Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Generic binary BCH encoding/decoding library
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License version 2 as published by
   6 * the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 51
  15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  16 *
  17 * Copyright © 2011 Parrot S.A.
  18 *
  19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
  20 *
  21 * Description:
  22 *
  23 * This library provides runtime configurable encoding/decoding of binary
  24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  25 *
  26 * Call init_bch to get a pointer to a newly allocated bch_control structure for
  27 * the given m (Galois field order), t (error correction capability) and
  28 * (optional) primitive polynomial parameters.
  29 *
  30 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
  31 * Call decode_bch to detect and locate errors in received data.
  32 *
  33 * On systems supporting hw BCH features, intermediate results may be provided
  34 * to decode_bch in order to skip certain steps. See decode_bch() documentation
  35 * for details.
  36 *
  37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  38 * parameters m and t; thus allowing extra compiler optimizations and providing
  39 * better (up to 2x) encoding performance. Using this option makes sense when
  40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  41 * on a particular NAND flash device.
  42 *
  43 * Algorithmic details:
  44 *
  45 * Encoding is performed by processing 32 input bits in parallel, using 4
  46 * remainder lookup tables.
  47 *
  48 * The final stage of decoding involves the following internal steps:
  49 * a. Syndrome computation
  50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  51 * c. Error locator root finding (by far the most expensive step)
  52 *
  53 * In this implementation, step c is not performed using the usual Chien search.
  54 * Instead, an alternative approach described in [1] is used. It consists in
  55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  58 * much better performance than Chien search for usual (m,t) values (typically
  59 * m >= 13, t < 32, see [1]).
  60 *
  61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  66 */
  67
  68#include <linux/kernel.h>
  69#include <linux/errno.h>
  70#include <linux/init.h>
  71#include <linux/module.h>
  72#include <linux/slab.h>
  73#include <linux/bitops.h>
 
  74#include <asm/byteorder.h>
  75#include <linux/bch.h>
  76
  77#if defined(CONFIG_BCH_CONST_PARAMS)
  78#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  79#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  80#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
 
 
  81#else
  82#define GF_M(_p)               ((_p)->m)
  83#define GF_T(_p)               ((_p)->t)
  84#define GF_N(_p)               ((_p)->n)
 
 
  85#endif
  86
  87#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
  88#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
  89
 
 
  90#ifndef dbg
  91#define dbg(_fmt, args...)     do {} while (0)
  92#endif
  93
  94/*
  95 * represent a polynomial over GF(2^m)
  96 */
  97struct gf_poly {
  98	unsigned int deg;    /* polynomial degree */
  99	unsigned int c[0];   /* polynomial terms */
 100};
 101
 102/* given its degree, compute a polynomial size in bytes */
 103#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 104
 105/* polynomial of degree 1 */
 106struct gf_poly_deg1 {
 107	struct gf_poly poly;
 108	unsigned int   c[2];
 109};
 110
 
 
 
 
 
 
 
 
 111/*
 112 * same as encode_bch(), but process input data one byte at a time
 113 */
 114static void encode_bch_unaligned(struct bch_control *bch,
 115				 const unsigned char *data, unsigned int len,
 116				 uint32_t *ecc)
 117{
 118	int i;
 119	const uint32_t *p;
 120	const int l = BCH_ECC_WORDS(bch)-1;
 121
 122	while (len--) {
 123		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
 
 
 124
 125		for (i = 0; i < l; i++)
 126			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 127
 128		ecc[l] = (ecc[l] << 8)^(*p);
 129	}
 130}
 131
 132/*
 133 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 134 */
 135static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 136		      const uint8_t *src)
 137{
 138	uint8_t pad[4] = {0, 0, 0, 0};
 139	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 140
 141	for (i = 0; i < nwords; i++, src += 4)
 142		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
 
 
 
 143
 144	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 145	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
 
 
 
 146}
 147
 148/*
 149 * convert 32-bit ecc words to ecc bytes
 150 */
 151static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 152		       const uint32_t *src)
 153{
 154	uint8_t pad[4];
 155	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 156
 157	for (i = 0; i < nwords; i++) {
 158		*dst++ = (src[i] >> 24);
 159		*dst++ = (src[i] >> 16) & 0xff;
 160		*dst++ = (src[i] >>  8) & 0xff;
 161		*dst++ = (src[i] >>  0) & 0xff;
 162	}
 163	pad[0] = (src[nwords] >> 24);
 164	pad[1] = (src[nwords] >> 16) & 0xff;
 165	pad[2] = (src[nwords] >>  8) & 0xff;
 166	pad[3] = (src[nwords] >>  0) & 0xff;
 167	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 168}
 169
 170/**
 171 * encode_bch - calculate BCH ecc parity of data
 172 * @bch:   BCH control structure
 173 * @data:  data to encode
 174 * @len:   data length in bytes
 175 * @ecc:   ecc parity data, must be initialized by caller
 176 *
 177 * The @ecc parity array is used both as input and output parameter, in order to
 178 * allow incremental computations. It should be of the size indicated by member
 179 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 180 *
 181 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 182 * @bch; it may be less than m*t for large values of t.
 183 */
 184void encode_bch(struct bch_control *bch, const uint8_t *data,
 185		unsigned int len, uint8_t *ecc)
 186{
 187	const unsigned int l = BCH_ECC_WORDS(bch)-1;
 188	unsigned int i, mlen;
 189	unsigned long m;
 190	uint32_t w, r[l+1];
 
 191	const uint32_t * const tab0 = bch->mod8_tab;
 192	const uint32_t * const tab1 = tab0 + 256*(l+1);
 193	const uint32_t * const tab2 = tab1 + 256*(l+1);
 194	const uint32_t * const tab3 = tab2 + 256*(l+1);
 195	const uint32_t *pdata, *p0, *p1, *p2, *p3;
 196
 
 
 
 197	if (ecc) {
 198		/* load ecc parity bytes into internal 32-bit buffer */
 199		load_ecc8(bch, bch->ecc_buf, ecc);
 200	} else {
 201		memset(bch->ecc_buf, 0, sizeof(r));
 202	}
 203
 204	/* process first unaligned data bytes */
 205	m = ((unsigned long)data) & 3;
 206	if (m) {
 207		mlen = (len < (4-m)) ? len : 4-m;
 208		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
 209		data += mlen;
 210		len  -= mlen;
 211	}
 212
 213	/* process 32-bit aligned data words */
 214	pdata = (uint32_t *)data;
 215	mlen  = len/4;
 216	data += 4*mlen;
 217	len  -= 4*mlen;
 218	memcpy(r, bch->ecc_buf, sizeof(r));
 219
 220	/*
 221	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
 222	 *
 223	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
 224	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 225	 *                               tttttttt  mod g = r0 (precomputed)
 226	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 227	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 228	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 229	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 230	 */
 231	while (mlen--) {
 232		/* input data is read in big-endian format */
 233		w = r[0]^cpu_to_be32(*pdata++);
 
 
 
 
 
 
 234		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 235		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 236		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 237		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 238
 239		for (i = 0; i < l; i++)
 240			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 241
 242		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 243	}
 244	memcpy(bch->ecc_buf, r, sizeof(r));
 245
 246	/* process last unaligned bytes */
 247	if (len)
 248		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
 249
 250	/* store ecc parity bytes into original parity buffer */
 251	if (ecc)
 252		store_ecc8(bch, ecc, bch->ecc_buf);
 253}
 254EXPORT_SYMBOL_GPL(encode_bch);
 255
 256static inline int modulo(struct bch_control *bch, unsigned int v)
 257{
 258	const unsigned int n = GF_N(bch);
 259	while (v >= n) {
 260		v -= n;
 261		v = (v & n) + (v >> GF_M(bch));
 262	}
 263	return v;
 264}
 265
 266/*
 267 * shorter and faster modulo function, only works when v < 2N.
 268 */
 269static inline int mod_s(struct bch_control *bch, unsigned int v)
 270{
 271	const unsigned int n = GF_N(bch);
 272	return (v < n) ? v : v-n;
 273}
 274
 275static inline int deg(unsigned int poly)
 276{
 277	/* polynomial degree is the most-significant bit index */
 278	return fls(poly)-1;
 279}
 280
 281static inline int parity(unsigned int x)
 282{
 283	/*
 284	 * public domain code snippet, lifted from
 285	 * http://www-graphics.stanford.edu/~seander/bithacks.html
 286	 */
 287	x ^= x >> 1;
 288	x ^= x >> 2;
 289	x = (x & 0x11111111U) * 0x11111111U;
 290	return (x >> 28) & 1;
 291}
 292
 293/* Galois field basic operations: multiply, divide, inverse, etc. */
 294
 295static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 296				  unsigned int b)
 297{
 298	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 299					       bch->a_log_tab[b])] : 0;
 300}
 301
 302static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 303{
 304	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 305}
 306
 307static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 308				  unsigned int b)
 309{
 310	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 311					GF_N(bch)-bch->a_log_tab[b])] : 0;
 312}
 313
 314static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 315{
 316	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 317}
 318
 319static inline unsigned int a_pow(struct bch_control *bch, int i)
 320{
 321	return bch->a_pow_tab[modulo(bch, i)];
 322}
 323
 324static inline int a_log(struct bch_control *bch, unsigned int x)
 325{
 326	return bch->a_log_tab[x];
 327}
 328
 329static inline int a_ilog(struct bch_control *bch, unsigned int x)
 330{
 331	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 332}
 333
 334/*
 335 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 336 */
 337static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 338			      unsigned int *syn)
 339{
 340	int i, j, s;
 341	unsigned int m;
 342	uint32_t poly;
 343	const int t = GF_T(bch);
 344
 345	s = bch->ecc_bits;
 346
 347	/* make sure extra bits in last ecc word are cleared */
 348	m = ((unsigned int)s) & 31;
 349	if (m)
 350		ecc[s/32] &= ~((1u << (32-m))-1);
 351	memset(syn, 0, 2*t*sizeof(*syn));
 352
 353	/* compute v(a^j) for j=1 .. 2t-1 */
 354	do {
 355		poly = *ecc++;
 356		s -= 32;
 357		while (poly) {
 358			i = deg(poly);
 359			for (j = 0; j < 2*t; j += 2)
 360				syn[j] ^= a_pow(bch, (j+1)*(i+s));
 361
 362			poly ^= (1 << i);
 363		}
 364	} while (s > 0);
 365
 366	/* v(a^(2j)) = v(a^j)^2 */
 367	for (j = 0; j < t; j++)
 368		syn[2*j+1] = gf_sqr(bch, syn[j]);
 369}
 370
 371static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 372{
 373	memcpy(dst, src, GF_POLY_SZ(src->deg));
 374}
 375
 376static int compute_error_locator_polynomial(struct bch_control *bch,
 377					    const unsigned int *syn)
 378{
 379	const unsigned int t = GF_T(bch);
 380	const unsigned int n = GF_N(bch);
 381	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 382	struct gf_poly *elp = bch->elp;
 383	struct gf_poly *pelp = bch->poly_2t[0];
 384	struct gf_poly *elp_copy = bch->poly_2t[1];
 385	int k, pp = -1;
 386
 387	memset(pelp, 0, GF_POLY_SZ(2*t));
 388	memset(elp, 0, GF_POLY_SZ(2*t));
 389
 390	pelp->deg = 0;
 391	pelp->c[0] = 1;
 392	elp->deg = 0;
 393	elp->c[0] = 1;
 394
 395	/* use simplified binary Berlekamp-Massey algorithm */
 396	for (i = 0; (i < t) && (elp->deg <= t); i++) {
 397		if (d) {
 398			k = 2*i-pp;
 399			gf_poly_copy(elp_copy, elp);
 400			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 401			tmp = a_log(bch, d)+n-a_log(bch, pd);
 402			for (j = 0; j <= pelp->deg; j++) {
 403				if (pelp->c[j]) {
 404					l = a_log(bch, pelp->c[j]);
 405					elp->c[j+k] ^= a_pow(bch, tmp+l);
 406				}
 407			}
 408			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 409			tmp = pelp->deg+k;
 410			if (tmp > elp->deg) {
 411				elp->deg = tmp;
 412				gf_poly_copy(pelp, elp_copy);
 413				pd = d;
 414				pp = 2*i;
 415			}
 416		}
 417		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 418		if (i < t-1) {
 419			d = syn[2*i+2];
 420			for (j = 1; j <= elp->deg; j++)
 421				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 422		}
 423	}
 424	dbg("elp=%s\n", gf_poly_str(elp));
 425	return (elp->deg > t) ? -1 : (int)elp->deg;
 426}
 427
 428/*
 429 * solve a m x m linear system in GF(2) with an expected number of solutions,
 430 * and return the number of found solutions
 431 */
 432static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 433			       unsigned int *sol, int nsol)
 434{
 435	const int m = GF_M(bch);
 436	unsigned int tmp, mask;
 437	int rem, c, r, p, k, param[m];
 438
 439	k = 0;
 440	mask = 1 << m;
 441
 442	/* Gaussian elimination */
 443	for (c = 0; c < m; c++) {
 444		rem = 0;
 445		p = c-k;
 446		/* find suitable row for elimination */
 447		for (r = p; r < m; r++) {
 448			if (rows[r] & mask) {
 449				if (r != p) {
 450					tmp = rows[r];
 451					rows[r] = rows[p];
 452					rows[p] = tmp;
 453				}
 454				rem = r+1;
 455				break;
 456			}
 457		}
 458		if (rem) {
 459			/* perform elimination on remaining rows */
 460			tmp = rows[p];
 461			for (r = rem; r < m; r++) {
 462				if (rows[r] & mask)
 463					rows[r] ^= tmp;
 464			}
 465		} else {
 466			/* elimination not needed, store defective row index */
 467			param[k++] = c;
 468		}
 469		mask >>= 1;
 470	}
 471	/* rewrite system, inserting fake parameter rows */
 472	if (k > 0) {
 473		p = k;
 474		for (r = m-1; r >= 0; r--) {
 475			if ((r > m-1-k) && rows[r])
 476				/* system has no solution */
 477				return 0;
 478
 479			rows[r] = (p && (r == param[p-1])) ?
 480				p--, 1u << (m-r) : rows[r-p];
 481		}
 482	}
 483
 484	if (nsol != (1 << k))
 485		/* unexpected number of solutions */
 486		return 0;
 487
 488	for (p = 0; p < nsol; p++) {
 489		/* set parameters for p-th solution */
 490		for (c = 0; c < k; c++)
 491			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 492
 493		/* compute unique solution */
 494		tmp = 0;
 495		for (r = m-1; r >= 0; r--) {
 496			mask = rows[r] & (tmp|1);
 497			tmp |= parity(mask) << (m-r);
 498		}
 499		sol[p] = tmp >> 1;
 500	}
 501	return nsol;
 502}
 503
 504/*
 505 * this function builds and solves a linear system for finding roots of a degree
 506 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 507 */
 508static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 509			      unsigned int b, unsigned int c,
 510			      unsigned int *roots)
 511{
 512	int i, j, k;
 513	const int m = GF_M(bch);
 514	unsigned int mask = 0xff, t, rows[16] = {0,};
 515
 516	j = a_log(bch, b);
 517	k = a_log(bch, a);
 518	rows[0] = c;
 519
 520	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
 521	for (i = 0; i < m; i++) {
 522		rows[i+1] = bch->a_pow_tab[4*i]^
 523			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 524			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 525		j++;
 526		k += 2;
 527	}
 528	/*
 529	 * transpose 16x16 matrix before passing it to linear solver
 530	 * warning: this code assumes m < 16
 531	 */
 532	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 533		for (k = 0; k < 16; k = (k+j+1) & ~j) {
 534			t = ((rows[k] >> j)^rows[k+j]) & mask;
 535			rows[k] ^= (t << j);
 536			rows[k+j] ^= t;
 537		}
 538	}
 539	return solve_linear_system(bch, rows, roots, 4);
 540}
 541
 542/*
 543 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 544 */
 545static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 546				unsigned int *roots)
 547{
 548	int n = 0;
 549
 550	if (poly->c[0])
 551		/* poly[X] = bX+c with c!=0, root=c/b */
 552		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 553				   bch->a_log_tab[poly->c[1]]);
 554	return n;
 555}
 556
 557/*
 558 * compute roots of a degree 2 polynomial over GF(2^m)
 559 */
 560static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 561				unsigned int *roots)
 562{
 563	int n = 0, i, l0, l1, l2;
 564	unsigned int u, v, r;
 565
 566	if (poly->c[0] && poly->c[1]) {
 567
 568		l0 = bch->a_log_tab[poly->c[0]];
 569		l1 = bch->a_log_tab[poly->c[1]];
 570		l2 = bch->a_log_tab[poly->c[2]];
 571
 572		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 573		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 574		/*
 575		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 576		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 577		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 578		 * i.e. r and r+1 are roots iff Tr(u)=0
 579		 */
 580		r = 0;
 581		v = u;
 582		while (v) {
 583			i = deg(v);
 584			r ^= bch->xi_tab[i];
 585			v ^= (1 << i);
 586		}
 587		/* verify root */
 588		if ((gf_sqr(bch, r)^r) == u) {
 589			/* reverse z=a/bX transformation and compute log(1/r) */
 590			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 591					    bch->a_log_tab[r]+l2);
 592			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 593					    bch->a_log_tab[r^1]+l2);
 594		}
 595	}
 596	return n;
 597}
 598
 599/*
 600 * compute roots of a degree 3 polynomial over GF(2^m)
 601 */
 602static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 603				unsigned int *roots)
 604{
 605	int i, n = 0;
 606	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 607
 608	if (poly->c[0]) {
 609		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 610		e3 = poly->c[3];
 611		c2 = gf_div(bch, poly->c[0], e3);
 612		b2 = gf_div(bch, poly->c[1], e3);
 613		a2 = gf_div(bch, poly->c[2], e3);
 614
 615		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 616		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 617		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 618		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 619
 620		/* find the 4 roots of this affine polynomial */
 621		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 622			/* remove a2 from final list of roots */
 623			for (i = 0; i < 4; i++) {
 624				if (tmp[i] != a2)
 625					roots[n++] = a_ilog(bch, tmp[i]);
 626			}
 627		}
 628	}
 629	return n;
 630}
 631
 632/*
 633 * compute roots of a degree 4 polynomial over GF(2^m)
 634 */
 635static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 636				unsigned int *roots)
 637{
 638	int i, l, n = 0;
 639	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 640
 641	if (poly->c[0] == 0)
 642		return 0;
 643
 644	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 645	e4 = poly->c[4];
 646	d = gf_div(bch, poly->c[0], e4);
 647	c = gf_div(bch, poly->c[1], e4);
 648	b = gf_div(bch, poly->c[2], e4);
 649	a = gf_div(bch, poly->c[3], e4);
 650
 651	/* use Y=1/X transformation to get an affine polynomial */
 652	if (a) {
 653		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
 654		if (c) {
 655			/* compute e such that e^2 = c/a */
 656			f = gf_div(bch, c, a);
 657			l = a_log(bch, f);
 658			l += (l & 1) ? GF_N(bch) : 0;
 659			e = a_pow(bch, l/2);
 660			/*
 661			 * use transformation z=X+e:
 662			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 663			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 664			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 665			 * z^4 + az^3 +     b'z^2 + d'
 666			 */
 667			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 668			b = gf_mul(bch, a, e)^b;
 669		}
 670		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 671		if (d == 0)
 672			/* assume all roots have multiplicity 1 */
 673			return 0;
 674
 675		c2 = gf_inv(bch, d);
 676		b2 = gf_div(bch, a, d);
 677		a2 = gf_div(bch, b, d);
 678	} else {
 679		/* polynomial is already affine */
 680		c2 = d;
 681		b2 = c;
 682		a2 = b;
 683	}
 684	/* find the 4 roots of this affine polynomial */
 685	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 686		for (i = 0; i < 4; i++) {
 687			/* post-process roots (reverse transformations) */
 688			f = a ? gf_inv(bch, roots[i]) : roots[i];
 689			roots[i] = a_ilog(bch, f^e);
 690		}
 691		n = 4;
 692	}
 693	return n;
 694}
 695
 696/*
 697 * build monic, log-based representation of a polynomial
 698 */
 699static void gf_poly_logrep(struct bch_control *bch,
 700			   const struct gf_poly *a, int *rep)
 701{
 702	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 703
 704	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
 705	for (i = 0; i < d; i++)
 706		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 707}
 708
 709/*
 710 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 711 */
 712static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 713			const struct gf_poly *b, int *rep)
 714{
 715	int la, p, m;
 716	unsigned int i, j, *c = a->c;
 717	const unsigned int d = b->deg;
 718
 719	if (a->deg < d)
 720		return;
 721
 722	/* reuse or compute log representation of denominator */
 723	if (!rep) {
 724		rep = bch->cache;
 725		gf_poly_logrep(bch, b, rep);
 726	}
 727
 728	for (j = a->deg; j >= d; j--) {
 729		if (c[j]) {
 730			la = a_log(bch, c[j]);
 731			p = j-d;
 732			for (i = 0; i < d; i++, p++) {
 733				m = rep[i];
 734				if (m >= 0)
 735					c[p] ^= bch->a_pow_tab[mod_s(bch,
 736								     m+la)];
 737			}
 738		}
 739	}
 740	a->deg = d-1;
 741	while (!c[a->deg] && a->deg)
 742		a->deg--;
 743}
 744
 745/*
 746 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 747 */
 748static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 749			const struct gf_poly *b, struct gf_poly *q)
 750{
 751	if (a->deg >= b->deg) {
 752		q->deg = a->deg-b->deg;
 753		/* compute a mod b (modifies a) */
 754		gf_poly_mod(bch, a, b, NULL);
 755		/* quotient is stored in upper part of polynomial a */
 756		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 757	} else {
 758		q->deg = 0;
 759		q->c[0] = 0;
 760	}
 761}
 762
 763/*
 764 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 765 */
 766static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 767				   struct gf_poly *b)
 768{
 769	struct gf_poly *tmp;
 770
 771	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 772
 773	if (a->deg < b->deg) {
 774		tmp = b;
 775		b = a;
 776		a = tmp;
 777	}
 778
 779	while (b->deg > 0) {
 780		gf_poly_mod(bch, a, b, NULL);
 781		tmp = b;
 782		b = a;
 783		a = tmp;
 784	}
 785
 786	dbg("%s\n", gf_poly_str(a));
 787
 788	return a;
 789}
 790
 791/*
 792 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 793 * This is used in Berlekamp Trace algorithm for splitting polynomials
 794 */
 795static void compute_trace_bk_mod(struct bch_control *bch, int k,
 796				 const struct gf_poly *f, struct gf_poly *z,
 797				 struct gf_poly *out)
 798{
 799	const int m = GF_M(bch);
 800	int i, j;
 801
 802	/* z contains z^2j mod f */
 803	z->deg = 1;
 804	z->c[0] = 0;
 805	z->c[1] = bch->a_pow_tab[k];
 806
 807	out->deg = 0;
 808	memset(out, 0, GF_POLY_SZ(f->deg));
 809
 810	/* compute f log representation only once */
 811	gf_poly_logrep(bch, f, bch->cache);
 812
 813	for (i = 0; i < m; i++) {
 814		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 815		for (j = z->deg; j >= 0; j--) {
 816			out->c[j] ^= z->c[j];
 817			z->c[2*j] = gf_sqr(bch, z->c[j]);
 818			z->c[2*j+1] = 0;
 819		}
 820		if (z->deg > out->deg)
 821			out->deg = z->deg;
 822
 823		if (i < m-1) {
 824			z->deg *= 2;
 825			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 826			gf_poly_mod(bch, z, f, bch->cache);
 827		}
 828	}
 829	while (!out->c[out->deg] && out->deg)
 830		out->deg--;
 831
 832	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 833}
 834
 835/*
 836 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 837 */
 838static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 839			      struct gf_poly **g, struct gf_poly **h)
 840{
 841	struct gf_poly *f2 = bch->poly_2t[0];
 842	struct gf_poly *q  = bch->poly_2t[1];
 843	struct gf_poly *tk = bch->poly_2t[2];
 844	struct gf_poly *z  = bch->poly_2t[3];
 845	struct gf_poly *gcd;
 846
 847	dbg("factoring %s...\n", gf_poly_str(f));
 848
 849	*g = f;
 850	*h = NULL;
 851
 852	/* tk = Tr(a^k.X) mod f */
 853	compute_trace_bk_mod(bch, k, f, z, tk);
 854
 855	if (tk->deg > 0) {
 856		/* compute g = gcd(f, tk) (destructive operation) */
 857		gf_poly_copy(f2, f);
 858		gcd = gf_poly_gcd(bch, f2, tk);
 859		if (gcd->deg < f->deg) {
 860			/* compute h=f/gcd(f,tk); this will modify f and q */
 861			gf_poly_div(bch, f, gcd, q);
 862			/* store g and h in-place (clobbering f) */
 863			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 864			gf_poly_copy(*g, gcd);
 865			gf_poly_copy(*h, q);
 866		}
 867	}
 868}
 869
 870/*
 871 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 872 * file for details
 873 */
 874static int find_poly_roots(struct bch_control *bch, unsigned int k,
 875			   struct gf_poly *poly, unsigned int *roots)
 876{
 877	int cnt;
 878	struct gf_poly *f1, *f2;
 879
 880	switch (poly->deg) {
 881		/* handle low degree polynomials with ad hoc techniques */
 882	case 1:
 883		cnt = find_poly_deg1_roots(bch, poly, roots);
 884		break;
 885	case 2:
 886		cnt = find_poly_deg2_roots(bch, poly, roots);
 887		break;
 888	case 3:
 889		cnt = find_poly_deg3_roots(bch, poly, roots);
 890		break;
 891	case 4:
 892		cnt = find_poly_deg4_roots(bch, poly, roots);
 893		break;
 894	default:
 895		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 896		cnt = 0;
 897		if (poly->deg && (k <= GF_M(bch))) {
 898			factor_polynomial(bch, k, poly, &f1, &f2);
 899			if (f1)
 900				cnt += find_poly_roots(bch, k+1, f1, roots);
 901			if (f2)
 902				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 903		}
 904		break;
 905	}
 906	return cnt;
 907}
 908
 909#if defined(USE_CHIEN_SEARCH)
 910/*
 911 * exhaustive root search (Chien) implementation - not used, included only for
 912 * reference/comparison tests
 913 */
 914static int chien_search(struct bch_control *bch, unsigned int len,
 915			struct gf_poly *p, unsigned int *roots)
 916{
 917	int m;
 918	unsigned int i, j, syn, syn0, count = 0;
 919	const unsigned int k = 8*len+bch->ecc_bits;
 920
 921	/* use a log-based representation of polynomial */
 922	gf_poly_logrep(bch, p, bch->cache);
 923	bch->cache[p->deg] = 0;
 924	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 925
 926	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 927		/* compute elp(a^i) */
 928		for (j = 1, syn = syn0; j <= p->deg; j++) {
 929			m = bch->cache[j];
 930			if (m >= 0)
 931				syn ^= a_pow(bch, m+j*i);
 932		}
 933		if (syn == 0) {
 934			roots[count++] = GF_N(bch)-i;
 935			if (count == p->deg)
 936				break;
 937		}
 938	}
 939	return (count == p->deg) ? count : 0;
 940}
 941#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 942#endif /* USE_CHIEN_SEARCH */
 943
 944/**
 945 * decode_bch - decode received codeword and find bit error locations
 946 * @bch:      BCH control structure
 947 * @data:     received data, ignored if @calc_ecc is provided
 948 * @len:      data length in bytes, must always be provided
 949 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 950 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
 951 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
 952 * @errloc:   output array of error locations
 953 *
 954 * Returns:
 955 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
 956 *  invalid parameters were provided
 957 *
 958 * Depending on the available hw BCH support and the need to compute @calc_ecc
 959 * separately (using encode_bch()), this function should be called with one of
 960 * the following parameter configurations -
 961 *
 962 * by providing @data and @recv_ecc only:
 963 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
 964 *
 965 * by providing @recv_ecc and @calc_ecc:
 966 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
 967 *
 968 * by providing ecc = recv_ecc XOR calc_ecc:
 969 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
 970 *
 971 * by providing syndrome results @syn:
 972 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
 973 *
 974 * Once decode_bch() has successfully returned with a positive value, error
 975 * locations returned in array @errloc should be interpreted as follows -
 976 *
 977 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
 978 * data correction)
 979 *
 980 * if (errloc[n] < 8*len), then n-th error is located in data and can be
 981 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
 982 *
 983 * Note that this function does not perform any data correction by itself, it
 984 * merely indicates error locations.
 985 */
 986int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
 987	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
 988	       const unsigned int *syn, unsigned int *errloc)
 989{
 990	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
 991	unsigned int nbits;
 992	int i, err, nroots;
 993	uint32_t sum;
 994
 995	/* sanity check: make sure data length can be handled */
 996	if (8*len > (bch->n-bch->ecc_bits))
 997		return -EINVAL;
 998
 999	/* if caller does not provide syndromes, compute them */
1000	if (!syn) {
1001		if (!calc_ecc) {
1002			/* compute received data ecc into an internal buffer */
1003			if (!data || !recv_ecc)
1004				return -EINVAL;
1005			encode_bch(bch, data, len, NULL);
1006		} else {
1007			/* load provided calculated ecc */
1008			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1009		}
1010		/* load received ecc or assume it was XORed in calc_ecc */
1011		if (recv_ecc) {
1012			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1013			/* XOR received and calculated ecc */
1014			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1015				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1016				sum |= bch->ecc_buf[i];
1017			}
1018			if (!sum)
1019				/* no error found */
1020				return 0;
1021		}
1022		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1023		syn = bch->syn;
1024	}
1025
1026	err = compute_error_locator_polynomial(bch, syn);
1027	if (err > 0) {
1028		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1029		if (err != nroots)
1030			err = -1;
1031	}
1032	if (err > 0) {
1033		/* post-process raw error locations for easier correction */
1034		nbits = (len*8)+bch->ecc_bits;
1035		for (i = 0; i < err; i++) {
1036			if (errloc[i] >= nbits) {
1037				err = -1;
1038				break;
1039			}
1040			errloc[i] = nbits-1-errloc[i];
1041			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
 
 
1042		}
1043	}
1044	return (err >= 0) ? err : -EBADMSG;
1045}
1046EXPORT_SYMBOL_GPL(decode_bch);
1047
1048/*
1049 * generate Galois field lookup tables
1050 */
1051static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1052{
1053	unsigned int i, x = 1;
1054	const unsigned int k = 1 << deg(poly);
1055
1056	/* primitive polynomial must be of degree m */
1057	if (k != (1u << GF_M(bch)))
1058		return -1;
1059
1060	for (i = 0; i < GF_N(bch); i++) {
1061		bch->a_pow_tab[i] = x;
1062		bch->a_log_tab[x] = i;
1063		if (i && (x == 1))
1064			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1065			return -1;
1066		x <<= 1;
1067		if (x & k)
1068			x ^= poly;
1069	}
1070	bch->a_pow_tab[GF_N(bch)] = 1;
1071	bch->a_log_tab[0] = 0;
1072
1073	return 0;
1074}
1075
1076/*
1077 * compute generator polynomial remainder tables for fast encoding
1078 */
1079static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1080{
1081	int i, j, b, d;
1082	uint32_t data, hi, lo, *tab;
1083	const int l = BCH_ECC_WORDS(bch);
1084	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1085	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1086
1087	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1088
1089	for (i = 0; i < 256; i++) {
1090		/* p(X)=i is a small polynomial of weight <= 8 */
1091		for (b = 0; b < 4; b++) {
1092			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1093			tab = bch->mod8_tab + (b*256+i)*l;
1094			data = i << (8*b);
1095			while (data) {
1096				d = deg(data);
1097				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1098				data ^= g[0] >> (31-d);
1099				for (j = 0; j < ecclen; j++) {
1100					hi = (d < 31) ? g[j] << (d+1) : 0;
1101					lo = (j+1 < plen) ?
1102						g[j+1] >> (31-d) : 0;
1103					tab[j] ^= hi|lo;
1104				}
1105			}
1106		}
1107	}
1108}
1109
1110/*
1111 * build a base for factoring degree 2 polynomials
1112 */
1113static int build_deg2_base(struct bch_control *bch)
1114{
1115	const int m = GF_M(bch);
1116	int i, j, r;
1117	unsigned int sum, x, y, remaining, ak = 0, xi[m];
1118
1119	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1120	for (i = 0; i < m; i++) {
1121		for (j = 0, sum = 0; j < m; j++)
1122			sum ^= a_pow(bch, i*(1 << j));
1123
1124		if (sum) {
1125			ak = bch->a_pow_tab[i];
1126			break;
1127		}
1128	}
1129	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1130	remaining = m;
1131	memset(xi, 0, sizeof(xi));
1132
1133	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1134		y = gf_sqr(bch, x)^x;
1135		for (i = 0; i < 2; i++) {
1136			r = a_log(bch, y);
1137			if (y && (r < m) && !xi[r]) {
1138				bch->xi_tab[r] = x;
1139				xi[r] = 1;
1140				remaining--;
1141				dbg("x%d = %x\n", r, x);
1142				break;
1143			}
1144			y ^= ak;
1145		}
1146	}
1147	/* should not happen but check anyway */
1148	return remaining ? -1 : 0;
1149}
1150
1151static void *bch_alloc(size_t size, int *err)
1152{
1153	void *ptr;
1154
1155	ptr = kmalloc(size, GFP_KERNEL);
1156	if (ptr == NULL)
1157		*err = 1;
1158	return ptr;
1159}
1160
1161/*
1162 * compute generator polynomial for given (m,t) parameters.
1163 */
1164static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1165{
1166	const unsigned int m = GF_M(bch);
1167	const unsigned int t = GF_T(bch);
1168	int n, err = 0;
1169	unsigned int i, j, nbits, r, word, *roots;
1170	struct gf_poly *g;
1171	uint32_t *genpoly;
1172
1173	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1174	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1175	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1176
1177	if (err) {
1178		kfree(genpoly);
1179		genpoly = NULL;
1180		goto finish;
1181	}
1182
1183	/* enumerate all roots of g(X) */
1184	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1185	for (i = 0; i < t; i++) {
1186		for (j = 0, r = 2*i+1; j < m; j++) {
1187			roots[r] = 1;
1188			r = mod_s(bch, 2*r);
1189		}
1190	}
1191	/* build generator polynomial g(X) */
1192	g->deg = 0;
1193	g->c[0] = 1;
1194	for (i = 0; i < GF_N(bch); i++) {
1195		if (roots[i]) {
1196			/* multiply g(X) by (X+root) */
1197			r = bch->a_pow_tab[i];
1198			g->c[g->deg+1] = 1;
1199			for (j = g->deg; j > 0; j--)
1200				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1201
1202			g->c[0] = gf_mul(bch, g->c[0], r);
1203			g->deg++;
1204		}
1205	}
1206	/* store left-justified binary representation of g(X) */
1207	n = g->deg+1;
1208	i = 0;
1209
1210	while (n > 0) {
1211		nbits = (n > 32) ? 32 : n;
1212		for (j = 0, word = 0; j < nbits; j++) {
1213			if (g->c[n-1-j])
1214				word |= 1u << (31-j);
1215		}
1216		genpoly[i++] = word;
1217		n -= nbits;
1218	}
1219	bch->ecc_bits = g->deg;
1220
1221finish:
1222	kfree(g);
1223	kfree(roots);
1224
1225	return genpoly;
1226}
1227
1228/**
1229 * init_bch - initialize a BCH encoder/decoder
1230 * @m:          Galois field order, should be in the range 5-15
1231 * @t:          maximum error correction capability, in bits
1232 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
 
1233 *
1234 * Returns:
1235 *  a newly allocated BCH control structure if successful, NULL otherwise
1236 *
1237 * This initialization can take some time, as lookup tables are built for fast
1238 * encoding/decoding; make sure not to call this function from a time critical
1239 * path. Usually, init_bch() should be called on module/driver init and
1240 * free_bch() should be called to release memory on exit.
1241 *
1242 * You may provide your own primitive polynomial of degree @m in argument
1243 * @prim_poly, or let init_bch() use its default polynomial.
1244 *
1245 * Once init_bch() has successfully returned a pointer to a newly allocated
1246 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1247 * the structure.
1248 */
1249struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
 
1250{
1251	int err = 0;
1252	unsigned int i, words;
1253	uint32_t *genpoly;
1254	struct bch_control *bch = NULL;
1255
1256	const int min_m = 5;
1257	const int max_m = 15;
1258
1259	/* default primitive polynomials */
1260	static const unsigned int prim_poly_tab[] = {
1261		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1262		0x402b, 0x8003,
1263	};
1264
1265#if defined(CONFIG_BCH_CONST_PARAMS)
1266	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1267		printk(KERN_ERR "bch encoder/decoder was configured to support "
1268		       "parameters m=%d, t=%d only!\n",
1269		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1270		goto fail;
1271	}
1272#endif
1273	if ((m < min_m) || (m > max_m))
1274		/*
1275		 * values of m greater than 15 are not currently supported;
1276		 * supporting m > 15 would require changing table base type
1277		 * (uint16_t) and a small patch in matrix transposition
1278		 */
1279		goto fail;
1280
 
 
 
 
 
 
 
1281	/* sanity checks */
1282	if ((t < 1) || (m*t >= ((1 << m)-1)))
1283		/* invalid t value */
1284		goto fail;
1285
1286	/* select a primitive polynomial for generating GF(2^m) */
1287	if (prim_poly == 0)
1288		prim_poly = prim_poly_tab[m-min_m];
1289
1290	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1291	if (bch == NULL)
1292		goto fail;
1293
1294	bch->m = m;
1295	bch->t = t;
1296	bch->n = (1 << m)-1;
1297	words  = DIV_ROUND_UP(m*t, 32);
1298	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1299	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1300	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1301	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1302	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1303	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1304	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1305	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1306	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1307	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
 
1308
1309	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1310		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1311
1312	if (err)
1313		goto fail;
1314
1315	err = build_gf_tables(bch, prim_poly);
1316	if (err)
1317		goto fail;
1318
1319	/* use generator polynomial for computing encoding tables */
1320	genpoly = compute_generator_polynomial(bch);
1321	if (genpoly == NULL)
1322		goto fail;
1323
1324	build_mod8_tables(bch, genpoly);
1325	kfree(genpoly);
1326
1327	err = build_deg2_base(bch);
1328	if (err)
1329		goto fail;
1330
1331	return bch;
1332
1333fail:
1334	free_bch(bch);
1335	return NULL;
1336}
1337EXPORT_SYMBOL_GPL(init_bch);
1338
1339/**
1340 *  free_bch - free the BCH control structure
1341 *  @bch:    BCH control structure to release
1342 */
1343void free_bch(struct bch_control *bch)
1344{
1345	unsigned int i;
1346
1347	if (bch) {
1348		kfree(bch->a_pow_tab);
1349		kfree(bch->a_log_tab);
1350		kfree(bch->mod8_tab);
1351		kfree(bch->ecc_buf);
1352		kfree(bch->ecc_buf2);
1353		kfree(bch->xi_tab);
1354		kfree(bch->syn);
1355		kfree(bch->cache);
1356		kfree(bch->elp);
1357
1358		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1359			kfree(bch->poly_2t[i]);
1360
1361		kfree(bch);
1362	}
1363}
1364EXPORT_SYMBOL_GPL(free_bch);
1365
1366MODULE_LICENSE("GPL");
1367MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1368MODULE_DESCRIPTION("Binary BCH encoder/decoder");
v6.8
   1/*
   2 * Generic binary BCH encoding/decoding library
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License version 2 as published by
   6 * the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 51
  15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  16 *
  17 * Copyright © 2011 Parrot S.A.
  18 *
  19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
  20 *
  21 * Description:
  22 *
  23 * This library provides runtime configurable encoding/decoding of binary
  24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  25 *
  26 * Call bch_init to get a pointer to a newly allocated bch_control structure for
  27 * the given m (Galois field order), t (error correction capability) and
  28 * (optional) primitive polynomial parameters.
  29 *
  30 * Call bch_encode to compute and store ecc parity bytes to a given buffer.
  31 * Call bch_decode to detect and locate errors in received data.
  32 *
  33 * On systems supporting hw BCH features, intermediate results may be provided
  34 * to bch_decode in order to skip certain steps. See bch_decode() documentation
  35 * for details.
  36 *
  37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  38 * parameters m and t; thus allowing extra compiler optimizations and providing
  39 * better (up to 2x) encoding performance. Using this option makes sense when
  40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  41 * on a particular NAND flash device.
  42 *
  43 * Algorithmic details:
  44 *
  45 * Encoding is performed by processing 32 input bits in parallel, using 4
  46 * remainder lookup tables.
  47 *
  48 * The final stage of decoding involves the following internal steps:
  49 * a. Syndrome computation
  50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  51 * c. Error locator root finding (by far the most expensive step)
  52 *
  53 * In this implementation, step c is not performed using the usual Chien search.
  54 * Instead, an alternative approach described in [1] is used. It consists in
  55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  58 * much better performance than Chien search for usual (m,t) values (typically
  59 * m >= 13, t < 32, see [1]).
  60 *
  61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  66 */
  67
  68#include <linux/kernel.h>
  69#include <linux/errno.h>
  70#include <linux/init.h>
  71#include <linux/module.h>
  72#include <linux/slab.h>
  73#include <linux/bitops.h>
  74#include <linux/bitrev.h>
  75#include <asm/byteorder.h>
  76#include <linux/bch.h>
  77
  78#if defined(CONFIG_BCH_CONST_PARAMS)
  79#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  80#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  81#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
  82#define BCH_MAX_M              (CONFIG_BCH_CONST_M)
  83#define BCH_MAX_T	       (CONFIG_BCH_CONST_T)
  84#else
  85#define GF_M(_p)               ((_p)->m)
  86#define GF_T(_p)               ((_p)->t)
  87#define GF_N(_p)               ((_p)->n)
  88#define BCH_MAX_M              15 /* 2KB */
  89#define BCH_MAX_T              64 /* 64 bit correction */
  90#endif
  91
  92#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
  93#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
  94
  95#define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
  96
  97#ifndef dbg
  98#define dbg(_fmt, args...)     do {} while (0)
  99#endif
 100
 101/*
 102 * represent a polynomial over GF(2^m)
 103 */
 104struct gf_poly {
 105	unsigned int deg;    /* polynomial degree */
 106	unsigned int c[];   /* polynomial terms */
 107};
 108
 109/* given its degree, compute a polynomial size in bytes */
 110#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 111
 112/* polynomial of degree 1 */
 113struct gf_poly_deg1 {
 114	struct gf_poly poly;
 115	unsigned int   c[2];
 116};
 117
 118static u8 swap_bits(struct bch_control *bch, u8 in)
 119{
 120	if (!bch->swap_bits)
 121		return in;
 122
 123	return bitrev8(in);
 124}
 125
 126/*
 127 * same as bch_encode(), but process input data one byte at a time
 128 */
 129static void bch_encode_unaligned(struct bch_control *bch,
 130				 const unsigned char *data, unsigned int len,
 131				 uint32_t *ecc)
 132{
 133	int i;
 134	const uint32_t *p;
 135	const int l = BCH_ECC_WORDS(bch)-1;
 136
 137	while (len--) {
 138		u8 tmp = swap_bits(bch, *data++);
 139
 140		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
 141
 142		for (i = 0; i < l; i++)
 143			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 144
 145		ecc[l] = (ecc[l] << 8)^(*p);
 146	}
 147}
 148
 149/*
 150 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 151 */
 152static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 153		      const uint8_t *src)
 154{
 155	uint8_t pad[4] = {0, 0, 0, 0};
 156	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 157
 158	for (i = 0; i < nwords; i++, src += 4)
 159		dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
 160			((u32)swap_bits(bch, src[1]) << 16) |
 161			((u32)swap_bits(bch, src[2]) << 8) |
 162			swap_bits(bch, src[3]);
 163
 164	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 165	dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
 166		((u32)swap_bits(bch, pad[1]) << 16) |
 167		((u32)swap_bits(bch, pad[2]) << 8) |
 168		swap_bits(bch, pad[3]);
 169}
 170
 171/*
 172 * convert 32-bit ecc words to ecc bytes
 173 */
 174static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 175		       const uint32_t *src)
 176{
 177	uint8_t pad[4];
 178	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 179
 180	for (i = 0; i < nwords; i++) {
 181		*dst++ = swap_bits(bch, src[i] >> 24);
 182		*dst++ = swap_bits(bch, src[i] >> 16);
 183		*dst++ = swap_bits(bch, src[i] >> 8);
 184		*dst++ = swap_bits(bch, src[i]);
 185	}
 186	pad[0] = swap_bits(bch, src[nwords] >> 24);
 187	pad[1] = swap_bits(bch, src[nwords] >> 16);
 188	pad[2] = swap_bits(bch, src[nwords] >> 8);
 189	pad[3] = swap_bits(bch, src[nwords]);
 190	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 191}
 192
 193/**
 194 * bch_encode - calculate BCH ecc parity of data
 195 * @bch:   BCH control structure
 196 * @data:  data to encode
 197 * @len:   data length in bytes
 198 * @ecc:   ecc parity data, must be initialized by caller
 199 *
 200 * The @ecc parity array is used both as input and output parameter, in order to
 201 * allow incremental computations. It should be of the size indicated by member
 202 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 203 *
 204 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 205 * @bch; it may be less than m*t for large values of t.
 206 */
 207void bch_encode(struct bch_control *bch, const uint8_t *data,
 208		unsigned int len, uint8_t *ecc)
 209{
 210	const unsigned int l = BCH_ECC_WORDS(bch)-1;
 211	unsigned int i, mlen;
 212	unsigned long m;
 213	uint32_t w, r[BCH_ECC_MAX_WORDS];
 214	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
 215	const uint32_t * const tab0 = bch->mod8_tab;
 216	const uint32_t * const tab1 = tab0 + 256*(l+1);
 217	const uint32_t * const tab2 = tab1 + 256*(l+1);
 218	const uint32_t * const tab3 = tab2 + 256*(l+1);
 219	const uint32_t *pdata, *p0, *p1, *p2, *p3;
 220
 221	if (WARN_ON(r_bytes > sizeof(r)))
 222		return;
 223
 224	if (ecc) {
 225		/* load ecc parity bytes into internal 32-bit buffer */
 226		load_ecc8(bch, bch->ecc_buf, ecc);
 227	} else {
 228		memset(bch->ecc_buf, 0, r_bytes);
 229	}
 230
 231	/* process first unaligned data bytes */
 232	m = ((unsigned long)data) & 3;
 233	if (m) {
 234		mlen = (len < (4-m)) ? len : 4-m;
 235		bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
 236		data += mlen;
 237		len  -= mlen;
 238	}
 239
 240	/* process 32-bit aligned data words */
 241	pdata = (uint32_t *)data;
 242	mlen  = len/4;
 243	data += 4*mlen;
 244	len  -= 4*mlen;
 245	memcpy(r, bch->ecc_buf, r_bytes);
 246
 247	/*
 248	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
 249	 *
 250	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
 251	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 252	 *                               tttttttt  mod g = r0 (precomputed)
 253	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 254	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 255	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 256	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 257	 */
 258	while (mlen--) {
 259		/* input data is read in big-endian format */
 260		w = cpu_to_be32(*pdata++);
 261		if (bch->swap_bits)
 262			w = (u32)swap_bits(bch, w) |
 263			    ((u32)swap_bits(bch, w >> 8) << 8) |
 264			    ((u32)swap_bits(bch, w >> 16) << 16) |
 265			    ((u32)swap_bits(bch, w >> 24) << 24);
 266		w ^= r[0];
 267		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 268		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 269		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 270		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 271
 272		for (i = 0; i < l; i++)
 273			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 274
 275		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 276	}
 277	memcpy(bch->ecc_buf, r, r_bytes);
 278
 279	/* process last unaligned bytes */
 280	if (len)
 281		bch_encode_unaligned(bch, data, len, bch->ecc_buf);
 282
 283	/* store ecc parity bytes into original parity buffer */
 284	if (ecc)
 285		store_ecc8(bch, ecc, bch->ecc_buf);
 286}
 287EXPORT_SYMBOL_GPL(bch_encode);
 288
 289static inline int modulo(struct bch_control *bch, unsigned int v)
 290{
 291	const unsigned int n = GF_N(bch);
 292	while (v >= n) {
 293		v -= n;
 294		v = (v & n) + (v >> GF_M(bch));
 295	}
 296	return v;
 297}
 298
 299/*
 300 * shorter and faster modulo function, only works when v < 2N.
 301 */
 302static inline int mod_s(struct bch_control *bch, unsigned int v)
 303{
 304	const unsigned int n = GF_N(bch);
 305	return (v < n) ? v : v-n;
 306}
 307
 308static inline int deg(unsigned int poly)
 309{
 310	/* polynomial degree is the most-significant bit index */
 311	return fls(poly)-1;
 312}
 313
 314static inline int parity(unsigned int x)
 315{
 316	/*
 317	 * public domain code snippet, lifted from
 318	 * http://www-graphics.stanford.edu/~seander/bithacks.html
 319	 */
 320	x ^= x >> 1;
 321	x ^= x >> 2;
 322	x = (x & 0x11111111U) * 0x11111111U;
 323	return (x >> 28) & 1;
 324}
 325
 326/* Galois field basic operations: multiply, divide, inverse, etc. */
 327
 328static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 329				  unsigned int b)
 330{
 331	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 332					       bch->a_log_tab[b])] : 0;
 333}
 334
 335static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 336{
 337	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 338}
 339
 340static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 341				  unsigned int b)
 342{
 343	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 344					GF_N(bch)-bch->a_log_tab[b])] : 0;
 345}
 346
 347static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 348{
 349	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 350}
 351
 352static inline unsigned int a_pow(struct bch_control *bch, int i)
 353{
 354	return bch->a_pow_tab[modulo(bch, i)];
 355}
 356
 357static inline int a_log(struct bch_control *bch, unsigned int x)
 358{
 359	return bch->a_log_tab[x];
 360}
 361
 362static inline int a_ilog(struct bch_control *bch, unsigned int x)
 363{
 364	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 365}
 366
 367/*
 368 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 369 */
 370static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 371			      unsigned int *syn)
 372{
 373	int i, j, s;
 374	unsigned int m;
 375	uint32_t poly;
 376	const int t = GF_T(bch);
 377
 378	s = bch->ecc_bits;
 379
 380	/* make sure extra bits in last ecc word are cleared */
 381	m = ((unsigned int)s) & 31;
 382	if (m)
 383		ecc[s/32] &= ~((1u << (32-m))-1);
 384	memset(syn, 0, 2*t*sizeof(*syn));
 385
 386	/* compute v(a^j) for j=1 .. 2t-1 */
 387	do {
 388		poly = *ecc++;
 389		s -= 32;
 390		while (poly) {
 391			i = deg(poly);
 392			for (j = 0; j < 2*t; j += 2)
 393				syn[j] ^= a_pow(bch, (j+1)*(i+s));
 394
 395			poly ^= (1 << i);
 396		}
 397	} while (s > 0);
 398
 399	/* v(a^(2j)) = v(a^j)^2 */
 400	for (j = 0; j < t; j++)
 401		syn[2*j+1] = gf_sqr(bch, syn[j]);
 402}
 403
 404static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 405{
 406	memcpy(dst, src, GF_POLY_SZ(src->deg));
 407}
 408
 409static int compute_error_locator_polynomial(struct bch_control *bch,
 410					    const unsigned int *syn)
 411{
 412	const unsigned int t = GF_T(bch);
 413	const unsigned int n = GF_N(bch);
 414	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 415	struct gf_poly *elp = bch->elp;
 416	struct gf_poly *pelp = bch->poly_2t[0];
 417	struct gf_poly *elp_copy = bch->poly_2t[1];
 418	int k, pp = -1;
 419
 420	memset(pelp, 0, GF_POLY_SZ(2*t));
 421	memset(elp, 0, GF_POLY_SZ(2*t));
 422
 423	pelp->deg = 0;
 424	pelp->c[0] = 1;
 425	elp->deg = 0;
 426	elp->c[0] = 1;
 427
 428	/* use simplified binary Berlekamp-Massey algorithm */
 429	for (i = 0; (i < t) && (elp->deg <= t); i++) {
 430		if (d) {
 431			k = 2*i-pp;
 432			gf_poly_copy(elp_copy, elp);
 433			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 434			tmp = a_log(bch, d)+n-a_log(bch, pd);
 435			for (j = 0; j <= pelp->deg; j++) {
 436				if (pelp->c[j]) {
 437					l = a_log(bch, pelp->c[j]);
 438					elp->c[j+k] ^= a_pow(bch, tmp+l);
 439				}
 440			}
 441			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 442			tmp = pelp->deg+k;
 443			if (tmp > elp->deg) {
 444				elp->deg = tmp;
 445				gf_poly_copy(pelp, elp_copy);
 446				pd = d;
 447				pp = 2*i;
 448			}
 449		}
 450		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 451		if (i < t-1) {
 452			d = syn[2*i+2];
 453			for (j = 1; j <= elp->deg; j++)
 454				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 455		}
 456	}
 457	dbg("elp=%s\n", gf_poly_str(elp));
 458	return (elp->deg > t) ? -1 : (int)elp->deg;
 459}
 460
 461/*
 462 * solve a m x m linear system in GF(2) with an expected number of solutions,
 463 * and return the number of found solutions
 464 */
 465static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 466			       unsigned int *sol, int nsol)
 467{
 468	const int m = GF_M(bch);
 469	unsigned int tmp, mask;
 470	int rem, c, r, p, k, param[BCH_MAX_M];
 471
 472	k = 0;
 473	mask = 1 << m;
 474
 475	/* Gaussian elimination */
 476	for (c = 0; c < m; c++) {
 477		rem = 0;
 478		p = c-k;
 479		/* find suitable row for elimination */
 480		for (r = p; r < m; r++) {
 481			if (rows[r] & mask) {
 482				if (r != p) {
 483					tmp = rows[r];
 484					rows[r] = rows[p];
 485					rows[p] = tmp;
 486				}
 487				rem = r+1;
 488				break;
 489			}
 490		}
 491		if (rem) {
 492			/* perform elimination on remaining rows */
 493			tmp = rows[p];
 494			for (r = rem; r < m; r++) {
 495				if (rows[r] & mask)
 496					rows[r] ^= tmp;
 497			}
 498		} else {
 499			/* elimination not needed, store defective row index */
 500			param[k++] = c;
 501		}
 502		mask >>= 1;
 503	}
 504	/* rewrite system, inserting fake parameter rows */
 505	if (k > 0) {
 506		p = k;
 507		for (r = m-1; r >= 0; r--) {
 508			if ((r > m-1-k) && rows[r])
 509				/* system has no solution */
 510				return 0;
 511
 512			rows[r] = (p && (r == param[p-1])) ?
 513				p--, 1u << (m-r) : rows[r-p];
 514		}
 515	}
 516
 517	if (nsol != (1 << k))
 518		/* unexpected number of solutions */
 519		return 0;
 520
 521	for (p = 0; p < nsol; p++) {
 522		/* set parameters for p-th solution */
 523		for (c = 0; c < k; c++)
 524			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 525
 526		/* compute unique solution */
 527		tmp = 0;
 528		for (r = m-1; r >= 0; r--) {
 529			mask = rows[r] & (tmp|1);
 530			tmp |= parity(mask) << (m-r);
 531		}
 532		sol[p] = tmp >> 1;
 533	}
 534	return nsol;
 535}
 536
 537/*
 538 * this function builds and solves a linear system for finding roots of a degree
 539 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 540 */
 541static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 542			      unsigned int b, unsigned int c,
 543			      unsigned int *roots)
 544{
 545	int i, j, k;
 546	const int m = GF_M(bch);
 547	unsigned int mask = 0xff, t, rows[16] = {0,};
 548
 549	j = a_log(bch, b);
 550	k = a_log(bch, a);
 551	rows[0] = c;
 552
 553	/* build linear system to solve X^4+aX^2+bX+c = 0 */
 554	for (i = 0; i < m; i++) {
 555		rows[i+1] = bch->a_pow_tab[4*i]^
 556			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 557			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 558		j++;
 559		k += 2;
 560	}
 561	/*
 562	 * transpose 16x16 matrix before passing it to linear solver
 563	 * warning: this code assumes m < 16
 564	 */
 565	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 566		for (k = 0; k < 16; k = (k+j+1) & ~j) {
 567			t = ((rows[k] >> j)^rows[k+j]) & mask;
 568			rows[k] ^= (t << j);
 569			rows[k+j] ^= t;
 570		}
 571	}
 572	return solve_linear_system(bch, rows, roots, 4);
 573}
 574
 575/*
 576 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 577 */
 578static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 579				unsigned int *roots)
 580{
 581	int n = 0;
 582
 583	if (poly->c[0])
 584		/* poly[X] = bX+c with c!=0, root=c/b */
 585		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 586				   bch->a_log_tab[poly->c[1]]);
 587	return n;
 588}
 589
 590/*
 591 * compute roots of a degree 2 polynomial over GF(2^m)
 592 */
 593static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 594				unsigned int *roots)
 595{
 596	int n = 0, i, l0, l1, l2;
 597	unsigned int u, v, r;
 598
 599	if (poly->c[0] && poly->c[1]) {
 600
 601		l0 = bch->a_log_tab[poly->c[0]];
 602		l1 = bch->a_log_tab[poly->c[1]];
 603		l2 = bch->a_log_tab[poly->c[2]];
 604
 605		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 606		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 607		/*
 608		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 609		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 610		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 611		 * i.e. r and r+1 are roots iff Tr(u)=0
 612		 */
 613		r = 0;
 614		v = u;
 615		while (v) {
 616			i = deg(v);
 617			r ^= bch->xi_tab[i];
 618			v ^= (1 << i);
 619		}
 620		/* verify root */
 621		if ((gf_sqr(bch, r)^r) == u) {
 622			/* reverse z=a/bX transformation and compute log(1/r) */
 623			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 624					    bch->a_log_tab[r]+l2);
 625			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 626					    bch->a_log_tab[r^1]+l2);
 627		}
 628	}
 629	return n;
 630}
 631
 632/*
 633 * compute roots of a degree 3 polynomial over GF(2^m)
 634 */
 635static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 636				unsigned int *roots)
 637{
 638	int i, n = 0;
 639	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 640
 641	if (poly->c[0]) {
 642		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 643		e3 = poly->c[3];
 644		c2 = gf_div(bch, poly->c[0], e3);
 645		b2 = gf_div(bch, poly->c[1], e3);
 646		a2 = gf_div(bch, poly->c[2], e3);
 647
 648		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 649		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 650		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 651		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 652
 653		/* find the 4 roots of this affine polynomial */
 654		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 655			/* remove a2 from final list of roots */
 656			for (i = 0; i < 4; i++) {
 657				if (tmp[i] != a2)
 658					roots[n++] = a_ilog(bch, tmp[i]);
 659			}
 660		}
 661	}
 662	return n;
 663}
 664
 665/*
 666 * compute roots of a degree 4 polynomial over GF(2^m)
 667 */
 668static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 669				unsigned int *roots)
 670{
 671	int i, l, n = 0;
 672	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 673
 674	if (poly->c[0] == 0)
 675		return 0;
 676
 677	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 678	e4 = poly->c[4];
 679	d = gf_div(bch, poly->c[0], e4);
 680	c = gf_div(bch, poly->c[1], e4);
 681	b = gf_div(bch, poly->c[2], e4);
 682	a = gf_div(bch, poly->c[3], e4);
 683
 684	/* use Y=1/X transformation to get an affine polynomial */
 685	if (a) {
 686		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
 687		if (c) {
 688			/* compute e such that e^2 = c/a */
 689			f = gf_div(bch, c, a);
 690			l = a_log(bch, f);
 691			l += (l & 1) ? GF_N(bch) : 0;
 692			e = a_pow(bch, l/2);
 693			/*
 694			 * use transformation z=X+e:
 695			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 696			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 697			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 698			 * z^4 + az^3 +     b'z^2 + d'
 699			 */
 700			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 701			b = gf_mul(bch, a, e)^b;
 702		}
 703		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 704		if (d == 0)
 705			/* assume all roots have multiplicity 1 */
 706			return 0;
 707
 708		c2 = gf_inv(bch, d);
 709		b2 = gf_div(bch, a, d);
 710		a2 = gf_div(bch, b, d);
 711	} else {
 712		/* polynomial is already affine */
 713		c2 = d;
 714		b2 = c;
 715		a2 = b;
 716	}
 717	/* find the 4 roots of this affine polynomial */
 718	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 719		for (i = 0; i < 4; i++) {
 720			/* post-process roots (reverse transformations) */
 721			f = a ? gf_inv(bch, roots[i]) : roots[i];
 722			roots[i] = a_ilog(bch, f^e);
 723		}
 724		n = 4;
 725	}
 726	return n;
 727}
 728
 729/*
 730 * build monic, log-based representation of a polynomial
 731 */
 732static void gf_poly_logrep(struct bch_control *bch,
 733			   const struct gf_poly *a, int *rep)
 734{
 735	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 736
 737	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
 738	for (i = 0; i < d; i++)
 739		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 740}
 741
 742/*
 743 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 744 */
 745static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 746			const struct gf_poly *b, int *rep)
 747{
 748	int la, p, m;
 749	unsigned int i, j, *c = a->c;
 750	const unsigned int d = b->deg;
 751
 752	if (a->deg < d)
 753		return;
 754
 755	/* reuse or compute log representation of denominator */
 756	if (!rep) {
 757		rep = bch->cache;
 758		gf_poly_logrep(bch, b, rep);
 759	}
 760
 761	for (j = a->deg; j >= d; j--) {
 762		if (c[j]) {
 763			la = a_log(bch, c[j]);
 764			p = j-d;
 765			for (i = 0; i < d; i++, p++) {
 766				m = rep[i];
 767				if (m >= 0)
 768					c[p] ^= bch->a_pow_tab[mod_s(bch,
 769								     m+la)];
 770			}
 771		}
 772	}
 773	a->deg = d-1;
 774	while (!c[a->deg] && a->deg)
 775		a->deg--;
 776}
 777
 778/*
 779 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 780 */
 781static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 782			const struct gf_poly *b, struct gf_poly *q)
 783{
 784	if (a->deg >= b->deg) {
 785		q->deg = a->deg-b->deg;
 786		/* compute a mod b (modifies a) */
 787		gf_poly_mod(bch, a, b, NULL);
 788		/* quotient is stored in upper part of polynomial a */
 789		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 790	} else {
 791		q->deg = 0;
 792		q->c[0] = 0;
 793	}
 794}
 795
 796/*
 797 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 798 */
 799static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 800				   struct gf_poly *b)
 801{
 802	struct gf_poly *tmp;
 803
 804	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 805
 806	if (a->deg < b->deg) {
 807		tmp = b;
 808		b = a;
 809		a = tmp;
 810	}
 811
 812	while (b->deg > 0) {
 813		gf_poly_mod(bch, a, b, NULL);
 814		tmp = b;
 815		b = a;
 816		a = tmp;
 817	}
 818
 819	dbg("%s\n", gf_poly_str(a));
 820
 821	return a;
 822}
 823
 824/*
 825 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 826 * This is used in Berlekamp Trace algorithm for splitting polynomials
 827 */
 828static void compute_trace_bk_mod(struct bch_control *bch, int k,
 829				 const struct gf_poly *f, struct gf_poly *z,
 830				 struct gf_poly *out)
 831{
 832	const int m = GF_M(bch);
 833	int i, j;
 834
 835	/* z contains z^2j mod f */
 836	z->deg = 1;
 837	z->c[0] = 0;
 838	z->c[1] = bch->a_pow_tab[k];
 839
 840	out->deg = 0;
 841	memset(out, 0, GF_POLY_SZ(f->deg));
 842
 843	/* compute f log representation only once */
 844	gf_poly_logrep(bch, f, bch->cache);
 845
 846	for (i = 0; i < m; i++) {
 847		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 848		for (j = z->deg; j >= 0; j--) {
 849			out->c[j] ^= z->c[j];
 850			z->c[2*j] = gf_sqr(bch, z->c[j]);
 851			z->c[2*j+1] = 0;
 852		}
 853		if (z->deg > out->deg)
 854			out->deg = z->deg;
 855
 856		if (i < m-1) {
 857			z->deg *= 2;
 858			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 859			gf_poly_mod(bch, z, f, bch->cache);
 860		}
 861	}
 862	while (!out->c[out->deg] && out->deg)
 863		out->deg--;
 864
 865	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 866}
 867
 868/*
 869 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 870 */
 871static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 872			      struct gf_poly **g, struct gf_poly **h)
 873{
 874	struct gf_poly *f2 = bch->poly_2t[0];
 875	struct gf_poly *q  = bch->poly_2t[1];
 876	struct gf_poly *tk = bch->poly_2t[2];
 877	struct gf_poly *z  = bch->poly_2t[3];
 878	struct gf_poly *gcd;
 879
 880	dbg("factoring %s...\n", gf_poly_str(f));
 881
 882	*g = f;
 883	*h = NULL;
 884
 885	/* tk = Tr(a^k.X) mod f */
 886	compute_trace_bk_mod(bch, k, f, z, tk);
 887
 888	if (tk->deg > 0) {
 889		/* compute g = gcd(f, tk) (destructive operation) */
 890		gf_poly_copy(f2, f);
 891		gcd = gf_poly_gcd(bch, f2, tk);
 892		if (gcd->deg < f->deg) {
 893			/* compute h=f/gcd(f,tk); this will modify f and q */
 894			gf_poly_div(bch, f, gcd, q);
 895			/* store g and h in-place (clobbering f) */
 896			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 897			gf_poly_copy(*g, gcd);
 898			gf_poly_copy(*h, q);
 899		}
 900	}
 901}
 902
 903/*
 904 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 905 * file for details
 906 */
 907static int find_poly_roots(struct bch_control *bch, unsigned int k,
 908			   struct gf_poly *poly, unsigned int *roots)
 909{
 910	int cnt;
 911	struct gf_poly *f1, *f2;
 912
 913	switch (poly->deg) {
 914		/* handle low degree polynomials with ad hoc techniques */
 915	case 1:
 916		cnt = find_poly_deg1_roots(bch, poly, roots);
 917		break;
 918	case 2:
 919		cnt = find_poly_deg2_roots(bch, poly, roots);
 920		break;
 921	case 3:
 922		cnt = find_poly_deg3_roots(bch, poly, roots);
 923		break;
 924	case 4:
 925		cnt = find_poly_deg4_roots(bch, poly, roots);
 926		break;
 927	default:
 928		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 929		cnt = 0;
 930		if (poly->deg && (k <= GF_M(bch))) {
 931			factor_polynomial(bch, k, poly, &f1, &f2);
 932			if (f1)
 933				cnt += find_poly_roots(bch, k+1, f1, roots);
 934			if (f2)
 935				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 936		}
 937		break;
 938	}
 939	return cnt;
 940}
 941
 942#if defined(USE_CHIEN_SEARCH)
 943/*
 944 * exhaustive root search (Chien) implementation - not used, included only for
 945 * reference/comparison tests
 946 */
 947static int chien_search(struct bch_control *bch, unsigned int len,
 948			struct gf_poly *p, unsigned int *roots)
 949{
 950	int m;
 951	unsigned int i, j, syn, syn0, count = 0;
 952	const unsigned int k = 8*len+bch->ecc_bits;
 953
 954	/* use a log-based representation of polynomial */
 955	gf_poly_logrep(bch, p, bch->cache);
 956	bch->cache[p->deg] = 0;
 957	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 958
 959	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 960		/* compute elp(a^i) */
 961		for (j = 1, syn = syn0; j <= p->deg; j++) {
 962			m = bch->cache[j];
 963			if (m >= 0)
 964				syn ^= a_pow(bch, m+j*i);
 965		}
 966		if (syn == 0) {
 967			roots[count++] = GF_N(bch)-i;
 968			if (count == p->deg)
 969				break;
 970		}
 971	}
 972	return (count == p->deg) ? count : 0;
 973}
 974#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 975#endif /* USE_CHIEN_SEARCH */
 976
 977/**
 978 * bch_decode - decode received codeword and find bit error locations
 979 * @bch:      BCH control structure
 980 * @data:     received data, ignored if @calc_ecc is provided
 981 * @len:      data length in bytes, must always be provided
 982 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 983 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
 984 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
 985 * @errloc:   output array of error locations
 986 *
 987 * Returns:
 988 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
 989 *  invalid parameters were provided
 990 *
 991 * Depending on the available hw BCH support and the need to compute @calc_ecc
 992 * separately (using bch_encode()), this function should be called with one of
 993 * the following parameter configurations -
 994 *
 995 * by providing @data and @recv_ecc only:
 996 *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
 997 *
 998 * by providing @recv_ecc and @calc_ecc:
 999 *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1000 *
1001 * by providing ecc = recv_ecc XOR calc_ecc:
1002 *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1003 *
1004 * by providing syndrome results @syn:
1005 *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1006 *
1007 * Once bch_decode() has successfully returned with a positive value, error
1008 * locations returned in array @errloc should be interpreted as follows -
1009 *
1010 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1011 * data correction)
1012 *
1013 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1014 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1015 *
1016 * Note that this function does not perform any data correction by itself, it
1017 * merely indicates error locations.
1018 */
1019int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
1020	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1021	       const unsigned int *syn, unsigned int *errloc)
1022{
1023	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1024	unsigned int nbits;
1025	int i, err, nroots;
1026	uint32_t sum;
1027
1028	/* sanity check: make sure data length can be handled */
1029	if (8*len > (bch->n-bch->ecc_bits))
1030		return -EINVAL;
1031
1032	/* if caller does not provide syndromes, compute them */
1033	if (!syn) {
1034		if (!calc_ecc) {
1035			/* compute received data ecc into an internal buffer */
1036			if (!data || !recv_ecc)
1037				return -EINVAL;
1038			bch_encode(bch, data, len, NULL);
1039		} else {
1040			/* load provided calculated ecc */
1041			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1042		}
1043		/* load received ecc or assume it was XORed in calc_ecc */
1044		if (recv_ecc) {
1045			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1046			/* XOR received and calculated ecc */
1047			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1048				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1049				sum |= bch->ecc_buf[i];
1050			}
1051			if (!sum)
1052				/* no error found */
1053				return 0;
1054		}
1055		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1056		syn = bch->syn;
1057	}
1058
1059	err = compute_error_locator_polynomial(bch, syn);
1060	if (err > 0) {
1061		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1062		if (err != nroots)
1063			err = -1;
1064	}
1065	if (err > 0) {
1066		/* post-process raw error locations for easier correction */
1067		nbits = (len*8)+bch->ecc_bits;
1068		for (i = 0; i < err; i++) {
1069			if (errloc[i] >= nbits) {
1070				err = -1;
1071				break;
1072			}
1073			errloc[i] = nbits-1-errloc[i];
1074			if (!bch->swap_bits)
1075				errloc[i] = (errloc[i] & ~7) |
1076					    (7-(errloc[i] & 7));
1077		}
1078	}
1079	return (err >= 0) ? err : -EBADMSG;
1080}
1081EXPORT_SYMBOL_GPL(bch_decode);
1082
1083/*
1084 * generate Galois field lookup tables
1085 */
1086static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1087{
1088	unsigned int i, x = 1;
1089	const unsigned int k = 1 << deg(poly);
1090
1091	/* primitive polynomial must be of degree m */
1092	if (k != (1u << GF_M(bch)))
1093		return -1;
1094
1095	for (i = 0; i < GF_N(bch); i++) {
1096		bch->a_pow_tab[i] = x;
1097		bch->a_log_tab[x] = i;
1098		if (i && (x == 1))
1099			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1100			return -1;
1101		x <<= 1;
1102		if (x & k)
1103			x ^= poly;
1104	}
1105	bch->a_pow_tab[GF_N(bch)] = 1;
1106	bch->a_log_tab[0] = 0;
1107
1108	return 0;
1109}
1110
1111/*
1112 * compute generator polynomial remainder tables for fast encoding
1113 */
1114static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1115{
1116	int i, j, b, d;
1117	uint32_t data, hi, lo, *tab;
1118	const int l = BCH_ECC_WORDS(bch);
1119	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1120	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1121
1122	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1123
1124	for (i = 0; i < 256; i++) {
1125		/* p(X)=i is a small polynomial of weight <= 8 */
1126		for (b = 0; b < 4; b++) {
1127			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1128			tab = bch->mod8_tab + (b*256+i)*l;
1129			data = i << (8*b);
1130			while (data) {
1131				d = deg(data);
1132				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1133				data ^= g[0] >> (31-d);
1134				for (j = 0; j < ecclen; j++) {
1135					hi = (d < 31) ? g[j] << (d+1) : 0;
1136					lo = (j+1 < plen) ?
1137						g[j+1] >> (31-d) : 0;
1138					tab[j] ^= hi|lo;
1139				}
1140			}
1141		}
1142	}
1143}
1144
1145/*
1146 * build a base for factoring degree 2 polynomials
1147 */
1148static int build_deg2_base(struct bch_control *bch)
1149{
1150	const int m = GF_M(bch);
1151	int i, j, r;
1152	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1153
1154	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1155	for (i = 0; i < m; i++) {
1156		for (j = 0, sum = 0; j < m; j++)
1157			sum ^= a_pow(bch, i*(1 << j));
1158
1159		if (sum) {
1160			ak = bch->a_pow_tab[i];
1161			break;
1162		}
1163	}
1164	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1165	remaining = m;
1166	memset(xi, 0, sizeof(xi));
1167
1168	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1169		y = gf_sqr(bch, x)^x;
1170		for (i = 0; i < 2; i++) {
1171			r = a_log(bch, y);
1172			if (y && (r < m) && !xi[r]) {
1173				bch->xi_tab[r] = x;
1174				xi[r] = 1;
1175				remaining--;
1176				dbg("x%d = %x\n", r, x);
1177				break;
1178			}
1179			y ^= ak;
1180		}
1181	}
1182	/* should not happen but check anyway */
1183	return remaining ? -1 : 0;
1184}
1185
1186static void *bch_alloc(size_t size, int *err)
1187{
1188	void *ptr;
1189
1190	ptr = kmalloc(size, GFP_KERNEL);
1191	if (ptr == NULL)
1192		*err = 1;
1193	return ptr;
1194}
1195
1196/*
1197 * compute generator polynomial for given (m,t) parameters.
1198 */
1199static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1200{
1201	const unsigned int m = GF_M(bch);
1202	const unsigned int t = GF_T(bch);
1203	int n, err = 0;
1204	unsigned int i, j, nbits, r, word, *roots;
1205	struct gf_poly *g;
1206	uint32_t *genpoly;
1207
1208	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1209	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1210	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1211
1212	if (err) {
1213		kfree(genpoly);
1214		genpoly = NULL;
1215		goto finish;
1216	}
1217
1218	/* enumerate all roots of g(X) */
1219	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1220	for (i = 0; i < t; i++) {
1221		for (j = 0, r = 2*i+1; j < m; j++) {
1222			roots[r] = 1;
1223			r = mod_s(bch, 2*r);
1224		}
1225	}
1226	/* build generator polynomial g(X) */
1227	g->deg = 0;
1228	g->c[0] = 1;
1229	for (i = 0; i < GF_N(bch); i++) {
1230		if (roots[i]) {
1231			/* multiply g(X) by (X+root) */
1232			r = bch->a_pow_tab[i];
1233			g->c[g->deg+1] = 1;
1234			for (j = g->deg; j > 0; j--)
1235				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1236
1237			g->c[0] = gf_mul(bch, g->c[0], r);
1238			g->deg++;
1239		}
1240	}
1241	/* store left-justified binary representation of g(X) */
1242	n = g->deg+1;
1243	i = 0;
1244
1245	while (n > 0) {
1246		nbits = (n > 32) ? 32 : n;
1247		for (j = 0, word = 0; j < nbits; j++) {
1248			if (g->c[n-1-j])
1249				word |= 1u << (31-j);
1250		}
1251		genpoly[i++] = word;
1252		n -= nbits;
1253	}
1254	bch->ecc_bits = g->deg;
1255
1256finish:
1257	kfree(g);
1258	kfree(roots);
1259
1260	return genpoly;
1261}
1262
1263/**
1264 * bch_init - initialize a BCH encoder/decoder
1265 * @m:          Galois field order, should be in the range 5-15
1266 * @t:          maximum error correction capability, in bits
1267 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1268 * @swap_bits:  swap bits within data and syndrome bytes
1269 *
1270 * Returns:
1271 *  a newly allocated BCH control structure if successful, NULL otherwise
1272 *
1273 * This initialization can take some time, as lookup tables are built for fast
1274 * encoding/decoding; make sure not to call this function from a time critical
1275 * path. Usually, bch_init() should be called on module/driver init and
1276 * bch_free() should be called to release memory on exit.
1277 *
1278 * You may provide your own primitive polynomial of degree @m in argument
1279 * @prim_poly, or let bch_init() use its default polynomial.
1280 *
1281 * Once bch_init() has successfully returned a pointer to a newly allocated
1282 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1283 * the structure.
1284 */
1285struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
1286			     bool swap_bits)
1287{
1288	int err = 0;
1289	unsigned int i, words;
1290	uint32_t *genpoly;
1291	struct bch_control *bch = NULL;
1292
1293	const int min_m = 5;
 
1294
1295	/* default primitive polynomials */
1296	static const unsigned int prim_poly_tab[] = {
1297		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1298		0x402b, 0x8003,
1299	};
1300
1301#if defined(CONFIG_BCH_CONST_PARAMS)
1302	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1303		printk(KERN_ERR "bch encoder/decoder was configured to support "
1304		       "parameters m=%d, t=%d only!\n",
1305		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1306		goto fail;
1307	}
1308#endif
1309	if ((m < min_m) || (m > BCH_MAX_M))
1310		/*
1311		 * values of m greater than 15 are not currently supported;
1312		 * supporting m > 15 would require changing table base type
1313		 * (uint16_t) and a small patch in matrix transposition
1314		 */
1315		goto fail;
1316
1317	if (t > BCH_MAX_T)
1318		/*
1319		 * we can support larger than 64 bits if necessary, at the
1320		 * cost of higher stack usage.
1321		 */
1322		goto fail;
1323
1324	/* sanity checks */
1325	if ((t < 1) || (m*t >= ((1 << m)-1)))
1326		/* invalid t value */
1327		goto fail;
1328
1329	/* select a primitive polynomial for generating GF(2^m) */
1330	if (prim_poly == 0)
1331		prim_poly = prim_poly_tab[m-min_m];
1332
1333	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1334	if (bch == NULL)
1335		goto fail;
1336
1337	bch->m = m;
1338	bch->t = t;
1339	bch->n = (1 << m)-1;
1340	words  = DIV_ROUND_UP(m*t, 32);
1341	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1342	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1343	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1344	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1345	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1346	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1347	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1348	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1349	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1350	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1351	bch->swap_bits = swap_bits;
1352
1353	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1354		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1355
1356	if (err)
1357		goto fail;
1358
1359	err = build_gf_tables(bch, prim_poly);
1360	if (err)
1361		goto fail;
1362
1363	/* use generator polynomial for computing encoding tables */
1364	genpoly = compute_generator_polynomial(bch);
1365	if (genpoly == NULL)
1366		goto fail;
1367
1368	build_mod8_tables(bch, genpoly);
1369	kfree(genpoly);
1370
1371	err = build_deg2_base(bch);
1372	if (err)
1373		goto fail;
1374
1375	return bch;
1376
1377fail:
1378	bch_free(bch);
1379	return NULL;
1380}
1381EXPORT_SYMBOL_GPL(bch_init);
1382
1383/**
1384 *  bch_free - free the BCH control structure
1385 *  @bch:    BCH control structure to release
1386 */
1387void bch_free(struct bch_control *bch)
1388{
1389	unsigned int i;
1390
1391	if (bch) {
1392		kfree(bch->a_pow_tab);
1393		kfree(bch->a_log_tab);
1394		kfree(bch->mod8_tab);
1395		kfree(bch->ecc_buf);
1396		kfree(bch->ecc_buf2);
1397		kfree(bch->xi_tab);
1398		kfree(bch->syn);
1399		kfree(bch->cache);
1400		kfree(bch->elp);
1401
1402		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1403			kfree(bch->poly_2t[i]);
1404
1405		kfree(bch);
1406	}
1407}
1408EXPORT_SYMBOL_GPL(bch_free);
1409
1410MODULE_LICENSE("GPL");
1411MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1412MODULE_DESCRIPTION("Binary BCH encoder/decoder");