Loading...
1/*
2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/string.h>
19#include <linux/ptrace.h>
20#include <linux/errno.h>
21#include <linux/ioport.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/skbuff.h>
27#include <linux/spinlock.h>
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/bitops.h>
31#include <linux/fs.h>
32#include <linux/platform_device.h>
33#include <linux/of_address.h>
34#include <linux/of_irq.h>
35#include <linux/of_platform.h>
36
37#include <asm/irq.h>
38#include <asm/uaccess.h>
39
40#ifdef CONFIG_8xx
41#include <asm/8xx_immap.h>
42#include <asm/pgtable.h>
43#include <asm/cpm1.h>
44#endif
45
46#include "fs_enet.h"
47
48/*************************************************/
49#if defined(CONFIG_CPM1)
50/* for a 8xx __raw_xxx's are sufficient */
51#define __fs_out32(addr, x) __raw_writel(x, addr)
52#define __fs_out16(addr, x) __raw_writew(x, addr)
53#define __fs_out8(addr, x) __raw_writeb(x, addr)
54#define __fs_in32(addr) __raw_readl(addr)
55#define __fs_in16(addr) __raw_readw(addr)
56#define __fs_in8(addr) __raw_readb(addr)
57#else
58/* for others play it safe */
59#define __fs_out32(addr, x) out_be32(addr, x)
60#define __fs_out16(addr, x) out_be16(addr, x)
61#define __fs_in32(addr) in_be32(addr)
62#define __fs_in16(addr) in_be16(addr)
63#define __fs_out8(addr, x) out_8(addr, x)
64#define __fs_in8(addr) in_8(addr)
65#endif
66
67/* write, read, set bits, clear bits */
68#define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
69#define R32(_p, _m) __fs_in32(&(_p)->_m)
70#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
71#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
72
73#define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
74#define R16(_p, _m) __fs_in16(&(_p)->_m)
75#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
76#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
77
78#define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
79#define R8(_p, _m) __fs_in8(&(_p)->_m)
80#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
81#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
82
83#define SCC_MAX_MULTICAST_ADDRS 64
84
85/*
86 * Delay to wait for SCC reset command to complete (in us)
87 */
88#define SCC_RESET_DELAY 50
89
90static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
91{
92 const struct fs_platform_info *fpi = fep->fpi;
93
94 return cpm_command(fpi->cp_command, op);
95}
96
97static int do_pd_setup(struct fs_enet_private *fep)
98{
99 struct platform_device *ofdev = to_platform_device(fep->dev);
100
101 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
102 if (fep->interrupt == NO_IRQ)
103 return -EINVAL;
104
105 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0);
106 if (!fep->scc.sccp)
107 return -EINVAL;
108
109 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1);
110 if (!fep->scc.ep) {
111 iounmap(fep->scc.sccp);
112 return -EINVAL;
113 }
114
115 return 0;
116}
117
118#define SCC_NAPI_RX_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB)
119#define SCC_NAPI_TX_EVENT_MSK (SCCE_ENET_TXB)
120#define SCC_RX_EVENT (SCCE_ENET_RXF)
121#define SCC_TX_EVENT (SCCE_ENET_TXB)
122#define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
123
124static int setup_data(struct net_device *dev)
125{
126 struct fs_enet_private *fep = netdev_priv(dev);
127
128 do_pd_setup(fep);
129
130 fep->scc.hthi = 0;
131 fep->scc.htlo = 0;
132
133 fep->ev_napi_rx = SCC_NAPI_RX_EVENT_MSK;
134 fep->ev_napi_tx = SCC_NAPI_TX_EVENT_MSK;
135 fep->ev_rx = SCC_RX_EVENT;
136 fep->ev_tx = SCC_TX_EVENT | SCCE_ENET_TXE;
137 fep->ev_err = SCC_ERR_EVENT_MSK;
138
139 return 0;
140}
141
142static int allocate_bd(struct net_device *dev)
143{
144 struct fs_enet_private *fep = netdev_priv(dev);
145 const struct fs_platform_info *fpi = fep->fpi;
146
147 fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
148 sizeof(cbd_t), 8);
149 if (IS_ERR_VALUE(fep->ring_mem_addr))
150 return -ENOMEM;
151
152 fep->ring_base = (void __iomem __force*)
153 cpm_dpram_addr(fep->ring_mem_addr);
154
155 return 0;
156}
157
158static void free_bd(struct net_device *dev)
159{
160 struct fs_enet_private *fep = netdev_priv(dev);
161
162 if (fep->ring_base)
163 cpm_dpfree(fep->ring_mem_addr);
164}
165
166static void cleanup_data(struct net_device *dev)
167{
168 /* nothing */
169}
170
171static void set_promiscuous_mode(struct net_device *dev)
172{
173 struct fs_enet_private *fep = netdev_priv(dev);
174 scc_t __iomem *sccp = fep->scc.sccp;
175
176 S16(sccp, scc_psmr, SCC_PSMR_PRO);
177}
178
179static void set_multicast_start(struct net_device *dev)
180{
181 struct fs_enet_private *fep = netdev_priv(dev);
182 scc_enet_t __iomem *ep = fep->scc.ep;
183
184 W16(ep, sen_gaddr1, 0);
185 W16(ep, sen_gaddr2, 0);
186 W16(ep, sen_gaddr3, 0);
187 W16(ep, sen_gaddr4, 0);
188}
189
190static void set_multicast_one(struct net_device *dev, const u8 * mac)
191{
192 struct fs_enet_private *fep = netdev_priv(dev);
193 scc_enet_t __iomem *ep = fep->scc.ep;
194 u16 taddrh, taddrm, taddrl;
195
196 taddrh = ((u16) mac[5] << 8) | mac[4];
197 taddrm = ((u16) mac[3] << 8) | mac[2];
198 taddrl = ((u16) mac[1] << 8) | mac[0];
199
200 W16(ep, sen_taddrh, taddrh);
201 W16(ep, sen_taddrm, taddrm);
202 W16(ep, sen_taddrl, taddrl);
203 scc_cr_cmd(fep, CPM_CR_SET_GADDR);
204}
205
206static void set_multicast_finish(struct net_device *dev)
207{
208 struct fs_enet_private *fep = netdev_priv(dev);
209 scc_t __iomem *sccp = fep->scc.sccp;
210 scc_enet_t __iomem *ep = fep->scc.ep;
211
212 /* clear promiscuous always */
213 C16(sccp, scc_psmr, SCC_PSMR_PRO);
214
215 /* if all multi or too many multicasts; just enable all */
216 if ((dev->flags & IFF_ALLMULTI) != 0 ||
217 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
218
219 W16(ep, sen_gaddr1, 0xffff);
220 W16(ep, sen_gaddr2, 0xffff);
221 W16(ep, sen_gaddr3, 0xffff);
222 W16(ep, sen_gaddr4, 0xffff);
223 }
224}
225
226static void set_multicast_list(struct net_device *dev)
227{
228 struct netdev_hw_addr *ha;
229
230 if ((dev->flags & IFF_PROMISC) == 0) {
231 set_multicast_start(dev);
232 netdev_for_each_mc_addr(ha, dev)
233 set_multicast_one(dev, ha->addr);
234 set_multicast_finish(dev);
235 } else
236 set_promiscuous_mode(dev);
237}
238
239/*
240 * This function is called to start or restart the FEC during a link
241 * change. This only happens when switching between half and full
242 * duplex.
243 */
244static void restart(struct net_device *dev)
245{
246 struct fs_enet_private *fep = netdev_priv(dev);
247 scc_t __iomem *sccp = fep->scc.sccp;
248 scc_enet_t __iomem *ep = fep->scc.ep;
249 const struct fs_platform_info *fpi = fep->fpi;
250 u16 paddrh, paddrm, paddrl;
251 const unsigned char *mac;
252 int i;
253
254 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
255
256 /* clear everything (slow & steady does it) */
257 for (i = 0; i < sizeof(*ep); i++)
258 __fs_out8((u8 __iomem *)ep + i, 0);
259
260 /* point to bds */
261 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
262 W16(ep, sen_genscc.scc_tbase,
263 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
264
265 /* Initialize function code registers for big-endian.
266 */
267#ifndef CONFIG_NOT_COHERENT_CACHE
268 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
269 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
270#else
271 W8(ep, sen_genscc.scc_rfcr, SCC_EB);
272 W8(ep, sen_genscc.scc_tfcr, SCC_EB);
273#endif
274
275 /* Set maximum bytes per receive buffer.
276 * This appears to be an Ethernet frame size, not the buffer
277 * fragment size. It must be a multiple of four.
278 */
279 W16(ep, sen_genscc.scc_mrblr, 0x5f0);
280
281 /* Set CRC preset and mask.
282 */
283 W32(ep, sen_cpres, 0xffffffff);
284 W32(ep, sen_cmask, 0xdebb20e3);
285
286 W32(ep, sen_crcec, 0); /* CRC Error counter */
287 W32(ep, sen_alec, 0); /* alignment error counter */
288 W32(ep, sen_disfc, 0); /* discard frame counter */
289
290 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */
291 W16(ep, sen_retlim, 15); /* Retry limit threshold */
292
293 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */
294
295 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
296
297 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */
298 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */
299
300 /* Clear hash tables.
301 */
302 W16(ep, sen_gaddr1, 0);
303 W16(ep, sen_gaddr2, 0);
304 W16(ep, sen_gaddr3, 0);
305 W16(ep, sen_gaddr4, 0);
306 W16(ep, sen_iaddr1, 0);
307 W16(ep, sen_iaddr2, 0);
308 W16(ep, sen_iaddr3, 0);
309 W16(ep, sen_iaddr4, 0);
310
311 /* set address
312 */
313 mac = dev->dev_addr;
314 paddrh = ((u16) mac[5] << 8) | mac[4];
315 paddrm = ((u16) mac[3] << 8) | mac[2];
316 paddrl = ((u16) mac[1] << 8) | mac[0];
317
318 W16(ep, sen_paddrh, paddrh);
319 W16(ep, sen_paddrm, paddrm);
320 W16(ep, sen_paddrl, paddrl);
321
322 W16(ep, sen_pper, 0);
323 W16(ep, sen_taddrl, 0);
324 W16(ep, sen_taddrm, 0);
325 W16(ep, sen_taddrh, 0);
326
327 fs_init_bds(dev);
328
329 scc_cr_cmd(fep, CPM_CR_INIT_TRX);
330
331 W16(sccp, scc_scce, 0xffff);
332
333 /* Enable interrupts we wish to service.
334 */
335 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
336
337 /* Set GSMR_H to enable all normal operating modes.
338 * Set GSMR_L to enable Ethernet to MC68160.
339 */
340 W32(sccp, scc_gsmrh, 0);
341 W32(sccp, scc_gsmrl,
342 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
343 SCC_GSMRL_MODE_ENET);
344
345 /* Set sync/delimiters.
346 */
347 W16(sccp, scc_dsr, 0xd555);
348
349 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
350 * start frame search 22 bit times after RENA.
351 */
352 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
353
354 /* Set full duplex mode if needed */
355 if (fep->phydev->duplex)
356 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
357
358 /* Restore multicast and promiscuous settings */
359 set_multicast_list(dev);
360
361 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
362}
363
364static void stop(struct net_device *dev)
365{
366 struct fs_enet_private *fep = netdev_priv(dev);
367 scc_t __iomem *sccp = fep->scc.sccp;
368 int i;
369
370 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
371 udelay(1);
372
373 if (i == SCC_RESET_DELAY)
374 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
375
376 W16(sccp, scc_sccm, 0);
377 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
378
379 fs_cleanup_bds(dev);
380}
381
382static void napi_clear_rx_event(struct net_device *dev)
383{
384 struct fs_enet_private *fep = netdev_priv(dev);
385 scc_t __iomem *sccp = fep->scc.sccp;
386
387 W16(sccp, scc_scce, SCC_NAPI_RX_EVENT_MSK);
388}
389
390static void napi_enable_rx(struct net_device *dev)
391{
392 struct fs_enet_private *fep = netdev_priv(dev);
393 scc_t __iomem *sccp = fep->scc.sccp;
394
395 S16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
396}
397
398static void napi_disable_rx(struct net_device *dev)
399{
400 struct fs_enet_private *fep = netdev_priv(dev);
401 scc_t __iomem *sccp = fep->scc.sccp;
402
403 C16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK);
404}
405
406static void napi_clear_tx_event(struct net_device *dev)
407{
408 struct fs_enet_private *fep = netdev_priv(dev);
409 scc_t __iomem *sccp = fep->scc.sccp;
410
411 W16(sccp, scc_scce, SCC_NAPI_TX_EVENT_MSK);
412}
413
414static void napi_enable_tx(struct net_device *dev)
415{
416 struct fs_enet_private *fep = netdev_priv(dev);
417 scc_t __iomem *sccp = fep->scc.sccp;
418
419 S16(sccp, scc_sccm, SCC_NAPI_TX_EVENT_MSK);
420}
421
422static void napi_disable_tx(struct net_device *dev)
423{
424 struct fs_enet_private *fep = netdev_priv(dev);
425 scc_t __iomem *sccp = fep->scc.sccp;
426
427 C16(sccp, scc_sccm, SCC_NAPI_TX_EVENT_MSK);
428}
429
430static void rx_bd_done(struct net_device *dev)
431{
432 /* nothing */
433}
434
435static void tx_kickstart(struct net_device *dev)
436{
437 /* nothing */
438}
439
440static u32 get_int_events(struct net_device *dev)
441{
442 struct fs_enet_private *fep = netdev_priv(dev);
443 scc_t __iomem *sccp = fep->scc.sccp;
444
445 return (u32) R16(sccp, scc_scce);
446}
447
448static void clear_int_events(struct net_device *dev, u32 int_events)
449{
450 struct fs_enet_private *fep = netdev_priv(dev);
451 scc_t __iomem *sccp = fep->scc.sccp;
452
453 W16(sccp, scc_scce, int_events & 0xffff);
454}
455
456static void ev_error(struct net_device *dev, u32 int_events)
457{
458 struct fs_enet_private *fep = netdev_priv(dev);
459
460 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
461}
462
463static int get_regs(struct net_device *dev, void *p, int *sizep)
464{
465 struct fs_enet_private *fep = netdev_priv(dev);
466
467 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
468 return -EINVAL;
469
470 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
471 p = (char *)p + sizeof(scc_t);
472
473 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
474
475 return 0;
476}
477
478static int get_regs_len(struct net_device *dev)
479{
480 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
481}
482
483static void tx_restart(struct net_device *dev)
484{
485 struct fs_enet_private *fep = netdev_priv(dev);
486
487 scc_cr_cmd(fep, CPM_CR_RESTART_TX);
488}
489
490
491
492/*************************************************************************/
493
494const struct fs_ops fs_scc_ops = {
495 .setup_data = setup_data,
496 .cleanup_data = cleanup_data,
497 .set_multicast_list = set_multicast_list,
498 .restart = restart,
499 .stop = stop,
500 .napi_clear_rx_event = napi_clear_rx_event,
501 .napi_enable_rx = napi_enable_rx,
502 .napi_disable_rx = napi_disable_rx,
503 .napi_clear_tx_event = napi_clear_tx_event,
504 .napi_enable_tx = napi_enable_tx,
505 .napi_disable_tx = napi_disable_tx,
506 .rx_bd_done = rx_bd_done,
507 .tx_kickstart = tx_kickstart,
508 .get_int_events = get_int_events,
509 .clear_int_events = clear_int_events,
510 .ev_error = ev_error,
511 .get_regs = get_regs,
512 .get_regs_len = get_regs_len,
513 .tx_restart = tx_restart,
514 .allocate_bd = allocate_bd,
515 .free_bd = free_bd,
516};
1/*
2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/string.h>
19#include <linux/ptrace.h>
20#include <linux/errno.h>
21#include <linux/ioport.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/skbuff.h>
27#include <linux/spinlock.h>
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/bitops.h>
31#include <linux/fs.h>
32#include <linux/platform_device.h>
33#include <linux/of_address.h>
34#include <linux/of_irq.h>
35
36#include <asm/irq.h>
37#include <linux/uaccess.h>
38
39#include "fs_enet.h"
40
41/*************************************************/
42#if defined(CONFIG_CPM1)
43/* for a 8xx __raw_xxx's are sufficient */
44#define __fs_out32(addr, x) __raw_writel(x, addr)
45#define __fs_out16(addr, x) __raw_writew(x, addr)
46#define __fs_out8(addr, x) __raw_writeb(x, addr)
47#define __fs_in32(addr) __raw_readl(addr)
48#define __fs_in16(addr) __raw_readw(addr)
49#define __fs_in8(addr) __raw_readb(addr)
50#else
51/* for others play it safe */
52#define __fs_out32(addr, x) out_be32(addr, x)
53#define __fs_out16(addr, x) out_be16(addr, x)
54#define __fs_in32(addr) in_be32(addr)
55#define __fs_in16(addr) in_be16(addr)
56#define __fs_out8(addr, x) out_8(addr, x)
57#define __fs_in8(addr) in_8(addr)
58#endif
59
60/* write, read, set bits, clear bits */
61#define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
62#define R32(_p, _m) __fs_in32(&(_p)->_m)
63#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
64#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
65
66#define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
67#define R16(_p, _m) __fs_in16(&(_p)->_m)
68#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
69#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
70
71#define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
72#define R8(_p, _m) __fs_in8(&(_p)->_m)
73#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
74#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
75
76#define SCC_MAX_MULTICAST_ADDRS 64
77
78/*
79 * Delay to wait for SCC reset command to complete (in us)
80 */
81#define SCC_RESET_DELAY 50
82
83static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
84{
85 const struct fs_platform_info *fpi = fep->fpi;
86
87 return cpm_command(fpi->cp_command, op);
88}
89
90static int do_pd_setup(struct fs_enet_private *fep)
91{
92 struct platform_device *ofdev = to_platform_device(fep->dev);
93
94 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
95 if (!fep->interrupt)
96 return -EINVAL;
97
98 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0);
99 if (!fep->scc.sccp)
100 return -EINVAL;
101
102 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1);
103 if (!fep->scc.ep) {
104 iounmap(fep->scc.sccp);
105 return -EINVAL;
106 }
107
108 return 0;
109}
110
111#define SCC_NAPI_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB)
112#define SCC_EVENT (SCCE_ENET_RXF | SCCE_ENET_TXB)
113#define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
114
115static int setup_data(struct net_device *dev)
116{
117 struct fs_enet_private *fep = netdev_priv(dev);
118
119 do_pd_setup(fep);
120
121 fep->scc.hthi = 0;
122 fep->scc.htlo = 0;
123
124 fep->ev_napi = SCC_NAPI_EVENT_MSK;
125 fep->ev = SCC_EVENT | SCCE_ENET_TXE;
126 fep->ev_err = SCC_ERR_EVENT_MSK;
127
128 return 0;
129}
130
131static int allocate_bd(struct net_device *dev)
132{
133 struct fs_enet_private *fep = netdev_priv(dev);
134 const struct fs_platform_info *fpi = fep->fpi;
135
136 fep->ring_mem_addr = cpm_muram_alloc((fpi->tx_ring + fpi->rx_ring) *
137 sizeof(cbd_t), 8);
138 if (IS_ERR_VALUE(fep->ring_mem_addr))
139 return -ENOMEM;
140
141 fep->ring_base = (void __iomem __force*)
142 cpm_muram_addr(fep->ring_mem_addr);
143
144 return 0;
145}
146
147static void free_bd(struct net_device *dev)
148{
149 struct fs_enet_private *fep = netdev_priv(dev);
150
151 if (fep->ring_base)
152 cpm_muram_free(fep->ring_mem_addr);
153}
154
155static void cleanup_data(struct net_device *dev)
156{
157 /* nothing */
158}
159
160static void set_promiscuous_mode(struct net_device *dev)
161{
162 struct fs_enet_private *fep = netdev_priv(dev);
163 scc_t __iomem *sccp = fep->scc.sccp;
164
165 S16(sccp, scc_psmr, SCC_PSMR_PRO);
166}
167
168static void set_multicast_start(struct net_device *dev)
169{
170 struct fs_enet_private *fep = netdev_priv(dev);
171 scc_enet_t __iomem *ep = fep->scc.ep;
172
173 W16(ep, sen_gaddr1, 0);
174 W16(ep, sen_gaddr2, 0);
175 W16(ep, sen_gaddr3, 0);
176 W16(ep, sen_gaddr4, 0);
177}
178
179static void set_multicast_one(struct net_device *dev, const u8 * mac)
180{
181 struct fs_enet_private *fep = netdev_priv(dev);
182 scc_enet_t __iomem *ep = fep->scc.ep;
183 u16 taddrh, taddrm, taddrl;
184
185 taddrh = ((u16) mac[5] << 8) | mac[4];
186 taddrm = ((u16) mac[3] << 8) | mac[2];
187 taddrl = ((u16) mac[1] << 8) | mac[0];
188
189 W16(ep, sen_taddrh, taddrh);
190 W16(ep, sen_taddrm, taddrm);
191 W16(ep, sen_taddrl, taddrl);
192 scc_cr_cmd(fep, CPM_CR_SET_GADDR);
193}
194
195static void set_multicast_finish(struct net_device *dev)
196{
197 struct fs_enet_private *fep = netdev_priv(dev);
198 scc_t __iomem *sccp = fep->scc.sccp;
199 scc_enet_t __iomem *ep = fep->scc.ep;
200
201 /* clear promiscuous always */
202 C16(sccp, scc_psmr, SCC_PSMR_PRO);
203
204 /* if all multi or too many multicasts; just enable all */
205 if ((dev->flags & IFF_ALLMULTI) != 0 ||
206 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
207
208 W16(ep, sen_gaddr1, 0xffff);
209 W16(ep, sen_gaddr2, 0xffff);
210 W16(ep, sen_gaddr3, 0xffff);
211 W16(ep, sen_gaddr4, 0xffff);
212 }
213}
214
215static void set_multicast_list(struct net_device *dev)
216{
217 struct netdev_hw_addr *ha;
218
219 if ((dev->flags & IFF_PROMISC) == 0) {
220 set_multicast_start(dev);
221 netdev_for_each_mc_addr(ha, dev)
222 set_multicast_one(dev, ha->addr);
223 set_multicast_finish(dev);
224 } else
225 set_promiscuous_mode(dev);
226}
227
228/*
229 * This function is called to start or restart the FEC during a link
230 * change. This only happens when switching between half and full
231 * duplex.
232 */
233static void restart(struct net_device *dev)
234{
235 struct fs_enet_private *fep = netdev_priv(dev);
236 scc_t __iomem *sccp = fep->scc.sccp;
237 scc_enet_t __iomem *ep = fep->scc.ep;
238 const struct fs_platform_info *fpi = fep->fpi;
239 u16 paddrh, paddrm, paddrl;
240 const unsigned char *mac;
241 int i;
242
243 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
244
245 /* clear everything (slow & steady does it) */
246 for (i = 0; i < sizeof(*ep); i++)
247 __fs_out8((u8 __iomem *)ep + i, 0);
248
249 /* point to bds */
250 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
251 W16(ep, sen_genscc.scc_tbase,
252 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
253
254 /* Initialize function code registers for big-endian.
255 */
256#ifndef CONFIG_NOT_COHERENT_CACHE
257 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
258 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
259#else
260 W8(ep, sen_genscc.scc_rfcr, SCC_EB);
261 W8(ep, sen_genscc.scc_tfcr, SCC_EB);
262#endif
263
264 /* Set maximum bytes per receive buffer.
265 * This appears to be an Ethernet frame size, not the buffer
266 * fragment size. It must be a multiple of four.
267 */
268 W16(ep, sen_genscc.scc_mrblr, 0x5f0);
269
270 /* Set CRC preset and mask.
271 */
272 W32(ep, sen_cpres, 0xffffffff);
273 W32(ep, sen_cmask, 0xdebb20e3);
274
275 W32(ep, sen_crcec, 0); /* CRC Error counter */
276 W32(ep, sen_alec, 0); /* alignment error counter */
277 W32(ep, sen_disfc, 0); /* discard frame counter */
278
279 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */
280 W16(ep, sen_retlim, 15); /* Retry limit threshold */
281
282 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */
283
284 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
285
286 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */
287 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */
288
289 /* Clear hash tables.
290 */
291 W16(ep, sen_gaddr1, 0);
292 W16(ep, sen_gaddr2, 0);
293 W16(ep, sen_gaddr3, 0);
294 W16(ep, sen_gaddr4, 0);
295 W16(ep, sen_iaddr1, 0);
296 W16(ep, sen_iaddr2, 0);
297 W16(ep, sen_iaddr3, 0);
298 W16(ep, sen_iaddr4, 0);
299
300 /* set address
301 */
302 mac = dev->dev_addr;
303 paddrh = ((u16) mac[5] << 8) | mac[4];
304 paddrm = ((u16) mac[3] << 8) | mac[2];
305 paddrl = ((u16) mac[1] << 8) | mac[0];
306
307 W16(ep, sen_paddrh, paddrh);
308 W16(ep, sen_paddrm, paddrm);
309 W16(ep, sen_paddrl, paddrl);
310
311 W16(ep, sen_pper, 0);
312 W16(ep, sen_taddrl, 0);
313 W16(ep, sen_taddrm, 0);
314 W16(ep, sen_taddrh, 0);
315
316 fs_init_bds(dev);
317
318 scc_cr_cmd(fep, CPM_CR_INIT_TRX);
319
320 W16(sccp, scc_scce, 0xffff);
321
322 /* Enable interrupts we wish to service.
323 */
324 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
325
326 /* Set GSMR_H to enable all normal operating modes.
327 * Set GSMR_L to enable Ethernet to MC68160.
328 */
329 W32(sccp, scc_gsmrh, 0);
330 W32(sccp, scc_gsmrl,
331 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
332 SCC_GSMRL_MODE_ENET);
333
334 /* Set sync/delimiters.
335 */
336 W16(sccp, scc_dsr, 0xd555);
337
338 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
339 * start frame search 22 bit times after RENA.
340 */
341 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
342
343 /* Set full duplex mode if needed */
344 if (dev->phydev->duplex)
345 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
346
347 /* Restore multicast and promiscuous settings */
348 set_multicast_list(dev);
349
350 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
351}
352
353static void stop(struct net_device *dev)
354{
355 struct fs_enet_private *fep = netdev_priv(dev);
356 scc_t __iomem *sccp = fep->scc.sccp;
357 int i;
358
359 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
360 udelay(1);
361
362 if (i == SCC_RESET_DELAY)
363 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
364
365 W16(sccp, scc_sccm, 0);
366 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
367
368 fs_cleanup_bds(dev);
369}
370
371static void napi_clear_event_fs(struct net_device *dev)
372{
373 struct fs_enet_private *fep = netdev_priv(dev);
374 scc_t __iomem *sccp = fep->scc.sccp;
375
376 W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK);
377}
378
379static void napi_enable_fs(struct net_device *dev)
380{
381 struct fs_enet_private *fep = netdev_priv(dev);
382 scc_t __iomem *sccp = fep->scc.sccp;
383
384 S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
385}
386
387static void napi_disable_fs(struct net_device *dev)
388{
389 struct fs_enet_private *fep = netdev_priv(dev);
390 scc_t __iomem *sccp = fep->scc.sccp;
391
392 C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
393}
394
395static void rx_bd_done(struct net_device *dev)
396{
397 /* nothing */
398}
399
400static void tx_kickstart(struct net_device *dev)
401{
402 /* nothing */
403}
404
405static u32 get_int_events(struct net_device *dev)
406{
407 struct fs_enet_private *fep = netdev_priv(dev);
408 scc_t __iomem *sccp = fep->scc.sccp;
409
410 return (u32) R16(sccp, scc_scce);
411}
412
413static void clear_int_events(struct net_device *dev, u32 int_events)
414{
415 struct fs_enet_private *fep = netdev_priv(dev);
416 scc_t __iomem *sccp = fep->scc.sccp;
417
418 W16(sccp, scc_scce, int_events & 0xffff);
419}
420
421static void ev_error(struct net_device *dev, u32 int_events)
422{
423 struct fs_enet_private *fep = netdev_priv(dev);
424
425 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
426}
427
428static int get_regs(struct net_device *dev, void *p, int *sizep)
429{
430 struct fs_enet_private *fep = netdev_priv(dev);
431
432 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
433 return -EINVAL;
434
435 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
436 p = (char *)p + sizeof(scc_t);
437
438 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
439
440 return 0;
441}
442
443static int get_regs_len(struct net_device *dev)
444{
445 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
446}
447
448static void tx_restart(struct net_device *dev)
449{
450 struct fs_enet_private *fep = netdev_priv(dev);
451
452 scc_cr_cmd(fep, CPM_CR_RESTART_TX);
453}
454
455
456
457/*************************************************************************/
458
459const struct fs_ops fs_scc_ops = {
460 .setup_data = setup_data,
461 .cleanup_data = cleanup_data,
462 .set_multicast_list = set_multicast_list,
463 .restart = restart,
464 .stop = stop,
465 .napi_clear_event = napi_clear_event_fs,
466 .napi_enable = napi_enable_fs,
467 .napi_disable = napi_disable_fs,
468 .rx_bd_done = rx_bd_done,
469 .tx_kickstart = tx_kickstart,
470 .get_int_events = get_int_events,
471 .clear_int_events = clear_int_events,
472 .ev_error = ev_error,
473 .get_regs = get_regs,
474 .get_regs_len = get_regs_len,
475 .tx_restart = tx_restart,
476 .allocate_bd = allocate_bd,
477 .free_bd = free_bd,
478};