Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* bpf/cpumap.c
  3 *
  4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
  5 */
  6
  7/**
  8 * DOC: cpu map
  9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper
 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
 11 *
 12 * Unlike devmap which redirects XDP frames out to another NIC device,
 13 * this map type redirects raw XDP frames to another CPU.  The remote
 14 * CPU will do SKB-allocation and call the normal network stack.
 15 */
 16/*
 17 * This is a scalability and isolation mechanism, that allow
 18 * separating the early driver network XDP layer, from the rest of the
 19 * netstack, and assigning dedicated CPUs for this stage.  This
 20 * basically allows for 10G wirespeed pre-filtering via bpf.
 21 */
 22#include <linux/bitops.h>
 23#include <linux/bpf.h>
 24#include <linux/filter.h>
 25#include <linux/ptr_ring.h>
 26#include <net/xdp.h>
 27
 28#include <linux/sched.h>
 29#include <linux/workqueue.h>
 30#include <linux/kthread.h>
 31#include <linux/completion.h>
 32#include <trace/events/xdp.h>
 33#include <linux/btf_ids.h>
 34
 35#include <linux/netdevice.h>   /* netif_receive_skb_list */
 36#include <linux/etherdevice.h> /* eth_type_trans */
 37
 38/* General idea: XDP packets getting XDP redirected to another CPU,
 39 * will maximum be stored/queued for one driver ->poll() call.  It is
 40 * guaranteed that queueing the frame and the flush operation happen on
 41 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
 42 * which queue in bpf_cpu_map_entry contains packets.
 43 */
 44
 45#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
 46struct bpf_cpu_map_entry;
 47struct bpf_cpu_map;
 48
 49struct xdp_bulk_queue {
 50	void *q[CPU_MAP_BULK_SIZE];
 51	struct list_head flush_node;
 52	struct bpf_cpu_map_entry *obj;
 53	unsigned int count;
 54};
 55
 56/* Struct for every remote "destination" CPU in map */
 57struct bpf_cpu_map_entry {
 58	u32 cpu;    /* kthread CPU and map index */
 59	int map_id; /* Back reference to map */
 60
 61	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
 62	struct xdp_bulk_queue __percpu *bulkq;
 63
 64	/* Queue with potential multi-producers, and single-consumer kthread */
 65	struct ptr_ring *queue;
 66	struct task_struct *kthread;
 67
 68	struct bpf_cpumap_val value;
 69	struct bpf_prog *prog;
 70
 71	struct completion kthread_running;
 72	struct rcu_work free_work;
 73};
 74
 75struct bpf_cpu_map {
 76	struct bpf_map map;
 77	/* Below members specific for map type */
 78	struct bpf_cpu_map_entry __rcu **cpu_map;
 79};
 80
 81static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
 82
 83static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
 84{
 85	u32 value_size = attr->value_size;
 86	struct bpf_cpu_map *cmap;
 87
 88	/* check sanity of attributes */
 89	if (attr->max_entries == 0 || attr->key_size != 4 ||
 90	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
 91	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
 92	    attr->map_flags & ~BPF_F_NUMA_NODE)
 93		return ERR_PTR(-EINVAL);
 94
 95	/* Pre-limit array size based on NR_CPUS, not final CPU check */
 96	if (attr->max_entries > NR_CPUS)
 97		return ERR_PTR(-E2BIG);
 98
 99	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
100	if (!cmap)
101		return ERR_PTR(-ENOMEM);
102
103	bpf_map_init_from_attr(&cmap->map, attr);
104
105	/* Alloc array for possible remote "destination" CPUs */
106	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
107					   sizeof(struct bpf_cpu_map_entry *),
108					   cmap->map.numa_node);
109	if (!cmap->cpu_map) {
110		bpf_map_area_free(cmap);
111		return ERR_PTR(-ENOMEM);
112	}
113
114	return &cmap->map;
115}
116
117static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
118{
119	/* The tear-down procedure should have made sure that queue is
120	 * empty.  See __cpu_map_entry_replace() and work-queue
121	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
122	 * gracefully and warn once.
123	 */
124	void *ptr;
125
126	while ((ptr = ptr_ring_consume(ring))) {
127		WARN_ON_ONCE(1);
128		if (unlikely(__ptr_test_bit(0, &ptr))) {
129			__ptr_clear_bit(0, &ptr);
130			kfree_skb(ptr);
131			continue;
132		}
133		xdp_return_frame(ptr);
134	}
135}
136
137static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
138				     struct list_head *listp,
139				     struct xdp_cpumap_stats *stats)
140{
141	struct sk_buff *skb, *tmp;
142	struct xdp_buff xdp;
143	u32 act;
144	int err;
145
146	list_for_each_entry_safe(skb, tmp, listp, list) {
147		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
148		switch (act) {
149		case XDP_PASS:
150			break;
151		case XDP_REDIRECT:
152			skb_list_del_init(skb);
153			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
154						      rcpu->prog);
155			if (unlikely(err)) {
156				kfree_skb(skb);
157				stats->drop++;
158			} else {
159				stats->redirect++;
160			}
161			return;
162		default:
163			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
164			fallthrough;
165		case XDP_ABORTED:
166			trace_xdp_exception(skb->dev, rcpu->prog, act);
167			fallthrough;
168		case XDP_DROP:
169			skb_list_del_init(skb);
170			kfree_skb(skb);
171			stats->drop++;
172			return;
173		}
174	}
175}
176
177static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
178				    void **frames, int n,
179				    struct xdp_cpumap_stats *stats)
180{
181	struct xdp_rxq_info rxq = {};
182	struct xdp_buff xdp;
183	int i, nframes = 0;
184
185	xdp_set_return_frame_no_direct();
186	xdp.rxq = &rxq;
187
188	for (i = 0; i < n; i++) {
189		struct xdp_frame *xdpf = frames[i];
190		u32 act;
191		int err;
192
193		rxq.dev = xdpf->dev_rx;
194		rxq.mem = xdpf->mem;
195		/* TODO: report queue_index to xdp_rxq_info */
196
197		xdp_convert_frame_to_buff(xdpf, &xdp);
198
199		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
200		switch (act) {
201		case XDP_PASS:
202			err = xdp_update_frame_from_buff(&xdp, xdpf);
203			if (err < 0) {
204				xdp_return_frame(xdpf);
205				stats->drop++;
206			} else {
207				frames[nframes++] = xdpf;
208				stats->pass++;
209			}
210			break;
211		case XDP_REDIRECT:
212			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
213					      rcpu->prog);
214			if (unlikely(err)) {
215				xdp_return_frame(xdpf);
216				stats->drop++;
217			} else {
218				stats->redirect++;
219			}
220			break;
221		default:
222			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
223			fallthrough;
224		case XDP_DROP:
225			xdp_return_frame(xdpf);
226			stats->drop++;
227			break;
228		}
229	}
230
231	xdp_clear_return_frame_no_direct();
232
233	return nframes;
234}
235
236#define CPUMAP_BATCH 8
237
238static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
239				int xdp_n, struct xdp_cpumap_stats *stats,
240				struct list_head *list)
241{
242	int nframes;
243
244	if (!rcpu->prog)
245		return xdp_n;
246
247	rcu_read_lock_bh();
248
249	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
250
251	if (stats->redirect)
252		xdp_do_flush();
253
254	if (unlikely(!list_empty(list)))
255		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
256
257	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
258
259	return nframes;
260}
261
262static int cpu_map_kthread_run(void *data)
263{
264	struct bpf_cpu_map_entry *rcpu = data;
265
266	complete(&rcpu->kthread_running);
267	set_current_state(TASK_INTERRUPTIBLE);
268
269	/* When kthread gives stop order, then rcpu have been disconnected
270	 * from map, thus no new packets can enter. Remaining in-flight
271	 * per CPU stored packets are flushed to this queue.  Wait honoring
272	 * kthread_stop signal until queue is empty.
273	 */
274	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
275		struct xdp_cpumap_stats stats = {}; /* zero stats */
276		unsigned int kmem_alloc_drops = 0, sched = 0;
277		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
278		int i, n, m, nframes, xdp_n;
279		void *frames[CPUMAP_BATCH];
280		void *skbs[CPUMAP_BATCH];
281		LIST_HEAD(list);
282
283		/* Release CPU reschedule checks */
284		if (__ptr_ring_empty(rcpu->queue)) {
285			set_current_state(TASK_INTERRUPTIBLE);
286			/* Recheck to avoid lost wake-up */
287			if (__ptr_ring_empty(rcpu->queue)) {
288				schedule();
289				sched = 1;
290			} else {
291				__set_current_state(TASK_RUNNING);
292			}
293		} else {
294			sched = cond_resched();
295		}
296
297		/*
298		 * The bpf_cpu_map_entry is single consumer, with this
299		 * kthread CPU pinned. Lockless access to ptr_ring
300		 * consume side valid as no-resize allowed of queue.
301		 */
302		n = __ptr_ring_consume_batched(rcpu->queue, frames,
303					       CPUMAP_BATCH);
304		for (i = 0, xdp_n = 0; i < n; i++) {
305			void *f = frames[i];
306			struct page *page;
307
308			if (unlikely(__ptr_test_bit(0, &f))) {
309				struct sk_buff *skb = f;
310
311				__ptr_clear_bit(0, &skb);
312				list_add_tail(&skb->list, &list);
313				continue;
314			}
315
316			frames[xdp_n++] = f;
317			page = virt_to_page(f);
318
319			/* Bring struct page memory area to curr CPU. Read by
320			 * build_skb_around via page_is_pfmemalloc(), and when
321			 * freed written by page_frag_free call.
322			 */
323			prefetchw(page);
324		}
325
326		/* Support running another XDP prog on this CPU */
327		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
328		if (nframes) {
329			m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
330			if (unlikely(m == 0)) {
331				for (i = 0; i < nframes; i++)
332					skbs[i] = NULL; /* effect: xdp_return_frame */
333				kmem_alloc_drops += nframes;
334			}
335		}
336
337		local_bh_disable();
338		for (i = 0; i < nframes; i++) {
339			struct xdp_frame *xdpf = frames[i];
340			struct sk_buff *skb = skbs[i];
341
342			skb = __xdp_build_skb_from_frame(xdpf, skb,
343							 xdpf->dev_rx);
344			if (!skb) {
345				xdp_return_frame(xdpf);
346				continue;
347			}
348
349			list_add_tail(&skb->list, &list);
350		}
351		netif_receive_skb_list(&list);
352
353		/* Feedback loop via tracepoint */
354		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
355					 sched, &stats);
356
357		local_bh_enable(); /* resched point, may call do_softirq() */
358	}
359	__set_current_state(TASK_RUNNING);
360
361	return 0;
362}
363
364static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
365				      struct bpf_map *map, int fd)
366{
367	struct bpf_prog *prog;
368
369	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
370	if (IS_ERR(prog))
371		return PTR_ERR(prog);
372
373	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
374	    !bpf_prog_map_compatible(map, prog)) {
375		bpf_prog_put(prog);
376		return -EINVAL;
377	}
378
379	rcpu->value.bpf_prog.id = prog->aux->id;
380	rcpu->prog = prog;
381
382	return 0;
383}
384
385static struct bpf_cpu_map_entry *
386__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
387		      u32 cpu)
388{
389	int numa, err, i, fd = value->bpf_prog.fd;
390	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
391	struct bpf_cpu_map_entry *rcpu;
392	struct xdp_bulk_queue *bq;
393
394	/* Have map->numa_node, but choose node of redirect target CPU */
395	numa = cpu_to_node(cpu);
396
397	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
398	if (!rcpu)
399		return NULL;
400
401	/* Alloc percpu bulkq */
402	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
403					   sizeof(void *), gfp);
404	if (!rcpu->bulkq)
405		goto free_rcu;
406
407	for_each_possible_cpu(i) {
408		bq = per_cpu_ptr(rcpu->bulkq, i);
409		bq->obj = rcpu;
410	}
411
412	/* Alloc queue */
413	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
414					   numa);
415	if (!rcpu->queue)
416		goto free_bulkq;
417
418	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
419	if (err)
420		goto free_queue;
421
422	rcpu->cpu    = cpu;
423	rcpu->map_id = map->id;
424	rcpu->value.qsize  = value->qsize;
425
426	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
427		goto free_ptr_ring;
428
429	/* Setup kthread */
430	init_completion(&rcpu->kthread_running);
431	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
432					       "cpumap/%d/map:%d", cpu,
433					       map->id);
434	if (IS_ERR(rcpu->kthread))
435		goto free_prog;
436
437	/* Make sure kthread runs on a single CPU */
438	kthread_bind(rcpu->kthread, cpu);
439	wake_up_process(rcpu->kthread);
440
441	/* Make sure kthread has been running, so kthread_stop() will not
442	 * stop the kthread prematurely and all pending frames or skbs
443	 * will be handled by the kthread before kthread_stop() returns.
444	 */
445	wait_for_completion(&rcpu->kthread_running);
446
447	return rcpu;
448
449free_prog:
450	if (rcpu->prog)
451		bpf_prog_put(rcpu->prog);
452free_ptr_ring:
453	ptr_ring_cleanup(rcpu->queue, NULL);
454free_queue:
455	kfree(rcpu->queue);
456free_bulkq:
457	free_percpu(rcpu->bulkq);
458free_rcu:
459	kfree(rcpu);
460	return NULL;
461}
462
463static void __cpu_map_entry_free(struct work_struct *work)
464{
465	struct bpf_cpu_map_entry *rcpu;
466
467	/* This cpu_map_entry have been disconnected from map and one
468	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
469	 * new packets and cannot change/set flush_needed that can
470	 * find this entry.
471	 */
472	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
473
474	/* kthread_stop will wake_up_process and wait for it to complete.
475	 * cpu_map_kthread_run() makes sure the pointer ring is empty
476	 * before exiting.
477	 */
478	kthread_stop(rcpu->kthread);
479
480	if (rcpu->prog)
481		bpf_prog_put(rcpu->prog);
482	/* The queue should be empty at this point */
483	__cpu_map_ring_cleanup(rcpu->queue);
484	ptr_ring_cleanup(rcpu->queue, NULL);
485	kfree(rcpu->queue);
486	free_percpu(rcpu->bulkq);
487	kfree(rcpu);
488}
489
490/* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
491 * entry is no longer in use before freeing. We use queue_rcu_work() to call
492 * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
493 * period. This means that (a) all pending enqueue and flush operations have
494 * completed (because of the RCU callback), and (b) we are in a workqueue
495 * context where we can stop the kthread and wait for it to exit before freeing
496 * everything.
497 */
498static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
499				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
500{
501	struct bpf_cpu_map_entry *old_rcpu;
502
503	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
504	if (old_rcpu) {
505		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
506		queue_rcu_work(system_wq, &old_rcpu->free_work);
507	}
508}
509
510static long cpu_map_delete_elem(struct bpf_map *map, void *key)
511{
512	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
513	u32 key_cpu = *(u32 *)key;
514
515	if (key_cpu >= map->max_entries)
516		return -EINVAL;
517
518	/* notice caller map_delete_elem() uses rcu_read_lock() */
519	__cpu_map_entry_replace(cmap, key_cpu, NULL);
520	return 0;
521}
522
523static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
524				u64 map_flags)
525{
526	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
527	struct bpf_cpumap_val cpumap_value = {};
528	struct bpf_cpu_map_entry *rcpu;
529	/* Array index key correspond to CPU number */
530	u32 key_cpu = *(u32 *)key;
531
532	memcpy(&cpumap_value, value, map->value_size);
533
534	if (unlikely(map_flags > BPF_EXIST))
535		return -EINVAL;
536	if (unlikely(key_cpu >= cmap->map.max_entries))
537		return -E2BIG;
538	if (unlikely(map_flags == BPF_NOEXIST))
539		return -EEXIST;
540	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
541		return -EOVERFLOW;
542
543	/* Make sure CPU is a valid possible cpu */
544	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
545		return -ENODEV;
546
547	if (cpumap_value.qsize == 0) {
548		rcpu = NULL; /* Same as deleting */
549	} else {
550		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
551		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
552		if (!rcpu)
553			return -ENOMEM;
554	}
555	rcu_read_lock();
556	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
557	rcu_read_unlock();
558	return 0;
559}
560
561static void cpu_map_free(struct bpf_map *map)
562{
563	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
564	u32 i;
565
566	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
567	 * so the bpf programs (can be more than one that used this map) were
568	 * disconnected from events. Wait for outstanding critical sections in
569	 * these programs to complete. synchronize_rcu() below not only
570	 * guarantees no further "XDP/bpf-side" reads against
571	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
572	 * (if any) are completed.
573	 */
574	synchronize_rcu();
575
576	/* The only possible user of bpf_cpu_map_entry is
577	 * cpu_map_kthread_run().
578	 */
579	for (i = 0; i < cmap->map.max_entries; i++) {
580		struct bpf_cpu_map_entry *rcpu;
581
582		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
583		if (!rcpu)
584			continue;
585
586		/* Stop kthread and cleanup entry directly */
587		__cpu_map_entry_free(&rcpu->free_work.work);
588	}
589	bpf_map_area_free(cmap->cpu_map);
590	bpf_map_area_free(cmap);
591}
592
593/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
594 * by local_bh_disable() (from XDP calls inside NAPI). The
595 * rcu_read_lock_bh_held() below makes lockdep accept both.
596 */
597static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
598{
599	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
600	struct bpf_cpu_map_entry *rcpu;
601
602	if (key >= map->max_entries)
603		return NULL;
604
605	rcpu = rcu_dereference_check(cmap->cpu_map[key],
606				     rcu_read_lock_bh_held());
607	return rcpu;
608}
609
610static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
611{
612	struct bpf_cpu_map_entry *rcpu =
613		__cpu_map_lookup_elem(map, *(u32 *)key);
614
615	return rcpu ? &rcpu->value : NULL;
616}
617
618static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
619{
620	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
621	u32 index = key ? *(u32 *)key : U32_MAX;
622	u32 *next = next_key;
623
624	if (index >= cmap->map.max_entries) {
625		*next = 0;
626		return 0;
627	}
628
629	if (index == cmap->map.max_entries - 1)
630		return -ENOENT;
631	*next = index + 1;
632	return 0;
633}
634
635static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
636{
637	return __bpf_xdp_redirect_map(map, index, flags, 0,
638				      __cpu_map_lookup_elem);
639}
640
641static u64 cpu_map_mem_usage(const struct bpf_map *map)
642{
643	u64 usage = sizeof(struct bpf_cpu_map);
644
645	/* Currently the dynamically allocated elements are not counted */
646	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
647	return usage;
648}
649
650BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
651const struct bpf_map_ops cpu_map_ops = {
652	.map_meta_equal		= bpf_map_meta_equal,
653	.map_alloc		= cpu_map_alloc,
654	.map_free		= cpu_map_free,
655	.map_delete_elem	= cpu_map_delete_elem,
656	.map_update_elem	= cpu_map_update_elem,
657	.map_lookup_elem	= cpu_map_lookup_elem,
658	.map_get_next_key	= cpu_map_get_next_key,
659	.map_check_btf		= map_check_no_btf,
660	.map_mem_usage		= cpu_map_mem_usage,
661	.map_btf_id		= &cpu_map_btf_ids[0],
662	.map_redirect		= cpu_map_redirect,
663};
664
665static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
666{
667	struct bpf_cpu_map_entry *rcpu = bq->obj;
668	unsigned int processed = 0, drops = 0;
669	const int to_cpu = rcpu->cpu;
670	struct ptr_ring *q;
671	int i;
672
673	if (unlikely(!bq->count))
674		return;
675
676	q = rcpu->queue;
677	spin_lock(&q->producer_lock);
678
679	for (i = 0; i < bq->count; i++) {
680		struct xdp_frame *xdpf = bq->q[i];
681		int err;
682
683		err = __ptr_ring_produce(q, xdpf);
684		if (err) {
685			drops++;
686			xdp_return_frame_rx_napi(xdpf);
687		}
688		processed++;
689	}
690	bq->count = 0;
691	spin_unlock(&q->producer_lock);
692
693	__list_del_clearprev(&bq->flush_node);
694
695	/* Feedback loop via tracepoints */
696	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
697}
698
699/* Runs under RCU-read-side, plus in softirq under NAPI protection.
700 * Thus, safe percpu variable access.
701 */
702static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
703{
704	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
705	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
706
707	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
708		bq_flush_to_queue(bq);
709
710	/* Notice, xdp_buff/page MUST be queued here, long enough for
711	 * driver to code invoking us to finished, due to driver
712	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
713	 *
714	 * Thus, incoming xdp_frame is always queued here (else we race
715	 * with another CPU on page-refcnt and remaining driver code).
716	 * Queue time is very short, as driver will invoke flush
717	 * operation, when completing napi->poll call.
718	 */
719	bq->q[bq->count++] = xdpf;
720
721	if (!bq->flush_node.prev)
722		list_add(&bq->flush_node, flush_list);
723}
724
725int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
726		    struct net_device *dev_rx)
727{
728	/* Info needed when constructing SKB on remote CPU */
729	xdpf->dev_rx = dev_rx;
730
731	bq_enqueue(rcpu, xdpf);
732	return 0;
733}
734
735int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
736			     struct sk_buff *skb)
737{
738	int ret;
739
740	__skb_pull(skb, skb->mac_len);
741	skb_set_redirected(skb, false);
742	__ptr_set_bit(0, &skb);
743
744	ret = ptr_ring_produce(rcpu->queue, skb);
745	if (ret < 0)
746		goto trace;
747
748	wake_up_process(rcpu->kthread);
749trace:
750	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
751	return ret;
752}
753
754void __cpu_map_flush(void)
755{
756	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
757	struct xdp_bulk_queue *bq, *tmp;
758
759	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
760		bq_flush_to_queue(bq);
761
762		/* If already running, costs spin_lock_irqsave + smb_mb */
763		wake_up_process(bq->obj->kthread);
764	}
765}
766
767#ifdef CONFIG_DEBUG_NET
768bool cpu_map_check_flush(void)
769{
770	if (list_empty(this_cpu_ptr(&cpu_map_flush_list)))
771		return false;
772	__cpu_map_flush();
773	return true;
774}
775#endif
776
777static int __init cpu_map_init(void)
778{
779	int cpu;
780
781	for_each_possible_cpu(cpu)
782		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
783	return 0;
784}
785
786subsys_initcall(cpu_map_init);