Loading...
1/**************************************************************************
2 *
3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#include <drm/ttm/ttm_bo_driver.h>
32#include <drm/ttm/ttm_placement.h>
33#include <drm/drm_vma_manager.h>
34#include <linux/io.h>
35#include <linux/highmem.h>
36#include <linux/wait.h>
37#include <linux/slab.h>
38#include <linux/vmalloc.h>
39#include <linux/module.h>
40#include <linux/reservation.h>
41
42void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
43{
44 ttm_bo_mem_put(bo, &bo->mem);
45}
46
47int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
48 bool evict,
49 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
50{
51 struct ttm_tt *ttm = bo->ttm;
52 struct ttm_mem_reg *old_mem = &bo->mem;
53 int ret;
54
55 if (old_mem->mem_type != TTM_PL_SYSTEM) {
56 ttm_tt_unbind(ttm);
57 ttm_bo_free_old_node(bo);
58 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
59 TTM_PL_MASK_MEM);
60 old_mem->mem_type = TTM_PL_SYSTEM;
61 }
62
63 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
64 if (unlikely(ret != 0))
65 return ret;
66
67 if (new_mem->mem_type != TTM_PL_SYSTEM) {
68 ret = ttm_tt_bind(ttm, new_mem);
69 if (unlikely(ret != 0))
70 return ret;
71 }
72
73 *old_mem = *new_mem;
74 new_mem->mm_node = NULL;
75
76 return 0;
77}
78EXPORT_SYMBOL(ttm_bo_move_ttm);
79
80int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
81{
82 if (likely(man->io_reserve_fastpath))
83 return 0;
84
85 if (interruptible)
86 return mutex_lock_interruptible(&man->io_reserve_mutex);
87
88 mutex_lock(&man->io_reserve_mutex);
89 return 0;
90}
91EXPORT_SYMBOL(ttm_mem_io_lock);
92
93void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
94{
95 if (likely(man->io_reserve_fastpath))
96 return;
97
98 mutex_unlock(&man->io_reserve_mutex);
99}
100EXPORT_SYMBOL(ttm_mem_io_unlock);
101
102static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
103{
104 struct ttm_buffer_object *bo;
105
106 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
107 return -EAGAIN;
108
109 bo = list_first_entry(&man->io_reserve_lru,
110 struct ttm_buffer_object,
111 io_reserve_lru);
112 list_del_init(&bo->io_reserve_lru);
113 ttm_bo_unmap_virtual_locked(bo);
114
115 return 0;
116}
117
118
119int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
120 struct ttm_mem_reg *mem)
121{
122 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
123 int ret = 0;
124
125 if (!bdev->driver->io_mem_reserve)
126 return 0;
127 if (likely(man->io_reserve_fastpath))
128 return bdev->driver->io_mem_reserve(bdev, mem);
129
130 if (bdev->driver->io_mem_reserve &&
131 mem->bus.io_reserved_count++ == 0) {
132retry:
133 ret = bdev->driver->io_mem_reserve(bdev, mem);
134 if (ret == -EAGAIN) {
135 ret = ttm_mem_io_evict(man);
136 if (ret == 0)
137 goto retry;
138 }
139 }
140 return ret;
141}
142EXPORT_SYMBOL(ttm_mem_io_reserve);
143
144void ttm_mem_io_free(struct ttm_bo_device *bdev,
145 struct ttm_mem_reg *mem)
146{
147 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
148
149 if (likely(man->io_reserve_fastpath))
150 return;
151
152 if (bdev->driver->io_mem_reserve &&
153 --mem->bus.io_reserved_count == 0 &&
154 bdev->driver->io_mem_free)
155 bdev->driver->io_mem_free(bdev, mem);
156
157}
158EXPORT_SYMBOL(ttm_mem_io_free);
159
160int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
161{
162 struct ttm_mem_reg *mem = &bo->mem;
163 int ret;
164
165 if (!mem->bus.io_reserved_vm) {
166 struct ttm_mem_type_manager *man =
167 &bo->bdev->man[mem->mem_type];
168
169 ret = ttm_mem_io_reserve(bo->bdev, mem);
170 if (unlikely(ret != 0))
171 return ret;
172 mem->bus.io_reserved_vm = true;
173 if (man->use_io_reserve_lru)
174 list_add_tail(&bo->io_reserve_lru,
175 &man->io_reserve_lru);
176 }
177 return 0;
178}
179
180void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
181{
182 struct ttm_mem_reg *mem = &bo->mem;
183
184 if (mem->bus.io_reserved_vm) {
185 mem->bus.io_reserved_vm = false;
186 list_del_init(&bo->io_reserve_lru);
187 ttm_mem_io_free(bo->bdev, mem);
188 }
189}
190
191static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
192 void **virtual)
193{
194 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
195 int ret;
196 void *addr;
197
198 *virtual = NULL;
199 (void) ttm_mem_io_lock(man, false);
200 ret = ttm_mem_io_reserve(bdev, mem);
201 ttm_mem_io_unlock(man);
202 if (ret || !mem->bus.is_iomem)
203 return ret;
204
205 if (mem->bus.addr) {
206 addr = mem->bus.addr;
207 } else {
208 if (mem->placement & TTM_PL_FLAG_WC)
209 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
210 else
211 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
212 if (!addr) {
213 (void) ttm_mem_io_lock(man, false);
214 ttm_mem_io_free(bdev, mem);
215 ttm_mem_io_unlock(man);
216 return -ENOMEM;
217 }
218 }
219 *virtual = addr;
220 return 0;
221}
222
223static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
224 void *virtual)
225{
226 struct ttm_mem_type_manager *man;
227
228 man = &bdev->man[mem->mem_type];
229
230 if (virtual && mem->bus.addr == NULL)
231 iounmap(virtual);
232 (void) ttm_mem_io_lock(man, false);
233 ttm_mem_io_free(bdev, mem);
234 ttm_mem_io_unlock(man);
235}
236
237static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
238{
239 uint32_t *dstP =
240 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
241 uint32_t *srcP =
242 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
243
244 int i;
245 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
246 iowrite32(ioread32(srcP++), dstP++);
247 return 0;
248}
249
250static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
251 unsigned long page,
252 pgprot_t prot)
253{
254 struct page *d = ttm->pages[page];
255 void *dst;
256
257 if (!d)
258 return -ENOMEM;
259
260 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
261
262#ifdef CONFIG_X86
263 dst = kmap_atomic_prot(d, prot);
264#else
265 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
266 dst = vmap(&d, 1, 0, prot);
267 else
268 dst = kmap(d);
269#endif
270 if (!dst)
271 return -ENOMEM;
272
273 memcpy_fromio(dst, src, PAGE_SIZE);
274
275#ifdef CONFIG_X86
276 kunmap_atomic(dst);
277#else
278 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
279 vunmap(dst);
280 else
281 kunmap(d);
282#endif
283
284 return 0;
285}
286
287static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
288 unsigned long page,
289 pgprot_t prot)
290{
291 struct page *s = ttm->pages[page];
292 void *src;
293
294 if (!s)
295 return -ENOMEM;
296
297 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
298#ifdef CONFIG_X86
299 src = kmap_atomic_prot(s, prot);
300#else
301 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
302 src = vmap(&s, 1, 0, prot);
303 else
304 src = kmap(s);
305#endif
306 if (!src)
307 return -ENOMEM;
308
309 memcpy_toio(dst, src, PAGE_SIZE);
310
311#ifdef CONFIG_X86
312 kunmap_atomic(src);
313#else
314 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
315 vunmap(src);
316 else
317 kunmap(s);
318#endif
319
320 return 0;
321}
322
323int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
324 bool evict, bool no_wait_gpu,
325 struct ttm_mem_reg *new_mem)
326{
327 struct ttm_bo_device *bdev = bo->bdev;
328 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
329 struct ttm_tt *ttm = bo->ttm;
330 struct ttm_mem_reg *old_mem = &bo->mem;
331 struct ttm_mem_reg old_copy = *old_mem;
332 void *old_iomap;
333 void *new_iomap;
334 int ret;
335 unsigned long i;
336 unsigned long page;
337 unsigned long add = 0;
338 int dir;
339
340 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
341 if (ret)
342 return ret;
343 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
344 if (ret)
345 goto out;
346
347 /*
348 * Single TTM move. NOP.
349 */
350 if (old_iomap == NULL && new_iomap == NULL)
351 goto out2;
352
353 /*
354 * Don't move nonexistent data. Clear destination instead.
355 */
356 if (old_iomap == NULL &&
357 (ttm == NULL || (ttm->state == tt_unpopulated &&
358 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
359 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
360 goto out2;
361 }
362
363 /*
364 * TTM might be null for moves within the same region.
365 */
366 if (ttm && ttm->state == tt_unpopulated) {
367 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
368 if (ret)
369 goto out1;
370 }
371
372 add = 0;
373 dir = 1;
374
375 if ((old_mem->mem_type == new_mem->mem_type) &&
376 (new_mem->start < old_mem->start + old_mem->size)) {
377 dir = -1;
378 add = new_mem->num_pages - 1;
379 }
380
381 for (i = 0; i < new_mem->num_pages; ++i) {
382 page = i * dir + add;
383 if (old_iomap == NULL) {
384 pgprot_t prot = ttm_io_prot(old_mem->placement,
385 PAGE_KERNEL);
386 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
387 prot);
388 } else if (new_iomap == NULL) {
389 pgprot_t prot = ttm_io_prot(new_mem->placement,
390 PAGE_KERNEL);
391 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
392 prot);
393 } else
394 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
395 if (ret)
396 goto out1;
397 }
398 mb();
399out2:
400 old_copy = *old_mem;
401 *old_mem = *new_mem;
402 new_mem->mm_node = NULL;
403
404 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
405 ttm_tt_unbind(ttm);
406 ttm_tt_destroy(ttm);
407 bo->ttm = NULL;
408 }
409
410out1:
411 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
412out:
413 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
414
415 /*
416 * On error, keep the mm node!
417 */
418 if (!ret)
419 ttm_bo_mem_put(bo, &old_copy);
420 return ret;
421}
422EXPORT_SYMBOL(ttm_bo_move_memcpy);
423
424static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
425{
426 kfree(bo);
427}
428
429/**
430 * ttm_buffer_object_transfer
431 *
432 * @bo: A pointer to a struct ttm_buffer_object.
433 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
434 * holding the data of @bo with the old placement.
435 *
436 * This is a utility function that may be called after an accelerated move
437 * has been scheduled. A new buffer object is created as a placeholder for
438 * the old data while it's being copied. When that buffer object is idle,
439 * it can be destroyed, releasing the space of the old placement.
440 * Returns:
441 * !0: Failure.
442 */
443
444static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
445 struct ttm_buffer_object **new_obj)
446{
447 struct ttm_buffer_object *fbo;
448 int ret;
449
450 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
451 if (!fbo)
452 return -ENOMEM;
453
454 *fbo = *bo;
455
456 /**
457 * Fix up members that we shouldn't copy directly:
458 * TODO: Explicit member copy would probably be better here.
459 */
460
461 INIT_LIST_HEAD(&fbo->ddestroy);
462 INIT_LIST_HEAD(&fbo->lru);
463 INIT_LIST_HEAD(&fbo->swap);
464 INIT_LIST_HEAD(&fbo->io_reserve_lru);
465 drm_vma_node_reset(&fbo->vma_node);
466 atomic_set(&fbo->cpu_writers, 0);
467
468 kref_init(&fbo->list_kref);
469 kref_init(&fbo->kref);
470 fbo->destroy = &ttm_transfered_destroy;
471 fbo->acc_size = 0;
472 fbo->resv = &fbo->ttm_resv;
473 reservation_object_init(fbo->resv);
474 ret = ww_mutex_trylock(&fbo->resv->lock);
475 WARN_ON(!ret);
476
477 *new_obj = fbo;
478 return 0;
479}
480
481pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
482{
483 /* Cached mappings need no adjustment */
484 if (caching_flags & TTM_PL_FLAG_CACHED)
485 return tmp;
486
487#if defined(__i386__) || defined(__x86_64__)
488 if (caching_flags & TTM_PL_FLAG_WC)
489 tmp = pgprot_writecombine(tmp);
490 else if (boot_cpu_data.x86 > 3)
491 tmp = pgprot_noncached(tmp);
492#endif
493#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
494 defined(__powerpc__)
495 if (caching_flags & TTM_PL_FLAG_WC)
496 tmp = pgprot_writecombine(tmp);
497 else
498 tmp = pgprot_noncached(tmp);
499#endif
500#if defined(__sparc__) || defined(__mips__)
501 tmp = pgprot_noncached(tmp);
502#endif
503 return tmp;
504}
505EXPORT_SYMBOL(ttm_io_prot);
506
507static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
508 unsigned long offset,
509 unsigned long size,
510 struct ttm_bo_kmap_obj *map)
511{
512 struct ttm_mem_reg *mem = &bo->mem;
513
514 if (bo->mem.bus.addr) {
515 map->bo_kmap_type = ttm_bo_map_premapped;
516 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
517 } else {
518 map->bo_kmap_type = ttm_bo_map_iomap;
519 if (mem->placement & TTM_PL_FLAG_WC)
520 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
521 size);
522 else
523 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
524 size);
525 }
526 return (!map->virtual) ? -ENOMEM : 0;
527}
528
529static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
530 unsigned long start_page,
531 unsigned long num_pages,
532 struct ttm_bo_kmap_obj *map)
533{
534 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
535 struct ttm_tt *ttm = bo->ttm;
536 int ret;
537
538 BUG_ON(!ttm);
539
540 if (ttm->state == tt_unpopulated) {
541 ret = ttm->bdev->driver->ttm_tt_populate(ttm);
542 if (ret)
543 return ret;
544 }
545
546 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
547 /*
548 * We're mapping a single page, and the desired
549 * page protection is consistent with the bo.
550 */
551
552 map->bo_kmap_type = ttm_bo_map_kmap;
553 map->page = ttm->pages[start_page];
554 map->virtual = kmap(map->page);
555 } else {
556 /*
557 * We need to use vmap to get the desired page protection
558 * or to make the buffer object look contiguous.
559 */
560 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
561 map->bo_kmap_type = ttm_bo_map_vmap;
562 map->virtual = vmap(ttm->pages + start_page, num_pages,
563 0, prot);
564 }
565 return (!map->virtual) ? -ENOMEM : 0;
566}
567
568int ttm_bo_kmap(struct ttm_buffer_object *bo,
569 unsigned long start_page, unsigned long num_pages,
570 struct ttm_bo_kmap_obj *map)
571{
572 struct ttm_mem_type_manager *man =
573 &bo->bdev->man[bo->mem.mem_type];
574 unsigned long offset, size;
575 int ret;
576
577 BUG_ON(!list_empty(&bo->swap));
578 map->virtual = NULL;
579 map->bo = bo;
580 if (num_pages > bo->num_pages)
581 return -EINVAL;
582 if (start_page > bo->num_pages)
583 return -EINVAL;
584#if 0
585 if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
586 return -EPERM;
587#endif
588 (void) ttm_mem_io_lock(man, false);
589 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
590 ttm_mem_io_unlock(man);
591 if (ret)
592 return ret;
593 if (!bo->mem.bus.is_iomem) {
594 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
595 } else {
596 offset = start_page << PAGE_SHIFT;
597 size = num_pages << PAGE_SHIFT;
598 return ttm_bo_ioremap(bo, offset, size, map);
599 }
600}
601EXPORT_SYMBOL(ttm_bo_kmap);
602
603void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
604{
605 struct ttm_buffer_object *bo = map->bo;
606 struct ttm_mem_type_manager *man =
607 &bo->bdev->man[bo->mem.mem_type];
608
609 if (!map->virtual)
610 return;
611 switch (map->bo_kmap_type) {
612 case ttm_bo_map_iomap:
613 iounmap(map->virtual);
614 break;
615 case ttm_bo_map_vmap:
616 vunmap(map->virtual);
617 break;
618 case ttm_bo_map_kmap:
619 kunmap(map->page);
620 break;
621 case ttm_bo_map_premapped:
622 break;
623 default:
624 BUG();
625 }
626 (void) ttm_mem_io_lock(man, false);
627 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
628 ttm_mem_io_unlock(man);
629 map->virtual = NULL;
630 map->page = NULL;
631}
632EXPORT_SYMBOL(ttm_bo_kunmap);
633
634int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
635 struct fence *fence,
636 bool evict,
637 bool no_wait_gpu,
638 struct ttm_mem_reg *new_mem)
639{
640 struct ttm_bo_device *bdev = bo->bdev;
641 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
642 struct ttm_mem_reg *old_mem = &bo->mem;
643 int ret;
644 struct ttm_buffer_object *ghost_obj;
645
646 reservation_object_add_excl_fence(bo->resv, fence);
647 if (evict) {
648 ret = ttm_bo_wait(bo, false, false, false);
649 if (ret)
650 return ret;
651
652 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
653 (bo->ttm != NULL)) {
654 ttm_tt_unbind(bo->ttm);
655 ttm_tt_destroy(bo->ttm);
656 bo->ttm = NULL;
657 }
658 ttm_bo_free_old_node(bo);
659 } else {
660 /**
661 * This should help pipeline ordinary buffer moves.
662 *
663 * Hang old buffer memory on a new buffer object,
664 * and leave it to be released when the GPU
665 * operation has completed.
666 */
667
668 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
669
670 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
671 if (ret)
672 return ret;
673
674 reservation_object_add_excl_fence(ghost_obj->resv, fence);
675
676 /**
677 * If we're not moving to fixed memory, the TTM object
678 * needs to stay alive. Otherwhise hang it on the ghost
679 * bo to be unbound and destroyed.
680 */
681
682 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
683 ghost_obj->ttm = NULL;
684 else
685 bo->ttm = NULL;
686
687 ttm_bo_unreserve(ghost_obj);
688 ttm_bo_unref(&ghost_obj);
689 }
690
691 *old_mem = *new_mem;
692 new_mem->mm_node = NULL;
693
694 return 0;
695}
696EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#include <linux/vmalloc.h>
33
34#include <drm/ttm/ttm_bo.h>
35#include <drm/ttm/ttm_placement.h>
36#include <drm/ttm/ttm_tt.h>
37
38#include <drm/drm_cache.h>
39
40struct ttm_transfer_obj {
41 struct ttm_buffer_object base;
42 struct ttm_buffer_object *bo;
43};
44
45int ttm_mem_io_reserve(struct ttm_device *bdev,
46 struct ttm_resource *mem)
47{
48 if (mem->bus.offset || mem->bus.addr)
49 return 0;
50
51 mem->bus.is_iomem = false;
52 if (!bdev->funcs->io_mem_reserve)
53 return 0;
54
55 return bdev->funcs->io_mem_reserve(bdev, mem);
56}
57
58void ttm_mem_io_free(struct ttm_device *bdev,
59 struct ttm_resource *mem)
60{
61 if (!mem)
62 return;
63
64 if (!mem->bus.offset && !mem->bus.addr)
65 return;
66
67 if (bdev->funcs->io_mem_free)
68 bdev->funcs->io_mem_free(bdev, mem);
69
70 mem->bus.offset = 0;
71 mem->bus.addr = NULL;
72}
73
74/**
75 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
76 * @clear: Whether to clear rather than copy.
77 * @num_pages: Number of pages of the operation.
78 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
79 * @src_iter: A struct ttm_kmap_iter representing the source resource.
80 *
81 * This function is intended to be able to move out async under a
82 * dma-fence if desired.
83 */
84void ttm_move_memcpy(bool clear,
85 u32 num_pages,
86 struct ttm_kmap_iter *dst_iter,
87 struct ttm_kmap_iter *src_iter)
88{
89 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
90 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
91 struct iosys_map src_map, dst_map;
92 pgoff_t i;
93
94 /* Single TTM move. NOP */
95 if (dst_ops->maps_tt && src_ops->maps_tt)
96 return;
97
98 /* Don't move nonexistent data. Clear destination instead. */
99 if (clear) {
100 for (i = 0; i < num_pages; ++i) {
101 dst_ops->map_local(dst_iter, &dst_map, i);
102 if (dst_map.is_iomem)
103 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104 else
105 memset(dst_map.vaddr, 0, PAGE_SIZE);
106 if (dst_ops->unmap_local)
107 dst_ops->unmap_local(dst_iter, &dst_map);
108 }
109 return;
110 }
111
112 for (i = 0; i < num_pages; ++i) {
113 dst_ops->map_local(dst_iter, &dst_map, i);
114 src_ops->map_local(src_iter, &src_map, i);
115
116 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117
118 if (src_ops->unmap_local)
119 src_ops->unmap_local(src_iter, &src_map);
120 if (dst_ops->unmap_local)
121 dst_ops->unmap_local(dst_iter, &dst_map);
122 }
123}
124EXPORT_SYMBOL(ttm_move_memcpy);
125
126/**
127 * ttm_bo_move_memcpy
128 *
129 * @bo: A pointer to a struct ttm_buffer_object.
130 * @ctx: operation context
131 * @dst_mem: struct ttm_resource indicating where to move.
132 *
133 * Fallback move function for a mappable buffer object in mappable memory.
134 * The function will, if successful,
135 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136 * and update the (@bo)->mem placement flags. If unsuccessful, the old
137 * data remains untouched, and it's up to the caller to free the
138 * memory space indicated by @new_mem.
139 * Returns:
140 * !0: Failure.
141 */
142int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143 struct ttm_operation_ctx *ctx,
144 struct ttm_resource *dst_mem)
145{
146 struct ttm_device *bdev = bo->bdev;
147 struct ttm_resource_manager *dst_man =
148 ttm_manager_type(bo->bdev, dst_mem->mem_type);
149 struct ttm_tt *ttm = bo->ttm;
150 struct ttm_resource *src_mem = bo->resource;
151 struct ttm_resource_manager *src_man;
152 union {
153 struct ttm_kmap_iter_tt tt;
154 struct ttm_kmap_iter_linear_io io;
155 } _dst_iter, _src_iter;
156 struct ttm_kmap_iter *dst_iter, *src_iter;
157 bool clear;
158 int ret = 0;
159
160 if (WARN_ON(!src_mem))
161 return -EINVAL;
162
163 src_man = ttm_manager_type(bdev, src_mem->mem_type);
164 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165 dst_man->use_tt)) {
166 ret = ttm_tt_populate(bdev, ttm, ctx);
167 if (ret)
168 return ret;
169 }
170
171 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174 if (IS_ERR(dst_iter))
175 return PTR_ERR(dst_iter);
176
177 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180 if (IS_ERR(src_iter)) {
181 ret = PTR_ERR(src_iter);
182 goto out_src_iter;
183 }
184
185 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188
189 if (!src_iter->ops->maps_tt)
190 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191 ttm_bo_move_sync_cleanup(bo, dst_mem);
192
193out_src_iter:
194 if (!dst_iter->ops->maps_tt)
195 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196
197 return ret;
198}
199EXPORT_SYMBOL(ttm_bo_move_memcpy);
200
201static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202{
203 struct ttm_transfer_obj *fbo;
204
205 fbo = container_of(bo, struct ttm_transfer_obj, base);
206 dma_resv_fini(&fbo->base.base._resv);
207 ttm_bo_put(fbo->bo);
208 kfree(fbo);
209}
210
211/**
212 * ttm_buffer_object_transfer
213 *
214 * @bo: A pointer to a struct ttm_buffer_object.
215 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216 * holding the data of @bo with the old placement.
217 *
218 * This is a utility function that may be called after an accelerated move
219 * has been scheduled. A new buffer object is created as a placeholder for
220 * the old data while it's being copied. When that buffer object is idle,
221 * it can be destroyed, releasing the space of the old placement.
222 * Returns:
223 * !0: Failure.
224 */
225
226static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227 struct ttm_buffer_object **new_obj)
228{
229 struct ttm_transfer_obj *fbo;
230 int ret;
231
232 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233 if (!fbo)
234 return -ENOMEM;
235
236 fbo->base = *bo;
237
238 /**
239 * Fix up members that we shouldn't copy directly:
240 * TODO: Explicit member copy would probably be better here.
241 */
242
243 atomic_inc(&ttm_glob.bo_count);
244 drm_vma_node_reset(&fbo->base.base.vma_node);
245
246 kref_init(&fbo->base.kref);
247 fbo->base.destroy = &ttm_transfered_destroy;
248 fbo->base.pin_count = 0;
249 if (bo->type != ttm_bo_type_sg)
250 fbo->base.base.resv = &fbo->base.base._resv;
251
252 dma_resv_init(&fbo->base.base._resv);
253 fbo->base.base.dev = NULL;
254 ret = dma_resv_trylock(&fbo->base.base._resv);
255 WARN_ON(!ret);
256
257 if (fbo->base.resource) {
258 ttm_resource_set_bo(fbo->base.resource, &fbo->base);
259 bo->resource = NULL;
260 ttm_bo_set_bulk_move(&fbo->base, NULL);
261 } else {
262 fbo->base.bulk_move = NULL;
263 }
264
265 ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
266 if (ret) {
267 kfree(fbo);
268 return ret;
269 }
270
271 ttm_bo_get(bo);
272 fbo->bo = bo;
273
274 ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
275
276 *new_obj = &fbo->base;
277 return 0;
278}
279
280/**
281 * ttm_io_prot
282 *
283 * @bo: ttm buffer object
284 * @res: ttm resource object
285 * @tmp: Page protection flag for a normal, cached mapping.
286 *
287 * Utility function that returns the pgprot_t that should be used for
288 * setting up a PTE with the caching model indicated by @c_state.
289 */
290pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
291 pgprot_t tmp)
292{
293 struct ttm_resource_manager *man;
294 enum ttm_caching caching;
295
296 man = ttm_manager_type(bo->bdev, res->mem_type);
297 if (man->use_tt) {
298 caching = bo->ttm->caching;
299 if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
300 tmp = pgprot_decrypted(tmp);
301 } else {
302 caching = res->bus.caching;
303 }
304
305 return ttm_prot_from_caching(caching, tmp);
306}
307EXPORT_SYMBOL(ttm_io_prot);
308
309static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
310 unsigned long offset,
311 unsigned long size,
312 struct ttm_bo_kmap_obj *map)
313{
314 struct ttm_resource *mem = bo->resource;
315
316 if (bo->resource->bus.addr) {
317 map->bo_kmap_type = ttm_bo_map_premapped;
318 map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
319 } else {
320 resource_size_t res = bo->resource->bus.offset + offset;
321
322 map->bo_kmap_type = ttm_bo_map_iomap;
323 if (mem->bus.caching == ttm_write_combined)
324 map->virtual = ioremap_wc(res, size);
325#ifdef CONFIG_X86
326 else if (mem->bus.caching == ttm_cached)
327 map->virtual = ioremap_cache(res, size);
328#endif
329 else
330 map->virtual = ioremap(res, size);
331 }
332 return (!map->virtual) ? -ENOMEM : 0;
333}
334
335static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
336 unsigned long start_page,
337 unsigned long num_pages,
338 struct ttm_bo_kmap_obj *map)
339{
340 struct ttm_resource *mem = bo->resource;
341 struct ttm_operation_ctx ctx = {
342 .interruptible = false,
343 .no_wait_gpu = false
344 };
345 struct ttm_tt *ttm = bo->ttm;
346 struct ttm_resource_manager *man =
347 ttm_manager_type(bo->bdev, bo->resource->mem_type);
348 pgprot_t prot;
349 int ret;
350
351 BUG_ON(!ttm);
352
353 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
354 if (ret)
355 return ret;
356
357 if (num_pages == 1 && ttm->caching == ttm_cached &&
358 !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
359 /*
360 * We're mapping a single page, and the desired
361 * page protection is consistent with the bo.
362 */
363
364 map->bo_kmap_type = ttm_bo_map_kmap;
365 map->page = ttm->pages[start_page];
366 map->virtual = kmap(map->page);
367 } else {
368 /*
369 * We need to use vmap to get the desired page protection
370 * or to make the buffer object look contiguous.
371 */
372 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
373 map->bo_kmap_type = ttm_bo_map_vmap;
374 map->virtual = vmap(ttm->pages + start_page, num_pages,
375 0, prot);
376 }
377 return (!map->virtual) ? -ENOMEM : 0;
378}
379
380/**
381 * ttm_bo_kmap
382 *
383 * @bo: The buffer object.
384 * @start_page: The first page to map.
385 * @num_pages: Number of pages to map.
386 * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
387 *
388 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
389 * data in the buffer object. The ttm_kmap_obj_virtual function can then be
390 * used to obtain a virtual address to the data.
391 *
392 * Returns
393 * -ENOMEM: Out of memory.
394 * -EINVAL: Invalid range.
395 */
396int ttm_bo_kmap(struct ttm_buffer_object *bo,
397 unsigned long start_page, unsigned long num_pages,
398 struct ttm_bo_kmap_obj *map)
399{
400 unsigned long offset, size;
401 int ret;
402
403 map->virtual = NULL;
404 map->bo = bo;
405 if (num_pages > PFN_UP(bo->resource->size))
406 return -EINVAL;
407 if ((start_page + num_pages) > PFN_UP(bo->resource->size))
408 return -EINVAL;
409
410 ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
411 if (ret)
412 return ret;
413 if (!bo->resource->bus.is_iomem) {
414 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
415 } else {
416 offset = start_page << PAGE_SHIFT;
417 size = num_pages << PAGE_SHIFT;
418 return ttm_bo_ioremap(bo, offset, size, map);
419 }
420}
421EXPORT_SYMBOL(ttm_bo_kmap);
422
423/**
424 * ttm_bo_kunmap
425 *
426 * @map: Object describing the map to unmap.
427 *
428 * Unmaps a kernel map set up by ttm_bo_kmap.
429 */
430void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
431{
432 if (!map->virtual)
433 return;
434 switch (map->bo_kmap_type) {
435 case ttm_bo_map_iomap:
436 iounmap(map->virtual);
437 break;
438 case ttm_bo_map_vmap:
439 vunmap(map->virtual);
440 break;
441 case ttm_bo_map_kmap:
442 kunmap(map->page);
443 break;
444 case ttm_bo_map_premapped:
445 break;
446 default:
447 BUG();
448 }
449 ttm_mem_io_free(map->bo->bdev, map->bo->resource);
450 map->virtual = NULL;
451 map->page = NULL;
452}
453EXPORT_SYMBOL(ttm_bo_kunmap);
454
455/**
456 * ttm_bo_vmap
457 *
458 * @bo: The buffer object.
459 * @map: pointer to a struct iosys_map representing the map.
460 *
461 * Sets up a kernel virtual mapping, using ioremap or vmap to the
462 * data in the buffer object. The parameter @map returns the virtual
463 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
464 *
465 * Returns
466 * -ENOMEM: Out of memory.
467 * -EINVAL: Invalid range.
468 */
469int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
470{
471 struct ttm_resource *mem = bo->resource;
472 int ret;
473
474 dma_resv_assert_held(bo->base.resv);
475
476 ret = ttm_mem_io_reserve(bo->bdev, mem);
477 if (ret)
478 return ret;
479
480 if (mem->bus.is_iomem) {
481 void __iomem *vaddr_iomem;
482
483 if (mem->bus.addr)
484 vaddr_iomem = (void __iomem *)mem->bus.addr;
485 else if (mem->bus.caching == ttm_write_combined)
486 vaddr_iomem = ioremap_wc(mem->bus.offset,
487 bo->base.size);
488#ifdef CONFIG_X86
489 else if (mem->bus.caching == ttm_cached)
490 vaddr_iomem = ioremap_cache(mem->bus.offset,
491 bo->base.size);
492#endif
493 else
494 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
495
496 if (!vaddr_iomem)
497 return -ENOMEM;
498
499 iosys_map_set_vaddr_iomem(map, vaddr_iomem);
500
501 } else {
502 struct ttm_operation_ctx ctx = {
503 .interruptible = false,
504 .no_wait_gpu = false
505 };
506 struct ttm_tt *ttm = bo->ttm;
507 pgprot_t prot;
508 void *vaddr;
509
510 ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
511 if (ret)
512 return ret;
513
514 /*
515 * We need to use vmap to get the desired page protection
516 * or to make the buffer object look contiguous.
517 */
518 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
519 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
520 if (!vaddr)
521 return -ENOMEM;
522
523 iosys_map_set_vaddr(map, vaddr);
524 }
525
526 return 0;
527}
528EXPORT_SYMBOL(ttm_bo_vmap);
529
530/**
531 * ttm_bo_vunmap
532 *
533 * @bo: The buffer object.
534 * @map: Object describing the map to unmap.
535 *
536 * Unmaps a kernel map set up by ttm_bo_vmap().
537 */
538void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
539{
540 struct ttm_resource *mem = bo->resource;
541
542 dma_resv_assert_held(bo->base.resv);
543
544 if (iosys_map_is_null(map))
545 return;
546
547 if (!map->is_iomem)
548 vunmap(map->vaddr);
549 else if (!mem->bus.addr)
550 iounmap(map->vaddr_iomem);
551 iosys_map_clear(map);
552
553 ttm_mem_io_free(bo->bdev, bo->resource);
554}
555EXPORT_SYMBOL(ttm_bo_vunmap);
556
557static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
558 bool dst_use_tt)
559{
560 long ret;
561
562 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
563 false, 15 * HZ);
564 if (ret == 0)
565 return -EBUSY;
566 if (ret < 0)
567 return ret;
568
569 if (!dst_use_tt)
570 ttm_bo_tt_destroy(bo);
571 ttm_resource_free(bo, &bo->resource);
572 return 0;
573}
574
575static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
576 struct dma_fence *fence,
577 bool dst_use_tt)
578{
579 struct ttm_buffer_object *ghost_obj;
580 int ret;
581
582 /**
583 * This should help pipeline ordinary buffer moves.
584 *
585 * Hang old buffer memory on a new buffer object,
586 * and leave it to be released when the GPU
587 * operation has completed.
588 */
589
590 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
591 if (ret)
592 return ret;
593
594 dma_resv_add_fence(&ghost_obj->base._resv, fence,
595 DMA_RESV_USAGE_KERNEL);
596
597 /**
598 * If we're not moving to fixed memory, the TTM object
599 * needs to stay alive. Otherwhise hang it on the ghost
600 * bo to be unbound and destroyed.
601 */
602
603 if (dst_use_tt)
604 ghost_obj->ttm = NULL;
605 else
606 bo->ttm = NULL;
607
608 dma_resv_unlock(&ghost_obj->base._resv);
609 ttm_bo_put(ghost_obj);
610 return 0;
611}
612
613static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
614 struct dma_fence *fence)
615{
616 struct ttm_device *bdev = bo->bdev;
617 struct ttm_resource_manager *from;
618
619 from = ttm_manager_type(bdev, bo->resource->mem_type);
620
621 /**
622 * BO doesn't have a TTM we need to bind/unbind. Just remember
623 * this eviction and free up the allocation
624 */
625 spin_lock(&from->move_lock);
626 if (!from->move || dma_fence_is_later(fence, from->move)) {
627 dma_fence_put(from->move);
628 from->move = dma_fence_get(fence);
629 }
630 spin_unlock(&from->move_lock);
631
632 ttm_resource_free(bo, &bo->resource);
633}
634
635/**
636 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
637 *
638 * @bo: A pointer to a struct ttm_buffer_object.
639 * @fence: A fence object that signals when moving is complete.
640 * @evict: This is an evict move. Don't return until the buffer is idle.
641 * @pipeline: evictions are to be pipelined.
642 * @new_mem: struct ttm_resource indicating where to move.
643 *
644 * Accelerated move function to be called when an accelerated move
645 * has been scheduled. The function will create a new temporary buffer object
646 * representing the old placement, and put the sync object on both buffer
647 * objects. After that the newly created buffer object is unref'd to be
648 * destroyed when the move is complete. This will help pipeline
649 * buffer moves.
650 */
651int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
652 struct dma_fence *fence,
653 bool evict,
654 bool pipeline,
655 struct ttm_resource *new_mem)
656{
657 struct ttm_device *bdev = bo->bdev;
658 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
659 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
660 int ret = 0;
661
662 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
663 if (!evict)
664 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
665 else if (!from->use_tt && pipeline)
666 ttm_bo_move_pipeline_evict(bo, fence);
667 else
668 ret = ttm_bo_wait_free_node(bo, man->use_tt);
669
670 if (ret)
671 return ret;
672
673 ttm_bo_assign_mem(bo, new_mem);
674
675 return 0;
676}
677EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
678
679/**
680 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
681 *
682 * @bo: A pointer to a struct ttm_buffer_object.
683 * @new_mem: struct ttm_resource indicating where to move.
684 *
685 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
686 * by the caller to be idle. Typically used after memcpy buffer moves.
687 */
688void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
689 struct ttm_resource *new_mem)
690{
691 struct ttm_device *bdev = bo->bdev;
692 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
693 int ret;
694
695 ret = ttm_bo_wait_free_node(bo, man->use_tt);
696 if (WARN_ON(ret))
697 return;
698
699 ttm_bo_assign_mem(bo, new_mem);
700}
701EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
702
703/**
704 * ttm_bo_pipeline_gutting - purge the contents of a bo
705 * @bo: The buffer object
706 *
707 * Purge the contents of a bo, async if the bo is not idle.
708 * After a successful call, the bo is left unpopulated in
709 * system placement. The function may wait uninterruptible
710 * for idle on OOM.
711 *
712 * Return: 0 if successful, negative error code on failure.
713 */
714int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
715{
716 struct ttm_buffer_object *ghost;
717 struct ttm_tt *ttm;
718 int ret;
719
720 /* If already idle, no need for ghost object dance. */
721 if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
722 if (!bo->ttm) {
723 /* See comment below about clearing. */
724 ret = ttm_tt_create(bo, true);
725 if (ret)
726 return ret;
727 } else {
728 ttm_tt_unpopulate(bo->bdev, bo->ttm);
729 if (bo->type == ttm_bo_type_device)
730 ttm_tt_mark_for_clear(bo->ttm);
731 }
732 ttm_resource_free(bo, &bo->resource);
733 return 0;
734 }
735
736 /*
737 * We need an unpopulated ttm_tt after giving our current one,
738 * if any, to the ghost object. And we can't afford to fail
739 * creating one *after* the operation. If the bo subsequently gets
740 * resurrected, make sure it's cleared (if ttm_bo_type_device)
741 * to avoid leaking sensitive information to user-space.
742 */
743
744 ttm = bo->ttm;
745 bo->ttm = NULL;
746 ret = ttm_tt_create(bo, true);
747 swap(bo->ttm, ttm);
748 if (ret)
749 return ret;
750
751 ret = ttm_buffer_object_transfer(bo, &ghost);
752 if (ret)
753 goto error_destroy_tt;
754
755 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
756 /* Last resort, wait for the BO to be idle when we are OOM */
757 if (ret) {
758 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
759 false, MAX_SCHEDULE_TIMEOUT);
760 }
761
762 dma_resv_unlock(&ghost->base._resv);
763 ttm_bo_put(ghost);
764 bo->ttm = ttm;
765 return 0;
766
767error_destroy_tt:
768 ttm_tt_destroy(bo->bdev, ttm);
769 return ret;
770}