFSET	pci_dram_offset
 60#else
 61#define _IO_BASE	pci_io_base
 62#define _ISA_MEM_BASE	isa_mem_base
 63#define PCI_DRAM_OFFSET	0
 64#endif
 65
 66extern unsigned long isa_io_base;
 67extern unsigned long pci_io_base;
 68extern unsigned long pci_dram_offset;
 69
 70extern resource_size_t isa_mem_base;
 71
 72/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
 73 * is not set or addresses cannot be translated to MMIO. This is typically
 74 * set when the platform supports "special" PIO accesses via a non memory
 75 * mapped mechanism, and allows things like the early udbg UART code to
 76 * function.
 77 */
 78extern bool isa_io_special;
 79
 80#ifdef CONFIG_PPC32
 81#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
 82#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
 83#endif
 84#endif
 85
 86/*
 87 *
 88 * Low level MMIO accessors
 89 *
 90 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
 91 * specific and thus shouldn't be used in generic code. The accessors
 92 * provided here are:
 93 *
 94 *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
 95 *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
 96 *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
 97 *
 98 * Those operate directly on a kernel virtual address. Note that the prototype
 99 * for the out_* accessors has the arguments in opposite order from the usual
100 * linux PCI accessors. Unlike those, they take the address first and the value
101 * next.
102 *
103 * Note: I might drop the _ns suffix on the stream operations soon as it is
104 * simply normal for stream operations to not swap in the first place.
105 *
106 */
107
108#ifdef CONFIG_PPC64
109#define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
110#else
111#define IO_SET_SYNC_FLAG()
112#endif
113
114/* gcc 4.0 and older doesn't have 'Z' constraint */
115#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
116#define DEF_MMIO_IN_X(name, size, insn)				\
117static inline u##size name(const volatile u##size __iomem *addr)	\
118{									\
119	u##size ret;							\
120	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
121		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
122	return ret;							\
123}
124
125#define DEF_MMIO_OUT_X(name, size, insn)				\
126static inline void name(volatile u##size __iomem *addr, u##size val)	\
127{									\
128	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
129		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
130	IO_SET_SYNC_FLAG();						\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131}
132#else /* newer gcc */
133#define DEF_MMIO_IN_X(name, size, insn)				\
134static inline u##size name(const volatile u##size __iomem *addr)	\
135{									\
136	u##size ret;							\
137	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
138		: "=r" (ret) : "Z" (*addr) : "memory");			\
139	return ret;							\
140}
141
142#define DEF_MMIO_OUT_X(name, size, insn)				\
143static inline void name(volatile u##size __iomem *addr, u##size val)	\
144{									\
145	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
146		: "=Z" (*addr) : "r" (val) : "memory");			\
147	IO_SET_SYNC_FLAG();						\
148}
149#endif
150
151#define DEF_MMIO_IN_D(name, size, insn)				\
152static inline u##size name(const volatile u##size __iomem *addr)	\
153{									\
154	u##size ret;							\
155	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
156		: "=r" (ret) : "m" (*addr) : "memory");			\
157	return ret;							\
158}
159
160#define DEF_MMIO_OUT_D(name, size, insn)				\
161static inline void name(volatile u##size __iomem *addr, u##size val)	\
162{									\
163	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
164		: "=m" (*addr) : "r" (val) : "memory");			\
165	IO_SET_SYNC_FLAG();						\
166}
 
167
168DEF_MMIO_IN_D(in_8,     8, lbz);
169DEF_MMIO_OUT_D(out_8,   8, stb);
170
171#ifdef __BIG_ENDIAN__
172DEF_MMIO_IN_D(in_be16, 16, lhz);
173DEF_MMIO_IN_D(in_be32, 32, lwz);
174DEF_MMIO_IN_X(in_le16, 16, lhbrx);
175DEF_MMIO_IN_X(in_le32, 32, lwbrx);
176
177DEF_MMIO_OUT_D(out_be16, 16, sth);
178DEF_MMIO_OUT_D(out_be32, 32, stw);
179DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
180DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
181#else
182DEF_MMIO_IN_X(in_be16, 16, lhbrx);
183DEF_MMIO_IN_X(in_be32, 32, lwbrx);
184DEF_MMIO_IN_D(in_le16, 16, lhz);
185DEF_MMIO_IN_D(in_le32, 32, lwz);
186
187DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
188DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
189DEF_MMIO_OUT_D(out_le16, 16, sth);
190DEF_MMIO_OUT_D(out_le32, 32, stw);
191
192#endif /* __BIG_ENDIAN */
193
194/*
195 * Cache inhibitied accessors for use in real mode, you don't want to use these
196 * unless you know what you're doing.
197 *
198 * NB. These use the cpu byte ordering.
199 */
200DEF_MMIO_OUT_X(out_rm8,   8, stbcix);
201DEF_MMIO_OUT_X(out_rm16, 16, sthcix);
202DEF_MMIO_OUT_X(out_rm32, 32, stwcix);
203DEF_MMIO_IN_X(in_rm8,   8, lbzcix);
204DEF_MMIO_IN_X(in_rm16, 16, lhzcix);
205DEF_MMIO_IN_X(in_rm32, 32, lwzcix);
206
207#ifdef __powerpc64__
208
209DEF_MMIO_OUT_X(out_rm64, 64, stdcix);
210DEF_MMIO_IN_X(in_rm64, 64, ldcix);
211
212#ifdef __BIG_ENDIAN__
213DEF_MMIO_OUT_D(out_be64, 64, std);
214DEF_MMIO_IN_D(in_be64, 64, ld);
215
216/* There is no asm instructions for 64 bits reverse loads and stores */
217static inline u64 in_le64(const volatile u64 __iomem *addr)
218{
219	return swab64(in_be64(addr));
220}
221
222static inline void out_le64(volatile u64 __iomem *addr, u64 val)
223{
224	out_be64(addr, swab64(val));
225}
226#else
227DEF_MMIO_OUT_D(out_le64, 64, std);
228DEF_MMIO_IN_D(in_le64, 64, ld);
229
230/* There is no asm instructions for 64 bits reverse loads and stores */
231static inline u64 in_be64(const volatile u64 __iomem *addr)
232{
233	return swab64(in_le64(addr));
234}
235
236static inline void out_be64(volatile u64 __iomem *addr, u64 val)
237{
238	out_le64(addr, swab64(val));
239}
240
241#endif
242#endif /* __powerpc64__ */
243
244/*
245 * Low level IO stream instructions are defined out of line for now
246 */
247extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
248extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
249extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
250extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
251extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
252extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
253
254/* The _ns naming is historical and will be removed. For now, just #define
255 * the non _ns equivalent names
256 */
257#define _insw	_insw_ns
258#define _insl	_insl_ns
259#define _outsw	_outsw_ns
260#define _outsl	_outsl_ns
261
262
263/*
264 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
265 */
266
267extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
268extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
269			   unsigned long n);
270extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
271			 unsigned long n);
272
273/*
274 *
275 * PCI and standard ISA accessors
276 *
277 * Those are globally defined linux accessors for devices on PCI or ISA
278 * busses. They follow the Linux defined semantics. The current implementation
279 * for PowerPC is as close as possible to the x86 version of these, and thus
280 * provides fairly heavy weight barriers for the non-raw versions
281 *
282 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
283 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
284 * own implementation of some or all of the accessors.
285 */
286
287/*
288 * Include the EEH definitions when EEH is enabled only so they don't get
289 * in the way when building for 32 bits
290 */
291#ifdef CONFIG_EEH
292#include <asm/eeh.h>
293#endif
294
295/* Shortcut to the MMIO argument pointer */
296#define PCI_IO_ADDR	volatile void __iomem *
297
298/* Indirect IO address tokens:
299 *
300 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
301 * on all MMIOs. (Note that this is all 64 bits only for now)
302 *
303 * To help platforms who may need to differentiate MMIO addresses in
304 * their hooks, a bitfield is reserved for use by the platform near the
305 * top of MMIO addresses (not PIO, those have to cope the hard way).
306 *
307 * This bit field is 12 bits and is at the top of the IO virtual
308 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
309 *
310 * The kernel virtual space is thus:
 
311 *
312 *  0xD000000000000000		: vmalloc
313 *  0xD000080000000000		: PCI PHB IO space
314 *  0xD000080080000000		: ioremap
315 *  0xD0000fffffffffff		: end of ioremap region
316 *
317 * Since the top 4 bits are reserved as the region ID, we use thus
318 * the next 12 bits and keep 4 bits available for the future if the
319 * virtual address space is ever to be extended.
320 *
321 * The direct IO mapping operations will then mask off those bits
322 * before doing the actual access, though that only happen when
323 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
324 * mechanism
325 *
326 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
327 * all PIO functions call through a hook.
328 */
329
330#ifdef CONFIG_PPC_INDIRECT_MMIO
331#define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
332#define PCI_IO_IND_TOKEN_SHIFT	48
333#define PCI_FIX_ADDR(addr)						\
334	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
335#define PCI_GET_ADDR_TOKEN(addr)					\
336	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
337		PCI_IO_IND_TOKEN_SHIFT)
338#define PCI_SET_ADDR_TOKEN(addr, token) 				\
339do {									\
340	unsigned long __a = (unsigned long)(addr);			\
341	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
342	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
343	(addr) = (void __iomem *)__a;					\
344} while(0)
345#else
346#define PCI_FIX_ADDR(addr) (addr)
347#endif
348
349
350/*
351 * Non ordered and non-swapping "raw" accessors
352 */
353
354static inline unsigned char __raw_readb(const volatile void __iomem *addr)
355{
356	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
357}
 
 
358static inline unsigned short __raw_readw(const volatile void __iomem *addr)
359{
360	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
361}
 
 
362static inline unsigned int __raw_readl(const volatile void __iomem *addr)
363{
364	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
365}
 
 
366static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
367{
368	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
369}
 
 
370static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
371{
372	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
373}
 
 
374static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
375{
376	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
377}
 
378
379#ifdef __powerpc64__
380static inline unsigned long __raw_readq(const volatile void __iomem *addr)
381{
382	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
383}
 
 
384static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
385{
386	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
387}
 
 
 
 
 
 
 
388
389/*
390 * Real mode version of the above. stdcix is only supposed to be used
391 * in hypervisor real mode as per the architecture spec.
392 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
394{
395	__asm__ __volatile__("stdcix %0,0,%1"
 
 
 
396		: : "r" (val), "r" (paddr) : "memory");
397}
398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399#endif /* __powerpc64__ */
400
401/*
402 *
403 * PCI PIO and MMIO accessors.
404 *
405 *
406 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
407 * machine checks (which they occasionally do when probing non existing
408 * IO ports on some platforms, like PowerMac and 8xx).
409 * I always found it to be of dubious reliability and I am tempted to get
410 * rid of it one of these days. So if you think it's important to keep it,
411 * please voice up asap. We never had it for 64 bits and I do not intend
412 * to port it over
413 */
414
415#ifdef CONFIG_PPC32
416
417#define __do_in_asm(name, op)				\
418static inline unsigned int name(unsigned int port)	\
419{							\
420	unsigned int x;					\
421	__asm__ __volatile__(				\
422		"sync\n"				\
423		"0:"	op "	%0,0,%1\n"		\
424		"1:	twi	0,%0,0\n"		\
425		"2:	isync\n"			\
426		"3:	nop\n"				\
427		"4:\n"					\
428		".section .fixup,\"ax\"\n"		\
429		"5:	li	%0,-1\n"		\
430		"	b	4b\n"			\
431		".previous\n"				\
432		".section __ex_table,\"a\"\n"		\
433		"	.align	2\n"			\
434		"	.long	0b,5b\n"		\
435		"	.long	1b,5b\n"		\
436		"	.long	2b,5b\n"		\
437		"	.long	3b,5b\n"		\
438		".previous"				\
439		: "=&r" (x)				\
440		: "r" (port + _IO_BASE)			\
441		: "memory");  				\
442	return x;					\
443}
444
445#define __do_out_asm(name, op)				\
446static inline void name(unsigned int val, unsigned int port) \
447{							\
448	__asm__ __volatile__(				\
449		"sync\n"				\
450		"0:" op " %0,0,%1\n"			\
451		"1:	sync\n"				\
452		"2:\n"					\
453		".section __ex_table,\"a\"\n"		\
454		"	.align	2\n"			\
455		"	.long	0b,2b\n"		\
456		"	.long	1b,2b\n"		\
457		".previous"				\
458		: : "r" (val), "r" (port + _IO_BASE)	\
459		: "memory");   	   	   		\
460}
461
462__do_in_asm(_rec_inb, "lbzx")
463__do_in_asm(_rec_inw, "lhbrx")
464__do_in_asm(_rec_inl, "lwbrx")
465__do_out_asm(_rec_outb, "stbx")
466__do_out_asm(_rec_outw, "sthbrx")
467__do_out_asm(_rec_outl, "stwbrx")
468
469#endif /* CONFIG_PPC32 */
470
471/* The "__do_*" operations below provide the actual "base" implementation
472 * for each of the defined accessors. Some of them use the out_* functions
473 * directly, some of them still use EEH, though we might change that in the
474 * future. Those macros below provide the necessary argument swapping and
475 * handling of the IO base for PIO.
476 *
477 * They are themselves used by the macros that define the actual accessors
478 * and can be used by the hooks if any.
479 *
480 * Note that PIO operations are always defined in terms of their corresonding
481 * MMIO operations. That allows platforms like iSeries who want to modify the
482 * behaviour of both to only hook on the MMIO version and get both. It's also
483 * possible to hook directly at the toplevel PIO operation if they have to
484 * be handled differently
485 */
486#define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
487#define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
488#define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
489#define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
490#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
491#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
492#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
493
494#ifdef CONFIG_EEH
495#define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
496#define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
497#define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
498#define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
499#define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
500#define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
501#define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
502#else /* CONFIG_EEH */
503#define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
504#define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
505#define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
506#define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
507#define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
508#define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
509#define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
510#endif /* !defined(CONFIG_EEH) */
511
512#ifdef CONFIG_PPC32
513#define __do_outb(val, port)	_rec_outb(val, port)
514#define __do_outw(val, port)	_rec_outw(val, port)
515#define __do_outl(val, port)	_rec_outl(val, port)
516#define __do_inb(port)		_rec_inb(port)
517#define __do_inw(port)		_rec_inw(port)
518#define __do_inl(port)		_rec_inl(port)
519#else /* CONFIG_PPC32 */
520#define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
521#define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
522#define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
523#define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
524#define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
525#define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
526#endif /* !CONFIG_PPC32 */
527
528#ifdef CONFIG_EEH
529#define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
530#define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
531#define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
532#else /* CONFIG_EEH */
533#define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
534#define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
535#define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
536#endif /* !CONFIG_EEH */
537#define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
538#define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
539#define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
540
541#define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
542#define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
543#define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
544#define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
545#define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
546#define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
547
548#define __do_memset_io(addr, c, n)	\
549				_memset_io(PCI_FIX_ADDR(addr), c, n)
550#define __do_memcpy_toio(dst, src, n)	\
551				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
552
553#ifdef CONFIG_EEH
554#define __do_memcpy_fromio(dst, src, n)	\
555				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
556#else /* CONFIG_EEH */
557#define __do_memcpy_fromio(dst, src, n)	\
558				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
559#endif /* !CONFIG_EEH */
560
561#ifdef CONFIG_PPC_INDIRECT_PIO
562#define DEF_PCI_HOOK_pio(x)	x
563#else
564#define DEF_PCI_HOOK_pio(x)	NULL
565#endif
566
567#ifdef CONFIG_PPC_INDIRECT_MMIO
568#define DEF_PCI_HOOK_mem(x)	x
569#else
570#define DEF_PCI_HOOK_mem(x)	NULL
571#endif
572
573/* Structure containing all the hooks */
574extern struct ppc_pci_io {
575
576#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
577#define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
578
579#include <asm/io-defs.h>
580
581#undef DEF_PCI_AC_RET
582#undef DEF_PCI_AC_NORET
583
584} ppc_pci_io;
585
586/* The inline wrappers */
587#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
588static inline ret name at					\
589{								\
590	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
591		return ppc_pci_io.name al;			\
592	return __do_##name al;					\
593}
594
595#define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
596static inline void name at					\
597{								\
598	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
599		ppc_pci_io.name al;				\
600	else							\
601		__do_##name al;					\
602}
603
604#include <asm/io-defs.h>
605
606#undef DEF_PCI_AC_RET
607#undef DEF_PCI_AC_NORET
608
609/* Some drivers check for the presence of readq & writeq with
610 * a #ifdef, so we make them happy here.
611 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612#ifdef __powerpc64__
613#define readq	readq
614#define writeq	writeq
615#endif
616
617/*
618 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
619 * access
620 */
621#define xlate_dev_mem_ptr(p)	__va(p)
622
623/*
624 * Convert a virtual cached pointer to an uncached pointer
625 */
626#define xlate_dev_kmem_ptr(p)	p
627
628/*
629 * We don't do relaxed operations yet, at least not with this semantic
630 */
631#define readb_relaxed(addr)	readb(addr)
632#define readw_relaxed(addr)	readw(addr)
633#define readl_relaxed(addr)	readl(addr)
634#define readq_relaxed(addr)	readq(addr)
635#define writeb_relaxed(v, addr)	writeb(v, addr)
636#define writew_relaxed(v, addr)	writew(v, addr)
637#define writel_relaxed(v, addr)	writel(v, addr)
638#define writeq_relaxed(v, addr)	writeq(v, addr)
639
640#ifdef CONFIG_PPC32
641#define mmiowb()
642#else
643/*
644 * Enforce synchronisation of stores vs. spin_unlock
645 * (this does it explicitly, though our implementation of spin_unlock
646 * does it implicitely too)
647 */
648static inline void mmiowb(void)
649{
650	unsigned long tmp;
 
 
651
652	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
653	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
654	: "memory");
655}
656#endif /* !CONFIG_PPC32 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657
658static inline void iosync(void)
659{
660        __asm__ __volatile__ ("sync" : : : "memory");
661}
662
663/* Enforce in-order execution of data I/O.
664 * No distinction between read/write on PPC; use eieio for all three.
665 * Those are fairly week though. They don't provide a barrier between
666 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
667 * they only provide barriers between 2 __raw MMIO operations and
668 * possibly break write combining.
669 */
670#define iobarrier_rw() eieio()
671#define iobarrier_r()  eieio()
672#define iobarrier_w()  eieio()
673
674
675/*
676 * output pause versions need a delay at least for the
677 * w83c105 ide controller in a p610.
678 */
679#define inb_p(port)             inb(port)
680#define outb_p(val, port)       (udelay(1), outb((val), (port)))
681#define inw_p(port)             inw(port)
682#define outw_p(val, port)       (udelay(1), outw((val), (port)))
683#define inl_p(port)             inl(port)
684#define outl_p(val, port)       (udelay(1), outl((val), (port)))
685
686
687#define IO_SPACE_LIMIT ~(0UL)
688
689
690/**
691 * ioremap     -   map bus memory into CPU space
692 * @address:   bus address of the memory
693 * @size:      size of the resource to map
694 *
695 * ioremap performs a platform specific sequence of operations to
696 * make bus memory CPU accessible via the readb/readw/readl/writeb/
697 * writew/writel functions and the other mmio helpers. The returned
698 * address is not guaranteed to be usable directly as a virtual
699 * address.
700 *
701 * We provide a few variations of it:
702 *
703 * * ioremap is the standard one and provides non-cacheable guarded mappings
704 *   and can be hooked by the platform via ppc_md
705 *
706 * * ioremap_prot allows to specify the page flags as an argument and can
707 *   also be hooked by the platform via ppc_md.
708 *
709 * * ioremap_nocache is identical to ioremap
710 *
711 * * ioremap_wc enables write combining
712 *
713 * * iounmap undoes such a mapping and can be hooked
 
 
714 *
715 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
716 *   create hand-made mappings for use only by the PCI code and cannot
717 *   currently be hooked. Must be page aligned.
718 *
719 * * __ioremap is the low level implementation used by ioremap and
720 *   ioremap_prot and cannot be hooked (but can be used by a hook on one
721 *   of the previous ones)
722 *
723 * * __ioremap_caller is the same as above but takes an explicit caller
724 *   reference rather than using __builtin_return_address(0)
725 *
726 * * __iounmap, is the low level implementation used by iounmap and cannot
727 *   be hooked (but can be used by a hook on iounmap)
728 *
729 */
730extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
731extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
732				  unsigned long flags);
733extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
734#define ioremap_nocache(addr, size)	ioremap((addr), (size))
735#define ioremap_uc(addr, size)		ioremap((addr), (size))
736
737extern void iounmap(volatile void __iomem *addr);
 
 
 
738
739extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
740			       unsigned long flags);
741extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
742				      unsigned long flags, void *caller);
743
744extern void __iounmap(volatile void __iomem *addr);
745
746extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
747				   unsigned long size, unsigned long flags);
748extern void __iounmap_at(void *ea, unsigned long size);
 
 
 
 
749
750/*
751 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
752 * which needs some additional definitions here. They basically allow PIO
753 * space overall to be 1GB. This will work as long as we never try to use
754 * iomap to map MMIO below 1GB which should be fine on ppc64
755 */
756#define HAVE_ARCH_PIO_SIZE		1
757#define PIO_OFFSET			0x00000000UL
758#define PIO_MASK			(FULL_IO_SIZE - 1)
759#define PIO_RESERVED			(FULL_IO_SIZE)
760
761#define mmio_read16be(addr)		readw_be(addr)
762#define mmio_read32be(addr)		readl_be(addr)
 
763#define mmio_write16be(val, addr)	writew_be(val, addr)
764#define mmio_write32be(val, addr)	writel_be(val, addr)
 
765#define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
766#define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
767#define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
768#define mmio_outsb(addr, src, count)	writesb(addr, src, count)
769#define mmio_outsw(addr, src, count)	writesw(addr, src, count)
770#define mmio_outsl(addr, src, count)	writesl(addr, src, count)
771
772/**
773 *	virt_to_phys	-	map virtual addresses to physical
774 *	@address: address to remap
775 *
776 *	The returned physical address is the physical (CPU) mapping for
777 *	the memory address given. It is only valid to use this function on
778 *	addresses directly mapped or allocated via kmalloc.
779 *
780 *	This function does not give bus mappings for DMA transfers. In
781 *	almost all conceivable cases a device driver should not be using
782 *	this function
783 */
784static inline unsigned long virt_to_phys(volatile void * address)
785{
 
 
786	return __pa((unsigned long)address);
787}
 
788
789/**
790 *	phys_to_virt	-	map physical address to virtual
791 *	@address: address to remap
792 *
793 *	The returned virtual address is a current CPU mapping for
794 *	the memory address given. It is only valid to use this function on
795 *	addresses that have a kernel mapping
796 *
797 *	This function does not handle bus mappings for DMA transfers. In
798 *	almost all conceivable cases a device driver should not be using
799 *	this function
800 */
801static inline void * phys_to_virt(unsigned long address)
802{
803	return (void *)__va(address);
804}
 
805
806/*
807 * Change "struct page" to physical address.
808 */
809#define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
 
 
 
 
 
 
 
810
811/*
812 * 32 bits still uses virt_to_bus() for it's implementation of DMA
813 * mappings se we have to keep it defined here. We also have some old
814 * drivers (shame shame shame) that use bus_to_virt() and haven't been
815 * fixed yet so I need to define it here.
816 */
817#ifdef CONFIG_PPC32
818
819static inline unsigned long virt_to_bus(volatile void * address)
820{
821        if (address == NULL)
822		return 0;
823        return __pa(address) + PCI_DRAM_OFFSET;
824}
 
825
826static inline void * bus_to_virt(unsigned long address)
827{
828        if (address == 0)
829		return NULL;
830        return __va(address - PCI_DRAM_OFFSET);
831}
832
833#define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
834
835#endif /* CONFIG_PPC32 */
836
837/* access ports */
838#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
839#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
840
841#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
842#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
843
844#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
845#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
846
847/* Clear and set bits in one shot.  These macros can be used to clear and
848 * set multiple bits in a register using a single read-modify-write.  These
849 * macros can also be used to set a multiple-bit bit pattern using a mask,
850 * by specifying the mask in the 'clear' parameter and the new bit pattern
851 * in the 'set' parameter.
852 */
853
854#define clrsetbits(type, addr, clear, set) \
855	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
856
857#ifdef __powerpc64__
858#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
859#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
860#endif
861
862#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
863#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
864
865#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
866#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
867
868#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
 
 
869
870#endif /* __KERNEL__ */
871
872#endif /* _ASM_POWERPC_IO_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2#ifndef _ASM_POWERPC_IO_H
   3#define _ASM_POWERPC_IO_H
   4#ifdef __KERNEL__
   5
 
 
   6/*
 
 
 
 
   7 */
   8
   9/* Check of existence of legacy devices */
  10extern int check_legacy_ioport(unsigned long base_port);
  11#define I8042_DATA_REG	0x60
  12#define FDC_BASE	0x3f0
  13
  14#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
  15extern struct pci_dev *isa_bridge_pcidev;
  16/*
  17 * has legacy ISA devices ?
  18 */
  19#define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
  20#endif
  21
  22#include <linux/device.h>
 
 
  23#include <linux/compiler.h>
  24#include <linux/mm.h>
  25#include <asm/page.h>
  26#include <asm/byteorder.h>
  27#include <asm/synch.h>
  28#include <asm/delay.h>
  29#include <asm/mmiowb.h>
  30#include <asm/mmu.h>
  31
 
 
 
 
 
 
  32#define SIO_CONFIG_RA	0x398
  33#define SIO_CONFIG_RD	0x399
  34
 
 
  35/* 32 bits uses slightly different variables for the various IO
  36 * bases. Most of this file only uses _IO_BASE though which we
  37 * define properly based on the platform
  38 */
  39#ifndef CONFIG_PCI
  40#define _IO_BASE	0
  41#define _ISA_MEM_BASE	0
  42#define PCI_DRAM_OFFSET 0
  43#elif defined(CONFIG_PPC32)
  44#define _IO_BASE	isa_io_base
  45#define _ISA_MEM_BASE	isa_mem_base
  46#define PCI_DRAM_OFFSET	pci_dram_offset
  47#else
  48#define _IO_BASE	pci_io_base
  49#define _ISA_MEM_BASE	isa_mem_base
  50#define PCI_DRAM_OFFSET	0
  51#endif
  52
  53extern unsigned long isa_io_base;
  54extern unsigned long pci_io_base;
  55extern unsigned long pci_dram_offset;
  56
  57extern resource_size_t isa_mem_base;
  58
  59/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
  60 * is not set or addresses cannot be translated to MMIO. This is typically
  61 * set when the platform supports "special" PIO accesses via a non memory
  62 * mapped mechanism, and allows things like the early udbg UART code to
  63 * function.
  64 */
  65extern bool isa_io_special;
  66
  67#ifdef CONFIG_PPC32
  68#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
  69#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
  70#endif
  71#endif
  72
  73/*
  74 *
  75 * Low level MMIO accessors
  76 *
  77 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
  78 * specific and thus shouldn't be used in generic code. The accessors
  79 * provided here are:
  80 *
  81 *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
  82 *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
  83 *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
  84 *
  85 * Those operate directly on a kernel virtual address. Note that the prototype
  86 * for the out_* accessors has the arguments in opposite order from the usual
  87 * linux PCI accessors. Unlike those, they take the address first and the value
  88 * next.
  89 *
  90 * Note: I might drop the _ns suffix on the stream operations soon as it is
  91 * simply normal for stream operations to not swap in the first place.
  92 *
  93 */
  94
  95/* -mprefixed can generate offsets beyond range, fall back hack */
  96#ifdef CONFIG_PPC_KERNEL_PREFIXED
 
 
 
 
 
 
  97#define DEF_MMIO_IN_X(name, size, insn)				\
  98static inline u##size name(const volatile u##size __iomem *addr)	\
  99{									\
 100	u##size ret;							\
 101	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
 102		: "=r" (ret) : "r" (addr) : "memory");			\
 103	return ret;							\
 104}
 105
 106#define DEF_MMIO_OUT_X(name, size, insn)				\
 107static inline void name(volatile u##size __iomem *addr, u##size val)	\
 108{									\
 109	__asm__ __volatile__("sync;"#insn" %1,0,%0"			\
 110		: : "r" (addr), "r" (val) : "memory");			\
 111	mmiowb_set_pending();						\
 112}
 113
 114#define DEF_MMIO_IN_D(name, size, insn)				\
 115static inline u##size name(const volatile u##size __iomem *addr)	\
 116{									\
 117	u##size ret;							\
 118	__asm__ __volatile__("sync;"#insn" %0,0(%1);twi 0,%0,0;isync"\
 119		: "=r" (ret) : "b" (addr) : "memory");	\
 120	return ret;							\
 121}
 122
 123#define DEF_MMIO_OUT_D(name, size, insn)				\
 124static inline void name(volatile u##size __iomem *addr, u##size val)	\
 125{									\
 126	__asm__ __volatile__("sync;"#insn" %1,0(%0)"			\
 127		: : "b" (addr), "r" (val) : "memory");	\
 128	mmiowb_set_pending();						\
 129}
 130#else
 131#define DEF_MMIO_IN_X(name, size, insn)				\
 132static inline u##size name(const volatile u##size __iomem *addr)	\
 133{									\
 134	u##size ret;							\
 135	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
 136		: "=r" (ret) : "Z" (*addr) : "memory");			\
 137	return ret;							\
 138}
 139
 140#define DEF_MMIO_OUT_X(name, size, insn)				\
 141static inline void name(volatile u##size __iomem *addr, u##size val)	\
 142{									\
 143	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
 144		: "=Z" (*addr) : "r" (val) : "memory");			\
 145	mmiowb_set_pending();						\
 146}
 
 147
 148#define DEF_MMIO_IN_D(name, size, insn)				\
 149static inline u##size name(const volatile u##size __iomem *addr)	\
 150{									\
 151	u##size ret;							\
 152	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
 153		: "=r" (ret) : "m<>" (*addr) : "memory");	\
 154	return ret;							\
 155}
 156
 157#define DEF_MMIO_OUT_D(name, size, insn)				\
 158static inline void name(volatile u##size __iomem *addr, u##size val)	\
 159{									\
 160	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
 161		: "=m<>" (*addr) : "r" (val) : "memory");	\
 162	mmiowb_set_pending();						\
 163}
 164#endif
 165
 166DEF_MMIO_IN_D(in_8,     8, lbz);
 167DEF_MMIO_OUT_D(out_8,   8, stb);
 168
 169#ifdef __BIG_ENDIAN__
 170DEF_MMIO_IN_D(in_be16, 16, lhz);
 171DEF_MMIO_IN_D(in_be32, 32, lwz);
 172DEF_MMIO_IN_X(in_le16, 16, lhbrx);
 173DEF_MMIO_IN_X(in_le32, 32, lwbrx);
 174
 175DEF_MMIO_OUT_D(out_be16, 16, sth);
 176DEF_MMIO_OUT_D(out_be32, 32, stw);
 177DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
 178DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
 179#else
 180DEF_MMIO_IN_X(in_be16, 16, lhbrx);
 181DEF_MMIO_IN_X(in_be32, 32, lwbrx);
 182DEF_MMIO_IN_D(in_le16, 16, lhz);
 183DEF_MMIO_IN_D(in_le32, 32, lwz);
 184
 185DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
 186DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
 187DEF_MMIO_OUT_D(out_le16, 16, sth);
 188DEF_MMIO_OUT_D(out_le32, 32, stw);
 189
 190#endif /* __BIG_ENDIAN */
 191
 
 
 
 
 
 
 
 
 
 
 
 
 
 192#ifdef __powerpc64__
 193
 
 
 
 194#ifdef __BIG_ENDIAN__
 195DEF_MMIO_OUT_D(out_be64, 64, std);
 196DEF_MMIO_IN_D(in_be64, 64, ld);
 197
 198/* There is no asm instructions for 64 bits reverse loads and stores */
 199static inline u64 in_le64(const volatile u64 __iomem *addr)
 200{
 201	return swab64(in_be64(addr));
 202}
 203
 204static inline void out_le64(volatile u64 __iomem *addr, u64 val)
 205{
 206	out_be64(addr, swab64(val));
 207}
 208#else
 209DEF_MMIO_OUT_D(out_le64, 64, std);
 210DEF_MMIO_IN_D(in_le64, 64, ld);
 211
 212/* There is no asm instructions for 64 bits reverse loads and stores */
 213static inline u64 in_be64(const volatile u64 __iomem *addr)
 214{
 215	return swab64(in_le64(addr));
 216}
 217
 218static inline void out_be64(volatile u64 __iomem *addr, u64 val)
 219{
 220	out_le64(addr, swab64(val));
 221}
 222
 223#endif
 224#endif /* __powerpc64__ */
 225
 226/*
 227 * Low level IO stream instructions are defined out of line for now
 228 */
 229extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
 230extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
 231extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
 232extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
 233extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
 234extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
 235
 236/* The _ns naming is historical and will be removed. For now, just #define
 237 * the non _ns equivalent names
 238 */
 239#define _insw	_insw_ns
 240#define _insl	_insl_ns
 241#define _outsw	_outsw_ns
 242#define _outsl	_outsl_ns
 243
 244
 245/*
 246 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
 247 */
 248
 249extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
 250extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
 251			   unsigned long n);
 252extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
 253			 unsigned long n);
 254
 255/*
 256 *
 257 * PCI and standard ISA accessors
 258 *
 259 * Those are globally defined linux accessors for devices on PCI or ISA
 260 * busses. They follow the Linux defined semantics. The current implementation
 261 * for PowerPC is as close as possible to the x86 version of these, and thus
 262 * provides fairly heavy weight barriers for the non-raw versions
 263 *
 264 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
 265 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
 266 * own implementation of some or all of the accessors.
 267 */
 268
 269/*
 270 * Include the EEH definitions when EEH is enabled only so they don't get
 271 * in the way when building for 32 bits
 272 */
 273#ifdef CONFIG_EEH
 274#include <asm/eeh.h>
 275#endif
 276
 277/* Shortcut to the MMIO argument pointer */
 278#define PCI_IO_ADDR	volatile void __iomem *
 279
 280/* Indirect IO address tokens:
 281 *
 282 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
 283 * on all MMIOs. (Note that this is all 64 bits only for now)
 284 *
 285 * To help platforms who may need to differentiate MMIO addresses in
 286 * their hooks, a bitfield is reserved for use by the platform near the
 287 * top of MMIO addresses (not PIO, those have to cope the hard way).
 288 *
 289 * The highest address in the kernel virtual space are:
 
 290 *
 291 *  d0003fffffffffff	# with Hash MMU
 292 *  c00fffffffffffff	# with Radix MMU
 293 *
 294 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
 295 * that can be used for the field.
 
 
 
 
 
 
 296 *
 297 * The direct IO mapping operations will then mask off those bits
 298 * before doing the actual access, though that only happen when
 299 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
 300 * mechanism
 301 *
 302 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
 303 * all PIO functions call through a hook.
 304 */
 305
 306#ifdef CONFIG_PPC_INDIRECT_MMIO
 307#define PCI_IO_IND_TOKEN_SHIFT	52
 308#define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
 309#define PCI_FIX_ADDR(addr)						\
 310	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
 311#define PCI_GET_ADDR_TOKEN(addr)					\
 312	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
 313		PCI_IO_IND_TOKEN_SHIFT)
 314#define PCI_SET_ADDR_TOKEN(addr, token) 				\
 315do {									\
 316	unsigned long __a = (unsigned long)(addr);			\
 317	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
 318	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
 319	(addr) = (void __iomem *)__a;					\
 320} while(0)
 321#else
 322#define PCI_FIX_ADDR(addr) (addr)
 323#endif
 324
 325
 326/*
 327 * Non ordered and non-swapping "raw" accessors
 328 */
 329
 330static inline unsigned char __raw_readb(const volatile void __iomem *addr)
 331{
 332	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
 333}
 334#define __raw_readb __raw_readb
 335
 336static inline unsigned short __raw_readw(const volatile void __iomem *addr)
 337{
 338	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
 339}
 340#define __raw_readw __raw_readw
 341
 342static inline unsigned int __raw_readl(const volatile void __iomem *addr)
 343{
 344	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
 345}
 346#define __raw_readl __raw_readl
 347
 348static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
 349{
 350	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
 351}
 352#define __raw_writeb __raw_writeb
 353
 354static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
 355{
 356	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
 357}
 358#define __raw_writew __raw_writew
 359
 360static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
 361{
 362	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
 363}
 364#define __raw_writel __raw_writel
 365
 366#ifdef __powerpc64__
 367static inline unsigned long __raw_readq(const volatile void __iomem *addr)
 368{
 369	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
 370}
 371#define __raw_readq __raw_readq
 372
 373static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
 374{
 375	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
 376}
 377#define __raw_writeq __raw_writeq
 378
 379static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
 380{
 381	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
 382}
 383#define __raw_writeq_be __raw_writeq_be
 384
 385/*
 386 * Real mode versions of the above. Those instructions are only supposed
 387 * to be used in hypervisor real mode as per the architecture spec.
 388 */
 389static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
 390{
 391	__asm__ __volatile__(".machine push;   \
 392			      .machine power6; \
 393			      stbcix %0,0,%1;  \
 394			      .machine pop;"
 395		: : "r" (val), "r" (paddr) : "memory");
 396}
 397
 398static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
 399{
 400	__asm__ __volatile__(".machine push;   \
 401			      .machine power6; \
 402			      sthcix %0,0,%1;  \
 403			      .machine pop;"
 404		: : "r" (val), "r" (paddr) : "memory");
 405}
 406
 407static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
 408{
 409	__asm__ __volatile__(".machine push;   \
 410			      .machine power6; \
 411			      stwcix %0,0,%1;  \
 412			      .machine pop;"
 413		: : "r" (val), "r" (paddr) : "memory");
 414}
 415
 416static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
 417{
 418	__asm__ __volatile__(".machine push;   \
 419			      .machine power6; \
 420			      stdcix %0,0,%1;  \
 421			      .machine pop;"
 422		: : "r" (val), "r" (paddr) : "memory");
 423}
 424
 425static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
 426{
 427	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
 428}
 429
 430static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
 431{
 432	u8 ret;
 433	__asm__ __volatile__(".machine push;   \
 434			      .machine power6; \
 435			      lbzcix %0,0, %1; \
 436			      .machine pop;"
 437			     : "=r" (ret) : "r" (paddr) : "memory");
 438	return ret;
 439}
 440
 441static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
 442{
 443	u16 ret;
 444	__asm__ __volatile__(".machine push;   \
 445			      .machine power6; \
 446			      lhzcix %0,0, %1; \
 447			      .machine pop;"
 448			     : "=r" (ret) : "r" (paddr) : "memory");
 449	return ret;
 450}
 451
 452static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
 453{
 454	u32 ret;
 455	__asm__ __volatile__(".machine push;   \
 456			      .machine power6; \
 457			      lwzcix %0,0, %1; \
 458			      .machine pop;"
 459			     : "=r" (ret) : "r" (paddr) : "memory");
 460	return ret;
 461}
 462
 463static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
 464{
 465	u64 ret;
 466	__asm__ __volatile__(".machine push;   \
 467			      .machine power6; \
 468			      ldcix %0,0, %1;  \
 469			      .machine pop;"
 470			     : "=r" (ret) : "r" (paddr) : "memory");
 471	return ret;
 472}
 473#endif /* __powerpc64__ */
 474
 475/*
 476 *
 477 * PCI PIO and MMIO accessors.
 478 *
 479 *
 480 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
 481 * machine checks (which they occasionally do when probing non existing
 482 * IO ports on some platforms, like PowerMac and 8xx).
 483 * I always found it to be of dubious reliability and I am tempted to get
 484 * rid of it one of these days. So if you think it's important to keep it,
 485 * please voice up asap. We never had it for 64 bits and I do not intend
 486 * to port it over
 487 */
 488
 489#ifdef CONFIG_PPC32
 490
 491#define __do_in_asm(name, op)				\
 492static inline unsigned int name(unsigned int port)	\
 493{							\
 494	unsigned int x;					\
 495	__asm__ __volatile__(				\
 496		"sync\n"				\
 497		"0:"	op "	%0,0,%1\n"		\
 498		"1:	twi	0,%0,0\n"		\
 499		"2:	isync\n"			\
 500		"3:	nop\n"				\
 501		"4:\n"					\
 502		".section .fixup,\"ax\"\n"		\
 503		"5:	li	%0,-1\n"		\
 504		"	b	4b\n"			\
 505		".previous\n"				\
 506		EX_TABLE(0b, 5b)			\
 507		EX_TABLE(1b, 5b)			\
 508		EX_TABLE(2b, 5b)			\
 509		EX_TABLE(3b, 5b)			\
 
 
 
 510		: "=&r" (x)				\
 511		: "r" (port + _IO_BASE)			\
 512		: "memory");  				\
 513	return x;					\
 514}
 515
 516#define __do_out_asm(name, op)				\
 517static inline void name(unsigned int val, unsigned int port) \
 518{							\
 519	__asm__ __volatile__(				\
 520		"sync\n"				\
 521		"0:" op " %0,0,%1\n"			\
 522		"1:	sync\n"				\
 523		"2:\n"					\
 524		EX_TABLE(0b, 2b)			\
 525		EX_TABLE(1b, 2b)			\
 
 
 
 526		: : "r" (val), "r" (port + _IO_BASE)	\
 527		: "memory");   	   	   		\
 528}
 529
 530__do_in_asm(_rec_inb, "lbzx")
 531__do_in_asm(_rec_inw, "lhbrx")
 532__do_in_asm(_rec_inl, "lwbrx")
 533__do_out_asm(_rec_outb, "stbx")
 534__do_out_asm(_rec_outw, "sthbrx")
 535__do_out_asm(_rec_outl, "stwbrx")
 536
 537#endif /* CONFIG_PPC32 */
 538
 539/* The "__do_*" operations below provide the actual "base" implementation
 540 * for each of the defined accessors. Some of them use the out_* functions
 541 * directly, some of them still use EEH, though we might change that in the
 542 * future. Those macros below provide the necessary argument swapping and
 543 * handling of the IO base for PIO.
 544 *
 545 * They are themselves used by the macros that define the actual accessors
 546 * and can be used by the hooks if any.
 547 *
 548 * Note that PIO operations are always defined in terms of their corresonding
 549 * MMIO operations. That allows platforms like iSeries who want to modify the
 550 * behaviour of both to only hook on the MMIO version and get both. It's also
 551 * possible to hook directly at the toplevel PIO operation if they have to
 552 * be handled differently
 553 */
 554#define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
 555#define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
 556#define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
 557#define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
 558#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
 559#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
 560#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
 561
 562#ifdef CONFIG_EEH
 563#define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
 564#define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
 565#define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
 566#define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
 567#define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
 568#define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
 569#define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
 570#else /* CONFIG_EEH */
 571#define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
 572#define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
 573#define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
 574#define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
 575#define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
 576#define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
 577#define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
 578#endif /* !defined(CONFIG_EEH) */
 579
 580#ifdef CONFIG_PPC32
 581#define __do_outb(val, port)	_rec_outb(val, port)
 582#define __do_outw(val, port)	_rec_outw(val, port)
 583#define __do_outl(val, port)	_rec_outl(val, port)
 584#define __do_inb(port)		_rec_inb(port)
 585#define __do_inw(port)		_rec_inw(port)
 586#define __do_inl(port)		_rec_inl(port)
 587#else /* CONFIG_PPC32 */
 588#define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
 589#define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
 590#define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
 591#define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
 592#define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
 593#define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
 594#endif /* !CONFIG_PPC32 */
 595
 596#ifdef CONFIG_EEH
 597#define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
 598#define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
 599#define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
 600#else /* CONFIG_EEH */
 601#define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
 602#define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
 603#define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
 604#endif /* !CONFIG_EEH */
 605#define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
 606#define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
 607#define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
 608
 609#define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 610#define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 611#define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
 612#define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 613#define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 614#define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
 615
 616#define __do_memset_io(addr, c, n)	\
 617				_memset_io(PCI_FIX_ADDR(addr), c, n)
 618#define __do_memcpy_toio(dst, src, n)	\
 619				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
 620
 621#ifdef CONFIG_EEH
 622#define __do_memcpy_fromio(dst, src, n)	\
 623				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
 624#else /* CONFIG_EEH */
 625#define __do_memcpy_fromio(dst, src, n)	\
 626				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
 627#endif /* !CONFIG_EEH */
 628
 629#ifdef CONFIG_PPC_INDIRECT_PIO
 630#define DEF_PCI_HOOK_pio(x)	x
 631#else
 632#define DEF_PCI_HOOK_pio(x)	NULL
 633#endif
 634
 635#ifdef CONFIG_PPC_INDIRECT_MMIO
 636#define DEF_PCI_HOOK_mem(x)	x
 637#else
 638#define DEF_PCI_HOOK_mem(x)	NULL
 639#endif
 640
 641/* Structure containing all the hooks */
 642extern struct ppc_pci_io {
 643
 644#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
 645#define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
 646
 647#include <asm/io-defs.h>
 648
 649#undef DEF_PCI_AC_RET
 650#undef DEF_PCI_AC_NORET
 651
 652} ppc_pci_io;
 653
 654/* The inline wrappers */
 655#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
 656static inline ret name at					\
 657{								\
 658	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
 659		return ppc_pci_io.name al;			\
 660	return __do_##name al;					\
 661}
 662
 663#define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
 664static inline void name at					\
 665{								\
 666	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
 667		ppc_pci_io.name al;				\
 668	else							\
 669		__do_##name al;					\
 670}
 671
 672#include <asm/io-defs.h>
 673
 674#undef DEF_PCI_AC_RET
 675#undef DEF_PCI_AC_NORET
 676
 677/* Some drivers check for the presence of readq & writeq with
 678 * a #ifdef, so we make them happy here.
 679 */
 680#define readb readb
 681#define readw readw
 682#define readl readl
 683#define writeb writeb
 684#define writew writew
 685#define writel writel
 686#define readsb readsb
 687#define readsw readsw
 688#define readsl readsl
 689#define writesb writesb
 690#define writesw writesw
 691#define writesl writesl
 692#define inb inb
 693#define inw inw
 694#define inl inl
 695#define outb outb
 696#define outw outw
 697#define outl outl
 698#define insb insb
 699#define insw insw
 700#define insl insl
 701#define outsb outsb
 702#define outsw outsw
 703#define outsl outsl
 704#ifdef __powerpc64__
 705#define readq	readq
 706#define writeq	writeq
 707#endif
 708#define memset_io memset_io
 709#define memcpy_fromio memcpy_fromio
 710#define memcpy_toio memcpy_toio
 
 
 
 
 
 
 
 
 711
 712/*
 713 * We don't do relaxed operations yet, at least not with this semantic
 714 */
 715#define readb_relaxed(addr)	readb(addr)
 716#define readw_relaxed(addr)	readw(addr)
 717#define readl_relaxed(addr)	readl(addr)
 718#define readq_relaxed(addr)	readq(addr)
 719#define writeb_relaxed(v, addr)	writeb(v, addr)
 720#define writew_relaxed(v, addr)	writew(v, addr)
 721#define writel_relaxed(v, addr)	writel(v, addr)
 722#define writeq_relaxed(v, addr)	writeq(v, addr)
 723
 724#ifndef CONFIG_GENERIC_IOMAP
 
 
 725/*
 726 * Here comes the implementation of the IOMAP interfaces.
 
 
 727 */
 728static inline unsigned int ioread16be(const void __iomem *addr)
 729{
 730	return readw_be(addr);
 731}
 732#define ioread16be ioread16be
 733
 734static inline unsigned int ioread32be(const void __iomem *addr)
 735{
 736	return readl_be(addr);
 737}
 738#define ioread32be ioread32be
 739
 740#ifdef __powerpc64__
 741static inline u64 ioread64_lo_hi(const void __iomem *addr)
 742{
 743	return readq(addr);
 744}
 745#define ioread64_lo_hi ioread64_lo_hi
 746
 747static inline u64 ioread64_hi_lo(const void __iomem *addr)
 748{
 749	return readq(addr);
 750}
 751#define ioread64_hi_lo ioread64_hi_lo
 752
 753static inline u64 ioread64be(const void __iomem *addr)
 754{
 755	return readq_be(addr);
 756}
 757#define ioread64be ioread64be
 758
 759static inline u64 ioread64be_lo_hi(const void __iomem *addr)
 760{
 761	return readq_be(addr);
 762}
 763#define ioread64be_lo_hi ioread64be_lo_hi
 764
 765static inline u64 ioread64be_hi_lo(const void __iomem *addr)
 766{
 767	return readq_be(addr);
 768}
 769#define ioread64be_hi_lo ioread64be_hi_lo
 770#endif /* __powerpc64__ */
 771
 772static inline void iowrite16be(u16 val, void __iomem *addr)
 773{
 774	writew_be(val, addr);
 775}
 776#define iowrite16be iowrite16be
 777
 778static inline void iowrite32be(u32 val, void __iomem *addr)
 779{
 780	writel_be(val, addr);
 781}
 782#define iowrite32be iowrite32be
 783
 784#ifdef __powerpc64__
 785static inline void iowrite64_lo_hi(u64 val, void __iomem *addr)
 786{
 787	writeq(val, addr);
 788}
 789#define iowrite64_lo_hi iowrite64_lo_hi
 790
 791static inline void iowrite64_hi_lo(u64 val, void __iomem *addr)
 792{
 793	writeq(val, addr);
 794}
 795#define iowrite64_hi_lo iowrite64_hi_lo
 796
 797static inline void iowrite64be(u64 val, void __iomem *addr)
 798{
 799	writeq_be(val, addr);
 800}
 801#define iowrite64be iowrite64be
 802
 803static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr)
 804{
 805	writeq_be(val, addr);
 806}
 807#define iowrite64be_lo_hi iowrite64be_lo_hi
 808
 809static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr)
 810{
 811	writeq_be(val, addr);
 812}
 813#define iowrite64be_hi_lo iowrite64be_hi_lo
 814#endif /* __powerpc64__ */
 815
 816struct pci_dev;
 817void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
 818#define pci_iounmap pci_iounmap
 819void __iomem *ioport_map(unsigned long port, unsigned int len);
 820#define ioport_map ioport_map
 821#endif
 822
 823static inline void iosync(void)
 824{
 825        __asm__ __volatile__ ("sync" : : : "memory");
 826}
 827
 828/* Enforce in-order execution of data I/O.
 829 * No distinction between read/write on PPC; use eieio for all three.
 830 * Those are fairly week though. They don't provide a barrier between
 831 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
 832 * they only provide barriers between 2 __raw MMIO operations and
 833 * possibly break write combining.
 834 */
 835#define iobarrier_rw() eieio()
 836#define iobarrier_r()  eieio()
 837#define iobarrier_w()  eieio()
 838
 839
 840/*
 841 * output pause versions need a delay at least for the
 842 * w83c105 ide controller in a p610.
 843 */
 844#define inb_p(port)             inb(port)
 845#define outb_p(val, port)       (udelay(1), outb((val), (port)))
 846#define inw_p(port)             inw(port)
 847#define outw_p(val, port)       (udelay(1), outw((val), (port)))
 848#define inl_p(port)             inl(port)
 849#define outl_p(val, port)       (udelay(1), outl((val), (port)))
 850
 851
 852#define IO_SPACE_LIMIT ~(0UL)
 853
 
 854/**
 855 * ioremap     -   map bus memory into CPU space
 856 * @address:   bus address of the memory
 857 * @size:      size of the resource to map
 858 *
 859 * ioremap performs a platform specific sequence of operations to
 860 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 861 * writew/writel functions and the other mmio helpers. The returned
 862 * address is not guaranteed to be usable directly as a virtual
 863 * address.
 864 *
 865 * We provide a few variations of it:
 866 *
 867 * * ioremap is the standard one and provides non-cacheable guarded mappings
 868 *   and can be hooked by the platform via ppc_md
 869 *
 870 * * ioremap_prot allows to specify the page flags as an argument and can
 871 *   also be hooked by the platform via ppc_md.
 872 *
 
 
 873 * * ioremap_wc enables write combining
 874 *
 875 * * ioremap_wt enables write through
 876 *
 877 * * ioremap_coherent maps coherent cached memory
 878 *
 879 * * iounmap undoes such a mapping and can be hooked
 
 
 
 
 
 
 880 *
 881 * * __ioremap_caller is the same as above but takes an explicit caller
 882 *   reference rather than using __builtin_return_address(0)
 883 *
 
 
 
 884 */
 885extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
 886#define ioremap ioremap
 887#define ioremap_prot ioremap_prot
 888extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
 889#define ioremap_wc ioremap_wc
 
 890
 891#ifdef CONFIG_PPC32
 892void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
 893#define ioremap_wt ioremap_wt
 894#endif
 895
 896void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
 897#define ioremap_cache(addr, size) \
 898	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
 
 899
 900#define iounmap iounmap
 901
 902void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
 903
 904int early_ioremap_range(unsigned long ea, phys_addr_t pa,
 905			unsigned long size, pgprot_t prot);
 906
 907extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
 908				      pgprot_t prot, void *caller);
 909
 910/*
 911 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
 912 * which needs some additional definitions here. They basically allow PIO
 913 * space overall to be 1GB. This will work as long as we never try to use
 914 * iomap to map MMIO below 1GB which should be fine on ppc64
 915 */
 916#define HAVE_ARCH_PIO_SIZE		1
 917#define PIO_OFFSET			0x00000000UL
 918#define PIO_MASK			(FULL_IO_SIZE - 1)
 919#define PIO_RESERVED			(FULL_IO_SIZE)
 920
 921#define mmio_read16be(addr)		readw_be(addr)
 922#define mmio_read32be(addr)		readl_be(addr)
 923#define mmio_read64be(addr)		readq_be(addr)
 924#define mmio_write16be(val, addr)	writew_be(val, addr)
 925#define mmio_write32be(val, addr)	writel_be(val, addr)
 926#define mmio_write64be(val, addr)	writeq_be(val, addr)
 927#define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
 928#define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
 929#define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
 930#define mmio_outsb(addr, src, count)	writesb(addr, src, count)
 931#define mmio_outsw(addr, src, count)	writesw(addr, src, count)
 932#define mmio_outsl(addr, src, count)	writesl(addr, src, count)
 933
 934/**
 935 *	virt_to_phys	-	map virtual addresses to physical
 936 *	@address: address to remap
 937 *
 938 *	The returned physical address is the physical (CPU) mapping for
 939 *	the memory address given. It is only valid to use this function on
 940 *	addresses directly mapped or allocated via kmalloc.
 941 *
 942 *	This function does not give bus mappings for DMA transfers. In
 943 *	almost all conceivable cases a device driver should not be using
 944 *	this function
 945 */
 946static inline unsigned long virt_to_phys(const volatile void * address)
 947{
 948	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
 949
 950	return __pa((unsigned long)address);
 951}
 952#define virt_to_phys virt_to_phys
 953
 954/**
 955 *	phys_to_virt	-	map physical address to virtual
 956 *	@address: address to remap
 957 *
 958 *	The returned virtual address is a current CPU mapping for
 959 *	the memory address given. It is only valid to use this function on
 960 *	addresses that have a kernel mapping
 961 *
 962 *	This function does not handle bus mappings for DMA transfers. In
 963 *	almost all conceivable cases a device driver should not be using
 964 *	this function
 965 */
 966static inline void * phys_to_virt(unsigned long address)
 967{
 968	return (void *)__va(address);
 969}
 970#define phys_to_virt phys_to_virt
 971
 972/*
 973 * Change "struct page" to physical address.
 974 */
 975static inline phys_addr_t page_to_phys(struct page *page)
 976{
 977	unsigned long pfn = page_to_pfn(page);
 978
 979	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
 980
 981	return PFN_PHYS(pfn);
 982}
 983
 984/*
 985 * 32 bits still uses virt_to_bus() for it's implementation of DMA
 986 * mappings se we have to keep it defined here. We also have some old
 987 * drivers (shame shame shame) that use bus_to_virt() and haven't been
 988 * fixed yet so I need to define it here.
 989 */
 990#ifdef CONFIG_PPC32
 991
 992static inline unsigned long virt_to_bus(volatile void * address)
 993{
 994        if (address == NULL)
 995		return 0;
 996        return __pa(address) + PCI_DRAM_OFFSET;
 997}
 998#define virt_to_bus virt_to_bus
 999
1000static inline void * bus_to_virt(unsigned long address)
1001{
1002        if (address == 0)
1003		return NULL;
1004        return __va(address - PCI_DRAM_OFFSET);
1005}
1006#define bus_to_virt bus_to_virt
 
1007
1008#endif /* CONFIG_PPC32 */
1009
1010/* access ports */
1011#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
1012#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
1013
1014#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
1015#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
1016
1017#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
1018#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
1019
1020/* Clear and set bits in one shot.  These macros can be used to clear and
1021 * set multiple bits in a register using a single read-modify-write.  These
1022 * macros can also be used to set a multiple-bit bit pattern using a mask,
1023 * by specifying the mask in the 'clear' parameter and the new bit pattern
1024 * in the 'set' parameter.
1025 */
1026
1027#define clrsetbits(type, addr, clear, set) \
1028	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
1029
1030#ifdef __powerpc64__
1031#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
1032#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
1033#endif
1034
1035#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
1036#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
1037
1038#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
1039#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
1040
1041#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
1042
1043#include <asm-generic/io.h>
1044
1045#endif /* __KERNEL__ */
1046
1047#endif /* _ASM_POWERPC_IO_H */