Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
 
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
 
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 
 
 
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	key->index_key.desc_len = desclen;
 280	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 281	if (!key->index_key.description)
 282		goto no_memory_3;
 
 
 283
 284	atomic_set(&key->usage, 1);
 285	init_rwsem(&key->sem);
 286	lockdep_set_class(&key->sem, &type->lock_class);
 287	key->index_key.type = type;
 288	key->user = user;
 289	key->quotalen = quotalen;
 290	key->datalen = type->def_datalen;
 291	key->uid = uid;
 292	key->gid = gid;
 293	key->perm = perm;
 
 
 
 294
 295	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 296		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 297	if (flags & KEY_ALLOC_TRUSTED)
 298		key->flags |= 1 << KEY_FLAG_TRUSTED;
 299	if (flags & KEY_ALLOC_BUILT_IN)
 300		key->flags |= 1 << KEY_FLAG_BUILTIN;
 
 
 
 
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 
 
 
 
 
 
 
 
 
 
 
 
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring) {
 435				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 436					set_bit(KEY_FLAG_KEEP, &key->flags);
 437
 438				__key_link(key, _edit);
 439			}
 440
 441			/* disable the authorisation key */
 442			if (authkey)
 443				key_revoke(authkey);
 444
 445			if (prep->expiry != TIME_T_MAX) {
 446				key->expiry = prep->expiry;
 447				key_schedule_gc(prep->expiry + key_gc_delay);
 448			}
 449		}
 450	}
 451
 452	mutex_unlock(&key_construction_mutex);
 453
 454	/* wake up anyone waiting for a key to be constructed */
 455	if (awaken)
 456		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 457
 458	return ret;
 459}
 460
 461/**
 462 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 463 * @key: The key to instantiate.
 464 * @data: The data to use to instantiate the keyring.
 465 * @datalen: The length of @data.
 466 * @keyring: Keyring to create a link in on success (or NULL).
 467 * @authkey: The authorisation token permitting instantiation.
 468 *
 469 * Instantiate a key that's in the uninstantiated state using the provided data
 470 * and, if successful, link it in to the destination keyring if one is
 471 * supplied.
 472 *
 473 * If successful, 0 is returned, the authorisation token is revoked and anyone
 474 * waiting for the key is woken up.  If the key was already instantiated,
 475 * -EBUSY will be returned.
 476 */
 477int key_instantiate_and_link(struct key *key,
 478			     const void *data,
 479			     size_t datalen,
 480			     struct key *keyring,
 481			     struct key *authkey)
 482{
 483	struct key_preparsed_payload prep;
 484	struct assoc_array_edit *edit;
 485	int ret;
 486
 487	memset(&prep, 0, sizeof(prep));
 
 488	prep.data = data;
 489	prep.datalen = datalen;
 490	prep.quotalen = key->type->def_datalen;
 491	prep.expiry = TIME_T_MAX;
 492	if (key->type->preparse) {
 493		ret = key->type->preparse(&prep);
 494		if (ret < 0)
 495			goto error;
 496	}
 497
 498	if (keyring) {
 499		ret = __key_link_begin(keyring, &key->index_key, &edit);
 500		if (ret < 0)
 501			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 502	}
 503
 504	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 505
 
 506	if (keyring)
 507		__key_link_end(keyring, &key->index_key, edit);
 508
 509error:
 510	if (key->type->preparse)
 511		key->type->free_preparse(&prep);
 512	return ret;
 513}
 514
 515EXPORT_SYMBOL(key_instantiate_and_link);
 516
 517/**
 518 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 519 * @key: The key to instantiate.
 520 * @timeout: The timeout on the negative key.
 521 * @error: The error to return when the key is hit.
 522 * @keyring: Keyring to create a link in on success (or NULL).
 523 * @authkey: The authorisation token permitting instantiation.
 524 *
 525 * Negatively instantiate a key that's in the uninstantiated state and, if
 526 * successful, set its timeout and stored error and link it in to the
 527 * destination keyring if one is supplied.  The key and any links to the key
 528 * will be automatically garbage collected after the timeout expires.
 529 *
 530 * Negative keys are used to rate limit repeated request_key() calls by causing
 531 * them to return the stored error code (typically ENOKEY) until the negative
 532 * key expires.
 533 *
 534 * If successful, 0 is returned, the authorisation token is revoked and anyone
 535 * waiting for the key is woken up.  If the key was already instantiated,
 536 * -EBUSY will be returned.
 537 */
 538int key_reject_and_link(struct key *key,
 539			unsigned timeout,
 540			unsigned error,
 541			struct key *keyring,
 542			struct key *authkey)
 543{
 544	struct assoc_array_edit *edit;
 545	struct timespec now;
 546	int ret, awaken, link_ret = 0;
 547
 548	key_check(key);
 549	key_check(keyring);
 550
 551	awaken = 0;
 552	ret = -EBUSY;
 553
 554	if (keyring)
 555		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 
 
 
 
 
 
 
 
 556
 557	mutex_lock(&key_construction_mutex);
 558
 559	/* can't instantiate twice */
 560	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 561		/* mark the key as being negatively instantiated */
 562		atomic_inc(&key->user->nikeys);
 563		key->reject_error = -error;
 564		smp_wmb();
 565		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 566		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 567		now = current_kernel_time();
 568		key->expiry = now.tv_sec + timeout;
 569		key_schedule_gc(key->expiry + key_gc_delay);
 570
 571		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 572			awaken = 1;
 573
 574		ret = 0;
 575
 576		/* and link it into the destination keyring */
 577		if (keyring && link_ret == 0)
 578			__key_link(key, &edit);
 579
 580		/* disable the authorisation key */
 581		if (authkey)
 582			key_revoke(authkey);
 583	}
 584
 585	mutex_unlock(&key_construction_mutex);
 586
 587	if (keyring)
 588		__key_link_end(keyring, &key->index_key, edit);
 589
 590	/* wake up anyone waiting for a key to be constructed */
 591	if (awaken)
 592		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 593
 594	return ret == 0 ? link_ret : ret;
 595}
 596EXPORT_SYMBOL(key_reject_and_link);
 597
 598/**
 599 * key_put - Discard a reference to a key.
 600 * @key: The key to discard a reference from.
 601 *
 602 * Discard a reference to a key, and when all the references are gone, we
 603 * schedule the cleanup task to come and pull it out of the tree in process
 604 * context at some later time.
 605 */
 606void key_put(struct key *key)
 607{
 608	if (key) {
 609		key_check(key);
 610
 611		if (atomic_dec_and_test(&key->usage))
 612			schedule_work(&key_gc_work);
 613	}
 614}
 615EXPORT_SYMBOL(key_put);
 616
 617/*
 618 * Find a key by its serial number.
 619 */
 620struct key *key_lookup(key_serial_t id)
 621{
 622	struct rb_node *n;
 623	struct key *key;
 624
 625	spin_lock(&key_serial_lock);
 626
 627	/* search the tree for the specified key */
 628	n = key_serial_tree.rb_node;
 629	while (n) {
 630		key = rb_entry(n, struct key, serial_node);
 631
 632		if (id < key->serial)
 633			n = n->rb_left;
 634		else if (id > key->serial)
 635			n = n->rb_right;
 636		else
 637			goto found;
 638	}
 639
 640not_found:
 641	key = ERR_PTR(-ENOKEY);
 642	goto error;
 643
 644found:
 645	/* pretend it doesn't exist if it is awaiting deletion */
 646	if (atomic_read(&key->usage) == 0)
 647		goto not_found;
 648
 649	/* this races with key_put(), but that doesn't matter since key_put()
 650	 * doesn't actually change the key
 651	 */
 652	__key_get(key);
 
 653
 654error:
 655	spin_unlock(&key_serial_lock);
 656	return key;
 657}
 
 658
 659/*
 660 * Find and lock the specified key type against removal.
 661 *
 662 * We return with the sem read-locked if successful.  If the type wasn't
 663 * available -ENOKEY is returned instead.
 664 */
 665struct key_type *key_type_lookup(const char *type)
 666{
 667	struct key_type *ktype;
 668
 669	down_read(&key_types_sem);
 670
 671	/* look up the key type to see if it's one of the registered kernel
 672	 * types */
 673	list_for_each_entry(ktype, &key_types_list, link) {
 674		if (strcmp(ktype->name, type) == 0)
 675			goto found_kernel_type;
 676	}
 677
 678	up_read(&key_types_sem);
 679	ktype = ERR_PTR(-ENOKEY);
 680
 681found_kernel_type:
 682	return ktype;
 683}
 684
 685void key_set_timeout(struct key *key, unsigned timeout)
 686{
 687	struct timespec now;
 688	time_t expiry = 0;
 689
 690	/* make the changes with the locks held to prevent races */
 691	down_write(&key->sem);
 692
 693	if (timeout > 0) {
 694		now = current_kernel_time();
 695		expiry = now.tv_sec + timeout;
 696	}
 697
 698	key->expiry = expiry;
 699	key_schedule_gc(key->expiry + key_gc_delay);
 700
 701	up_write(&key->sem);
 702}
 703EXPORT_SYMBOL_GPL(key_set_timeout);
 704
 705/*
 706 * Unlock a key type locked by key_type_lookup().
 707 */
 708void key_type_put(struct key_type *ktype)
 709{
 710	up_read(&key_types_sem);
 711}
 712
 713/*
 714 * Attempt to update an existing key.
 715 *
 716 * The key is given to us with an incremented refcount that we need to discard
 717 * if we get an error.
 718 */
 719static inline key_ref_t __key_update(key_ref_t key_ref,
 720				     struct key_preparsed_payload *prep)
 721{
 722	struct key *key = key_ref_to_ptr(key_ref);
 723	int ret;
 724
 725	/* need write permission on the key to update it */
 726	ret = key_permission(key_ref, KEY_NEED_WRITE);
 727	if (ret < 0)
 728		goto error;
 729
 730	ret = -EEXIST;
 731	if (!key->type->update)
 732		goto error;
 733
 734	down_write(&key->sem);
 735
 736	ret = key->type->update(key, prep);
 737	if (ret == 0)
 738		/* updating a negative key instantiates it */
 739		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 740
 741	up_write(&key->sem);
 742
 743	if (ret < 0)
 744		goto error;
 745out:
 746	return key_ref;
 747
 748error:
 749	key_put(key);
 750	key_ref = ERR_PTR(ret);
 751	goto out;
 752}
 753
 754/**
 755 * key_create_or_update - Update or create and instantiate a key.
 756 * @keyring_ref: A pointer to the destination keyring with possession flag.
 757 * @type: The type of key.
 758 * @description: The searchable description for the key.
 759 * @payload: The data to use to instantiate or update the key.
 760 * @plen: The length of @payload.
 761 * @perm: The permissions mask for a new key.
 762 * @flags: The quota flags for a new key.
 763 *
 764 * Search the destination keyring for a key of the same description and if one
 765 * is found, update it, otherwise create and instantiate a new one and create a
 766 * link to it from that keyring.
 767 *
 768 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 769 * concocted.
 770 *
 771 * Returns a pointer to the new key if successful, -ENODEV if the key type
 772 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 773 * caller isn't permitted to modify the keyring or the LSM did not permit
 774 * creation of the key.
 775 *
 776 * On success, the possession flag from the keyring ref will be tacked on to
 777 * the key ref before it is returned.
 778 */
 779key_ref_t key_create_or_update(key_ref_t keyring_ref,
 780			       const char *type,
 781			       const char *description,
 782			       const void *payload,
 783			       size_t plen,
 784			       key_perm_t perm,
 785			       unsigned long flags)
 
 786{
 787	struct keyring_index_key index_key = {
 788		.description	= description,
 789	};
 790	struct key_preparsed_payload prep;
 791	struct assoc_array_edit *edit;
 792	const struct cred *cred = current_cred();
 793	struct key *keyring, *key = NULL;
 794	key_ref_t key_ref;
 795	int ret;
 
 796
 797	/* look up the key type to see if it's one of the registered kernel
 798	 * types */
 799	index_key.type = key_type_lookup(type);
 800	if (IS_ERR(index_key.type)) {
 801		key_ref = ERR_PTR(-ENODEV);
 802		goto error;
 803	}
 804
 805	key_ref = ERR_PTR(-EINVAL);
 806	if (!index_key.type->instantiate ||
 807	    (!index_key.description && !index_key.type->preparse))
 808		goto error_put_type;
 809
 810	keyring = key_ref_to_ptr(keyring_ref);
 811
 812	key_check(keyring);
 813
 
 
 
 814	key_ref = ERR_PTR(-ENOTDIR);
 815	if (keyring->type != &key_type_keyring)
 816		goto error_put_type;
 817
 818	memset(&prep, 0, sizeof(prep));
 
 819	prep.data = payload;
 820	prep.datalen = plen;
 821	prep.quotalen = index_key.type->def_datalen;
 822	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 823	prep.expiry = TIME_T_MAX;
 824	if (index_key.type->preparse) {
 825		ret = index_key.type->preparse(&prep);
 826		if (ret < 0) {
 827			key_ref = ERR_PTR(ret);
 828			goto error_free_prep;
 829		}
 830		if (!index_key.description)
 831			index_key.description = prep.description;
 832		key_ref = ERR_PTR(-EINVAL);
 833		if (!index_key.description)
 834			goto error_free_prep;
 835	}
 836	index_key.desc_len = strlen(index_key.description);
 
 837
 838	key_ref = ERR_PTR(-EPERM);
 839	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 
 840		goto error_free_prep;
 841	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 842
 843	ret = __key_link_begin(keyring, &index_key, &edit);
 844	if (ret < 0) {
 845		key_ref = ERR_PTR(ret);
 846		goto error_free_prep;
 
 
 
 
 
 
 
 
 
 847	}
 848
 849	/* if we're going to allocate a new key, we're going to have
 850	 * to modify the keyring */
 851	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 852	if (ret < 0) {
 853		key_ref = ERR_PTR(ret);
 854		goto error_link_end;
 855	}
 856
 857	/* if it's possible to update this type of key, search for an existing
 858	 * key of the same type and description in the destination keyring and
 859	 * update that instead if possible
 860	 */
 861	if (index_key.type->update) {
 
 
 
 
 
 
 862		key_ref = find_key_to_update(keyring_ref, &index_key);
 863		if (key_ref)
 864			goto found_matching_key;
 
 
 
 865	}
 866
 867	/* if the client doesn't provide, decide on the permissions we want */
 868	if (perm == KEY_PERM_UNDEF) {
 869		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 870		perm |= KEY_USR_VIEW;
 871
 872		if (index_key.type->read)
 873			perm |= KEY_POS_READ;
 874
 875		if (index_key.type == &key_type_keyring ||
 876		    index_key.type->update)
 877			perm |= KEY_POS_WRITE;
 878	}
 879
 880	/* allocate a new key */
 881	key = key_alloc(index_key.type, index_key.description,
 882			cred->fsuid, cred->fsgid, cred, perm, flags);
 883	if (IS_ERR(key)) {
 884		key_ref = ERR_CAST(key);
 885		goto error_link_end;
 886	}
 887
 888	/* instantiate it and link it into the target keyring */
 889	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 890	if (ret < 0) {
 891		key_put(key);
 892		key_ref = ERR_PTR(ret);
 893		goto error_link_end;
 894	}
 895
 
 
 
 896	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 897
 898error_link_end:
 899	__key_link_end(keyring, &index_key, edit);
 900error_free_prep:
 901	if (index_key.type->preparse)
 902		index_key.type->free_preparse(&prep);
 903error_put_type:
 904	key_type_put(index_key.type);
 905error:
 906	return key_ref;
 907
 908 found_matching_key:
 909	/* we found a matching key, so we're going to try to update it
 910	 * - we can drop the locks first as we have the key pinned
 911	 */
 912	__key_link_end(keyring, &index_key, edit);
 913
 
 
 
 
 
 
 
 
 
 
 914	key_ref = __key_update(key_ref, &prep);
 
 
 
 
 
 
 915	goto error_free_prep;
 916}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917EXPORT_SYMBOL(key_create_or_update);
 918
 919/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920 * key_update - Update a key's contents.
 921 * @key_ref: The pointer (plus possession flag) to the key.
 922 * @payload: The data to be used to update the key.
 923 * @plen: The length of @payload.
 924 *
 925 * Attempt to update the contents of a key with the given payload data.  The
 926 * caller must be granted Write permission on the key.  Negative keys can be
 927 * instantiated by this method.
 928 *
 929 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 930 * type does not support updating.  The key type may return other errors.
 931 */
 932int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 933{
 934	struct key_preparsed_payload prep;
 935	struct key *key = key_ref_to_ptr(key_ref);
 936	int ret;
 937
 938	key_check(key);
 939
 940	/* the key must be writable */
 941	ret = key_permission(key_ref, KEY_NEED_WRITE);
 942	if (ret < 0)
 943		goto error;
 944
 945	/* attempt to update it if supported */
 946	ret = -EOPNOTSUPP;
 947	if (!key->type->update)
 948		goto error;
 949
 950	memset(&prep, 0, sizeof(prep));
 951	prep.data = payload;
 952	prep.datalen = plen;
 953	prep.quotalen = key->type->def_datalen;
 954	prep.expiry = TIME_T_MAX;
 955	if (key->type->preparse) {
 956		ret = key->type->preparse(&prep);
 957		if (ret < 0)
 958			goto error;
 959	}
 960
 961	down_write(&key->sem);
 962
 963	ret = key->type->update(key, &prep);
 964	if (ret == 0)
 965		/* updating a negative key instantiates it */
 966		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 967
 968	up_write(&key->sem);
 969
 970error:
 971	if (key->type->preparse)
 972		key->type->free_preparse(&prep);
 973	return ret;
 974}
 975EXPORT_SYMBOL(key_update);
 976
 977/**
 978 * key_revoke - Revoke a key.
 979 * @key: The key to be revoked.
 980 *
 981 * Mark a key as being revoked and ask the type to free up its resources.  The
 982 * revocation timeout is set and the key and all its links will be
 983 * automatically garbage collected after key_gc_delay amount of time if they
 984 * are not manually dealt with first.
 985 */
 986void key_revoke(struct key *key)
 987{
 988	struct timespec now;
 989	time_t time;
 990
 991	key_check(key);
 992
 993	/* make sure no one's trying to change or use the key when we mark it
 994	 * - we tell lockdep that we might nest because we might be revoking an
 995	 *   authorisation key whilst holding the sem on a key we've just
 996	 *   instantiated
 997	 */
 998	down_write_nested(&key->sem, 1);
 999	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1000	    key->type->revoke)
1001		key->type->revoke(key);
1002
1003	/* set the death time to no more than the expiry time */
1004	now = current_kernel_time();
1005	time = now.tv_sec;
1006	if (key->revoked_at == 0 || key->revoked_at > time) {
1007		key->revoked_at = time;
1008		key_schedule_gc(key->revoked_at + key_gc_delay);
 
1009	}
1010
1011	up_write(&key->sem);
1012}
1013EXPORT_SYMBOL(key_revoke);
1014
1015/**
1016 * key_invalidate - Invalidate a key.
1017 * @key: The key to be invalidated.
1018 *
1019 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1020 * is ignored by all searches and other operations from this point.
1021 */
1022void key_invalidate(struct key *key)
1023{
1024	kenter("%d", key_serial(key));
1025
1026	key_check(key);
1027
1028	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1029		down_write_nested(&key->sem, 1);
1030		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 
1031			key_schedule_gc_links();
 
1032		up_write(&key->sem);
1033	}
1034}
1035EXPORT_SYMBOL(key_invalidate);
1036
1037/**
1038 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1039 * @key: The key to be instantiated
1040 * @prep: The preparsed data to load.
1041 *
1042 * Instantiate a key from preparsed data.  We assume we can just copy the data
1043 * in directly and clear the old pointers.
1044 *
1045 * This can be pointed to directly by the key type instantiate op pointer.
1046 */
1047int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1048{
1049	int ret;
1050
1051	pr_devel("==>%s()\n", __func__);
1052
1053	ret = key_payload_reserve(key, prep->quotalen);
1054	if (ret == 0) {
1055		rcu_assign_keypointer(key, prep->payload.data[0]);
1056		key->payload.data[1] = prep->payload.data[1];
1057		key->payload.data[2] = prep->payload.data[2];
1058		key->payload.data[3] = prep->payload.data[3];
1059		prep->payload.data[0] = NULL;
1060		prep->payload.data[1] = NULL;
1061		prep->payload.data[2] = NULL;
1062		prep->payload.data[3] = NULL;
1063	}
1064	pr_devel("<==%s() = %d\n", __func__, ret);
1065	return ret;
1066}
1067EXPORT_SYMBOL(generic_key_instantiate);
1068
1069/**
1070 * register_key_type - Register a type of key.
1071 * @ktype: The new key type.
1072 *
1073 * Register a new key type.
1074 *
1075 * Returns 0 on success or -EEXIST if a type of this name already exists.
1076 */
1077int register_key_type(struct key_type *ktype)
1078{
1079	struct key_type *p;
1080	int ret;
1081
1082	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1083
1084	ret = -EEXIST;
1085	down_write(&key_types_sem);
1086
1087	/* disallow key types with the same name */
1088	list_for_each_entry(p, &key_types_list, link) {
1089		if (strcmp(p->name, ktype->name) == 0)
1090			goto out;
1091	}
1092
1093	/* store the type */
1094	list_add(&ktype->link, &key_types_list);
1095
1096	pr_notice("Key type %s registered\n", ktype->name);
1097	ret = 0;
1098
1099out:
1100	up_write(&key_types_sem);
1101	return ret;
1102}
1103EXPORT_SYMBOL(register_key_type);
1104
1105/**
1106 * unregister_key_type - Unregister a type of key.
1107 * @ktype: The key type.
1108 *
1109 * Unregister a key type and mark all the extant keys of this type as dead.
1110 * Those keys of this type are then destroyed to get rid of their payloads and
1111 * they and their links will be garbage collected as soon as possible.
1112 */
1113void unregister_key_type(struct key_type *ktype)
1114{
1115	down_write(&key_types_sem);
1116	list_del_init(&ktype->link);
1117	downgrade_write(&key_types_sem);
1118	key_gc_keytype(ktype);
1119	pr_notice("Key type %s unregistered\n", ktype->name);
1120	up_read(&key_types_sem);
1121}
1122EXPORT_SYMBOL(unregister_key_type);
1123
1124/*
1125 * Initialise the key management state.
1126 */
1127void __init key_init(void)
1128{
1129	/* allocate a slab in which we can store keys */
1130	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1131			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1132
1133	/* add the special key types */
1134	list_add_tail(&key_type_keyring.link, &key_types_list);
1135	list_add_tail(&key_type_dead.link, &key_types_list);
1136	list_add_tail(&key_type_user.link, &key_types_list);
1137	list_add_tail(&key_type_logon.link, &key_types_list);
1138
1139	/* record the root user tracking */
1140	rb_link_node(&root_key_user.node,
1141		     NULL,
1142		     &key_user_tree.rb_node);
1143
1144	rb_insert_color(&root_key_user.node,
1145			&key_user_tree);
1146}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
 
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->expiry = TIME64_MAX;
 298	key->restrict_link = restrict_link;
 299	key->last_used_at = ktime_get_real_seconds();
 300
 301	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 302		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 
 
 303	if (flags & KEY_ALLOC_BUILT_IN)
 304		key->flags |= 1 << KEY_FLAG_BUILTIN;
 305	if (flags & KEY_ALLOC_UID_KEYRING)
 306		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 307	if (flags & KEY_ALLOC_SET_KEEP)
 308		key->flags |= 1 << KEY_FLAG_KEEP;
 309
 310#ifdef KEY_DEBUGGING
 311	key->magic = KEY_DEBUG_MAGIC;
 312#endif
 313
 314	/* let the security module know about the key */
 315	ret = security_key_alloc(key, cred, flags);
 316	if (ret < 0)
 317		goto security_error;
 318
 319	/* publish the key by giving it a serial number */
 320	refcount_inc(&key->domain_tag->usage);
 321	atomic_inc(&user->nkeys);
 322	key_alloc_serial(key);
 323
 324error:
 325	return key;
 326
 327security_error:
 328	kfree(key->description);
 329	kmem_cache_free(key_jar, key);
 330	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 331		spin_lock(&user->lock);
 332		user->qnkeys--;
 333		user->qnbytes -= quotalen;
 334		spin_unlock(&user->lock);
 335	}
 336	key_user_put(user);
 337	key = ERR_PTR(ret);
 338	goto error;
 339
 340no_memory_3:
 341	kmem_cache_free(key_jar, key);
 342no_memory_2:
 343	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 344		spin_lock(&user->lock);
 345		user->qnkeys--;
 346		user->qnbytes -= quotalen;
 347		spin_unlock(&user->lock);
 348	}
 349	key_user_put(user);
 350no_memory_1:
 351	key = ERR_PTR(-ENOMEM);
 352	goto error;
 353
 354no_quota:
 355	spin_unlock(&user->lock);
 356	key_user_put(user);
 357	key = ERR_PTR(-EDQUOT);
 358	goto error;
 359}
 360EXPORT_SYMBOL(key_alloc);
 361
 362/**
 363 * key_payload_reserve - Adjust data quota reservation for the key's payload
 364 * @key: The key to make the reservation for.
 365 * @datalen: The amount of data payload the caller now wants.
 366 *
 367 * Adjust the amount of the owning user's key data quota that a key reserves.
 368 * If the amount is increased, then -EDQUOT may be returned if there isn't
 369 * enough free quota available.
 370 *
 371 * If successful, 0 is returned.
 372 */
 373int key_payload_reserve(struct key *key, size_t datalen)
 374{
 375	int delta = (int)datalen - key->datalen;
 376	int ret = 0;
 377
 378	key_check(key);
 379
 380	/* contemplate the quota adjustment */
 381	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 382		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 383			key_quota_root_maxbytes : key_quota_maxbytes;
 384
 385		spin_lock(&key->user->lock);
 386
 387		if (delta > 0 &&
 388		    (key->user->qnbytes + delta > maxbytes ||
 389		     key->user->qnbytes + delta < key->user->qnbytes)) {
 390			ret = -EDQUOT;
 391		}
 392		else {
 393			key->user->qnbytes += delta;
 394			key->quotalen += delta;
 395		}
 396		spin_unlock(&key->user->lock);
 397	}
 398
 399	/* change the recorded data length if that didn't generate an error */
 400	if (ret == 0)
 401		key->datalen = datalen;
 402
 403	return ret;
 404}
 405EXPORT_SYMBOL(key_payload_reserve);
 406
 407/*
 408 * Change the key state to being instantiated.
 409 */
 410static void mark_key_instantiated(struct key *key, int reject_error)
 411{
 412	/* Commit the payload before setting the state; barrier versus
 413	 * key_read_state().
 414	 */
 415	smp_store_release(&key->state,
 416			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 417}
 418
 419/*
 420 * Instantiate a key and link it into the target keyring atomically.  Must be
 421 * called with the target keyring's semaphore writelocked.  The target key's
 422 * semaphore need not be locked as instantiation is serialised by
 423 * key_construction_mutex.
 424 */
 425static int __key_instantiate_and_link(struct key *key,
 426				      struct key_preparsed_payload *prep,
 427				      struct key *keyring,
 428				      struct key *authkey,
 429				      struct assoc_array_edit **_edit)
 430{
 431	int ret, awaken;
 432
 433	key_check(key);
 434	key_check(keyring);
 435
 436	awaken = 0;
 437	ret = -EBUSY;
 438
 439	mutex_lock(&key_construction_mutex);
 440
 441	/* can't instantiate twice */
 442	if (key->state == KEY_IS_UNINSTANTIATED) {
 443		/* instantiate the key */
 444		ret = key->type->instantiate(key, prep);
 445
 446		if (ret == 0) {
 447			/* mark the key as being instantiated */
 448			atomic_inc(&key->user->nikeys);
 449			mark_key_instantiated(key, 0);
 450			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 451
 452			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 453				awaken = 1;
 454
 455			/* and link it into the destination keyring */
 456			if (keyring) {
 457				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 458					set_bit(KEY_FLAG_KEEP, &key->flags);
 459
 460				__key_link(keyring, key, _edit);
 461			}
 462
 463			/* disable the authorisation key */
 464			if (authkey)
 465				key_invalidate(authkey);
 466
 467			key_set_expiry(key, prep->expiry);
 
 
 
 468		}
 469	}
 470
 471	mutex_unlock(&key_construction_mutex);
 472
 473	/* wake up anyone waiting for a key to be constructed */
 474	if (awaken)
 475		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 476
 477	return ret;
 478}
 479
 480/**
 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 482 * @key: The key to instantiate.
 483 * @data: The data to use to instantiate the keyring.
 484 * @datalen: The length of @data.
 485 * @keyring: Keyring to create a link in on success (or NULL).
 486 * @authkey: The authorisation token permitting instantiation.
 487 *
 488 * Instantiate a key that's in the uninstantiated state using the provided data
 489 * and, if successful, link it in to the destination keyring if one is
 490 * supplied.
 491 *
 492 * If successful, 0 is returned, the authorisation token is revoked and anyone
 493 * waiting for the key is woken up.  If the key was already instantiated,
 494 * -EBUSY will be returned.
 495 */
 496int key_instantiate_and_link(struct key *key,
 497			     const void *data,
 498			     size_t datalen,
 499			     struct key *keyring,
 500			     struct key *authkey)
 501{
 502	struct key_preparsed_payload prep;
 503	struct assoc_array_edit *edit = NULL;
 504	int ret;
 505
 506	memset(&prep, 0, sizeof(prep));
 507	prep.orig_description = key->description;
 508	prep.data = data;
 509	prep.datalen = datalen;
 510	prep.quotalen = key->type->def_datalen;
 511	prep.expiry = TIME64_MAX;
 512	if (key->type->preparse) {
 513		ret = key->type->preparse(&prep);
 514		if (ret < 0)
 515			goto error;
 516	}
 517
 518	if (keyring) {
 519		ret = __key_link_lock(keyring, &key->index_key);
 520		if (ret < 0)
 521			goto error;
 522
 523		ret = __key_link_begin(keyring, &key->index_key, &edit);
 524		if (ret < 0)
 525			goto error_link_end;
 526
 527		if (keyring->restrict_link && keyring->restrict_link->check) {
 528			struct key_restriction *keyres = keyring->restrict_link;
 529
 530			ret = keyres->check(keyring, key->type, &prep.payload,
 531					    keyres->key);
 532			if (ret < 0)
 533				goto error_link_end;
 534		}
 535	}
 536
 537	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 538
 539error_link_end:
 540	if (keyring)
 541		__key_link_end(keyring, &key->index_key, edit);
 542
 543error:
 544	if (key->type->preparse)
 545		key->type->free_preparse(&prep);
 546	return ret;
 547}
 548
 549EXPORT_SYMBOL(key_instantiate_and_link);
 550
 551/**
 552 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 553 * @key: The key to instantiate.
 554 * @timeout: The timeout on the negative key.
 555 * @error: The error to return when the key is hit.
 556 * @keyring: Keyring to create a link in on success (or NULL).
 557 * @authkey: The authorisation token permitting instantiation.
 558 *
 559 * Negatively instantiate a key that's in the uninstantiated state and, if
 560 * successful, set its timeout and stored error and link it in to the
 561 * destination keyring if one is supplied.  The key and any links to the key
 562 * will be automatically garbage collected after the timeout expires.
 563 *
 564 * Negative keys are used to rate limit repeated request_key() calls by causing
 565 * them to return the stored error code (typically ENOKEY) until the negative
 566 * key expires.
 567 *
 568 * If successful, 0 is returned, the authorisation token is revoked and anyone
 569 * waiting for the key is woken up.  If the key was already instantiated,
 570 * -EBUSY will be returned.
 571 */
 572int key_reject_and_link(struct key *key,
 573			unsigned timeout,
 574			unsigned error,
 575			struct key *keyring,
 576			struct key *authkey)
 577{
 578	struct assoc_array_edit *edit = NULL;
 
 579	int ret, awaken, link_ret = 0;
 580
 581	key_check(key);
 582	key_check(keyring);
 583
 584	awaken = 0;
 585	ret = -EBUSY;
 586
 587	if (keyring) {
 588		if (keyring->restrict_link)
 589			return -EPERM;
 590
 591		link_ret = __key_link_lock(keyring, &key->index_key);
 592		if (link_ret == 0) {
 593			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 594			if (link_ret < 0)
 595				__key_link_end(keyring, &key->index_key, edit);
 596		}
 597	}
 598
 599	mutex_lock(&key_construction_mutex);
 600
 601	/* can't instantiate twice */
 602	if (key->state == KEY_IS_UNINSTANTIATED) {
 603		/* mark the key as being negatively instantiated */
 604		atomic_inc(&key->user->nikeys);
 605		mark_key_instantiated(key, -error);
 606		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 607		key_set_expiry(key, ktime_get_real_seconds() + timeout);
 
 
 
 
 608
 609		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 610			awaken = 1;
 611
 612		ret = 0;
 613
 614		/* and link it into the destination keyring */
 615		if (keyring && link_ret == 0)
 616			__key_link(keyring, key, &edit);
 617
 618		/* disable the authorisation key */
 619		if (authkey)
 620			key_invalidate(authkey);
 621	}
 622
 623	mutex_unlock(&key_construction_mutex);
 624
 625	if (keyring && link_ret == 0)
 626		__key_link_end(keyring, &key->index_key, edit);
 627
 628	/* wake up anyone waiting for a key to be constructed */
 629	if (awaken)
 630		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 631
 632	return ret == 0 ? link_ret : ret;
 633}
 634EXPORT_SYMBOL(key_reject_and_link);
 635
 636/**
 637 * key_put - Discard a reference to a key.
 638 * @key: The key to discard a reference from.
 639 *
 640 * Discard a reference to a key, and when all the references are gone, we
 641 * schedule the cleanup task to come and pull it out of the tree in process
 642 * context at some later time.
 643 */
 644void key_put(struct key *key)
 645{
 646	if (key) {
 647		key_check(key);
 648
 649		if (refcount_dec_and_test(&key->usage))
 650			schedule_work(&key_gc_work);
 651	}
 652}
 653EXPORT_SYMBOL(key_put);
 654
 655/*
 656 * Find a key by its serial number.
 657 */
 658struct key *key_lookup(key_serial_t id)
 659{
 660	struct rb_node *n;
 661	struct key *key;
 662
 663	spin_lock(&key_serial_lock);
 664
 665	/* search the tree for the specified key */
 666	n = key_serial_tree.rb_node;
 667	while (n) {
 668		key = rb_entry(n, struct key, serial_node);
 669
 670		if (id < key->serial)
 671			n = n->rb_left;
 672		else if (id > key->serial)
 673			n = n->rb_right;
 674		else
 675			goto found;
 676	}
 677
 678not_found:
 679	key = ERR_PTR(-ENOKEY);
 680	goto error;
 681
 682found:
 683	/* A key is allowed to be looked up only if someone still owns a
 684	 * reference to it - otherwise it's awaiting the gc.
 
 
 
 
 685	 */
 686	if (!refcount_inc_not_zero(&key->usage))
 687		goto not_found;
 688
 689error:
 690	spin_unlock(&key_serial_lock);
 691	return key;
 692}
 693EXPORT_SYMBOL(key_lookup);
 694
 695/*
 696 * Find and lock the specified key type against removal.
 697 *
 698 * We return with the sem read-locked if successful.  If the type wasn't
 699 * available -ENOKEY is returned instead.
 700 */
 701struct key_type *key_type_lookup(const char *type)
 702{
 703	struct key_type *ktype;
 704
 705	down_read(&key_types_sem);
 706
 707	/* look up the key type to see if it's one of the registered kernel
 708	 * types */
 709	list_for_each_entry(ktype, &key_types_list, link) {
 710		if (strcmp(ktype->name, type) == 0)
 711			goto found_kernel_type;
 712	}
 713
 714	up_read(&key_types_sem);
 715	ktype = ERR_PTR(-ENOKEY);
 716
 717found_kernel_type:
 718	return ktype;
 719}
 720
 721void key_set_timeout(struct key *key, unsigned timeout)
 722{
 723	time64_t expiry = TIME64_MAX;
 
 724
 725	/* make the changes with the locks held to prevent races */
 726	down_write(&key->sem);
 727
 728	if (timeout > 0)
 729		expiry = ktime_get_real_seconds() + timeout;
 730	key_set_expiry(key, expiry);
 
 
 
 
 731
 732	up_write(&key->sem);
 733}
 734EXPORT_SYMBOL_GPL(key_set_timeout);
 735
 736/*
 737 * Unlock a key type locked by key_type_lookup().
 738 */
 739void key_type_put(struct key_type *ktype)
 740{
 741	up_read(&key_types_sem);
 742}
 743
 744/*
 745 * Attempt to update an existing key.
 746 *
 747 * The key is given to us with an incremented refcount that we need to discard
 748 * if we get an error.
 749 */
 750static inline key_ref_t __key_update(key_ref_t key_ref,
 751				     struct key_preparsed_payload *prep)
 752{
 753	struct key *key = key_ref_to_ptr(key_ref);
 754	int ret;
 755
 756	/* need write permission on the key to update it */
 757	ret = key_permission(key_ref, KEY_NEED_WRITE);
 758	if (ret < 0)
 759		goto error;
 760
 761	ret = -EEXIST;
 762	if (!key->type->update)
 763		goto error;
 764
 765	down_write(&key->sem);
 766
 767	ret = key->type->update(key, prep);
 768	if (ret == 0) {
 769		/* Updating a negative key positively instantiates it */
 770		mark_key_instantiated(key, 0);
 771		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 772	}
 773
 774	up_write(&key->sem);
 775
 776	if (ret < 0)
 777		goto error;
 778out:
 779	return key_ref;
 780
 781error:
 782	key_put(key);
 783	key_ref = ERR_PTR(ret);
 784	goto out;
 785}
 786
 787/*
 788 * Create or potentially update a key. The combined logic behind
 789 * key_create_or_update() and key_create()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790 */
 791static key_ref_t __key_create_or_update(key_ref_t keyring_ref,
 792					const char *type,
 793					const char *description,
 794					const void *payload,
 795					size_t plen,
 796					key_perm_t perm,
 797					unsigned long flags,
 798					bool allow_update)
 799{
 800	struct keyring_index_key index_key = {
 801		.description	= description,
 802	};
 803	struct key_preparsed_payload prep;
 804	struct assoc_array_edit *edit = NULL;
 805	const struct cred *cred = current_cred();
 806	struct key *keyring, *key = NULL;
 807	key_ref_t key_ref;
 808	int ret;
 809	struct key_restriction *restrict_link = NULL;
 810
 811	/* look up the key type to see if it's one of the registered kernel
 812	 * types */
 813	index_key.type = key_type_lookup(type);
 814	if (IS_ERR(index_key.type)) {
 815		key_ref = ERR_PTR(-ENODEV);
 816		goto error;
 817	}
 818
 819	key_ref = ERR_PTR(-EINVAL);
 820	if (!index_key.type->instantiate ||
 821	    (!index_key.description && !index_key.type->preparse))
 822		goto error_put_type;
 823
 824	keyring = key_ref_to_ptr(keyring_ref);
 825
 826	key_check(keyring);
 827
 828	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 829		restrict_link = keyring->restrict_link;
 830
 831	key_ref = ERR_PTR(-ENOTDIR);
 832	if (keyring->type != &key_type_keyring)
 833		goto error_put_type;
 834
 835	memset(&prep, 0, sizeof(prep));
 836	prep.orig_description = description;
 837	prep.data = payload;
 838	prep.datalen = plen;
 839	prep.quotalen = index_key.type->def_datalen;
 840	prep.expiry = TIME64_MAX;
 
 841	if (index_key.type->preparse) {
 842		ret = index_key.type->preparse(&prep);
 843		if (ret < 0) {
 844			key_ref = ERR_PTR(ret);
 845			goto error_free_prep;
 846		}
 847		if (!index_key.description)
 848			index_key.description = prep.description;
 849		key_ref = ERR_PTR(-EINVAL);
 850		if (!index_key.description)
 851			goto error_free_prep;
 852	}
 853	index_key.desc_len = strlen(index_key.description);
 854	key_set_index_key(&index_key);
 855
 856	ret = __key_link_lock(keyring, &index_key);
 857	if (ret < 0) {
 858		key_ref = ERR_PTR(ret);
 859		goto error_free_prep;
 860	}
 861
 862	ret = __key_link_begin(keyring, &index_key, &edit);
 863	if (ret < 0) {
 864		key_ref = ERR_PTR(ret);
 865		goto error_link_end;
 866	}
 867
 868	if (restrict_link && restrict_link->check) {
 869		ret = restrict_link->check(keyring, index_key.type,
 870					   &prep.payload, restrict_link->key);
 871		if (ret < 0) {
 872			key_ref = ERR_PTR(ret);
 873			goto error_link_end;
 874		}
 875	}
 876
 877	/* if we're going to allocate a new key, we're going to have
 878	 * to modify the keyring */
 879	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 880	if (ret < 0) {
 881		key_ref = ERR_PTR(ret);
 882		goto error_link_end;
 883	}
 884
 885	/* if it's requested and possible to update this type of key, search
 886	 * for an existing key of the same type and description in the
 887	 * destination keyring and update that instead if possible
 888	 */
 889	if (allow_update) {
 890		if (index_key.type->update) {
 891			key_ref = find_key_to_update(keyring_ref, &index_key);
 892			if (key_ref)
 893				goto found_matching_key;
 894		}
 895	} else {
 896		key_ref = find_key_to_update(keyring_ref, &index_key);
 897		if (key_ref) {
 898			key_ref_put(key_ref);
 899			key_ref = ERR_PTR(-EEXIST);
 900			goto error_link_end;
 901		}
 902	}
 903
 904	/* if the client doesn't provide, decide on the permissions we want */
 905	if (perm == KEY_PERM_UNDEF) {
 906		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 907		perm |= KEY_USR_VIEW;
 908
 909		if (index_key.type->read)
 910			perm |= KEY_POS_READ;
 911
 912		if (index_key.type == &key_type_keyring ||
 913		    index_key.type->update)
 914			perm |= KEY_POS_WRITE;
 915	}
 916
 917	/* allocate a new key */
 918	key = key_alloc(index_key.type, index_key.description,
 919			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 920	if (IS_ERR(key)) {
 921		key_ref = ERR_CAST(key);
 922		goto error_link_end;
 923	}
 924
 925	/* instantiate it and link it into the target keyring */
 926	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 927	if (ret < 0) {
 928		key_put(key);
 929		key_ref = ERR_PTR(ret);
 930		goto error_link_end;
 931	}
 932
 933	ima_post_key_create_or_update(keyring, key, payload, plen,
 934				      flags, true);
 935
 936	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 937
 938error_link_end:
 939	__key_link_end(keyring, &index_key, edit);
 940error_free_prep:
 941	if (index_key.type->preparse)
 942		index_key.type->free_preparse(&prep);
 943error_put_type:
 944	key_type_put(index_key.type);
 945error:
 946	return key_ref;
 947
 948 found_matching_key:
 949	/* we found a matching key, so we're going to try to update it
 950	 * - we can drop the locks first as we have the key pinned
 951	 */
 952	__key_link_end(keyring, &index_key, edit);
 953
 954	key = key_ref_to_ptr(key_ref);
 955	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 956		ret = wait_for_key_construction(key, true);
 957		if (ret < 0) {
 958			key_ref_put(key_ref);
 959			key_ref = ERR_PTR(ret);
 960			goto error_free_prep;
 961		}
 962	}
 963
 964	key_ref = __key_update(key_ref, &prep);
 965
 966	if (!IS_ERR(key_ref))
 967		ima_post_key_create_or_update(keyring, key,
 968					      payload, plen,
 969					      flags, false);
 970
 971	goto error_free_prep;
 972}
 973
 974/**
 975 * key_create_or_update - Update or create and instantiate a key.
 976 * @keyring_ref: A pointer to the destination keyring with possession flag.
 977 * @type: The type of key.
 978 * @description: The searchable description for the key.
 979 * @payload: The data to use to instantiate or update the key.
 980 * @plen: The length of @payload.
 981 * @perm: The permissions mask for a new key.
 982 * @flags: The quota flags for a new key.
 983 *
 984 * Search the destination keyring for a key of the same description and if one
 985 * is found, update it, otherwise create and instantiate a new one and create a
 986 * link to it from that keyring.
 987 *
 988 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 989 * concocted.
 990 *
 991 * Returns a pointer to the new key if successful, -ENODEV if the key type
 992 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 993 * caller isn't permitted to modify the keyring or the LSM did not permit
 994 * creation of the key.
 995 *
 996 * On success, the possession flag from the keyring ref will be tacked on to
 997 * the key ref before it is returned.
 998 */
 999key_ref_t key_create_or_update(key_ref_t keyring_ref,
1000			       const char *type,
1001			       const char *description,
1002			       const void *payload,
1003			       size_t plen,
1004			       key_perm_t perm,
1005			       unsigned long flags)
1006{
1007	return __key_create_or_update(keyring_ref, type, description, payload,
1008				      plen, perm, flags, true);
1009}
1010EXPORT_SYMBOL(key_create_or_update);
1011
1012/**
1013 * key_create - Create and instantiate a key.
1014 * @keyring_ref: A pointer to the destination keyring with possession flag.
1015 * @type: The type of key.
1016 * @description: The searchable description for the key.
1017 * @payload: The data to use to instantiate or update the key.
1018 * @plen: The length of @payload.
1019 * @perm: The permissions mask for a new key.
1020 * @flags: The quota flags for a new key.
1021 *
1022 * Create and instantiate a new key and link to it from the destination keyring.
1023 *
1024 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1025 * concocted.
1026 *
1027 * Returns a pointer to the new key if successful, -EEXIST if a key with the
1028 * same description already exists, -ENODEV if the key type wasn't available,
1029 * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't
1030 * permitted to modify the keyring or the LSM did not permit creation of the
1031 * key.
1032 *
1033 * On success, the possession flag from the keyring ref will be tacked on to
1034 * the key ref before it is returned.
1035 */
1036key_ref_t key_create(key_ref_t keyring_ref,
1037		     const char *type,
1038		     const char *description,
1039		     const void *payload,
1040		     size_t plen,
1041		     key_perm_t perm,
1042		     unsigned long flags)
1043{
1044	return __key_create_or_update(keyring_ref, type, description, payload,
1045				      plen, perm, flags, false);
1046}
1047EXPORT_SYMBOL(key_create);
1048
1049/**
1050 * key_update - Update a key's contents.
1051 * @key_ref: The pointer (plus possession flag) to the key.
1052 * @payload: The data to be used to update the key.
1053 * @plen: The length of @payload.
1054 *
1055 * Attempt to update the contents of a key with the given payload data.  The
1056 * caller must be granted Write permission on the key.  Negative keys can be
1057 * instantiated by this method.
1058 *
1059 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1060 * type does not support updating.  The key type may return other errors.
1061 */
1062int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1063{
1064	struct key_preparsed_payload prep;
1065	struct key *key = key_ref_to_ptr(key_ref);
1066	int ret;
1067
1068	key_check(key);
1069
1070	/* the key must be writable */
1071	ret = key_permission(key_ref, KEY_NEED_WRITE);
1072	if (ret < 0)
1073		return ret;
1074
1075	/* attempt to update it if supported */
 
1076	if (!key->type->update)
1077		return -EOPNOTSUPP;
1078
1079	memset(&prep, 0, sizeof(prep));
1080	prep.data = payload;
1081	prep.datalen = plen;
1082	prep.quotalen = key->type->def_datalen;
1083	prep.expiry = TIME64_MAX;
1084	if (key->type->preparse) {
1085		ret = key->type->preparse(&prep);
1086		if (ret < 0)
1087			goto error;
1088	}
1089
1090	down_write(&key->sem);
1091
1092	ret = key->type->update(key, &prep);
1093	if (ret == 0) {
1094		/* Updating a negative key positively instantiates it */
1095		mark_key_instantiated(key, 0);
1096		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1097	}
1098
1099	up_write(&key->sem);
1100
1101error:
1102	if (key->type->preparse)
1103		key->type->free_preparse(&prep);
1104	return ret;
1105}
1106EXPORT_SYMBOL(key_update);
1107
1108/**
1109 * key_revoke - Revoke a key.
1110 * @key: The key to be revoked.
1111 *
1112 * Mark a key as being revoked and ask the type to free up its resources.  The
1113 * revocation timeout is set and the key and all its links will be
1114 * automatically garbage collected after key_gc_delay amount of time if they
1115 * are not manually dealt with first.
1116 */
1117void key_revoke(struct key *key)
1118{
1119	time64_t time;
 
1120
1121	key_check(key);
1122
1123	/* make sure no one's trying to change or use the key when we mark it
1124	 * - we tell lockdep that we might nest because we might be revoking an
1125	 *   authorisation key whilst holding the sem on a key we've just
1126	 *   instantiated
1127	 */
1128	down_write_nested(&key->sem, 1);
1129	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1130		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1131		if (key->type->revoke)
1132			key->type->revoke(key);
1133
1134		/* set the death time to no more than the expiry time */
1135		time = ktime_get_real_seconds();
1136		if (key->revoked_at == 0 || key->revoked_at > time) {
1137			key->revoked_at = time;
1138			key_schedule_gc(key->revoked_at + key_gc_delay);
1139		}
1140	}
1141
1142	up_write(&key->sem);
1143}
1144EXPORT_SYMBOL(key_revoke);
1145
1146/**
1147 * key_invalidate - Invalidate a key.
1148 * @key: The key to be invalidated.
1149 *
1150 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1151 * is ignored by all searches and other operations from this point.
1152 */
1153void key_invalidate(struct key *key)
1154{
1155	kenter("%d", key_serial(key));
1156
1157	key_check(key);
1158
1159	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1160		down_write_nested(&key->sem, 1);
1161		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1162			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1163			key_schedule_gc_links();
1164		}
1165		up_write(&key->sem);
1166	}
1167}
1168EXPORT_SYMBOL(key_invalidate);
1169
1170/**
1171 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1172 * @key: The key to be instantiated
1173 * @prep: The preparsed data to load.
1174 *
1175 * Instantiate a key from preparsed data.  We assume we can just copy the data
1176 * in directly and clear the old pointers.
1177 *
1178 * This can be pointed to directly by the key type instantiate op pointer.
1179 */
1180int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1181{
1182	int ret;
1183
1184	pr_devel("==>%s()\n", __func__);
1185
1186	ret = key_payload_reserve(key, prep->quotalen);
1187	if (ret == 0) {
1188		rcu_assign_keypointer(key, prep->payload.data[0]);
1189		key->payload.data[1] = prep->payload.data[1];
1190		key->payload.data[2] = prep->payload.data[2];
1191		key->payload.data[3] = prep->payload.data[3];
1192		prep->payload.data[0] = NULL;
1193		prep->payload.data[1] = NULL;
1194		prep->payload.data[2] = NULL;
1195		prep->payload.data[3] = NULL;
1196	}
1197	pr_devel("<==%s() = %d\n", __func__, ret);
1198	return ret;
1199}
1200EXPORT_SYMBOL(generic_key_instantiate);
1201
1202/**
1203 * register_key_type - Register a type of key.
1204 * @ktype: The new key type.
1205 *
1206 * Register a new key type.
1207 *
1208 * Returns 0 on success or -EEXIST if a type of this name already exists.
1209 */
1210int register_key_type(struct key_type *ktype)
1211{
1212	struct key_type *p;
1213	int ret;
1214
1215	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1216
1217	ret = -EEXIST;
1218	down_write(&key_types_sem);
1219
1220	/* disallow key types with the same name */
1221	list_for_each_entry(p, &key_types_list, link) {
1222		if (strcmp(p->name, ktype->name) == 0)
1223			goto out;
1224	}
1225
1226	/* store the type */
1227	list_add(&ktype->link, &key_types_list);
1228
1229	pr_notice("Key type %s registered\n", ktype->name);
1230	ret = 0;
1231
1232out:
1233	up_write(&key_types_sem);
1234	return ret;
1235}
1236EXPORT_SYMBOL(register_key_type);
1237
1238/**
1239 * unregister_key_type - Unregister a type of key.
1240 * @ktype: The key type.
1241 *
1242 * Unregister a key type and mark all the extant keys of this type as dead.
1243 * Those keys of this type are then destroyed to get rid of their payloads and
1244 * they and their links will be garbage collected as soon as possible.
1245 */
1246void unregister_key_type(struct key_type *ktype)
1247{
1248	down_write(&key_types_sem);
1249	list_del_init(&ktype->link);
1250	downgrade_write(&key_types_sem);
1251	key_gc_keytype(ktype);
1252	pr_notice("Key type %s unregistered\n", ktype->name);
1253	up_read(&key_types_sem);
1254}
1255EXPORT_SYMBOL(unregister_key_type);
1256
1257/*
1258 * Initialise the key management state.
1259 */
1260void __init key_init(void)
1261{
1262	/* allocate a slab in which we can store keys */
1263	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1264			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1265
1266	/* add the special key types */
1267	list_add_tail(&key_type_keyring.link, &key_types_list);
1268	list_add_tail(&key_type_dead.link, &key_types_list);
1269	list_add_tail(&key_type_user.link, &key_types_list);
1270	list_add_tail(&key_type_logon.link, &key_types_list);
1271
1272	/* record the root user tracking */
1273	rb_link_node(&root_key_user.node,
1274		     NULL,
1275		     &key_user_tree.rb_node);
1276
1277	rb_insert_color(&root_key_user.node,
1278			&key_user_tree);
1279}