Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 MIPS Technologies, Inc.
  7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
  8 */
  9#include <linux/clockchips.h>
 10#include <linux/interrupt.h>
 
 11#include <linux/percpu.h>
 12#include <linux/smp.h>
 13#include <linux/irq.h>
 14
 15#include <asm/time.h>
 16#include <asm/cevt-r4k.h>
 17
 18static int mips_next_event(unsigned long delta,
 19			   struct clock_event_device *evt)
 20{
 21	unsigned int cnt;
 22	int res;
 23
 24	cnt = read_c0_count();
 25	cnt += delta;
 26	write_c0_compare(cnt);
 27	res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
 28	return res;
 29}
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
 32int cp0_timer_irq_installed;
 33
 34/*
 35 * Possibly handle a performance counter interrupt.
 36 * Return true if the timer interrupt should not be checked
 37 */
 38static inline int handle_perf_irq(int r2)
 39{
 40	/*
 41	 * The performance counter overflow interrupt may be shared with the
 42	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
 43	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
 44	 * and we can't reliably determine if a counter interrupt has also
 45	 * happened (!r2) then don't check for a timer interrupt.
 46	 */
 47	return (cp0_perfcount_irq < 0) &&
 48		perf_irq() == IRQ_HANDLED &&
 49		!r2;
 50}
 51
 52irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
 53{
 54	const int r2 = cpu_has_mips_r2_r6;
 55	struct clock_event_device *cd;
 56	int cpu = smp_processor_id();
 57
 58	/*
 59	 * Suckage alert:
 60	 * Before R2 of the architecture there was no way to see if a
 61	 * performance counter interrupt was pending, so we have to run
 62	 * the performance counter interrupt handler anyway.
 63	 */
 64	if (handle_perf_irq(r2))
 65		return IRQ_HANDLED;
 66
 67	/*
 68	 * The same applies to performance counter interrupts.	But with the
 69	 * above we now know that the reason we got here must be a timer
 70	 * interrupt.  Being the paranoiacs we are we check anyway.
 71	 */
 72	if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
 73		/* Clear Count/Compare Interrupt */
 74		write_c0_compare(read_c0_compare());
 75		cd = &per_cpu(mips_clockevent_device, cpu);
 76		cd->event_handler(cd);
 77
 78		return IRQ_HANDLED;
 79	}
 80
 81	return IRQ_NONE;
 82}
 83
 84struct irqaction c0_compare_irqaction = {
 85	.handler = c0_compare_interrupt,
 86	/*
 87	 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
 88	 * such as perf counter and FDC interrupts.
 89	 */
 90	.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
 91	.name = "timer",
 92};
 93
 94
 95void mips_event_handler(struct clock_event_device *dev)
 96{
 97}
 98
 99/*
100 * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
101 */
102static int c0_compare_int_pending(void)
103{
104	/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
105	return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
106}
107
108/*
109 * Compare interrupt can be routed and latched outside the core,
110 * so wait up to worst case number of cycle counter ticks for timer interrupt
111 * changes to propagate to the cause register.
112 */
113#define COMPARE_INT_SEEN_TICKS 50
114
115int c0_compare_int_usable(void)
116{
117	unsigned int delta;
118	unsigned int cnt;
119
120#ifdef CONFIG_KVM_GUEST
121    return 1;
122#endif
123
124	/*
125	 * IP7 already pending?	 Try to clear it by acking the timer.
126	 */
127	if (c0_compare_int_pending()) {
128		cnt = read_c0_count();
129		write_c0_compare(cnt);
130		back_to_back_c0_hazard();
131		while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
132			if (!c0_compare_int_pending())
133				break;
134		if (c0_compare_int_pending())
135			return 0;
136	}
137
138	for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
139		cnt = read_c0_count();
140		cnt += delta;
141		write_c0_compare(cnt);
142		back_to_back_c0_hazard();
143		if ((int)(read_c0_count() - cnt) < 0)
144		    break;
145		/* increase delta if the timer was already expired */
146	}
147
148	while ((int)(read_c0_count() - cnt) <= 0)
149		;	/* Wait for expiry  */
150
151	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
152		if (c0_compare_int_pending())
153			break;
154	if (!c0_compare_int_pending())
155		return 0;
156	cnt = read_c0_count();
157	write_c0_compare(cnt);
158	back_to_back_c0_hazard();
159	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
160		if (!c0_compare_int_pending())
161			break;
162	if (c0_compare_int_pending())
163		return 0;
164
165	/*
166	 * Feels like a real count / compare timer.
167	 */
168	return 1;
169}
170
171unsigned int __weak get_c0_compare_int(void)
172{
173	return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
174}
175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176int r4k_clockevent_init(void)
177{
 
178	unsigned int cpu = smp_processor_id();
179	struct clock_event_device *cd;
180	unsigned int irq;
181
182	if (!cpu_has_counter || !mips_hpt_frequency)
183		return -ENXIO;
184
185	if (!c0_compare_int_usable())
186		return -ENXIO;
187
188	/*
189	 * With vectored interrupts things are getting platform specific.
190	 * get_c0_compare_int is a hook to allow a platform to return the
191	 * interrupt number of its liking.
192	 */
193	irq = get_c0_compare_int();
194
195	cd = &per_cpu(mips_clockevent_device, cpu);
196
197	cd->name		= "MIPS";
198	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
199				  CLOCK_EVT_FEAT_C3STOP |
200				  CLOCK_EVT_FEAT_PERCPU;
201
202	clockevent_set_clock(cd, mips_hpt_frequency);
203
204	/* Calculate the min / max delta */
205	cd->max_delta_ns	= clockevent_delta2ns(0x7fffffff, cd);
206	cd->min_delta_ns	= clockevent_delta2ns(0x300, cd);
207
208	cd->rating		= 300;
209	cd->irq			= irq;
210	cd->cpumask		= cpumask_of(cpu);
211	cd->set_next_event	= mips_next_event;
212	cd->event_handler	= mips_event_handler;
213
214	clockevents_register_device(cd);
215
216	if (cp0_timer_irq_installed)
217		return 0;
218
219	cp0_timer_irq_installed = 1;
220
221	setup_irq(irq, &c0_compare_irqaction);
 
 
222
223	return 0;
224}
225
v6.9.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 MIPS Technologies, Inc.
  7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
  8 */
  9#include <linux/clockchips.h>
 10#include <linux/interrupt.h>
 11#include <linux/cpufreq.h>
 12#include <linux/percpu.h>
 13#include <linux/smp.h>
 14#include <linux/irq.h>
 15
 16#include <asm/time.h>
 17#include <asm/cevt-r4k.h>
 18
 19static int mips_next_event(unsigned long delta,
 20			   struct clock_event_device *evt)
 21{
 22	unsigned int cnt;
 23	int res;
 24
 25	cnt = read_c0_count();
 26	cnt += delta;
 27	write_c0_compare(cnt);
 28	res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
 29	return res;
 30}
 31
 32/**
 33 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
 34 *
 35 * Running under virtualisation can introduce overhead into mips_next_event() in
 36 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
 37 * potentially with an unnatural frequency, which makes a fixed min_delta_ns
 38 * value inappropriate as it may be too small.
 39 *
 40 * It can also introduce occasional latency from the guest being descheduled.
 41 *
 42 * This function calculates a good minimum delta based roughly on the 75th
 43 * percentile of the time taken to do the mips_next_event() sequence, in order
 44 * to handle potentially higher overhead while also eliminating outliers due to
 45 * unpredictable hypervisor latency (which can be handled by retries).
 46 *
 47 * Return:	An appropriate minimum delta for the clock event device.
 48 */
 49static unsigned int calculate_min_delta(void)
 50{
 51	unsigned int cnt, i, j, k, l;
 52	unsigned int buf1[4], buf2[3];
 53	unsigned int min_delta;
 54
 55	/*
 56	 * Calculate the median of 5 75th percentiles of 5 samples of how long
 57	 * it takes to set CP0_Compare = CP0_Count + delta.
 58	 */
 59	for (i = 0; i < 5; ++i) {
 60		for (j = 0; j < 5; ++j) {
 61			/*
 62			 * This is like the code in mips_next_event(), and
 63			 * directly measures the borderline "safe" delta.
 64			 */
 65			cnt = read_c0_count();
 66			write_c0_compare(cnt);
 67			cnt = read_c0_count() - cnt;
 68
 69			/* Sorted insert into buf1 */
 70			for (k = 0; k < j; ++k) {
 71				if (cnt < buf1[k]) {
 72					l = min_t(unsigned int,
 73						  j, ARRAY_SIZE(buf1) - 1);
 74					for (; l > k; --l)
 75						buf1[l] = buf1[l - 1];
 76					break;
 77				}
 78			}
 79			if (k < ARRAY_SIZE(buf1))
 80				buf1[k] = cnt;
 81		}
 82
 83		/* Sorted insert of 75th percentile into buf2 */
 84		for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
 85			if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
 86				l = min_t(unsigned int,
 87					  i, ARRAY_SIZE(buf2) - 1);
 88				for (; l > k; --l)
 89					buf2[l] = buf2[l - 1];
 90				break;
 91			}
 92		}
 93		if (k < ARRAY_SIZE(buf2))
 94			buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
 95	}
 96
 97	/* Use 2 * median of 75th percentiles */
 98	min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
 99
100	/* Don't go too low */
101	if (min_delta < 0x300)
102		min_delta = 0x300;
103
104	pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
105		 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
106	return min_delta;
107}
108
109DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
110int cp0_timer_irq_installed;
111
112/*
113 * Possibly handle a performance counter interrupt.
114 * Return true if the timer interrupt should not be checked
115 */
116static inline int handle_perf_irq(int r2)
117{
118	/*
119	 * The performance counter overflow interrupt may be shared with the
120	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
121	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
122	 * and we can't reliably determine if a counter interrupt has also
123	 * happened (!r2) then don't check for a timer interrupt.
124	 */
125	return (cp0_perfcount_irq < 0) &&
126		perf_irq() == IRQ_HANDLED &&
127		!r2;
128}
129
130irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
131{
132	const int r2 = cpu_has_mips_r2_r6;
133	struct clock_event_device *cd;
134	int cpu = smp_processor_id();
135
136	/*
137	 * Suckage alert:
138	 * Before R2 of the architecture there was no way to see if a
139	 * performance counter interrupt was pending, so we have to run
140	 * the performance counter interrupt handler anyway.
141	 */
142	if (handle_perf_irq(r2))
143		return IRQ_HANDLED;
144
145	/*
146	 * The same applies to performance counter interrupts.	But with the
147	 * above we now know that the reason we got here must be a timer
148	 * interrupt.  Being the paranoiacs we are we check anyway.
149	 */
150	if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
151		/* Clear Count/Compare Interrupt */
152		write_c0_compare(read_c0_compare());
153		cd = &per_cpu(mips_clockevent_device, cpu);
154		cd->event_handler(cd);
155
156		return IRQ_HANDLED;
157	}
158
159	return IRQ_NONE;
160}
161
162struct irqaction c0_compare_irqaction = {
163	.handler = c0_compare_interrupt,
164	/*
165	 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
166	 * such as perf counter and FDC interrupts.
167	 */
168	.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
169	.name = "timer",
170};
171
172
173void mips_event_handler(struct clock_event_device *dev)
174{
175}
176
177/*
178 * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
179 */
180static int c0_compare_int_pending(void)
181{
182	/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
183	return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
184}
185
186/*
187 * Compare interrupt can be routed and latched outside the core,
188 * so wait up to worst case number of cycle counter ticks for timer interrupt
189 * changes to propagate to the cause register.
190 */
191#define COMPARE_INT_SEEN_TICKS 50
192
193int c0_compare_int_usable(void)
194{
195	unsigned int delta;
196	unsigned int cnt;
197
 
 
 
 
198	/*
199	 * IP7 already pending?	 Try to clear it by acking the timer.
200	 */
201	if (c0_compare_int_pending()) {
202		cnt = read_c0_count();
203		write_c0_compare(cnt - 1);
204		back_to_back_c0_hazard();
205		while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
206			if (!c0_compare_int_pending())
207				break;
208		if (c0_compare_int_pending())
209			return 0;
210	}
211
212	for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
213		cnt = read_c0_count();
214		cnt += delta;
215		write_c0_compare(cnt);
216		back_to_back_c0_hazard();
217		if ((int)(read_c0_count() - cnt) < 0)
218		    break;
219		/* increase delta if the timer was already expired */
220	}
221
222	while ((int)(read_c0_count() - cnt) <= 0)
223		;	/* Wait for expiry  */
224
225	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
226		if (c0_compare_int_pending())
227			break;
228	if (!c0_compare_int_pending())
229		return 0;
230	cnt = read_c0_count();
231	write_c0_compare(cnt - 1);
232	back_to_back_c0_hazard();
233	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
234		if (!c0_compare_int_pending())
235			break;
236	if (c0_compare_int_pending())
237		return 0;
238
239	/*
240	 * Feels like a real count / compare timer.
241	 */
242	return 1;
243}
244
245unsigned int __weak get_c0_compare_int(void)
246{
247	return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
248}
249
250#ifdef CONFIG_CPU_FREQ
251
252static unsigned long mips_ref_freq;
253
254static int r4k_cpufreq_callback(struct notifier_block *nb,
255				unsigned long val, void *data)
256{
257	struct cpufreq_freqs *freq = data;
258	struct clock_event_device *cd;
259	unsigned long rate;
260	int cpu;
261
262	if (!mips_ref_freq)
263		mips_ref_freq = freq->old;
264
265	if (val == CPUFREQ_POSTCHANGE) {
266		rate = cpufreq_scale(mips_hpt_frequency, mips_ref_freq,
267				     freq->new);
268
269		for_each_cpu(cpu, freq->policy->cpus) {
270			cd = &per_cpu(mips_clockevent_device, cpu);
271
272			clockevents_update_freq(cd, rate);
273		}
274	}
275
276	return 0;
277}
278
279static struct notifier_block r4k_cpufreq_notifier = {
280	.notifier_call  = r4k_cpufreq_callback,
281};
282
283static int __init r4k_register_cpufreq_notifier(void)
284{
285	return cpufreq_register_notifier(&r4k_cpufreq_notifier,
286					 CPUFREQ_TRANSITION_NOTIFIER);
287
288}
289core_initcall(r4k_register_cpufreq_notifier);
290
291#endif /* !CONFIG_CPU_FREQ */
292
293int r4k_clockevent_init(void)
294{
295	unsigned long flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED;
296	unsigned int cpu = smp_processor_id();
297	struct clock_event_device *cd;
298	unsigned int irq, min_delta;
299
300	if (!cpu_has_counter || !mips_hpt_frequency)
301		return -ENXIO;
302
303	if (!c0_compare_int_usable())
304		return -ENXIO;
305
306	/*
307	 * With vectored interrupts things are getting platform specific.
308	 * get_c0_compare_int is a hook to allow a platform to return the
309	 * interrupt number of its liking.
310	 */
311	irq = get_c0_compare_int();
312
313	cd = &per_cpu(mips_clockevent_device, cpu);
314
315	cd->name		= "MIPS";
316	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
317				  CLOCK_EVT_FEAT_C3STOP |
318				  CLOCK_EVT_FEAT_PERCPU;
319
320	min_delta		= calculate_min_delta();
 
 
 
 
321
322	cd->rating		= 300;
323	cd->irq			= irq;
324	cd->cpumask		= cpumask_of(cpu);
325	cd->set_next_event	= mips_next_event;
326	cd->event_handler	= mips_event_handler;
327
328	clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
329
330	if (cp0_timer_irq_installed)
331		return 0;
332
333	cp0_timer_irq_installed = 1;
334
335	if (request_irq(irq, c0_compare_interrupt, flags, "timer",
336			c0_compare_interrupt))
337		pr_err("Failed to request irq %d (timer)\n", irq);
338
339	return 0;
340}
341