Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * PowerMac G5 SMU driver
   3 *
   4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
   5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
   6 *
   7 * Released under the term of the GNU GPL v2.
   8 */
   9
  10/*
  11 * TODO:
  12 *  - maybe add timeout to commands ?
  13 *  - blocking version of time functions
  14 *  - polling version of i2c commands (including timer that works with
  15 *    interrupts off)
  16 *  - maybe avoid some data copies with i2c by directly using the smu cmd
  17 *    buffer and a lower level internal interface
  18 *  - understand SMU -> CPU events and implement reception of them via
  19 *    the userland interface
  20 */
  21
  22#include <linux/types.h>
  23#include <linux/kernel.h>
  24#include <linux/device.h>
  25#include <linux/dmapool.h>
  26#include <linux/bootmem.h>
  27#include <linux/vmalloc.h>
  28#include <linux/highmem.h>
  29#include <linux/jiffies.h>
  30#include <linux/interrupt.h>
  31#include <linux/rtc.h>
  32#include <linux/completion.h>
  33#include <linux/miscdevice.h>
  34#include <linux/delay.h>
  35#include <linux/poll.h>
  36#include <linux/mutex.h>
  37#include <linux/of_device.h>
 
  38#include <linux/of_irq.h>
  39#include <linux/of_platform.h>
 
  40#include <linux/slab.h>
 
  41
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/prom.h>
  45#include <asm/machdep.h>
  46#include <asm/pmac_feature.h>
  47#include <asm/smu.h>
  48#include <asm/sections.h>
  49#include <asm/uaccess.h>
  50
  51#define VERSION "0.7"
  52#define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
  53
  54#undef DEBUG_SMU
  55
  56#ifdef DEBUG_SMU
  57#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
  58#else
  59#define DPRINTK(fmt, args...) do { } while (0)
  60#endif
  61
  62/*
  63 * This is the command buffer passed to the SMU hardware
  64 */
  65#define SMU_MAX_DATA	254
  66
  67struct smu_cmd_buf {
  68	u8 cmd;
  69	u8 length;
  70	u8 data[SMU_MAX_DATA];
  71};
  72
  73struct smu_device {
  74	spinlock_t		lock;
  75	struct device_node	*of_node;
  76	struct platform_device	*of_dev;
  77	int			doorbell;	/* doorbell gpio */
  78	u32 __iomem		*db_buf;	/* doorbell buffer */
  79	struct device_node	*db_node;
  80	unsigned int		db_irq;
  81	int			msg;
  82	struct device_node	*msg_node;
  83	unsigned int		msg_irq;
  84	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
  85	u32			cmd_buf_abs;	/* command buffer absolute */
  86	struct list_head	cmd_list;
  87	struct smu_cmd		*cmd_cur;	/* pending command */
  88	int			broken_nap;
  89	struct list_head	cmd_i2c_list;
  90	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
  91	struct timer_list	i2c_timer;
  92};
  93
  94/*
  95 * I don't think there will ever be more than one SMU, so
  96 * for now, just hard code that
  97 */
  98static DEFINE_MUTEX(smu_mutex);
  99static struct smu_device	*smu;
 100static DEFINE_MUTEX(smu_part_access);
 101static int smu_irq_inited;
 
 102
 103static void smu_i2c_retry(unsigned long data);
 104
 105/*
 106 * SMU driver low level stuff
 107 */
 108
 109static void smu_start_cmd(void)
 110{
 111	unsigned long faddr, fend;
 112	struct smu_cmd *cmd;
 113
 114	if (list_empty(&smu->cmd_list))
 115		return;
 116
 117	/* Fetch first command in queue */
 118	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
 119	smu->cmd_cur = cmd;
 120	list_del(&cmd->link);
 121
 122	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
 123		cmd->data_len);
 124	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
 125
 126	/* Fill the SMU command buffer */
 127	smu->cmd_buf->cmd = cmd->cmd;
 128	smu->cmd_buf->length = cmd->data_len;
 129	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
 130
 131	/* Flush command and data to RAM */
 132	faddr = (unsigned long)smu->cmd_buf;
 133	fend = faddr + smu->cmd_buf->length + 2;
 134	flush_inval_dcache_range(faddr, fend);
 135
 136
 137	/* We also disable NAP mode for the duration of the command
 138	 * on U3 based machines.
 139	 * This is slightly racy as it can be written back to 1 by a sysctl
 140	 * but that never happens in practice. There seem to be an issue with
 141	 * U3 based machines such as the iMac G5 where napping for the
 142	 * whole duration of the command prevents the SMU from fetching it
 143	 * from memory. This might be related to the strange i2c based
 144	 * mechanism the SMU uses to access memory.
 145	 */
 146	if (smu->broken_nap)
 147		powersave_nap = 0;
 148
 149	/* This isn't exactly a DMA mapping here, I suspect
 150	 * the SMU is actually communicating with us via i2c to the
 151	 * northbridge or the CPU to access RAM.
 152	 */
 153	writel(smu->cmd_buf_abs, smu->db_buf);
 154
 155	/* Ring the SMU doorbell */
 156	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
 157}
 158
 159
 160static irqreturn_t smu_db_intr(int irq, void *arg)
 161{
 162	unsigned long flags;
 163	struct smu_cmd *cmd;
 164	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
 165	void *misc = NULL;
 166	u8 gpio;
 167	int rc = 0;
 168
 169	/* SMU completed the command, well, we hope, let's make sure
 170	 * of it
 171	 */
 172	spin_lock_irqsave(&smu->lock, flags);
 173
 174	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 175	if ((gpio & 7) != 7) {
 176		spin_unlock_irqrestore(&smu->lock, flags);
 177		return IRQ_HANDLED;
 178	}
 179
 180	cmd = smu->cmd_cur;
 181	smu->cmd_cur = NULL;
 182	if (cmd == NULL)
 183		goto bail;
 184
 185	if (rc == 0) {
 186		unsigned long faddr;
 187		int reply_len;
 188		u8 ack;
 189
 190		/* CPU might have brought back the cache line, so we need
 191		 * to flush again before peeking at the SMU response. We
 192		 * flush the entire buffer for now as we haven't read the
 193		 * reply length (it's only 2 cache lines anyway)
 194		 */
 195		faddr = (unsigned long)smu->cmd_buf;
 196		flush_inval_dcache_range(faddr, faddr + 256);
 197
 198		/* Now check ack */
 199		ack = (~cmd->cmd) & 0xff;
 200		if (ack != smu->cmd_buf->cmd) {
 201			DPRINTK("SMU: incorrect ack, want %x got %x\n",
 202				ack, smu->cmd_buf->cmd);
 203			rc = -EIO;
 204		}
 205		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
 206		DPRINTK("SMU: reply len: %d\n", reply_len);
 207		if (reply_len > cmd->reply_len) {
 208			printk(KERN_WARNING "SMU: reply buffer too small,"
 209			       "got %d bytes for a %d bytes buffer\n",
 210			       reply_len, cmd->reply_len);
 211			reply_len = cmd->reply_len;
 212		}
 213		cmd->reply_len = reply_len;
 214		if (cmd->reply_buf && reply_len)
 215			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
 216	}
 217
 218	/* Now complete the command. Write status last in order as we lost
 219	 * ownership of the command structure as soon as it's no longer -1
 220	 */
 221	done = cmd->done;
 222	misc = cmd->misc;
 223	mb();
 224	cmd->status = rc;
 225
 226	/* Re-enable NAP mode */
 227	if (smu->broken_nap)
 228		powersave_nap = 1;
 229 bail:
 230	/* Start next command if any */
 231	smu_start_cmd();
 232	spin_unlock_irqrestore(&smu->lock, flags);
 233
 234	/* Call command completion handler if any */
 235	if (done)
 236		done(cmd, misc);
 237
 238	/* It's an edge interrupt, nothing to do */
 239	return IRQ_HANDLED;
 240}
 241
 242
 243static irqreturn_t smu_msg_intr(int irq, void *arg)
 244{
 245	/* I don't quite know what to do with this one, we seem to never
 246	 * receive it, so I suspect we have to arm it someway in the SMU
 247	 * to start getting events that way.
 248	 */
 249
 250	printk(KERN_INFO "SMU: message interrupt !\n");
 251
 252	/* It's an edge interrupt, nothing to do */
 253	return IRQ_HANDLED;
 254}
 255
 256
 257/*
 258 * Queued command management.
 259 *
 260 */
 261
 262int smu_queue_cmd(struct smu_cmd *cmd)
 263{
 264	unsigned long flags;
 265
 266	if (smu == NULL)
 267		return -ENODEV;
 268	if (cmd->data_len > SMU_MAX_DATA ||
 269	    cmd->reply_len > SMU_MAX_DATA)
 270		return -EINVAL;
 271
 272	cmd->status = 1;
 273	spin_lock_irqsave(&smu->lock, flags);
 274	list_add_tail(&cmd->link, &smu->cmd_list);
 275	if (smu->cmd_cur == NULL)
 276		smu_start_cmd();
 277	spin_unlock_irqrestore(&smu->lock, flags);
 278
 279	/* Workaround for early calls when irq isn't available */
 280	if (!smu_irq_inited || smu->db_irq == NO_IRQ)
 281		smu_spinwait_cmd(cmd);
 282
 283	return 0;
 284}
 285EXPORT_SYMBOL(smu_queue_cmd);
 286
 287
 288int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
 289		     unsigned int data_len,
 290		     void (*done)(struct smu_cmd *cmd, void *misc),
 291		     void *misc, ...)
 292{
 293	struct smu_cmd *cmd = &scmd->cmd;
 294	va_list list;
 295	int i;
 296
 297	if (data_len > sizeof(scmd->buffer))
 298		return -EINVAL;
 299
 300	memset(scmd, 0, sizeof(*scmd));
 301	cmd->cmd = command;
 302	cmd->data_len = data_len;
 303	cmd->data_buf = scmd->buffer;
 304	cmd->reply_len = sizeof(scmd->buffer);
 305	cmd->reply_buf = scmd->buffer;
 306	cmd->done = done;
 307	cmd->misc = misc;
 308
 309	va_start(list, misc);
 310	for (i = 0; i < data_len; ++i)
 311		scmd->buffer[i] = (u8)va_arg(list, int);
 312	va_end(list);
 313
 314	return smu_queue_cmd(cmd);
 315}
 316EXPORT_SYMBOL(smu_queue_simple);
 317
 318
 319void smu_poll(void)
 320{
 321	u8 gpio;
 322
 323	if (smu == NULL)
 324		return;
 325
 326	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 327	if ((gpio & 7) == 7)
 328		smu_db_intr(smu->db_irq, smu);
 329}
 330EXPORT_SYMBOL(smu_poll);
 331
 332
 333void smu_done_complete(struct smu_cmd *cmd, void *misc)
 334{
 335	struct completion *comp = misc;
 336
 337	complete(comp);
 338}
 339EXPORT_SYMBOL(smu_done_complete);
 340
 341
 342void smu_spinwait_cmd(struct smu_cmd *cmd)
 343{
 344	while(cmd->status == 1)
 345		smu_poll();
 346}
 347EXPORT_SYMBOL(smu_spinwait_cmd);
 348
 349
 350/* RTC low level commands */
 351static inline int bcd2hex (int n)
 352{
 353	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
 354}
 355
 356
 357static inline int hex2bcd (int n)
 358{
 359	return ((n / 10) << 4) + (n % 10);
 360}
 361
 362
 363static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
 364					struct rtc_time *time)
 365{
 366	cmd_buf->cmd = 0x8e;
 367	cmd_buf->length = 8;
 368	cmd_buf->data[0] = 0x80;
 369	cmd_buf->data[1] = hex2bcd(time->tm_sec);
 370	cmd_buf->data[2] = hex2bcd(time->tm_min);
 371	cmd_buf->data[3] = hex2bcd(time->tm_hour);
 372	cmd_buf->data[4] = time->tm_wday;
 373	cmd_buf->data[5] = hex2bcd(time->tm_mday);
 374	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
 375	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
 376}
 377
 378
 379int smu_get_rtc_time(struct rtc_time *time, int spinwait)
 380{
 381	struct smu_simple_cmd cmd;
 382	int rc;
 383
 384	if (smu == NULL)
 385		return -ENODEV;
 386
 387	memset(time, 0, sizeof(struct rtc_time));
 388	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
 389			      SMU_CMD_RTC_GET_DATETIME);
 390	if (rc)
 391		return rc;
 392	smu_spinwait_simple(&cmd);
 393
 394	time->tm_sec = bcd2hex(cmd.buffer[0]);
 395	time->tm_min = bcd2hex(cmd.buffer[1]);
 396	time->tm_hour = bcd2hex(cmd.buffer[2]);
 397	time->tm_wday = bcd2hex(cmd.buffer[3]);
 398	time->tm_mday = bcd2hex(cmd.buffer[4]);
 399	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
 400	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
 401
 402	return 0;
 403}
 404
 405
 406int smu_set_rtc_time(struct rtc_time *time, int spinwait)
 407{
 408	struct smu_simple_cmd cmd;
 409	int rc;
 410
 411	if (smu == NULL)
 412		return -ENODEV;
 413
 414	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
 415			      SMU_CMD_RTC_SET_DATETIME,
 416			      hex2bcd(time->tm_sec),
 417			      hex2bcd(time->tm_min),
 418			      hex2bcd(time->tm_hour),
 419			      time->tm_wday,
 420			      hex2bcd(time->tm_mday),
 421			      hex2bcd(time->tm_mon) + 1,
 422			      hex2bcd(time->tm_year - 100));
 423	if (rc)
 424		return rc;
 425	smu_spinwait_simple(&cmd);
 426
 427	return 0;
 428}
 429
 430
 431void smu_shutdown(void)
 432{
 433	struct smu_simple_cmd cmd;
 434
 435	if (smu == NULL)
 436		return;
 437
 438	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
 439			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
 440		return;
 441	smu_spinwait_simple(&cmd);
 442	for (;;)
 443		;
 444}
 445
 446
 447void smu_restart(void)
 448{
 449	struct smu_simple_cmd cmd;
 450
 451	if (smu == NULL)
 452		return;
 453
 454	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
 455			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
 456		return;
 457	smu_spinwait_simple(&cmd);
 458	for (;;)
 459		;
 460}
 461
 462
 463int smu_present(void)
 464{
 465	return smu != NULL;
 466}
 467EXPORT_SYMBOL(smu_present);
 468
 469
 470int __init smu_init (void)
 471{
 472	struct device_node *np;
 473	const u32 *data;
 474	int ret = 0;
 475
 476        np = of_find_node_by_type(NULL, "smu");
 477        if (np == NULL)
 478		return -ENODEV;
 479
 480	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
 481
 
 
 
 
 
 482	if (smu_cmdbuf_abs == 0) {
 483		printk(KERN_ERR "SMU: Command buffer not allocated !\n");
 484		ret = -EINVAL;
 485		goto fail_np;
 486	}
 487
 488	smu = alloc_bootmem(sizeof(struct smu_device));
 
 
 
 489
 490	spin_lock_init(&smu->lock);
 491	INIT_LIST_HEAD(&smu->cmd_list);
 492	INIT_LIST_HEAD(&smu->cmd_i2c_list);
 493	smu->of_node = np;
 494	smu->db_irq = NO_IRQ;
 495	smu->msg_irq = NO_IRQ;
 496
 497	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
 498	 * 32 bits value safely
 499	 */
 500	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
 501	smu->cmd_buf = __va(smu_cmdbuf_abs);
 502
 503	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
 504	if (smu->db_node == NULL) {
 505		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
 506		ret = -ENXIO;
 507		goto fail_bootmem;
 508	}
 509	data = of_get_property(smu->db_node, "reg", NULL);
 510	if (data == NULL) {
 511		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
 512		ret = -ENXIO;
 513		goto fail_db_node;
 514	}
 515
 516	/* Current setup has one doorbell GPIO that does both doorbell
 517	 * and ack. GPIOs are at 0x50, best would be to find that out
 518	 * in the device-tree though.
 519	 */
 520	smu->doorbell = *data;
 521	if (smu->doorbell < 0x50)
 522		smu->doorbell += 0x50;
 523
 524	/* Now look for the smu-interrupt GPIO */
 525	do {
 526		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
 527		if (smu->msg_node == NULL)
 528			break;
 529		data = of_get_property(smu->msg_node, "reg", NULL);
 530		if (data == NULL) {
 531			of_node_put(smu->msg_node);
 532			smu->msg_node = NULL;
 533			break;
 534		}
 535		smu->msg = *data;
 536		if (smu->msg < 0x50)
 537			smu->msg += 0x50;
 538	} while(0);
 539
 540	/* Doorbell buffer is currently hard-coded, I didn't find a proper
 541	 * device-tree entry giving the address. Best would probably to use
 542	 * an offset for K2 base though, but let's do it that way for now.
 543	 */
 544	smu->db_buf = ioremap(0x8000860c, 0x1000);
 545	if (smu->db_buf == NULL) {
 546		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
 547		ret = -ENXIO;
 548		goto fail_msg_node;
 549	}
 550
 551	/* U3 has an issue with NAP mode when issuing SMU commands */
 552	smu->broken_nap = pmac_get_uninorth_variant() < 4;
 553	if (smu->broken_nap)
 554		printk(KERN_INFO "SMU: using NAP mode workaround\n");
 555
 556	sys_ctrler = SYS_CTRLER_SMU;
 557	return 0;
 558
 559fail_msg_node:
 560	of_node_put(smu->msg_node);
 561fail_db_node:
 562	of_node_put(smu->db_node);
 563fail_bootmem:
 564	free_bootmem(__pa(smu), sizeof(struct smu_device));
 565	smu = NULL;
 566fail_np:
 567	of_node_put(np);
 568	return ret;
 569}
 570
 571
 572static int smu_late_init(void)
 573{
 574	if (!smu)
 575		return 0;
 576
 577	init_timer(&smu->i2c_timer);
 578	smu->i2c_timer.function = smu_i2c_retry;
 579	smu->i2c_timer.data = (unsigned long)smu;
 580
 581	if (smu->db_node) {
 582		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
 583		if (smu->db_irq == NO_IRQ)
 584			printk(KERN_ERR "smu: failed to map irq for node %s\n",
 585			       smu->db_node->full_name);
 586	}
 587	if (smu->msg_node) {
 588		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
 589		if (smu->msg_irq == NO_IRQ)
 590			printk(KERN_ERR "smu: failed to map irq for node %s\n",
 591			       smu->msg_node->full_name);
 592	}
 593
 594	/*
 595	 * Try to request the interrupts
 596	 */
 597
 598	if (smu->db_irq != NO_IRQ) {
 599		if (request_irq(smu->db_irq, smu_db_intr,
 600				IRQF_SHARED, "SMU doorbell", smu) < 0) {
 601			printk(KERN_WARNING "SMU: can't "
 602			       "request interrupt %d\n",
 603			       smu->db_irq);
 604			smu->db_irq = NO_IRQ;
 605		}
 606	}
 607
 608	if (smu->msg_irq != NO_IRQ) {
 609		if (request_irq(smu->msg_irq, smu_msg_intr,
 610				IRQF_SHARED, "SMU message", smu) < 0) {
 611			printk(KERN_WARNING "SMU: can't "
 612			       "request interrupt %d\n",
 613			       smu->msg_irq);
 614			smu->msg_irq = NO_IRQ;
 615		}
 616	}
 617
 618	smu_irq_inited = 1;
 619	return 0;
 620}
 621/* This has to be before arch_initcall as the low i2c stuff relies on the
 622 * above having been done before we reach arch_initcalls
 623 */
 624core_initcall(smu_late_init);
 625
 626/*
 627 * sysfs visibility
 628 */
 629
 630static void smu_expose_childs(struct work_struct *unused)
 631{
 632	struct device_node *np;
 633
 634	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
 635		if (of_device_is_compatible(np, "smu-sensors"))
 636			of_platform_device_create(np, "smu-sensors",
 637						  &smu->of_dev->dev);
 638}
 639
 640static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
 641
 642static int smu_platform_probe(struct platform_device* dev)
 643{
 644	if (!smu)
 645		return -ENODEV;
 646	smu->of_dev = dev;
 647
 648	/*
 649	 * Ok, we are matched, now expose all i2c busses. We have to defer
 650	 * that unfortunately or it would deadlock inside the device model
 651	 */
 652	schedule_work(&smu_expose_childs_work);
 653
 654	return 0;
 655}
 656
 657static const struct of_device_id smu_platform_match[] =
 658{
 659	{
 660		.type		= "smu",
 661	},
 662	{},
 663};
 664
 665static struct platform_driver smu_of_platform_driver =
 666{
 667	.driver = {
 668		.name = "smu",
 669		.of_match_table = smu_platform_match,
 670	},
 671	.probe		= smu_platform_probe,
 672};
 673
 674static int __init smu_init_sysfs(void)
 675{
 676	/*
 677	 * For now, we don't power manage machines with an SMU chip,
 678	 * I'm a bit too far from figuring out how that works with those
 679	 * new chipsets, but that will come back and bite us
 680	 */
 681	platform_driver_register(&smu_of_platform_driver);
 682	return 0;
 683}
 684
 685device_initcall(smu_init_sysfs);
 686
 687struct platform_device *smu_get_ofdev(void)
 688{
 689	if (!smu)
 690		return NULL;
 691	return smu->of_dev;
 692}
 693
 694EXPORT_SYMBOL_GPL(smu_get_ofdev);
 695
 696/*
 697 * i2c interface
 698 */
 699
 700static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
 701{
 702	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
 703	void *misc = cmd->misc;
 704	unsigned long flags;
 705
 706	/* Check for read case */
 707	if (!fail && cmd->read) {
 708		if (cmd->pdata[0] < 1)
 709			fail = 1;
 710		else
 711			memcpy(cmd->info.data, &cmd->pdata[1],
 712			       cmd->info.datalen);
 713	}
 714
 715	DPRINTK("SMU: completing, success: %d\n", !fail);
 716
 717	/* Update status and mark no pending i2c command with lock
 718	 * held so nobody comes in while we dequeue an eventual
 719	 * pending next i2c command
 720	 */
 721	spin_lock_irqsave(&smu->lock, flags);
 722	smu->cmd_i2c_cur = NULL;
 723	wmb();
 724	cmd->status = fail ? -EIO : 0;
 725
 726	/* Is there another i2c command waiting ? */
 727	if (!list_empty(&smu->cmd_i2c_list)) {
 728		struct smu_i2c_cmd *newcmd;
 729
 730		/* Fetch it, new current, remove from list */
 731		newcmd = list_entry(smu->cmd_i2c_list.next,
 732				    struct smu_i2c_cmd, link);
 733		smu->cmd_i2c_cur = newcmd;
 734		list_del(&cmd->link);
 735
 736		/* Queue with low level smu */
 737		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 738		if (smu->cmd_cur == NULL)
 739			smu_start_cmd();
 740	}
 741	spin_unlock_irqrestore(&smu->lock, flags);
 742
 743	/* Call command completion handler if any */
 744	if (done)
 745		done(cmd, misc);
 746
 747}
 748
 749
 750static void smu_i2c_retry(unsigned long data)
 751{
 752	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
 753
 754	DPRINTK("SMU: i2c failure, requeuing...\n");
 755
 756	/* requeue command simply by resetting reply_len */
 757	cmd->pdata[0] = 0xff;
 758	cmd->scmd.reply_len = sizeof(cmd->pdata);
 759	smu_queue_cmd(&cmd->scmd);
 760}
 761
 762
 763static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
 764{
 765	struct smu_i2c_cmd	*cmd = misc;
 766	int			fail = 0;
 767
 768	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
 769		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
 770
 771	/* Check for possible status */
 772	if (scmd->status < 0)
 773		fail = 1;
 774	else if (cmd->read) {
 775		if (cmd->stage == 0)
 776			fail = cmd->pdata[0] != 0;
 777		else
 778			fail = cmd->pdata[0] >= 0x80;
 779	} else {
 780		fail = cmd->pdata[0] != 0;
 781	}
 782
 783	/* Handle failures by requeuing command, after 5ms interval
 784	 */
 785	if (fail && --cmd->retries > 0) {
 786		DPRINTK("SMU: i2c failure, starting timer...\n");
 787		BUG_ON(cmd != smu->cmd_i2c_cur);
 788		if (!smu_irq_inited) {
 789			mdelay(5);
 790			smu_i2c_retry(0);
 791			return;
 792		}
 793		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
 794		return;
 795	}
 796
 797	/* If failure or stage 1, command is complete */
 798	if (fail || cmd->stage != 0) {
 799		smu_i2c_complete_command(cmd, fail);
 800		return;
 801	}
 802
 803	DPRINTK("SMU: going to stage 1\n");
 804
 805	/* Ok, initial command complete, now poll status */
 806	scmd->reply_buf = cmd->pdata;
 807	scmd->reply_len = sizeof(cmd->pdata);
 808	scmd->data_buf = cmd->pdata;
 809	scmd->data_len = 1;
 810	cmd->pdata[0] = 0;
 811	cmd->stage = 1;
 812	cmd->retries = 20;
 813	smu_queue_cmd(scmd);
 814}
 815
 816
 817int smu_queue_i2c(struct smu_i2c_cmd *cmd)
 818{
 819	unsigned long flags;
 820
 821	if (smu == NULL)
 822		return -ENODEV;
 823
 824	/* Fill most fields of scmd */
 825	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
 826	cmd->scmd.done = smu_i2c_low_completion;
 827	cmd->scmd.misc = cmd;
 828	cmd->scmd.reply_buf = cmd->pdata;
 829	cmd->scmd.reply_len = sizeof(cmd->pdata);
 830	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
 831	cmd->scmd.status = 1;
 832	cmd->stage = 0;
 833	cmd->pdata[0] = 0xff;
 834	cmd->retries = 20;
 835	cmd->status = 1;
 836
 837	/* Check transfer type, sanitize some "info" fields
 838	 * based on transfer type and do more checking
 839	 */
 840	cmd->info.caddr = cmd->info.devaddr;
 841	cmd->read = cmd->info.devaddr & 0x01;
 842	switch(cmd->info.type) {
 843	case SMU_I2C_TRANSFER_SIMPLE:
 844		memset(&cmd->info.sublen, 0, 4);
 
 845		break;
 846	case SMU_I2C_TRANSFER_COMBINED:
 847		cmd->info.devaddr &= 0xfe;
 
 848	case SMU_I2C_TRANSFER_STDSUB:
 849		if (cmd->info.sublen > 3)
 850			return -EINVAL;
 851		break;
 852	default:
 853		return -EINVAL;
 854	}
 855
 856	/* Finish setting up command based on transfer direction
 857	 */
 858	if (cmd->read) {
 859		if (cmd->info.datalen > SMU_I2C_READ_MAX)
 860			return -EINVAL;
 861		memset(cmd->info.data, 0xff, cmd->info.datalen);
 862		cmd->scmd.data_len = 9;
 863	} else {
 864		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
 865			return -EINVAL;
 866		cmd->scmd.data_len = 9 + cmd->info.datalen;
 867	}
 868
 869	DPRINTK("SMU: i2c enqueuing command\n");
 870	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
 871		cmd->read ? "read" : "write", cmd->info.datalen,
 872		cmd->info.bus, cmd->info.caddr,
 873		cmd->info.subaddr[0], cmd->info.type);
 874
 875
 876	/* Enqueue command in i2c list, and if empty, enqueue also in
 877	 * main command list
 878	 */
 879	spin_lock_irqsave(&smu->lock, flags);
 880	if (smu->cmd_i2c_cur == NULL) {
 881		smu->cmd_i2c_cur = cmd;
 882		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 883		if (smu->cmd_cur == NULL)
 884			smu_start_cmd();
 885	} else
 886		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
 887	spin_unlock_irqrestore(&smu->lock, flags);
 888
 889	return 0;
 890}
 891
 892/*
 893 * Handling of "partitions"
 894 */
 895
 896static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
 897{
 898	DECLARE_COMPLETION_ONSTACK(comp);
 899	unsigned int chunk;
 900	struct smu_cmd cmd;
 901	int rc;
 902	u8 params[8];
 903
 904	/* We currently use a chunk size of 0xe. We could check the
 905	 * SMU firmware version and use bigger sizes though
 906	 */
 907	chunk = 0xe;
 908
 909	while (len) {
 910		unsigned int clen = min(len, chunk);
 911
 912		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
 913		cmd.data_len = 7;
 914		cmd.data_buf = params;
 915		cmd.reply_len = chunk;
 916		cmd.reply_buf = dest;
 917		cmd.done = smu_done_complete;
 918		cmd.misc = &comp;
 919		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
 920		params[1] = 0x4;
 921		*((u32 *)&params[2]) = addr;
 922		params[6] = clen;
 923
 924		rc = smu_queue_cmd(&cmd);
 925		if (rc)
 926			return rc;
 927		wait_for_completion(&comp);
 928		if (cmd.status != 0)
 929			return rc;
 930		if (cmd.reply_len != clen) {
 931			printk(KERN_DEBUG "SMU: short read in "
 932			       "smu_read_datablock, got: %d, want: %d\n",
 933			       cmd.reply_len, clen);
 934			return -EIO;
 935		}
 936		len -= clen;
 937		addr += clen;
 938		dest += clen;
 939	}
 940	return 0;
 941}
 942
 943static struct smu_sdbp_header *smu_create_sdb_partition(int id)
 944{
 945	DECLARE_COMPLETION_ONSTACK(comp);
 946	struct smu_simple_cmd cmd;
 947	unsigned int addr, len, tlen;
 948	struct smu_sdbp_header *hdr;
 949	struct property *prop;
 950
 951	/* First query the partition info */
 952	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
 953	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
 954			 smu_done_complete, &comp,
 955			 SMU_CMD_PARTITION_LATEST, id);
 956	wait_for_completion(&comp);
 957	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
 958		cmd.cmd.status, cmd.cmd.reply_len);
 959
 960	/* Partition doesn't exist (or other error) */
 961	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
 962		return NULL;
 963
 964	/* Fetch address and length from reply */
 965	addr = *((u16 *)cmd.buffer);
 966	len = cmd.buffer[3] << 2;
 967	/* Calucluate total length to allocate, including the 17 bytes
 968	 * for "sdb-partition-XX" that we append at the end of the buffer
 969	 */
 970	tlen = sizeof(struct property) + len + 18;
 971
 972	prop = kzalloc(tlen, GFP_KERNEL);
 973	if (prop == NULL)
 974		return NULL;
 975	hdr = (struct smu_sdbp_header *)(prop + 1);
 976	prop->name = ((char *)prop) + tlen - 18;
 977	sprintf(prop->name, "sdb-partition-%02x", id);
 978	prop->length = len;
 979	prop->value = hdr;
 980	prop->next = NULL;
 981
 982	/* Read the datablock */
 983	if (smu_read_datablock((u8 *)hdr, addr, len)) {
 984		printk(KERN_DEBUG "SMU: datablock read failed while reading "
 985		       "partition %02x !\n", id);
 986		goto failure;
 987	}
 988
 989	/* Got it, check a few things and create the property */
 990	if (hdr->id != id) {
 991		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
 992		       "%02x !\n", id, hdr->id);
 993		goto failure;
 994	}
 995	if (of_add_property(smu->of_node, prop)) {
 996		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
 997		       "property !\n", id);
 998		goto failure;
 999	}
1000
1001	return hdr;
1002 failure:
1003	kfree(prop);
1004	return NULL;
1005}
1006
1007/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1008 * when interruptible is 1
1009 */
1010const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1011		unsigned int *size, int interruptible)
1012{
1013	char pname[32];
1014	const struct smu_sdbp_header *part;
1015
1016	if (!smu)
1017		return NULL;
1018
1019	sprintf(pname, "sdb-partition-%02x", id);
1020
1021	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1022
1023	if (interruptible) {
1024		int rc;
1025		rc = mutex_lock_interruptible(&smu_part_access);
1026		if (rc)
1027			return ERR_PTR(rc);
1028	} else
1029		mutex_lock(&smu_part_access);
1030
1031	part = of_get_property(smu->of_node, pname, size);
1032	if (part == NULL) {
1033		DPRINTK("trying to extract from SMU ...\n");
1034		part = smu_create_sdb_partition(id);
1035		if (part != NULL && size)
1036			*size = part->len << 2;
1037	}
1038	mutex_unlock(&smu_part_access);
1039	return part;
1040}
1041
1042const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1043{
1044	return __smu_get_sdb_partition(id, size, 0);
1045}
1046EXPORT_SYMBOL(smu_get_sdb_partition);
1047
1048
1049/*
1050 * Userland driver interface
1051 */
1052
1053
1054static LIST_HEAD(smu_clist);
1055static DEFINE_SPINLOCK(smu_clist_lock);
1056
1057enum smu_file_mode {
1058	smu_file_commands,
1059	smu_file_events,
1060	smu_file_closing
1061};
1062
1063struct smu_private
1064{
1065	struct list_head	list;
1066	enum smu_file_mode	mode;
1067	int			busy;
1068	struct smu_cmd		cmd;
1069	spinlock_t		lock;
1070	wait_queue_head_t	wait;
1071	u8			buffer[SMU_MAX_DATA];
1072};
1073
1074
1075static int smu_open(struct inode *inode, struct file *file)
1076{
1077	struct smu_private *pp;
1078	unsigned long flags;
1079
1080	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1081	if (pp == 0)
1082		return -ENOMEM;
1083	spin_lock_init(&pp->lock);
1084	pp->mode = smu_file_commands;
1085	init_waitqueue_head(&pp->wait);
1086
1087	mutex_lock(&smu_mutex);
1088	spin_lock_irqsave(&smu_clist_lock, flags);
1089	list_add(&pp->list, &smu_clist);
1090	spin_unlock_irqrestore(&smu_clist_lock, flags);
1091	file->private_data = pp;
1092	mutex_unlock(&smu_mutex);
1093
1094	return 0;
1095}
1096
1097
1098static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1099{
1100	struct smu_private *pp = misc;
1101
1102	wake_up_all(&pp->wait);
1103}
1104
1105
1106static ssize_t smu_write(struct file *file, const char __user *buf,
1107			 size_t count, loff_t *ppos)
1108{
1109	struct smu_private *pp = file->private_data;
1110	unsigned long flags;
1111	struct smu_user_cmd_hdr hdr;
1112	int rc = 0;
1113
1114	if (pp->busy)
1115		return -EBUSY;
1116	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1117		return -EFAULT;
1118	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1119		pp->mode = smu_file_events;
1120		return 0;
1121	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1122		const struct smu_sdbp_header *part;
1123		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1124		if (part == NULL)
1125			return -EINVAL;
1126		else if (IS_ERR(part))
1127			return PTR_ERR(part);
1128		return 0;
1129	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1130		return -EINVAL;
1131	else if (pp->mode != smu_file_commands)
1132		return -EBADFD;
1133	else if (hdr.data_len > SMU_MAX_DATA)
1134		return -EINVAL;
1135
1136	spin_lock_irqsave(&pp->lock, flags);
1137	if (pp->busy) {
1138		spin_unlock_irqrestore(&pp->lock, flags);
1139		return -EBUSY;
1140	}
1141	pp->busy = 1;
1142	pp->cmd.status = 1;
1143	spin_unlock_irqrestore(&pp->lock, flags);
1144
1145	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1146		pp->busy = 0;
1147		return -EFAULT;
1148	}
1149
1150	pp->cmd.cmd = hdr.cmd;
1151	pp->cmd.data_len = hdr.data_len;
1152	pp->cmd.reply_len = SMU_MAX_DATA;
1153	pp->cmd.data_buf = pp->buffer;
1154	pp->cmd.reply_buf = pp->buffer;
1155	pp->cmd.done = smu_user_cmd_done;
1156	pp->cmd.misc = pp;
1157	rc = smu_queue_cmd(&pp->cmd);
1158	if (rc < 0)
1159		return rc;
1160	return count;
1161}
1162
1163
1164static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1165				char __user *buf, size_t count)
1166{
1167	DECLARE_WAITQUEUE(wait, current);
1168	struct smu_user_reply_hdr hdr;
1169	unsigned long flags;
1170	int size, rc = 0;
1171
1172	if (!pp->busy)
1173		return 0;
1174	if (count < sizeof(struct smu_user_reply_hdr))
1175		return -EOVERFLOW;
1176	spin_lock_irqsave(&pp->lock, flags);
1177	if (pp->cmd.status == 1) {
1178		if (file->f_flags & O_NONBLOCK) {
1179			spin_unlock_irqrestore(&pp->lock, flags);
1180			return -EAGAIN;
1181		}
1182		add_wait_queue(&pp->wait, &wait);
1183		for (;;) {
1184			set_current_state(TASK_INTERRUPTIBLE);
1185			rc = 0;
1186			if (pp->cmd.status != 1)
1187				break;
1188			rc = -ERESTARTSYS;
1189			if (signal_pending(current))
1190				break;
1191			spin_unlock_irqrestore(&pp->lock, flags);
1192			schedule();
1193			spin_lock_irqsave(&pp->lock, flags);
1194		}
1195		set_current_state(TASK_RUNNING);
1196		remove_wait_queue(&pp->wait, &wait);
1197	}
1198	spin_unlock_irqrestore(&pp->lock, flags);
1199	if (rc)
1200		return rc;
1201	if (pp->cmd.status != 0)
1202		pp->cmd.reply_len = 0;
1203	size = sizeof(hdr) + pp->cmd.reply_len;
1204	if (count < size)
1205		size = count;
1206	rc = size;
1207	hdr.status = pp->cmd.status;
1208	hdr.reply_len = pp->cmd.reply_len;
1209	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1210		return -EFAULT;
1211	size -= sizeof(hdr);
1212	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1213		return -EFAULT;
1214	pp->busy = 0;
1215
1216	return rc;
1217}
1218
1219
1220static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1221			       char __user *buf, size_t count)
1222{
1223	/* Not implemented */
1224	msleep_interruptible(1000);
1225	return 0;
1226}
1227
1228
1229static ssize_t smu_read(struct file *file, char __user *buf,
1230			size_t count, loff_t *ppos)
1231{
1232	struct smu_private *pp = file->private_data;
1233
1234	if (pp->mode == smu_file_commands)
1235		return smu_read_command(file, pp, buf, count);
1236	if (pp->mode == smu_file_events)
1237		return smu_read_events(file, pp, buf, count);
1238
1239	return -EBADFD;
1240}
1241
1242static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1243{
1244	struct smu_private *pp = file->private_data;
1245	unsigned int mask = 0;
1246	unsigned long flags;
1247
1248	if (pp == 0)
1249		return 0;
1250
1251	if (pp->mode == smu_file_commands) {
1252		poll_wait(file, &pp->wait, wait);
1253
1254		spin_lock_irqsave(&pp->lock, flags);
1255		if (pp->busy && pp->cmd.status != 1)
1256			mask |= POLLIN;
1257		spin_unlock_irqrestore(&pp->lock, flags);
1258	}
1259	if (pp->mode == smu_file_events) {
1260		/* Not yet implemented */
1261	}
1262	return mask;
1263}
1264
1265static int smu_release(struct inode *inode, struct file *file)
1266{
1267	struct smu_private *pp = file->private_data;
1268	unsigned long flags;
1269	unsigned int busy;
1270
1271	if (pp == 0)
1272		return 0;
1273
1274	file->private_data = NULL;
1275
1276	/* Mark file as closing to avoid races with new request */
1277	spin_lock_irqsave(&pp->lock, flags);
1278	pp->mode = smu_file_closing;
1279	busy = pp->busy;
1280
1281	/* Wait for any pending request to complete */
1282	if (busy && pp->cmd.status == 1) {
1283		DECLARE_WAITQUEUE(wait, current);
1284
1285		add_wait_queue(&pp->wait, &wait);
1286		for (;;) {
1287			set_current_state(TASK_UNINTERRUPTIBLE);
1288			if (pp->cmd.status != 1)
1289				break;
1290			spin_unlock_irqrestore(&pp->lock, flags);
1291			schedule();
1292			spin_lock_irqsave(&pp->lock, flags);
1293		}
1294		set_current_state(TASK_RUNNING);
1295		remove_wait_queue(&pp->wait, &wait);
1296	}
1297	spin_unlock_irqrestore(&pp->lock, flags);
1298
1299	spin_lock_irqsave(&smu_clist_lock, flags);
1300	list_del(&pp->list);
1301	spin_unlock_irqrestore(&smu_clist_lock, flags);
1302	kfree(pp);
1303
1304	return 0;
1305}
1306
1307
1308static const struct file_operations smu_device_fops = {
1309	.llseek		= no_llseek,
1310	.read		= smu_read,
1311	.write		= smu_write,
1312	.poll		= smu_fpoll,
1313	.open		= smu_open,
1314	.release	= smu_release,
1315};
1316
1317static struct miscdevice pmu_device = {
1318	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1319};
1320
1321static int smu_device_init(void)
1322{
1323	if (!smu)
1324		return -ENODEV;
1325	if (misc_register(&pmu_device) < 0)
1326		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1327	return 0;
1328}
1329device_initcall(smu_device_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PowerMac G5 SMU driver
   4 *
   5 * Copyright 2004 J. Mayer <l_indien@magic.fr>
   6 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
 
 
   7 */
   8
   9/*
  10 * TODO:
  11 *  - maybe add timeout to commands ?
  12 *  - blocking version of time functions
  13 *  - polling version of i2c commands (including timer that works with
  14 *    interrupts off)
  15 *  - maybe avoid some data copies with i2c by directly using the smu cmd
  16 *    buffer and a lower level internal interface
  17 *  - understand SMU -> CPU events and implement reception of them via
  18 *    the userland interface
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/kernel.h>
  23#include <linux/device.h>
  24#include <linux/dmapool.h>
  25#include <linux/memblock.h>
  26#include <linux/vmalloc.h>
  27#include <linux/highmem.h>
  28#include <linux/jiffies.h>
  29#include <linux/interrupt.h>
  30#include <linux/rtc.h>
  31#include <linux/completion.h>
  32#include <linux/miscdevice.h>
  33#include <linux/delay.h>
  34#include <linux/poll.h>
  35#include <linux/mutex.h>
  36#include <linux/of.h>
  37#include <linux/of_address.h>
  38#include <linux/of_irq.h>
  39#include <linux/of_platform.h>
  40#include <linux/platform_device.h>
  41#include <linux/slab.h>
  42#include <linux/sched/signal.h>
  43
  44#include <asm/byteorder.h>
  45#include <asm/io.h>
 
  46#include <asm/machdep.h>
  47#include <asm/pmac_feature.h>
  48#include <asm/smu.h>
  49#include <asm/sections.h>
  50#include <linux/uaccess.h>
  51
  52#define VERSION "0.7"
  53#define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
  54
  55#undef DEBUG_SMU
  56
  57#ifdef DEBUG_SMU
  58#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
  59#else
  60#define DPRINTK(fmt, args...) do { } while (0)
  61#endif
  62
  63/*
  64 * This is the command buffer passed to the SMU hardware
  65 */
  66#define SMU_MAX_DATA	254
  67
  68struct smu_cmd_buf {
  69	u8 cmd;
  70	u8 length;
  71	u8 data[SMU_MAX_DATA];
  72};
  73
  74struct smu_device {
  75	spinlock_t		lock;
  76	struct device_node	*of_node;
  77	struct platform_device	*of_dev;
  78	int			doorbell;	/* doorbell gpio */
  79	u32 __iomem		*db_buf;	/* doorbell buffer */
  80	struct device_node	*db_node;
  81	unsigned int		db_irq;
  82	int			msg;
  83	struct device_node	*msg_node;
  84	unsigned int		msg_irq;
  85	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
  86	u32			cmd_buf_abs;	/* command buffer absolute */
  87	struct list_head	cmd_list;
  88	struct smu_cmd		*cmd_cur;	/* pending command */
  89	int			broken_nap;
  90	struct list_head	cmd_i2c_list;
  91	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
  92	struct timer_list	i2c_timer;
  93};
  94
  95/*
  96 * I don't think there will ever be more than one SMU, so
  97 * for now, just hard code that
  98 */
  99static DEFINE_MUTEX(smu_mutex);
 100static struct smu_device	*smu;
 101static DEFINE_MUTEX(smu_part_access);
 102static int smu_irq_inited;
 103static unsigned long smu_cmdbuf_abs;
 104
 105static void smu_i2c_retry(struct timer_list *t);
 106
 107/*
 108 * SMU driver low level stuff
 109 */
 110
 111static void smu_start_cmd(void)
 112{
 113	unsigned long faddr, fend;
 114	struct smu_cmd *cmd;
 115
 116	if (list_empty(&smu->cmd_list))
 117		return;
 118
 119	/* Fetch first command in queue */
 120	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
 121	smu->cmd_cur = cmd;
 122	list_del(&cmd->link);
 123
 124	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
 125		cmd->data_len);
 126	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
 127
 128	/* Fill the SMU command buffer */
 129	smu->cmd_buf->cmd = cmd->cmd;
 130	smu->cmd_buf->length = cmd->data_len;
 131	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
 132
 133	/* Flush command and data to RAM */
 134	faddr = (unsigned long)smu->cmd_buf;
 135	fend = faddr + smu->cmd_buf->length + 2;
 136	flush_dcache_range(faddr, fend);
 137
 138
 139	/* We also disable NAP mode for the duration of the command
 140	 * on U3 based machines.
 141	 * This is slightly racy as it can be written back to 1 by a sysctl
 142	 * but that never happens in practice. There seem to be an issue with
 143	 * U3 based machines such as the iMac G5 where napping for the
 144	 * whole duration of the command prevents the SMU from fetching it
 145	 * from memory. This might be related to the strange i2c based
 146	 * mechanism the SMU uses to access memory.
 147	 */
 148	if (smu->broken_nap)
 149		powersave_nap = 0;
 150
 151	/* This isn't exactly a DMA mapping here, I suspect
 152	 * the SMU is actually communicating with us via i2c to the
 153	 * northbridge or the CPU to access RAM.
 154	 */
 155	writel(smu->cmd_buf_abs, smu->db_buf);
 156
 157	/* Ring the SMU doorbell */
 158	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
 159}
 160
 161
 162static irqreturn_t smu_db_intr(int irq, void *arg)
 163{
 164	unsigned long flags;
 165	struct smu_cmd *cmd;
 166	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
 167	void *misc = NULL;
 168	u8 gpio;
 169	int rc = 0;
 170
 171	/* SMU completed the command, well, we hope, let's make sure
 172	 * of it
 173	 */
 174	spin_lock_irqsave(&smu->lock, flags);
 175
 176	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 177	if ((gpio & 7) != 7) {
 178		spin_unlock_irqrestore(&smu->lock, flags);
 179		return IRQ_HANDLED;
 180	}
 181
 182	cmd = smu->cmd_cur;
 183	smu->cmd_cur = NULL;
 184	if (cmd == NULL)
 185		goto bail;
 186
 187	if (rc == 0) {
 188		unsigned long faddr;
 189		int reply_len;
 190		u8 ack;
 191
 192		/* CPU might have brought back the cache line, so we need
 193		 * to flush again before peeking at the SMU response. We
 194		 * flush the entire buffer for now as we haven't read the
 195		 * reply length (it's only 2 cache lines anyway)
 196		 */
 197		faddr = (unsigned long)smu->cmd_buf;
 198		flush_dcache_range(faddr, faddr + 256);
 199
 200		/* Now check ack */
 201		ack = (~cmd->cmd) & 0xff;
 202		if (ack != smu->cmd_buf->cmd) {
 203			DPRINTK("SMU: incorrect ack, want %x got %x\n",
 204				ack, smu->cmd_buf->cmd);
 205			rc = -EIO;
 206		}
 207		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
 208		DPRINTK("SMU: reply len: %d\n", reply_len);
 209		if (reply_len > cmd->reply_len) {
 210			printk(KERN_WARNING "SMU: reply buffer too small,"
 211			       "got %d bytes for a %d bytes buffer\n",
 212			       reply_len, cmd->reply_len);
 213			reply_len = cmd->reply_len;
 214		}
 215		cmd->reply_len = reply_len;
 216		if (cmd->reply_buf && reply_len)
 217			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
 218	}
 219
 220	/* Now complete the command. Write status last in order as we lost
 221	 * ownership of the command structure as soon as it's no longer -1
 222	 */
 223	done = cmd->done;
 224	misc = cmd->misc;
 225	mb();
 226	cmd->status = rc;
 227
 228	/* Re-enable NAP mode */
 229	if (smu->broken_nap)
 230		powersave_nap = 1;
 231 bail:
 232	/* Start next command if any */
 233	smu_start_cmd();
 234	spin_unlock_irqrestore(&smu->lock, flags);
 235
 236	/* Call command completion handler if any */
 237	if (done)
 238		done(cmd, misc);
 239
 240	/* It's an edge interrupt, nothing to do */
 241	return IRQ_HANDLED;
 242}
 243
 244
 245static irqreturn_t smu_msg_intr(int irq, void *arg)
 246{
 247	/* I don't quite know what to do with this one, we seem to never
 248	 * receive it, so I suspect we have to arm it someway in the SMU
 249	 * to start getting events that way.
 250	 */
 251
 252	printk(KERN_INFO "SMU: message interrupt !\n");
 253
 254	/* It's an edge interrupt, nothing to do */
 255	return IRQ_HANDLED;
 256}
 257
 258
 259/*
 260 * Queued command management.
 261 *
 262 */
 263
 264int smu_queue_cmd(struct smu_cmd *cmd)
 265{
 266	unsigned long flags;
 267
 268	if (smu == NULL)
 269		return -ENODEV;
 270	if (cmd->data_len > SMU_MAX_DATA ||
 271	    cmd->reply_len > SMU_MAX_DATA)
 272		return -EINVAL;
 273
 274	cmd->status = 1;
 275	spin_lock_irqsave(&smu->lock, flags);
 276	list_add_tail(&cmd->link, &smu->cmd_list);
 277	if (smu->cmd_cur == NULL)
 278		smu_start_cmd();
 279	spin_unlock_irqrestore(&smu->lock, flags);
 280
 281	/* Workaround for early calls when irq isn't available */
 282	if (!smu_irq_inited || !smu->db_irq)
 283		smu_spinwait_cmd(cmd);
 284
 285	return 0;
 286}
 287EXPORT_SYMBOL(smu_queue_cmd);
 288
 289
 290int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
 291		     unsigned int data_len,
 292		     void (*done)(struct smu_cmd *cmd, void *misc),
 293		     void *misc, ...)
 294{
 295	struct smu_cmd *cmd = &scmd->cmd;
 296	va_list list;
 297	int i;
 298
 299	if (data_len > sizeof(scmd->buffer))
 300		return -EINVAL;
 301
 302	memset(scmd, 0, sizeof(*scmd));
 303	cmd->cmd = command;
 304	cmd->data_len = data_len;
 305	cmd->data_buf = scmd->buffer;
 306	cmd->reply_len = sizeof(scmd->buffer);
 307	cmd->reply_buf = scmd->buffer;
 308	cmd->done = done;
 309	cmd->misc = misc;
 310
 311	va_start(list, misc);
 312	for (i = 0; i < data_len; ++i)
 313		scmd->buffer[i] = (u8)va_arg(list, int);
 314	va_end(list);
 315
 316	return smu_queue_cmd(cmd);
 317}
 318EXPORT_SYMBOL(smu_queue_simple);
 319
 320
 321void smu_poll(void)
 322{
 323	u8 gpio;
 324
 325	if (smu == NULL)
 326		return;
 327
 328	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 329	if ((gpio & 7) == 7)
 330		smu_db_intr(smu->db_irq, smu);
 331}
 332EXPORT_SYMBOL(smu_poll);
 333
 334
 335void smu_done_complete(struct smu_cmd *cmd, void *misc)
 336{
 337	struct completion *comp = misc;
 338
 339	complete(comp);
 340}
 341EXPORT_SYMBOL(smu_done_complete);
 342
 343
 344void smu_spinwait_cmd(struct smu_cmd *cmd)
 345{
 346	while(cmd->status == 1)
 347		smu_poll();
 348}
 349EXPORT_SYMBOL(smu_spinwait_cmd);
 350
 351
 352/* RTC low level commands */
 353static inline int bcd2hex (int n)
 354{
 355	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
 356}
 357
 358
 359static inline int hex2bcd (int n)
 360{
 361	return ((n / 10) << 4) + (n % 10);
 362}
 363
 364
 365static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
 366					struct rtc_time *time)
 367{
 368	cmd_buf->cmd = 0x8e;
 369	cmd_buf->length = 8;
 370	cmd_buf->data[0] = 0x80;
 371	cmd_buf->data[1] = hex2bcd(time->tm_sec);
 372	cmd_buf->data[2] = hex2bcd(time->tm_min);
 373	cmd_buf->data[3] = hex2bcd(time->tm_hour);
 374	cmd_buf->data[4] = time->tm_wday;
 375	cmd_buf->data[5] = hex2bcd(time->tm_mday);
 376	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
 377	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
 378}
 379
 380
 381int smu_get_rtc_time(struct rtc_time *time, int spinwait)
 382{
 383	struct smu_simple_cmd cmd;
 384	int rc;
 385
 386	if (smu == NULL)
 387		return -ENODEV;
 388
 389	memset(time, 0, sizeof(struct rtc_time));
 390	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
 391			      SMU_CMD_RTC_GET_DATETIME);
 392	if (rc)
 393		return rc;
 394	smu_spinwait_simple(&cmd);
 395
 396	time->tm_sec = bcd2hex(cmd.buffer[0]);
 397	time->tm_min = bcd2hex(cmd.buffer[1]);
 398	time->tm_hour = bcd2hex(cmd.buffer[2]);
 399	time->tm_wday = bcd2hex(cmd.buffer[3]);
 400	time->tm_mday = bcd2hex(cmd.buffer[4]);
 401	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
 402	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
 403
 404	return 0;
 405}
 406
 407
 408int smu_set_rtc_time(struct rtc_time *time, int spinwait)
 409{
 410	struct smu_simple_cmd cmd;
 411	int rc;
 412
 413	if (smu == NULL)
 414		return -ENODEV;
 415
 416	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
 417			      SMU_CMD_RTC_SET_DATETIME,
 418			      hex2bcd(time->tm_sec),
 419			      hex2bcd(time->tm_min),
 420			      hex2bcd(time->tm_hour),
 421			      time->tm_wday,
 422			      hex2bcd(time->tm_mday),
 423			      hex2bcd(time->tm_mon) + 1,
 424			      hex2bcd(time->tm_year - 100));
 425	if (rc)
 426		return rc;
 427	smu_spinwait_simple(&cmd);
 428
 429	return 0;
 430}
 431
 432
 433void smu_shutdown(void)
 434{
 435	struct smu_simple_cmd cmd;
 436
 437	if (smu == NULL)
 438		return;
 439
 440	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
 441			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
 442		return;
 443	smu_spinwait_simple(&cmd);
 444	for (;;)
 445		;
 446}
 447
 448
 449void smu_restart(void)
 450{
 451	struct smu_simple_cmd cmd;
 452
 453	if (smu == NULL)
 454		return;
 455
 456	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
 457			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
 458		return;
 459	smu_spinwait_simple(&cmd);
 460	for (;;)
 461		;
 462}
 463
 464
 465int smu_present(void)
 466{
 467	return smu != NULL;
 468}
 469EXPORT_SYMBOL(smu_present);
 470
 471
 472int __init smu_init (void)
 473{
 474	struct device_node *np;
 475	u64 data;
 476	int ret = 0;
 477
 478        np = of_find_node_by_type(NULL, "smu");
 479        if (np == NULL)
 480		return -ENODEV;
 481
 482	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
 483
 484	/*
 485	 * SMU based G5s need some memory below 2Gb. Thankfully this is
 486	 * called at a time where memblock is still available.
 487	 */
 488	smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL);
 489	if (smu_cmdbuf_abs == 0) {
 490		printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
 491		ret = -EINVAL;
 492		goto fail_np;
 493	}
 494
 495	smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES);
 496	if (!smu)
 497		panic("%s: Failed to allocate %zu bytes\n", __func__,
 498		      sizeof(struct smu_device));
 499
 500	spin_lock_init(&smu->lock);
 501	INIT_LIST_HEAD(&smu->cmd_list);
 502	INIT_LIST_HEAD(&smu->cmd_i2c_list);
 503	smu->of_node = np;
 504	smu->db_irq = 0;
 505	smu->msg_irq = 0;
 506
 507	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
 508	 * 32 bits value safely
 509	 */
 510	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
 511	smu->cmd_buf = __va(smu_cmdbuf_abs);
 512
 513	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
 514	if (smu->db_node == NULL) {
 515		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
 516		ret = -ENXIO;
 517		goto fail_bootmem;
 518	}
 519	if (of_property_read_reg(smu->db_node, 0, &data, NULL)) {
 
 520		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
 521		ret = -ENXIO;
 522		goto fail_db_node;
 523	}
 524
 525	/* Current setup has one doorbell GPIO that does both doorbell
 526	 * and ack. GPIOs are at 0x50, best would be to find that out
 527	 * in the device-tree though.
 528	 */
 529	smu->doorbell = data;
 530	if (smu->doorbell < 0x50)
 531		smu->doorbell += 0x50;
 532
 533	/* Now look for the smu-interrupt GPIO */
 534	do {
 535		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
 536		if (smu->msg_node == NULL)
 537			break;
 538		if (of_property_read_reg(smu->msg_node, 0, &data, NULL)) {
 
 539			of_node_put(smu->msg_node);
 540			smu->msg_node = NULL;
 541			break;
 542		}
 543		smu->msg = data;
 544		if (smu->msg < 0x50)
 545			smu->msg += 0x50;
 546	} while(0);
 547
 548	/* Doorbell buffer is currently hard-coded, I didn't find a proper
 549	 * device-tree entry giving the address. Best would probably to use
 550	 * an offset for K2 base though, but let's do it that way for now.
 551	 */
 552	smu->db_buf = ioremap(0x8000860c, 0x1000);
 553	if (smu->db_buf == NULL) {
 554		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
 555		ret = -ENXIO;
 556		goto fail_msg_node;
 557	}
 558
 559	/* U3 has an issue with NAP mode when issuing SMU commands */
 560	smu->broken_nap = pmac_get_uninorth_variant() < 4;
 561	if (smu->broken_nap)
 562		printk(KERN_INFO "SMU: using NAP mode workaround\n");
 563
 564	sys_ctrler = SYS_CTRLER_SMU;
 565	return 0;
 566
 567fail_msg_node:
 568	of_node_put(smu->msg_node);
 569fail_db_node:
 570	of_node_put(smu->db_node);
 571fail_bootmem:
 572	memblock_free(smu, sizeof(struct smu_device));
 573	smu = NULL;
 574fail_np:
 575	of_node_put(np);
 576	return ret;
 577}
 578
 579
 580static int smu_late_init(void)
 581{
 582	if (!smu)
 583		return 0;
 584
 585	timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
 
 
 586
 587	if (smu->db_node) {
 588		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
 589		if (!smu->db_irq)
 590			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
 591			       smu->db_node);
 592	}
 593	if (smu->msg_node) {
 594		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
 595		if (!smu->msg_irq)
 596			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
 597			       smu->msg_node);
 598	}
 599
 600	/*
 601	 * Try to request the interrupts
 602	 */
 603
 604	if (smu->db_irq) {
 605		if (request_irq(smu->db_irq, smu_db_intr,
 606				IRQF_SHARED, "SMU doorbell", smu) < 0) {
 607			printk(KERN_WARNING "SMU: can't "
 608			       "request interrupt %d\n",
 609			       smu->db_irq);
 610			smu->db_irq = 0;
 611		}
 612	}
 613
 614	if (smu->msg_irq) {
 615		if (request_irq(smu->msg_irq, smu_msg_intr,
 616				IRQF_SHARED, "SMU message", smu) < 0) {
 617			printk(KERN_WARNING "SMU: can't "
 618			       "request interrupt %d\n",
 619			       smu->msg_irq);
 620			smu->msg_irq = 0;
 621		}
 622	}
 623
 624	smu_irq_inited = 1;
 625	return 0;
 626}
 627/* This has to be before arch_initcall as the low i2c stuff relies on the
 628 * above having been done before we reach arch_initcalls
 629 */
 630core_initcall(smu_late_init);
 631
 632/*
 633 * sysfs visibility
 634 */
 635
 636static void smu_expose_childs(struct work_struct *unused)
 637{
 638	struct device_node *np;
 639
 640	for_each_child_of_node(smu->of_node, np)
 641		if (of_device_is_compatible(np, "smu-sensors"))
 642			of_platform_device_create(np, "smu-sensors",
 643						  &smu->of_dev->dev);
 644}
 645
 646static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
 647
 648static int smu_platform_probe(struct platform_device* dev)
 649{
 650	if (!smu)
 651		return -ENODEV;
 652	smu->of_dev = dev;
 653
 654	/*
 655	 * Ok, we are matched, now expose all i2c busses. We have to defer
 656	 * that unfortunately or it would deadlock inside the device model
 657	 */
 658	schedule_work(&smu_expose_childs_work);
 659
 660	return 0;
 661}
 662
 663static const struct of_device_id smu_platform_match[] =
 664{
 665	{
 666		.type		= "smu",
 667	},
 668	{},
 669};
 670
 671static struct platform_driver smu_of_platform_driver =
 672{
 673	.driver = {
 674		.name = "smu",
 675		.of_match_table = smu_platform_match,
 676	},
 677	.probe		= smu_platform_probe,
 678};
 679
 680static int __init smu_init_sysfs(void)
 681{
 682	/*
 683	 * For now, we don't power manage machines with an SMU chip,
 684	 * I'm a bit too far from figuring out how that works with those
 685	 * new chipsets, but that will come back and bite us
 686	 */
 687	platform_driver_register(&smu_of_platform_driver);
 688	return 0;
 689}
 690
 691device_initcall(smu_init_sysfs);
 692
 693struct platform_device *smu_get_ofdev(void)
 694{
 695	if (!smu)
 696		return NULL;
 697	return smu->of_dev;
 698}
 699
 700EXPORT_SYMBOL_GPL(smu_get_ofdev);
 701
 702/*
 703 * i2c interface
 704 */
 705
 706static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
 707{
 708	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
 709	void *misc = cmd->misc;
 710	unsigned long flags;
 711
 712	/* Check for read case */
 713	if (!fail && cmd->read) {
 714		if (cmd->pdata[0] < 1)
 715			fail = 1;
 716		else
 717			memcpy(cmd->info.data, &cmd->pdata[1],
 718			       cmd->info.datalen);
 719	}
 720
 721	DPRINTK("SMU: completing, success: %d\n", !fail);
 722
 723	/* Update status and mark no pending i2c command with lock
 724	 * held so nobody comes in while we dequeue an eventual
 725	 * pending next i2c command
 726	 */
 727	spin_lock_irqsave(&smu->lock, flags);
 728	smu->cmd_i2c_cur = NULL;
 729	wmb();
 730	cmd->status = fail ? -EIO : 0;
 731
 732	/* Is there another i2c command waiting ? */
 733	if (!list_empty(&smu->cmd_i2c_list)) {
 734		struct smu_i2c_cmd *newcmd;
 735
 736		/* Fetch it, new current, remove from list */
 737		newcmd = list_entry(smu->cmd_i2c_list.next,
 738				    struct smu_i2c_cmd, link);
 739		smu->cmd_i2c_cur = newcmd;
 740		list_del(&cmd->link);
 741
 742		/* Queue with low level smu */
 743		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 744		if (smu->cmd_cur == NULL)
 745			smu_start_cmd();
 746	}
 747	spin_unlock_irqrestore(&smu->lock, flags);
 748
 749	/* Call command completion handler if any */
 750	if (done)
 751		done(cmd, misc);
 752
 753}
 754
 755
 756static void smu_i2c_retry(struct timer_list *unused)
 757{
 758	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
 759
 760	DPRINTK("SMU: i2c failure, requeuing...\n");
 761
 762	/* requeue command simply by resetting reply_len */
 763	cmd->pdata[0] = 0xff;
 764	cmd->scmd.reply_len = sizeof(cmd->pdata);
 765	smu_queue_cmd(&cmd->scmd);
 766}
 767
 768
 769static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
 770{
 771	struct smu_i2c_cmd	*cmd = misc;
 772	int			fail = 0;
 773
 774	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
 775		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
 776
 777	/* Check for possible status */
 778	if (scmd->status < 0)
 779		fail = 1;
 780	else if (cmd->read) {
 781		if (cmd->stage == 0)
 782			fail = cmd->pdata[0] != 0;
 783		else
 784			fail = cmd->pdata[0] >= 0x80;
 785	} else {
 786		fail = cmd->pdata[0] != 0;
 787	}
 788
 789	/* Handle failures by requeuing command, after 5ms interval
 790	 */
 791	if (fail && --cmd->retries > 0) {
 792		DPRINTK("SMU: i2c failure, starting timer...\n");
 793		BUG_ON(cmd != smu->cmd_i2c_cur);
 794		if (!smu_irq_inited) {
 795			mdelay(5);
 796			smu_i2c_retry(NULL);
 797			return;
 798		}
 799		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
 800		return;
 801	}
 802
 803	/* If failure or stage 1, command is complete */
 804	if (fail || cmd->stage != 0) {
 805		smu_i2c_complete_command(cmd, fail);
 806		return;
 807	}
 808
 809	DPRINTK("SMU: going to stage 1\n");
 810
 811	/* Ok, initial command complete, now poll status */
 812	scmd->reply_buf = cmd->pdata;
 813	scmd->reply_len = sizeof(cmd->pdata);
 814	scmd->data_buf = cmd->pdata;
 815	scmd->data_len = 1;
 816	cmd->pdata[0] = 0;
 817	cmd->stage = 1;
 818	cmd->retries = 20;
 819	smu_queue_cmd(scmd);
 820}
 821
 822
 823int smu_queue_i2c(struct smu_i2c_cmd *cmd)
 824{
 825	unsigned long flags;
 826
 827	if (smu == NULL)
 828		return -ENODEV;
 829
 830	/* Fill most fields of scmd */
 831	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
 832	cmd->scmd.done = smu_i2c_low_completion;
 833	cmd->scmd.misc = cmd;
 834	cmd->scmd.reply_buf = cmd->pdata;
 835	cmd->scmd.reply_len = sizeof(cmd->pdata);
 836	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
 837	cmd->scmd.status = 1;
 838	cmd->stage = 0;
 839	cmd->pdata[0] = 0xff;
 840	cmd->retries = 20;
 841	cmd->status = 1;
 842
 843	/* Check transfer type, sanitize some "info" fields
 844	 * based on transfer type and do more checking
 845	 */
 846	cmd->info.caddr = cmd->info.devaddr;
 847	cmd->read = cmd->info.devaddr & 0x01;
 848	switch(cmd->info.type) {
 849	case SMU_I2C_TRANSFER_SIMPLE:
 850		cmd->info.sublen = 0;
 851		memset(cmd->info.subaddr, 0, sizeof(cmd->info.subaddr));
 852		break;
 853	case SMU_I2C_TRANSFER_COMBINED:
 854		cmd->info.devaddr &= 0xfe;
 855		fallthrough;
 856	case SMU_I2C_TRANSFER_STDSUB:
 857		if (cmd->info.sublen > 3)
 858			return -EINVAL;
 859		break;
 860	default:
 861		return -EINVAL;
 862	}
 863
 864	/* Finish setting up command based on transfer direction
 865	 */
 866	if (cmd->read) {
 867		if (cmd->info.datalen > SMU_I2C_READ_MAX)
 868			return -EINVAL;
 869		memset(cmd->info.data, 0xff, cmd->info.datalen);
 870		cmd->scmd.data_len = 9;
 871	} else {
 872		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
 873			return -EINVAL;
 874		cmd->scmd.data_len = 9 + cmd->info.datalen;
 875	}
 876
 877	DPRINTK("SMU: i2c enqueuing command\n");
 878	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
 879		cmd->read ? "read" : "write", cmd->info.datalen,
 880		cmd->info.bus, cmd->info.caddr,
 881		cmd->info.subaddr[0], cmd->info.type);
 882
 883
 884	/* Enqueue command in i2c list, and if empty, enqueue also in
 885	 * main command list
 886	 */
 887	spin_lock_irqsave(&smu->lock, flags);
 888	if (smu->cmd_i2c_cur == NULL) {
 889		smu->cmd_i2c_cur = cmd;
 890		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 891		if (smu->cmd_cur == NULL)
 892			smu_start_cmd();
 893	} else
 894		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
 895	spin_unlock_irqrestore(&smu->lock, flags);
 896
 897	return 0;
 898}
 899
 900/*
 901 * Handling of "partitions"
 902 */
 903
 904static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
 905{
 906	DECLARE_COMPLETION_ONSTACK(comp);
 907	unsigned int chunk;
 908	struct smu_cmd cmd;
 909	int rc;
 910	u8 params[8];
 911
 912	/* We currently use a chunk size of 0xe. We could check the
 913	 * SMU firmware version and use bigger sizes though
 914	 */
 915	chunk = 0xe;
 916
 917	while (len) {
 918		unsigned int clen = min(len, chunk);
 919
 920		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
 921		cmd.data_len = 7;
 922		cmd.data_buf = params;
 923		cmd.reply_len = chunk;
 924		cmd.reply_buf = dest;
 925		cmd.done = smu_done_complete;
 926		cmd.misc = &comp;
 927		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
 928		params[1] = 0x4;
 929		*((u32 *)&params[2]) = addr;
 930		params[6] = clen;
 931
 932		rc = smu_queue_cmd(&cmd);
 933		if (rc)
 934			return rc;
 935		wait_for_completion(&comp);
 936		if (cmd.status != 0)
 937			return rc;
 938		if (cmd.reply_len != clen) {
 939			printk(KERN_DEBUG "SMU: short read in "
 940			       "smu_read_datablock, got: %d, want: %d\n",
 941			       cmd.reply_len, clen);
 942			return -EIO;
 943		}
 944		len -= clen;
 945		addr += clen;
 946		dest += clen;
 947	}
 948	return 0;
 949}
 950
 951static struct smu_sdbp_header *smu_create_sdb_partition(int id)
 952{
 953	DECLARE_COMPLETION_ONSTACK(comp);
 954	struct smu_simple_cmd cmd;
 955	unsigned int addr, len, tlen;
 956	struct smu_sdbp_header *hdr;
 957	struct property *prop;
 958
 959	/* First query the partition info */
 960	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
 961	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
 962			 smu_done_complete, &comp,
 963			 SMU_CMD_PARTITION_LATEST, id);
 964	wait_for_completion(&comp);
 965	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
 966		cmd.cmd.status, cmd.cmd.reply_len);
 967
 968	/* Partition doesn't exist (or other error) */
 969	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
 970		return NULL;
 971
 972	/* Fetch address and length from reply */
 973	addr = *((u16 *)cmd.buffer);
 974	len = cmd.buffer[3] << 2;
 975	/* Calucluate total length to allocate, including the 17 bytes
 976	 * for "sdb-partition-XX" that we append at the end of the buffer
 977	 */
 978	tlen = sizeof(struct property) + len + 18;
 979
 980	prop = kzalloc(tlen, GFP_KERNEL);
 981	if (prop == NULL)
 982		return NULL;
 983	hdr = (struct smu_sdbp_header *)(prop + 1);
 984	prop->name = ((char *)prop) + tlen - 18;
 985	sprintf(prop->name, "sdb-partition-%02x", id);
 986	prop->length = len;
 987	prop->value = hdr;
 988	prop->next = NULL;
 989
 990	/* Read the datablock */
 991	if (smu_read_datablock((u8 *)hdr, addr, len)) {
 992		printk(KERN_DEBUG "SMU: datablock read failed while reading "
 993		       "partition %02x !\n", id);
 994		goto failure;
 995	}
 996
 997	/* Got it, check a few things and create the property */
 998	if (hdr->id != id) {
 999		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000		       "%02x !\n", id, hdr->id);
1001		goto failure;
1002	}
1003	if (of_add_property(smu->of_node, prop)) {
1004		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005		       "property !\n", id);
1006		goto failure;
1007	}
1008
1009	return hdr;
1010 failure:
1011	kfree(prop);
1012	return NULL;
1013}
1014
1015/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016 * when interruptible is 1
1017 */
1018static const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019		unsigned int *size, int interruptible)
1020{
1021	char pname[32];
1022	const struct smu_sdbp_header *part;
1023
1024	if (!smu)
1025		return NULL;
1026
1027	sprintf(pname, "sdb-partition-%02x", id);
1028
1029	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1030
1031	if (interruptible) {
1032		int rc;
1033		rc = mutex_lock_interruptible(&smu_part_access);
1034		if (rc)
1035			return ERR_PTR(rc);
1036	} else
1037		mutex_lock(&smu_part_access);
1038
1039	part = of_get_property(smu->of_node, pname, size);
1040	if (part == NULL) {
1041		DPRINTK("trying to extract from SMU ...\n");
1042		part = smu_create_sdb_partition(id);
1043		if (part != NULL && size)
1044			*size = part->len << 2;
1045	}
1046	mutex_unlock(&smu_part_access);
1047	return part;
1048}
1049
1050const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1051{
1052	return __smu_get_sdb_partition(id, size, 0);
1053}
1054EXPORT_SYMBOL(smu_get_sdb_partition);
1055
1056
1057/*
1058 * Userland driver interface
1059 */
1060
1061
1062static LIST_HEAD(smu_clist);
1063static DEFINE_SPINLOCK(smu_clist_lock);
1064
1065enum smu_file_mode {
1066	smu_file_commands,
1067	smu_file_events,
1068	smu_file_closing
1069};
1070
1071struct smu_private
1072{
1073	struct list_head	list;
1074	enum smu_file_mode	mode;
1075	int			busy;
1076	struct smu_cmd		cmd;
1077	spinlock_t		lock;
1078	wait_queue_head_t	wait;
1079	u8			buffer[SMU_MAX_DATA];
1080};
1081
1082
1083static int smu_open(struct inode *inode, struct file *file)
1084{
1085	struct smu_private *pp;
1086	unsigned long flags;
1087
1088	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1089	if (!pp)
1090		return -ENOMEM;
1091	spin_lock_init(&pp->lock);
1092	pp->mode = smu_file_commands;
1093	init_waitqueue_head(&pp->wait);
1094
1095	mutex_lock(&smu_mutex);
1096	spin_lock_irqsave(&smu_clist_lock, flags);
1097	list_add(&pp->list, &smu_clist);
1098	spin_unlock_irqrestore(&smu_clist_lock, flags);
1099	file->private_data = pp;
1100	mutex_unlock(&smu_mutex);
1101
1102	return 0;
1103}
1104
1105
1106static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1107{
1108	struct smu_private *pp = misc;
1109
1110	wake_up_all(&pp->wait);
1111}
1112
1113
1114static ssize_t smu_write(struct file *file, const char __user *buf,
1115			 size_t count, loff_t *ppos)
1116{
1117	struct smu_private *pp = file->private_data;
1118	unsigned long flags;
1119	struct smu_user_cmd_hdr hdr;
1120	int rc = 0;
1121
1122	if (pp->busy)
1123		return -EBUSY;
1124	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1125		return -EFAULT;
1126	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127		pp->mode = smu_file_events;
1128		return 0;
1129	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130		const struct smu_sdbp_header *part;
1131		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1132		if (part == NULL)
1133			return -EINVAL;
1134		else if (IS_ERR(part))
1135			return PTR_ERR(part);
1136		return 0;
1137	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1138		return -EINVAL;
1139	else if (pp->mode != smu_file_commands)
1140		return -EBADFD;
1141	else if (hdr.data_len > SMU_MAX_DATA)
1142		return -EINVAL;
1143
1144	spin_lock_irqsave(&pp->lock, flags);
1145	if (pp->busy) {
1146		spin_unlock_irqrestore(&pp->lock, flags);
1147		return -EBUSY;
1148	}
1149	pp->busy = 1;
1150	pp->cmd.status = 1;
1151	spin_unlock_irqrestore(&pp->lock, flags);
1152
1153	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1154		pp->busy = 0;
1155		return -EFAULT;
1156	}
1157
1158	pp->cmd.cmd = hdr.cmd;
1159	pp->cmd.data_len = hdr.data_len;
1160	pp->cmd.reply_len = SMU_MAX_DATA;
1161	pp->cmd.data_buf = pp->buffer;
1162	pp->cmd.reply_buf = pp->buffer;
1163	pp->cmd.done = smu_user_cmd_done;
1164	pp->cmd.misc = pp;
1165	rc = smu_queue_cmd(&pp->cmd);
1166	if (rc < 0)
1167		return rc;
1168	return count;
1169}
1170
1171
1172static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173				char __user *buf, size_t count)
1174{
1175	DECLARE_WAITQUEUE(wait, current);
1176	struct smu_user_reply_hdr hdr;
1177	unsigned long flags;
1178	int size, rc = 0;
1179
1180	if (!pp->busy)
1181		return 0;
1182	if (count < sizeof(struct smu_user_reply_hdr))
1183		return -EOVERFLOW;
1184	spin_lock_irqsave(&pp->lock, flags);
1185	if (pp->cmd.status == 1) {
1186		if (file->f_flags & O_NONBLOCK) {
1187			spin_unlock_irqrestore(&pp->lock, flags);
1188			return -EAGAIN;
1189		}
1190		add_wait_queue(&pp->wait, &wait);
1191		for (;;) {
1192			set_current_state(TASK_INTERRUPTIBLE);
1193			rc = 0;
1194			if (pp->cmd.status != 1)
1195				break;
1196			rc = -ERESTARTSYS;
1197			if (signal_pending(current))
1198				break;
1199			spin_unlock_irqrestore(&pp->lock, flags);
1200			schedule();
1201			spin_lock_irqsave(&pp->lock, flags);
1202		}
1203		set_current_state(TASK_RUNNING);
1204		remove_wait_queue(&pp->wait, &wait);
1205	}
1206	spin_unlock_irqrestore(&pp->lock, flags);
1207	if (rc)
1208		return rc;
1209	if (pp->cmd.status != 0)
1210		pp->cmd.reply_len = 0;
1211	size = sizeof(hdr) + pp->cmd.reply_len;
1212	if (count < size)
1213		size = count;
1214	rc = size;
1215	hdr.status = pp->cmd.status;
1216	hdr.reply_len = pp->cmd.reply_len;
1217	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1218		return -EFAULT;
1219	size -= sizeof(hdr);
1220	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1221		return -EFAULT;
1222	pp->busy = 0;
1223
1224	return rc;
1225}
1226
1227
1228static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1229			       char __user *buf, size_t count)
1230{
1231	/* Not implemented */
1232	msleep_interruptible(1000);
1233	return 0;
1234}
1235
1236
1237static ssize_t smu_read(struct file *file, char __user *buf,
1238			size_t count, loff_t *ppos)
1239{
1240	struct smu_private *pp = file->private_data;
1241
1242	if (pp->mode == smu_file_commands)
1243		return smu_read_command(file, pp, buf, count);
1244	if (pp->mode == smu_file_events)
1245		return smu_read_events(file, pp, buf, count);
1246
1247	return -EBADFD;
1248}
1249
1250static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1251{
1252	struct smu_private *pp = file->private_data;
1253	__poll_t mask = 0;
1254	unsigned long flags;
1255
1256	if (!pp)
1257		return 0;
1258
1259	if (pp->mode == smu_file_commands) {
1260		poll_wait(file, &pp->wait, wait);
1261
1262		spin_lock_irqsave(&pp->lock, flags);
1263		if (pp->busy && pp->cmd.status != 1)
1264			mask |= EPOLLIN;
1265		spin_unlock_irqrestore(&pp->lock, flags);
1266	}
1267	if (pp->mode == smu_file_events) {
1268		/* Not yet implemented */
1269	}
1270	return mask;
1271}
1272
1273static int smu_release(struct inode *inode, struct file *file)
1274{
1275	struct smu_private *pp = file->private_data;
1276	unsigned long flags;
1277	unsigned int busy;
1278
1279	if (!pp)
1280		return 0;
1281
1282	file->private_data = NULL;
1283
1284	/* Mark file as closing to avoid races with new request */
1285	spin_lock_irqsave(&pp->lock, flags);
1286	pp->mode = smu_file_closing;
1287	busy = pp->busy;
1288
1289	/* Wait for any pending request to complete */
1290	if (busy && pp->cmd.status == 1) {
1291		DECLARE_WAITQUEUE(wait, current);
1292
1293		add_wait_queue(&pp->wait, &wait);
1294		for (;;) {
1295			set_current_state(TASK_UNINTERRUPTIBLE);
1296			if (pp->cmd.status != 1)
1297				break;
1298			spin_unlock_irqrestore(&pp->lock, flags);
1299			schedule();
1300			spin_lock_irqsave(&pp->lock, flags);
1301		}
1302		set_current_state(TASK_RUNNING);
1303		remove_wait_queue(&pp->wait, &wait);
1304	}
1305	spin_unlock_irqrestore(&pp->lock, flags);
1306
1307	spin_lock_irqsave(&smu_clist_lock, flags);
1308	list_del(&pp->list);
1309	spin_unlock_irqrestore(&smu_clist_lock, flags);
1310	kfree(pp);
1311
1312	return 0;
1313}
1314
1315
1316static const struct file_operations smu_device_fops = {
1317	.llseek		= no_llseek,
1318	.read		= smu_read,
1319	.write		= smu_write,
1320	.poll		= smu_fpoll,
1321	.open		= smu_open,
1322	.release	= smu_release,
1323};
1324
1325static struct miscdevice pmu_device = {
1326	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1327};
1328
1329static int smu_device_init(void)
1330{
1331	if (!smu)
1332		return -ENODEV;
1333	if (misc_register(&pmu_device) < 0)
1334		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1335	return 0;
1336}
1337device_initcall(smu_device_init);