Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Device tree based initialization code for reserved memory.
  3 *
  4 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  5 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6 *		http://www.samsung.com
  7 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8 * Author: Josh Cartwright <joshc@codeaurora.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License as
 12 * published by the Free Software Foundation; either version 2 of the
 13 * License or (at your optional) any later version of the license.
 14 */
 15
 
 
 16#include <linux/err.h>
 
 17#include <linux/of.h>
 18#include <linux/of_fdt.h>
 19#include <linux/of_platform.h>
 20#include <linux/mm.h>
 21#include <linux/sizes.h>
 22#include <linux/of_reserved_mem.h>
 23#include <linux/sort.h>
 
 
 
 
 24
 25#define MAX_RESERVED_REGIONS	16
 
 
 26static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 27static int reserved_mem_count;
 28
 29#if defined(CONFIG_HAVE_MEMBLOCK)
 30#include <linux/memblock.h>
 31int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 32	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 33	phys_addr_t *res_base)
 34{
 35	phys_addr_t base;
 36	/*
 37	 * We use __memblock_alloc_base() because memblock_alloc_base()
 38	 * panic()s on allocation failure.
 39	 */
 40	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
 41	base = __memblock_alloc_base(size, align, end);
 
 42	if (!base)
 43		return -ENOMEM;
 44
 45	/*
 46	 * Check if the allocated region fits in to start..end window
 47	 */
 48	if (base < start) {
 49		memblock_free(base, size);
 50		return -ENOMEM;
 51	}
 52
 53	*res_base = base;
 54	if (nomap)
 55		return memblock_remove(base, size);
 56	return 0;
 57}
 58#else
 59int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 60	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 61	phys_addr_t *res_base)
 62{
 63	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
 64		  size, nomap ? " (nomap)" : "");
 65	return -ENOSYS;
 66}
 67#endif
 68
 69/**
 70 * res_mem_save_node() - save fdt node for second pass initialization
 71 */
 72void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 73				      phys_addr_t base, phys_addr_t size)
 74{
 75	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 76
 77	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 78		pr_err("Reserved memory: not enough space all defined regions.\n");
 79		return;
 80	}
 81
 82	rmem->fdt_node = node;
 83	rmem->name = uname;
 84	rmem->base = base;
 85	rmem->size = size;
 86
 87	reserved_mem_count++;
 88	return;
 89}
 90
 91/**
 92 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
 93 *			  and 'alloc-ranges' properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94 */
 95static int __init __reserved_mem_alloc_size(unsigned long node,
 96	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
 97{
 98	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 99	phys_addr_t start = 0, end = 0;
100	phys_addr_t base = 0, align = 0, size;
101	int len;
102	const __be32 *prop;
103	int nomap;
104	int ret;
105
106	prop = of_get_flat_dt_prop(node, "size", &len);
107	if (!prop)
108		return -EINVAL;
109
110	if (len != dt_root_size_cells * sizeof(__be32)) {
111		pr_err("Reserved memory: invalid size property in '%s' node.\n",
112				uname);
113		return -EINVAL;
114	}
115	size = dt_mem_next_cell(dt_root_size_cells, &prop);
116
117	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
118
119	prop = of_get_flat_dt_prop(node, "alignment", &len);
120	if (prop) {
121		if (len != dt_root_addr_cells * sizeof(__be32)) {
122			pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
123				uname);
124			return -EINVAL;
125		}
126		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
127	}
128
 
 
129	/* Need adjust the alignment to satisfy the CMA requirement */
130	if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
131		align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
 
 
 
132
133	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
134	if (prop) {
135
136		if (len % t_len != 0) {
137			pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
138			       uname);
139			return -EINVAL;
140		}
141
142		base = 0;
143
144		while (len > 0) {
145			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
146			end = start + dt_mem_next_cell(dt_root_size_cells,
147						       &prop);
148
149			ret = early_init_dt_alloc_reserved_memory_arch(size,
150					align, start, end, nomap, &base);
151			if (ret == 0) {
152				pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
153					uname, &base,
154					(unsigned long)size / SZ_1M);
155				break;
156			}
157			len -= t_len;
158		}
159
160	} else {
161		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
162							0, 0, nomap, &base);
163		if (ret == 0)
164			pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
165				uname, &base, (unsigned long)size / SZ_1M);
166	}
167
168	if (base == 0) {
169		pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
170			uname);
171		return -ENOMEM;
172	}
173
174	*res_base = base;
175	*res_size = size;
176
177	return 0;
178}
179
180static const struct of_device_id __rmem_of_table_sentinel
181	__used __section(__reservedmem_of_table_end);
182
183/**
184 * res_mem_init_node() - call region specific reserved memory init code
185 */
186static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
187{
188	extern const struct of_device_id __reservedmem_of_table[];
189	const struct of_device_id *i;
 
190
191	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
192		reservedmem_of_init_fn initfn = i->data;
193		const char *compat = i->compatible;
194
195		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
196			continue;
197
198		if (initfn(rmem) == 0) {
199			pr_info("Reserved memory: initialized node %s, compatible id %s\n",
 
200				rmem->name, compat);
201			return 0;
202		}
203	}
204	return -ENOENT;
205}
206
207static int __init __rmem_cmp(const void *a, const void *b)
208{
209	const struct reserved_mem *ra = a, *rb = b;
210
211	if (ra->base < rb->base)
212		return -1;
213
214	if (ra->base > rb->base)
215		return 1;
216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217	return 0;
218}
219
220static void __init __rmem_check_for_overlap(void)
221{
222	int i;
223
224	if (reserved_mem_count < 2)
225		return;
226
227	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
228	     __rmem_cmp, NULL);
229	for (i = 0; i < reserved_mem_count - 1; i++) {
230		struct reserved_mem *this, *next;
231
232		this = &reserved_mem[i];
233		next = &reserved_mem[i + 1];
234		if (!(this->base && next->base))
235			continue;
236		if (this->base + this->size > next->base) {
237			phys_addr_t this_end, next_end;
238
239			this_end = this->base + this->size;
240			next_end = next->base + next->size;
241			pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
242			       this->name, &this->base, &this_end,
243			       next->name, &next->base, &next_end);
244		}
245	}
246}
247
248/**
249 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
250 */
251void __init fdt_init_reserved_mem(void)
252{
253	int i;
254
255	/* check for overlapping reserved regions */
256	__rmem_check_for_overlap();
257
258	for (i = 0; i < reserved_mem_count; i++) {
259		struct reserved_mem *rmem = &reserved_mem[i];
260		unsigned long node = rmem->fdt_node;
261		int len;
262		const __be32 *prop;
263		int err = 0;
 
264
 
265		prop = of_get_flat_dt_prop(node, "phandle", &len);
266		if (!prop)
267			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
268		if (prop)
269			rmem->phandle = of_read_number(prop, len/4);
270
271		if (rmem->size == 0)
272			err = __reserved_mem_alloc_size(node, rmem->name,
273						 &rmem->base, &rmem->size);
274		if (err == 0)
275			__reserved_mem_init_node(rmem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276	}
277}
278
279static inline struct reserved_mem *__find_rmem(struct device_node *node)
280{
281	unsigned int i;
282
283	if (!node->phandle)
284		return NULL;
285
286	for (i = 0; i < reserved_mem_count; i++)
287		if (reserved_mem[i].phandle == node->phandle)
288			return &reserved_mem[i];
289	return NULL;
290}
291
 
 
 
 
 
 
 
 
 
292/**
293 * of_reserved_mem_device_init() - assign reserved memory region to given device
 
 
 
 
 
 
 
 
 
 
294 *
295 * This function assign memory region pointed by "memory-region" device tree
296 * property to the given device.
297 */
298int of_reserved_mem_device_init(struct device *dev)
 
299{
 
 
300	struct reserved_mem *rmem;
301	struct device_node *np;
302	int ret;
303
304	np = of_parse_phandle(dev->of_node, "memory-region", 0);
305	if (!np)
 
 
 
306		return -ENODEV;
307
308	rmem = __find_rmem(np);
309	of_node_put(np);
 
 
 
 
 
310
311	if (!rmem || !rmem->ops || !rmem->ops->device_init)
312		return -EINVAL;
313
 
 
 
 
314	ret = rmem->ops->device_init(rmem, dev);
315	if (ret == 0)
 
 
 
 
 
 
 
316		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
 
 
 
317
318	return ret;
319}
320EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
322/**
323 * of_reserved_mem_device_release() - release reserved memory device structures
 
324 *
325 * This function releases structures allocated for memory region handling for
326 * the given device.
327 */
328void of_reserved_mem_device_release(struct device *dev)
329{
330	struct reserved_mem *rmem;
331	struct device_node *np;
332
333	np = of_parse_phandle(dev->of_node, "memory-region", 0);
334	if (!np)
335		return;
336
337	rmem = __find_rmem(np);
338	of_node_put(np);
339
340	if (!rmem || !rmem->ops || !rmem->ops->device_release)
341		return;
 
342
343	rmem->ops->device_release(rmem, dev);
 
344}
345EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Device tree based initialization code for reserved memory.
  4 *
  5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7 *		http://www.samsung.com
  8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9 * Author: Josh Cartwright <joshc@codeaurora.org>
 
 
 
 
 
 10 */
 11
 12#define pr_fmt(fmt)	"OF: reserved mem: " fmt
 13
 14#include <linux/err.h>
 15#include <linux/libfdt.h>
 16#include <linux/of.h>
 17#include <linux/of_fdt.h>
 18#include <linux/of_platform.h>
 19#include <linux/mm.h>
 20#include <linux/sizes.h>
 21#include <linux/of_reserved_mem.h>
 22#include <linux/sort.h>
 23#include <linux/slab.h>
 24#include <linux/memblock.h>
 25#include <linux/kmemleak.h>
 26#include <linux/cma.h>
 27
 28#include "of_private.h"
 29
 30#define MAX_RESERVED_REGIONS	64
 31static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 32static int reserved_mem_count;
 33
 34static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 
 
 35	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 36	phys_addr_t *res_base)
 37{
 38	phys_addr_t base;
 39	int err = 0;
 40
 
 
 41	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
 42	align = !align ? SMP_CACHE_BYTES : align;
 43	base = memblock_phys_alloc_range(size, align, start, end);
 44	if (!base)
 45		return -ENOMEM;
 46
 47	*res_base = base;
 48	if (nomap) {
 49		err = memblock_mark_nomap(base, size);
 50		if (err)
 51			memblock_phys_free(base, size);
 
 52	}
 53
 54	kmemleak_ignore_phys(base);
 55
 56	return err;
 
 
 
 
 
 
 
 
 
 
 57}
 
 58
 59/*
 60 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
 61 */
 62static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 63					      phys_addr_t base, phys_addr_t size)
 64{
 65	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 66
 67	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 68		pr_err("not enough space for all defined regions.\n");
 69		return;
 70	}
 71
 72	rmem->fdt_node = node;
 73	rmem->name = uname;
 74	rmem->base = base;
 75	rmem->size = size;
 76
 77	reserved_mem_count++;
 78	return;
 79}
 80
 81static int __init early_init_dt_reserve_memory(phys_addr_t base,
 82					       phys_addr_t size, bool nomap)
 83{
 84	if (nomap) {
 85		/*
 86		 * If the memory is already reserved (by another region), we
 87		 * should not allow it to be marked nomap, but don't worry
 88		 * if the region isn't memory as it won't be mapped.
 89		 */
 90		if (memblock_overlaps_region(&memblock.memory, base, size) &&
 91		    memblock_is_region_reserved(base, size))
 92			return -EBUSY;
 93
 94		return memblock_mark_nomap(base, size);
 95	}
 96	return memblock_reserve(base, size);
 97}
 98
 99/*
100 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
101 */
102static int __init __reserved_mem_reserve_reg(unsigned long node,
103					     const char *uname)
104{
105	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
106	phys_addr_t base, size;
107	int len;
108	const __be32 *prop;
109	int first = 1;
110	bool nomap;
111
112	prop = of_get_flat_dt_prop(node, "reg", &len);
113	if (!prop)
114		return -ENOENT;
115
116	if (len && len % t_len != 0) {
117		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
118		       uname);
119		return -EINVAL;
120	}
121
122	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
123
124	while (len >= t_len) {
125		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
126		size = dt_mem_next_cell(dt_root_size_cells, &prop);
127
128		if (size &&
129		    early_init_dt_reserve_memory(base, size, nomap) == 0)
130			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
131				uname, &base, (unsigned long)(size / SZ_1M));
132		else
133			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
134			       uname, &base, (unsigned long)(size / SZ_1M));
135
136		len -= t_len;
137		if (first) {
138			fdt_reserved_mem_save_node(node, uname, base, size);
139			first = 0;
140		}
141	}
142	return 0;
143}
144
145/*
146 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
147 * in /reserved-memory matches the values supported by the current implementation,
148 * also check if ranges property has been provided
149 */
150static int __init __reserved_mem_check_root(unsigned long node)
151{
152	const __be32 *prop;
153
154	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
155	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
156		return -EINVAL;
157
158	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
159	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
160		return -EINVAL;
161
162	prop = of_get_flat_dt_prop(node, "ranges", NULL);
163	if (!prop)
164		return -EINVAL;
165	return 0;
166}
167
168/*
169 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
170 */
171int __init fdt_scan_reserved_mem(void)
172{
173	int node, child;
174	const void *fdt = initial_boot_params;
175
176	node = fdt_path_offset(fdt, "/reserved-memory");
177	if (node < 0)
178		return -ENODEV;
179
180	if (__reserved_mem_check_root(node) != 0) {
181		pr_err("Reserved memory: unsupported node format, ignoring\n");
182		return -EINVAL;
183	}
184
185	fdt_for_each_subnode(child, fdt, node) {
186		const char *uname;
187		int err;
188
189		if (!of_fdt_device_is_available(fdt, child))
190			continue;
191
192		uname = fdt_get_name(fdt, child, NULL);
193
194		err = __reserved_mem_reserve_reg(child, uname);
195		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
196			fdt_reserved_mem_save_node(child, uname, 0, 0);
197	}
198	return 0;
199}
200
201/*
202 * __reserved_mem_alloc_in_range() - allocate reserved memory described with
203 *	'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
204 *	reserved regions to keep the reserved memory contiguous if possible.
205 */
206static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
207	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
208	phys_addr_t *res_base)
209{
210	bool prev_bottom_up = memblock_bottom_up();
211	bool bottom_up = false, top_down = false;
212	int ret, i;
213
214	for (i = 0; i < reserved_mem_count; i++) {
215		struct reserved_mem *rmem = &reserved_mem[i];
216
217		/* Skip regions that were not reserved yet */
218		if (rmem->size == 0)
219			continue;
220
221		/*
222		 * If range starts next to an existing reservation, use bottom-up:
223		 *	|....RRRR................RRRRRRRR..............|
224		 *	       --RRRR------
225		 */
226		if (start >= rmem->base && start <= (rmem->base + rmem->size))
227			bottom_up = true;
228
229		/*
230		 * If range ends next to an existing reservation, use top-down:
231		 *	|....RRRR................RRRRRRRR..............|
232		 *	              -------RRRR-----
233		 */
234		if (end >= rmem->base && end <= (rmem->base + rmem->size))
235			top_down = true;
236	}
237
238	/* Change setting only if either bottom-up or top-down was selected */
239	if (bottom_up != top_down)
240		memblock_set_bottom_up(bottom_up);
241
242	ret = early_init_dt_alloc_reserved_memory_arch(size, align,
243			start, end, nomap, res_base);
244
245	/* Restore old setting if needed */
246	if (bottom_up != top_down)
247		memblock_set_bottom_up(prev_bottom_up);
248
249	return ret;
250}
251
252/*
253 * __reserved_mem_alloc_size() - allocate reserved memory described by
254 *	'size', 'alignment'  and 'alloc-ranges' properties.
255 */
256static int __init __reserved_mem_alloc_size(unsigned long node,
257	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
258{
259	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
260	phys_addr_t start = 0, end = 0;
261	phys_addr_t base = 0, align = 0, size;
262	int len;
263	const __be32 *prop;
264	bool nomap;
265	int ret;
266
267	prop = of_get_flat_dt_prop(node, "size", &len);
268	if (!prop)
269		return -EINVAL;
270
271	if (len != dt_root_size_cells * sizeof(__be32)) {
272		pr_err("invalid size property in '%s' node.\n", uname);
 
273		return -EINVAL;
274	}
275	size = dt_mem_next_cell(dt_root_size_cells, &prop);
276
 
 
277	prop = of_get_flat_dt_prop(node, "alignment", &len);
278	if (prop) {
279		if (len != dt_root_addr_cells * sizeof(__be32)) {
280			pr_err("invalid alignment property in '%s' node.\n",
281				uname);
282			return -EINVAL;
283		}
284		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
285	}
286
287	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
288
289	/* Need adjust the alignment to satisfy the CMA requirement */
290	if (IS_ENABLED(CONFIG_CMA)
291	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
292	    && of_get_flat_dt_prop(node, "reusable", NULL)
293	    && !nomap)
294		align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
295
296	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
297	if (prop) {
298
299		if (len % t_len != 0) {
300			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
301			       uname);
302			return -EINVAL;
303		}
304
305		base = 0;
306
307		while (len > 0) {
308			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
309			end = start + dt_mem_next_cell(dt_root_size_cells,
310						       &prop);
311
312			ret = __reserved_mem_alloc_in_range(size, align,
313					start, end, nomap, &base);
314			if (ret == 0) {
315				pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
316					uname, &base,
317					(unsigned long)(size / SZ_1M));
318				break;
319			}
320			len -= t_len;
321		}
322
323	} else {
324		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
325							0, 0, nomap, &base);
326		if (ret == 0)
327			pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
328				uname, &base, (unsigned long)(size / SZ_1M));
329	}
330
331	if (base == 0) {
332		pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
333		       uname, (unsigned long)(size / SZ_1M));
334		return -ENOMEM;
335	}
336
337	*res_base = base;
338	*res_size = size;
339
340	return 0;
341}
342
343static const struct of_device_id __rmem_of_table_sentinel
344	__used __section("__reservedmem_of_table_end");
345
346/*
347 * __reserved_mem_init_node() - call region specific reserved memory init code
348 */
349static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
350{
351	extern const struct of_device_id __reservedmem_of_table[];
352	const struct of_device_id *i;
353	int ret = -ENOENT;
354
355	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
356		reservedmem_of_init_fn initfn = i->data;
357		const char *compat = i->compatible;
358
359		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
360			continue;
361
362		ret = initfn(rmem);
363		if (ret == 0) {
364			pr_info("initialized node %s, compatible id %s\n",
365				rmem->name, compat);
366			break;
367		}
368	}
369	return ret;
370}
371
372static int __init __rmem_cmp(const void *a, const void *b)
373{
374	const struct reserved_mem *ra = a, *rb = b;
375
376	if (ra->base < rb->base)
377		return -1;
378
379	if (ra->base > rb->base)
380		return 1;
381
382	/*
383	 * Put the dynamic allocations (address == 0, size == 0) before static
384	 * allocations at address 0x0 so that overlap detection works
385	 * correctly.
386	 */
387	if (ra->size < rb->size)
388		return -1;
389	if (ra->size > rb->size)
390		return 1;
391
392	if (ra->fdt_node < rb->fdt_node)
393		return -1;
394	if (ra->fdt_node > rb->fdt_node)
395		return 1;
396
397	return 0;
398}
399
400static void __init __rmem_check_for_overlap(void)
401{
402	int i;
403
404	if (reserved_mem_count < 2)
405		return;
406
407	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
408	     __rmem_cmp, NULL);
409	for (i = 0; i < reserved_mem_count - 1; i++) {
410		struct reserved_mem *this, *next;
411
412		this = &reserved_mem[i];
413		next = &reserved_mem[i + 1];
414
 
415		if (this->base + this->size > next->base) {
416			phys_addr_t this_end, next_end;
417
418			this_end = this->base + this->size;
419			next_end = next->base + next->size;
420			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
421			       this->name, &this->base, &this_end,
422			       next->name, &next->base, &next_end);
423		}
424	}
425}
426
427/**
428 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
429 */
430void __init fdt_init_reserved_mem(void)
431{
432	int i;
433
434	/* check for overlapping reserved regions */
435	__rmem_check_for_overlap();
436
437	for (i = 0; i < reserved_mem_count; i++) {
438		struct reserved_mem *rmem = &reserved_mem[i];
439		unsigned long node = rmem->fdt_node;
440		int len;
441		const __be32 *prop;
442		int err = 0;
443		bool nomap;
444
445		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
446		prop = of_get_flat_dt_prop(node, "phandle", &len);
447		if (!prop)
448			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
449		if (prop)
450			rmem->phandle = of_read_number(prop, len/4);
451
452		if (rmem->size == 0)
453			err = __reserved_mem_alloc_size(node, rmem->name,
454						 &rmem->base, &rmem->size);
455		if (err == 0) {
456			err = __reserved_mem_init_node(rmem);
457			if (err != 0 && err != -ENOENT) {
458				pr_info("node %s compatible matching fail\n",
459					rmem->name);
460				if (nomap)
461					memblock_clear_nomap(rmem->base, rmem->size);
462				else
463					memblock_phys_free(rmem->base,
464							   rmem->size);
465			} else {
466				phys_addr_t end = rmem->base + rmem->size - 1;
467				bool reusable =
468					(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
469
470				pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
471					&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
472					nomap ? "nomap" : "map",
473					reusable ? "reusable" : "non-reusable",
474					rmem->name ? rmem->name : "unknown");
475			}
476		}
477	}
478}
479
480static inline struct reserved_mem *__find_rmem(struct device_node *node)
481{
482	unsigned int i;
483
484	if (!node->phandle)
485		return NULL;
486
487	for (i = 0; i < reserved_mem_count; i++)
488		if (reserved_mem[i].phandle == node->phandle)
489			return &reserved_mem[i];
490	return NULL;
491}
492
493struct rmem_assigned_device {
494	struct device *dev;
495	struct reserved_mem *rmem;
496	struct list_head list;
497};
498
499static LIST_HEAD(of_rmem_assigned_device_list);
500static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
501
502/**
503 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
504 *					  given device
505 * @dev:	Pointer to the device to configure
506 * @np:		Pointer to the device_node with 'reserved-memory' property
507 * @idx:	Index of selected region
508 *
509 * This function assigns respective DMA-mapping operations based on reserved
510 * memory region specified by 'memory-region' property in @np node to the @dev
511 * device. When driver needs to use more than one reserved memory region, it
512 * should allocate child devices and initialize regions by name for each of
513 * child device.
514 *
515 * Returns error code or zero on success.
 
516 */
517int of_reserved_mem_device_init_by_idx(struct device *dev,
518				       struct device_node *np, int idx)
519{
520	struct rmem_assigned_device *rd;
521	struct device_node *target;
522	struct reserved_mem *rmem;
 
523	int ret;
524
525	if (!np || !dev)
526		return -EINVAL;
527
528	target = of_parse_phandle(np, "memory-region", idx);
529	if (!target)
530		return -ENODEV;
531
532	if (!of_device_is_available(target)) {
533		of_node_put(target);
534		return 0;
535	}
536
537	rmem = __find_rmem(target);
538	of_node_put(target);
539
540	if (!rmem || !rmem->ops || !rmem->ops->device_init)
541		return -EINVAL;
542
543	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
544	if (!rd)
545		return -ENOMEM;
546
547	ret = rmem->ops->device_init(rmem, dev);
548	if (ret == 0) {
549		rd->dev = dev;
550		rd->rmem = rmem;
551
552		mutex_lock(&of_rmem_assigned_device_mutex);
553		list_add(&rd->list, &of_rmem_assigned_device_list);
554		mutex_unlock(&of_rmem_assigned_device_mutex);
555
556		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
557	} else {
558		kfree(rd);
559	}
560
561	return ret;
562}
563EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
564
565/**
566 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
567 *					   to given device
568 * @dev: pointer to the device to configure
569 * @np: pointer to the device node with 'memory-region' property
570 * @name: name of the selected memory region
571 *
572 * Returns: 0 on success or a negative error-code on failure.
573 */
574int of_reserved_mem_device_init_by_name(struct device *dev,
575					struct device_node *np,
576					const char *name)
577{
578	int idx = of_property_match_string(np, "memory-region-names", name);
579
580	return of_reserved_mem_device_init_by_idx(dev, np, idx);
581}
582EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
583
584/**
585 * of_reserved_mem_device_release() - release reserved memory device structures
586 * @dev:	Pointer to the device to deconfigure
587 *
588 * This function releases structures allocated for memory region handling for
589 * the given device.
590 */
591void of_reserved_mem_device_release(struct device *dev)
592{
593	struct rmem_assigned_device *rd, *tmp;
594	LIST_HEAD(release_list);
595
596	mutex_lock(&of_rmem_assigned_device_mutex);
597	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
598		if (rd->dev == dev)
599			list_move_tail(&rd->list, &release_list);
600	}
601	mutex_unlock(&of_rmem_assigned_device_mutex);
602
603	list_for_each_entry_safe(rd, tmp, &release_list, list) {
604		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
605			rd->rmem->ops->device_release(rd->rmem, dev);
606
607		kfree(rd);
608	}
609}
610EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
611
612/**
613 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
614 * @np:		node pointer of the desired reserved-memory region
615 *
616 * This function allows drivers to acquire a reference to the reserved_mem
617 * struct based on a device node handle.
618 *
619 * Returns a reserved_mem reference, or NULL on error.
620 */
621struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
622{
623	const char *name;
624	int i;
625
626	if (!np->full_name)
627		return NULL;
628
629	name = kbasename(np->full_name);
630	for (i = 0; i < reserved_mem_count; i++)
631		if (!strcmp(reserved_mem[i].name, name))
632			return &reserved_mem[i];
633
634	return NULL;
635}
636EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);