Loading...
Note: File does not exist in v4.6.
1// SPDX-License-Identifier: GPL-2.0
2
3//! A kernel spinlock.
4//!
5//! This module allows Rust code to use the kernel's `spinlock_t`.
6
7use crate::bindings;
8
9/// Creates a [`SpinLock`] initialiser with the given name and a newly-created lock class.
10///
11/// It uses the name if one is given, otherwise it generates one based on the file name and line
12/// number.
13#[macro_export]
14macro_rules! new_spinlock {
15 ($inner:expr $(, $name:literal)? $(,)?) => {
16 $crate::sync::SpinLock::new(
17 $inner, $crate::optional_name!($($name)?), $crate::static_lock_class!())
18 };
19}
20
21/// A spinlock.
22///
23/// Exposes the kernel's [`spinlock_t`]. When multiple CPUs attempt to lock the same spinlock, only
24/// one at a time is allowed to progress, the others will block (spinning) until the spinlock is
25/// unlocked, at which point another CPU will be allowed to make progress.
26///
27/// Instances of [`SpinLock`] need a lock class and to be pinned. The recommended way to create such
28/// instances is with the [`pin_init`](crate::pin_init) and [`new_spinlock`] macros.
29///
30/// # Examples
31///
32/// The following example shows how to declare, allocate and initialise a struct (`Example`) that
33/// contains an inner struct (`Inner`) that is protected by a spinlock.
34///
35/// ```
36/// use kernel::{init::InPlaceInit, init::PinInit, new_spinlock, pin_init, sync::SpinLock};
37///
38/// struct Inner {
39/// a: u32,
40/// b: u32,
41/// }
42///
43/// #[pin_data]
44/// struct Example {
45/// c: u32,
46/// #[pin]
47/// d: SpinLock<Inner>,
48/// }
49///
50/// impl Example {
51/// fn new() -> impl PinInit<Self> {
52/// pin_init!(Self {
53/// c: 10,
54/// d <- new_spinlock!(Inner { a: 20, b: 30 }),
55/// })
56/// }
57/// }
58///
59/// // Allocate a boxed `Example`.
60/// let e = Box::pin_init(Example::new())?;
61/// assert_eq!(e.c, 10);
62/// assert_eq!(e.d.lock().a, 20);
63/// assert_eq!(e.d.lock().b, 30);
64/// # Ok::<(), Error>(())
65/// ```
66///
67/// The following example shows how to use interior mutability to modify the contents of a struct
68/// protected by a spinlock despite only having a shared reference:
69///
70/// ```
71/// use kernel::sync::SpinLock;
72///
73/// struct Example {
74/// a: u32,
75/// b: u32,
76/// }
77///
78/// fn example(m: &SpinLock<Example>) {
79/// let mut guard = m.lock();
80/// guard.a += 10;
81/// guard.b += 20;
82/// }
83/// ```
84///
85/// [`spinlock_t`]: srctree/include/linux/spinlock.h
86pub type SpinLock<T> = super::Lock<T, SpinLockBackend>;
87
88/// A kernel `spinlock_t` lock backend.
89pub struct SpinLockBackend;
90
91// SAFETY: The underlying kernel `spinlock_t` object ensures mutual exclusion. `relock` uses the
92// default implementation that always calls the same locking method.
93unsafe impl super::Backend for SpinLockBackend {
94 type State = bindings::spinlock_t;
95 type GuardState = ();
96
97 unsafe fn init(
98 ptr: *mut Self::State,
99 name: *const core::ffi::c_char,
100 key: *mut bindings::lock_class_key,
101 ) {
102 // SAFETY: The safety requirements ensure that `ptr` is valid for writes, and `name` and
103 // `key` are valid for read indefinitely.
104 unsafe { bindings::__spin_lock_init(ptr, name, key) }
105 }
106
107 unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState {
108 // SAFETY: The safety requirements of this function ensure that `ptr` points to valid
109 // memory, and that it has been initialised before.
110 unsafe { bindings::spin_lock(ptr) }
111 }
112
113 unsafe fn unlock(ptr: *mut Self::State, _guard_state: &Self::GuardState) {
114 // SAFETY: The safety requirements of this function ensure that `ptr` is valid and that the
115 // caller is the owner of the mutex.
116 unsafe { bindings::spin_unlock(ptr) }
117 }
118}