Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018-2020 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/scatterlist.h>
 12#include <linux/pfn.h>
 13#include <linux/vmalloc.h>
 14#include <linux/set_memory.h>
 15#include <linux/slab.h>
 16#include "direct.h"
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20 * it for entirely different regions. In that case the arch code needs to
 21 * override the variable below for dma-direct to work properly.
 22 */
 23unsigned int zone_dma_bits __ro_after_init = 24;
 24
 25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26		phys_addr_t phys)
 27{
 28	if (force_dma_unencrypted(dev))
 29		return phys_to_dma_unencrypted(dev, phys);
 30	return phys_to_dma(dev, phys);
 31}
 32
 33static inline struct page *dma_direct_to_page(struct device *dev,
 34		dma_addr_t dma_addr)
 35{
 36	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37}
 38
 39u64 dma_direct_get_required_mask(struct device *dev)
 40{
 41	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42	u64 max_dma = phys_to_dma_direct(dev, phys);
 43
 44	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45}
 46
 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
 48{
 49	u64 dma_limit = min_not_zero(
 50		dev->coherent_dma_mask,
 51		dev->bus_dma_limit);
 52
 53	/*
 54	 * Optimistically try the zone that the physical address mask falls
 55	 * into first.  If that returns memory that isn't actually addressable
 56	 * we will fallback to the next lower zone and try again.
 57	 *
 58	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59	 * zones.
 60	 */
 61	*phys_limit = dma_to_phys(dev, dma_limit);
 62	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63		return GFP_DMA;
 64	if (*phys_limit <= DMA_BIT_MASK(32))
 65		return GFP_DMA32;
 66	return 0;
 67}
 68
 69bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70{
 71	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72
 73	if (dma_addr == DMA_MAPPING_ERROR)
 74		return false;
 75	return dma_addr + size - 1 <=
 76		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77}
 78
 79static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 80{
 81	if (!force_dma_unencrypted(dev))
 82		return 0;
 83	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 84}
 85
 86static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 87{
 88	int ret;
 89
 90	if (!force_dma_unencrypted(dev))
 91		return 0;
 92	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 93	if (ret)
 94		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 95	return ret;
 96}
 97
 98static void __dma_direct_free_pages(struct device *dev, struct page *page,
 99				    size_t size)
100{
101	if (swiotlb_free(dev, page, size))
102		return;
103	dma_free_contiguous(dev, page, size);
104}
105
106static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107{
108	struct page *page = swiotlb_alloc(dev, size);
109
110	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111		swiotlb_free(dev, page, size);
112		return NULL;
113	}
114
115	return page;
116}
117
118static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119		gfp_t gfp, bool allow_highmem)
120{
121	int node = dev_to_node(dev);
122	struct page *page = NULL;
123	u64 phys_limit;
124
125	WARN_ON_ONCE(!PAGE_ALIGNED(size));
126
127	if (is_swiotlb_for_alloc(dev))
128		return dma_direct_alloc_swiotlb(dev, size);
129
130	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131	page = dma_alloc_contiguous(dev, size, gfp);
132	if (page) {
133		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134		    (!allow_highmem && PageHighMem(page))) {
135			dma_free_contiguous(dev, page, size);
136			page = NULL;
137		}
138	}
139again:
140	if (!page)
141		page = alloc_pages_node(node, gfp, get_order(size));
142	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143		dma_free_contiguous(dev, page, size);
144		page = NULL;
145
146		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147		    phys_limit < DMA_BIT_MASK(64) &&
148		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149			gfp |= GFP_DMA32;
150			goto again;
151		}
152
153		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155			goto again;
156		}
157	}
158
159	return page;
160}
161
162/*
163 * Check if a potentially blocking operations needs to dip into the atomic
164 * pools for the given device/gfp.
165 */
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172		dma_addr_t *dma_handle, gfp_t gfp)
173{
174	struct page *page;
175	u64 phys_limit;
176	void *ret;
177
178	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179		return NULL;
180
181	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183	if (!page)
184		return NULL;
185	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186	return ret;
187}
188
189static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190		dma_addr_t *dma_handle, gfp_t gfp)
191{
192	struct page *page;
193
194	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195	if (!page)
196		return NULL;
197
198	/* remove any dirty cache lines on the kernel alias */
199	if (!PageHighMem(page))
200		arch_dma_prep_coherent(page, size);
201
202	/* return the page pointer as the opaque cookie */
203	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204	return page;
205}
206
207void *dma_direct_alloc(struct device *dev, size_t size,
208		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209{
210	bool remap = false, set_uncached = false;
211	struct page *page;
212	void *ret;
213
214	size = PAGE_ALIGN(size);
215	if (attrs & DMA_ATTR_NO_WARN)
216		gfp |= __GFP_NOWARN;
217
218	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221
222	if (!dev_is_dma_coherent(dev)) {
223		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
224		    !is_swiotlb_for_alloc(dev))
225			return arch_dma_alloc(dev, size, dma_handle, gfp,
226					      attrs);
227
228		/*
229		 * If there is a global pool, always allocate from it for
230		 * non-coherent devices.
231		 */
232		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233			return dma_alloc_from_global_coherent(dev, size,
234					dma_handle);
235
236		/*
237		 * Otherwise we require the architecture to either be able to
238		 * mark arbitrary parts of the kernel direct mapping uncached,
239		 * or remapped it uncached.
240		 */
241		set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
242		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
243		if (!set_uncached && !remap) {
244			pr_warn_once("coherent DMA allocations not supported on this platform.\n");
245			return NULL;
246		}
247	}
248
249	/*
250	 * Remapping or decrypting memory may block, allocate the memory from
251	 * the atomic pools instead if we aren't allowed block.
252	 */
253	if ((remap || force_dma_unencrypted(dev)) &&
254	    dma_direct_use_pool(dev, gfp))
255		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256
257	/* we always manually zero the memory once we are done */
258	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
259	if (!page)
260		return NULL;
261
262	/*
263	 * dma_alloc_contiguous can return highmem pages depending on a
264	 * combination the cma= arguments and per-arch setup.  These need to be
265	 * remapped to return a kernel virtual address.
266	 */
267	if (PageHighMem(page)) {
268		remap = true;
269		set_uncached = false;
270	}
271
272	if (remap) {
273		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
274
275		if (force_dma_unencrypted(dev))
276			prot = pgprot_decrypted(prot);
277
278		/* remove any dirty cache lines on the kernel alias */
279		arch_dma_prep_coherent(page, size);
280
281		/* create a coherent mapping */
282		ret = dma_common_contiguous_remap(page, size, prot,
283				__builtin_return_address(0));
284		if (!ret)
285			goto out_free_pages;
286	} else {
287		ret = page_address(page);
288		if (dma_set_decrypted(dev, ret, size))
289			goto out_free_pages;
290	}
291
292	memset(ret, 0, size);
293
294	if (set_uncached) {
295		arch_dma_prep_coherent(page, size);
296		ret = arch_dma_set_uncached(ret, size);
297		if (IS_ERR(ret))
298			goto out_encrypt_pages;
299	}
300
301	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302	return ret;
303
304out_encrypt_pages:
305	if (dma_set_encrypted(dev, page_address(page), size))
306		return NULL;
307out_free_pages:
308	__dma_direct_free_pages(dev, page, size);
309	return NULL;
310}
311
312void dma_direct_free(struct device *dev, size_t size,
313		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
314{
315	unsigned int page_order = get_order(size);
316
317	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
318	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
319		/* cpu_addr is a struct page cookie, not a kernel address */
320		dma_free_contiguous(dev, cpu_addr, size);
321		return;
322	}
323
324	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
325	    !dev_is_dma_coherent(dev) &&
326	    !is_swiotlb_for_alloc(dev)) {
327		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
328		return;
329	}
330
331	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
332	    !dev_is_dma_coherent(dev)) {
333		if (!dma_release_from_global_coherent(page_order, cpu_addr))
334			WARN_ON_ONCE(1);
335		return;
336	}
337
338	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
339	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
340	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
341		return;
342
343	if (is_vmalloc_addr(cpu_addr)) {
344		vunmap(cpu_addr);
345	} else {
346		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
347			arch_dma_clear_uncached(cpu_addr, size);
348		if (dma_set_encrypted(dev, cpu_addr, size))
349			return;
350	}
351
352	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
353}
354
355struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
356		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
357{
358	struct page *page;
359	void *ret;
360
361	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
362		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
363
364	page = __dma_direct_alloc_pages(dev, size, gfp, false);
365	if (!page)
366		return NULL;
367
368	ret = page_address(page);
369	if (dma_set_decrypted(dev, ret, size))
370		goto out_free_pages;
371	memset(ret, 0, size);
372	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
373	return page;
374out_free_pages:
375	__dma_direct_free_pages(dev, page, size);
376	return NULL;
377}
378
379void dma_direct_free_pages(struct device *dev, size_t size,
380		struct page *page, dma_addr_t dma_addr,
381		enum dma_data_direction dir)
382{
383	void *vaddr = page_address(page);
384
385	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
386	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
387	    dma_free_from_pool(dev, vaddr, size))
388		return;
389
390	if (dma_set_encrypted(dev, vaddr, size))
391		return;
392	__dma_direct_free_pages(dev, page, size);
393}
394
395#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
396    defined(CONFIG_SWIOTLB)
397void dma_direct_sync_sg_for_device(struct device *dev,
398		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
399{
400	struct scatterlist *sg;
401	int i;
402
403	for_each_sg(sgl, sg, nents, i) {
404		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
405
406		if (unlikely(is_swiotlb_buffer(dev, paddr)))
407			swiotlb_sync_single_for_device(dev, paddr, sg->length,
408						       dir);
409
410		if (!dev_is_dma_coherent(dev))
411			arch_sync_dma_for_device(paddr, sg->length,
412					dir);
413	}
414}
415#endif
416
417#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
418    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
419    defined(CONFIG_SWIOTLB)
420void dma_direct_sync_sg_for_cpu(struct device *dev,
421		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
422{
423	struct scatterlist *sg;
424	int i;
425
426	for_each_sg(sgl, sg, nents, i) {
427		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
428
429		if (!dev_is_dma_coherent(dev))
430			arch_sync_dma_for_cpu(paddr, sg->length, dir);
431
432		if (unlikely(is_swiotlb_buffer(dev, paddr)))
433			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
434						    dir);
435
436		if (dir == DMA_FROM_DEVICE)
437			arch_dma_mark_clean(paddr, sg->length);
438	}
439
440	if (!dev_is_dma_coherent(dev))
441		arch_sync_dma_for_cpu_all();
442}
443
444/*
445 * Unmaps segments, except for ones marked as pci_p2pdma which do not
446 * require any further action as they contain a bus address.
447 */
448void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
449		int nents, enum dma_data_direction dir, unsigned long attrs)
450{
451	struct scatterlist *sg;
452	int i;
453
454	for_each_sg(sgl,  sg, nents, i) {
455		if (sg_dma_is_bus_address(sg))
456			sg_dma_unmark_bus_address(sg);
457		else
458			dma_direct_unmap_page(dev, sg->dma_address,
459					      sg_dma_len(sg), dir, attrs);
460	}
461}
462#endif
463
464int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
465		enum dma_data_direction dir, unsigned long attrs)
466{
467	struct pci_p2pdma_map_state p2pdma_state = {};
468	enum pci_p2pdma_map_type map;
469	struct scatterlist *sg;
470	int i, ret;
471
472	for_each_sg(sgl, sg, nents, i) {
473		if (is_pci_p2pdma_page(sg_page(sg))) {
474			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
475			switch (map) {
476			case PCI_P2PDMA_MAP_BUS_ADDR:
477				continue;
478			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
479				/*
480				 * Any P2P mapping that traverses the PCI
481				 * host bridge must be mapped with CPU physical
482				 * address and not PCI bus addresses. This is
483				 * done with dma_direct_map_page() below.
484				 */
485				break;
486			default:
487				ret = -EREMOTEIO;
488				goto out_unmap;
489			}
490		}
491
492		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
493				sg->offset, sg->length, dir, attrs);
494		if (sg->dma_address == DMA_MAPPING_ERROR) {
495			ret = -EIO;
496			goto out_unmap;
497		}
498		sg_dma_len(sg) = sg->length;
499	}
500
501	return nents;
502
503out_unmap:
504	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
505	return ret;
506}
507
508dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
509		size_t size, enum dma_data_direction dir, unsigned long attrs)
510{
511	dma_addr_t dma_addr = paddr;
512
513	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
514		dev_err_once(dev,
515			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
516			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
517		WARN_ON_ONCE(1);
518		return DMA_MAPPING_ERROR;
519	}
520
521	return dma_addr;
522}
523
524int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
525		void *cpu_addr, dma_addr_t dma_addr, size_t size,
526		unsigned long attrs)
527{
528	struct page *page = dma_direct_to_page(dev, dma_addr);
529	int ret;
530
531	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
532	if (!ret)
533		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
534	return ret;
535}
536
537bool dma_direct_can_mmap(struct device *dev)
538{
539	return dev_is_dma_coherent(dev) ||
540		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
541}
542
543int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
544		void *cpu_addr, dma_addr_t dma_addr, size_t size,
545		unsigned long attrs)
546{
547	unsigned long user_count = vma_pages(vma);
548	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
549	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
550	int ret = -ENXIO;
551
552	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
553	if (force_dma_unencrypted(dev))
554		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
555
556	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
557		return ret;
558	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
559		return ret;
560
561	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
562		return -ENXIO;
563	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
564			user_count << PAGE_SHIFT, vma->vm_page_prot);
565}
566
567int dma_direct_supported(struct device *dev, u64 mask)
568{
569	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
570
571	/*
572	 * Because 32-bit DMA masks are so common we expect every architecture
573	 * to be able to satisfy them - either by not supporting more physical
574	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
575	 * architecture needs to use an IOMMU instead of the direct mapping.
576	 */
577	if (mask >= DMA_BIT_MASK(32))
578		return 1;
579
580	/*
581	 * This check needs to be against the actual bit mask value, so use
582	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
583	 * part of the check.
584	 */
585	if (IS_ENABLED(CONFIG_ZONE_DMA))
586		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
587	return mask >= phys_to_dma_unencrypted(dev, min_mask);
588}
589
590/*
591 * To check whether all ram resource ranges are covered by dma range map
592 * Returns 0 when further check is needed
593 * Returns 1 if there is some RAM range can't be covered by dma_range_map
594 */
595static int check_ram_in_range_map(unsigned long start_pfn,
596				  unsigned long nr_pages, void *data)
597{
598	unsigned long end_pfn = start_pfn + nr_pages;
599	const struct bus_dma_region *bdr = NULL;
600	const struct bus_dma_region *m;
601	struct device *dev = data;
602
603	while (start_pfn < end_pfn) {
604		for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
605			unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
606
607			if (start_pfn >= cpu_start_pfn &&
608			    start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
609				bdr = m;
610				break;
611			}
612		}
613		if (!bdr)
614			return 1;
615
616		start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
617	}
618
619	return 0;
620}
621
622bool dma_direct_all_ram_mapped(struct device *dev)
623{
624	if (!dev->dma_range_map)
625		return true;
626	return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
627				      check_ram_in_range_map);
628}
629
630size_t dma_direct_max_mapping_size(struct device *dev)
631{
632	/* If SWIOTLB is active, use its maximum mapping size */
633	if (is_swiotlb_active(dev) &&
634	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
635		return swiotlb_max_mapping_size(dev);
636	return SIZE_MAX;
637}
638
639bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
640{
641	return !dev_is_dma_coherent(dev) ||
642	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
643}
644
645/**
646 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
647 * @dev:	device pointer; needed to "own" the alloced memory.
648 * @cpu_start:  beginning of memory region covered by this offset.
649 * @dma_start:  beginning of DMA/PCI region covered by this offset.
650 * @size:	size of the region.
651 *
652 * This is for the simple case of a uniform offset which cannot
653 * be discovered by "dma-ranges".
654 *
655 * It returns -ENOMEM if out of memory, -EINVAL if a map
656 * already exists, 0 otherwise.
657 *
658 * Note: any call to this from a driver is a bug.  The mapping needs
659 * to be described by the device tree or other firmware interfaces.
660 */
661int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
662			 dma_addr_t dma_start, u64 size)
663{
664	struct bus_dma_region *map;
665	u64 offset = (u64)cpu_start - (u64)dma_start;
666
667	if (dev->dma_range_map) {
668		dev_err(dev, "attempt to add DMA range to existing map\n");
669		return -EINVAL;
670	}
671
672	if (!offset)
673		return 0;
674
675	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
676	if (!map)
677		return -ENOMEM;
678	map[0].cpu_start = cpu_start;
679	map[0].dma_start = dma_start;
680	map[0].size = size;
681	dev->dma_range_map = map;
682	return 0;
683}