Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
 
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_sb.h"
  24#include "xfs_mount.h"
  25#include "xfs_inode.h"
  26#include "xfs_error.h"
  27#include "xfs_trans.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_quota.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_dquot_item.h"
  35#include "xfs_dquot.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36
  37#include <linux/kthread.h>
  38#include <linux/freezer.h>
  39
  40STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
  41				struct xfs_perag *pag, struct xfs_inode *ip);
 
 
 
 
  42
  43/*
  44 * Allocate and initialise an xfs_inode.
  45 */
  46struct xfs_inode *
  47xfs_inode_alloc(
  48	struct xfs_mount	*mp,
  49	xfs_ino_t		ino)
  50{
  51	struct xfs_inode	*ip;
  52
  53	/*
  54	 * if this didn't occur in transactions, we could use
  55	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  56	 * code up to do this anyway.
  57	 */
  58	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  59	if (!ip)
  60		return NULL;
  61	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  62		kmem_zone_free(xfs_inode_zone, ip);
  63		return NULL;
  64	}
  65
  66	/* VFS doesn't initialise i_mode! */
  67	VFS_I(ip)->i_mode = 0;
 
 
  68
  69	XFS_STATS_INC(mp, vn_active);
  70	ASSERT(atomic_read(&ip->i_pincount) == 0);
  71	ASSERT(!spin_is_locked(&ip->i_flags_lock));
  72	ASSERT(!xfs_isiflocked(ip));
  73	ASSERT(ip->i_ino == 0);
  74
  75	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
  76
  77	/* initialise the xfs inode */
  78	ip->i_ino = ino;
  79	ip->i_mount = mp;
  80	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  81	ip->i_afp = NULL;
  82	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
 
 
  83	ip->i_flags = 0;
  84	ip->i_delayed_blks = 0;
  85	memset(&ip->i_d, 0, sizeof(ip->i_d));
 
 
 
 
 
 
 
 
 
  86
  87	return ip;
  88}
  89
  90STATIC void
  91xfs_inode_free_callback(
  92	struct rcu_head		*head)
  93{
  94	struct inode		*inode = container_of(head, struct inode, i_rcu);
  95	struct xfs_inode	*ip = XFS_I(inode);
  96
  97	kmem_zone_free(xfs_inode_zone, ip);
  98}
  99
 100void
 101xfs_inode_free(
 102	struct xfs_inode	*ip)
 103{
 104	switch (VFS_I(ip)->i_mode & S_IFMT) {
 105	case S_IFREG:
 106	case S_IFDIR:
 107	case S_IFLNK:
 108		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 109		break;
 110	}
 111
 112	if (ip->i_afp)
 113		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
 114
 
 
 
 
 115	if (ip->i_itemp) {
 116		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
 
 117		xfs_inode_item_destroy(ip);
 118		ip->i_itemp = NULL;
 119	}
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121	/*
 122	 * Because we use RCU freeing we need to ensure the inode always
 123	 * appears to be reclaimed with an invalid inode number when in the
 124	 * free state. The ip->i_flags_lock provides the barrier against lookup
 125	 * races.
 126	 */
 127	spin_lock(&ip->i_flags_lock);
 128	ip->i_flags = XFS_IRECLAIM;
 129	ip->i_ino = 0;
 130	spin_unlock(&ip->i_flags_lock);
 131
 132	/* asserts to verify all state is correct here */
 133	ASSERT(atomic_read(&ip->i_pincount) == 0);
 134	ASSERT(!xfs_isiflocked(ip));
 135	XFS_STATS_DEC(ip->i_mount, vn_active);
 136
 137	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140/*
 141 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 142 * part of the structure. This is made more complex by the fact we store
 143 * information about the on-disk values in the VFS inode and so we can't just
 144 * overwrite the values unconditionally. Hence we save the parameters we
 145 * need to retain across reinitialisation, and rewrite them into the VFS inode
 146 * after reinitialisation even if it fails.
 147 */
 148static int
 149xfs_reinit_inode(
 150	struct xfs_mount	*mp,
 151	struct inode		*inode)
 152{
 153	int		error;
 154	uint32_t	nlink = inode->i_nlink;
 155	uint32_t	generation = inode->i_generation;
 156	uint64_t	version = inode->i_version;
 157	umode_t		mode = inode->i_mode;
 
 
 
 158
 159	error = inode_init_always(mp->m_super, inode);
 160
 161	set_nlink(inode, nlink);
 162	inode->i_generation = generation;
 163	inode->i_version = version;
 164	inode->i_mode = mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165	return error;
 166}
 167
 168/*
 169 * Check the validity of the inode we just found it the cache
 170 */
 171static int
 172xfs_iget_cache_hit(
 173	struct xfs_perag	*pag,
 174	struct xfs_inode	*ip,
 175	xfs_ino_t		ino,
 176	int			flags,
 177	int			lock_flags) __releases(RCU)
 178{
 179	struct inode		*inode = VFS_I(ip);
 180	struct xfs_mount	*mp = ip->i_mount;
 181	int			error;
 182
 183	/*
 184	 * check for re-use of an inode within an RCU grace period due to the
 185	 * radix tree nodes not being updated yet. We monitor for this by
 186	 * setting the inode number to zero before freeing the inode structure.
 187	 * If the inode has been reallocated and set up, then the inode number
 188	 * will not match, so check for that, too.
 189	 */
 190	spin_lock(&ip->i_flags_lock);
 191	if (ip->i_ino != ino) {
 192		trace_xfs_iget_skip(ip);
 193		XFS_STATS_INC(mp, xs_ig_frecycle);
 194		error = -EAGAIN;
 195		goto out_error;
 196	}
 197
 198
 199	/*
 200	 * If we are racing with another cache hit that is currently
 201	 * instantiating this inode or currently recycling it out of
 202	 * reclaimabe state, wait for the initialisation to complete
 203	 * before continuing.
 204	 *
 
 
 
 
 
 
 
 
 205	 * XXX(hch): eventually we should do something equivalent to
 206	 *	     wait_on_inode to wait for these flags to be cleared
 207	 *	     instead of polling for it.
 208	 */
 209	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 210		trace_xfs_iget_skip(ip);
 211		XFS_STATS_INC(mp, xs_ig_frecycle);
 212		error = -EAGAIN;
 213		goto out_error;
 214	}
 215
 216	/*
 217	 * If lookup is racing with unlink return an error immediately.
 218	 */
 219	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
 220		error = -ENOENT;
 221		goto out_error;
 
 222	}
 223
 224	/*
 225	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 226	 * Need to carefully get it back into useable state.
 227	 */
 228	if (ip->i_flags & XFS_IRECLAIMABLE) {
 229		trace_xfs_iget_reclaim(ip);
 230
 231		/*
 232		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 233		 * from stomping over us while we recycle the inode.  We can't
 234		 * clear the radix tree reclaimable tag yet as it requires
 235		 * pag_ici_lock to be held exclusive.
 236		 */
 237		ip->i_flags |= XFS_IRECLAIM;
 238
 239		spin_unlock(&ip->i_flags_lock);
 240		rcu_read_unlock();
 241
 242		error = xfs_reinit_inode(mp, inode);
 243		if (error) {
 244			/*
 245			 * Re-initializing the inode failed, and we are in deep
 246			 * trouble.  Try to re-add it to the reclaim list.
 247			 */
 248			rcu_read_lock();
 249			spin_lock(&ip->i_flags_lock);
 250
 251			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 252			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 253			trace_xfs_iget_reclaim_fail(ip);
 254			goto out_error;
 255		}
 256
 257		spin_lock(&pag->pag_ici_lock);
 258		spin_lock(&ip->i_flags_lock);
 259
 260		/*
 261		 * Clear the per-lifetime state in the inode as we are now
 262		 * effectively a new inode and need to return to the initial
 263		 * state before reuse occurs.
 264		 */
 265		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 266		ip->i_flags |= XFS_INEW;
 267		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
 268		inode->i_state = I_NEW;
 269
 270		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
 271		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
 
 
 272
 273		spin_unlock(&ip->i_flags_lock);
 274		spin_unlock(&pag->pag_ici_lock);
 
 
 
 
 
 
 275	} else {
 276		/* If the VFS inode is being torn down, pause and try again. */
 277		if (!igrab(inode)) {
 278			trace_xfs_iget_skip(ip);
 279			error = -EAGAIN;
 280			goto out_error;
 281		}
 282
 283		/* We've got a live one. */
 284		spin_unlock(&ip->i_flags_lock);
 285		rcu_read_unlock();
 286		trace_xfs_iget_hit(ip);
 287	}
 288
 289	if (lock_flags != 0)
 290		xfs_ilock(ip, lock_flags);
 291
 292	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 
 293	XFS_STATS_INC(mp, xs_ig_found);
 294
 295	return 0;
 296
 
 
 
 
 297out_error:
 298	spin_unlock(&ip->i_flags_lock);
 299	rcu_read_unlock();
 300	return error;
 301}
 302
 
 
 
 
 
 
 
 
 
 
 
 303
 304static int
 305xfs_iget_cache_miss(
 306	struct xfs_mount	*mp,
 307	struct xfs_perag	*pag,
 308	xfs_trans_t		*tp,
 309	xfs_ino_t		ino,
 310	struct xfs_inode	**ipp,
 311	int			flags,
 312	int			lock_flags)
 313{
 314	struct xfs_inode	*ip;
 315	int			error;
 316	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 317	int			iflags;
 318
 319	ip = xfs_inode_alloc(mp, ino);
 320	if (!ip)
 321		return -ENOMEM;
 322
 323	error = xfs_iread(mp, tp, ip, flags);
 324	if (error)
 325		goto out_destroy;
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327	trace_xfs_iget_miss(ip);
 328
 329	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 330		error = -ENOENT;
 
 
 
 
 331		goto out_destroy;
 332	}
 333
 334	/*
 335	 * Preload the radix tree so we can insert safely under the
 336	 * write spinlock. Note that we cannot sleep inside the preload
 337	 * region. Since we can be called from transaction context, don't
 338	 * recurse into the file system.
 339	 */
 340	if (radix_tree_preload(GFP_NOFS)) {
 341		error = -EAGAIN;
 342		goto out_destroy;
 343	}
 344
 345	/*
 346	 * Because the inode hasn't been added to the radix-tree yet it can't
 347	 * be found by another thread, so we can do the non-sleeping lock here.
 348	 */
 349	if (lock_flags) {
 350		if (!xfs_ilock_nowait(ip, lock_flags))
 351			BUG();
 352	}
 353
 354	/*
 355	 * These values must be set before inserting the inode into the radix
 356	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 357	 * RCU locking mechanism) can find it and that lookup must see that this
 358	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 359	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 360	 * memory barrier that ensures this detection works correctly at lookup
 361	 * time.
 362	 */
 363	iflags = XFS_INEW;
 364	if (flags & XFS_IGET_DONTCACHE)
 365		iflags |= XFS_IDONTCACHE;
 366	ip->i_udquot = NULL;
 367	ip->i_gdquot = NULL;
 368	ip->i_pdquot = NULL;
 369	xfs_iflags_set(ip, iflags);
 370
 371	/* insert the new inode */
 372	spin_lock(&pag->pag_ici_lock);
 373	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 374	if (unlikely(error)) {
 375		WARN_ON(error != -EEXIST);
 376		XFS_STATS_INC(mp, xs_ig_dup);
 377		error = -EAGAIN;
 378		goto out_preload_end;
 379	}
 380	spin_unlock(&pag->pag_ici_lock);
 381	radix_tree_preload_end();
 382
 383	*ipp = ip;
 384	return 0;
 385
 386out_preload_end:
 387	spin_unlock(&pag->pag_ici_lock);
 388	radix_tree_preload_end();
 389	if (lock_flags)
 390		xfs_iunlock(ip, lock_flags);
 391out_destroy:
 392	__destroy_inode(VFS_I(ip));
 393	xfs_inode_free(ip);
 394	return error;
 395}
 396
 397/*
 398 * Look up an inode by number in the given file system.
 399 * The inode is looked up in the cache held in each AG.
 400 * If the inode is found in the cache, initialise the vfs inode
 401 * if necessary.
 402 *
 403 * If it is not in core, read it in from the file system's device,
 404 * add it to the cache and initialise the vfs inode.
 405 *
 406 * The inode is locked according to the value of the lock_flags parameter.
 407 * This flag parameter indicates how and if the inode's IO lock and inode lock
 408 * should be taken.
 409 *
 410 * mp -- the mount point structure for the current file system.  It points
 411 *       to the inode hash table.
 412 * tp -- a pointer to the current transaction if there is one.  This is
 413 *       simply passed through to the xfs_iread() call.
 414 * ino -- the number of the inode desired.  This is the unique identifier
 415 *        within the file system for the inode being requested.
 416 * lock_flags -- flags indicating how to lock the inode.  See the comment
 417 *		 for xfs_ilock() for a list of valid values.
 418 */
 419int
 420xfs_iget(
 421	xfs_mount_t	*mp,
 422	xfs_trans_t	*tp,
 423	xfs_ino_t	ino,
 424	uint		flags,
 425	uint		lock_flags,
 426	xfs_inode_t	**ipp)
 427{
 428	xfs_inode_t	*ip;
 429	int		error;
 430	xfs_perag_t	*pag;
 431	xfs_agino_t	agino;
 432
 433	/*
 434	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 435	 * doesn't get freed while it's being referenced during a
 436	 * radix tree traversal here.  It assumes this function
 437	 * aqcuires only the ILOCK (and therefore it has no need to
 438	 * involve the IOLOCK in this synchronization).
 439	 */
 440	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 441
 442	/* reject inode numbers outside existing AGs */
 443	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 444		return -EINVAL;
 445
 446	XFS_STATS_INC(mp, xs_ig_attempts);
 447
 448	/* get the perag structure and ensure that it's inode capable */
 449	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 450	agino = XFS_INO_TO_AGINO(mp, ino);
 451
 452again:
 453	error = 0;
 454	rcu_read_lock();
 455	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 456
 457	if (ip) {
 458		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 459		if (error)
 460			goto out_error_or_again;
 461	} else {
 462		rcu_read_unlock();
 
 
 
 
 463		XFS_STATS_INC(mp, xs_ig_missed);
 464
 465		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 466							flags, lock_flags);
 467		if (error)
 468			goto out_error_or_again;
 469	}
 470	xfs_perag_put(pag);
 471
 472	*ipp = ip;
 473
 474	/*
 475	 * If we have a real type for an on-disk inode, we can setup the inode
 476	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 
 477	 */
 478	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 479		xfs_setup_existing_inode(ip);
 480	return 0;
 481
 482out_error_or_again:
 483	if (error == -EAGAIN) {
 
 484		delay(1);
 485		goto again;
 486	}
 487	xfs_perag_put(pag);
 488	return error;
 489}
 490
 491/*
 492 * The inode lookup is done in batches to keep the amount of lock traffic and
 493 * radix tree lookups to a minimum. The batch size is a trade off between
 494 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 495 * be too greedy.
 
 
 
 
 
 
 
 
 
 
 
 496 */
 497#define XFS_LOOKUP_BATCH	32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499STATIC int
 500xfs_inode_ag_walk_grab(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501	struct xfs_inode	*ip)
 502{
 503	struct inode		*inode = VFS_I(ip);
 
 
 
 
 
 
 
 
 504
 505	ASSERT(rcu_read_lock_held());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506
 507	/*
 508	 * check for stale RCU freed inode
 509	 *
 510	 * If the inode has been reallocated, it doesn't matter if it's not in
 511	 * the AG we are walking - we are walking for writeback, so if it
 512	 * passes all the "valid inode" checks and is dirty, then we'll write
 513	 * it back anyway.  If it has been reallocated and still being
 514	 * initialised, the XFS_INEW check below will catch it.
 515	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516	spin_lock(&ip->i_flags_lock);
 517	if (!ip->i_ino)
 518		goto out_unlock_noent;
 519
 520	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 521	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
 522		goto out_unlock_noent;
 523	spin_unlock(&ip->i_flags_lock);
 524
 525	/* nothing to sync during shutdown */
 526	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 527		return -EFSCORRUPTED;
 528
 529	/* If we can't grab the inode, it must on it's way to reclaim. */
 530	if (!igrab(inode))
 531		return -ENOENT;
 532
 533	/* inode is valid */
 534	return 0;
 535
 536out_unlock_noent:
 537	spin_unlock(&ip->i_flags_lock);
 538	return -ENOENT;
 539}
 540
 541STATIC int
 542xfs_inode_ag_walk(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	struct xfs_mount	*mp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544	struct xfs_perag	*pag,
 545	int			(*execute)(struct xfs_inode *ip, int flags,
 546					   void *args),
 547	int			flags,
 548	void			*args,
 549	int			tag)
 550{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551	uint32_t		first_index;
 552	int			last_error = 0;
 553	int			skipped;
 554	int			done;
 555	int			nr_found;
 556
 557restart:
 558	done = 0;
 559	skipped = 0;
 560	first_index = 0;
 
 
 
 561	nr_found = 0;
 562	do {
 563		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 564		int		error = 0;
 565		int		i;
 566
 567		rcu_read_lock();
 568
 569		if (tag == -1)
 570			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 571					(void **)batch, first_index,
 572					XFS_LOOKUP_BATCH);
 573		else
 574			nr_found = radix_tree_gang_lookup_tag(
 575					&pag->pag_ici_root,
 576					(void **) batch, first_index,
 577					XFS_LOOKUP_BATCH, tag);
 578
 579		if (!nr_found) {
 
 580			rcu_read_unlock();
 581			break;
 582		}
 583
 584		/*
 585		 * Grab the inodes before we drop the lock. if we found
 586		 * nothing, nr == 0 and the loop will be skipped.
 587		 */
 588		for (i = 0; i < nr_found; i++) {
 589			struct xfs_inode *ip = batch[i];
 590
 591			if (done || xfs_inode_ag_walk_grab(ip))
 592				batch[i] = NULL;
 593
 594			/*
 595			 * Update the index for the next lookup. Catch
 596			 * overflows into the next AG range which can occur if
 597			 * we have inodes in the last block of the AG and we
 598			 * are currently pointing to the last inode.
 599			 *
 600			 * Because we may see inodes that are from the wrong AG
 601			 * due to RCU freeing and reallocation, only update the
 602			 * index if it lies in this AG. It was a race that lead
 603			 * us to see this inode, so another lookup from the
 604			 * same index will not find it again.
 605			 */
 606			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 607				continue;
 608			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 609			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 610				done = 1;
 611		}
 612
 613		/* unlock now we've grabbed the inodes. */
 614		rcu_read_unlock();
 615
 616		for (i = 0; i < nr_found; i++) {
 617			if (!batch[i])
 618				continue;
 619			error = execute(batch[i], flags, args);
 620			IRELE(batch[i]);
 621			if (error == -EAGAIN) {
 622				skipped++;
 623				continue;
 624			}
 625			if (error && last_error != -EFSCORRUPTED)
 626				last_error = error;
 627		}
 628
 629		/* bail out if the filesystem is corrupted.  */
 630		if (error == -EFSCORRUPTED)
 631			break;
 632
 633		cond_resched();
 634
 
 
 
 
 
 635	} while (nr_found && !done);
 636
 
 
 
 
 
 
 637	if (skipped) {
 638		delay(1);
 639		goto restart;
 640	}
 641	return last_error;
 642}
 643
 644/*
 645 * Background scanning to trim post-EOF preallocated space. This is queued
 646 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 647 */
 648STATIC void
 649xfs_queue_eofblocks(
 650	struct xfs_mount *mp)
 651{
 652	rcu_read_lock();
 653	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 654		queue_delayed_work(mp->m_eofblocks_workqueue,
 655				   &mp->m_eofblocks_work,
 656				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 657	rcu_read_unlock();
 658}
 659
 660void
 661xfs_eofblocks_worker(
 662	struct work_struct *work)
 663{
 664	struct xfs_mount *mp = container_of(to_delayed_work(work),
 665				struct xfs_mount, m_eofblocks_work);
 666	xfs_icache_free_eofblocks(mp, NULL);
 667	xfs_queue_eofblocks(mp);
 668}
 669
 670int
 671xfs_inode_ag_iterator(
 672	struct xfs_mount	*mp,
 673	int			(*execute)(struct xfs_inode *ip, int flags,
 674					   void *args),
 675	int			flags,
 676	void			*args)
 677{
 678	struct xfs_perag	*pag;
 679	int			error = 0;
 680	int			last_error = 0;
 681	xfs_agnumber_t		ag;
 682
 683	ag = 0;
 684	while ((pag = xfs_perag_get(mp, ag))) {
 685		ag = pag->pag_agno + 1;
 686		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
 687		xfs_perag_put(pag);
 688		if (error) {
 689			last_error = error;
 690			if (error == -EFSCORRUPTED)
 
 691				break;
 
 692		}
 693	}
 694	return last_error;
 
 695}
 696
 697int
 698xfs_inode_ag_iterator_tag(
 699	struct xfs_mount	*mp,
 700	int			(*execute)(struct xfs_inode *ip, int flags,
 701					   void *args),
 702	int			flags,
 703	void			*args,
 704	int			tag)
 705{
 706	struct xfs_perag	*pag;
 707	int			error = 0;
 708	int			last_error = 0;
 709	xfs_agnumber_t		ag;
 710
 711	ag = 0;
 712	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 713		ag = pag->pag_agno + 1;
 714		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
 715		xfs_perag_put(pag);
 716		if (error) {
 717			last_error = error;
 718			if (error == -EFSCORRUPTED)
 719				break;
 720		}
 721	}
 722	return last_error;
 723}
 
 
 
 724
 725/*
 726 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 727 * isn't a reclaim pass already in progress. By default it runs every 5s based
 728 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 729 * tunable, but that can be done if this method proves to be ineffective or too
 730 * aggressive.
 731 */
 732static void
 733xfs_reclaim_work_queue(
 734	struct xfs_mount        *mp)
 735{
 
 
 736
 737	rcu_read_lock();
 738	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 739		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 740			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 741	}
 742	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 743}
 744
 745/*
 746 * This is a fast pass over the inode cache to try to get reclaim moving on as
 747 * many inodes as possible in a short period of time. It kicks itself every few
 748 * seconds, as well as being kicked by the inode cache shrinker when memory
 749 * goes low. It scans as quickly as possible avoiding locked inodes or those
 750 * already being flushed, and once done schedules a future pass.
 751 */
 752void
 753xfs_reclaim_worker(
 754	struct work_struct *work)
 755{
 756	struct xfs_mount *mp = container_of(to_delayed_work(work),
 757					struct xfs_mount, m_reclaim_work);
 
 
 
 
 758
 759	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 760	xfs_reclaim_work_queue(mp);
 761}
 762
 763static void
 764__xfs_inode_set_reclaim_tag(
 765	struct xfs_perag	*pag,
 766	struct xfs_inode	*ip)
 767{
 768	radix_tree_tag_set(&pag->pag_ici_root,
 769			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 770			   XFS_ICI_RECLAIM_TAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772	if (!pag->pag_ici_reclaimable) {
 773		/* propagate the reclaim tag up into the perag radix tree */
 774		spin_lock(&ip->i_mount->m_perag_lock);
 775		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
 776				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 777				XFS_ICI_RECLAIM_TAG);
 778		spin_unlock(&ip->i_mount->m_perag_lock);
 779
 780		/* schedule periodic background inode reclaim */
 781		xfs_reclaim_work_queue(ip->i_mount);
 
 782
 783		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
 784							-1, _RET_IP_);
 
 
 785	}
 786	pag->pag_ici_reclaimable++;
 
 787}
 788
 789/*
 790 * We set the inode flag atomically with the radix tree tag.
 791 * Once we get tag lookups on the radix tree, this inode flag
 792 * can go away.
 793 */
 794void
 795xfs_inode_set_reclaim_tag(
 796	xfs_inode_t	*ip)
 797{
 798	struct xfs_mount *mp = ip->i_mount;
 799	struct xfs_perag *pag;
 800
 801	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 802	spin_lock(&pag->pag_ici_lock);
 803	spin_lock(&ip->i_flags_lock);
 804	__xfs_inode_set_reclaim_tag(pag, ip);
 805	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 806	spin_unlock(&ip->i_flags_lock);
 807	spin_unlock(&pag->pag_ici_lock);
 808	xfs_perag_put(pag);
 809}
 810
 811STATIC void
 812__xfs_inode_clear_reclaim(
 813	xfs_perag_t	*pag,
 814	xfs_inode_t	*ip)
 815{
 816	pag->pag_ici_reclaimable--;
 817	if (!pag->pag_ici_reclaimable) {
 818		/* clear the reclaim tag from the perag radix tree */
 819		spin_lock(&ip->i_mount->m_perag_lock);
 820		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
 821				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 822				XFS_ICI_RECLAIM_TAG);
 823		spin_unlock(&ip->i_mount->m_perag_lock);
 824		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
 825							-1, _RET_IP_);
 826	}
 827}
 828
 829STATIC void
 830__xfs_inode_clear_reclaim_tag(
 831	xfs_mount_t	*mp,
 832	xfs_perag_t	*pag,
 833	xfs_inode_t	*ip)
 
 
 834{
 835	radix_tree_tag_clear(&pag->pag_ici_root,
 836			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
 837	__xfs_inode_clear_reclaim(pag, ip);
 838}
 839
 840/*
 841 * Grab the inode for reclaim exclusively.
 842 * Return 0 if we grabbed it, non-zero otherwise.
 
 843 */
 844STATIC int
 845xfs_reclaim_inode_grab(
 846	struct xfs_inode	*ip,
 847	int			flags)
 848{
 849	ASSERT(rcu_read_lock_held());
 850
 851	/* quick check for stale RCU freed inode */
 852	if (!ip->i_ino)
 853		return 1;
 854
 855	/*
 856	 * If we are asked for non-blocking operation, do unlocked checks to
 857	 * see if the inode already is being flushed or in reclaim to avoid
 858	 * lock traffic.
 
 
 
 
 
 859	 */
 860	if ((flags & SYNC_TRYLOCK) &&
 861	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
 862		return 1;
 
 
 863
 864	/*
 865	 * The radix tree lock here protects a thread in xfs_iget from racing
 866	 * with us starting reclaim on the inode.  Once we have the
 867	 * XFS_IRECLAIM flag set it will not touch us.
 868	 *
 869	 * Due to RCU lookup, we may find inodes that have been freed and only
 870	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
 871	 * aren't candidates for reclaim at all, so we must check the
 872	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
 873	 */
 874	spin_lock(&ip->i_flags_lock);
 875	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 876	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 877		/* not a reclaim candidate. */
 878		spin_unlock(&ip->i_flags_lock);
 879		return 1;
 880	}
 881	__xfs_iflags_set(ip, XFS_IRECLAIM);
 882	spin_unlock(&ip->i_flags_lock);
 883	return 0;
 884}
 885
 886/*
 887 * Inodes in different states need to be treated differently. The following
 888 * table lists the inode states and the reclaim actions necessary:
 889 *
 890 *	inode state	     iflush ret		required action
 891 *      ---------------      ----------         ---------------
 892 *	bad			-		reclaim
 893 *	shutdown		EIO		unpin and reclaim
 894 *	clean, unpinned		0		reclaim
 895 *	stale, unpinned		0		reclaim
 896 *	clean, pinned(*)	0		requeue
 897 *	stale, pinned		EAGAIN		requeue
 898 *	dirty, async		-		requeue
 899 *	dirty, sync		0		reclaim
 900 *
 901 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 902 * handled anyway given the order of checks implemented.
 903 *
 904 * Also, because we get the flush lock first, we know that any inode that has
 905 * been flushed delwri has had the flush completed by the time we check that
 906 * the inode is clean.
 907 *
 908 * Note that because the inode is flushed delayed write by AIL pushing, the
 909 * flush lock may already be held here and waiting on it can result in very
 910 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 911 * the caller should push the AIL first before trying to reclaim inodes to
 912 * minimise the amount of time spent waiting.  For background relaim, we only
 913 * bother to reclaim clean inodes anyway.
 914 *
 915 * Hence the order of actions after gaining the locks should be:
 916 *	bad		=> reclaim
 917 *	shutdown	=> unpin and reclaim
 918 *	pinned, async	=> requeue
 919 *	pinned, sync	=> unpin
 920 *	stale		=> reclaim
 921 *	clean		=> reclaim
 922 *	dirty, async	=> requeue
 923 *	dirty, sync	=> flush, wait and reclaim
 924 */
 925STATIC int
 926xfs_reclaim_inode(
 927	struct xfs_inode	*ip,
 928	struct xfs_perag	*pag,
 929	int			sync_mode)
 930{
 931	struct xfs_buf		*bp = NULL;
 932	int			error;
 933
 934restart:
 935	error = 0;
 936	xfs_ilock(ip, XFS_ILOCK_EXCL);
 937	if (!xfs_iflock_nowait(ip)) {
 938		if (!(sync_mode & SYNC_WAIT))
 939			goto out;
 940		xfs_iflock(ip);
 941	}
 942
 943	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 944		xfs_iunpin_wait(ip);
 945		xfs_iflush_abort(ip, false);
 946		goto reclaim;
 947	}
 948	if (xfs_ipincount(ip)) {
 949		if (!(sync_mode & SYNC_WAIT))
 950			goto out_ifunlock;
 951		xfs_iunpin_wait(ip);
 952	}
 953	if (xfs_iflags_test(ip, XFS_ISTALE))
 954		goto reclaim;
 955	if (xfs_inode_clean(ip))
 956		goto reclaim;
 957
 958	/*
 959	 * Never flush out dirty data during non-blocking reclaim, as it would
 960	 * just contend with AIL pushing trying to do the same job.
 961	 */
 962	if (!(sync_mode & SYNC_WAIT))
 963		goto out_ifunlock;
 964
 965	/*
 966	 * Now we have an inode that needs flushing.
 967	 *
 968	 * Note that xfs_iflush will never block on the inode buffer lock, as
 969	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
 970	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
 971	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
 972	 * result in an ABBA deadlock with xfs_ifree_cluster().
 973	 *
 974	 * As xfs_ifree_cluser() must gather all inodes that are active in the
 975	 * cache to mark them stale, if we hit this case we don't actually want
 976	 * to do IO here - we want the inode marked stale so we can simply
 977	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
 978	 * inode, back off and try again.  Hopefully the next pass through will
 979	 * see the stale flag set on the inode.
 980	 */
 981	error = xfs_iflush(ip, &bp);
 982	if (error == -EAGAIN) {
 983		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 984		/* backoff longer than in xfs_ifree_cluster */
 985		delay(2);
 986		goto restart;
 987	}
 988
 989	if (!error) {
 990		error = xfs_bwrite(bp);
 991		xfs_buf_relse(bp);
 992	}
 993
 994	xfs_iflock(ip);
 995reclaim:
 996	xfs_ifunlock(ip);
 997	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 998
 999	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1000	/*
1001	 * Remove the inode from the per-AG radix tree.
1002	 *
1003	 * Because radix_tree_delete won't complain even if the item was never
1004	 * added to the tree assert that it's been there before to catch
1005	 * problems with the inode life time early on.
1006	 */
1007	spin_lock(&pag->pag_ici_lock);
1008	if (!radix_tree_delete(&pag->pag_ici_root,
1009				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
1010		ASSERT(0);
1011	__xfs_inode_clear_reclaim(pag, ip);
1012	spin_unlock(&pag->pag_ici_lock);
1013
1014	/*
1015	 * Here we do an (almost) spurious inode lock in order to coordinate
1016	 * with inode cache radix tree lookups.  This is because the lookup
1017	 * can reference the inodes in the cache without taking references.
1018	 *
1019	 * We make that OK here by ensuring that we wait until the inode is
1020	 * unlocked after the lookup before we go ahead and free it.
1021	 */
1022	xfs_ilock(ip, XFS_ILOCK_EXCL);
1023	xfs_qm_dqdetach(ip);
1024	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1025
1026	xfs_inode_free(ip);
1027	return error;
1028
1029out_ifunlock:
1030	xfs_ifunlock(ip);
1031out:
1032	xfs_iflags_clear(ip, XFS_IRECLAIM);
1033	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1034	/*
1035	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1036	 * a short while. However, this just burns CPU time scanning the tree
1037	 * waiting for IO to complete and the reclaim work never goes back to
1038	 * the idle state. Instead, return 0 to let the next scheduled
1039	 * background reclaim attempt to reclaim the inode again.
1040	 */
1041	return 0;
1042}
1043
1044/*
1045 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1046 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1047 * then a shut down during filesystem unmount reclaim walk leak all the
1048 * unreclaimed inodes.
 
1049 */
1050STATIC int
1051xfs_reclaim_inodes_ag(
1052	struct xfs_mount	*mp,
1053	int			flags,
1054	int			*nr_to_scan)
1055{
1056	struct xfs_perag	*pag;
1057	int			error = 0;
1058	int			last_error = 0;
1059	xfs_agnumber_t		ag;
1060	int			trylock = flags & SYNC_TRYLOCK;
1061	int			skipped;
1062
1063restart:
1064	ag = 0;
1065	skipped = 0;
1066	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1067		unsigned long	first_index = 0;
1068		int		done = 0;
1069		int		nr_found = 0;
1070
1071		ag = pag->pag_agno + 1;
1072
1073		if (trylock) {
1074			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1075				skipped++;
1076				xfs_perag_put(pag);
1077				continue;
1078			}
1079			first_index = pag->pag_ici_reclaim_cursor;
1080		} else
1081			mutex_lock(&pag->pag_ici_reclaim_lock);
1082
1083		do {
1084			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1085			int	i;
1086
1087			rcu_read_lock();
1088			nr_found = radix_tree_gang_lookup_tag(
1089					&pag->pag_ici_root,
1090					(void **)batch, first_index,
1091					XFS_LOOKUP_BATCH,
1092					XFS_ICI_RECLAIM_TAG);
1093			if (!nr_found) {
1094				done = 1;
1095				rcu_read_unlock();
1096				break;
1097			}
1098
1099			/*
1100			 * Grab the inodes before we drop the lock. if we found
1101			 * nothing, nr == 0 and the loop will be skipped.
1102			 */
1103			for (i = 0; i < nr_found; i++) {
1104				struct xfs_inode *ip = batch[i];
1105
1106				if (done || xfs_reclaim_inode_grab(ip, flags))
1107					batch[i] = NULL;
1108
1109				/*
1110				 * Update the index for the next lookup. Catch
1111				 * overflows into the next AG range which can
1112				 * occur if we have inodes in the last block of
1113				 * the AG and we are currently pointing to the
1114				 * last inode.
1115				 *
1116				 * Because we may see inodes that are from the
1117				 * wrong AG due to RCU freeing and
1118				 * reallocation, only update the index if it
1119				 * lies in this AG. It was a race that lead us
1120				 * to see this inode, so another lookup from
1121				 * the same index will not find it again.
1122				 */
1123				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1124								pag->pag_agno)
1125					continue;
1126				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1127				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1128					done = 1;
1129			}
1130
1131			/* unlock now we've grabbed the inodes. */
1132			rcu_read_unlock();
1133
1134			for (i = 0; i < nr_found; i++) {
1135				if (!batch[i])
1136					continue;
1137				error = xfs_reclaim_inode(batch[i], pag, flags);
1138				if (error && last_error != -EFSCORRUPTED)
1139					last_error = error;
1140			}
1141
1142			*nr_to_scan -= XFS_LOOKUP_BATCH;
 
1143
1144			cond_resched();
 
1145
1146		} while (nr_found && !done && *nr_to_scan > 0);
 
1147
1148		if (trylock && !done)
1149			pag->pag_ici_reclaim_cursor = first_index;
1150		else
1151			pag->pag_ici_reclaim_cursor = 0;
1152		mutex_unlock(&pag->pag_ici_reclaim_lock);
1153		xfs_perag_put(pag);
1154	}
1155
1156	/*
1157	 * if we skipped any AG, and we still have scan count remaining, do
1158	 * another pass this time using blocking reclaim semantics (i.e
1159	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1160	 * ensure that when we get more reclaimers than AGs we block rather
1161	 * than spin trying to execute reclaim.
1162	 */
1163	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1164		trylock = 0;
1165		goto restart;
1166	}
1167	return last_error;
1168}
1169
1170int
1171xfs_reclaim_inodes(
1172	xfs_mount_t	*mp,
1173	int		mode)
1174{
1175	int		nr_to_scan = INT_MAX;
1176
1177	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1178}
1179
1180/*
1181 * Scan a certain number of inodes for reclaim.
1182 *
1183 * When called we make sure that there is a background (fast) inode reclaim in
1184 * progress, while we will throttle the speed of reclaim via doing synchronous
1185 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1186 * them to be cleaned, which we hope will not be very long due to the
1187 * background walker having already kicked the IO off on those dirty inodes.
1188 */
1189long
1190xfs_reclaim_inodes_nr(
1191	struct xfs_mount	*mp,
1192	int			nr_to_scan)
1193{
1194	/* kick background reclaimer and push the AIL */
1195	xfs_reclaim_work_queue(mp);
1196	xfs_ail_push_all(mp->m_ail);
1197
1198	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1199}
1200
1201/*
1202 * Return the number of reclaimable inodes in the filesystem for
1203 * the shrinker to determine how much to reclaim.
 
 
 
 
 
 
 
1204 */
1205int
1206xfs_reclaim_inodes_count(
1207	struct xfs_mount	*mp)
1208{
1209	struct xfs_perag	*pag;
1210	xfs_agnumber_t		ag = 0;
1211	int			reclaimable = 0;
1212
1213	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1214		ag = pag->pag_agno + 1;
1215		reclaimable += pag->pag_ici_reclaimable;
1216		xfs_perag_put(pag);
1217	}
1218	return reclaimable;
1219}
1220
1221STATIC int
1222xfs_inode_match_id(
1223	struct xfs_inode	*ip,
1224	struct xfs_eofblocks	*eofb)
 
1225{
1226	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1227	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1228		return 0;
1229
1230	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1231	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1232		return 0;
1233
1234	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1235	    xfs_get_projid(ip) != eofb->eof_prid)
1236		return 0;
1237
1238	return 1;
1239}
1240
1241/*
1242 * A union-based inode filtering algorithm. Process the inode if any of the
1243 * criteria match. This is for global/internal scans only.
 
1244 */
1245STATIC int
1246xfs_inode_match_id_union(
1247	struct xfs_inode	*ip,
1248	struct xfs_eofblocks	*eofb)
1249{
1250	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1251	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1252		return 1;
1253
1254	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1255	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1256		return 1;
1257
1258	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1259	    xfs_get_projid(ip) == eofb->eof_prid)
1260		return 1;
1261
1262	return 0;
1263}
 
 
1264
1265STATIC int
1266xfs_inode_free_eofblocks(
1267	struct xfs_inode	*ip,
1268	int			flags,
1269	void			*args)
1270{
1271	int ret;
1272	struct xfs_eofblocks *eofb = args;
1273	bool need_iolock = true;
1274	int match;
1275
1276	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1277
1278	if (!xfs_can_free_eofblocks(ip, false)) {
1279		/* inode could be preallocated or append-only */
1280		trace_xfs_inode_free_eofblocks_invalid(ip);
1281		xfs_inode_clear_eofblocks_tag(ip);
1282		return 0;
1283	}
1284
1285	/*
1286	 * If the mapping is dirty the operation can block and wait for some
1287	 * time. Unless we are waiting, skip it.
 
1288	 */
1289	if (!(flags & SYNC_WAIT) &&
1290	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1291		return 0;
1292
1293	if (eofb) {
1294		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1295			match = xfs_inode_match_id_union(ip, eofb);
1296		else
1297			match = xfs_inode_match_id(ip, eofb);
1298		if (!match)
1299			return 0;
1300
1301		/* skip the inode if the file size is too small */
1302		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1303		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1304			return 0;
1305
1306		/*
1307		 * A scan owner implies we already hold the iolock. Skip it in
1308		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1309		 * the possibility of EAGAIN being returned.
1310		 */
1311		if (eofb->eof_scan_owner == ip->i_ino)
1312			need_iolock = false;
1313	}
1314
1315	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1316
1317	/* don't revisit the inode if we're not waiting */
1318	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1319		ret = 0;
1320
1321	return ret;
1322}
1323
1324int
1325xfs_icache_free_eofblocks(
1326	struct xfs_mount	*mp,
1327	struct xfs_eofblocks	*eofb)
1328{
1329	int flags = SYNC_TRYLOCK;
1330
1331	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1332		flags = SYNC_WAIT;
 
 
1333
1334	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1335					 eofb, XFS_ICI_EOFBLOCKS_TAG);
 
 
1336}
1337
1338/*
1339 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1340 * multiple quotas, we don't know exactly which quota caused an allocation
1341 * failure. We make a best effort by including each quota under low free space
1342 * conditions (less than 1% free space) in the scan.
 
 
 
 
1343 */
1344int
1345xfs_inode_free_quota_eofblocks(
1346	struct xfs_inode *ip)
1347{
1348	int scan = 0;
1349	struct xfs_eofblocks eofb = {0};
1350	struct xfs_dquot *dq;
1351
1352	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1353
1354	/*
1355	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1356	 * can repeatedly trylock on the inode we're currently processing. We
1357	 * run a sync scan to increase effectiveness and use the union filter to
1358	 * cover all applicable quotas in a single scan.
1359	 */
1360	eofb.eof_scan_owner = ip->i_ino;
1361	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1362
1363	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1364		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1365		if (dq && xfs_dquot_lowsp(dq)) {
1366			eofb.eof_uid = VFS_I(ip)->i_uid;
1367			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1368			scan = 1;
1369		}
1370	}
1371
1372	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1373		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1374		if (dq && xfs_dquot_lowsp(dq)) {
1375			eofb.eof_gid = VFS_I(ip)->i_gid;
1376			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1377			scan = 1;
1378		}
1379	}
1380
1381	if (scan)
1382		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 
 
 
 
 
 
 
 
1383
1384	return scan;
 
 
1385}
1386
1387void
1388xfs_inode_set_eofblocks_tag(
1389	xfs_inode_t	*ip)
1390{
1391	struct xfs_mount *mp = ip->i_mount;
1392	struct xfs_perag *pag;
1393	int tagged;
 
 
 
 
 
1394
1395	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1396	spin_lock(&pag->pag_ici_lock);
1397	trace_xfs_inode_set_eofblocks_tag(ip);
 
 
 
 
 
 
 
 
1398
1399	tagged = radix_tree_tagged(&pag->pag_ici_root,
1400				   XFS_ICI_EOFBLOCKS_TAG);
1401	radix_tree_tag_set(&pag->pag_ici_root,
1402			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403			   XFS_ICI_EOFBLOCKS_TAG);
1404	if (!tagged) {
1405		/* propagate the eofblocks tag up into the perag radix tree */
1406		spin_lock(&ip->i_mount->m_perag_lock);
1407		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1408				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409				   XFS_ICI_EOFBLOCKS_TAG);
1410		spin_unlock(&ip->i_mount->m_perag_lock);
1411
1412		/* kick off background trimming */
1413		xfs_queue_eofblocks(ip->i_mount);
1414
1415		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1416					      -1, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417	}
1418
1419	spin_unlock(&pag->pag_ici_lock);
1420	xfs_perag_put(pag);
 
 
 
 
 
 
1421}
1422
1423void
1424xfs_inode_clear_eofblocks_tag(
1425	xfs_inode_t	*ip)
 
1426{
1427	struct xfs_mount *mp = ip->i_mount;
1428	struct xfs_perag *pag;
 
 
 
1429
1430	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1431	spin_lock(&pag->pag_ici_lock);
1432	trace_xfs_inode_clear_eofblocks_tag(ip);
 
 
1433
1434	radix_tree_tag_clear(&pag->pag_ici_root,
1435			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1436			     XFS_ICI_EOFBLOCKS_TAG);
1437	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1438		/* clear the eofblocks tag from the perag radix tree */
1439		spin_lock(&ip->i_mount->m_perag_lock);
1440		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1441				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1442				     XFS_ICI_EOFBLOCKS_TAG);
1443		spin_unlock(&ip->i_mount->m_perag_lock);
1444		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1445					       -1, _RET_IP_);
1446	}
1447
1448	spin_unlock(&pag->pag_ici_lock);
1449	xfs_perag_put(pag);
1450}
1451
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
 
  14#include "xfs_trans.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_inode_item.h"
  17#include "xfs_quota.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_bmap_util.h"
  21#include "xfs_dquot_item.h"
  22#include "xfs_dquot.h"
  23#include "xfs_reflink.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_ag.h"
  26#include "xfs_log_priv.h"
  27#include "xfs_health.h"
  28
  29#include <linux/iversion.h>
  30
  31/* Radix tree tags for incore inode tree. */
  32
  33/* inode is to be reclaimed */
  34#define XFS_ICI_RECLAIM_TAG	0
  35/* Inode has speculative preallocations (posteof or cow) to clean. */
  36#define XFS_ICI_BLOCKGC_TAG	1
  37
  38/*
  39 * The goal for walking incore inodes.  These can correspond with incore inode
  40 * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
  41 */
  42enum xfs_icwalk_goal {
  43	/* Goals directly associated with tagged inodes. */
  44	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
  45	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
  46};
  47
  48static int xfs_icwalk(struct xfs_mount *mp,
  49		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
  50static int xfs_icwalk_ag(struct xfs_perag *pag,
  51		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
  52
  53/*
  54 * Private inode cache walk flags for struct xfs_icwalk.  Must not
  55 * coincide with XFS_ICWALK_FLAGS_VALID.
  56 */
  57
  58/* Stop scanning after icw_scan_limit inodes. */
  59#define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
  60
  61#define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
  62#define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
  63
  64#define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
  65					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
  66					 XFS_ICWALK_FLAG_UNION)
  67
  68/*
  69 * Allocate and initialise an xfs_inode.
  70 */
  71struct xfs_inode *
  72xfs_inode_alloc(
  73	struct xfs_mount	*mp,
  74	xfs_ino_t		ino)
  75{
  76	struct xfs_inode	*ip;
  77
  78	/*
  79	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
  80	 * and return NULL here on ENOMEM.
 
  81	 */
  82	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
  83
 
  84	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  85		kmem_cache_free(xfs_inode_cache, ip);
  86		return NULL;
  87	}
  88
  89	/* VFS doesn't initialise i_mode or i_state! */
  90	VFS_I(ip)->i_mode = 0;
  91	VFS_I(ip)->i_state = 0;
  92	mapping_set_large_folios(VFS_I(ip)->i_mapping);
  93
  94	XFS_STATS_INC(mp, vn_active);
  95	ASSERT(atomic_read(&ip->i_pincount) == 0);
 
 
  96	ASSERT(ip->i_ino == 0);
  97
 
 
  98	/* initialise the xfs inode */
  99	ip->i_ino = ino;
 100	ip->i_mount = mp;
 101	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
 102	ip->i_cowfp = NULL;
 103	memset(&ip->i_af, 0, sizeof(ip->i_af));
 104	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
 105	memset(&ip->i_df, 0, sizeof(ip->i_df));
 106	ip->i_flags = 0;
 107	ip->i_delayed_blks = 0;
 108	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
 109	ip->i_nblocks = 0;
 110	ip->i_forkoff = 0;
 111	ip->i_sick = 0;
 112	ip->i_checked = 0;
 113	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
 114	INIT_LIST_HEAD(&ip->i_ioend_list);
 115	spin_lock_init(&ip->i_ioend_lock);
 116	ip->i_next_unlinked = NULLAGINO;
 117	ip->i_prev_unlinked = 0;
 118
 119	return ip;
 120}
 121
 122STATIC void
 123xfs_inode_free_callback(
 124	struct rcu_head		*head)
 125{
 126	struct inode		*inode = container_of(head, struct inode, i_rcu);
 127	struct xfs_inode	*ip = XFS_I(inode);
 128
 
 
 
 
 
 
 
 129	switch (VFS_I(ip)->i_mode & S_IFMT) {
 130	case S_IFREG:
 131	case S_IFDIR:
 132	case S_IFLNK:
 133		xfs_idestroy_fork(&ip->i_df);
 134		break;
 135	}
 136
 137	xfs_ifork_zap_attr(ip);
 
 138
 139	if (ip->i_cowfp) {
 140		xfs_idestroy_fork(ip->i_cowfp);
 141		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
 142	}
 143	if (ip->i_itemp) {
 144		ASSERT(!test_bit(XFS_LI_IN_AIL,
 145				 &ip->i_itemp->ili_item.li_flags));
 146		xfs_inode_item_destroy(ip);
 147		ip->i_itemp = NULL;
 148	}
 149
 150	kmem_cache_free(xfs_inode_cache, ip);
 151}
 152
 153static void
 154__xfs_inode_free(
 155	struct xfs_inode	*ip)
 156{
 157	/* asserts to verify all state is correct here */
 158	ASSERT(atomic_read(&ip->i_pincount) == 0);
 159	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
 160	XFS_STATS_DEC(ip->i_mount, vn_active);
 161
 162	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 163}
 164
 165void
 166xfs_inode_free(
 167	struct xfs_inode	*ip)
 168{
 169	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
 170
 171	/*
 172	 * Because we use RCU freeing we need to ensure the inode always
 173	 * appears to be reclaimed with an invalid inode number when in the
 174	 * free state. The ip->i_flags_lock provides the barrier against lookup
 175	 * races.
 176	 */
 177	spin_lock(&ip->i_flags_lock);
 178	ip->i_flags = XFS_IRECLAIM;
 179	ip->i_ino = 0;
 180	spin_unlock(&ip->i_flags_lock);
 181
 182	__xfs_inode_free(ip);
 183}
 
 
 184
 185/*
 186 * Queue background inode reclaim work if there are reclaimable inodes and there
 187 * isn't reclaim work already scheduled or in progress.
 188 */
 189static void
 190xfs_reclaim_work_queue(
 191	struct xfs_mount        *mp)
 192{
 193
 194	rcu_read_lock();
 195	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 196		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 197			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 198	}
 199	rcu_read_unlock();
 200}
 201
 202/*
 203 * Background scanning to trim preallocated space. This is queued based on the
 204 * 'speculative_prealloc_lifetime' tunable (5m by default).
 205 */
 206static inline void
 207xfs_blockgc_queue(
 208	struct xfs_perag	*pag)
 209{
 210	struct xfs_mount	*mp = pag->pag_mount;
 211
 212	if (!xfs_is_blockgc_enabled(mp))
 213		return;
 214
 215	rcu_read_lock();
 216	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
 217		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
 218				   &pag->pag_blockgc_work,
 219				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
 220	rcu_read_unlock();
 221}
 222
 223/* Set a tag on both the AG incore inode tree and the AG radix tree. */
 224static void
 225xfs_perag_set_inode_tag(
 226	struct xfs_perag	*pag,
 227	xfs_agino_t		agino,
 228	unsigned int		tag)
 229{
 230	struct xfs_mount	*mp = pag->pag_mount;
 231	bool			was_tagged;
 232
 233	lockdep_assert_held(&pag->pag_ici_lock);
 234
 235	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
 236	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
 237
 238	if (tag == XFS_ICI_RECLAIM_TAG)
 239		pag->pag_ici_reclaimable++;
 240
 241	if (was_tagged)
 242		return;
 243
 244	/* propagate the tag up into the perag radix tree */
 245	spin_lock(&mp->m_perag_lock);
 246	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
 247	spin_unlock(&mp->m_perag_lock);
 248
 249	/* start background work */
 250	switch (tag) {
 251	case XFS_ICI_RECLAIM_TAG:
 252		xfs_reclaim_work_queue(mp);
 253		break;
 254	case XFS_ICI_BLOCKGC_TAG:
 255		xfs_blockgc_queue(pag);
 256		break;
 257	}
 258
 259	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
 260}
 261
 262/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
 263static void
 264xfs_perag_clear_inode_tag(
 265	struct xfs_perag	*pag,
 266	xfs_agino_t		agino,
 267	unsigned int		tag)
 268{
 269	struct xfs_mount	*mp = pag->pag_mount;
 270
 271	lockdep_assert_held(&pag->pag_ici_lock);
 272
 273	/*
 274	 * Reclaim can signal (with a null agino) that it cleared its own tag
 275	 * by removing the inode from the radix tree.
 276	 */
 277	if (agino != NULLAGINO)
 278		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
 279	else
 280		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
 281
 282	if (tag == XFS_ICI_RECLAIM_TAG)
 283		pag->pag_ici_reclaimable--;
 284
 285	if (radix_tree_tagged(&pag->pag_ici_root, tag))
 286		return;
 287
 288	/* clear the tag from the perag radix tree */
 289	spin_lock(&mp->m_perag_lock);
 290	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
 291	spin_unlock(&mp->m_perag_lock);
 292
 293	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
 294}
 295
 296/*
 297 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 298 * part of the structure. This is made more complex by the fact we store
 299 * information about the on-disk values in the VFS inode and so we can't just
 300 * overwrite the values unconditionally. Hence we save the parameters we
 301 * need to retain across reinitialisation, and rewrite them into the VFS inode
 302 * after reinitialisation even if it fails.
 303 */
 304static int
 305xfs_reinit_inode(
 306	struct xfs_mount	*mp,
 307	struct inode		*inode)
 308{
 309	int			error;
 310	uint32_t		nlink = inode->i_nlink;
 311	uint32_t		generation = inode->i_generation;
 312	uint64_t		version = inode_peek_iversion(inode);
 313	umode_t			mode = inode->i_mode;
 314	dev_t			dev = inode->i_rdev;
 315	kuid_t			uid = inode->i_uid;
 316	kgid_t			gid = inode->i_gid;
 317
 318	error = inode_init_always(mp->m_super, inode);
 319
 320	set_nlink(inode, nlink);
 321	inode->i_generation = generation;
 322	inode_set_iversion_queried(inode, version);
 323	inode->i_mode = mode;
 324	inode->i_rdev = dev;
 325	inode->i_uid = uid;
 326	inode->i_gid = gid;
 327	mapping_set_large_folios(inode->i_mapping);
 328	return error;
 329}
 330
 331/*
 332 * Carefully nudge an inode whose VFS state has been torn down back into a
 333 * usable state.  Drops the i_flags_lock and the rcu read lock.
 334 */
 335static int
 336xfs_iget_recycle(
 337	struct xfs_perag	*pag,
 338	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
 339{
 340	struct xfs_mount	*mp = ip->i_mount;
 341	struct inode		*inode = VFS_I(ip);
 342	int			error;
 343
 344	trace_xfs_iget_recycle(ip);
 345
 346	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 347		return -EAGAIN;
 348
 349	/*
 350	 * We need to make it look like the inode is being reclaimed to prevent
 351	 * the actual reclaim workers from stomping over us while we recycle
 352	 * the inode.  We can't clear the radix tree tag yet as it requires
 353	 * pag_ici_lock to be held exclusive.
 354	 */
 355	ip->i_flags |= XFS_IRECLAIM;
 356
 357	spin_unlock(&ip->i_flags_lock);
 358	rcu_read_unlock();
 359
 360	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 361	error = xfs_reinit_inode(mp, inode);
 362	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 363	if (error) {
 364		/*
 365		 * Re-initializing the inode failed, and we are in deep
 366		 * trouble.  Try to re-add it to the reclaim list.
 367		 */
 368		rcu_read_lock();
 369		spin_lock(&ip->i_flags_lock);
 370		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 371		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 372		spin_unlock(&ip->i_flags_lock);
 373		rcu_read_unlock();
 374
 375		trace_xfs_iget_recycle_fail(ip);
 376		return error;
 377	}
 378
 379	spin_lock(&pag->pag_ici_lock);
 380	spin_lock(&ip->i_flags_lock);
 381
 382	/*
 383	 * Clear the per-lifetime state in the inode as we are now effectively
 384	 * a new inode and need to return to the initial state before reuse
 385	 * occurs.
 386	 */
 387	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 388	ip->i_flags |= XFS_INEW;
 389	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
 390			XFS_ICI_RECLAIM_TAG);
 391	inode->i_state = I_NEW;
 392	spin_unlock(&ip->i_flags_lock);
 393	spin_unlock(&pag->pag_ici_lock);
 394
 395	return 0;
 396}
 397
 398/*
 399 * If we are allocating a new inode, then check what was returned is
 400 * actually a free, empty inode. If we are not allocating an inode,
 401 * then check we didn't find a free inode.
 402 *
 403 * Returns:
 404 *	0		if the inode free state matches the lookup context
 405 *	-ENOENT		if the inode is free and we are not allocating
 406 *	-EFSCORRUPTED	if there is any state mismatch at all
 407 */
 408static int
 409xfs_iget_check_free_state(
 410	struct xfs_inode	*ip,
 411	int			flags)
 412{
 413	if (flags & XFS_IGET_CREATE) {
 414		/* should be a free inode */
 415		if (VFS_I(ip)->i_mode != 0) {
 416			xfs_warn(ip->i_mount,
 417"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 418				ip->i_ino, VFS_I(ip)->i_mode);
 419			xfs_agno_mark_sick(ip->i_mount,
 420					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 421					XFS_SICK_AG_INOBT);
 422			return -EFSCORRUPTED;
 423		}
 424
 425		if (ip->i_nblocks != 0) {
 426			xfs_warn(ip->i_mount,
 427"Corruption detected! Free inode 0x%llx has blocks allocated!",
 428				ip->i_ino);
 429			xfs_agno_mark_sick(ip->i_mount,
 430					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 431					XFS_SICK_AG_INOBT);
 432			return -EFSCORRUPTED;
 433		}
 434		return 0;
 435	}
 436
 437	/* should be an allocated inode */
 438	if (VFS_I(ip)->i_mode == 0)
 439		return -ENOENT;
 440
 441	return 0;
 442}
 443
 444/* Make all pending inactivation work start immediately. */
 445static bool
 446xfs_inodegc_queue_all(
 447	struct xfs_mount	*mp)
 448{
 449	struct xfs_inodegc	*gc;
 450	int			cpu;
 451	bool			ret = false;
 452
 453	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 454		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 455		if (!llist_empty(&gc->list)) {
 456			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
 457			ret = true;
 458		}
 459	}
 460
 461	return ret;
 462}
 463
 464/* Wait for all queued work and collect errors */
 465static int
 466xfs_inodegc_wait_all(
 467	struct xfs_mount	*mp)
 468{
 469	int			cpu;
 470	int			error = 0;
 471
 472	flush_workqueue(mp->m_inodegc_wq);
 473	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 474		struct xfs_inodegc	*gc;
 475
 476		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 477		if (gc->error && !error)
 478			error = gc->error;
 479		gc->error = 0;
 480	}
 481
 482	return error;
 483}
 484
 485/*
 486 * Check the validity of the inode we just found it the cache
 487 */
 488static int
 489xfs_iget_cache_hit(
 490	struct xfs_perag	*pag,
 491	struct xfs_inode	*ip,
 492	xfs_ino_t		ino,
 493	int			flags,
 494	int			lock_flags) __releases(RCU)
 495{
 496	struct inode		*inode = VFS_I(ip);
 497	struct xfs_mount	*mp = ip->i_mount;
 498	int			error;
 499
 500	/*
 501	 * check for re-use of an inode within an RCU grace period due to the
 502	 * radix tree nodes not being updated yet. We monitor for this by
 503	 * setting the inode number to zero before freeing the inode structure.
 504	 * If the inode has been reallocated and set up, then the inode number
 505	 * will not match, so check for that, too.
 506	 */
 507	spin_lock(&ip->i_flags_lock);
 508	if (ip->i_ino != ino)
 509		goto out_skip;
 
 
 
 
 
 510
 511	/*
 512	 * If we are racing with another cache hit that is currently
 513	 * instantiating this inode or currently recycling it out of
 514	 * reclaimable state, wait for the initialisation to complete
 515	 * before continuing.
 516	 *
 517	 * If we're racing with the inactivation worker we also want to wait.
 518	 * If we're creating a new file, it's possible that the worker
 519	 * previously marked the inode as free on disk but hasn't finished
 520	 * updating the incore state yet.  The AGI buffer will be dirty and
 521	 * locked to the icreate transaction, so a synchronous push of the
 522	 * inodegc workers would result in deadlock.  For a regular iget, the
 523	 * worker is running already, so we might as well wait.
 524	 *
 525	 * XXX(hch): eventually we should do something equivalent to
 526	 *	     wait_on_inode to wait for these flags to be cleared
 527	 *	     instead of polling for it.
 528	 */
 529	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
 530		goto out_skip;
 
 
 
 
 531
 532	if (ip->i_flags & XFS_NEED_INACTIVE) {
 533		/* Unlinked inodes cannot be re-grabbed. */
 534		if (VFS_I(ip)->i_nlink == 0) {
 535			error = -ENOENT;
 536			goto out_error;
 537		}
 538		goto out_inodegc_flush;
 539	}
 540
 541	/*
 542	 * Check the inode free state is valid. This also detects lookup
 543	 * racing with unlinks.
 544	 */
 545	error = xfs_iget_check_free_state(ip, flags);
 546	if (error)
 547		goto out_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549	/* Skip inodes that have no vfs state. */
 550	if ((flags & XFS_IGET_INCORE) &&
 551	    (ip->i_flags & XFS_IRECLAIMABLE))
 552		goto out_skip;
 553
 554	/* The inode fits the selection criteria; process it. */
 555	if (ip->i_flags & XFS_IRECLAIMABLE) {
 556		/* Drops i_flags_lock and RCU read lock. */
 557		error = xfs_iget_recycle(pag, ip);
 558		if (error == -EAGAIN)
 559			goto out_skip;
 560		if (error)
 561			return error;
 562	} else {
 563		/* If the VFS inode is being torn down, pause and try again. */
 564		if (!igrab(inode))
 565			goto out_skip;
 
 
 
 566
 567		/* We've got a live one. */
 568		spin_unlock(&ip->i_flags_lock);
 569		rcu_read_unlock();
 570		trace_xfs_iget_hit(ip);
 571	}
 572
 573	if (lock_flags != 0)
 574		xfs_ilock(ip, lock_flags);
 575
 576	if (!(flags & XFS_IGET_INCORE))
 577		xfs_iflags_clear(ip, XFS_ISTALE);
 578	XFS_STATS_INC(mp, xs_ig_found);
 579
 580	return 0;
 581
 582out_skip:
 583	trace_xfs_iget_skip(ip);
 584	XFS_STATS_INC(mp, xs_ig_frecycle);
 585	error = -EAGAIN;
 586out_error:
 587	spin_unlock(&ip->i_flags_lock);
 588	rcu_read_unlock();
 589	return error;
 
 590
 591out_inodegc_flush:
 592	spin_unlock(&ip->i_flags_lock);
 593	rcu_read_unlock();
 594	/*
 595	 * Do not wait for the workers, because the caller could hold an AGI
 596	 * buffer lock.  We're just going to sleep in a loop anyway.
 597	 */
 598	if (xfs_is_inodegc_enabled(mp))
 599		xfs_inodegc_queue_all(mp);
 600	return -EAGAIN;
 601}
 602
 603static int
 604xfs_iget_cache_miss(
 605	struct xfs_mount	*mp,
 606	struct xfs_perag	*pag,
 607	xfs_trans_t		*tp,
 608	xfs_ino_t		ino,
 609	struct xfs_inode	**ipp,
 610	int			flags,
 611	int			lock_flags)
 612{
 613	struct xfs_inode	*ip;
 614	int			error;
 615	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 616	int			iflags;
 617
 618	ip = xfs_inode_alloc(mp, ino);
 619	if (!ip)
 620		return -ENOMEM;
 621
 622	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
 623	if (error)
 624		goto out_destroy;
 625
 626	/*
 627	 * For version 5 superblocks, if we are initialising a new inode and we
 628	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
 629	 * simply build the new inode core with a random generation number.
 630	 *
 631	 * For version 4 (and older) superblocks, log recovery is dependent on
 632	 * the i_flushiter field being initialised from the current on-disk
 633	 * value and hence we must also read the inode off disk even when
 634	 * initializing new inodes.
 635	 */
 636	if (xfs_has_v3inodes(mp) &&
 637	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
 638		VFS_I(ip)->i_generation = get_random_u32();
 639	} else {
 640		struct xfs_buf		*bp;
 641
 642		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
 643		if (error)
 644			goto out_destroy;
 645
 646		error = xfs_inode_from_disk(ip,
 647				xfs_buf_offset(bp, ip->i_imap.im_boffset));
 648		if (!error)
 649			xfs_buf_set_ref(bp, XFS_INO_REF);
 650		else
 651			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 652		xfs_trans_brelse(tp, bp);
 653
 654		if (error)
 655			goto out_destroy;
 656	}
 657
 658	trace_xfs_iget_miss(ip);
 659
 660	/*
 661	 * Check the inode free state is valid. This also detects lookup
 662	 * racing with unlinks.
 663	 */
 664	error = xfs_iget_check_free_state(ip, flags);
 665	if (error)
 666		goto out_destroy;
 
 667
 668	/*
 669	 * Preload the radix tree so we can insert safely under the
 670	 * write spinlock. Note that we cannot sleep inside the preload
 671	 * region.
 
 672	 */
 673	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
 674		error = -EAGAIN;
 675		goto out_destroy;
 676	}
 677
 678	/*
 679	 * Because the inode hasn't been added to the radix-tree yet it can't
 680	 * be found by another thread, so we can do the non-sleeping lock here.
 681	 */
 682	if (lock_flags) {
 683		if (!xfs_ilock_nowait(ip, lock_flags))
 684			BUG();
 685	}
 686
 687	/*
 688	 * These values must be set before inserting the inode into the radix
 689	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 690	 * RCU locking mechanism) can find it and that lookup must see that this
 691	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 692	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 693	 * memory barrier that ensures this detection works correctly at lookup
 694	 * time.
 695	 */
 696	iflags = XFS_INEW;
 697	if (flags & XFS_IGET_DONTCACHE)
 698		d_mark_dontcache(VFS_I(ip));
 699	ip->i_udquot = NULL;
 700	ip->i_gdquot = NULL;
 701	ip->i_pdquot = NULL;
 702	xfs_iflags_set(ip, iflags);
 703
 704	/* insert the new inode */
 705	spin_lock(&pag->pag_ici_lock);
 706	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 707	if (unlikely(error)) {
 708		WARN_ON(error != -EEXIST);
 709		XFS_STATS_INC(mp, xs_ig_dup);
 710		error = -EAGAIN;
 711		goto out_preload_end;
 712	}
 713	spin_unlock(&pag->pag_ici_lock);
 714	radix_tree_preload_end();
 715
 716	*ipp = ip;
 717	return 0;
 718
 719out_preload_end:
 720	spin_unlock(&pag->pag_ici_lock);
 721	radix_tree_preload_end();
 722	if (lock_flags)
 723		xfs_iunlock(ip, lock_flags);
 724out_destroy:
 725	__destroy_inode(VFS_I(ip));
 726	xfs_inode_free(ip);
 727	return error;
 728}
 729
 730/*
 731 * Look up an inode by number in the given file system.  The inode is looked up
 732 * in the cache held in each AG.  If the inode is found in the cache, initialise
 733 * the vfs inode if necessary.
 
 734 *
 735 * If it is not in core, read it in from the file system's device, add it to the
 736 * cache and initialise the vfs inode.
 737 *
 738 * The inode is locked according to the value of the lock_flags parameter.
 739 * Inode lookup is only done during metadata operations and not as part of the
 740 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
 
 
 
 
 
 
 
 
 
 741 */
 742int
 743xfs_iget(
 744	struct xfs_mount	*mp,
 745	struct xfs_trans	*tp,
 746	xfs_ino_t		ino,
 747	uint			flags,
 748	uint			lock_flags,
 749	struct xfs_inode	**ipp)
 750{
 751	struct xfs_inode	*ip;
 752	struct xfs_perag	*pag;
 753	xfs_agino_t		agino;
 754	int			error;
 755
 
 
 
 
 
 
 
 756	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 757
 758	/* reject inode numbers outside existing AGs */
 759	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 760		return -EINVAL;
 761
 762	XFS_STATS_INC(mp, xs_ig_attempts);
 763
 764	/* get the perag structure and ensure that it's inode capable */
 765	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 766	agino = XFS_INO_TO_AGINO(mp, ino);
 767
 768again:
 769	error = 0;
 770	rcu_read_lock();
 771	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 772
 773	if (ip) {
 774		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 775		if (error)
 776			goto out_error_or_again;
 777	} else {
 778		rcu_read_unlock();
 779		if (flags & XFS_IGET_INCORE) {
 780			error = -ENODATA;
 781			goto out_error_or_again;
 782		}
 783		XFS_STATS_INC(mp, xs_ig_missed);
 784
 785		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 786							flags, lock_flags);
 787		if (error)
 788			goto out_error_or_again;
 789	}
 790	xfs_perag_put(pag);
 791
 792	*ipp = ip;
 793
 794	/*
 795	 * If we have a real type for an on-disk inode, we can setup the inode
 796	 * now.	 If it's a new inode being created, xfs_init_new_inode will
 797	 * handle it.
 798	 */
 799	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 800		xfs_setup_existing_inode(ip);
 801	return 0;
 802
 803out_error_or_again:
 804	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
 805	    error == -EAGAIN) {
 806		delay(1);
 807		goto again;
 808	}
 809	xfs_perag_put(pag);
 810	return error;
 811}
 812
 813/*
 814 * Grab the inode for reclaim exclusively.
 815 *
 816 * We have found this inode via a lookup under RCU, so the inode may have
 817 * already been freed, or it may be in the process of being recycled by
 818 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
 819 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
 820 * will not be set. Hence we need to check for both these flag conditions to
 821 * avoid inodes that are no longer reclaim candidates.
 822 *
 823 * Note: checking for other state flags here, under the i_flags_lock or not, is
 824 * racy and should be avoided. Those races should be resolved only after we have
 825 * ensured that we are able to reclaim this inode and the world can see that we
 826 * are going to reclaim it.
 827 *
 828 * Return true if we grabbed it, false otherwise.
 829 */
 830static bool
 831xfs_reclaim_igrab(
 832	struct xfs_inode	*ip,
 833	struct xfs_icwalk	*icw)
 834{
 835	ASSERT(rcu_read_lock_held());
 836
 837	spin_lock(&ip->i_flags_lock);
 838	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 839	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 840		/* not a reclaim candidate. */
 841		spin_unlock(&ip->i_flags_lock);
 842		return false;
 843	}
 844
 845	/* Don't reclaim a sick inode unless the caller asked for it. */
 846	if (ip->i_sick &&
 847	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
 848		spin_unlock(&ip->i_flags_lock);
 849		return false;
 850	}
 851
 852	__xfs_iflags_set(ip, XFS_IRECLAIM);
 853	spin_unlock(&ip->i_flags_lock);
 854	return true;
 855}
 856
 857/*
 858 * Inode reclaim is non-blocking, so the default action if progress cannot be
 859 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
 860 * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
 861 * blocking anymore and hence we can wait for the inode to be able to reclaim
 862 * it.
 863 *
 864 * We do no IO here - if callers require inodes to be cleaned they must push the
 865 * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
 866 * done in the background in a non-blocking manner, and enables memory reclaim
 867 * to make progress without blocking.
 868 */
 869static void
 870xfs_reclaim_inode(
 871	struct xfs_inode	*ip,
 872	struct xfs_perag	*pag)
 873{
 874	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
 875
 876	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 877		goto out;
 878	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
 879		goto out_iunlock;
 880
 881	/*
 882	 * Check for log shutdown because aborting the inode can move the log
 883	 * tail and corrupt in memory state. This is fine if the log is shut
 884	 * down, but if the log is still active and only the mount is shut down
 885	 * then the in-memory log tail movement caused by the abort can be
 886	 * incorrectly propagated to disk.
 887	 */
 888	if (xlog_is_shutdown(ip->i_mount->m_log)) {
 889		xfs_iunpin_wait(ip);
 890		xfs_iflush_shutdown_abort(ip);
 891		goto reclaim;
 892	}
 893	if (xfs_ipincount(ip))
 894		goto out_clear_flush;
 895	if (!xfs_inode_clean(ip))
 896		goto out_clear_flush;
 897
 898	xfs_iflags_clear(ip, XFS_IFLUSHING);
 899reclaim:
 900	trace_xfs_inode_reclaiming(ip);
 901
 902	/*
 903	 * Because we use RCU freeing we need to ensure the inode always appears
 904	 * to be reclaimed with an invalid inode number when in the free state.
 905	 * We do this as early as possible under the ILOCK so that
 906	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
 907	 * detect races with us here. By doing this, we guarantee that once
 908	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
 909	 * it will see either a valid inode that will serialise correctly, or it
 910	 * will see an invalid inode that it can skip.
 911	 */
 912	spin_lock(&ip->i_flags_lock);
 913	ip->i_flags = XFS_IRECLAIM;
 914	ip->i_ino = 0;
 915	ip->i_sick = 0;
 916	ip->i_checked = 0;
 917	spin_unlock(&ip->i_flags_lock);
 918
 919	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
 920	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 921
 922	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
 923	/*
 924	 * Remove the inode from the per-AG radix tree.
 925	 *
 926	 * Because radix_tree_delete won't complain even if the item was never
 927	 * added to the tree assert that it's been there before to catch
 928	 * problems with the inode life time early on.
 929	 */
 930	spin_lock(&pag->pag_ici_lock);
 931	if (!radix_tree_delete(&pag->pag_ici_root,
 932				XFS_INO_TO_AGINO(ip->i_mount, ino)))
 933		ASSERT(0);
 934	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
 935	spin_unlock(&pag->pag_ici_lock);
 936
 937	/*
 938	 * Here we do an (almost) spurious inode lock in order to coordinate
 939	 * with inode cache radix tree lookups.  This is because the lookup
 940	 * can reference the inodes in the cache without taking references.
 941	 *
 942	 * We make that OK here by ensuring that we wait until the inode is
 943	 * unlocked after the lookup before we go ahead and free it.
 944	 */
 945	xfs_ilock(ip, XFS_ILOCK_EXCL);
 946	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
 947	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 948	ASSERT(xfs_inode_clean(ip));
 949
 950	__xfs_inode_free(ip);
 951	return;
 952
 953out_clear_flush:
 954	xfs_iflags_clear(ip, XFS_IFLUSHING);
 955out_iunlock:
 956	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 957out:
 958	xfs_iflags_clear(ip, XFS_IRECLAIM);
 959}
 960
 961/* Reclaim sick inodes if we're unmounting or the fs went down. */
 962static inline bool
 963xfs_want_reclaim_sick(
 964	struct xfs_mount	*mp)
 965{
 966	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
 967	       xfs_is_shutdown(mp);
 968}
 969
 970void
 971xfs_reclaim_inodes(
 972	struct xfs_mount	*mp)
 973{
 974	struct xfs_icwalk	icw = {
 975		.icw_flags	= 0,
 976	};
 977
 978	if (xfs_want_reclaim_sick(mp))
 979		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
 980
 981	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 982		xfs_ail_push_all_sync(mp->m_ail);
 983		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
 984	}
 985}
 986
 987/*
 988 * The shrinker infrastructure determines how many inodes we should scan for
 989 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
 990 * push the AIL here. We also want to proactively free up memory if we can to
 991 * minimise the amount of work memory reclaim has to do so we kick the
 992 * background reclaim if it isn't already scheduled.
 993 */
 994long
 995xfs_reclaim_inodes_nr(
 996	struct xfs_mount	*mp,
 997	unsigned long		nr_to_scan)
 998{
 999	struct xfs_icwalk	icw = {
1000		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1001		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1002	};
1003
1004	if (xfs_want_reclaim_sick(mp))
1005		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1006
1007	/* kick background reclaimer and push the AIL */
1008	xfs_reclaim_work_queue(mp);
1009	xfs_ail_push_all(mp->m_ail);
1010
1011	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1012	return 0;
1013}
1014
1015/*
1016 * Return the number of reclaimable inodes in the filesystem for
1017 * the shrinker to determine how much to reclaim.
1018 */
1019long
1020xfs_reclaim_inodes_count(
1021	struct xfs_mount	*mp)
1022{
1023	struct xfs_perag	*pag;
1024	xfs_agnumber_t		ag = 0;
1025	long			reclaimable = 0;
1026
1027	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1028		ag = pag->pag_agno + 1;
1029		reclaimable += pag->pag_ici_reclaimable;
1030		xfs_perag_put(pag);
1031	}
1032	return reclaimable;
1033}
1034
1035STATIC bool
1036xfs_icwalk_match_id(
1037	struct xfs_inode	*ip,
1038	struct xfs_icwalk	*icw)
1039{
1040	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1041	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1042		return false;
1043
1044	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1045	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1046		return false;
1047
1048	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1049	    ip->i_projid != icw->icw_prid)
1050		return false;
1051
1052	return true;
1053}
1054
1055/*
1056 * A union-based inode filtering algorithm. Process the inode if any of the
1057 * criteria match. This is for global/internal scans only.
1058 */
1059STATIC bool
1060xfs_icwalk_match_id_union(
1061	struct xfs_inode	*ip,
1062	struct xfs_icwalk	*icw)
1063{
1064	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1065	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1066		return true;
1067
1068	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1069	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1070		return true;
1071
1072	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1073	    ip->i_projid == icw->icw_prid)
1074		return true;
1075
1076	return false;
1077}
1078
1079/*
1080 * Is this inode @ip eligible for eof/cow block reclamation, given some
1081 * filtering parameters @icw?  The inode is eligible if @icw is null or
1082 * if the predicate functions match.
1083 */
1084static bool
1085xfs_icwalk_match(
1086	struct xfs_inode	*ip,
1087	struct xfs_icwalk	*icw)
1088{
1089	bool			match;
1090
1091	if (!icw)
1092		return true;
1093
1094	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1095		match = xfs_icwalk_match_id_union(ip, icw);
1096	else
1097		match = xfs_icwalk_match_id(ip, icw);
1098	if (!match)
1099		return false;
1100
1101	/* skip the inode if the file size is too small */
1102	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1103	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1104		return false;
1105
1106	return true;
1107}
1108
1109/*
1110 * This is a fast pass over the inode cache to try to get reclaim moving on as
1111 * many inodes as possible in a short period of time. It kicks itself every few
1112 * seconds, as well as being kicked by the inode cache shrinker when memory
1113 * goes low.
1114 */
1115void
1116xfs_reclaim_worker(
1117	struct work_struct *work)
1118{
1119	struct xfs_mount *mp = container_of(to_delayed_work(work),
1120					struct xfs_mount, m_reclaim_work);
1121
1122	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1123	xfs_reclaim_work_queue(mp);
1124}
1125
1126STATIC int
1127xfs_inode_free_eofblocks(
1128	struct xfs_inode	*ip,
1129	struct xfs_icwalk	*icw,
1130	unsigned int		*lockflags)
1131{
1132	bool			wait;
1133
1134	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1135
1136	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1137		return 0;
1138
1139	/*
1140	 * If the mapping is dirty the operation can block and wait for some
1141	 * time. Unless we are waiting, skip it.
1142	 */
1143	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1144		return 0;
1145
1146	if (!xfs_icwalk_match(ip, icw))
1147		return 0;
1148
1149	/*
1150	 * If the caller is waiting, return -EAGAIN to keep the background
1151	 * scanner moving and revisit the inode in a subsequent pass.
1152	 */
1153	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1154		if (wait)
1155			return -EAGAIN;
1156		return 0;
1157	}
1158	*lockflags |= XFS_IOLOCK_EXCL;
1159
1160	if (xfs_can_free_eofblocks(ip, false))
1161		return xfs_free_eofblocks(ip);
1162
1163	/* inode could be preallocated or append-only */
1164	trace_xfs_inode_free_eofblocks_invalid(ip);
1165	xfs_inode_clear_eofblocks_tag(ip);
1166	return 0;
1167}
1168
1169static void
1170xfs_blockgc_set_iflag(
1171	struct xfs_inode	*ip,
1172	unsigned long		iflag)
1173{
1174	struct xfs_mount	*mp = ip->i_mount;
1175	struct xfs_perag	*pag;
1176
1177	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1178
1179	/*
1180	 * Don't bother locking the AG and looking up in the radix trees
1181	 * if we already know that we have the tag set.
1182	 */
1183	if (ip->i_flags & iflag)
1184		return;
1185	spin_lock(&ip->i_flags_lock);
1186	ip->i_flags |= iflag;
1187	spin_unlock(&ip->i_flags_lock);
1188
1189	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1190	spin_lock(&pag->pag_ici_lock);
1191
1192	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1193			XFS_ICI_BLOCKGC_TAG);
1194
1195	spin_unlock(&pag->pag_ici_lock);
1196	xfs_perag_put(pag);
1197}
1198
1199void
1200xfs_inode_set_eofblocks_tag(
1201	xfs_inode_t	*ip)
1202{
1203	trace_xfs_inode_set_eofblocks_tag(ip);
1204	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1205}
1206
1207static void
1208xfs_blockgc_clear_iflag(
1209	struct xfs_inode	*ip,
1210	unsigned long		iflag)
1211{
1212	struct xfs_mount	*mp = ip->i_mount;
1213	struct xfs_perag	*pag;
1214	bool			clear_tag;
1215
1216	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1217
1218	spin_lock(&ip->i_flags_lock);
1219	ip->i_flags &= ~iflag;
1220	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1221	spin_unlock(&ip->i_flags_lock);
1222
1223	if (!clear_tag)
1224		return;
1225
1226	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1227	spin_lock(&pag->pag_ici_lock);
1228
1229	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1230			XFS_ICI_BLOCKGC_TAG);
1231
1232	spin_unlock(&pag->pag_ici_lock);
1233	xfs_perag_put(pag);
1234}
1235
1236void
1237xfs_inode_clear_eofblocks_tag(
1238	xfs_inode_t	*ip)
1239{
1240	trace_xfs_inode_clear_eofblocks_tag(ip);
1241	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1242}
1243
1244/*
1245 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1246 * then we can bail out quickly, but otherwise we must back off if the file
1247 * is undergoing some kind of write.
1248 */
1249static bool
1250xfs_prep_free_cowblocks(
1251	struct xfs_inode	*ip)
1252{
1253	/*
1254	 * Just clear the tag if we have an empty cow fork or none at all. It's
1255	 * possible the inode was fully unshared since it was originally tagged.
1256	 */
1257	if (!xfs_inode_has_cow_data(ip)) {
1258		trace_xfs_inode_free_cowblocks_invalid(ip);
1259		xfs_inode_clear_cowblocks_tag(ip);
1260		return false;
1261	}
1262
1263	/*
1264	 * If the mapping is dirty or under writeback we cannot touch the
1265	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1266	 */
1267	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1268	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1269	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1270	    atomic_read(&VFS_I(ip)->i_dio_count))
1271		return false;
1272
1273	return true;
1274}
1275
1276/*
1277 * Automatic CoW Reservation Freeing
1278 *
1279 * These functions automatically garbage collect leftover CoW reservations
1280 * that were made on behalf of a cowextsize hint when we start to run out
1281 * of quota or when the reservations sit around for too long.  If the file
1282 * has dirty pages or is undergoing writeback, its CoW reservations will
1283 * be retained.
1284 *
1285 * The actual garbage collection piggybacks off the same code that runs
1286 * the speculative EOF preallocation garbage collector.
1287 */
1288STATIC int
1289xfs_inode_free_cowblocks(
1290	struct xfs_inode	*ip,
1291	struct xfs_icwalk	*icw,
1292	unsigned int		*lockflags)
1293{
1294	bool			wait;
1295	int			ret = 0;
1296
1297	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1298
1299	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1300		return 0;
1301
1302	if (!xfs_prep_free_cowblocks(ip))
1303		return 0;
1304
1305	if (!xfs_icwalk_match(ip, icw))
1306		return 0;
1307
1308	/*
1309	 * If the caller is waiting, return -EAGAIN to keep the background
1310	 * scanner moving and revisit the inode in a subsequent pass.
 
 
 
 
 
1311	 */
1312	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1313	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1314		if (wait)
1315			return -EAGAIN;
1316		return 0;
1317	}
1318	*lockflags |= XFS_IOLOCK_EXCL;
1319
1320	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1321		if (wait)
1322			return -EAGAIN;
1323		return 0;
1324	}
1325	*lockflags |= XFS_MMAPLOCK_EXCL;
1326
1327	/*
1328	 * Check again, nobody else should be able to dirty blocks or change
1329	 * the reflink iflag now that we have the first two locks held.
1330	 */
1331	if (xfs_prep_free_cowblocks(ip))
1332		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1333	return ret;
1334}
1335
1336void
1337xfs_inode_set_cowblocks_tag(
1338	xfs_inode_t	*ip)
1339{
1340	trace_xfs_inode_set_cowblocks_tag(ip);
1341	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1342}
1343
1344void
1345xfs_inode_clear_cowblocks_tag(
1346	xfs_inode_t	*ip)
1347{
1348	trace_xfs_inode_clear_cowblocks_tag(ip);
1349	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1350}
1351
1352/* Disable post-EOF and CoW block auto-reclamation. */
1353void
1354xfs_blockgc_stop(
1355	struct xfs_mount	*mp)
1356{
1357	struct xfs_perag	*pag;
1358	xfs_agnumber_t		agno;
1359
1360	if (!xfs_clear_blockgc_enabled(mp))
1361		return;
1362
1363	for_each_perag(mp, agno, pag)
1364		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1365	trace_xfs_blockgc_stop(mp, __return_address);
1366}
1367
1368/* Enable post-EOF and CoW block auto-reclamation. */
1369void
1370xfs_blockgc_start(
1371	struct xfs_mount	*mp)
1372{
1373	struct xfs_perag	*pag;
1374	xfs_agnumber_t		agno;
1375
1376	if (xfs_set_blockgc_enabled(mp))
1377		return;
1378
1379	trace_xfs_blockgc_start(mp, __return_address);
1380	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1381		xfs_blockgc_queue(pag);
1382}
1383
1384/* Don't try to run block gc on an inode that's in any of these states. */
1385#define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1386					 XFS_NEED_INACTIVE | \
1387					 XFS_INACTIVATING | \
1388					 XFS_IRECLAIMABLE | \
1389					 XFS_IRECLAIM)
1390/*
1391 * Decide if the given @ip is eligible for garbage collection of speculative
1392 * preallocations, and grab it if so.  Returns true if it's ready to go or
1393 * false if we should just ignore it.
1394 */
1395static bool
1396xfs_blockgc_igrab(
1397	struct xfs_inode	*ip)
1398{
1399	struct inode		*inode = VFS_I(ip);
1400
1401	ASSERT(rcu_read_lock_held());
1402
1403	/* Check for stale RCU freed inode */
1404	spin_lock(&ip->i_flags_lock);
1405	if (!ip->i_ino)
1406		goto out_unlock_noent;
1407
1408	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
 
1409		goto out_unlock_noent;
1410	spin_unlock(&ip->i_flags_lock);
1411
1412	/* nothing to sync during shutdown */
1413	if (xfs_is_shutdown(ip->i_mount))
1414		return false;
1415
1416	/* If we can't grab the inode, it must on it's way to reclaim. */
1417	if (!igrab(inode))
1418		return false;
1419
1420	/* inode is valid */
1421	return true;
1422
1423out_unlock_noent:
1424	spin_unlock(&ip->i_flags_lock);
1425	return false;
1426}
1427
1428/* Scan one incore inode for block preallocations that we can remove. */
1429static int
1430xfs_blockgc_scan_inode(
1431	struct xfs_inode	*ip,
1432	struct xfs_icwalk	*icw)
1433{
1434	unsigned int		lockflags = 0;
1435	int			error;
1436
1437	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1438	if (error)
1439		goto unlock;
1440
1441	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1442unlock:
1443	if (lockflags)
1444		xfs_iunlock(ip, lockflags);
1445	xfs_irele(ip);
1446	return error;
1447}
1448
1449/* Background worker that trims preallocated space. */
1450void
1451xfs_blockgc_worker(
1452	struct work_struct	*work)
1453{
1454	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1455					struct xfs_perag, pag_blockgc_work);
1456	struct xfs_mount	*mp = pag->pag_mount;
1457	int			error;
1458
1459	trace_xfs_blockgc_worker(mp, __return_address);
1460
1461	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1462	if (error)
1463		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1464				pag->pag_agno, error);
1465	xfs_blockgc_queue(pag);
1466}
1467
1468/*
1469 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1470 * and cowblocks.
1471 */
1472int
1473xfs_blockgc_free_space(
1474	struct xfs_mount	*mp,
1475	struct xfs_icwalk	*icw)
1476{
1477	int			error;
1478
1479	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1480
1481	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1482	if (error)
1483		return error;
1484
1485	return xfs_inodegc_flush(mp);
1486}
1487
1488/*
1489 * Reclaim all the free space that we can by scheduling the background blockgc
1490 * and inodegc workers immediately and waiting for them all to clear.
1491 */
1492int
1493xfs_blockgc_flush_all(
1494	struct xfs_mount	*mp)
1495{
1496	struct xfs_perag	*pag;
1497	xfs_agnumber_t		agno;
1498
1499	trace_xfs_blockgc_flush_all(mp, __return_address);
1500
1501	/*
1502	 * For each blockgc worker, move its queue time up to now.  If it
1503	 * wasn't queued, it will not be requeued.  Then flush whatever's
1504	 * left.
1505	 */
1506	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1507		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1508				&pag->pag_blockgc_work, 0);
1509
1510	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1511		flush_delayed_work(&pag->pag_blockgc_work);
1512
1513	return xfs_inodegc_flush(mp);
1514}
1515
1516/*
1517 * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1518 * quota caused an allocation failure, so we make a best effort by including
1519 * each quota under low free space conditions (less than 1% free space) in the
1520 * scan.
1521 *
1522 * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1523 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1524 * MMAPLOCK.
1525 */
1526int
1527xfs_blockgc_free_dquots(
1528	struct xfs_mount	*mp,
1529	struct xfs_dquot	*udqp,
1530	struct xfs_dquot	*gdqp,
1531	struct xfs_dquot	*pdqp,
1532	unsigned int		iwalk_flags)
1533{
1534	struct xfs_icwalk	icw = {0};
1535	bool			do_work = false;
1536
1537	if (!udqp && !gdqp && !pdqp)
1538		return 0;
1539
1540	/*
1541	 * Run a scan to free blocks using the union filter to cover all
1542	 * applicable quotas in a single scan.
1543	 */
1544	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1545
1546	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1547		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1548		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1549		do_work = true;
1550	}
1551
1552	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1553		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1554		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1555		do_work = true;
1556	}
1557
1558	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1559		icw.icw_prid = pdqp->q_id;
1560		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1561		do_work = true;
1562	}
1563
1564	if (!do_work)
1565		return 0;
1566
1567	return xfs_blockgc_free_space(mp, &icw);
1568}
1569
1570/* Run cow/eofblocks scans on the quotas attached to the inode. */
1571int
1572xfs_blockgc_free_quota(
1573	struct xfs_inode	*ip,
1574	unsigned int		iwalk_flags)
1575{
1576	return xfs_blockgc_free_dquots(ip->i_mount,
1577			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1578			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1579			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1580}
1581
1582/* XFS Inode Cache Walking Code */
1583
1584/*
1585 * The inode lookup is done in batches to keep the amount of lock traffic and
1586 * radix tree lookups to a minimum. The batch size is a trade off between
1587 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1588 * be too greedy.
1589 */
1590#define XFS_LOOKUP_BATCH	32
1591
1592
1593/*
1594 * Decide if we want to grab this inode in anticipation of doing work towards
1595 * the goal.
1596 */
1597static inline bool
1598xfs_icwalk_igrab(
1599	enum xfs_icwalk_goal	goal,
1600	struct xfs_inode	*ip,
1601	struct xfs_icwalk	*icw)
1602{
1603	switch (goal) {
1604	case XFS_ICWALK_BLOCKGC:
1605		return xfs_blockgc_igrab(ip);
1606	case XFS_ICWALK_RECLAIM:
1607		return xfs_reclaim_igrab(ip, icw);
1608	default:
1609		return false;
1610	}
1611}
1612
1613/*
1614 * Process an inode.  Each processing function must handle any state changes
1615 * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1616 */
1617static inline int
1618xfs_icwalk_process_inode(
1619	enum xfs_icwalk_goal	goal,
1620	struct xfs_inode	*ip,
1621	struct xfs_perag	*pag,
1622	struct xfs_icwalk	*icw)
 
 
 
 
1623{
1624	int			error = 0;
1625
1626	switch (goal) {
1627	case XFS_ICWALK_BLOCKGC:
1628		error = xfs_blockgc_scan_inode(ip, icw);
1629		break;
1630	case XFS_ICWALK_RECLAIM:
1631		xfs_reclaim_inode(ip, pag);
1632		break;
1633	}
1634	return error;
1635}
1636
1637/*
1638 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1639 * process them in some manner.
1640 */
1641static int
1642xfs_icwalk_ag(
1643	struct xfs_perag	*pag,
1644	enum xfs_icwalk_goal	goal,
1645	struct xfs_icwalk	*icw)
1646{
1647	struct xfs_mount	*mp = pag->pag_mount;
1648	uint32_t		first_index;
1649	int			last_error = 0;
1650	int			skipped;
1651	bool			done;
1652	int			nr_found;
1653
1654restart:
1655	done = false;
1656	skipped = 0;
1657	if (goal == XFS_ICWALK_RECLAIM)
1658		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1659	else
1660		first_index = 0;
1661	nr_found = 0;
1662	do {
1663		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1664		int		error = 0;
1665		int		i;
1666
1667		rcu_read_lock();
1668
1669		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1670				(void **) batch, first_index,
1671				XFS_LOOKUP_BATCH, goal);
 
 
 
 
 
 
 
1672		if (!nr_found) {
1673			done = true;
1674			rcu_read_unlock();
1675			break;
1676		}
1677
1678		/*
1679		 * Grab the inodes before we drop the lock. if we found
1680		 * nothing, nr == 0 and the loop will be skipped.
1681		 */
1682		for (i = 0; i < nr_found; i++) {
1683			struct xfs_inode *ip = batch[i];
1684
1685			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1686				batch[i] = NULL;
1687
1688			/*
1689			 * Update the index for the next lookup. Catch
1690			 * overflows into the next AG range which can occur if
1691			 * we have inodes in the last block of the AG and we
1692			 * are currently pointing to the last inode.
1693			 *
1694			 * Because we may see inodes that are from the wrong AG
1695			 * due to RCU freeing and reallocation, only update the
1696			 * index if it lies in this AG. It was a race that lead
1697			 * us to see this inode, so another lookup from the
1698			 * same index will not find it again.
1699			 */
1700			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1701				continue;
1702			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1703			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1704				done = true;
1705		}
1706
1707		/* unlock now we've grabbed the inodes. */
1708		rcu_read_unlock();
1709
1710		for (i = 0; i < nr_found; i++) {
1711			if (!batch[i])
1712				continue;
1713			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1714					icw);
1715			if (error == -EAGAIN) {
1716				skipped++;
1717				continue;
1718			}
1719			if (error && last_error != -EFSCORRUPTED)
1720				last_error = error;
1721		}
1722
1723		/* bail out if the filesystem is corrupted.  */
1724		if (error == -EFSCORRUPTED)
1725			break;
1726
1727		cond_resched();
1728
1729		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1730			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1731			if (icw->icw_scan_limit <= 0)
1732				break;
1733		}
1734	} while (nr_found && !done);
1735
1736	if (goal == XFS_ICWALK_RECLAIM) {
1737		if (done)
1738			first_index = 0;
1739		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1740	}
1741
1742	if (skipped) {
1743		delay(1);
1744		goto restart;
1745	}
1746	return last_error;
1747}
1748
1749/* Walk all incore inodes to achieve a given goal. */
1750static int
1751xfs_icwalk(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752	struct xfs_mount	*mp,
1753	enum xfs_icwalk_goal	goal,
1754	struct xfs_icwalk	*icw)
 
 
1755{
1756	struct xfs_perag	*pag;
1757	int			error = 0;
1758	int			last_error = 0;
1759	xfs_agnumber_t		agno;
1760
1761	for_each_perag_tag(mp, agno, pag, goal) {
1762		error = xfs_icwalk_ag(pag, goal, icw);
 
 
 
1763		if (error) {
1764			last_error = error;
1765			if (error == -EFSCORRUPTED) {
1766				xfs_perag_rele(pag);
1767				break;
1768			}
1769		}
1770	}
1771	return last_error;
1772	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1773}
1774
1775#ifdef DEBUG
1776static void
1777xfs_check_delalloc(
1778	struct xfs_inode	*ip,
1779	int			whichfork)
 
 
 
1780{
1781	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1782	struct xfs_bmbt_irec	got;
1783	struct xfs_iext_cursor	icur;
 
1784
1785	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1786		return;
1787	do {
1788		if (isnullstartblock(got.br_startblock)) {
1789			xfs_warn(ip->i_mount,
1790	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1791				ip->i_ino,
1792				whichfork == XFS_DATA_FORK ? "data" : "cow",
1793				got.br_startoff, got.br_blockcount);
1794		}
1795	} while (xfs_iext_next_extent(ifp, &icur, &got));
 
1796}
1797#else
1798#define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1799#endif
1800
1801/* Schedule the inode for reclaim. */
 
 
 
 
 
 
1802static void
1803xfs_inodegc_set_reclaimable(
1804	struct xfs_inode	*ip)
1805{
1806	struct xfs_mount	*mp = ip->i_mount;
1807	struct xfs_perag	*pag;
1808
1809	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1810		xfs_check_delalloc(ip, XFS_DATA_FORK);
1811		xfs_check_delalloc(ip, XFS_COW_FORK);
1812		ASSERT(0);
1813	}
1814
1815	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1816	spin_lock(&pag->pag_ici_lock);
1817	spin_lock(&ip->i_flags_lock);
1818
1819	trace_xfs_inode_set_reclaimable(ip);
1820	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1821	ip->i_flags |= XFS_IRECLAIMABLE;
1822	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1823			XFS_ICI_RECLAIM_TAG);
1824
1825	spin_unlock(&ip->i_flags_lock);
1826	spin_unlock(&pag->pag_ici_lock);
1827	xfs_perag_put(pag);
1828}
1829
1830/*
1831 * Free all speculative preallocations and possibly even the inode itself.
1832 * This is the last chance to make changes to an otherwise unreferenced file
1833 * before incore reclamation happens.
 
 
1834 */
1835static int
1836xfs_inodegc_inactivate(
1837	struct xfs_inode	*ip)
1838{
1839	int			error;
1840
1841	trace_xfs_inode_inactivating(ip);
1842	error = xfs_inactive(ip);
1843	xfs_inodegc_set_reclaimable(ip);
1844	return error;
1845
 
 
1846}
1847
1848void
1849xfs_inodegc_worker(
1850	struct work_struct	*work)
 
1851{
1852	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1853						struct xfs_inodegc, work);
1854	struct llist_node	*node = llist_del_all(&gc->list);
1855	struct xfs_inode	*ip, *n;
1856	struct xfs_mount	*mp = gc->mp;
1857	unsigned int		nofs_flag;
1858
1859	/*
1860	 * Clear the cpu mask bit and ensure that we have seen the latest
1861	 * update of the gc structure associated with this CPU. This matches
1862	 * with the release semantics used when setting the cpumask bit in
1863	 * xfs_inodegc_queue.
1864	 */
1865	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1866	smp_mb__after_atomic();
1867
1868	WRITE_ONCE(gc->items, 0);
1869
1870	if (!node)
1871		return;
1872
1873	/*
1874	 * We can allocate memory here while doing writeback on behalf of
1875	 * memory reclaim.  To avoid memory allocation deadlocks set the
1876	 * task-wide nofs context for the following operations.
1877	 */
1878	nofs_flag = memalloc_nofs_save();
1879
1880	ip = llist_entry(node, struct xfs_inode, i_gclist);
1881	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
 
 
 
 
 
1882
1883	WRITE_ONCE(gc->shrinker_hits, 0);
1884	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1885		int	error;
1886
1887		xfs_iflags_set(ip, XFS_INACTIVATING);
1888		error = xfs_inodegc_inactivate(ip);
1889		if (error && !gc->error)
1890			gc->error = error;
1891	}
1892
1893	memalloc_nofs_restore(nofs_flag);
1894}
1895
1896/*
1897 * Expedite all pending inodegc work to run immediately. This does not wait for
1898 * completion of the work.
 
1899 */
1900void
1901xfs_inodegc_push(
1902	struct xfs_mount	*mp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903{
1904	if (!xfs_is_inodegc_enabled(mp))
1905		return;
1906	trace_xfs_inodegc_push(mp, __return_address);
1907	xfs_inodegc_queue_all(mp);
 
 
 
 
 
 
 
1908}
1909
1910/*
1911 * Force all currently queued inode inactivation work to run immediately and
1912 * wait for the work to finish.
1913 */
1914int
1915xfs_inodegc_flush(
1916	struct xfs_mount	*mp)
1917{
1918	xfs_inodegc_push(mp);
1919	trace_xfs_inodegc_flush(mp, __return_address);
1920	return xfs_inodegc_wait_all(mp);
1921}
1922
1923/*
1924 * Flush all the pending work and then disable the inode inactivation background
1925 * workers and wait for them to stop.  Caller must hold sb->s_umount to
1926 * coordinate changes in the inodegc_enabled state.
1927 */
1928void
1929xfs_inodegc_stop(
1930	struct xfs_mount	*mp)
 
1931{
1932	bool			rerun;
1933
1934	if (!xfs_clear_inodegc_enabled(mp))
1935		return;
 
1936
1937	/*
1938	 * Drain all pending inodegc work, including inodes that could be
1939	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1940	 * threads that sample the inodegc state just prior to us clearing it.
1941	 * The inodegc flag state prevents new threads from queuing more
1942	 * inodes, so we queue pending work items and flush the workqueue until
1943	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1944	 * here because it does not allow other unserialized mechanisms to
1945	 * reschedule inodegc work while this draining is in progress.
1946	 */
1947	xfs_inodegc_queue_all(mp);
1948	do {
1949		flush_workqueue(mp->m_inodegc_wq);
1950		rerun = xfs_inodegc_queue_all(mp);
1951	} while (rerun);
1952
1953	trace_xfs_inodegc_stop(mp, __return_address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954}
1955
1956/*
1957 * Enable the inode inactivation background workers and schedule deferred inode
1958 * inactivation work if there is any.  Caller must hold sb->s_umount to
1959 * coordinate changes in the inodegc_enabled state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960 */
1961void
1962xfs_inodegc_start(
1963	struct xfs_mount	*mp)
 
 
1964{
1965	if (xfs_set_inodegc_enabled(mp))
1966		return;
1967
1968	trace_xfs_inodegc_start(mp, __return_address);
1969	xfs_inodegc_queue_all(mp);
1970}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972#ifdef CONFIG_XFS_RT
1973static inline bool
1974xfs_inodegc_want_queue_rt_file(
1975	struct xfs_inode	*ip)
1976{
1977	struct xfs_mount	*mp = ip->i_mount;
 
 
 
 
 
1978
1979	if (!XFS_IS_REALTIME_INODE(ip))
1980		return false;
1981
1982	if (__percpu_counter_compare(&mp->m_frextents,
1983				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1984				XFS_FDBLOCKS_BATCH) < 0)
1985		return true;
1986
1987	return false;
1988}
1989#else
1990# define xfs_inodegc_want_queue_rt_file(ip)	(false)
1991#endif /* CONFIG_XFS_RT */
 
 
 
 
1992
1993/*
1994 * Schedule the inactivation worker when:
1995 *
1996 *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1997 *  - There is less than 5% free space left.
1998 *  - Any of the quotas for this inode are near an enforcement limit.
1999 */
2000static inline bool
2001xfs_inodegc_want_queue_work(
2002	struct xfs_inode	*ip,
2003	unsigned int		items)
 
2004{
2005	struct xfs_mount	*mp = ip->i_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006
2007	if (items > mp->m_ino_geo.inodes_per_cluster)
2008		return true;
2009
2010	if (__percpu_counter_compare(&mp->m_fdblocks,
2011				mp->m_low_space[XFS_LOWSP_5_PCNT],
2012				XFS_FDBLOCKS_BATCH) < 0)
2013		return true;
 
 
 
2014
2015	if (xfs_inodegc_want_queue_rt_file(ip))
2016		return true;
2017
2018	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2019		return true;
2020
2021	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2022		return true;
2023
2024	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2025		return true;
 
 
 
 
 
2026
2027	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028}
2029
2030/*
2031 * Upper bound on the number of inodes in each AG that can be queued for
2032 * inactivation at any given time, to avoid monopolizing the workqueue.
 
 
 
 
 
2033 */
2034#define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
 
 
 
 
 
 
 
 
 
 
2035
2036/*
2037 * Make the frontend wait for inactivations when:
2038 *
2039 *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2040 *  - The queue depth exceeds the maximum allowable percpu backlog.
2041 *
2042 * Note: If we are in a NOFS context here (e.g. current thread is running a
2043 * transaction) the we don't want to block here as inodegc progress may require
2044 * filesystem resources we hold to make progress and that could result in a
2045 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2046 */
2047static inline bool
2048xfs_inodegc_want_flush_work(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	struct xfs_inode	*ip,
2050	unsigned int		items,
2051	unsigned int		shrinker_hits)
2052{
2053	if (current->flags & PF_MEMALLOC_NOFS)
2054		return false;
 
2055
2056	if (shrinker_hits > 0)
2057		return true;
 
2058
2059	if (items > XFS_INODEGC_MAX_BACKLOG)
2060		return true;
 
2061
2062	return false;
2063}
2064
2065/*
2066 * Queue a background inactivation worker if there are inodes that need to be
2067 * inactivated and higher level xfs code hasn't disabled the background
2068 * workers.
2069 */
2070static void
2071xfs_inodegc_queue(
2072	struct xfs_inode	*ip)
 
2073{
2074	struct xfs_mount	*mp = ip->i_mount;
2075	struct xfs_inodegc	*gc;
2076	int			items;
2077	unsigned int		shrinker_hits;
2078	unsigned int		cpu_nr;
2079	unsigned long		queue_delay = 1;
 
 
 
 
 
2080
2081	trace_xfs_inode_set_need_inactive(ip);
2082	spin_lock(&ip->i_flags_lock);
2083	ip->i_flags |= XFS_NEED_INACTIVE;
2084	spin_unlock(&ip->i_flags_lock);
2085
2086	cpu_nr = get_cpu();
2087	gc = this_cpu_ptr(mp->m_inodegc);
2088	llist_add(&ip->i_gclist, &gc->list);
2089	items = READ_ONCE(gc->items);
2090	WRITE_ONCE(gc->items, items + 1);
2091	shrinker_hits = READ_ONCE(gc->shrinker_hits);
 
 
 
 
 
 
 
 
 
 
 
 
 
2092
2093	/*
2094	 * Ensure the list add is always seen by anyone who finds the cpumask
2095	 * bit set. This effectively gives the cpumask bit set operation
2096	 * release ordering semantics.
2097	 */
2098	smp_mb__before_atomic();
2099	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2100		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2101
2102	/*
2103	 * We queue the work while holding the current CPU so that the work
2104	 * is scheduled to run on this CPU.
2105	 */
2106	if (!xfs_is_inodegc_enabled(mp)) {
2107		put_cpu();
2108		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
2109	}
2110
2111	if (xfs_inodegc_want_queue_work(ip, items))
2112		queue_delay = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2113
2114	trace_xfs_inodegc_queue(mp, __return_address);
2115	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2116			queue_delay);
2117	put_cpu();
2118
2119	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2120		trace_xfs_inodegc_throttle(mp, __return_address);
2121		flush_delayed_work(&gc->work);
2122	}
2123}
2124
2125/*
2126 * We set the inode flag atomically with the radix tree tag.  Once we get tag
2127 * lookups on the radix tree, this inode flag can go away.
2128 *
2129 * We always use background reclaim here because even if the inode is clean, it
2130 * still may be under IO and hence we have wait for IO completion to occur
2131 * before we can reclaim the inode. The background reclaim path handles this
2132 * more efficiently than we can here, so simply let background reclaim tear down
2133 * all inodes.
2134 */
2135void
2136xfs_inode_mark_reclaimable(
2137	struct xfs_inode	*ip)
2138{
2139	struct xfs_mount	*mp = ip->i_mount;
2140	bool			need_inactive;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2141
2142	XFS_STATS_INC(mp, vn_reclaim);
 
 
 
 
 
 
 
2143
2144	/*
2145	 * We should never get here with any of the reclaim flags already set.
2146	 */
2147	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2148
2149	need_inactive = xfs_inode_needs_inactive(ip);
2150	if (need_inactive) {
2151		xfs_inodegc_queue(ip);
2152		return;
2153	}
2154
2155	/* Going straight to reclaim, so drop the dquots. */
2156	xfs_qm_dqdetach(ip);
2157	xfs_inodegc_set_reclaimable(ip);
2158}
2159
2160/*
2161 * Register a phony shrinker so that we can run background inodegc sooner when
2162 * there's memory pressure.  Inactivation does not itself free any memory but
2163 * it does make inodes reclaimable, which eventually frees memory.
2164 *
2165 * The count function, seek value, and batch value are crafted to trigger the
2166 * scan function during the second round of scanning.  Hopefully this means
2167 * that we reclaimed enough memory that initiating metadata transactions won't
2168 * make things worse.
2169 */
2170#define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2171#define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2172
2173static unsigned long
2174xfs_inodegc_shrinker_count(
2175	struct shrinker		*shrink,
2176	struct shrink_control	*sc)
2177{
2178	struct xfs_mount	*mp = shrink->private_data;
2179	struct xfs_inodegc	*gc;
2180	int			cpu;
2181
2182	if (!xfs_is_inodegc_enabled(mp))
2183		return 0;
2184
2185	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2186		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2187		if (!llist_empty(&gc->list))
2188			return XFS_INODEGC_SHRINKER_COUNT;
2189	}
 
 
 
 
 
 
 
2190
2191	return 0;
2192}
2193
2194static unsigned long
2195xfs_inodegc_shrinker_scan(
2196	struct shrinker		*shrink,
2197	struct shrink_control	*sc)
2198{
2199	struct xfs_mount	*mp = shrink->private_data;
2200	struct xfs_inodegc	*gc;
2201	int			cpu;
2202	bool			no_items = true;
2203
2204	if (!xfs_is_inodegc_enabled(mp))
2205		return SHRINK_STOP;
2206
2207	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2208
2209	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2210		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2211		if (!llist_empty(&gc->list)) {
2212			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2213
2214			WRITE_ONCE(gc->shrinker_hits, h + 1);
2215			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2216			no_items = false;
2217		}
2218	}
2219
2220	/*
2221	 * If there are no inodes to inactivate, we don't want the shrinker
2222	 * to think there's deferred work to call us back about.
2223	 */
2224	if (no_items)
2225		return LONG_MAX;
2226
2227	return SHRINK_STOP;
2228}
2229
2230/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2231int
2232xfs_inodegc_register_shrinker(
2233	struct xfs_mount	*mp)
2234{
2235	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2236						"xfs-inodegc:%s",
2237						mp->m_super->s_id);
2238	if (!mp->m_inodegc_shrinker)
2239		return -ENOMEM;
2240
2241	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2242	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2243	mp->m_inodegc_shrinker->seeks = 0;
2244	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2245	mp->m_inodegc_shrinker->private_data = mp;
2246
2247	shrinker_register(mp->m_inodegc_shrinker);
 
 
 
 
 
 
 
 
 
 
 
 
2248
2249	return 0;
 
2250}