Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_sb.h"
24#include "xfs_mount.h"
25#include "xfs_inode.h"
26#include "xfs_error.h"
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_inode_item.h"
30#include "xfs_quota.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_bmap_util.h"
34#include "xfs_dquot_item.h"
35#include "xfs_dquot.h"
36
37#include <linux/kthread.h>
38#include <linux/freezer.h>
39
40STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 struct xfs_perag *pag, struct xfs_inode *ip);
42
43/*
44 * Allocate and initialise an xfs_inode.
45 */
46struct xfs_inode *
47xfs_inode_alloc(
48 struct xfs_mount *mp,
49 xfs_ino_t ino)
50{
51 struct xfs_inode *ip;
52
53 /*
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
57 */
58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 if (!ip)
60 return NULL;
61 if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 kmem_zone_free(xfs_inode_zone, ip);
63 return NULL;
64 }
65
66 /* VFS doesn't initialise i_mode! */
67 VFS_I(ip)->i_mode = 0;
68
69 XFS_STATS_INC(mp, vn_active);
70 ASSERT(atomic_read(&ip->i_pincount) == 0);
71 ASSERT(!spin_is_locked(&ip->i_flags_lock));
72 ASSERT(!xfs_isiflocked(ip));
73 ASSERT(ip->i_ino == 0);
74
75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
76
77 /* initialise the xfs inode */
78 ip->i_ino = ino;
79 ip->i_mount = mp;
80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_afp = NULL;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 ip->i_flags = 0;
84 ip->i_delayed_blks = 0;
85 memset(&ip->i_d, 0, sizeof(ip->i_d));
86
87 return ip;
88}
89
90STATIC void
91xfs_inode_free_callback(
92 struct rcu_head *head)
93{
94 struct inode *inode = container_of(head, struct inode, i_rcu);
95 struct xfs_inode *ip = XFS_I(inode);
96
97 kmem_zone_free(xfs_inode_zone, ip);
98}
99
100void
101xfs_inode_free(
102 struct xfs_inode *ip)
103{
104 switch (VFS_I(ip)->i_mode & S_IFMT) {
105 case S_IFREG:
106 case S_IFDIR:
107 case S_IFLNK:
108 xfs_idestroy_fork(ip, XFS_DATA_FORK);
109 break;
110 }
111
112 if (ip->i_afp)
113 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
114
115 if (ip->i_itemp) {
116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
117 xfs_inode_item_destroy(ip);
118 ip->i_itemp = NULL;
119 }
120
121 /*
122 * Because we use RCU freeing we need to ensure the inode always
123 * appears to be reclaimed with an invalid inode number when in the
124 * free state. The ip->i_flags_lock provides the barrier against lookup
125 * races.
126 */
127 spin_lock(&ip->i_flags_lock);
128 ip->i_flags = XFS_IRECLAIM;
129 ip->i_ino = 0;
130 spin_unlock(&ip->i_flags_lock);
131
132 /* asserts to verify all state is correct here */
133 ASSERT(atomic_read(&ip->i_pincount) == 0);
134 ASSERT(!xfs_isiflocked(ip));
135 XFS_STATS_DEC(ip->i_mount, vn_active);
136
137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138}
139
140/*
141 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
142 * part of the structure. This is made more complex by the fact we store
143 * information about the on-disk values in the VFS inode and so we can't just
144 * overwrite the values unconditionally. Hence we save the parameters we
145 * need to retain across reinitialisation, and rewrite them into the VFS inode
146 * after reinitialisation even if it fails.
147 */
148static int
149xfs_reinit_inode(
150 struct xfs_mount *mp,
151 struct inode *inode)
152{
153 int error;
154 uint32_t nlink = inode->i_nlink;
155 uint32_t generation = inode->i_generation;
156 uint64_t version = inode->i_version;
157 umode_t mode = inode->i_mode;
158
159 error = inode_init_always(mp->m_super, inode);
160
161 set_nlink(inode, nlink);
162 inode->i_generation = generation;
163 inode->i_version = version;
164 inode->i_mode = mode;
165 return error;
166}
167
168/*
169 * Check the validity of the inode we just found it the cache
170 */
171static int
172xfs_iget_cache_hit(
173 struct xfs_perag *pag,
174 struct xfs_inode *ip,
175 xfs_ino_t ino,
176 int flags,
177 int lock_flags) __releases(RCU)
178{
179 struct inode *inode = VFS_I(ip);
180 struct xfs_mount *mp = ip->i_mount;
181 int error;
182
183 /*
184 * check for re-use of an inode within an RCU grace period due to the
185 * radix tree nodes not being updated yet. We monitor for this by
186 * setting the inode number to zero before freeing the inode structure.
187 * If the inode has been reallocated and set up, then the inode number
188 * will not match, so check for that, too.
189 */
190 spin_lock(&ip->i_flags_lock);
191 if (ip->i_ino != ino) {
192 trace_xfs_iget_skip(ip);
193 XFS_STATS_INC(mp, xs_ig_frecycle);
194 error = -EAGAIN;
195 goto out_error;
196 }
197
198
199 /*
200 * If we are racing with another cache hit that is currently
201 * instantiating this inode or currently recycling it out of
202 * reclaimabe state, wait for the initialisation to complete
203 * before continuing.
204 *
205 * XXX(hch): eventually we should do something equivalent to
206 * wait_on_inode to wait for these flags to be cleared
207 * instead of polling for it.
208 */
209 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
210 trace_xfs_iget_skip(ip);
211 XFS_STATS_INC(mp, xs_ig_frecycle);
212 error = -EAGAIN;
213 goto out_error;
214 }
215
216 /*
217 * If lookup is racing with unlink return an error immediately.
218 */
219 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
220 error = -ENOENT;
221 goto out_error;
222 }
223
224 /*
225 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
226 * Need to carefully get it back into useable state.
227 */
228 if (ip->i_flags & XFS_IRECLAIMABLE) {
229 trace_xfs_iget_reclaim(ip);
230
231 /*
232 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
233 * from stomping over us while we recycle the inode. We can't
234 * clear the radix tree reclaimable tag yet as it requires
235 * pag_ici_lock to be held exclusive.
236 */
237 ip->i_flags |= XFS_IRECLAIM;
238
239 spin_unlock(&ip->i_flags_lock);
240 rcu_read_unlock();
241
242 error = xfs_reinit_inode(mp, inode);
243 if (error) {
244 /*
245 * Re-initializing the inode failed, and we are in deep
246 * trouble. Try to re-add it to the reclaim list.
247 */
248 rcu_read_lock();
249 spin_lock(&ip->i_flags_lock);
250
251 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
252 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
253 trace_xfs_iget_reclaim_fail(ip);
254 goto out_error;
255 }
256
257 spin_lock(&pag->pag_ici_lock);
258 spin_lock(&ip->i_flags_lock);
259
260 /*
261 * Clear the per-lifetime state in the inode as we are now
262 * effectively a new inode and need to return to the initial
263 * state before reuse occurs.
264 */
265 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
266 ip->i_flags |= XFS_INEW;
267 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
268 inode->i_state = I_NEW;
269
270 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
271 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
272
273 spin_unlock(&ip->i_flags_lock);
274 spin_unlock(&pag->pag_ici_lock);
275 } else {
276 /* If the VFS inode is being torn down, pause and try again. */
277 if (!igrab(inode)) {
278 trace_xfs_iget_skip(ip);
279 error = -EAGAIN;
280 goto out_error;
281 }
282
283 /* We've got a live one. */
284 spin_unlock(&ip->i_flags_lock);
285 rcu_read_unlock();
286 trace_xfs_iget_hit(ip);
287 }
288
289 if (lock_flags != 0)
290 xfs_ilock(ip, lock_flags);
291
292 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
293 XFS_STATS_INC(mp, xs_ig_found);
294
295 return 0;
296
297out_error:
298 spin_unlock(&ip->i_flags_lock);
299 rcu_read_unlock();
300 return error;
301}
302
303
304static int
305xfs_iget_cache_miss(
306 struct xfs_mount *mp,
307 struct xfs_perag *pag,
308 xfs_trans_t *tp,
309 xfs_ino_t ino,
310 struct xfs_inode **ipp,
311 int flags,
312 int lock_flags)
313{
314 struct xfs_inode *ip;
315 int error;
316 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
317 int iflags;
318
319 ip = xfs_inode_alloc(mp, ino);
320 if (!ip)
321 return -ENOMEM;
322
323 error = xfs_iread(mp, tp, ip, flags);
324 if (error)
325 goto out_destroy;
326
327 trace_xfs_iget_miss(ip);
328
329 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
330 error = -ENOENT;
331 goto out_destroy;
332 }
333
334 /*
335 * Preload the radix tree so we can insert safely under the
336 * write spinlock. Note that we cannot sleep inside the preload
337 * region. Since we can be called from transaction context, don't
338 * recurse into the file system.
339 */
340 if (radix_tree_preload(GFP_NOFS)) {
341 error = -EAGAIN;
342 goto out_destroy;
343 }
344
345 /*
346 * Because the inode hasn't been added to the radix-tree yet it can't
347 * be found by another thread, so we can do the non-sleeping lock here.
348 */
349 if (lock_flags) {
350 if (!xfs_ilock_nowait(ip, lock_flags))
351 BUG();
352 }
353
354 /*
355 * These values must be set before inserting the inode into the radix
356 * tree as the moment it is inserted a concurrent lookup (allowed by the
357 * RCU locking mechanism) can find it and that lookup must see that this
358 * is an inode currently under construction (i.e. that XFS_INEW is set).
359 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
360 * memory barrier that ensures this detection works correctly at lookup
361 * time.
362 */
363 iflags = XFS_INEW;
364 if (flags & XFS_IGET_DONTCACHE)
365 iflags |= XFS_IDONTCACHE;
366 ip->i_udquot = NULL;
367 ip->i_gdquot = NULL;
368 ip->i_pdquot = NULL;
369 xfs_iflags_set(ip, iflags);
370
371 /* insert the new inode */
372 spin_lock(&pag->pag_ici_lock);
373 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
374 if (unlikely(error)) {
375 WARN_ON(error != -EEXIST);
376 XFS_STATS_INC(mp, xs_ig_dup);
377 error = -EAGAIN;
378 goto out_preload_end;
379 }
380 spin_unlock(&pag->pag_ici_lock);
381 radix_tree_preload_end();
382
383 *ipp = ip;
384 return 0;
385
386out_preload_end:
387 spin_unlock(&pag->pag_ici_lock);
388 radix_tree_preload_end();
389 if (lock_flags)
390 xfs_iunlock(ip, lock_flags);
391out_destroy:
392 __destroy_inode(VFS_I(ip));
393 xfs_inode_free(ip);
394 return error;
395}
396
397/*
398 * Look up an inode by number in the given file system.
399 * The inode is looked up in the cache held in each AG.
400 * If the inode is found in the cache, initialise the vfs inode
401 * if necessary.
402 *
403 * If it is not in core, read it in from the file system's device,
404 * add it to the cache and initialise the vfs inode.
405 *
406 * The inode is locked according to the value of the lock_flags parameter.
407 * This flag parameter indicates how and if the inode's IO lock and inode lock
408 * should be taken.
409 *
410 * mp -- the mount point structure for the current file system. It points
411 * to the inode hash table.
412 * tp -- a pointer to the current transaction if there is one. This is
413 * simply passed through to the xfs_iread() call.
414 * ino -- the number of the inode desired. This is the unique identifier
415 * within the file system for the inode being requested.
416 * lock_flags -- flags indicating how to lock the inode. See the comment
417 * for xfs_ilock() for a list of valid values.
418 */
419int
420xfs_iget(
421 xfs_mount_t *mp,
422 xfs_trans_t *tp,
423 xfs_ino_t ino,
424 uint flags,
425 uint lock_flags,
426 xfs_inode_t **ipp)
427{
428 xfs_inode_t *ip;
429 int error;
430 xfs_perag_t *pag;
431 xfs_agino_t agino;
432
433 /*
434 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
435 * doesn't get freed while it's being referenced during a
436 * radix tree traversal here. It assumes this function
437 * aqcuires only the ILOCK (and therefore it has no need to
438 * involve the IOLOCK in this synchronization).
439 */
440 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
441
442 /* reject inode numbers outside existing AGs */
443 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
444 return -EINVAL;
445
446 XFS_STATS_INC(mp, xs_ig_attempts);
447
448 /* get the perag structure and ensure that it's inode capable */
449 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
450 agino = XFS_INO_TO_AGINO(mp, ino);
451
452again:
453 error = 0;
454 rcu_read_lock();
455 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
456
457 if (ip) {
458 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
459 if (error)
460 goto out_error_or_again;
461 } else {
462 rcu_read_unlock();
463 XFS_STATS_INC(mp, xs_ig_missed);
464
465 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
466 flags, lock_flags);
467 if (error)
468 goto out_error_or_again;
469 }
470 xfs_perag_put(pag);
471
472 *ipp = ip;
473
474 /*
475 * If we have a real type for an on-disk inode, we can setup the inode
476 * now. If it's a new inode being created, xfs_ialloc will handle it.
477 */
478 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
479 xfs_setup_existing_inode(ip);
480 return 0;
481
482out_error_or_again:
483 if (error == -EAGAIN) {
484 delay(1);
485 goto again;
486 }
487 xfs_perag_put(pag);
488 return error;
489}
490
491/*
492 * The inode lookup is done in batches to keep the amount of lock traffic and
493 * radix tree lookups to a minimum. The batch size is a trade off between
494 * lookup reduction and stack usage. This is in the reclaim path, so we can't
495 * be too greedy.
496 */
497#define XFS_LOOKUP_BATCH 32
498
499STATIC int
500xfs_inode_ag_walk_grab(
501 struct xfs_inode *ip)
502{
503 struct inode *inode = VFS_I(ip);
504
505 ASSERT(rcu_read_lock_held());
506
507 /*
508 * check for stale RCU freed inode
509 *
510 * If the inode has been reallocated, it doesn't matter if it's not in
511 * the AG we are walking - we are walking for writeback, so if it
512 * passes all the "valid inode" checks and is dirty, then we'll write
513 * it back anyway. If it has been reallocated and still being
514 * initialised, the XFS_INEW check below will catch it.
515 */
516 spin_lock(&ip->i_flags_lock);
517 if (!ip->i_ino)
518 goto out_unlock_noent;
519
520 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
521 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
522 goto out_unlock_noent;
523 spin_unlock(&ip->i_flags_lock);
524
525 /* nothing to sync during shutdown */
526 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
527 return -EFSCORRUPTED;
528
529 /* If we can't grab the inode, it must on it's way to reclaim. */
530 if (!igrab(inode))
531 return -ENOENT;
532
533 /* inode is valid */
534 return 0;
535
536out_unlock_noent:
537 spin_unlock(&ip->i_flags_lock);
538 return -ENOENT;
539}
540
541STATIC int
542xfs_inode_ag_walk(
543 struct xfs_mount *mp,
544 struct xfs_perag *pag,
545 int (*execute)(struct xfs_inode *ip, int flags,
546 void *args),
547 int flags,
548 void *args,
549 int tag)
550{
551 uint32_t first_index;
552 int last_error = 0;
553 int skipped;
554 int done;
555 int nr_found;
556
557restart:
558 done = 0;
559 skipped = 0;
560 first_index = 0;
561 nr_found = 0;
562 do {
563 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
564 int error = 0;
565 int i;
566
567 rcu_read_lock();
568
569 if (tag == -1)
570 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
571 (void **)batch, first_index,
572 XFS_LOOKUP_BATCH);
573 else
574 nr_found = radix_tree_gang_lookup_tag(
575 &pag->pag_ici_root,
576 (void **) batch, first_index,
577 XFS_LOOKUP_BATCH, tag);
578
579 if (!nr_found) {
580 rcu_read_unlock();
581 break;
582 }
583
584 /*
585 * Grab the inodes before we drop the lock. if we found
586 * nothing, nr == 0 and the loop will be skipped.
587 */
588 for (i = 0; i < nr_found; i++) {
589 struct xfs_inode *ip = batch[i];
590
591 if (done || xfs_inode_ag_walk_grab(ip))
592 batch[i] = NULL;
593
594 /*
595 * Update the index for the next lookup. Catch
596 * overflows into the next AG range which can occur if
597 * we have inodes in the last block of the AG and we
598 * are currently pointing to the last inode.
599 *
600 * Because we may see inodes that are from the wrong AG
601 * due to RCU freeing and reallocation, only update the
602 * index if it lies in this AG. It was a race that lead
603 * us to see this inode, so another lookup from the
604 * same index will not find it again.
605 */
606 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
607 continue;
608 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
609 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
610 done = 1;
611 }
612
613 /* unlock now we've grabbed the inodes. */
614 rcu_read_unlock();
615
616 for (i = 0; i < nr_found; i++) {
617 if (!batch[i])
618 continue;
619 error = execute(batch[i], flags, args);
620 IRELE(batch[i]);
621 if (error == -EAGAIN) {
622 skipped++;
623 continue;
624 }
625 if (error && last_error != -EFSCORRUPTED)
626 last_error = error;
627 }
628
629 /* bail out if the filesystem is corrupted. */
630 if (error == -EFSCORRUPTED)
631 break;
632
633 cond_resched();
634
635 } while (nr_found && !done);
636
637 if (skipped) {
638 delay(1);
639 goto restart;
640 }
641 return last_error;
642}
643
644/*
645 * Background scanning to trim post-EOF preallocated space. This is queued
646 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
647 */
648STATIC void
649xfs_queue_eofblocks(
650 struct xfs_mount *mp)
651{
652 rcu_read_lock();
653 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
654 queue_delayed_work(mp->m_eofblocks_workqueue,
655 &mp->m_eofblocks_work,
656 msecs_to_jiffies(xfs_eofb_secs * 1000));
657 rcu_read_unlock();
658}
659
660void
661xfs_eofblocks_worker(
662 struct work_struct *work)
663{
664 struct xfs_mount *mp = container_of(to_delayed_work(work),
665 struct xfs_mount, m_eofblocks_work);
666 xfs_icache_free_eofblocks(mp, NULL);
667 xfs_queue_eofblocks(mp);
668}
669
670int
671xfs_inode_ag_iterator(
672 struct xfs_mount *mp,
673 int (*execute)(struct xfs_inode *ip, int flags,
674 void *args),
675 int flags,
676 void *args)
677{
678 struct xfs_perag *pag;
679 int error = 0;
680 int last_error = 0;
681 xfs_agnumber_t ag;
682
683 ag = 0;
684 while ((pag = xfs_perag_get(mp, ag))) {
685 ag = pag->pag_agno + 1;
686 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
687 xfs_perag_put(pag);
688 if (error) {
689 last_error = error;
690 if (error == -EFSCORRUPTED)
691 break;
692 }
693 }
694 return last_error;
695}
696
697int
698xfs_inode_ag_iterator_tag(
699 struct xfs_mount *mp,
700 int (*execute)(struct xfs_inode *ip, int flags,
701 void *args),
702 int flags,
703 void *args,
704 int tag)
705{
706 struct xfs_perag *pag;
707 int error = 0;
708 int last_error = 0;
709 xfs_agnumber_t ag;
710
711 ag = 0;
712 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
713 ag = pag->pag_agno + 1;
714 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
715 xfs_perag_put(pag);
716 if (error) {
717 last_error = error;
718 if (error == -EFSCORRUPTED)
719 break;
720 }
721 }
722 return last_error;
723}
724
725/*
726 * Queue a new inode reclaim pass if there are reclaimable inodes and there
727 * isn't a reclaim pass already in progress. By default it runs every 5s based
728 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
729 * tunable, but that can be done if this method proves to be ineffective or too
730 * aggressive.
731 */
732static void
733xfs_reclaim_work_queue(
734 struct xfs_mount *mp)
735{
736
737 rcu_read_lock();
738 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
739 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
740 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
741 }
742 rcu_read_unlock();
743}
744
745/*
746 * This is a fast pass over the inode cache to try to get reclaim moving on as
747 * many inodes as possible in a short period of time. It kicks itself every few
748 * seconds, as well as being kicked by the inode cache shrinker when memory
749 * goes low. It scans as quickly as possible avoiding locked inodes or those
750 * already being flushed, and once done schedules a future pass.
751 */
752void
753xfs_reclaim_worker(
754 struct work_struct *work)
755{
756 struct xfs_mount *mp = container_of(to_delayed_work(work),
757 struct xfs_mount, m_reclaim_work);
758
759 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
760 xfs_reclaim_work_queue(mp);
761}
762
763static void
764__xfs_inode_set_reclaim_tag(
765 struct xfs_perag *pag,
766 struct xfs_inode *ip)
767{
768 radix_tree_tag_set(&pag->pag_ici_root,
769 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
770 XFS_ICI_RECLAIM_TAG);
771
772 if (!pag->pag_ici_reclaimable) {
773 /* propagate the reclaim tag up into the perag radix tree */
774 spin_lock(&ip->i_mount->m_perag_lock);
775 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
776 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
777 XFS_ICI_RECLAIM_TAG);
778 spin_unlock(&ip->i_mount->m_perag_lock);
779
780 /* schedule periodic background inode reclaim */
781 xfs_reclaim_work_queue(ip->i_mount);
782
783 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
784 -1, _RET_IP_);
785 }
786 pag->pag_ici_reclaimable++;
787}
788
789/*
790 * We set the inode flag atomically with the radix tree tag.
791 * Once we get tag lookups on the radix tree, this inode flag
792 * can go away.
793 */
794void
795xfs_inode_set_reclaim_tag(
796 xfs_inode_t *ip)
797{
798 struct xfs_mount *mp = ip->i_mount;
799 struct xfs_perag *pag;
800
801 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
802 spin_lock(&pag->pag_ici_lock);
803 spin_lock(&ip->i_flags_lock);
804 __xfs_inode_set_reclaim_tag(pag, ip);
805 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
806 spin_unlock(&ip->i_flags_lock);
807 spin_unlock(&pag->pag_ici_lock);
808 xfs_perag_put(pag);
809}
810
811STATIC void
812__xfs_inode_clear_reclaim(
813 xfs_perag_t *pag,
814 xfs_inode_t *ip)
815{
816 pag->pag_ici_reclaimable--;
817 if (!pag->pag_ici_reclaimable) {
818 /* clear the reclaim tag from the perag radix tree */
819 spin_lock(&ip->i_mount->m_perag_lock);
820 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
821 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
822 XFS_ICI_RECLAIM_TAG);
823 spin_unlock(&ip->i_mount->m_perag_lock);
824 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
825 -1, _RET_IP_);
826 }
827}
828
829STATIC void
830__xfs_inode_clear_reclaim_tag(
831 xfs_mount_t *mp,
832 xfs_perag_t *pag,
833 xfs_inode_t *ip)
834{
835 radix_tree_tag_clear(&pag->pag_ici_root,
836 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
837 __xfs_inode_clear_reclaim(pag, ip);
838}
839
840/*
841 * Grab the inode for reclaim exclusively.
842 * Return 0 if we grabbed it, non-zero otherwise.
843 */
844STATIC int
845xfs_reclaim_inode_grab(
846 struct xfs_inode *ip,
847 int flags)
848{
849 ASSERT(rcu_read_lock_held());
850
851 /* quick check for stale RCU freed inode */
852 if (!ip->i_ino)
853 return 1;
854
855 /*
856 * If we are asked for non-blocking operation, do unlocked checks to
857 * see if the inode already is being flushed or in reclaim to avoid
858 * lock traffic.
859 */
860 if ((flags & SYNC_TRYLOCK) &&
861 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
862 return 1;
863
864 /*
865 * The radix tree lock here protects a thread in xfs_iget from racing
866 * with us starting reclaim on the inode. Once we have the
867 * XFS_IRECLAIM flag set it will not touch us.
868 *
869 * Due to RCU lookup, we may find inodes that have been freed and only
870 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
871 * aren't candidates for reclaim at all, so we must check the
872 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
873 */
874 spin_lock(&ip->i_flags_lock);
875 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
876 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
877 /* not a reclaim candidate. */
878 spin_unlock(&ip->i_flags_lock);
879 return 1;
880 }
881 __xfs_iflags_set(ip, XFS_IRECLAIM);
882 spin_unlock(&ip->i_flags_lock);
883 return 0;
884}
885
886/*
887 * Inodes in different states need to be treated differently. The following
888 * table lists the inode states and the reclaim actions necessary:
889 *
890 * inode state iflush ret required action
891 * --------------- ---------- ---------------
892 * bad - reclaim
893 * shutdown EIO unpin and reclaim
894 * clean, unpinned 0 reclaim
895 * stale, unpinned 0 reclaim
896 * clean, pinned(*) 0 requeue
897 * stale, pinned EAGAIN requeue
898 * dirty, async - requeue
899 * dirty, sync 0 reclaim
900 *
901 * (*) dgc: I don't think the clean, pinned state is possible but it gets
902 * handled anyway given the order of checks implemented.
903 *
904 * Also, because we get the flush lock first, we know that any inode that has
905 * been flushed delwri has had the flush completed by the time we check that
906 * the inode is clean.
907 *
908 * Note that because the inode is flushed delayed write by AIL pushing, the
909 * flush lock may already be held here and waiting on it can result in very
910 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
911 * the caller should push the AIL first before trying to reclaim inodes to
912 * minimise the amount of time spent waiting. For background relaim, we only
913 * bother to reclaim clean inodes anyway.
914 *
915 * Hence the order of actions after gaining the locks should be:
916 * bad => reclaim
917 * shutdown => unpin and reclaim
918 * pinned, async => requeue
919 * pinned, sync => unpin
920 * stale => reclaim
921 * clean => reclaim
922 * dirty, async => requeue
923 * dirty, sync => flush, wait and reclaim
924 */
925STATIC int
926xfs_reclaim_inode(
927 struct xfs_inode *ip,
928 struct xfs_perag *pag,
929 int sync_mode)
930{
931 struct xfs_buf *bp = NULL;
932 int error;
933
934restart:
935 error = 0;
936 xfs_ilock(ip, XFS_ILOCK_EXCL);
937 if (!xfs_iflock_nowait(ip)) {
938 if (!(sync_mode & SYNC_WAIT))
939 goto out;
940 xfs_iflock(ip);
941 }
942
943 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
944 xfs_iunpin_wait(ip);
945 xfs_iflush_abort(ip, false);
946 goto reclaim;
947 }
948 if (xfs_ipincount(ip)) {
949 if (!(sync_mode & SYNC_WAIT))
950 goto out_ifunlock;
951 xfs_iunpin_wait(ip);
952 }
953 if (xfs_iflags_test(ip, XFS_ISTALE))
954 goto reclaim;
955 if (xfs_inode_clean(ip))
956 goto reclaim;
957
958 /*
959 * Never flush out dirty data during non-blocking reclaim, as it would
960 * just contend with AIL pushing trying to do the same job.
961 */
962 if (!(sync_mode & SYNC_WAIT))
963 goto out_ifunlock;
964
965 /*
966 * Now we have an inode that needs flushing.
967 *
968 * Note that xfs_iflush will never block on the inode buffer lock, as
969 * xfs_ifree_cluster() can lock the inode buffer before it locks the
970 * ip->i_lock, and we are doing the exact opposite here. As a result,
971 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
972 * result in an ABBA deadlock with xfs_ifree_cluster().
973 *
974 * As xfs_ifree_cluser() must gather all inodes that are active in the
975 * cache to mark them stale, if we hit this case we don't actually want
976 * to do IO here - we want the inode marked stale so we can simply
977 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
978 * inode, back off and try again. Hopefully the next pass through will
979 * see the stale flag set on the inode.
980 */
981 error = xfs_iflush(ip, &bp);
982 if (error == -EAGAIN) {
983 xfs_iunlock(ip, XFS_ILOCK_EXCL);
984 /* backoff longer than in xfs_ifree_cluster */
985 delay(2);
986 goto restart;
987 }
988
989 if (!error) {
990 error = xfs_bwrite(bp);
991 xfs_buf_relse(bp);
992 }
993
994 xfs_iflock(ip);
995reclaim:
996 xfs_ifunlock(ip);
997 xfs_iunlock(ip, XFS_ILOCK_EXCL);
998
999 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1000 /*
1001 * Remove the inode from the per-AG radix tree.
1002 *
1003 * Because radix_tree_delete won't complain even if the item was never
1004 * added to the tree assert that it's been there before to catch
1005 * problems with the inode life time early on.
1006 */
1007 spin_lock(&pag->pag_ici_lock);
1008 if (!radix_tree_delete(&pag->pag_ici_root,
1009 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
1010 ASSERT(0);
1011 __xfs_inode_clear_reclaim(pag, ip);
1012 spin_unlock(&pag->pag_ici_lock);
1013
1014 /*
1015 * Here we do an (almost) spurious inode lock in order to coordinate
1016 * with inode cache radix tree lookups. This is because the lookup
1017 * can reference the inodes in the cache without taking references.
1018 *
1019 * We make that OK here by ensuring that we wait until the inode is
1020 * unlocked after the lookup before we go ahead and free it.
1021 */
1022 xfs_ilock(ip, XFS_ILOCK_EXCL);
1023 xfs_qm_dqdetach(ip);
1024 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1025
1026 xfs_inode_free(ip);
1027 return error;
1028
1029out_ifunlock:
1030 xfs_ifunlock(ip);
1031out:
1032 xfs_iflags_clear(ip, XFS_IRECLAIM);
1033 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1034 /*
1035 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1036 * a short while. However, this just burns CPU time scanning the tree
1037 * waiting for IO to complete and the reclaim work never goes back to
1038 * the idle state. Instead, return 0 to let the next scheduled
1039 * background reclaim attempt to reclaim the inode again.
1040 */
1041 return 0;
1042}
1043
1044/*
1045 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1046 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1047 * then a shut down during filesystem unmount reclaim walk leak all the
1048 * unreclaimed inodes.
1049 */
1050STATIC int
1051xfs_reclaim_inodes_ag(
1052 struct xfs_mount *mp,
1053 int flags,
1054 int *nr_to_scan)
1055{
1056 struct xfs_perag *pag;
1057 int error = 0;
1058 int last_error = 0;
1059 xfs_agnumber_t ag;
1060 int trylock = flags & SYNC_TRYLOCK;
1061 int skipped;
1062
1063restart:
1064 ag = 0;
1065 skipped = 0;
1066 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1067 unsigned long first_index = 0;
1068 int done = 0;
1069 int nr_found = 0;
1070
1071 ag = pag->pag_agno + 1;
1072
1073 if (trylock) {
1074 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1075 skipped++;
1076 xfs_perag_put(pag);
1077 continue;
1078 }
1079 first_index = pag->pag_ici_reclaim_cursor;
1080 } else
1081 mutex_lock(&pag->pag_ici_reclaim_lock);
1082
1083 do {
1084 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1085 int i;
1086
1087 rcu_read_lock();
1088 nr_found = radix_tree_gang_lookup_tag(
1089 &pag->pag_ici_root,
1090 (void **)batch, first_index,
1091 XFS_LOOKUP_BATCH,
1092 XFS_ICI_RECLAIM_TAG);
1093 if (!nr_found) {
1094 done = 1;
1095 rcu_read_unlock();
1096 break;
1097 }
1098
1099 /*
1100 * Grab the inodes before we drop the lock. if we found
1101 * nothing, nr == 0 and the loop will be skipped.
1102 */
1103 for (i = 0; i < nr_found; i++) {
1104 struct xfs_inode *ip = batch[i];
1105
1106 if (done || xfs_reclaim_inode_grab(ip, flags))
1107 batch[i] = NULL;
1108
1109 /*
1110 * Update the index for the next lookup. Catch
1111 * overflows into the next AG range which can
1112 * occur if we have inodes in the last block of
1113 * the AG and we are currently pointing to the
1114 * last inode.
1115 *
1116 * Because we may see inodes that are from the
1117 * wrong AG due to RCU freeing and
1118 * reallocation, only update the index if it
1119 * lies in this AG. It was a race that lead us
1120 * to see this inode, so another lookup from
1121 * the same index will not find it again.
1122 */
1123 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1124 pag->pag_agno)
1125 continue;
1126 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1127 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1128 done = 1;
1129 }
1130
1131 /* unlock now we've grabbed the inodes. */
1132 rcu_read_unlock();
1133
1134 for (i = 0; i < nr_found; i++) {
1135 if (!batch[i])
1136 continue;
1137 error = xfs_reclaim_inode(batch[i], pag, flags);
1138 if (error && last_error != -EFSCORRUPTED)
1139 last_error = error;
1140 }
1141
1142 *nr_to_scan -= XFS_LOOKUP_BATCH;
1143
1144 cond_resched();
1145
1146 } while (nr_found && !done && *nr_to_scan > 0);
1147
1148 if (trylock && !done)
1149 pag->pag_ici_reclaim_cursor = first_index;
1150 else
1151 pag->pag_ici_reclaim_cursor = 0;
1152 mutex_unlock(&pag->pag_ici_reclaim_lock);
1153 xfs_perag_put(pag);
1154 }
1155
1156 /*
1157 * if we skipped any AG, and we still have scan count remaining, do
1158 * another pass this time using blocking reclaim semantics (i.e
1159 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1160 * ensure that when we get more reclaimers than AGs we block rather
1161 * than spin trying to execute reclaim.
1162 */
1163 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1164 trylock = 0;
1165 goto restart;
1166 }
1167 return last_error;
1168}
1169
1170int
1171xfs_reclaim_inodes(
1172 xfs_mount_t *mp,
1173 int mode)
1174{
1175 int nr_to_scan = INT_MAX;
1176
1177 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1178}
1179
1180/*
1181 * Scan a certain number of inodes for reclaim.
1182 *
1183 * When called we make sure that there is a background (fast) inode reclaim in
1184 * progress, while we will throttle the speed of reclaim via doing synchronous
1185 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1186 * them to be cleaned, which we hope will not be very long due to the
1187 * background walker having already kicked the IO off on those dirty inodes.
1188 */
1189long
1190xfs_reclaim_inodes_nr(
1191 struct xfs_mount *mp,
1192 int nr_to_scan)
1193{
1194 /* kick background reclaimer and push the AIL */
1195 xfs_reclaim_work_queue(mp);
1196 xfs_ail_push_all(mp->m_ail);
1197
1198 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1199}
1200
1201/*
1202 * Return the number of reclaimable inodes in the filesystem for
1203 * the shrinker to determine how much to reclaim.
1204 */
1205int
1206xfs_reclaim_inodes_count(
1207 struct xfs_mount *mp)
1208{
1209 struct xfs_perag *pag;
1210 xfs_agnumber_t ag = 0;
1211 int reclaimable = 0;
1212
1213 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1214 ag = pag->pag_agno + 1;
1215 reclaimable += pag->pag_ici_reclaimable;
1216 xfs_perag_put(pag);
1217 }
1218 return reclaimable;
1219}
1220
1221STATIC int
1222xfs_inode_match_id(
1223 struct xfs_inode *ip,
1224 struct xfs_eofblocks *eofb)
1225{
1226 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1227 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1228 return 0;
1229
1230 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1231 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1232 return 0;
1233
1234 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1235 xfs_get_projid(ip) != eofb->eof_prid)
1236 return 0;
1237
1238 return 1;
1239}
1240
1241/*
1242 * A union-based inode filtering algorithm. Process the inode if any of the
1243 * criteria match. This is for global/internal scans only.
1244 */
1245STATIC int
1246xfs_inode_match_id_union(
1247 struct xfs_inode *ip,
1248 struct xfs_eofblocks *eofb)
1249{
1250 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1251 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1252 return 1;
1253
1254 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1255 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1256 return 1;
1257
1258 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1259 xfs_get_projid(ip) == eofb->eof_prid)
1260 return 1;
1261
1262 return 0;
1263}
1264
1265STATIC int
1266xfs_inode_free_eofblocks(
1267 struct xfs_inode *ip,
1268 int flags,
1269 void *args)
1270{
1271 int ret;
1272 struct xfs_eofblocks *eofb = args;
1273 bool need_iolock = true;
1274 int match;
1275
1276 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1277
1278 if (!xfs_can_free_eofblocks(ip, false)) {
1279 /* inode could be preallocated or append-only */
1280 trace_xfs_inode_free_eofblocks_invalid(ip);
1281 xfs_inode_clear_eofblocks_tag(ip);
1282 return 0;
1283 }
1284
1285 /*
1286 * If the mapping is dirty the operation can block and wait for some
1287 * time. Unless we are waiting, skip it.
1288 */
1289 if (!(flags & SYNC_WAIT) &&
1290 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1291 return 0;
1292
1293 if (eofb) {
1294 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1295 match = xfs_inode_match_id_union(ip, eofb);
1296 else
1297 match = xfs_inode_match_id(ip, eofb);
1298 if (!match)
1299 return 0;
1300
1301 /* skip the inode if the file size is too small */
1302 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1303 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1304 return 0;
1305
1306 /*
1307 * A scan owner implies we already hold the iolock. Skip it in
1308 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1309 * the possibility of EAGAIN being returned.
1310 */
1311 if (eofb->eof_scan_owner == ip->i_ino)
1312 need_iolock = false;
1313 }
1314
1315 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1316
1317 /* don't revisit the inode if we're not waiting */
1318 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1319 ret = 0;
1320
1321 return ret;
1322}
1323
1324int
1325xfs_icache_free_eofblocks(
1326 struct xfs_mount *mp,
1327 struct xfs_eofblocks *eofb)
1328{
1329 int flags = SYNC_TRYLOCK;
1330
1331 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1332 flags = SYNC_WAIT;
1333
1334 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1335 eofb, XFS_ICI_EOFBLOCKS_TAG);
1336}
1337
1338/*
1339 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1340 * multiple quotas, we don't know exactly which quota caused an allocation
1341 * failure. We make a best effort by including each quota under low free space
1342 * conditions (less than 1% free space) in the scan.
1343 */
1344int
1345xfs_inode_free_quota_eofblocks(
1346 struct xfs_inode *ip)
1347{
1348 int scan = 0;
1349 struct xfs_eofblocks eofb = {0};
1350 struct xfs_dquot *dq;
1351
1352 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1353
1354 /*
1355 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1356 * can repeatedly trylock on the inode we're currently processing. We
1357 * run a sync scan to increase effectiveness and use the union filter to
1358 * cover all applicable quotas in a single scan.
1359 */
1360 eofb.eof_scan_owner = ip->i_ino;
1361 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1362
1363 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1364 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1365 if (dq && xfs_dquot_lowsp(dq)) {
1366 eofb.eof_uid = VFS_I(ip)->i_uid;
1367 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1368 scan = 1;
1369 }
1370 }
1371
1372 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1373 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1374 if (dq && xfs_dquot_lowsp(dq)) {
1375 eofb.eof_gid = VFS_I(ip)->i_gid;
1376 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1377 scan = 1;
1378 }
1379 }
1380
1381 if (scan)
1382 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1383
1384 return scan;
1385}
1386
1387void
1388xfs_inode_set_eofblocks_tag(
1389 xfs_inode_t *ip)
1390{
1391 struct xfs_mount *mp = ip->i_mount;
1392 struct xfs_perag *pag;
1393 int tagged;
1394
1395 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1396 spin_lock(&pag->pag_ici_lock);
1397 trace_xfs_inode_set_eofblocks_tag(ip);
1398
1399 tagged = radix_tree_tagged(&pag->pag_ici_root,
1400 XFS_ICI_EOFBLOCKS_TAG);
1401 radix_tree_tag_set(&pag->pag_ici_root,
1402 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403 XFS_ICI_EOFBLOCKS_TAG);
1404 if (!tagged) {
1405 /* propagate the eofblocks tag up into the perag radix tree */
1406 spin_lock(&ip->i_mount->m_perag_lock);
1407 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1408 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409 XFS_ICI_EOFBLOCKS_TAG);
1410 spin_unlock(&ip->i_mount->m_perag_lock);
1411
1412 /* kick off background trimming */
1413 xfs_queue_eofblocks(ip->i_mount);
1414
1415 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1416 -1, _RET_IP_);
1417 }
1418
1419 spin_unlock(&pag->pag_ici_lock);
1420 xfs_perag_put(pag);
1421}
1422
1423void
1424xfs_inode_clear_eofblocks_tag(
1425 xfs_inode_t *ip)
1426{
1427 struct xfs_mount *mp = ip->i_mount;
1428 struct xfs_perag *pag;
1429
1430 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1431 spin_lock(&pag->pag_ici_lock);
1432 trace_xfs_inode_clear_eofblocks_tag(ip);
1433
1434 radix_tree_tag_clear(&pag->pag_ici_root,
1435 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1436 XFS_ICI_EOFBLOCKS_TAG);
1437 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1438 /* clear the eofblocks tag from the perag radix tree */
1439 spin_lock(&ip->i_mount->m_perag_lock);
1440 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1441 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1442 XFS_ICI_EOFBLOCKS_TAG);
1443 spin_unlock(&ip->i_mount->m_perag_lock);
1444 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1445 -1, _RET_IP_);
1446 }
1447
1448 spin_unlock(&pag->pag_ici_lock);
1449 xfs_perag_put(pag);
1450}
1451
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_inode_item.h"
17#include "xfs_quota.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_bmap_util.h"
21#include "xfs_dquot_item.h"
22#include "xfs_dquot.h"
23#include "xfs_reflink.h"
24#include "xfs_ialloc.h"
25#include "xfs_ag.h"
26#include "xfs_log_priv.h"
27#include "xfs_health.h"
28
29#include <linux/iversion.h>
30
31/* Radix tree tags for incore inode tree. */
32
33/* inode is to be reclaimed */
34#define XFS_ICI_RECLAIM_TAG 0
35/* Inode has speculative preallocations (posteof or cow) to clean. */
36#define XFS_ICI_BLOCKGC_TAG 1
37
38/*
39 * The goal for walking incore inodes. These can correspond with incore inode
40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
41 */
42enum xfs_icwalk_goal {
43 /* Goals directly associated with tagged inodes. */
44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
46};
47
48static int xfs_icwalk(struct xfs_mount *mp,
49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50static int xfs_icwalk_ag(struct xfs_perag *pag,
51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
52
53/*
54 * Private inode cache walk flags for struct xfs_icwalk. Must not
55 * coincide with XFS_ICWALK_FLAGS_VALID.
56 */
57
58/* Stop scanning after icw_scan_limit inodes. */
59#define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
60
61#define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
62#define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
63
64#define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 XFS_ICWALK_FLAG_UNION)
67
68/*
69 * Allocate and initialise an xfs_inode.
70 */
71struct xfs_inode *
72xfs_inode_alloc(
73 struct xfs_mount *mp,
74 xfs_ino_t ino)
75{
76 struct xfs_inode *ip;
77
78 /*
79 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
80 * and return NULL here on ENOMEM.
81 */
82 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
83
84 if (inode_init_always(mp->m_super, VFS_I(ip))) {
85 kmem_cache_free(xfs_inode_cache, ip);
86 return NULL;
87 }
88
89 /* VFS doesn't initialise i_mode or i_state! */
90 VFS_I(ip)->i_mode = 0;
91 VFS_I(ip)->i_state = 0;
92 mapping_set_large_folios(VFS_I(ip)->i_mapping);
93
94 XFS_STATS_INC(mp, vn_active);
95 ASSERT(atomic_read(&ip->i_pincount) == 0);
96 ASSERT(ip->i_ino == 0);
97
98 /* initialise the xfs inode */
99 ip->i_ino = ino;
100 ip->i_mount = mp;
101 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
102 ip->i_cowfp = NULL;
103 memset(&ip->i_af, 0, sizeof(ip->i_af));
104 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
105 memset(&ip->i_df, 0, sizeof(ip->i_df));
106 ip->i_flags = 0;
107 ip->i_delayed_blks = 0;
108 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
109 ip->i_nblocks = 0;
110 ip->i_forkoff = 0;
111 ip->i_sick = 0;
112 ip->i_checked = 0;
113 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
114 INIT_LIST_HEAD(&ip->i_ioend_list);
115 spin_lock_init(&ip->i_ioend_lock);
116 ip->i_next_unlinked = NULLAGINO;
117 ip->i_prev_unlinked = 0;
118
119 return ip;
120}
121
122STATIC void
123xfs_inode_free_callback(
124 struct rcu_head *head)
125{
126 struct inode *inode = container_of(head, struct inode, i_rcu);
127 struct xfs_inode *ip = XFS_I(inode);
128
129 switch (VFS_I(ip)->i_mode & S_IFMT) {
130 case S_IFREG:
131 case S_IFDIR:
132 case S_IFLNK:
133 xfs_idestroy_fork(&ip->i_df);
134 break;
135 }
136
137 xfs_ifork_zap_attr(ip);
138
139 if (ip->i_cowfp) {
140 xfs_idestroy_fork(ip->i_cowfp);
141 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
142 }
143 if (ip->i_itemp) {
144 ASSERT(!test_bit(XFS_LI_IN_AIL,
145 &ip->i_itemp->ili_item.li_flags));
146 xfs_inode_item_destroy(ip);
147 ip->i_itemp = NULL;
148 }
149
150 kmem_cache_free(xfs_inode_cache, ip);
151}
152
153static void
154__xfs_inode_free(
155 struct xfs_inode *ip)
156{
157 /* asserts to verify all state is correct here */
158 ASSERT(atomic_read(&ip->i_pincount) == 0);
159 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
160 XFS_STATS_DEC(ip->i_mount, vn_active);
161
162 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
163}
164
165void
166xfs_inode_free(
167 struct xfs_inode *ip)
168{
169 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
170
171 /*
172 * Because we use RCU freeing we need to ensure the inode always
173 * appears to be reclaimed with an invalid inode number when in the
174 * free state. The ip->i_flags_lock provides the barrier against lookup
175 * races.
176 */
177 spin_lock(&ip->i_flags_lock);
178 ip->i_flags = XFS_IRECLAIM;
179 ip->i_ino = 0;
180 spin_unlock(&ip->i_flags_lock);
181
182 __xfs_inode_free(ip);
183}
184
185/*
186 * Queue background inode reclaim work if there are reclaimable inodes and there
187 * isn't reclaim work already scheduled or in progress.
188 */
189static void
190xfs_reclaim_work_queue(
191 struct xfs_mount *mp)
192{
193
194 rcu_read_lock();
195 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
196 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
197 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
198 }
199 rcu_read_unlock();
200}
201
202/*
203 * Background scanning to trim preallocated space. This is queued based on the
204 * 'speculative_prealloc_lifetime' tunable (5m by default).
205 */
206static inline void
207xfs_blockgc_queue(
208 struct xfs_perag *pag)
209{
210 struct xfs_mount *mp = pag->pag_mount;
211
212 if (!xfs_is_blockgc_enabled(mp))
213 return;
214
215 rcu_read_lock();
216 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
217 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
218 &pag->pag_blockgc_work,
219 msecs_to_jiffies(xfs_blockgc_secs * 1000));
220 rcu_read_unlock();
221}
222
223/* Set a tag on both the AG incore inode tree and the AG radix tree. */
224static void
225xfs_perag_set_inode_tag(
226 struct xfs_perag *pag,
227 xfs_agino_t agino,
228 unsigned int tag)
229{
230 struct xfs_mount *mp = pag->pag_mount;
231 bool was_tagged;
232
233 lockdep_assert_held(&pag->pag_ici_lock);
234
235 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
236 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
237
238 if (tag == XFS_ICI_RECLAIM_TAG)
239 pag->pag_ici_reclaimable++;
240
241 if (was_tagged)
242 return;
243
244 /* propagate the tag up into the perag radix tree */
245 spin_lock(&mp->m_perag_lock);
246 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
247 spin_unlock(&mp->m_perag_lock);
248
249 /* start background work */
250 switch (tag) {
251 case XFS_ICI_RECLAIM_TAG:
252 xfs_reclaim_work_queue(mp);
253 break;
254 case XFS_ICI_BLOCKGC_TAG:
255 xfs_blockgc_queue(pag);
256 break;
257 }
258
259 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
260}
261
262/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
263static void
264xfs_perag_clear_inode_tag(
265 struct xfs_perag *pag,
266 xfs_agino_t agino,
267 unsigned int tag)
268{
269 struct xfs_mount *mp = pag->pag_mount;
270
271 lockdep_assert_held(&pag->pag_ici_lock);
272
273 /*
274 * Reclaim can signal (with a null agino) that it cleared its own tag
275 * by removing the inode from the radix tree.
276 */
277 if (agino != NULLAGINO)
278 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
279 else
280 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
281
282 if (tag == XFS_ICI_RECLAIM_TAG)
283 pag->pag_ici_reclaimable--;
284
285 if (radix_tree_tagged(&pag->pag_ici_root, tag))
286 return;
287
288 /* clear the tag from the perag radix tree */
289 spin_lock(&mp->m_perag_lock);
290 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
291 spin_unlock(&mp->m_perag_lock);
292
293 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
294}
295
296/*
297 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
298 * part of the structure. This is made more complex by the fact we store
299 * information about the on-disk values in the VFS inode and so we can't just
300 * overwrite the values unconditionally. Hence we save the parameters we
301 * need to retain across reinitialisation, and rewrite them into the VFS inode
302 * after reinitialisation even if it fails.
303 */
304static int
305xfs_reinit_inode(
306 struct xfs_mount *mp,
307 struct inode *inode)
308{
309 int error;
310 uint32_t nlink = inode->i_nlink;
311 uint32_t generation = inode->i_generation;
312 uint64_t version = inode_peek_iversion(inode);
313 umode_t mode = inode->i_mode;
314 dev_t dev = inode->i_rdev;
315 kuid_t uid = inode->i_uid;
316 kgid_t gid = inode->i_gid;
317
318 error = inode_init_always(mp->m_super, inode);
319
320 set_nlink(inode, nlink);
321 inode->i_generation = generation;
322 inode_set_iversion_queried(inode, version);
323 inode->i_mode = mode;
324 inode->i_rdev = dev;
325 inode->i_uid = uid;
326 inode->i_gid = gid;
327 mapping_set_large_folios(inode->i_mapping);
328 return error;
329}
330
331/*
332 * Carefully nudge an inode whose VFS state has been torn down back into a
333 * usable state. Drops the i_flags_lock and the rcu read lock.
334 */
335static int
336xfs_iget_recycle(
337 struct xfs_perag *pag,
338 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
339{
340 struct xfs_mount *mp = ip->i_mount;
341 struct inode *inode = VFS_I(ip);
342 int error;
343
344 trace_xfs_iget_recycle(ip);
345
346 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
347 return -EAGAIN;
348
349 /*
350 * We need to make it look like the inode is being reclaimed to prevent
351 * the actual reclaim workers from stomping over us while we recycle
352 * the inode. We can't clear the radix tree tag yet as it requires
353 * pag_ici_lock to be held exclusive.
354 */
355 ip->i_flags |= XFS_IRECLAIM;
356
357 spin_unlock(&ip->i_flags_lock);
358 rcu_read_unlock();
359
360 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
361 error = xfs_reinit_inode(mp, inode);
362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
363 if (error) {
364 /*
365 * Re-initializing the inode failed, and we are in deep
366 * trouble. Try to re-add it to the reclaim list.
367 */
368 rcu_read_lock();
369 spin_lock(&ip->i_flags_lock);
370 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
371 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
372 spin_unlock(&ip->i_flags_lock);
373 rcu_read_unlock();
374
375 trace_xfs_iget_recycle_fail(ip);
376 return error;
377 }
378
379 spin_lock(&pag->pag_ici_lock);
380 spin_lock(&ip->i_flags_lock);
381
382 /*
383 * Clear the per-lifetime state in the inode as we are now effectively
384 * a new inode and need to return to the initial state before reuse
385 * occurs.
386 */
387 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
388 ip->i_flags |= XFS_INEW;
389 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
390 XFS_ICI_RECLAIM_TAG);
391 inode->i_state = I_NEW;
392 spin_unlock(&ip->i_flags_lock);
393 spin_unlock(&pag->pag_ici_lock);
394
395 return 0;
396}
397
398/*
399 * If we are allocating a new inode, then check what was returned is
400 * actually a free, empty inode. If we are not allocating an inode,
401 * then check we didn't find a free inode.
402 *
403 * Returns:
404 * 0 if the inode free state matches the lookup context
405 * -ENOENT if the inode is free and we are not allocating
406 * -EFSCORRUPTED if there is any state mismatch at all
407 */
408static int
409xfs_iget_check_free_state(
410 struct xfs_inode *ip,
411 int flags)
412{
413 if (flags & XFS_IGET_CREATE) {
414 /* should be a free inode */
415 if (VFS_I(ip)->i_mode != 0) {
416 xfs_warn(ip->i_mount,
417"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
418 ip->i_ino, VFS_I(ip)->i_mode);
419 xfs_agno_mark_sick(ip->i_mount,
420 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
421 XFS_SICK_AG_INOBT);
422 return -EFSCORRUPTED;
423 }
424
425 if (ip->i_nblocks != 0) {
426 xfs_warn(ip->i_mount,
427"Corruption detected! Free inode 0x%llx has blocks allocated!",
428 ip->i_ino);
429 xfs_agno_mark_sick(ip->i_mount,
430 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
431 XFS_SICK_AG_INOBT);
432 return -EFSCORRUPTED;
433 }
434 return 0;
435 }
436
437 /* should be an allocated inode */
438 if (VFS_I(ip)->i_mode == 0)
439 return -ENOENT;
440
441 return 0;
442}
443
444/* Make all pending inactivation work start immediately. */
445static bool
446xfs_inodegc_queue_all(
447 struct xfs_mount *mp)
448{
449 struct xfs_inodegc *gc;
450 int cpu;
451 bool ret = false;
452
453 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
454 gc = per_cpu_ptr(mp->m_inodegc, cpu);
455 if (!llist_empty(&gc->list)) {
456 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
457 ret = true;
458 }
459 }
460
461 return ret;
462}
463
464/* Wait for all queued work and collect errors */
465static int
466xfs_inodegc_wait_all(
467 struct xfs_mount *mp)
468{
469 int cpu;
470 int error = 0;
471
472 flush_workqueue(mp->m_inodegc_wq);
473 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
474 struct xfs_inodegc *gc;
475
476 gc = per_cpu_ptr(mp->m_inodegc, cpu);
477 if (gc->error && !error)
478 error = gc->error;
479 gc->error = 0;
480 }
481
482 return error;
483}
484
485/*
486 * Check the validity of the inode we just found it the cache
487 */
488static int
489xfs_iget_cache_hit(
490 struct xfs_perag *pag,
491 struct xfs_inode *ip,
492 xfs_ino_t ino,
493 int flags,
494 int lock_flags) __releases(RCU)
495{
496 struct inode *inode = VFS_I(ip);
497 struct xfs_mount *mp = ip->i_mount;
498 int error;
499
500 /*
501 * check for re-use of an inode within an RCU grace period due to the
502 * radix tree nodes not being updated yet. We monitor for this by
503 * setting the inode number to zero before freeing the inode structure.
504 * If the inode has been reallocated and set up, then the inode number
505 * will not match, so check for that, too.
506 */
507 spin_lock(&ip->i_flags_lock);
508 if (ip->i_ino != ino)
509 goto out_skip;
510
511 /*
512 * If we are racing with another cache hit that is currently
513 * instantiating this inode or currently recycling it out of
514 * reclaimable state, wait for the initialisation to complete
515 * before continuing.
516 *
517 * If we're racing with the inactivation worker we also want to wait.
518 * If we're creating a new file, it's possible that the worker
519 * previously marked the inode as free on disk but hasn't finished
520 * updating the incore state yet. The AGI buffer will be dirty and
521 * locked to the icreate transaction, so a synchronous push of the
522 * inodegc workers would result in deadlock. For a regular iget, the
523 * worker is running already, so we might as well wait.
524 *
525 * XXX(hch): eventually we should do something equivalent to
526 * wait_on_inode to wait for these flags to be cleared
527 * instead of polling for it.
528 */
529 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
530 goto out_skip;
531
532 if (ip->i_flags & XFS_NEED_INACTIVE) {
533 /* Unlinked inodes cannot be re-grabbed. */
534 if (VFS_I(ip)->i_nlink == 0) {
535 error = -ENOENT;
536 goto out_error;
537 }
538 goto out_inodegc_flush;
539 }
540
541 /*
542 * Check the inode free state is valid. This also detects lookup
543 * racing with unlinks.
544 */
545 error = xfs_iget_check_free_state(ip, flags);
546 if (error)
547 goto out_error;
548
549 /* Skip inodes that have no vfs state. */
550 if ((flags & XFS_IGET_INCORE) &&
551 (ip->i_flags & XFS_IRECLAIMABLE))
552 goto out_skip;
553
554 /* The inode fits the selection criteria; process it. */
555 if (ip->i_flags & XFS_IRECLAIMABLE) {
556 /* Drops i_flags_lock and RCU read lock. */
557 error = xfs_iget_recycle(pag, ip);
558 if (error == -EAGAIN)
559 goto out_skip;
560 if (error)
561 return error;
562 } else {
563 /* If the VFS inode is being torn down, pause and try again. */
564 if (!igrab(inode))
565 goto out_skip;
566
567 /* We've got a live one. */
568 spin_unlock(&ip->i_flags_lock);
569 rcu_read_unlock();
570 trace_xfs_iget_hit(ip);
571 }
572
573 if (lock_flags != 0)
574 xfs_ilock(ip, lock_flags);
575
576 if (!(flags & XFS_IGET_INCORE))
577 xfs_iflags_clear(ip, XFS_ISTALE);
578 XFS_STATS_INC(mp, xs_ig_found);
579
580 return 0;
581
582out_skip:
583 trace_xfs_iget_skip(ip);
584 XFS_STATS_INC(mp, xs_ig_frecycle);
585 error = -EAGAIN;
586out_error:
587 spin_unlock(&ip->i_flags_lock);
588 rcu_read_unlock();
589 return error;
590
591out_inodegc_flush:
592 spin_unlock(&ip->i_flags_lock);
593 rcu_read_unlock();
594 /*
595 * Do not wait for the workers, because the caller could hold an AGI
596 * buffer lock. We're just going to sleep in a loop anyway.
597 */
598 if (xfs_is_inodegc_enabled(mp))
599 xfs_inodegc_queue_all(mp);
600 return -EAGAIN;
601}
602
603static int
604xfs_iget_cache_miss(
605 struct xfs_mount *mp,
606 struct xfs_perag *pag,
607 xfs_trans_t *tp,
608 xfs_ino_t ino,
609 struct xfs_inode **ipp,
610 int flags,
611 int lock_flags)
612{
613 struct xfs_inode *ip;
614 int error;
615 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
616 int iflags;
617
618 ip = xfs_inode_alloc(mp, ino);
619 if (!ip)
620 return -ENOMEM;
621
622 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
623 if (error)
624 goto out_destroy;
625
626 /*
627 * For version 5 superblocks, if we are initialising a new inode and we
628 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
629 * simply build the new inode core with a random generation number.
630 *
631 * For version 4 (and older) superblocks, log recovery is dependent on
632 * the i_flushiter field being initialised from the current on-disk
633 * value and hence we must also read the inode off disk even when
634 * initializing new inodes.
635 */
636 if (xfs_has_v3inodes(mp) &&
637 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
638 VFS_I(ip)->i_generation = get_random_u32();
639 } else {
640 struct xfs_buf *bp;
641
642 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
643 if (error)
644 goto out_destroy;
645
646 error = xfs_inode_from_disk(ip,
647 xfs_buf_offset(bp, ip->i_imap.im_boffset));
648 if (!error)
649 xfs_buf_set_ref(bp, XFS_INO_REF);
650 else
651 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
652 xfs_trans_brelse(tp, bp);
653
654 if (error)
655 goto out_destroy;
656 }
657
658 trace_xfs_iget_miss(ip);
659
660 /*
661 * Check the inode free state is valid. This also detects lookup
662 * racing with unlinks.
663 */
664 error = xfs_iget_check_free_state(ip, flags);
665 if (error)
666 goto out_destroy;
667
668 /*
669 * Preload the radix tree so we can insert safely under the
670 * write spinlock. Note that we cannot sleep inside the preload
671 * region.
672 */
673 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
674 error = -EAGAIN;
675 goto out_destroy;
676 }
677
678 /*
679 * Because the inode hasn't been added to the radix-tree yet it can't
680 * be found by another thread, so we can do the non-sleeping lock here.
681 */
682 if (lock_flags) {
683 if (!xfs_ilock_nowait(ip, lock_flags))
684 BUG();
685 }
686
687 /*
688 * These values must be set before inserting the inode into the radix
689 * tree as the moment it is inserted a concurrent lookup (allowed by the
690 * RCU locking mechanism) can find it and that lookup must see that this
691 * is an inode currently under construction (i.e. that XFS_INEW is set).
692 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
693 * memory barrier that ensures this detection works correctly at lookup
694 * time.
695 */
696 iflags = XFS_INEW;
697 if (flags & XFS_IGET_DONTCACHE)
698 d_mark_dontcache(VFS_I(ip));
699 ip->i_udquot = NULL;
700 ip->i_gdquot = NULL;
701 ip->i_pdquot = NULL;
702 xfs_iflags_set(ip, iflags);
703
704 /* insert the new inode */
705 spin_lock(&pag->pag_ici_lock);
706 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
707 if (unlikely(error)) {
708 WARN_ON(error != -EEXIST);
709 XFS_STATS_INC(mp, xs_ig_dup);
710 error = -EAGAIN;
711 goto out_preload_end;
712 }
713 spin_unlock(&pag->pag_ici_lock);
714 radix_tree_preload_end();
715
716 *ipp = ip;
717 return 0;
718
719out_preload_end:
720 spin_unlock(&pag->pag_ici_lock);
721 radix_tree_preload_end();
722 if (lock_flags)
723 xfs_iunlock(ip, lock_flags);
724out_destroy:
725 __destroy_inode(VFS_I(ip));
726 xfs_inode_free(ip);
727 return error;
728}
729
730/*
731 * Look up an inode by number in the given file system. The inode is looked up
732 * in the cache held in each AG. If the inode is found in the cache, initialise
733 * the vfs inode if necessary.
734 *
735 * If it is not in core, read it in from the file system's device, add it to the
736 * cache and initialise the vfs inode.
737 *
738 * The inode is locked according to the value of the lock_flags parameter.
739 * Inode lookup is only done during metadata operations and not as part of the
740 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
741 */
742int
743xfs_iget(
744 struct xfs_mount *mp,
745 struct xfs_trans *tp,
746 xfs_ino_t ino,
747 uint flags,
748 uint lock_flags,
749 struct xfs_inode **ipp)
750{
751 struct xfs_inode *ip;
752 struct xfs_perag *pag;
753 xfs_agino_t agino;
754 int error;
755
756 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
757
758 /* reject inode numbers outside existing AGs */
759 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
760 return -EINVAL;
761
762 XFS_STATS_INC(mp, xs_ig_attempts);
763
764 /* get the perag structure and ensure that it's inode capable */
765 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
766 agino = XFS_INO_TO_AGINO(mp, ino);
767
768again:
769 error = 0;
770 rcu_read_lock();
771 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
772
773 if (ip) {
774 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
775 if (error)
776 goto out_error_or_again;
777 } else {
778 rcu_read_unlock();
779 if (flags & XFS_IGET_INCORE) {
780 error = -ENODATA;
781 goto out_error_or_again;
782 }
783 XFS_STATS_INC(mp, xs_ig_missed);
784
785 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
786 flags, lock_flags);
787 if (error)
788 goto out_error_or_again;
789 }
790 xfs_perag_put(pag);
791
792 *ipp = ip;
793
794 /*
795 * If we have a real type for an on-disk inode, we can setup the inode
796 * now. If it's a new inode being created, xfs_init_new_inode will
797 * handle it.
798 */
799 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
800 xfs_setup_existing_inode(ip);
801 return 0;
802
803out_error_or_again:
804 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
805 error == -EAGAIN) {
806 delay(1);
807 goto again;
808 }
809 xfs_perag_put(pag);
810 return error;
811}
812
813/*
814 * Grab the inode for reclaim exclusively.
815 *
816 * We have found this inode via a lookup under RCU, so the inode may have
817 * already been freed, or it may be in the process of being recycled by
818 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
819 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
820 * will not be set. Hence we need to check for both these flag conditions to
821 * avoid inodes that are no longer reclaim candidates.
822 *
823 * Note: checking for other state flags here, under the i_flags_lock or not, is
824 * racy and should be avoided. Those races should be resolved only after we have
825 * ensured that we are able to reclaim this inode and the world can see that we
826 * are going to reclaim it.
827 *
828 * Return true if we grabbed it, false otherwise.
829 */
830static bool
831xfs_reclaim_igrab(
832 struct xfs_inode *ip,
833 struct xfs_icwalk *icw)
834{
835 ASSERT(rcu_read_lock_held());
836
837 spin_lock(&ip->i_flags_lock);
838 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
839 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
840 /* not a reclaim candidate. */
841 spin_unlock(&ip->i_flags_lock);
842 return false;
843 }
844
845 /* Don't reclaim a sick inode unless the caller asked for it. */
846 if (ip->i_sick &&
847 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
848 spin_unlock(&ip->i_flags_lock);
849 return false;
850 }
851
852 __xfs_iflags_set(ip, XFS_IRECLAIM);
853 spin_unlock(&ip->i_flags_lock);
854 return true;
855}
856
857/*
858 * Inode reclaim is non-blocking, so the default action if progress cannot be
859 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
860 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
861 * blocking anymore and hence we can wait for the inode to be able to reclaim
862 * it.
863 *
864 * We do no IO here - if callers require inodes to be cleaned they must push the
865 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
866 * done in the background in a non-blocking manner, and enables memory reclaim
867 * to make progress without blocking.
868 */
869static void
870xfs_reclaim_inode(
871 struct xfs_inode *ip,
872 struct xfs_perag *pag)
873{
874 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
875
876 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
877 goto out;
878 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
879 goto out_iunlock;
880
881 /*
882 * Check for log shutdown because aborting the inode can move the log
883 * tail and corrupt in memory state. This is fine if the log is shut
884 * down, but if the log is still active and only the mount is shut down
885 * then the in-memory log tail movement caused by the abort can be
886 * incorrectly propagated to disk.
887 */
888 if (xlog_is_shutdown(ip->i_mount->m_log)) {
889 xfs_iunpin_wait(ip);
890 xfs_iflush_shutdown_abort(ip);
891 goto reclaim;
892 }
893 if (xfs_ipincount(ip))
894 goto out_clear_flush;
895 if (!xfs_inode_clean(ip))
896 goto out_clear_flush;
897
898 xfs_iflags_clear(ip, XFS_IFLUSHING);
899reclaim:
900 trace_xfs_inode_reclaiming(ip);
901
902 /*
903 * Because we use RCU freeing we need to ensure the inode always appears
904 * to be reclaimed with an invalid inode number when in the free state.
905 * We do this as early as possible under the ILOCK so that
906 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
907 * detect races with us here. By doing this, we guarantee that once
908 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
909 * it will see either a valid inode that will serialise correctly, or it
910 * will see an invalid inode that it can skip.
911 */
912 spin_lock(&ip->i_flags_lock);
913 ip->i_flags = XFS_IRECLAIM;
914 ip->i_ino = 0;
915 ip->i_sick = 0;
916 ip->i_checked = 0;
917 spin_unlock(&ip->i_flags_lock);
918
919 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
920 xfs_iunlock(ip, XFS_ILOCK_EXCL);
921
922 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
923 /*
924 * Remove the inode from the per-AG radix tree.
925 *
926 * Because radix_tree_delete won't complain even if the item was never
927 * added to the tree assert that it's been there before to catch
928 * problems with the inode life time early on.
929 */
930 spin_lock(&pag->pag_ici_lock);
931 if (!radix_tree_delete(&pag->pag_ici_root,
932 XFS_INO_TO_AGINO(ip->i_mount, ino)))
933 ASSERT(0);
934 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
935 spin_unlock(&pag->pag_ici_lock);
936
937 /*
938 * Here we do an (almost) spurious inode lock in order to coordinate
939 * with inode cache radix tree lookups. This is because the lookup
940 * can reference the inodes in the cache without taking references.
941 *
942 * We make that OK here by ensuring that we wait until the inode is
943 * unlocked after the lookup before we go ahead and free it.
944 */
945 xfs_ilock(ip, XFS_ILOCK_EXCL);
946 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
947 xfs_iunlock(ip, XFS_ILOCK_EXCL);
948 ASSERT(xfs_inode_clean(ip));
949
950 __xfs_inode_free(ip);
951 return;
952
953out_clear_flush:
954 xfs_iflags_clear(ip, XFS_IFLUSHING);
955out_iunlock:
956 xfs_iunlock(ip, XFS_ILOCK_EXCL);
957out:
958 xfs_iflags_clear(ip, XFS_IRECLAIM);
959}
960
961/* Reclaim sick inodes if we're unmounting or the fs went down. */
962static inline bool
963xfs_want_reclaim_sick(
964 struct xfs_mount *mp)
965{
966 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
967 xfs_is_shutdown(mp);
968}
969
970void
971xfs_reclaim_inodes(
972 struct xfs_mount *mp)
973{
974 struct xfs_icwalk icw = {
975 .icw_flags = 0,
976 };
977
978 if (xfs_want_reclaim_sick(mp))
979 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
980
981 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
982 xfs_ail_push_all_sync(mp->m_ail);
983 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
984 }
985}
986
987/*
988 * The shrinker infrastructure determines how many inodes we should scan for
989 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
990 * push the AIL here. We also want to proactively free up memory if we can to
991 * minimise the amount of work memory reclaim has to do so we kick the
992 * background reclaim if it isn't already scheduled.
993 */
994long
995xfs_reclaim_inodes_nr(
996 struct xfs_mount *mp,
997 unsigned long nr_to_scan)
998{
999 struct xfs_icwalk icw = {
1000 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1001 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1002 };
1003
1004 if (xfs_want_reclaim_sick(mp))
1005 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1006
1007 /* kick background reclaimer and push the AIL */
1008 xfs_reclaim_work_queue(mp);
1009 xfs_ail_push_all(mp->m_ail);
1010
1011 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1012 return 0;
1013}
1014
1015/*
1016 * Return the number of reclaimable inodes in the filesystem for
1017 * the shrinker to determine how much to reclaim.
1018 */
1019long
1020xfs_reclaim_inodes_count(
1021 struct xfs_mount *mp)
1022{
1023 struct xfs_perag *pag;
1024 xfs_agnumber_t ag = 0;
1025 long reclaimable = 0;
1026
1027 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1028 ag = pag->pag_agno + 1;
1029 reclaimable += pag->pag_ici_reclaimable;
1030 xfs_perag_put(pag);
1031 }
1032 return reclaimable;
1033}
1034
1035STATIC bool
1036xfs_icwalk_match_id(
1037 struct xfs_inode *ip,
1038 struct xfs_icwalk *icw)
1039{
1040 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1041 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1042 return false;
1043
1044 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1045 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1046 return false;
1047
1048 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1049 ip->i_projid != icw->icw_prid)
1050 return false;
1051
1052 return true;
1053}
1054
1055/*
1056 * A union-based inode filtering algorithm. Process the inode if any of the
1057 * criteria match. This is for global/internal scans only.
1058 */
1059STATIC bool
1060xfs_icwalk_match_id_union(
1061 struct xfs_inode *ip,
1062 struct xfs_icwalk *icw)
1063{
1064 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1065 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1066 return true;
1067
1068 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1069 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1070 return true;
1071
1072 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1073 ip->i_projid == icw->icw_prid)
1074 return true;
1075
1076 return false;
1077}
1078
1079/*
1080 * Is this inode @ip eligible for eof/cow block reclamation, given some
1081 * filtering parameters @icw? The inode is eligible if @icw is null or
1082 * if the predicate functions match.
1083 */
1084static bool
1085xfs_icwalk_match(
1086 struct xfs_inode *ip,
1087 struct xfs_icwalk *icw)
1088{
1089 bool match;
1090
1091 if (!icw)
1092 return true;
1093
1094 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1095 match = xfs_icwalk_match_id_union(ip, icw);
1096 else
1097 match = xfs_icwalk_match_id(ip, icw);
1098 if (!match)
1099 return false;
1100
1101 /* skip the inode if the file size is too small */
1102 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1103 XFS_ISIZE(ip) < icw->icw_min_file_size)
1104 return false;
1105
1106 return true;
1107}
1108
1109/*
1110 * This is a fast pass over the inode cache to try to get reclaim moving on as
1111 * many inodes as possible in a short period of time. It kicks itself every few
1112 * seconds, as well as being kicked by the inode cache shrinker when memory
1113 * goes low.
1114 */
1115void
1116xfs_reclaim_worker(
1117 struct work_struct *work)
1118{
1119 struct xfs_mount *mp = container_of(to_delayed_work(work),
1120 struct xfs_mount, m_reclaim_work);
1121
1122 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1123 xfs_reclaim_work_queue(mp);
1124}
1125
1126STATIC int
1127xfs_inode_free_eofblocks(
1128 struct xfs_inode *ip,
1129 struct xfs_icwalk *icw,
1130 unsigned int *lockflags)
1131{
1132 bool wait;
1133
1134 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1135
1136 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1137 return 0;
1138
1139 /*
1140 * If the mapping is dirty the operation can block and wait for some
1141 * time. Unless we are waiting, skip it.
1142 */
1143 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1144 return 0;
1145
1146 if (!xfs_icwalk_match(ip, icw))
1147 return 0;
1148
1149 /*
1150 * If the caller is waiting, return -EAGAIN to keep the background
1151 * scanner moving and revisit the inode in a subsequent pass.
1152 */
1153 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1154 if (wait)
1155 return -EAGAIN;
1156 return 0;
1157 }
1158 *lockflags |= XFS_IOLOCK_EXCL;
1159
1160 if (xfs_can_free_eofblocks(ip, false))
1161 return xfs_free_eofblocks(ip);
1162
1163 /* inode could be preallocated or append-only */
1164 trace_xfs_inode_free_eofblocks_invalid(ip);
1165 xfs_inode_clear_eofblocks_tag(ip);
1166 return 0;
1167}
1168
1169static void
1170xfs_blockgc_set_iflag(
1171 struct xfs_inode *ip,
1172 unsigned long iflag)
1173{
1174 struct xfs_mount *mp = ip->i_mount;
1175 struct xfs_perag *pag;
1176
1177 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1178
1179 /*
1180 * Don't bother locking the AG and looking up in the radix trees
1181 * if we already know that we have the tag set.
1182 */
1183 if (ip->i_flags & iflag)
1184 return;
1185 spin_lock(&ip->i_flags_lock);
1186 ip->i_flags |= iflag;
1187 spin_unlock(&ip->i_flags_lock);
1188
1189 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1190 spin_lock(&pag->pag_ici_lock);
1191
1192 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1193 XFS_ICI_BLOCKGC_TAG);
1194
1195 spin_unlock(&pag->pag_ici_lock);
1196 xfs_perag_put(pag);
1197}
1198
1199void
1200xfs_inode_set_eofblocks_tag(
1201 xfs_inode_t *ip)
1202{
1203 trace_xfs_inode_set_eofblocks_tag(ip);
1204 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1205}
1206
1207static void
1208xfs_blockgc_clear_iflag(
1209 struct xfs_inode *ip,
1210 unsigned long iflag)
1211{
1212 struct xfs_mount *mp = ip->i_mount;
1213 struct xfs_perag *pag;
1214 bool clear_tag;
1215
1216 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1217
1218 spin_lock(&ip->i_flags_lock);
1219 ip->i_flags &= ~iflag;
1220 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1221 spin_unlock(&ip->i_flags_lock);
1222
1223 if (!clear_tag)
1224 return;
1225
1226 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1227 spin_lock(&pag->pag_ici_lock);
1228
1229 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1230 XFS_ICI_BLOCKGC_TAG);
1231
1232 spin_unlock(&pag->pag_ici_lock);
1233 xfs_perag_put(pag);
1234}
1235
1236void
1237xfs_inode_clear_eofblocks_tag(
1238 xfs_inode_t *ip)
1239{
1240 trace_xfs_inode_clear_eofblocks_tag(ip);
1241 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1242}
1243
1244/*
1245 * Set ourselves up to free CoW blocks from this file. If it's already clean
1246 * then we can bail out quickly, but otherwise we must back off if the file
1247 * is undergoing some kind of write.
1248 */
1249static bool
1250xfs_prep_free_cowblocks(
1251 struct xfs_inode *ip)
1252{
1253 /*
1254 * Just clear the tag if we have an empty cow fork or none at all. It's
1255 * possible the inode was fully unshared since it was originally tagged.
1256 */
1257 if (!xfs_inode_has_cow_data(ip)) {
1258 trace_xfs_inode_free_cowblocks_invalid(ip);
1259 xfs_inode_clear_cowblocks_tag(ip);
1260 return false;
1261 }
1262
1263 /*
1264 * If the mapping is dirty or under writeback we cannot touch the
1265 * CoW fork. Leave it alone if we're in the midst of a directio.
1266 */
1267 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1268 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1269 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1270 atomic_read(&VFS_I(ip)->i_dio_count))
1271 return false;
1272
1273 return true;
1274}
1275
1276/*
1277 * Automatic CoW Reservation Freeing
1278 *
1279 * These functions automatically garbage collect leftover CoW reservations
1280 * that were made on behalf of a cowextsize hint when we start to run out
1281 * of quota or when the reservations sit around for too long. If the file
1282 * has dirty pages or is undergoing writeback, its CoW reservations will
1283 * be retained.
1284 *
1285 * The actual garbage collection piggybacks off the same code that runs
1286 * the speculative EOF preallocation garbage collector.
1287 */
1288STATIC int
1289xfs_inode_free_cowblocks(
1290 struct xfs_inode *ip,
1291 struct xfs_icwalk *icw,
1292 unsigned int *lockflags)
1293{
1294 bool wait;
1295 int ret = 0;
1296
1297 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1298
1299 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1300 return 0;
1301
1302 if (!xfs_prep_free_cowblocks(ip))
1303 return 0;
1304
1305 if (!xfs_icwalk_match(ip, icw))
1306 return 0;
1307
1308 /*
1309 * If the caller is waiting, return -EAGAIN to keep the background
1310 * scanner moving and revisit the inode in a subsequent pass.
1311 */
1312 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1313 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1314 if (wait)
1315 return -EAGAIN;
1316 return 0;
1317 }
1318 *lockflags |= XFS_IOLOCK_EXCL;
1319
1320 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1321 if (wait)
1322 return -EAGAIN;
1323 return 0;
1324 }
1325 *lockflags |= XFS_MMAPLOCK_EXCL;
1326
1327 /*
1328 * Check again, nobody else should be able to dirty blocks or change
1329 * the reflink iflag now that we have the first two locks held.
1330 */
1331 if (xfs_prep_free_cowblocks(ip))
1332 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1333 return ret;
1334}
1335
1336void
1337xfs_inode_set_cowblocks_tag(
1338 xfs_inode_t *ip)
1339{
1340 trace_xfs_inode_set_cowblocks_tag(ip);
1341 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1342}
1343
1344void
1345xfs_inode_clear_cowblocks_tag(
1346 xfs_inode_t *ip)
1347{
1348 trace_xfs_inode_clear_cowblocks_tag(ip);
1349 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1350}
1351
1352/* Disable post-EOF and CoW block auto-reclamation. */
1353void
1354xfs_blockgc_stop(
1355 struct xfs_mount *mp)
1356{
1357 struct xfs_perag *pag;
1358 xfs_agnumber_t agno;
1359
1360 if (!xfs_clear_blockgc_enabled(mp))
1361 return;
1362
1363 for_each_perag(mp, agno, pag)
1364 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1365 trace_xfs_blockgc_stop(mp, __return_address);
1366}
1367
1368/* Enable post-EOF and CoW block auto-reclamation. */
1369void
1370xfs_blockgc_start(
1371 struct xfs_mount *mp)
1372{
1373 struct xfs_perag *pag;
1374 xfs_agnumber_t agno;
1375
1376 if (xfs_set_blockgc_enabled(mp))
1377 return;
1378
1379 trace_xfs_blockgc_start(mp, __return_address);
1380 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1381 xfs_blockgc_queue(pag);
1382}
1383
1384/* Don't try to run block gc on an inode that's in any of these states. */
1385#define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1386 XFS_NEED_INACTIVE | \
1387 XFS_INACTIVATING | \
1388 XFS_IRECLAIMABLE | \
1389 XFS_IRECLAIM)
1390/*
1391 * Decide if the given @ip is eligible for garbage collection of speculative
1392 * preallocations, and grab it if so. Returns true if it's ready to go or
1393 * false if we should just ignore it.
1394 */
1395static bool
1396xfs_blockgc_igrab(
1397 struct xfs_inode *ip)
1398{
1399 struct inode *inode = VFS_I(ip);
1400
1401 ASSERT(rcu_read_lock_held());
1402
1403 /* Check for stale RCU freed inode */
1404 spin_lock(&ip->i_flags_lock);
1405 if (!ip->i_ino)
1406 goto out_unlock_noent;
1407
1408 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1409 goto out_unlock_noent;
1410 spin_unlock(&ip->i_flags_lock);
1411
1412 /* nothing to sync during shutdown */
1413 if (xfs_is_shutdown(ip->i_mount))
1414 return false;
1415
1416 /* If we can't grab the inode, it must on it's way to reclaim. */
1417 if (!igrab(inode))
1418 return false;
1419
1420 /* inode is valid */
1421 return true;
1422
1423out_unlock_noent:
1424 spin_unlock(&ip->i_flags_lock);
1425 return false;
1426}
1427
1428/* Scan one incore inode for block preallocations that we can remove. */
1429static int
1430xfs_blockgc_scan_inode(
1431 struct xfs_inode *ip,
1432 struct xfs_icwalk *icw)
1433{
1434 unsigned int lockflags = 0;
1435 int error;
1436
1437 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1438 if (error)
1439 goto unlock;
1440
1441 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1442unlock:
1443 if (lockflags)
1444 xfs_iunlock(ip, lockflags);
1445 xfs_irele(ip);
1446 return error;
1447}
1448
1449/* Background worker that trims preallocated space. */
1450void
1451xfs_blockgc_worker(
1452 struct work_struct *work)
1453{
1454 struct xfs_perag *pag = container_of(to_delayed_work(work),
1455 struct xfs_perag, pag_blockgc_work);
1456 struct xfs_mount *mp = pag->pag_mount;
1457 int error;
1458
1459 trace_xfs_blockgc_worker(mp, __return_address);
1460
1461 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1462 if (error)
1463 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1464 pag->pag_agno, error);
1465 xfs_blockgc_queue(pag);
1466}
1467
1468/*
1469 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1470 * and cowblocks.
1471 */
1472int
1473xfs_blockgc_free_space(
1474 struct xfs_mount *mp,
1475 struct xfs_icwalk *icw)
1476{
1477 int error;
1478
1479 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1480
1481 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1482 if (error)
1483 return error;
1484
1485 return xfs_inodegc_flush(mp);
1486}
1487
1488/*
1489 * Reclaim all the free space that we can by scheduling the background blockgc
1490 * and inodegc workers immediately and waiting for them all to clear.
1491 */
1492int
1493xfs_blockgc_flush_all(
1494 struct xfs_mount *mp)
1495{
1496 struct xfs_perag *pag;
1497 xfs_agnumber_t agno;
1498
1499 trace_xfs_blockgc_flush_all(mp, __return_address);
1500
1501 /*
1502 * For each blockgc worker, move its queue time up to now. If it
1503 * wasn't queued, it will not be requeued. Then flush whatever's
1504 * left.
1505 */
1506 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1507 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1508 &pag->pag_blockgc_work, 0);
1509
1510 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1511 flush_delayed_work(&pag->pag_blockgc_work);
1512
1513 return xfs_inodegc_flush(mp);
1514}
1515
1516/*
1517 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1518 * quota caused an allocation failure, so we make a best effort by including
1519 * each quota under low free space conditions (less than 1% free space) in the
1520 * scan.
1521 *
1522 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1523 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1524 * MMAPLOCK.
1525 */
1526int
1527xfs_blockgc_free_dquots(
1528 struct xfs_mount *mp,
1529 struct xfs_dquot *udqp,
1530 struct xfs_dquot *gdqp,
1531 struct xfs_dquot *pdqp,
1532 unsigned int iwalk_flags)
1533{
1534 struct xfs_icwalk icw = {0};
1535 bool do_work = false;
1536
1537 if (!udqp && !gdqp && !pdqp)
1538 return 0;
1539
1540 /*
1541 * Run a scan to free blocks using the union filter to cover all
1542 * applicable quotas in a single scan.
1543 */
1544 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1545
1546 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1547 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1548 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1549 do_work = true;
1550 }
1551
1552 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1553 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1554 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1555 do_work = true;
1556 }
1557
1558 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1559 icw.icw_prid = pdqp->q_id;
1560 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1561 do_work = true;
1562 }
1563
1564 if (!do_work)
1565 return 0;
1566
1567 return xfs_blockgc_free_space(mp, &icw);
1568}
1569
1570/* Run cow/eofblocks scans on the quotas attached to the inode. */
1571int
1572xfs_blockgc_free_quota(
1573 struct xfs_inode *ip,
1574 unsigned int iwalk_flags)
1575{
1576 return xfs_blockgc_free_dquots(ip->i_mount,
1577 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1578 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1579 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1580}
1581
1582/* XFS Inode Cache Walking Code */
1583
1584/*
1585 * The inode lookup is done in batches to keep the amount of lock traffic and
1586 * radix tree lookups to a minimum. The batch size is a trade off between
1587 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1588 * be too greedy.
1589 */
1590#define XFS_LOOKUP_BATCH 32
1591
1592
1593/*
1594 * Decide if we want to grab this inode in anticipation of doing work towards
1595 * the goal.
1596 */
1597static inline bool
1598xfs_icwalk_igrab(
1599 enum xfs_icwalk_goal goal,
1600 struct xfs_inode *ip,
1601 struct xfs_icwalk *icw)
1602{
1603 switch (goal) {
1604 case XFS_ICWALK_BLOCKGC:
1605 return xfs_blockgc_igrab(ip);
1606 case XFS_ICWALK_RECLAIM:
1607 return xfs_reclaim_igrab(ip, icw);
1608 default:
1609 return false;
1610 }
1611}
1612
1613/*
1614 * Process an inode. Each processing function must handle any state changes
1615 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1616 */
1617static inline int
1618xfs_icwalk_process_inode(
1619 enum xfs_icwalk_goal goal,
1620 struct xfs_inode *ip,
1621 struct xfs_perag *pag,
1622 struct xfs_icwalk *icw)
1623{
1624 int error = 0;
1625
1626 switch (goal) {
1627 case XFS_ICWALK_BLOCKGC:
1628 error = xfs_blockgc_scan_inode(ip, icw);
1629 break;
1630 case XFS_ICWALK_RECLAIM:
1631 xfs_reclaim_inode(ip, pag);
1632 break;
1633 }
1634 return error;
1635}
1636
1637/*
1638 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1639 * process them in some manner.
1640 */
1641static int
1642xfs_icwalk_ag(
1643 struct xfs_perag *pag,
1644 enum xfs_icwalk_goal goal,
1645 struct xfs_icwalk *icw)
1646{
1647 struct xfs_mount *mp = pag->pag_mount;
1648 uint32_t first_index;
1649 int last_error = 0;
1650 int skipped;
1651 bool done;
1652 int nr_found;
1653
1654restart:
1655 done = false;
1656 skipped = 0;
1657 if (goal == XFS_ICWALK_RECLAIM)
1658 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1659 else
1660 first_index = 0;
1661 nr_found = 0;
1662 do {
1663 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1664 int error = 0;
1665 int i;
1666
1667 rcu_read_lock();
1668
1669 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1670 (void **) batch, first_index,
1671 XFS_LOOKUP_BATCH, goal);
1672 if (!nr_found) {
1673 done = true;
1674 rcu_read_unlock();
1675 break;
1676 }
1677
1678 /*
1679 * Grab the inodes before we drop the lock. if we found
1680 * nothing, nr == 0 and the loop will be skipped.
1681 */
1682 for (i = 0; i < nr_found; i++) {
1683 struct xfs_inode *ip = batch[i];
1684
1685 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1686 batch[i] = NULL;
1687
1688 /*
1689 * Update the index for the next lookup. Catch
1690 * overflows into the next AG range which can occur if
1691 * we have inodes in the last block of the AG and we
1692 * are currently pointing to the last inode.
1693 *
1694 * Because we may see inodes that are from the wrong AG
1695 * due to RCU freeing and reallocation, only update the
1696 * index if it lies in this AG. It was a race that lead
1697 * us to see this inode, so another lookup from the
1698 * same index will not find it again.
1699 */
1700 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1701 continue;
1702 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1703 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1704 done = true;
1705 }
1706
1707 /* unlock now we've grabbed the inodes. */
1708 rcu_read_unlock();
1709
1710 for (i = 0; i < nr_found; i++) {
1711 if (!batch[i])
1712 continue;
1713 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1714 icw);
1715 if (error == -EAGAIN) {
1716 skipped++;
1717 continue;
1718 }
1719 if (error && last_error != -EFSCORRUPTED)
1720 last_error = error;
1721 }
1722
1723 /* bail out if the filesystem is corrupted. */
1724 if (error == -EFSCORRUPTED)
1725 break;
1726
1727 cond_resched();
1728
1729 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1730 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1731 if (icw->icw_scan_limit <= 0)
1732 break;
1733 }
1734 } while (nr_found && !done);
1735
1736 if (goal == XFS_ICWALK_RECLAIM) {
1737 if (done)
1738 first_index = 0;
1739 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1740 }
1741
1742 if (skipped) {
1743 delay(1);
1744 goto restart;
1745 }
1746 return last_error;
1747}
1748
1749/* Walk all incore inodes to achieve a given goal. */
1750static int
1751xfs_icwalk(
1752 struct xfs_mount *mp,
1753 enum xfs_icwalk_goal goal,
1754 struct xfs_icwalk *icw)
1755{
1756 struct xfs_perag *pag;
1757 int error = 0;
1758 int last_error = 0;
1759 xfs_agnumber_t agno;
1760
1761 for_each_perag_tag(mp, agno, pag, goal) {
1762 error = xfs_icwalk_ag(pag, goal, icw);
1763 if (error) {
1764 last_error = error;
1765 if (error == -EFSCORRUPTED) {
1766 xfs_perag_rele(pag);
1767 break;
1768 }
1769 }
1770 }
1771 return last_error;
1772 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1773}
1774
1775#ifdef DEBUG
1776static void
1777xfs_check_delalloc(
1778 struct xfs_inode *ip,
1779 int whichfork)
1780{
1781 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1782 struct xfs_bmbt_irec got;
1783 struct xfs_iext_cursor icur;
1784
1785 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1786 return;
1787 do {
1788 if (isnullstartblock(got.br_startblock)) {
1789 xfs_warn(ip->i_mount,
1790 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1791 ip->i_ino,
1792 whichfork == XFS_DATA_FORK ? "data" : "cow",
1793 got.br_startoff, got.br_blockcount);
1794 }
1795 } while (xfs_iext_next_extent(ifp, &icur, &got));
1796}
1797#else
1798#define xfs_check_delalloc(ip, whichfork) do { } while (0)
1799#endif
1800
1801/* Schedule the inode for reclaim. */
1802static void
1803xfs_inodegc_set_reclaimable(
1804 struct xfs_inode *ip)
1805{
1806 struct xfs_mount *mp = ip->i_mount;
1807 struct xfs_perag *pag;
1808
1809 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1810 xfs_check_delalloc(ip, XFS_DATA_FORK);
1811 xfs_check_delalloc(ip, XFS_COW_FORK);
1812 ASSERT(0);
1813 }
1814
1815 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1816 spin_lock(&pag->pag_ici_lock);
1817 spin_lock(&ip->i_flags_lock);
1818
1819 trace_xfs_inode_set_reclaimable(ip);
1820 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1821 ip->i_flags |= XFS_IRECLAIMABLE;
1822 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1823 XFS_ICI_RECLAIM_TAG);
1824
1825 spin_unlock(&ip->i_flags_lock);
1826 spin_unlock(&pag->pag_ici_lock);
1827 xfs_perag_put(pag);
1828}
1829
1830/*
1831 * Free all speculative preallocations and possibly even the inode itself.
1832 * This is the last chance to make changes to an otherwise unreferenced file
1833 * before incore reclamation happens.
1834 */
1835static int
1836xfs_inodegc_inactivate(
1837 struct xfs_inode *ip)
1838{
1839 int error;
1840
1841 trace_xfs_inode_inactivating(ip);
1842 error = xfs_inactive(ip);
1843 xfs_inodegc_set_reclaimable(ip);
1844 return error;
1845
1846}
1847
1848void
1849xfs_inodegc_worker(
1850 struct work_struct *work)
1851{
1852 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1853 struct xfs_inodegc, work);
1854 struct llist_node *node = llist_del_all(&gc->list);
1855 struct xfs_inode *ip, *n;
1856 struct xfs_mount *mp = gc->mp;
1857 unsigned int nofs_flag;
1858
1859 /*
1860 * Clear the cpu mask bit and ensure that we have seen the latest
1861 * update of the gc structure associated with this CPU. This matches
1862 * with the release semantics used when setting the cpumask bit in
1863 * xfs_inodegc_queue.
1864 */
1865 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1866 smp_mb__after_atomic();
1867
1868 WRITE_ONCE(gc->items, 0);
1869
1870 if (!node)
1871 return;
1872
1873 /*
1874 * We can allocate memory here while doing writeback on behalf of
1875 * memory reclaim. To avoid memory allocation deadlocks set the
1876 * task-wide nofs context for the following operations.
1877 */
1878 nofs_flag = memalloc_nofs_save();
1879
1880 ip = llist_entry(node, struct xfs_inode, i_gclist);
1881 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1882
1883 WRITE_ONCE(gc->shrinker_hits, 0);
1884 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1885 int error;
1886
1887 xfs_iflags_set(ip, XFS_INACTIVATING);
1888 error = xfs_inodegc_inactivate(ip);
1889 if (error && !gc->error)
1890 gc->error = error;
1891 }
1892
1893 memalloc_nofs_restore(nofs_flag);
1894}
1895
1896/*
1897 * Expedite all pending inodegc work to run immediately. This does not wait for
1898 * completion of the work.
1899 */
1900void
1901xfs_inodegc_push(
1902 struct xfs_mount *mp)
1903{
1904 if (!xfs_is_inodegc_enabled(mp))
1905 return;
1906 trace_xfs_inodegc_push(mp, __return_address);
1907 xfs_inodegc_queue_all(mp);
1908}
1909
1910/*
1911 * Force all currently queued inode inactivation work to run immediately and
1912 * wait for the work to finish.
1913 */
1914int
1915xfs_inodegc_flush(
1916 struct xfs_mount *mp)
1917{
1918 xfs_inodegc_push(mp);
1919 trace_xfs_inodegc_flush(mp, __return_address);
1920 return xfs_inodegc_wait_all(mp);
1921}
1922
1923/*
1924 * Flush all the pending work and then disable the inode inactivation background
1925 * workers and wait for them to stop. Caller must hold sb->s_umount to
1926 * coordinate changes in the inodegc_enabled state.
1927 */
1928void
1929xfs_inodegc_stop(
1930 struct xfs_mount *mp)
1931{
1932 bool rerun;
1933
1934 if (!xfs_clear_inodegc_enabled(mp))
1935 return;
1936
1937 /*
1938 * Drain all pending inodegc work, including inodes that could be
1939 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1940 * threads that sample the inodegc state just prior to us clearing it.
1941 * The inodegc flag state prevents new threads from queuing more
1942 * inodes, so we queue pending work items and flush the workqueue until
1943 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1944 * here because it does not allow other unserialized mechanisms to
1945 * reschedule inodegc work while this draining is in progress.
1946 */
1947 xfs_inodegc_queue_all(mp);
1948 do {
1949 flush_workqueue(mp->m_inodegc_wq);
1950 rerun = xfs_inodegc_queue_all(mp);
1951 } while (rerun);
1952
1953 trace_xfs_inodegc_stop(mp, __return_address);
1954}
1955
1956/*
1957 * Enable the inode inactivation background workers and schedule deferred inode
1958 * inactivation work if there is any. Caller must hold sb->s_umount to
1959 * coordinate changes in the inodegc_enabled state.
1960 */
1961void
1962xfs_inodegc_start(
1963 struct xfs_mount *mp)
1964{
1965 if (xfs_set_inodegc_enabled(mp))
1966 return;
1967
1968 trace_xfs_inodegc_start(mp, __return_address);
1969 xfs_inodegc_queue_all(mp);
1970}
1971
1972#ifdef CONFIG_XFS_RT
1973static inline bool
1974xfs_inodegc_want_queue_rt_file(
1975 struct xfs_inode *ip)
1976{
1977 struct xfs_mount *mp = ip->i_mount;
1978
1979 if (!XFS_IS_REALTIME_INODE(ip))
1980 return false;
1981
1982 if (__percpu_counter_compare(&mp->m_frextents,
1983 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1984 XFS_FDBLOCKS_BATCH) < 0)
1985 return true;
1986
1987 return false;
1988}
1989#else
1990# define xfs_inodegc_want_queue_rt_file(ip) (false)
1991#endif /* CONFIG_XFS_RT */
1992
1993/*
1994 * Schedule the inactivation worker when:
1995 *
1996 * - We've accumulated more than one inode cluster buffer's worth of inodes.
1997 * - There is less than 5% free space left.
1998 * - Any of the quotas for this inode are near an enforcement limit.
1999 */
2000static inline bool
2001xfs_inodegc_want_queue_work(
2002 struct xfs_inode *ip,
2003 unsigned int items)
2004{
2005 struct xfs_mount *mp = ip->i_mount;
2006
2007 if (items > mp->m_ino_geo.inodes_per_cluster)
2008 return true;
2009
2010 if (__percpu_counter_compare(&mp->m_fdblocks,
2011 mp->m_low_space[XFS_LOWSP_5_PCNT],
2012 XFS_FDBLOCKS_BATCH) < 0)
2013 return true;
2014
2015 if (xfs_inodegc_want_queue_rt_file(ip))
2016 return true;
2017
2018 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2019 return true;
2020
2021 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2022 return true;
2023
2024 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2025 return true;
2026
2027 return false;
2028}
2029
2030/*
2031 * Upper bound on the number of inodes in each AG that can be queued for
2032 * inactivation at any given time, to avoid monopolizing the workqueue.
2033 */
2034#define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2035
2036/*
2037 * Make the frontend wait for inactivations when:
2038 *
2039 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2040 * - The queue depth exceeds the maximum allowable percpu backlog.
2041 *
2042 * Note: If we are in a NOFS context here (e.g. current thread is running a
2043 * transaction) the we don't want to block here as inodegc progress may require
2044 * filesystem resources we hold to make progress and that could result in a
2045 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2046 */
2047static inline bool
2048xfs_inodegc_want_flush_work(
2049 struct xfs_inode *ip,
2050 unsigned int items,
2051 unsigned int shrinker_hits)
2052{
2053 if (current->flags & PF_MEMALLOC_NOFS)
2054 return false;
2055
2056 if (shrinker_hits > 0)
2057 return true;
2058
2059 if (items > XFS_INODEGC_MAX_BACKLOG)
2060 return true;
2061
2062 return false;
2063}
2064
2065/*
2066 * Queue a background inactivation worker if there are inodes that need to be
2067 * inactivated and higher level xfs code hasn't disabled the background
2068 * workers.
2069 */
2070static void
2071xfs_inodegc_queue(
2072 struct xfs_inode *ip)
2073{
2074 struct xfs_mount *mp = ip->i_mount;
2075 struct xfs_inodegc *gc;
2076 int items;
2077 unsigned int shrinker_hits;
2078 unsigned int cpu_nr;
2079 unsigned long queue_delay = 1;
2080
2081 trace_xfs_inode_set_need_inactive(ip);
2082 spin_lock(&ip->i_flags_lock);
2083 ip->i_flags |= XFS_NEED_INACTIVE;
2084 spin_unlock(&ip->i_flags_lock);
2085
2086 cpu_nr = get_cpu();
2087 gc = this_cpu_ptr(mp->m_inodegc);
2088 llist_add(&ip->i_gclist, &gc->list);
2089 items = READ_ONCE(gc->items);
2090 WRITE_ONCE(gc->items, items + 1);
2091 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2092
2093 /*
2094 * Ensure the list add is always seen by anyone who finds the cpumask
2095 * bit set. This effectively gives the cpumask bit set operation
2096 * release ordering semantics.
2097 */
2098 smp_mb__before_atomic();
2099 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2100 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2101
2102 /*
2103 * We queue the work while holding the current CPU so that the work
2104 * is scheduled to run on this CPU.
2105 */
2106 if (!xfs_is_inodegc_enabled(mp)) {
2107 put_cpu();
2108 return;
2109 }
2110
2111 if (xfs_inodegc_want_queue_work(ip, items))
2112 queue_delay = 0;
2113
2114 trace_xfs_inodegc_queue(mp, __return_address);
2115 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2116 queue_delay);
2117 put_cpu();
2118
2119 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2120 trace_xfs_inodegc_throttle(mp, __return_address);
2121 flush_delayed_work(&gc->work);
2122 }
2123}
2124
2125/*
2126 * We set the inode flag atomically with the radix tree tag. Once we get tag
2127 * lookups on the radix tree, this inode flag can go away.
2128 *
2129 * We always use background reclaim here because even if the inode is clean, it
2130 * still may be under IO and hence we have wait for IO completion to occur
2131 * before we can reclaim the inode. The background reclaim path handles this
2132 * more efficiently than we can here, so simply let background reclaim tear down
2133 * all inodes.
2134 */
2135void
2136xfs_inode_mark_reclaimable(
2137 struct xfs_inode *ip)
2138{
2139 struct xfs_mount *mp = ip->i_mount;
2140 bool need_inactive;
2141
2142 XFS_STATS_INC(mp, vn_reclaim);
2143
2144 /*
2145 * We should never get here with any of the reclaim flags already set.
2146 */
2147 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2148
2149 need_inactive = xfs_inode_needs_inactive(ip);
2150 if (need_inactive) {
2151 xfs_inodegc_queue(ip);
2152 return;
2153 }
2154
2155 /* Going straight to reclaim, so drop the dquots. */
2156 xfs_qm_dqdetach(ip);
2157 xfs_inodegc_set_reclaimable(ip);
2158}
2159
2160/*
2161 * Register a phony shrinker so that we can run background inodegc sooner when
2162 * there's memory pressure. Inactivation does not itself free any memory but
2163 * it does make inodes reclaimable, which eventually frees memory.
2164 *
2165 * The count function, seek value, and batch value are crafted to trigger the
2166 * scan function during the second round of scanning. Hopefully this means
2167 * that we reclaimed enough memory that initiating metadata transactions won't
2168 * make things worse.
2169 */
2170#define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2171#define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2172
2173static unsigned long
2174xfs_inodegc_shrinker_count(
2175 struct shrinker *shrink,
2176 struct shrink_control *sc)
2177{
2178 struct xfs_mount *mp = shrink->private_data;
2179 struct xfs_inodegc *gc;
2180 int cpu;
2181
2182 if (!xfs_is_inodegc_enabled(mp))
2183 return 0;
2184
2185 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2186 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2187 if (!llist_empty(&gc->list))
2188 return XFS_INODEGC_SHRINKER_COUNT;
2189 }
2190
2191 return 0;
2192}
2193
2194static unsigned long
2195xfs_inodegc_shrinker_scan(
2196 struct shrinker *shrink,
2197 struct shrink_control *sc)
2198{
2199 struct xfs_mount *mp = shrink->private_data;
2200 struct xfs_inodegc *gc;
2201 int cpu;
2202 bool no_items = true;
2203
2204 if (!xfs_is_inodegc_enabled(mp))
2205 return SHRINK_STOP;
2206
2207 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2208
2209 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2210 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2211 if (!llist_empty(&gc->list)) {
2212 unsigned int h = READ_ONCE(gc->shrinker_hits);
2213
2214 WRITE_ONCE(gc->shrinker_hits, h + 1);
2215 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2216 no_items = false;
2217 }
2218 }
2219
2220 /*
2221 * If there are no inodes to inactivate, we don't want the shrinker
2222 * to think there's deferred work to call us back about.
2223 */
2224 if (no_items)
2225 return LONG_MAX;
2226
2227 return SHRINK_STOP;
2228}
2229
2230/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2231int
2232xfs_inodegc_register_shrinker(
2233 struct xfs_mount *mp)
2234{
2235 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2236 "xfs-inodegc:%s",
2237 mp->m_super->s_id);
2238 if (!mp->m_inodegc_shrinker)
2239 return -ENOMEM;
2240
2241 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2242 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2243 mp->m_inodegc_shrinker->seeks = 0;
2244 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2245 mp->m_inodegc_shrinker->private_data = mp;
2246
2247 shrinker_register(mp->m_inodegc_shrinker);
2248
2249 return 0;
2250}