Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the TCP module.
   7 *
   8 * Version:	@(#)tcp.h	1.0.5	05/23/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *		This program is free software; you can redistribute it and/or
  14 *		modify it under the terms of the GNU General Public License
  15 *		as published by the Free Software Foundation; either version
  16 *		2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
 
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
 
  39#include <net/sock.h>
  40#include <net/snmp.h>
  41#include <net/ip.h>
  42#include <net/tcp_states.h>
 
  43#include <net/inet_ecn.h>
  44#include <net/dst.h>
 
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
 
 
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
 
 
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER	(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
 
 
  56
  57/*
  58 * Never offer a window over 32767 without using window scaling. Some
  59 * poor stacks do signed 16bit maths!
  60 */
  61#define MAX_TCP_WINDOW		32767U
  62
  63/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  64#define TCP_MIN_MSS		88U
  65
  66/* The least MTU to use for probing */
  67#define TCP_BASE_MSS		1024
  68
  69/* probing interval, default to 10 minutes as per RFC4821 */
  70#define TCP_PROBE_INTERVAL	600
  71
  72/* Specify interval when tcp mtu probing will stop */
  73#define TCP_PROBE_THRESHOLD	8
  74
  75/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  76#define TCP_FASTRETRANS_THRESH 3
  77
  78/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  79#define TCP_MAX_QUICKACKS	16U
  80
 
 
 
  81/* urg_data states */
  82#define TCP_URG_VALID	0x0100
  83#define TCP_URG_NOTYET	0x0200
  84#define TCP_URG_READ	0x0400
  85
  86#define TCP_RETR1	3	/*
  87				 * This is how many retries it does before it
  88				 * tries to figure out if the gateway is
  89				 * down. Minimal RFC value is 3; it corresponds
  90				 * to ~3sec-8min depending on RTO.
  91				 */
  92
  93#define TCP_RETR2	15	/*
  94				 * This should take at least
  95				 * 90 minutes to time out.
  96				 * RFC1122 says that the limit is 100 sec.
  97				 * 15 is ~13-30min depending on RTO.
  98				 */
  99
 100#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 101				 * when active opening a connection.
 102				 * RFC1122 says the minimum retry MUST
 103				 * be at least 180secs.  Nevertheless
 104				 * this value is corresponding to
 105				 * 63secs of retransmission with the
 106				 * current initial RTO.
 107				 */
 108
 109#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 110				 * when passive opening a connection.
 111				 * This is corresponding to 31secs of
 112				 * retransmission with the current
 113				 * initial RTO.
 114				 */
 115
 116#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 117				  * state, about 60 seconds	*/
 118#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 119                                 /* BSD style FIN_WAIT2 deadlock breaker.
 120				  * It used to be 3min, new value is 60sec,
 121				  * to combine FIN-WAIT-2 timeout with
 122				  * TIME-WAIT timer.
 123				  */
 
 124
 125#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 
 
 126#if HZ >= 100
 127#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 128#define TCP_ATO_MIN	((unsigned)(HZ/25))
 129#else
 130#define TCP_DELACK_MIN	4U
 131#define TCP_ATO_MIN	4U
 132#endif
 133#define TCP_RTO_MAX	((unsigned)(120*HZ))
 134#define TCP_RTO_MIN	((unsigned)(HZ/5))
 
 
 
 
 135#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 136#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 137						 * used as a fallback RTO for the
 138						 * initial data transmission if no
 139						 * valid RTT sample has been acquired,
 140						 * most likely due to retrans in 3WHS.
 141						 */
 142
 143#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 144					                 * for local resources.
 145					                 */
 146
 147#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 148#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 149#define TCP_KEEPALIVE_INTVL	(75*HZ)
 150
 151#define MAX_TCP_KEEPIDLE	32767
 152#define MAX_TCP_KEEPINTVL	32767
 153#define MAX_TCP_KEEPCNT		127
 154#define MAX_TCP_SYNCNT		127
 155
 156#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 
 
 
 
 157
 158#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 159#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 160					 * after this time. It should be equal
 161					 * (or greater than) TCP_TIMEWAIT_LEN
 162					 * to provide reliability equal to one
 163					 * provided by timewait state.
 164					 */
 165#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 166					 * timestamps. It must be less than
 167					 * minimal timewait lifetime.
 168					 */
 169/*
 170 *	TCP option
 171 */
 172
 173#define TCPOPT_NOP		1	/* Padding */
 174#define TCPOPT_EOL		0	/* End of options */
 175#define TCPOPT_MSS		2	/* Segment size negotiating */
 176#define TCPOPT_WINDOW		3	/* Window scaling */
 177#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 178#define TCPOPT_SACK             5       /* SACK Block */
 179#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 180#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 
 
 181#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 182#define TCPOPT_EXP		254	/* Experimental */
 183/* Magic number to be after the option value for sharing TCP
 184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 185 */
 186#define TCPOPT_FASTOPEN_MAGIC	0xF989
 
 187
 188/*
 189 *     TCP option lengths
 190 */
 191
 192#define TCPOLEN_MSS            4
 193#define TCPOLEN_WINDOW         3
 194#define TCPOLEN_SACK_PERM      2
 195#define TCPOLEN_TIMESTAMP      10
 196#define TCPOLEN_MD5SIG         18
 197#define TCPOLEN_FASTOPEN_BASE  2
 198#define TCPOLEN_EXP_FASTOPEN_BASE  4
 
 199
 200/* But this is what stacks really send out. */
 201#define TCPOLEN_TSTAMP_ALIGNED		12
 202#define TCPOLEN_WSCALE_ALIGNED		4
 203#define TCPOLEN_SACKPERM_ALIGNED	4
 204#define TCPOLEN_SACK_BASE		2
 205#define TCPOLEN_SACK_BASE_ALIGNED	4
 206#define TCPOLEN_SACK_PERBLOCK		8
 207#define TCPOLEN_MD5SIG_ALIGNED		20
 208#define TCPOLEN_MSS_ALIGNED		4
 
 209
 210/* Flags in tp->nonagle */
 211#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 212#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 213#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 214
 215/* TCP thin-stream limits */
 216#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 217
 218/* TCP initial congestion window as per rfc6928 */
 219#define TCP_INIT_CWND		10
 220
 221/* Bit Flags for sysctl_tcp_fastopen */
 222#define	TFO_CLIENT_ENABLE	1
 223#define	TFO_SERVER_ENABLE	2
 224#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 225
 226/* Accept SYN data w/o any cookie option */
 227#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 228
 229/* Force enable TFO on all listeners, i.e., not requiring the
 230 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
 231 */
 232#define	TFO_SERVER_WO_SOCKOPT1	0x400
 233#define	TFO_SERVER_WO_SOCKOPT2	0x800
 234
 235extern struct inet_timewait_death_row tcp_death_row;
 236
 237/* sysctl variables for tcp */
 238extern int sysctl_tcp_timestamps;
 239extern int sysctl_tcp_window_scaling;
 240extern int sysctl_tcp_sack;
 241extern int sysctl_tcp_fastopen;
 242extern int sysctl_tcp_retrans_collapse;
 243extern int sysctl_tcp_stdurg;
 244extern int sysctl_tcp_rfc1337;
 245extern int sysctl_tcp_abort_on_overflow;
 246extern int sysctl_tcp_max_orphans;
 247extern int sysctl_tcp_fack;
 248extern int sysctl_tcp_reordering;
 249extern int sysctl_tcp_max_reordering;
 250extern int sysctl_tcp_dsack;
 251extern long sysctl_tcp_mem[3];
 252extern int sysctl_tcp_wmem[3];
 253extern int sysctl_tcp_rmem[3];
 254extern int sysctl_tcp_app_win;
 255extern int sysctl_tcp_adv_win_scale;
 256extern int sysctl_tcp_tw_reuse;
 257extern int sysctl_tcp_frto;
 258extern int sysctl_tcp_low_latency;
 259extern int sysctl_tcp_nometrics_save;
 260extern int sysctl_tcp_moderate_rcvbuf;
 261extern int sysctl_tcp_tso_win_divisor;
 262extern int sysctl_tcp_workaround_signed_windows;
 263extern int sysctl_tcp_slow_start_after_idle;
 264extern int sysctl_tcp_thin_linear_timeouts;
 265extern int sysctl_tcp_thin_dupack;
 266extern int sysctl_tcp_early_retrans;
 267extern int sysctl_tcp_limit_output_bytes;
 268extern int sysctl_tcp_challenge_ack_limit;
 269extern int sysctl_tcp_min_tso_segs;
 270extern int sysctl_tcp_min_rtt_wlen;
 271extern int sysctl_tcp_autocorking;
 272extern int sysctl_tcp_invalid_ratelimit;
 273extern int sysctl_tcp_pacing_ss_ratio;
 274extern int sysctl_tcp_pacing_ca_ratio;
 275
 276extern atomic_long_t tcp_memory_allocated;
 
 
 277extern struct percpu_counter tcp_sockets_allocated;
 278extern int tcp_memory_pressure;
 279
 280/* optimized version of sk_under_memory_pressure() for TCP sockets */
 281static inline bool tcp_under_memory_pressure(const struct sock *sk)
 282{
 283	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 284	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 285		return true;
 286
 287	return tcp_memory_pressure;
 288}
 289/*
 290 * The next routines deal with comparing 32 bit unsigned ints
 291 * and worry about wraparound (automatic with unsigned arithmetic).
 292 */
 293
 294static inline bool before(__u32 seq1, __u32 seq2)
 295{
 296        return (__s32)(seq1-seq2) < 0;
 297}
 298#define after(seq2, seq1) 	before(seq1, seq2)
 299
 300/* is s2<=s1<=s3 ? */
 301static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 302{
 303	return seq3 - seq2 >= seq1 - seq2;
 304}
 305
 306static inline bool tcp_out_of_memory(struct sock *sk)
 307{
 308	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 309	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 310		return true;
 311	return false;
 312}
 313
 314void sk_forced_mem_schedule(struct sock *sk, int size);
 315
 316static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 317{
 318	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 319	int orphans = percpu_counter_read_positive(ocp);
 320
 321	if (orphans << shift > sysctl_tcp_max_orphans) {
 322		orphans = percpu_counter_sum_positive(ocp);
 323		if (orphans << shift > sysctl_tcp_max_orphans)
 324			return true;
 325	}
 326	return false;
 327}
 328
 
 
 329bool tcp_check_oom(struct sock *sk, int shift);
 330
 331
 332extern struct proto tcp_prot;
 333
 334#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 335#define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
 336#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 337#define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
 338#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 339
 340void tcp_tasklet_init(void);
 341
 342void tcp_v4_err(struct sk_buff *skb, u32);
 343
 344void tcp_shutdown(struct sock *sk, int how);
 345
 346void tcp_v4_early_demux(struct sk_buff *skb);
 347int tcp_v4_rcv(struct sk_buff *skb);
 348
 349int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 350int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 351int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 352		 int flags);
 
 
 
 
 
 
 353void tcp_release_cb(struct sock *sk);
 354void tcp_wfree(struct sk_buff *skb);
 355void tcp_write_timer_handler(struct sock *sk);
 356void tcp_delack_timer_handler(struct sock *sk);
 357int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 358int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 359void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 360			 const struct tcphdr *th, unsigned int len);
 361void tcp_rcv_space_adjust(struct sock *sk);
 362int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 363void tcp_twsk_destructor(struct sock *sk);
 
 364ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 365			struct pipe_inode_info *pipe, size_t len,
 366			unsigned int flags);
 
 
 367
 368static inline void tcp_dec_quickack_mode(struct sock *sk,
 369					 const unsigned int pkts)
 370{
 371	struct inet_connection_sock *icsk = inet_csk(sk);
 372
 373	if (icsk->icsk_ack.quick) {
 
 
 
 374		if (pkts >= icsk->icsk_ack.quick) {
 375			icsk->icsk_ack.quick = 0;
 376			/* Leaving quickack mode we deflate ATO. */
 377			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 378		} else
 379			icsk->icsk_ack.quick -= pkts;
 380	}
 381}
 382
 383#define	TCP_ECN_OK		1
 384#define	TCP_ECN_QUEUE_CWR	2
 385#define	TCP_ECN_DEMAND_CWR	4
 386#define	TCP_ECN_SEEN		8
 387
 388enum tcp_tw_status {
 389	TCP_TW_SUCCESS = 0,
 390	TCP_TW_RST = 1,
 391	TCP_TW_ACK = 2,
 392	TCP_TW_SYN = 3
 393};
 394
 395
 396enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 397					      struct sk_buff *skb,
 398					      const struct tcphdr *th);
 399struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 400			   struct request_sock *req, bool fastopen);
 
 401int tcp_child_process(struct sock *parent, struct sock *child,
 402		      struct sk_buff *skb);
 403void tcp_enter_loss(struct sock *sk);
 
 404void tcp_clear_retrans(struct tcp_sock *tp);
 405void tcp_update_metrics(struct sock *sk);
 406void tcp_init_metrics(struct sock *sk);
 407void tcp_metrics_init(void);
 408bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
 409			bool paws_check, bool timestamps);
 410bool tcp_remember_stamp(struct sock *sk);
 411bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
 412void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
 413void tcp_disable_fack(struct tcp_sock *tp);
 414void tcp_close(struct sock *sk, long timeout);
 415void tcp_init_sock(struct sock *sk);
 416unsigned int tcp_poll(struct file *file, struct socket *sock,
 
 417		      struct poll_table_struct *wait);
 
 
 418int tcp_getsockopt(struct sock *sk, int level, int optname,
 419		   char __user *optval, int __user *optlen);
 420int tcp_setsockopt(struct sock *sk, int level, int optname,
 421		   char __user *optval, unsigned int optlen);
 422int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 423			  char __user *optval, int __user *optlen);
 424int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 425			  char __user *optval, unsigned int optlen);
 426void tcp_set_keepalive(struct sock *sk, int val);
 427void tcp_syn_ack_timeout(const struct request_sock *req);
 428int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 429		int flags, int *addr_len);
 430void tcp_parse_options(const struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 431		       struct tcp_options_received *opt_rx,
 432		       int estab, struct tcp_fastopen_cookie *foc);
 433const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 434
 435/*
 
 
 
 
 
 
 
 
 
 
 
 436 *	TCP v4 functions exported for the inet6 API
 437 */
 438
 439void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 440void tcp_v4_mtu_reduced(struct sock *sk);
 441void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 
 442int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 443struct sock *tcp_create_openreq_child(const struct sock *sk,
 444				      struct request_sock *req,
 445				      struct sk_buff *skb);
 446void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 447struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 448				  struct request_sock *req,
 449				  struct dst_entry *dst,
 450				  struct request_sock *req_unhash,
 451				  bool *own_req);
 452int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 453int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 454int tcp_connect(struct sock *sk);
 
 
 
 
 
 455struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 456				struct request_sock *req,
 457				struct tcp_fastopen_cookie *foc,
 458				bool attach_req);
 
 459int tcp_disconnect(struct sock *sk, int flags);
 460
 461void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 462int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 463void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 464
 465/* From syncookies.c */
 466struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 467				 struct request_sock *req,
 468				 struct dst_entry *dst);
 469int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 470		      u32 cookie);
 471struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
 472#ifdef CONFIG_SYN_COOKIES
 473
 474/* Syncookies use a monotonic timer which increments every 60 seconds.
 475 * This counter is used both as a hash input and partially encoded into
 476 * the cookie value.  A cookie is only validated further if the delta
 477 * between the current counter value and the encoded one is less than this,
 478 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 479 * the counter advances immediately after a cookie is generated).
 480 */
 481#define MAX_SYNCOOKIE_AGE	2
 482#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 483#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 484
 485/* syncookies: remember time of last synqueue overflow
 486 * But do not dirty this field too often (once per second is enough)
 487 * It is racy as we do not hold a lock, but race is very minor.
 488 */
 489static inline void tcp_synq_overflow(const struct sock *sk)
 490{
 491	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 492	unsigned long now = jiffies;
 493
 494	if (time_after(now, last_overflow + HZ))
 495		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496}
 497
 498/* syncookies: no recent synqueue overflow on this listening socket? */
 499static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 500{
 501	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 
 502
 503	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504}
 505
 506static inline u32 tcp_cookie_time(void)
 507{
 508	u64 val = get_jiffies_64();
 509
 510	do_div(val, TCP_SYNCOOKIE_PERIOD);
 511	return val;
 512}
 513
 514u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 515			      u16 *mssp);
 516__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 517__u32 cookie_init_timestamp(struct request_sock *req);
 518bool cookie_timestamp_decode(struct tcp_options_received *opt);
 519bool cookie_ecn_ok(const struct tcp_options_received *opt,
 520		   const struct net *net, const struct dst_entry *dst);
 
 
 
 
 
 521
 522/* From net/ipv6/syncookies.c */
 523int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 524		      u32 cookie);
 525struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 526
 527u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 528			      const struct tcphdr *th, u16 *mssp);
 529__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 530#endif
 531/* tcp_output.c */
 532
 
 
 533void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 534			       int nonagle);
 535bool tcp_may_send_now(struct sock *sk);
 536int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
 537int tcp_retransmit_skb(struct sock *, struct sk_buff *);
 538void tcp_retransmit_timer(struct sock *sk);
 539void tcp_xmit_retransmit_queue(struct sock *);
 540void tcp_simple_retransmit(struct sock *);
 
 541int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 542int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
 
 
 
 
 
 
 543
 544void tcp_send_probe0(struct sock *);
 545void tcp_send_partial(struct sock *);
 546int tcp_write_wakeup(struct sock *, int mib);
 547void tcp_send_fin(struct sock *sk);
 548void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 549int tcp_send_synack(struct sock *);
 550void tcp_push_one(struct sock *, unsigned int mss_now);
 
 551void tcp_send_ack(struct sock *sk);
 552void tcp_send_delayed_ack(struct sock *sk);
 553void tcp_send_loss_probe(struct sock *sk);
 554bool tcp_schedule_loss_probe(struct sock *sk);
 555void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 556			     const struct sk_buff *next_skb);
 557
 558/* tcp_input.c */
 559void tcp_resume_early_retransmit(struct sock *sk);
 560void tcp_rearm_rto(struct sock *sk);
 561void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 562void tcp_reset(struct sock *sk);
 563void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 564void tcp_fin(struct sock *sk);
 
 
 565
 566/* tcp_timer.c */
 567void tcp_init_xmit_timers(struct sock *);
 568static inline void tcp_clear_xmit_timers(struct sock *sk)
 569{
 
 
 
 
 
 
 570	inet_csk_clear_xmit_timers(sk);
 571}
 572
 573unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 574unsigned int tcp_current_mss(struct sock *sk);
 
 575
 576/* Bound MSS / TSO packet size with the half of the window */
 577static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 578{
 579	int cutoff;
 580
 581	/* When peer uses tiny windows, there is no use in packetizing
 582	 * to sub-MSS pieces for the sake of SWS or making sure there
 583	 * are enough packets in the pipe for fast recovery.
 584	 *
 585	 * On the other hand, for extremely large MSS devices, handling
 586	 * smaller than MSS windows in this way does make sense.
 587	 */
 588	if (tp->max_window >= 512)
 589		cutoff = (tp->max_window >> 1);
 590	else
 591		cutoff = tp->max_window;
 592
 593	if (cutoff && pktsize > cutoff)
 594		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 595	else
 596		return pktsize;
 597}
 598
 599/* tcp.c */
 600void tcp_get_info(struct sock *, struct tcp_info *);
 601
 602/* Read 'sendfile()'-style from a TCP socket */
 603typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
 604				unsigned int, size_t);
 605int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 606		  sk_read_actor_t recv_actor);
 
 
 
 607
 608void tcp_initialize_rcv_mss(struct sock *sk);
 609
 610int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 611int tcp_mss_to_mtu(struct sock *sk, int mss);
 612void tcp_mtup_init(struct sock *sk);
 613void tcp_init_buffer_space(struct sock *sk);
 614
 615static inline void tcp_bound_rto(const struct sock *sk)
 616{
 617	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 618		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 619}
 620
 621static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 622{
 623	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 624}
 625
 626static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 627{
 
 
 
 
 628	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 629			       ntohl(TCP_FLAG_ACK) |
 630			       snd_wnd);
 631}
 632
 633static inline void tcp_fast_path_on(struct tcp_sock *tp)
 634{
 635	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 636}
 637
 638static inline void tcp_fast_path_check(struct sock *sk)
 639{
 640	struct tcp_sock *tp = tcp_sk(sk);
 641
 642	if (skb_queue_empty(&tp->out_of_order_queue) &&
 643	    tp->rcv_wnd &&
 644	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 645	    !tp->urg_data)
 646		tcp_fast_path_on(tp);
 647}
 648
 
 
 649/* Compute the actual rto_min value */
 650static inline u32 tcp_rto_min(struct sock *sk)
 651{
 652	const struct dst_entry *dst = __sk_dst_get(sk);
 653	u32 rto_min = TCP_RTO_MIN;
 654
 655	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 656		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 657	return rto_min;
 658}
 659
 660static inline u32 tcp_rto_min_us(struct sock *sk)
 661{
 662	return jiffies_to_usecs(tcp_rto_min(sk));
 663}
 664
 665static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 666{
 667	return dst_metric_locked(dst, RTAX_CC_ALGO);
 668}
 669
 670/* Minimum RTT in usec. ~0 means not available. */
 671static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 672{
 673	return tp->rtt_min[0].rtt;
 674}
 675
 676/* Compute the actual receive window we are currently advertising.
 677 * Rcv_nxt can be after the window if our peer push more data
 678 * than the offered window.
 679 */
 680static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 681{
 682	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 683
 684	if (win < 0)
 685		win = 0;
 686	return (u32) win;
 687}
 688
 689/* Choose a new window, without checks for shrinking, and without
 690 * scaling applied to the result.  The caller does these things
 691 * if necessary.  This is a "raw" window selection.
 692 */
 693u32 __tcp_select_window(struct sock *sk);
 694
 695void tcp_send_window_probe(struct sock *sk);
 696
 697/* TCP timestamps are only 32-bits, this causes a slight
 698 * complication on 64-bit systems since we store a snapshot
 699 * of jiffies in the buffer control blocks below.  We decided
 700 * to use only the low 32-bits of jiffies and hide the ugly
 701 * casts with the following macro.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702 */
 703#define tcp_time_stamp		((__u32)(jiffies))
 
 
 
 704
 705static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 706{
 707	return skb->skb_mstamp.stamp_jiffies;
 708}
 709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710
 711#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 712
 713#define TCPHDR_FIN 0x01
 714#define TCPHDR_SYN 0x02
 715#define TCPHDR_RST 0x04
 716#define TCPHDR_PSH 0x08
 717#define TCPHDR_ACK 0x10
 718#define TCPHDR_URG 0x20
 719#define TCPHDR_ECE 0x40
 720#define TCPHDR_CWR 0x80
 721
 722#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 723
 724/* This is what the send packet queuing engine uses to pass
 725 * TCP per-packet control information to the transmission code.
 726 * We also store the host-order sequence numbers in here too.
 727 * This is 44 bytes if IPV6 is enabled.
 728 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 729 */
 730struct tcp_skb_cb {
 731	__u32		seq;		/* Starting sequence number	*/
 732	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 733	union {
 734		/* Note : tcp_tw_isn is used in input path only
 735		 *	  (isn chosen by tcp_timewait_state_process())
 736		 *
 737		 * 	  tcp_gso_segs/size are used in write queue only,
 738		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 739		 */
 740		__u32		tcp_tw_isn;
 741		struct {
 742			u16	tcp_gso_segs;
 743			u16	tcp_gso_size;
 744		};
 745	};
 746	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 747
 748	__u8		sacked;		/* State flags for SACK/FACK.	*/
 749#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 750#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 751#define TCPCB_LOST		0x04	/* SKB is lost			*/
 752#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 753#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
 754#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 755#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 756				TCPCB_REPAIRED)
 757
 758	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 759	/* 1 byte hole */
 
 
 
 760	__u32		ack_seq;	/* Sequence number ACK'd	*/
 761	union {
 762		struct inet_skb_parm	h4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763#if IS_ENABLED(CONFIG_IPV6)
 764		struct inet6_skb_parm	h6;
 765#endif
 766	} header;	/* For incoming frames		*/
 
 767};
 768
 769#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 770
 
 771
 772#if IS_ENABLED(CONFIG_IPV6)
 773/* This is the variant of inet6_iif() that must be used by TCP,
 774 * as TCP moves IP6CB into a different location in skb->cb[]
 775 */
 776static inline int tcp_v6_iif(const struct sk_buff *skb)
 777{
 778	return TCP_SKB_CB(skb)->header.h6.iif;
 779}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780#endif
 
 
 781
 782/* Due to TSO, an SKB can be composed of multiple actual
 783 * packets.  To keep these tracked properly, we use this.
 784 */
 785static inline int tcp_skb_pcount(const struct sk_buff *skb)
 786{
 787	return TCP_SKB_CB(skb)->tcp_gso_segs;
 788}
 789
 790static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 791{
 792	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 793}
 794
 795static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 796{
 797	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 798}
 799
 800/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 801static inline int tcp_skb_mss(const struct sk_buff *skb)
 802{
 803	return TCP_SKB_CB(skb)->tcp_gso_size;
 804}
 805
 
 
 
 
 
 
 
 
 
 
 
 
 
 806/* Events passed to congestion control interface */
 807enum tcp_ca_event {
 808	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 809	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 810	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 811	CA_EVENT_LOSS,		/* loss timeout */
 812	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 813	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 814	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
 815	CA_EVENT_NON_DELAYED_ACK,
 816};
 817
 818/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 819enum tcp_ca_ack_event_flags {
 820	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 821	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 822	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 823};
 824
 825/*
 826 * Interface for adding new TCP congestion control handlers
 827 */
 828#define TCP_CA_NAME_MAX	16
 829#define TCP_CA_MAX	128
 830#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
 831
 832#define TCP_CA_UNSPEC	0
 833
 834/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 835#define TCP_CONG_NON_RESTRICTED 0x1
 836/* Requires ECN/ECT set on all packets */
 837#define TCP_CONG_NEEDS_ECN	0x2
 
 838
 839union tcp_cc_info;
 840
 841struct tcp_congestion_ops {
 842	struct list_head	list;
 843	u32 key;
 844	u32 flags;
 
 845
 846	/* initialize private data (optional) */
 847	void (*init)(struct sock *sk);
 848	/* cleanup private data  (optional) */
 849	void (*release)(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850
 851	/* return slow start threshold (required) */
 852	u32 (*ssthresh)(struct sock *sk);
 
 853	/* do new cwnd calculation (required) */
 854	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 
 855	/* call before changing ca_state (optional) */
 856	void (*set_state)(struct sock *sk, u8 new_state);
 
 857	/* call when cwnd event occurs (optional) */
 858	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 
 859	/* call when ack arrives (optional) */
 860	void (*in_ack_event)(struct sock *sk, u32 flags);
 861	/* new value of cwnd after loss (optional) */
 862	u32  (*undo_cwnd)(struct sock *sk);
 863	/* hook for packet ack accounting (optional) */
 864	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	/* get info for inet_diag (optional) */
 866	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
 867			   union tcp_cc_info *info);
 868
 869	char 		name[TCP_CA_NAME_MAX];
 870	struct module 	*owner;
 871};
 
 
 
 
 
 
 
 
 872
 873int tcp_register_congestion_control(struct tcp_congestion_ops *type);
 874void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
 
 
 
 875
 876void tcp_assign_congestion_control(struct sock *sk);
 877void tcp_init_congestion_control(struct sock *sk);
 878void tcp_cleanup_congestion_control(struct sock *sk);
 879int tcp_set_default_congestion_control(const char *name);
 880void tcp_get_default_congestion_control(char *name);
 881void tcp_get_available_congestion_control(char *buf, size_t len);
 882void tcp_get_allowed_congestion_control(char *buf, size_t len);
 883int tcp_set_allowed_congestion_control(char *allowed);
 884int tcp_set_congestion_control(struct sock *sk, const char *name);
 
 885u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
 886void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
 887
 888u32 tcp_reno_ssthresh(struct sock *sk);
 
 889void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
 890extern struct tcp_congestion_ops tcp_reno;
 891
 
 892struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
 893u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
 894#ifdef CONFIG_INET
 895char *tcp_ca_get_name_by_key(u32 key, char *buffer);
 896#else
 897static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
 898{
 899	return NULL;
 900}
 901#endif
 902
 903static inline bool tcp_ca_needs_ecn(const struct sock *sk)
 904{
 905	const struct inet_connection_sock *icsk = inet_csk(sk);
 906
 907	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
 908}
 909
 910static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
 911{
 912	struct inet_connection_sock *icsk = inet_csk(sk);
 913
 914	if (icsk->icsk_ca_ops->set_state)
 915		icsk->icsk_ca_ops->set_state(sk, ca_state);
 916	icsk->icsk_ca_state = ca_state;
 917}
 918
 919static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
 920{
 921	const struct inet_connection_sock *icsk = inet_csk(sk);
 922
 923	if (icsk->icsk_ca_ops->cwnd_event)
 924		icsk->icsk_ca_ops->cwnd_event(sk, event);
 925}
 926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927/* These functions determine how the current flow behaves in respect of SACK
 928 * handling. SACK is negotiated with the peer, and therefore it can vary
 929 * between different flows.
 930 *
 931 * tcp_is_sack - SACK enabled
 932 * tcp_is_reno - No SACK
 933 * tcp_is_fack - FACK enabled, implies SACK enabled
 934 */
 935static inline int tcp_is_sack(const struct tcp_sock *tp)
 936{
 937	return tp->rx_opt.sack_ok;
 938}
 939
 940static inline bool tcp_is_reno(const struct tcp_sock *tp)
 941{
 942	return !tcp_is_sack(tp);
 943}
 944
 945static inline bool tcp_is_fack(const struct tcp_sock *tp)
 946{
 947	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
 948}
 949
 950static inline void tcp_enable_fack(struct tcp_sock *tp)
 951{
 952	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
 953}
 954
 955/* TCP early-retransmit (ER) is similar to but more conservative than
 956 * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
 957 */
 958static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
 959{
 960	struct net *net = sock_net((struct sock *)tp);
 961
 962	tp->do_early_retrans = sysctl_tcp_early_retrans &&
 963		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
 964		net->ipv4.sysctl_tcp_reordering == 3;
 965}
 966
 967static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
 968{
 969	tp->do_early_retrans = 0;
 970}
 971
 972static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
 973{
 974	return tp->sacked_out + tp->lost_out;
 975}
 976
 977/* This determines how many packets are "in the network" to the best
 978 * of our knowledge.  In many cases it is conservative, but where
 979 * detailed information is available from the receiver (via SACK
 980 * blocks etc.) we can make more aggressive calculations.
 981 *
 982 * Use this for decisions involving congestion control, use just
 983 * tp->packets_out to determine if the send queue is empty or not.
 984 *
 985 * Read this equation as:
 986 *
 987 *	"Packets sent once on transmission queue" MINUS
 988 *	"Packets left network, but not honestly ACKed yet" PLUS
 989 *	"Packets fast retransmitted"
 990 */
 991static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
 992{
 993	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
 994}
 995
 996#define TCP_INFINITE_SSTHRESH	0x7fffffff
 997
 
 
 
 
 
 
 
 
 
 
 
 998static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
 999{
1000	return tp->snd_cwnd < tp->snd_ssthresh;
1001}
1002
1003static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1004{
1005	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1006}
1007
1008static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1009{
1010	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1011	       (1 << inet_csk(sk)->icsk_ca_state);
1012}
1013
1014/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1015 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1016 * ssthresh.
1017 */
1018static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1019{
1020	const struct tcp_sock *tp = tcp_sk(sk);
1021
1022	if (tcp_in_cwnd_reduction(sk))
1023		return tp->snd_ssthresh;
1024	else
1025		return max(tp->snd_ssthresh,
1026			   ((tp->snd_cwnd >> 1) +
1027			    (tp->snd_cwnd >> 2)));
1028}
1029
1030/* Use define here intentionally to get WARN_ON location shown at the caller */
1031#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1032
1033void tcp_enter_cwr(struct sock *sk);
1034__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1035
1036/* The maximum number of MSS of available cwnd for which TSO defers
1037 * sending if not using sysctl_tcp_tso_win_divisor.
1038 */
1039static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1040{
1041	return 3;
1042}
1043
1044/* Slow start with delack produces 3 packets of burst, so that
1045 * it is safe "de facto".  This will be the default - same as
1046 * the default reordering threshold - but if reordering increases,
1047 * we must be able to allow cwnd to burst at least this much in order
1048 * to not pull it back when holes are filled.
1049 */
1050static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1051{
1052	return tp->reordering;
1053}
1054
1055/* Returns end sequence number of the receiver's advertised window */
1056static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1057{
1058	return tp->snd_una + tp->snd_wnd;
1059}
1060
1061/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1062 * flexible approach. The RFC suggests cwnd should not be raised unless
1063 * it was fully used previously. And that's exactly what we do in
1064 * congestion avoidance mode. But in slow start we allow cwnd to grow
1065 * as long as the application has used half the cwnd.
1066 * Example :
1067 *    cwnd is 10 (IW10), but application sends 9 frames.
1068 *    We allow cwnd to reach 18 when all frames are ACKed.
1069 * This check is safe because it's as aggressive as slow start which already
1070 * risks 100% overshoot. The advantage is that we discourage application to
1071 * either send more filler packets or data to artificially blow up the cwnd
1072 * usage, and allow application-limited process to probe bw more aggressively.
1073 */
1074static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1075{
1076	const struct tcp_sock *tp = tcp_sk(sk);
1077
 
 
 
1078	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1079	if (tcp_in_slow_start(tp))
1080		return tp->snd_cwnd < 2 * tp->max_packets_out;
 
 
 
1081
1082	return tp->is_cwnd_limited;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083}
1084
1085/* Something is really bad, we could not queue an additional packet,
1086 * because qdisc is full or receiver sent a 0 window.
1087 * We do not want to add fuel to the fire, or abort too early,
1088 * so make sure the timer we arm now is at least 200ms in the future,
1089 * regardless of current icsk_rto value (as it could be ~2ms)
1090 */
1091static inline unsigned long tcp_probe0_base(const struct sock *sk)
1092{
1093	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1094}
1095
1096/* Variant of inet_csk_rto_backoff() used for zero window probes */
1097static inline unsigned long tcp_probe0_when(const struct sock *sk,
1098					    unsigned long max_when)
1099{
1100	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
 
 
1101
1102	return (unsigned long)min_t(u64, when, max_when);
1103}
1104
1105static inline void tcp_check_probe_timer(struct sock *sk)
1106{
1107	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1108		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1109					  tcp_probe0_base(sk), TCP_RTO_MAX);
1110}
1111
1112static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1113{
1114	tp->snd_wl1 = seq;
1115}
1116
1117static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1118{
1119	tp->snd_wl1 = seq;
1120}
1121
1122/*
1123 * Calculate(/check) TCP checksum
1124 */
1125static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1126				   __be32 daddr, __wsum base)
1127{
1128	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1129}
1130
1131static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1132{
1133	return __skb_checksum_complete(skb);
1134}
1135
1136static inline bool tcp_checksum_complete(struct sk_buff *skb)
1137{
1138	return !skb_csum_unnecessary(skb) &&
1139		__tcp_checksum_complete(skb);
1140}
1141
1142/* Prequeue for VJ style copy to user, combined with checksumming. */
1143
1144static inline void tcp_prequeue_init(struct tcp_sock *tp)
1145{
1146	tp->ucopy.task = NULL;
1147	tp->ucopy.len = 0;
1148	tp->ucopy.memory = 0;
1149	skb_queue_head_init(&tp->ucopy.prequeue);
1150}
1151
1152bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
 
1153
1154#undef STATE_TRACE
1155
1156#ifdef STATE_TRACE
1157static const char *statename[]={
1158	"Unused","Established","Syn Sent","Syn Recv",
1159	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1160	"Close Wait","Last ACK","Listen","Closing"
1161};
1162#endif
1163void tcp_set_state(struct sock *sk, int state);
1164
1165void tcp_done(struct sock *sk);
1166
1167int tcp_abort(struct sock *sk, int err);
1168
1169static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1170{
1171	rx_opt->dsack = 0;
1172	rx_opt->num_sacks = 0;
1173}
1174
1175u32 tcp_default_init_rwnd(u32 mss);
1176void tcp_cwnd_restart(struct sock *sk, s32 delta);
1177
1178static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1179{
 
1180	struct tcp_sock *tp = tcp_sk(sk);
1181	s32 delta;
1182
1183	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
 
1184		return;
1185	delta = tcp_time_stamp - tp->lsndtime;
1186	if (delta > inet_csk(sk)->icsk_rto)
1187		tcp_cwnd_restart(sk, delta);
1188}
1189
1190/* Determine a window scaling and initial window to offer. */
1191void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
 
1192			       __u32 *window_clamp, int wscale_ok,
1193			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1194
1195static inline int tcp_win_from_space(int space)
 
 
 
 
 
 
 
 
 
 
 
 
 
1196{
1197	return sysctl_tcp_adv_win_scale<=0 ?
1198		(space>>(-sysctl_tcp_adv_win_scale)) :
1199		space - (space>>sysctl_tcp_adv_win_scale);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200}
1201
1202/* Note: caller must be prepared to deal with negative returns */
1203static inline int tcp_space(const struct sock *sk)
1204{
1205	return tcp_win_from_space(sk->sk_rcvbuf -
 
1206				  atomic_read(&sk->sk_rmem_alloc));
1207}
1208
1209static inline int tcp_full_space(const struct sock *sk)
1210{
1211	return tcp_win_from_space(sk->sk_rcvbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212}
1213
1214extern void tcp_openreq_init_rwin(struct request_sock *req,
1215				  const struct sock *sk_listener,
1216				  const struct dst_entry *dst);
1217
1218void tcp_enter_memory_pressure(struct sock *sk);
 
1219
1220static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1221{
1222	struct net *net = sock_net((struct sock *)tp);
 
 
 
 
 
 
1223
1224	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1225}
1226
1227static inline int keepalive_time_when(const struct tcp_sock *tp)
1228{
1229	struct net *net = sock_net((struct sock *)tp);
 
 
 
 
1230
1231	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1232}
1233
1234static inline int keepalive_probes(const struct tcp_sock *tp)
1235{
1236	struct net *net = sock_net((struct sock *)tp);
 
1237
1238	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
 
 
 
 
 
1239}
1240
1241static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1242{
1243	const struct inet_connection_sock *icsk = &tp->inet_conn;
1244
1245	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1246			  tcp_time_stamp - tp->rcv_tstamp);
1247}
1248
1249static inline int tcp_fin_time(const struct sock *sk)
1250{
1251	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
 
1252	const int rto = inet_csk(sk)->icsk_rto;
1253
1254	if (fin_timeout < (rto << 2) - (rto >> 1))
1255		fin_timeout = (rto << 2) - (rto >> 1);
1256
1257	return fin_timeout;
1258}
1259
1260static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1261				  int paws_win)
1262{
1263	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1264		return true;
1265	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
 
1266		return true;
1267	/*
1268	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1269	 * then following tcp messages have valid values. Ignore 0 value,
1270	 * or else 'negative' tsval might forbid us to accept their packets.
1271	 */
1272	if (!rx_opt->ts_recent)
1273		return true;
1274	return false;
1275}
1276
1277static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1278				   int rst)
1279{
1280	if (tcp_paws_check(rx_opt, 0))
1281		return false;
1282
1283	/* RST segments are not recommended to carry timestamp,
1284	   and, if they do, it is recommended to ignore PAWS because
1285	   "their cleanup function should take precedence over timestamps."
1286	   Certainly, it is mistake. It is necessary to understand the reasons
1287	   of this constraint to relax it: if peer reboots, clock may go
1288	   out-of-sync and half-open connections will not be reset.
1289	   Actually, the problem would be not existing if all
1290	   the implementations followed draft about maintaining clock
1291	   via reboots. Linux-2.2 DOES NOT!
1292
1293	   However, we can relax time bounds for RST segments to MSL.
1294	 */
1295	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
 
1296		return false;
1297	return true;
1298}
1299
1300bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1301			  int mib_idx, u32 *last_oow_ack_time);
1302
1303static inline void tcp_mib_init(struct net *net)
1304{
1305	/* See RFC 2012 */
1306	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1307	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1308	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1309	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1310}
1311
1312/* from STCP */
1313static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1314{
1315	tp->lost_skb_hint = NULL;
1316}
1317
1318static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1319{
1320	tcp_clear_retrans_hints_partial(tp);
1321	tp->retransmit_skb_hint = NULL;
1322}
1323
1324union tcp_md5_addr {
1325	struct in_addr  a4;
1326#if IS_ENABLED(CONFIG_IPV6)
1327	struct in6_addr	a6;
1328#endif
1329};
1330
1331/* - key database */
1332struct tcp_md5sig_key {
1333	struct hlist_node	node;
1334	u8			keylen;
1335	u8			family; /* AF_INET or AF_INET6 */
 
 
1336	union tcp_md5_addr	addr;
 
1337	u8			key[TCP_MD5SIG_MAXKEYLEN];
1338	struct rcu_head		rcu;
1339};
1340
1341/* - sock block */
1342struct tcp_md5sig_info {
1343	struct hlist_head	head;
1344	struct rcu_head		rcu;
1345};
1346
1347/* - pseudo header */
1348struct tcp4_pseudohdr {
1349	__be32		saddr;
1350	__be32		daddr;
1351	__u8		pad;
1352	__u8		protocol;
1353	__be16		len;
1354};
1355
1356struct tcp6_pseudohdr {
1357	struct in6_addr	saddr;
1358	struct in6_addr daddr;
1359	__be32		len;
1360	__be32		protocol;	/* including padding */
1361};
1362
1363union tcp_md5sum_block {
1364	struct tcp4_pseudohdr ip4;
1365#if IS_ENABLED(CONFIG_IPV6)
1366	struct tcp6_pseudohdr ip6;
1367#endif
1368};
1369
1370/* - pool: digest algorithm, hash description and scratch buffer */
1371struct tcp_md5sig_pool {
1372	struct ahash_request	*md5_req;
1373	union tcp_md5sum_block	md5_blk;
 
 
 
 
 
 
1374};
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376/* - functions */
1377int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1378			const struct sock *sk, const struct sk_buff *skb);
1379int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1380		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
 
 
 
 
 
1381int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1382		   int family);
 
1383struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1384					 const struct sock *addr_sk);
1385
1386#ifdef CONFIG_TCP_MD5SIG
1387struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1388					 const union tcp_md5_addr *addr,
1389					 int family);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1391#else
1392static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1393					 const union tcp_md5_addr *addr,
1394					 int family)
1395{
1396	return NULL;
1397}
1398#define tcp_twsk_md5_key(twsk)	NULL
1399#endif
1400
1401bool tcp_alloc_md5sig_pool(void);
 
 
 
 
 
1402
1403struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1404static inline void tcp_put_md5sig_pool(void)
 
 
1405{
1406	local_bh_enable();
1407}
 
 
1408
1409int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1410int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1411			  unsigned int header_len);
1412int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
 
 
1413		     const struct tcp_md5sig_key *key);
1414
1415/* From tcp_fastopen.c */
1416void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1417			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1418			    unsigned long *last_syn_loss);
1419void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1420			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1421			    u16 try_exp);
1422struct tcp_fastopen_request {
1423	/* Fast Open cookie. Size 0 means a cookie request */
1424	struct tcp_fastopen_cookie	cookie;
1425	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1426	size_t				size;
1427	int				copied;	/* queued in tcp_connect() */
 
1428};
1429void tcp_free_fastopen_req(struct tcp_sock *tp);
1430
1431extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1432int tcp_fastopen_reset_cipher(void *key, unsigned int len);
 
 
 
1433void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1434struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1435			      struct request_sock *req,
1436			      struct tcp_fastopen_cookie *foc,
1437			      struct dst_entry *dst);
1438void tcp_fastopen_init_key_once(bool publish);
1439#define TCP_FASTOPEN_KEY_LENGTH 16
 
 
 
 
 
 
1440
1441/* Fastopen key context */
1442struct tcp_fastopen_context {
1443	struct crypto_cipher	*tfm;
1444	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1445	struct rcu_head		rcu;
1446};
1447
1448/* write queue abstraction */
1449static inline void tcp_write_queue_purge(struct sock *sk)
1450{
1451	struct sk_buff *skb;
1452
1453	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1454		sk_wmem_free_skb(sk, skb);
1455	sk_mem_reclaim(sk);
1456	tcp_clear_all_retrans_hints(tcp_sk(sk));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457}
1458
1459static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
 
1460{
1461	return skb_peek(&sk->sk_write_queue);
1462}
1463
1464static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465{
1466	return skb_peek_tail(&sk->sk_write_queue);
 
1467}
1468
1469static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1470						   const struct sk_buff *skb)
1471{
1472	return skb_queue_next(&sk->sk_write_queue, skb);
 
 
1473}
1474
1475static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1476						   const struct sk_buff *skb)
 
1477{
1478	return skb_queue_prev(&sk->sk_write_queue, skb);
1479}
1480
1481#define tcp_for_write_queue(skb, sk)					\
1482	skb_queue_walk(&(sk)->sk_write_queue, skb)
 
 
1483
1484#define tcp_for_write_queue_from(skb, sk)				\
1485	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
 
 
1486
1487#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1488	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1489
1490static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1491{
1492	return sk->sk_send_head;
1493}
1494
1495static inline bool tcp_skb_is_last(const struct sock *sk,
1496				   const struct sk_buff *skb)
1497{
1498	return skb_queue_is_last(&sk->sk_write_queue, skb);
1499}
1500
1501static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
1502{
1503	if (tcp_skb_is_last(sk, skb))
1504		sk->sk_send_head = NULL;
1505	else
1506		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1507}
1508
1509static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1510{
1511	if (sk->sk_send_head == skb_unlinked)
1512		sk->sk_send_head = NULL;
1513}
1514
1515static inline void tcp_init_send_head(struct sock *sk)
1516{
1517	sk->sk_send_head = NULL;
1518}
1519
1520static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1521{
1522	__skb_queue_tail(&sk->sk_write_queue, skb);
1523}
1524
1525static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1526{
1527	__tcp_add_write_queue_tail(sk, skb);
1528
1529	/* Queue it, remembering where we must start sending. */
1530	if (sk->sk_send_head == NULL) {
1531		sk->sk_send_head = skb;
1532
1533		if (tcp_sk(sk)->highest_sack == NULL)
1534			tcp_sk(sk)->highest_sack = skb;
1535	}
1536}
1537
1538static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1539{
1540	__skb_queue_head(&sk->sk_write_queue, skb);
1541}
1542
1543/* Insert buff after skb on the write queue of sk.  */
1544static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1545						struct sk_buff *buff,
1546						struct sock *sk)
1547{
1548	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1549}
1550
1551/* Insert new before skb on the write queue of sk.  */
1552static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1553						  struct sk_buff *skb,
1554						  struct sock *sk)
1555{
1556	__skb_queue_before(&sk->sk_write_queue, skb, new);
1557
1558	if (sk->sk_send_head == skb)
1559		sk->sk_send_head = new;
1560}
1561
1562static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1563{
 
1564	__skb_unlink(skb, &sk->sk_write_queue);
1565}
1566
1567static inline bool tcp_write_queue_empty(struct sock *sk)
 
 
1568{
1569	return skb_queue_empty(&sk->sk_write_queue);
 
 
 
 
 
 
 
 
1570}
1571
1572static inline void tcp_push_pending_frames(struct sock *sk)
1573{
1574	if (tcp_send_head(sk)) {
1575		struct tcp_sock *tp = tcp_sk(sk);
1576
1577		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1578	}
1579}
1580
1581/* Start sequence of the skb just after the highest skb with SACKed
1582 * bit, valid only if sacked_out > 0 or when the caller has ensured
1583 * validity by itself.
1584 */
1585static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1586{
1587	if (!tp->sacked_out)
1588		return tp->snd_una;
1589
1590	if (tp->highest_sack == NULL)
1591		return tp->snd_nxt;
1592
1593	return TCP_SKB_CB(tp->highest_sack)->seq;
1594}
1595
1596static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1597{
1598	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1599						tcp_write_queue_next(sk, skb);
1600}
1601
1602static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1603{
1604	return tcp_sk(sk)->highest_sack;
1605}
1606
1607static inline void tcp_highest_sack_reset(struct sock *sk)
1608{
1609	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1610}
1611
1612/* Called when old skb is about to be deleted (to be combined with new skb) */
1613static inline void tcp_highest_sack_combine(struct sock *sk,
1614					    struct sk_buff *old,
1615					    struct sk_buff *new)
1616{
1617	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1618		tcp_sk(sk)->highest_sack = new;
1619}
1620
1621/* This helper checks if socket has IP_TRANSPARENT set */
1622static inline bool inet_sk_transparent(const struct sock *sk)
1623{
1624	switch (sk->sk_state) {
1625	case TCP_TIME_WAIT:
1626		return inet_twsk(sk)->tw_transparent;
1627	case TCP_NEW_SYN_RECV:
1628		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1629	}
1630	return inet_sk(sk)->transparent;
1631}
1632
1633/* Determines whether this is a thin stream (which may suffer from
1634 * increased latency). Used to trigger latency-reducing mechanisms.
1635 */
1636static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1637{
1638	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1639}
1640
1641/* /proc */
1642enum tcp_seq_states {
1643	TCP_SEQ_STATE_LISTENING,
1644	TCP_SEQ_STATE_ESTABLISHED,
1645};
1646
1647int tcp_seq_open(struct inode *inode, struct file *file);
 
 
1648
1649struct tcp_seq_afinfo {
1650	char				*name;
1651	sa_family_t			family;
1652	const struct file_operations	*seq_fops;
1653	struct seq_operations		seq_ops;
1654};
1655
1656struct tcp_iter_state {
1657	struct seq_net_private	p;
1658	sa_family_t		family;
1659	enum tcp_seq_states	state;
1660	struct sock		*syn_wait_sk;
1661	int			bucket, offset, sbucket, num;
1662	loff_t			last_pos;
1663};
1664
1665int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1666void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1667
1668extern struct request_sock_ops tcp_request_sock_ops;
1669extern struct request_sock_ops tcp6_request_sock_ops;
1670
1671void tcp_v4_destroy_sock(struct sock *sk);
1672
1673struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1674				netdev_features_t features);
1675struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1676int tcp_gro_complete(struct sk_buff *skb);
 
 
 
 
 
 
 
 
1677
1678void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1679
1680static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1681{
1682	struct net *net = sock_net((struct sock *)tp);
1683	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1684}
1685
1686static inline bool tcp_stream_memory_free(const struct sock *sk)
1687{
1688	const struct tcp_sock *tp = tcp_sk(sk);
1689	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1690
1691	return notsent_bytes < tcp_notsent_lowat(tp);
1692}
1693
 
 
1694#ifdef CONFIG_PROC_FS
1695int tcp4_proc_init(void);
1696void tcp4_proc_exit(void);
1697#endif
1698
1699int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1700int tcp_conn_request(struct request_sock_ops *rsk_ops,
1701		     const struct tcp_request_sock_ops *af_ops,
1702		     struct sock *sk, struct sk_buff *skb);
1703
1704/* TCP af-specific functions */
1705struct tcp_sock_af_ops {
1706#ifdef CONFIG_TCP_MD5SIG
1707	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1708						const struct sock *addr_sk);
1709	int		(*calc_md5_hash)(char *location,
1710					 const struct tcp_md5sig_key *md5,
1711					 const struct sock *sk,
1712					 const struct sk_buff *skb);
1713	int		(*md5_parse)(struct sock *sk,
1714				     char __user *optval,
 
1715				     int optlen);
1716#endif
 
 
 
 
 
 
 
 
 
 
 
 
1717};
1718
1719struct tcp_request_sock_ops {
1720	u16 mss_clamp;
1721#ifdef CONFIG_TCP_MD5SIG
1722	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1723						 const struct sock *addr_sk);
1724	int		(*calc_md5_hash) (char *location,
1725					  const struct tcp_md5sig_key *md5,
1726					  const struct sock *sk,
1727					  const struct sk_buff *skb);
1728#endif
1729	void (*init_req)(struct request_sock *req,
1730			 const struct sock *sk_listener,
1731			 struct sk_buff *skb);
 
 
 
 
 
 
1732#ifdef CONFIG_SYN_COOKIES
1733	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1734				 __u16 *mss);
1735#endif
1736	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1737				       const struct request_sock *req,
1738				       bool *strict);
1739	__u32 (*init_seq)(const struct sk_buff *skb);
 
 
1740	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1741			   struct flowi *fl, struct request_sock *req,
1742			   struct tcp_fastopen_cookie *foc,
1743			   bool attach_req);
 
1744};
1745
 
 
 
 
 
1746#ifdef CONFIG_SYN_COOKIES
1747static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1748					 const struct sock *sk, struct sk_buff *skb,
1749					 __u16 *mss)
1750{
1751	tcp_synq_overflow(sk);
1752	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1753	return ops->cookie_init_seq(skb, mss);
1754}
1755#else
1756static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1757					 const struct sock *sk, struct sk_buff *skb,
1758					 __u16 *mss)
1759{
1760	return 0;
1761}
1762#endif
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764int tcpv4_offload_init(void);
1765
1766void tcp_v4_init(void);
1767void tcp_init(void);
1768
1769/* tcp_recovery.c */
 
 
 
 
 
 
 
 
 
 
 
1770
1771/* Flags to enable various loss recovery features. See below */
1772extern int sysctl_tcp_recovery;
 
 
 
 
 
 
 
 
 
 
 
 
1773
1774/* Use TCP RACK to detect (some) tail and retransmit losses */
1775#define TCP_RACK_LOST_RETRANS  0x1
 
 
 
 
 
 
 
 
1776
1777extern int tcp_rack_mark_lost(struct sock *sk);
 
 
 
 
 
1778
1779extern void tcp_rack_advance(struct tcp_sock *tp,
1780			     const struct skb_mstamp *xmit_time, u8 sacked);
1781
1782/*
1783 * Save and compile IPv4 options, return a pointer to it
1784 */
1785static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
 
1786{
1787	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1788	struct ip_options_rcu *dopt = NULL;
1789
1790	if (opt->optlen) {
1791		int opt_size = sizeof(*dopt) + opt->optlen;
1792
1793		dopt = kmalloc(opt_size, GFP_ATOMIC);
1794		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1795			kfree(dopt);
1796			dopt = NULL;
1797		}
1798	}
1799	return dopt;
1800}
1801
1802/* locally generated TCP pure ACKs have skb->truesize == 2
1803 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1804 * This is much faster than dissecting the packet to find out.
1805 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1806 */
1807static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1808{
1809	return skb->truesize == 2;
1810}
1811
1812static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1813{
1814	skb->truesize = 2;
1815}
1816
1817static inline int tcp_inq(struct sock *sk)
1818{
1819	struct tcp_sock *tp = tcp_sk(sk);
1820	int answ;
1821
1822	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1823		answ = 0;
1824	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1825		   !tp->urg_data ||
1826		   before(tp->urg_seq, tp->copied_seq) ||
1827		   !before(tp->urg_seq, tp->rcv_nxt)) {
1828
1829		answ = tp->rcv_nxt - tp->copied_seq;
1830
1831		/* Subtract 1, if FIN was received */
1832		if (answ && sock_flag(sk, SOCK_DONE))
1833			answ--;
1834	} else {
1835		answ = tp->urg_seq - tp->copied_seq;
1836	}
1837
1838	return answ;
1839}
1840
 
 
1841static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1842{
1843	u16 segs_in;
1844
1845	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1846	tp->segs_in += segs_in;
 
 
 
 
1847	if (skb->len > tcp_hdrlen(skb))
1848		tp->data_segs_in += segs_in;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849}
1850
1851#endif	/* _TCP_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 
 
 
 
 
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
 
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
  44
  45#include <linux/seq_file.h>
  46#include <linux/memcontrol.h>
  47#include <linux/bpf-cgroup.h>
  48#include <linux/siphash.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  53int tcp_orphan_count_sum(void);
  54
  55void tcp_time_wait(struct sock *sk, int state, int timeo);
  56
  57#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  58#define MAX_TCP_OPTION_SPACE 40
  59#define TCP_MIN_SND_MSS		48
  60#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  61
  62/*
  63 * Never offer a window over 32767 without using window scaling. Some
  64 * poor stacks do signed 16bit maths!
  65 */
  66#define MAX_TCP_WINDOW		32767U
  67
  68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  69#define TCP_MIN_MSS		88U
  70
  71/* The initial MTU to use for probing */
  72#define TCP_BASE_MSS		1024
  73
  74/* probing interval, default to 10 minutes as per RFC4821 */
  75#define TCP_PROBE_INTERVAL	600
  76
  77/* Specify interval when tcp mtu probing will stop */
  78#define TCP_PROBE_THRESHOLD	8
  79
  80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  81#define TCP_FASTRETRANS_THRESH 3
  82
  83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  84#define TCP_MAX_QUICKACKS	16U
  85
  86/* Maximal number of window scale according to RFC1323 */
  87#define TCP_MAX_WSCALE		14U
  88
  89/* urg_data states */
  90#define TCP_URG_VALID	0x0100
  91#define TCP_URG_NOTYET	0x0200
  92#define TCP_URG_READ	0x0400
  93
  94#define TCP_RETR1	3	/*
  95				 * This is how many retries it does before it
  96				 * tries to figure out if the gateway is
  97				 * down. Minimal RFC value is 3; it corresponds
  98				 * to ~3sec-8min depending on RTO.
  99				 */
 100
 101#define TCP_RETR2	15	/*
 102				 * This should take at least
 103				 * 90 minutes to time out.
 104				 * RFC1122 says that the limit is 100 sec.
 105				 * 15 is ~13-30min depending on RTO.
 106				 */
 107
 108#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 109				 * when active opening a connection.
 110				 * RFC1122 says the minimum retry MUST
 111				 * be at least 180secs.  Nevertheless
 112				 * this value is corresponding to
 113				 * 63secs of retransmission with the
 114				 * current initial RTO.
 115				 */
 116
 117#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 118				 * when passive opening a connection.
 119				 * This is corresponding to 31secs of
 120				 * retransmission with the current
 121				 * initial RTO.
 122				 */
 123
 124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 125				  * state, about 60 seconds	*/
 126#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 127                                 /* BSD style FIN_WAIT2 deadlock breaker.
 128				  * It used to be 3min, new value is 60sec,
 129				  * to combine FIN-WAIT-2 timeout with
 130				  * TIME-WAIT timer.
 131				  */
 132#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 133
 134#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 135static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 136
 137#if HZ >= 100
 138#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 139#define TCP_ATO_MIN	((unsigned)(HZ/25))
 140#else
 141#define TCP_DELACK_MIN	4U
 142#define TCP_ATO_MIN	4U
 143#endif
 144#define TCP_RTO_MAX	((unsigned)(120*HZ))
 145#define TCP_RTO_MIN	((unsigned)(HZ/5))
 146#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 147
 148#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 149
 150#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 151#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 152						 * used as a fallback RTO for the
 153						 * initial data transmission if no
 154						 * valid RTT sample has been acquired,
 155						 * most likely due to retrans in 3WHS.
 156						 */
 157
 158#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 159					                 * for local resources.
 160					                 */
 
 161#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 162#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 163#define TCP_KEEPALIVE_INTVL	(75*HZ)
 164
 165#define MAX_TCP_KEEPIDLE	32767
 166#define MAX_TCP_KEEPINTVL	32767
 167#define MAX_TCP_KEEPCNT		127
 168#define MAX_TCP_SYNCNT		127
 169
 170/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 173 */
 174#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 175
 
 176#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 177					 * after this time. It should be equal
 178					 * (or greater than) TCP_TIMEWAIT_LEN
 179					 * to provide reliability equal to one
 180					 * provided by timewait state.
 181					 */
 182#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 183					 * timestamps. It must be less than
 184					 * minimal timewait lifetime.
 185					 */
 186/*
 187 *	TCP option
 188 */
 189
 190#define TCPOPT_NOP		1	/* Padding */
 191#define TCPOPT_EOL		0	/* End of options */
 192#define TCPOPT_MSS		2	/* Segment size negotiating */
 193#define TCPOPT_WINDOW		3	/* Window scaling */
 194#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 195#define TCPOPT_SACK             5       /* SACK Block */
 196#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 197#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 198#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
 199#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 200#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 201#define TCPOPT_EXP		254	/* Experimental */
 202/* Magic number to be after the option value for sharing TCP
 203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 204 */
 205#define TCPOPT_FASTOPEN_MAGIC	0xF989
 206#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 207
 208/*
 209 *     TCP option lengths
 210 */
 211
 212#define TCPOLEN_MSS            4
 213#define TCPOLEN_WINDOW         3
 214#define TCPOLEN_SACK_PERM      2
 215#define TCPOLEN_TIMESTAMP      10
 216#define TCPOLEN_MD5SIG         18
 217#define TCPOLEN_FASTOPEN_BASE  2
 218#define TCPOLEN_EXP_FASTOPEN_BASE  4
 219#define TCPOLEN_EXP_SMC_BASE   6
 220
 221/* But this is what stacks really send out. */
 222#define TCPOLEN_TSTAMP_ALIGNED		12
 223#define TCPOLEN_WSCALE_ALIGNED		4
 224#define TCPOLEN_SACKPERM_ALIGNED	4
 225#define TCPOLEN_SACK_BASE		2
 226#define TCPOLEN_SACK_BASE_ALIGNED	4
 227#define TCPOLEN_SACK_PERBLOCK		8
 228#define TCPOLEN_MD5SIG_ALIGNED		20
 229#define TCPOLEN_MSS_ALIGNED		4
 230#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 231
 232/* Flags in tp->nonagle */
 233#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 234#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 235#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 236
 237/* TCP thin-stream limits */
 238#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 239
 240/* TCP initial congestion window as per rfc6928 */
 241#define TCP_INIT_CWND		10
 242
 243/* Bit Flags for sysctl_tcp_fastopen */
 244#define	TFO_CLIENT_ENABLE	1
 245#define	TFO_SERVER_ENABLE	2
 246#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 247
 248/* Accept SYN data w/o any cookie option */
 249#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 250
 251/* Force enable TFO on all listeners, i.e., not requiring the
 252 * TCP_FASTOPEN socket option.
 253 */
 254#define	TFO_SERVER_WO_SOCKOPT1	0x400
 
 255
 
 256
 257/* sysctl variables for tcp */
 
 
 
 
 
 
 
 
 258extern int sysctl_tcp_max_orphans;
 
 
 
 
 259extern long sysctl_tcp_mem[3];
 260
 261#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 262#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 263#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264
 265extern atomic_long_t tcp_memory_allocated;
 266DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 267
 268extern struct percpu_counter tcp_sockets_allocated;
 269extern unsigned long tcp_memory_pressure;
 270
 271/* optimized version of sk_under_memory_pressure() for TCP sockets */
 272static inline bool tcp_under_memory_pressure(const struct sock *sk)
 273{
 274	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 275	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 276		return true;
 277
 278	return READ_ONCE(tcp_memory_pressure);
 279}
 280/*
 281 * The next routines deal with comparing 32 bit unsigned ints
 282 * and worry about wraparound (automatic with unsigned arithmetic).
 283 */
 284
 285static inline bool before(__u32 seq1, __u32 seq2)
 286{
 287        return (__s32)(seq1-seq2) < 0;
 288}
 289#define after(seq2, seq1) 	before(seq1, seq2)
 290
 291/* is s2<=s1<=s3 ? */
 292static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 293{
 294	return seq3 - seq2 >= seq1 - seq2;
 295}
 296
 297static inline bool tcp_out_of_memory(struct sock *sk)
 298{
 299	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 300	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 301		return true;
 302	return false;
 303}
 304
 305static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 
 
 306{
 307	sk_wmem_queued_add(sk, -skb->truesize);
 308	if (!skb_zcopy_pure(skb))
 309		sk_mem_uncharge(sk, skb->truesize);
 310	else
 311		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 312	__kfree_skb(skb);
 
 
 
 313}
 314
 315void sk_forced_mem_schedule(struct sock *sk, int size);
 316
 317bool tcp_check_oom(struct sock *sk, int shift);
 318
 319
 320extern struct proto tcp_prot;
 321
 322#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 323#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 324#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 
 325#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 326
 327void tcp_tasklet_init(void);
 328
 329int tcp_v4_err(struct sk_buff *skb, u32);
 330
 331void tcp_shutdown(struct sock *sk, int how);
 332
 333int tcp_v4_early_demux(struct sk_buff *skb);
 334int tcp_v4_rcv(struct sk_buff *skb);
 335
 336void tcp_remove_empty_skb(struct sock *sk);
 337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 338int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 339int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 340			 size_t size, struct ubuf_info *uarg);
 341void tcp_splice_eof(struct socket *sock);
 342int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 343int tcp_wmem_schedule(struct sock *sk, int copy);
 344void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 345	      int size_goal);
 346void tcp_release_cb(struct sock *sk);
 347void tcp_wfree(struct sk_buff *skb);
 348void tcp_write_timer_handler(struct sock *sk);
 349void tcp_delack_timer_handler(struct sock *sk);
 350int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 351int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 352void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 
 353void tcp_rcv_space_adjust(struct sock *sk);
 354int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 355void tcp_twsk_destructor(struct sock *sk);
 356void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 357ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 358			struct pipe_inode_info *pipe, size_t len,
 359			unsigned int flags);
 360struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 361				     bool force_schedule);
 362
 363static inline void tcp_dec_quickack_mode(struct sock *sk)
 
 364{
 365	struct inet_connection_sock *icsk = inet_csk(sk);
 366
 367	if (icsk->icsk_ack.quick) {
 368		/* How many ACKs S/ACKing new data have we sent? */
 369		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 370
 371		if (pkts >= icsk->icsk_ack.quick) {
 372			icsk->icsk_ack.quick = 0;
 373			/* Leaving quickack mode we deflate ATO. */
 374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375		} else
 376			icsk->icsk_ack.quick -= pkts;
 377	}
 378}
 379
 380#define	TCP_ECN_OK		1
 381#define	TCP_ECN_QUEUE_CWR	2
 382#define	TCP_ECN_DEMAND_CWR	4
 383#define	TCP_ECN_SEEN		8
 384
 385enum tcp_tw_status {
 386	TCP_TW_SUCCESS = 0,
 387	TCP_TW_RST = 1,
 388	TCP_TW_ACK = 2,
 389	TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394					      struct sk_buff *skb,
 395					      const struct tcphdr *th);
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397			   struct request_sock *req, bool fastopen,
 398			   bool *lost_race);
 399int tcp_child_process(struct sock *parent, struct sock *child,
 400		      struct sk_buff *skb);
 401void tcp_enter_loss(struct sock *sk);
 402void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 403void tcp_clear_retrans(struct tcp_sock *tp);
 404void tcp_update_metrics(struct sock *sk);
 405void tcp_init_metrics(struct sock *sk);
 406void tcp_metrics_init(void);
 407bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 408void __tcp_close(struct sock *sk, long timeout);
 
 
 
 
 409void tcp_close(struct sock *sk, long timeout);
 410void tcp_init_sock(struct sock *sk);
 411void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 412__poll_t tcp_poll(struct file *file, struct socket *sock,
 413		      struct poll_table_struct *wait);
 414int do_tcp_getsockopt(struct sock *sk, int level,
 415		      int optname, sockptr_t optval, sockptr_t optlen);
 416int tcp_getsockopt(struct sock *sk, int level, int optname,
 417		   char __user *optval, int __user *optlen);
 418bool tcp_bpf_bypass_getsockopt(int level, int optname);
 419int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 420		      sockptr_t optval, unsigned int optlen);
 421int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 422		   unsigned int optlen);
 
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 426		int flags, int *addr_len);
 427int tcp_set_rcvlowat(struct sock *sk, int val);
 428int tcp_set_window_clamp(struct sock *sk, int val);
 429void tcp_update_recv_tstamps(struct sk_buff *skb,
 430			     struct scm_timestamping_internal *tss);
 431void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 432			struct scm_timestamping_internal *tss);
 433void tcp_data_ready(struct sock *sk);
 434#ifdef CONFIG_MMU
 435int tcp_mmap(struct file *file, struct socket *sock,
 436	     struct vm_area_struct *vma);
 437#endif
 438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 439		       struct tcp_options_received *opt_rx,
 440		       int estab, struct tcp_fastopen_cookie *foc);
 
 441
 442/*
 443 *	BPF SKB-less helpers
 444 */
 445u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 446			 struct tcphdr *th, u32 *cookie);
 447u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 448			 struct tcphdr *th, u32 *cookie);
 449u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 450u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 451			  const struct tcp_request_sock_ops *af_ops,
 452			  struct sock *sk, struct tcphdr *th);
 453/*
 454 *	TCP v4 functions exported for the inet6 API
 455 */
 456
 457void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 458void tcp_v4_mtu_reduced(struct sock *sk);
 459void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 460void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 461int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 462struct sock *tcp_create_openreq_child(const struct sock *sk,
 463				      struct request_sock *req,
 464				      struct sk_buff *skb);
 465void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 466struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 467				  struct request_sock *req,
 468				  struct dst_entry *dst,
 469				  struct request_sock *req_unhash,
 470				  bool *own_req);
 471int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 472int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 473int tcp_connect(struct sock *sk);
 474enum tcp_synack_type {
 475	TCP_SYNACK_NORMAL,
 476	TCP_SYNACK_FASTOPEN,
 477	TCP_SYNACK_COOKIE,
 478};
 479struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 480				struct request_sock *req,
 481				struct tcp_fastopen_cookie *foc,
 482				enum tcp_synack_type synack_type,
 483				struct sk_buff *syn_skb);
 484int tcp_disconnect(struct sock *sk, int flags);
 485
 486void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 487int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 488void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 489
 490/* From syncookies.c */
 491struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 492				 struct request_sock *req,
 493				 struct dst_entry *dst);
 494int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
 
 495struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 496struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 497					    struct sock *sk, struct sk_buff *skb,
 498					    struct tcp_options_received *tcp_opt,
 499					    int mss, u32 tsoff);
 500
 501#ifdef CONFIG_SYN_COOKIES
 502
 503/* Syncookies use a monotonic timer which increments every 60 seconds.
 504 * This counter is used both as a hash input and partially encoded into
 505 * the cookie value.  A cookie is only validated further if the delta
 506 * between the current counter value and the encoded one is less than this,
 507 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 508 * the counter advances immediately after a cookie is generated).
 509 */
 510#define MAX_SYNCOOKIE_AGE	2
 511#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 512#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 513
 514/* syncookies: remember time of last synqueue overflow
 515 * But do not dirty this field too often (once per second is enough)
 516 * It is racy as we do not hold a lock, but race is very minor.
 517 */
 518static inline void tcp_synq_overflow(const struct sock *sk)
 519{
 520	unsigned int last_overflow;
 521	unsigned int now = jiffies;
 522
 523	if (sk->sk_reuseport) {
 524		struct sock_reuseport *reuse;
 525
 526		reuse = rcu_dereference(sk->sk_reuseport_cb);
 527		if (likely(reuse)) {
 528			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 529			if (!time_between32(now, last_overflow,
 530					    last_overflow + HZ))
 531				WRITE_ONCE(reuse->synq_overflow_ts, now);
 532			return;
 533		}
 534	}
 535
 536	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 537	if (!time_between32(now, last_overflow, last_overflow + HZ))
 538		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 539}
 540
 541/* syncookies: no recent synqueue overflow on this listening socket? */
 542static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 543{
 544	unsigned int last_overflow;
 545	unsigned int now = jiffies;
 546
 547	if (sk->sk_reuseport) {
 548		struct sock_reuseport *reuse;
 549
 550		reuse = rcu_dereference(sk->sk_reuseport_cb);
 551		if (likely(reuse)) {
 552			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 553			return !time_between32(now, last_overflow - HZ,
 554					       last_overflow +
 555					       TCP_SYNCOOKIE_VALID);
 556		}
 557	}
 558
 559	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 560
 561	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 562	 * then we're under synflood. However, we have to use
 563	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 564	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 565	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 566	 * which could lead to rejecting a valid syncookie.
 567	 */
 568	return !time_between32(now, last_overflow - HZ,
 569			       last_overflow + TCP_SYNCOOKIE_VALID);
 570}
 571
 572static inline u32 tcp_cookie_time(void)
 573{
 574	u64 val = get_jiffies_64();
 575
 576	do_div(val, TCP_SYNCOOKIE_PERIOD);
 577	return val;
 578}
 579
 580u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 581			      u16 *mssp);
 582__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 583u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 584bool cookie_timestamp_decode(const struct net *net,
 585			     struct tcp_options_received *opt);
 586
 587static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
 588{
 589	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
 590		dst_feature(dst, RTAX_FEATURE_ECN);
 591}
 592
 593/* From net/ipv6/syncookies.c */
 594int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
 
 595struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 596
 597u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 598			      const struct tcphdr *th, u16 *mssp);
 599__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 600#endif
 601/* tcp_output.c */
 602
 603void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 604void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 605void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 606			       int nonagle);
 607int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 608int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 
 609void tcp_retransmit_timer(struct sock *sk);
 610void tcp_xmit_retransmit_queue(struct sock *);
 611void tcp_simple_retransmit(struct sock *);
 612void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 613int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 614enum tcp_queue {
 615	TCP_FRAG_IN_WRITE_QUEUE,
 616	TCP_FRAG_IN_RTX_QUEUE,
 617};
 618int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 619		 struct sk_buff *skb, u32 len,
 620		 unsigned int mss_now, gfp_t gfp);
 621
 622void tcp_send_probe0(struct sock *);
 
 623int tcp_write_wakeup(struct sock *, int mib);
 624void tcp_send_fin(struct sock *sk);
 625void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 626int tcp_send_synack(struct sock *);
 627void tcp_push_one(struct sock *, unsigned int mss_now);
 628void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 629void tcp_send_ack(struct sock *sk);
 630void tcp_send_delayed_ack(struct sock *sk);
 631void tcp_send_loss_probe(struct sock *sk);
 632bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 633void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 634			     const struct sk_buff *next_skb);
 635
 636/* tcp_input.c */
 
 637void tcp_rearm_rto(struct sock *sk);
 638void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 639void tcp_reset(struct sock *sk, struct sk_buff *skb);
 
 640void tcp_fin(struct sock *sk);
 641void tcp_check_space(struct sock *sk);
 642void tcp_sack_compress_send_ack(struct sock *sk);
 643
 644/* tcp_timer.c */
 645void tcp_init_xmit_timers(struct sock *);
 646static inline void tcp_clear_xmit_timers(struct sock *sk)
 647{
 648	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 649		__sock_put(sk);
 650
 651	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 652		__sock_put(sk);
 653
 654	inet_csk_clear_xmit_timers(sk);
 655}
 656
 657unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 658unsigned int tcp_current_mss(struct sock *sk);
 659u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 660
 661/* Bound MSS / TSO packet size with the half of the window */
 662static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 663{
 664	int cutoff;
 665
 666	/* When peer uses tiny windows, there is no use in packetizing
 667	 * to sub-MSS pieces for the sake of SWS or making sure there
 668	 * are enough packets in the pipe for fast recovery.
 669	 *
 670	 * On the other hand, for extremely large MSS devices, handling
 671	 * smaller than MSS windows in this way does make sense.
 672	 */
 673	if (tp->max_window > TCP_MSS_DEFAULT)
 674		cutoff = (tp->max_window >> 1);
 675	else
 676		cutoff = tp->max_window;
 677
 678	if (cutoff && pktsize > cutoff)
 679		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 680	else
 681		return pktsize;
 682}
 683
 684/* tcp.c */
 685void tcp_get_info(struct sock *, struct tcp_info *);
 686
 687/* Read 'sendfile()'-style from a TCP socket */
 
 
 688int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 689		  sk_read_actor_t recv_actor);
 690int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 691struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 692void tcp_read_done(struct sock *sk, size_t len);
 693
 694void tcp_initialize_rcv_mss(struct sock *sk);
 695
 696int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 697int tcp_mss_to_mtu(struct sock *sk, int mss);
 698void tcp_mtup_init(struct sock *sk);
 
 699
 700static inline void tcp_bound_rto(const struct sock *sk)
 701{
 702	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 703		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 704}
 705
 706static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 707{
 708	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 709}
 710
 711static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 712{
 713	/* mptcp hooks are only on the slow path */
 714	if (sk_is_mptcp((struct sock *)tp))
 715		return;
 716
 717	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 718			       ntohl(TCP_FLAG_ACK) |
 719			       snd_wnd);
 720}
 721
 722static inline void tcp_fast_path_on(struct tcp_sock *tp)
 723{
 724	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 725}
 726
 727static inline void tcp_fast_path_check(struct sock *sk)
 728{
 729	struct tcp_sock *tp = tcp_sk(sk);
 730
 731	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 732	    tp->rcv_wnd &&
 733	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 734	    !tp->urg_data)
 735		tcp_fast_path_on(tp);
 736}
 737
 738u32 tcp_delack_max(const struct sock *sk);
 739
 740/* Compute the actual rto_min value */
 741static inline u32 tcp_rto_min(const struct sock *sk)
 742{
 743	const struct dst_entry *dst = __sk_dst_get(sk);
 744	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 745
 746	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 747		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 748	return rto_min;
 749}
 750
 751static inline u32 tcp_rto_min_us(const struct sock *sk)
 752{
 753	return jiffies_to_usecs(tcp_rto_min(sk));
 754}
 755
 756static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 757{
 758	return dst_metric_locked(dst, RTAX_CC_ALGO);
 759}
 760
 761/* Minimum RTT in usec. ~0 means not available. */
 762static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 763{
 764	return minmax_get(&tp->rtt_min);
 765}
 766
 767/* Compute the actual receive window we are currently advertising.
 768 * Rcv_nxt can be after the window if our peer push more data
 769 * than the offered window.
 770 */
 771static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 772{
 773	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 774
 775	if (win < 0)
 776		win = 0;
 777	return (u32) win;
 778}
 779
 780/* Choose a new window, without checks for shrinking, and without
 781 * scaling applied to the result.  The caller does these things
 782 * if necessary.  This is a "raw" window selection.
 783 */
 784u32 __tcp_select_window(struct sock *sk);
 785
 786void tcp_send_window_probe(struct sock *sk);
 787
 788/* TCP uses 32bit jiffies to save some space.
 789 * Note that this is different from tcp_time_stamp, which
 790 * historically has been the same until linux-4.13.
 791 */
 792#define tcp_jiffies32 ((u32)jiffies)
 793
 794/*
 795 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 796 * It is no longer tied to jiffies, but to 1 ms clock.
 797 * Note: double check if you want to use tcp_jiffies32 instead of this.
 798 */
 799#define TCP_TS_HZ	1000
 800
 801static inline u64 tcp_clock_ns(void)
 802{
 803	return ktime_get_ns();
 804}
 805
 806static inline u64 tcp_clock_us(void)
 807{
 808	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 809}
 810
 811static inline u64 tcp_clock_ms(void)
 812{
 813	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 814}
 815
 816/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 817 * or usec resolution. Each socket carries a flag to select one or other
 818 * resolution, as the route attribute could change anytime.
 819 * Each flow must stick to initial resolution.
 820 */
 821static inline u32 tcp_clock_ts(bool usec_ts)
 822{
 823	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 824}
 825
 826static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 827{
 828	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 829}
 830
 831static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 832{
 833	if (tp->tcp_usec_ts)
 834		return tp->tcp_mstamp;
 835	return tcp_time_stamp_ms(tp);
 836}
 837
 838void tcp_mstamp_refresh(struct tcp_sock *tp);
 839
 840static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 841{
 842	return max_t(s64, t1 - t0, 0);
 843}
 844
 845/* provide the departure time in us unit */
 846static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 847{
 848	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 849}
 850
 851/* Provide skb TSval in usec or ms unit */
 852static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 853{
 854	if (usec_ts)
 855		return tcp_skb_timestamp_us(skb);
 856
 857	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 858}
 859
 860static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 861{
 862	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 863}
 864
 865static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 866{
 867	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 868}
 869
 870#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 871
 872#define TCPHDR_FIN 0x01
 873#define TCPHDR_SYN 0x02
 874#define TCPHDR_RST 0x04
 875#define TCPHDR_PSH 0x08
 876#define TCPHDR_ACK 0x10
 877#define TCPHDR_URG 0x20
 878#define TCPHDR_ECE 0x40
 879#define TCPHDR_CWR 0x80
 880
 881#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 882
 883/* This is what the send packet queuing engine uses to pass
 884 * TCP per-packet control information to the transmission code.
 885 * We also store the host-order sequence numbers in here too.
 886 * This is 44 bytes if IPV6 is enabled.
 887 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 888 */
 889struct tcp_skb_cb {
 890	__u32		seq;		/* Starting sequence number	*/
 891	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 892	union {
 893		/* Note : tcp_tw_isn is used in input path only
 894		 *	  (isn chosen by tcp_timewait_state_process())
 895		 *
 896		 * 	  tcp_gso_segs/size are used in write queue only,
 897		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 898		 */
 899		__u32		tcp_tw_isn;
 900		struct {
 901			u16	tcp_gso_segs;
 902			u16	tcp_gso_size;
 903		};
 904	};
 905	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 906
 907	__u8		sacked;		/* State flags for SACK.	*/
 908#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 909#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 910#define TCPCB_LOST		0x04	/* SKB is lost			*/
 911#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 912#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 913#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 914#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 915				TCPCB_REPAIRED)
 916
 917	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 918	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 919			eor:1,		/* Is skb MSG_EOR marked? */
 920			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 921			unused:5;
 922	__u32		ack_seq;	/* Sequence number ACK'd	*/
 923	union {
 924		struct {
 925#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 926			/* There is space for up to 24 bytes */
 927			__u32 is_app_limited:1, /* cwnd not fully used? */
 928			      delivered_ce:20,
 929			      unused:11;
 930			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 931			__u32 delivered;
 932			/* start of send pipeline phase */
 933			u64 first_tx_mstamp;
 934			/* when we reached the "delivered" count */
 935			u64 delivered_mstamp;
 936		} tx;   /* only used for outgoing skbs */
 937		union {
 938			struct inet_skb_parm	h4;
 939#if IS_ENABLED(CONFIG_IPV6)
 940			struct inet6_skb_parm	h6;
 941#endif
 942		} header;	/* For incoming skbs */
 943	};
 944};
 945
 946#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 947
 948extern const struct inet_connection_sock_af_ops ipv4_specific;
 949
 950#if IS_ENABLED(CONFIG_IPV6)
 951/* This is the variant of inet6_iif() that must be used by TCP,
 952 * as TCP moves IP6CB into a different location in skb->cb[]
 953 */
 954static inline int tcp_v6_iif(const struct sk_buff *skb)
 955{
 956	return TCP_SKB_CB(skb)->header.h6.iif;
 957}
 958
 959static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 960{
 961	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 962
 963	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 964}
 965
 966/* TCP_SKB_CB reference means this can not be used from early demux */
 967static inline int tcp_v6_sdif(const struct sk_buff *skb)
 968{
 969#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 970	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 971		return TCP_SKB_CB(skb)->header.h6.iif;
 972#endif
 973	return 0;
 974}
 975
 976extern const struct inet_connection_sock_af_ops ipv6_specific;
 977
 978INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 979INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 980void tcp_v6_early_demux(struct sk_buff *skb);
 981
 982#endif
 983
 984/* TCP_SKB_CB reference means this can not be used from early demux */
 985static inline int tcp_v4_sdif(struct sk_buff *skb)
 986{
 987#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 988	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 989		return TCP_SKB_CB(skb)->header.h4.iif;
 990#endif
 991	return 0;
 992}
 993
 994/* Due to TSO, an SKB can be composed of multiple actual
 995 * packets.  To keep these tracked properly, we use this.
 996 */
 997static inline int tcp_skb_pcount(const struct sk_buff *skb)
 998{
 999	return TCP_SKB_CB(skb)->tcp_gso_segs;
1000}
1001
1002static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1003{
1004	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1005}
1006
1007static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1008{
1009	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1010}
1011
1012/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1013static inline int tcp_skb_mss(const struct sk_buff *skb)
1014{
1015	return TCP_SKB_CB(skb)->tcp_gso_size;
1016}
1017
1018static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1019{
1020	return likely(!TCP_SKB_CB(skb)->eor);
1021}
1022
1023static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1024					const struct sk_buff *from)
1025{
1026	return likely(tcp_skb_can_collapse_to(to) &&
1027		      mptcp_skb_can_collapse(to, from) &&
1028		      skb_pure_zcopy_same(to, from));
1029}
1030
1031/* Events passed to congestion control interface */
1032enum tcp_ca_event {
1033	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1034	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1035	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1036	CA_EVENT_LOSS,		/* loss timeout */
1037	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1038	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 
 
1039};
1040
1041/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1042enum tcp_ca_ack_event_flags {
1043	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1044	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1045	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1046};
1047
1048/*
1049 * Interface for adding new TCP congestion control handlers
1050 */
1051#define TCP_CA_NAME_MAX	16
1052#define TCP_CA_MAX	128
1053#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1054
1055#define TCP_CA_UNSPEC	0
1056
1057/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1058#define TCP_CONG_NON_RESTRICTED 0x1
1059/* Requires ECN/ECT set on all packets */
1060#define TCP_CONG_NEEDS_ECN	0x2
1061#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1062
1063union tcp_cc_info;
1064
1065struct ack_sample {
1066	u32 pkts_acked;
1067	s32 rtt_us;
1068	u32 in_flight;
1069};
1070
1071/* A rate sample measures the number of (original/retransmitted) data
1072 * packets delivered "delivered" over an interval of time "interval_us".
1073 * The tcp_rate.c code fills in the rate sample, and congestion
1074 * control modules that define a cong_control function to run at the end
1075 * of ACK processing can optionally chose to consult this sample when
1076 * setting cwnd and pacing rate.
1077 * A sample is invalid if "delivered" or "interval_us" is negative.
1078 */
1079struct rate_sample {
1080	u64  prior_mstamp; /* starting timestamp for interval */
1081	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1082	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1083	s32  delivered;		/* number of packets delivered over interval */
1084	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1085	long interval_us;	/* time for tp->delivered to incr "delivered" */
1086	u32 snd_interval_us;	/* snd interval for delivered packets */
1087	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1088	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1089	int  losses;		/* number of packets marked lost upon ACK */
1090	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1091	u32  prior_in_flight;	/* in flight before this ACK */
1092	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1093	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1094	bool is_retrans;	/* is sample from retransmission? */
1095	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1096};
1097
1098struct tcp_congestion_ops {
1099/* fast path fields are put first to fill one cache line */
1100
1101	/* return slow start threshold (required) */
1102	u32 (*ssthresh)(struct sock *sk);
1103
1104	/* do new cwnd calculation (required) */
1105	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1106
1107	/* call before changing ca_state (optional) */
1108	void (*set_state)(struct sock *sk, u8 new_state);
1109
1110	/* call when cwnd event occurs (optional) */
1111	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1112
1113	/* call when ack arrives (optional) */
1114	void (*in_ack_event)(struct sock *sk, u32 flags);
1115
 
1116	/* hook for packet ack accounting (optional) */
1117	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1118
1119	/* override sysctl_tcp_min_tso_segs */
1120	u32 (*min_tso_segs)(struct sock *sk);
1121
1122	/* call when packets are delivered to update cwnd and pacing rate,
1123	 * after all the ca_state processing. (optional)
1124	 */
1125	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1126
1127
1128	/* new value of cwnd after loss (required) */
1129	u32  (*undo_cwnd)(struct sock *sk);
1130	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1131	u32 (*sndbuf_expand)(struct sock *sk);
1132
1133/* control/slow paths put last */
1134	/* get info for inet_diag (optional) */
1135	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1136			   union tcp_cc_info *info);
1137
1138	char 			name[TCP_CA_NAME_MAX];
1139	struct module		*owner;
1140	struct list_head	list;
1141	u32			key;
1142	u32			flags;
1143
1144	/* initialize private data (optional) */
1145	void (*init)(struct sock *sk);
1146	/* cleanup private data  (optional) */
1147	void (*release)(struct sock *sk);
1148} ____cacheline_aligned_in_smp;
1149
1150int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1151void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1152int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1153				  struct tcp_congestion_ops *old_type);
1154int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1155
1156void tcp_assign_congestion_control(struct sock *sk);
1157void tcp_init_congestion_control(struct sock *sk);
1158void tcp_cleanup_congestion_control(struct sock *sk);
1159int tcp_set_default_congestion_control(struct net *net, const char *name);
1160void tcp_get_default_congestion_control(struct net *net, char *name);
1161void tcp_get_available_congestion_control(char *buf, size_t len);
1162void tcp_get_allowed_congestion_control(char *buf, size_t len);
1163int tcp_set_allowed_congestion_control(char *allowed);
1164int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1165			       bool cap_net_admin);
1166u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1167void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1168
1169u32 tcp_reno_ssthresh(struct sock *sk);
1170u32 tcp_reno_undo_cwnd(struct sock *sk);
1171void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1172extern struct tcp_congestion_ops tcp_reno;
1173
1174struct tcp_congestion_ops *tcp_ca_find(const char *name);
1175struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1176u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1177#ifdef CONFIG_INET
1178char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1179#else
1180static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1181{
1182	return NULL;
1183}
1184#endif
1185
1186static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1187{
1188	const struct inet_connection_sock *icsk = inet_csk(sk);
1189
1190	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1191}
1192
 
 
 
 
 
 
 
 
 
1193static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1194{
1195	const struct inet_connection_sock *icsk = inet_csk(sk);
1196
1197	if (icsk->icsk_ca_ops->cwnd_event)
1198		icsk->icsk_ca_ops->cwnd_event(sk, event);
1199}
1200
1201/* From tcp_cong.c */
1202void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1203
1204/* From tcp_rate.c */
1205void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1206void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1207			    struct rate_sample *rs);
1208void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1209		  bool is_sack_reneg, struct rate_sample *rs);
1210void tcp_rate_check_app_limited(struct sock *sk);
1211
1212static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1213{
1214	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1215}
1216
1217/* These functions determine how the current flow behaves in respect of SACK
1218 * handling. SACK is negotiated with the peer, and therefore it can vary
1219 * between different flows.
1220 *
1221 * tcp_is_sack - SACK enabled
1222 * tcp_is_reno - No SACK
 
1223 */
1224static inline int tcp_is_sack(const struct tcp_sock *tp)
1225{
1226	return likely(tp->rx_opt.sack_ok);
1227}
1228
1229static inline bool tcp_is_reno(const struct tcp_sock *tp)
1230{
1231	return !tcp_is_sack(tp);
1232}
1233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1235{
1236	return tp->sacked_out + tp->lost_out;
1237}
1238
1239/* This determines how many packets are "in the network" to the best
1240 * of our knowledge.  In many cases it is conservative, but where
1241 * detailed information is available from the receiver (via SACK
1242 * blocks etc.) we can make more aggressive calculations.
1243 *
1244 * Use this for decisions involving congestion control, use just
1245 * tp->packets_out to determine if the send queue is empty or not.
1246 *
1247 * Read this equation as:
1248 *
1249 *	"Packets sent once on transmission queue" MINUS
1250 *	"Packets left network, but not honestly ACKed yet" PLUS
1251 *	"Packets fast retransmitted"
1252 */
1253static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1254{
1255	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1256}
1257
1258#define TCP_INFINITE_SSTHRESH	0x7fffffff
1259
1260static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1261{
1262	return tp->snd_cwnd;
1263}
1264
1265static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1266{
1267	WARN_ON_ONCE((int)val <= 0);
1268	tp->snd_cwnd = val;
1269}
1270
1271static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1272{
1273	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1274}
1275
1276static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1277{
1278	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1279}
1280
1281static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1282{
1283	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1284	       (1 << inet_csk(sk)->icsk_ca_state);
1285}
1286
1287/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1288 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1289 * ssthresh.
1290 */
1291static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1292{
1293	const struct tcp_sock *tp = tcp_sk(sk);
1294
1295	if (tcp_in_cwnd_reduction(sk))
1296		return tp->snd_ssthresh;
1297	else
1298		return max(tp->snd_ssthresh,
1299			   ((tcp_snd_cwnd(tp) >> 1) +
1300			    (tcp_snd_cwnd(tp) >> 2)));
1301}
1302
1303/* Use define here intentionally to get WARN_ON location shown at the caller */
1304#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1305
1306void tcp_enter_cwr(struct sock *sk);
1307__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1308
1309/* The maximum number of MSS of available cwnd for which TSO defers
1310 * sending if not using sysctl_tcp_tso_win_divisor.
1311 */
1312static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1313{
1314	return 3;
1315}
1316
 
 
 
 
 
 
 
 
 
 
 
1317/* Returns end sequence number of the receiver's advertised window */
1318static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1319{
1320	return tp->snd_una + tp->snd_wnd;
1321}
1322
1323/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1324 * flexible approach. The RFC suggests cwnd should not be raised unless
1325 * it was fully used previously. And that's exactly what we do in
1326 * congestion avoidance mode. But in slow start we allow cwnd to grow
1327 * as long as the application has used half the cwnd.
1328 * Example :
1329 *    cwnd is 10 (IW10), but application sends 9 frames.
1330 *    We allow cwnd to reach 18 when all frames are ACKed.
1331 * This check is safe because it's as aggressive as slow start which already
1332 * risks 100% overshoot. The advantage is that we discourage application to
1333 * either send more filler packets or data to artificially blow up the cwnd
1334 * usage, and allow application-limited process to probe bw more aggressively.
1335 */
1336static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1337{
1338	const struct tcp_sock *tp = tcp_sk(sk);
1339
1340	if (tp->is_cwnd_limited)
1341		return true;
1342
1343	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1344	if (tcp_in_slow_start(tp))
1345		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1346
1347	return false;
1348}
1349
1350/* BBR congestion control needs pacing.
1351 * Same remark for SO_MAX_PACING_RATE.
1352 * sch_fq packet scheduler is efficiently handling pacing,
1353 * but is not always installed/used.
1354 * Return true if TCP stack should pace packets itself.
1355 */
1356static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1357{
1358	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1359}
1360
1361/* Estimates in how many jiffies next packet for this flow can be sent.
1362 * Scheduling a retransmit timer too early would be silly.
1363 */
1364static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1365{
1366	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1367
1368	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1369}
1370
1371static inline void tcp_reset_xmit_timer(struct sock *sk,
1372					const int what,
1373					unsigned long when,
1374					const unsigned long max_when)
1375{
1376	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1377				  max_when);
1378}
1379
1380/* Something is really bad, we could not queue an additional packet,
1381 * because qdisc is full or receiver sent a 0 window, or we are paced.
1382 * We do not want to add fuel to the fire, or abort too early,
1383 * so make sure the timer we arm now is at least 200ms in the future,
1384 * regardless of current icsk_rto value (as it could be ~2ms)
1385 */
1386static inline unsigned long tcp_probe0_base(const struct sock *sk)
1387{
1388	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1389}
1390
1391/* Variant of inet_csk_rto_backoff() used for zero window probes */
1392static inline unsigned long tcp_probe0_when(const struct sock *sk,
1393					    unsigned long max_when)
1394{
1395	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1396			   inet_csk(sk)->icsk_backoff);
1397	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1398
1399	return (unsigned long)min_t(u64, when, max_when);
1400}
1401
1402static inline void tcp_check_probe_timer(struct sock *sk)
1403{
1404	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1405		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1406				     tcp_probe0_base(sk), TCP_RTO_MAX);
1407}
1408
1409static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1410{
1411	tp->snd_wl1 = seq;
1412}
1413
1414static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1415{
1416	tp->snd_wl1 = seq;
1417}
1418
1419/*
1420 * Calculate(/check) TCP checksum
1421 */
1422static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1423				   __be32 daddr, __wsum base)
1424{
1425	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
 
 
 
 
 
1426}
1427
1428static inline bool tcp_checksum_complete(struct sk_buff *skb)
1429{
1430	return !skb_csum_unnecessary(skb) &&
1431		__skb_checksum_complete(skb);
 
 
 
 
 
 
 
 
 
 
1432}
1433
1434bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1435		     enum skb_drop_reason *reason);
1436
 
1437
1438int tcp_filter(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
 
1439void tcp_set_state(struct sock *sk, int state);
 
1440void tcp_done(struct sock *sk);
 
1441int tcp_abort(struct sock *sk, int err);
1442
1443static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1444{
1445	rx_opt->dsack = 0;
1446	rx_opt->num_sacks = 0;
1447}
1448
 
1449void tcp_cwnd_restart(struct sock *sk, s32 delta);
1450
1451static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1452{
1453	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1454	struct tcp_sock *tp = tcp_sk(sk);
1455	s32 delta;
1456
1457	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1458	    tp->packets_out || ca_ops->cong_control)
1459		return;
1460	delta = tcp_jiffies32 - tp->lsndtime;
1461	if (delta > inet_csk(sk)->icsk_rto)
1462		tcp_cwnd_restart(sk, delta);
1463}
1464
1465/* Determine a window scaling and initial window to offer. */
1466void tcp_select_initial_window(const struct sock *sk, int __space,
1467			       __u32 mss, __u32 *rcv_wnd,
1468			       __u32 *window_clamp, int wscale_ok,
1469			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1470
1471static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1472{
1473	s64 scaled_space = (s64)space * scaling_ratio;
1474
1475	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1476}
1477
1478static inline int tcp_win_from_space(const struct sock *sk, int space)
1479{
1480	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1481}
1482
1483/* inverse of __tcp_win_from_space() */
1484static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1485{
1486	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1487
1488	do_div(val, scaling_ratio);
1489	return val;
1490}
1491
1492static inline int tcp_space_from_win(const struct sock *sk, int win)
1493{
1494	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1495}
1496
1497/* Assume a conservative default of 1200 bytes of payload per 4K page.
1498 * This may be adjusted later in tcp_measure_rcv_mss().
1499 */
1500#define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1501				   SKB_TRUESIZE(4096))
1502
1503static inline void tcp_scaling_ratio_init(struct sock *sk)
1504{
1505	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1506}
1507
1508/* Note: caller must be prepared to deal with negative returns */
1509static inline int tcp_space(const struct sock *sk)
1510{
1511	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1512				  READ_ONCE(sk->sk_backlog.len) -
1513				  atomic_read(&sk->sk_rmem_alloc));
1514}
1515
1516static inline int tcp_full_space(const struct sock *sk)
1517{
1518	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1519}
1520
1521static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1522{
1523	int unused_mem = sk_unused_reserved_mem(sk);
1524	struct tcp_sock *tp = tcp_sk(sk);
1525
1526	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1527	if (unused_mem)
1528		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1529					 tcp_win_from_space(sk, unused_mem));
1530}
1531
1532static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1533{
1534	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1535}
1536
1537void tcp_cleanup_rbuf(struct sock *sk, int copied);
1538void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1539
1540
1541/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1542 * If 87.5 % (7/8) of the space has been consumed, we want to override
1543 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1544 * len/truesize ratio.
1545 */
1546static inline bool tcp_rmem_pressure(const struct sock *sk)
1547{
1548	int rcvbuf, threshold;
1549
1550	if (tcp_under_memory_pressure(sk))
1551		return true;
1552
1553	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1554	threshold = rcvbuf - (rcvbuf >> 3);
1555
1556	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1557}
1558
1559static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1560{
1561	const struct tcp_sock *tp = tcp_sk(sk);
1562	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1563
1564	if (avail <= 0)
1565		return false;
1566
1567	return (avail >= target) || tcp_rmem_pressure(sk) ||
1568	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1569}
1570
1571extern void tcp_openreq_init_rwin(struct request_sock *req,
1572				  const struct sock *sk_listener,
1573				  const struct dst_entry *dst);
1574
1575void tcp_enter_memory_pressure(struct sock *sk);
1576void tcp_leave_memory_pressure(struct sock *sk);
1577
1578static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1579{
1580	struct net *net = sock_net((struct sock *)tp);
1581	int val;
1582
1583	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1584	 * and do_tcp_setsockopt().
1585	 */
1586	val = READ_ONCE(tp->keepalive_intvl);
1587
1588	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1589}
1590
1591static inline int keepalive_time_when(const struct tcp_sock *tp)
1592{
1593	struct net *net = sock_net((struct sock *)tp);
1594	int val;
1595
1596	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1597	val = READ_ONCE(tp->keepalive_time);
1598
1599	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1600}
1601
1602static inline int keepalive_probes(const struct tcp_sock *tp)
1603{
1604	struct net *net = sock_net((struct sock *)tp);
1605	int val;
1606
1607	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1608	 * and do_tcp_setsockopt().
1609	 */
1610	val = READ_ONCE(tp->keepalive_probes);
1611
1612	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1613}
1614
1615static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1616{
1617	const struct inet_connection_sock *icsk = &tp->inet_conn;
1618
1619	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1620			  tcp_jiffies32 - tp->rcv_tstamp);
1621}
1622
1623static inline int tcp_fin_time(const struct sock *sk)
1624{
1625	int fin_timeout = tcp_sk(sk)->linger2 ? :
1626		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1627	const int rto = inet_csk(sk)->icsk_rto;
1628
1629	if (fin_timeout < (rto << 2) - (rto >> 1))
1630		fin_timeout = (rto << 2) - (rto >> 1);
1631
1632	return fin_timeout;
1633}
1634
1635static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1636				  int paws_win)
1637{
1638	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1639		return true;
1640	if (unlikely(!time_before32(ktime_get_seconds(),
1641				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1642		return true;
1643	/*
1644	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1645	 * then following tcp messages have valid values. Ignore 0 value,
1646	 * or else 'negative' tsval might forbid us to accept their packets.
1647	 */
1648	if (!rx_opt->ts_recent)
1649		return true;
1650	return false;
1651}
1652
1653static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1654				   int rst)
1655{
1656	if (tcp_paws_check(rx_opt, 0))
1657		return false;
1658
1659	/* RST segments are not recommended to carry timestamp,
1660	   and, if they do, it is recommended to ignore PAWS because
1661	   "their cleanup function should take precedence over timestamps."
1662	   Certainly, it is mistake. It is necessary to understand the reasons
1663	   of this constraint to relax it: if peer reboots, clock may go
1664	   out-of-sync and half-open connections will not be reset.
1665	   Actually, the problem would be not existing if all
1666	   the implementations followed draft about maintaining clock
1667	   via reboots. Linux-2.2 DOES NOT!
1668
1669	   However, we can relax time bounds for RST segments to MSL.
1670	 */
1671	if (rst && !time_before32(ktime_get_seconds(),
1672				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1673		return false;
1674	return true;
1675}
1676
1677bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1678			  int mib_idx, u32 *last_oow_ack_time);
1679
1680static inline void tcp_mib_init(struct net *net)
1681{
1682	/* See RFC 2012 */
1683	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1684	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1685	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1686	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1687}
1688
1689/* from STCP */
1690static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1691{
1692	tp->lost_skb_hint = NULL;
1693}
1694
1695static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1696{
1697	tcp_clear_retrans_hints_partial(tp);
1698	tp->retransmit_skb_hint = NULL;
1699}
1700
1701#define tcp_md5_addr tcp_ao_addr
 
 
 
 
 
1702
1703/* - key database */
1704struct tcp_md5sig_key {
1705	struct hlist_node	node;
1706	u8			keylen;
1707	u8			family; /* AF_INET or AF_INET6 */
1708	u8			prefixlen;
1709	u8			flags;
1710	union tcp_md5_addr	addr;
1711	int			l3index; /* set if key added with L3 scope */
1712	u8			key[TCP_MD5SIG_MAXKEYLEN];
1713	struct rcu_head		rcu;
1714};
1715
1716/* - sock block */
1717struct tcp_md5sig_info {
1718	struct hlist_head	head;
1719	struct rcu_head		rcu;
1720};
1721
1722/* - pseudo header */
1723struct tcp4_pseudohdr {
1724	__be32		saddr;
1725	__be32		daddr;
1726	__u8		pad;
1727	__u8		protocol;
1728	__be16		len;
1729};
1730
1731struct tcp6_pseudohdr {
1732	struct in6_addr	saddr;
1733	struct in6_addr daddr;
1734	__be32		len;
1735	__be32		protocol;	/* including padding */
1736};
1737
1738union tcp_md5sum_block {
1739	struct tcp4_pseudohdr ip4;
1740#if IS_ENABLED(CONFIG_IPV6)
1741	struct tcp6_pseudohdr ip6;
1742#endif
1743};
1744
1745/*
1746 * struct tcp_sigpool - per-CPU pool of ahash_requests
1747 * @scratch: per-CPU temporary area, that can be used between
1748 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1749 *	     crypto request
1750 * @req: pre-allocated ahash request
1751 */
1752struct tcp_sigpool {
1753	void *scratch;
1754	struct ahash_request *req;
1755};
1756
1757int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1758void tcp_sigpool_get(unsigned int id);
1759void tcp_sigpool_release(unsigned int id);
1760int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1761			      const struct sk_buff *skb,
1762			      unsigned int header_len);
1763
1764/**
1765 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1766 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1767 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1768 *
1769 * Returns 0 on success, error otherwise.
1770 */
1771int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1772/**
1773 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1774 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1775 */
1776void tcp_sigpool_end(struct tcp_sigpool *c);
1777size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1778/* - functions */
1779int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1780			const struct sock *sk, const struct sk_buff *skb);
1781int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1782		   int family, u8 prefixlen, int l3index, u8 flags,
1783		   const u8 *newkey, u8 newkeylen);
1784int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1785		     int family, u8 prefixlen, int l3index,
1786		     struct tcp_md5sig_key *key);
1787
1788int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1789		   int family, u8 prefixlen, int l3index, u8 flags);
1790void tcp_clear_md5_list(struct sock *sk);
1791struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1792					 const struct sock *addr_sk);
1793
1794#ifdef CONFIG_TCP_MD5SIG
1795struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1796					   const union tcp_md5_addr *addr,
1797					   int family, bool any_l3index);
1798static inline struct tcp_md5sig_key *
1799tcp_md5_do_lookup(const struct sock *sk, int l3index,
1800		  const union tcp_md5_addr *addr, int family)
1801{
1802	if (!static_branch_unlikely(&tcp_md5_needed.key))
1803		return NULL;
1804	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1805}
1806
1807static inline struct tcp_md5sig_key *
1808tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1809			      const union tcp_md5_addr *addr, int family)
1810{
1811	if (!static_branch_unlikely(&tcp_md5_needed.key))
1812		return NULL;
1813	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1814}
1815
1816enum skb_drop_reason
1817tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1818		     const void *saddr, const void *daddr,
1819		     int family, int l3index, const __u8 *hash_location);
1820
1821
1822#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1823#else
1824static inline struct tcp_md5sig_key *
1825tcp_md5_do_lookup(const struct sock *sk, int l3index,
1826		  const union tcp_md5_addr *addr, int family)
1827{
1828	return NULL;
1829}
 
 
1830
1831static inline struct tcp_md5sig_key *
1832tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1833			      const union tcp_md5_addr *addr, int family)
1834{
1835	return NULL;
1836}
1837
1838static inline enum skb_drop_reason
1839tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1840		     const void *saddr, const void *daddr,
1841		     int family, int l3index, const __u8 *hash_location)
1842{
1843	return SKB_NOT_DROPPED_YET;
1844}
1845#define tcp_twsk_md5_key(twsk)	NULL
1846#endif
1847
1848int tcp_md5_alloc_sigpool(void);
1849void tcp_md5_release_sigpool(void);
1850void tcp_md5_add_sigpool(void);
1851extern int tcp_md5_sigpool_id;
1852
1853int tcp_md5_hash_key(struct tcp_sigpool *hp,
1854		     const struct tcp_md5sig_key *key);
1855
1856/* From tcp_fastopen.c */
1857void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1858			    struct tcp_fastopen_cookie *cookie);
 
1859void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1860			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1861			    u16 try_exp);
1862struct tcp_fastopen_request {
1863	/* Fast Open cookie. Size 0 means a cookie request */
1864	struct tcp_fastopen_cookie	cookie;
1865	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1866	size_t				size;
1867	int				copied;	/* queued in tcp_connect() */
1868	struct ubuf_info		*uarg;
1869};
1870void tcp_free_fastopen_req(struct tcp_sock *tp);
1871void tcp_fastopen_destroy_cipher(struct sock *sk);
1872void tcp_fastopen_ctx_destroy(struct net *net);
1873int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1874			      void *primary_key, void *backup_key);
1875int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1876			    u64 *key);
1877void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1878struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1879			      struct request_sock *req,
1880			      struct tcp_fastopen_cookie *foc,
1881			      const struct dst_entry *dst);
1882void tcp_fastopen_init_key_once(struct net *net);
1883bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1884			     struct tcp_fastopen_cookie *cookie);
1885bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1886#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1887#define TCP_FASTOPEN_KEY_MAX 2
1888#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1889	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1890
1891/* Fastopen key context */
1892struct tcp_fastopen_context {
1893	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1894	int		num;
1895	struct rcu_head	rcu;
1896};
1897
1898void tcp_fastopen_active_disable(struct sock *sk);
1899bool tcp_fastopen_active_should_disable(struct sock *sk);
1900void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1901void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1902
1903/* Caller needs to wrap with rcu_read_(un)lock() */
1904static inline
1905struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1906{
1907	struct tcp_fastopen_context *ctx;
1908
1909	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1910	if (!ctx)
1911		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1912	return ctx;
1913}
1914
1915static inline
1916bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1917			       const struct tcp_fastopen_cookie *orig)
1918{
1919	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1920	    orig->len == foc->len &&
1921	    !memcmp(orig->val, foc->val, foc->len))
1922		return true;
1923	return false;
1924}
1925
1926static inline
1927int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1928{
1929	return ctx->num;
1930}
1931
1932/* Latencies incurred by various limits for a sender. They are
1933 * chronograph-like stats that are mutually exclusive.
1934 */
1935enum tcp_chrono {
1936	TCP_CHRONO_UNSPEC,
1937	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1938	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1939	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1940	__TCP_CHRONO_MAX,
1941};
1942
1943void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1944void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1945
1946/* This helper is needed, because skb->tcp_tsorted_anchor uses
1947 * the same memory storage than skb->destructor/_skb_refdst
1948 */
1949static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1950{
1951	skb->destructor = NULL;
1952	skb->_skb_refdst = 0UL;
1953}
1954
1955#define tcp_skb_tsorted_save(skb) {		\
1956	unsigned long _save = skb->_skb_refdst;	\
1957	skb->_skb_refdst = 0UL;
1958
1959#define tcp_skb_tsorted_restore(skb)		\
1960	skb->_skb_refdst = _save;		\
1961}
1962
1963void tcp_write_queue_purge(struct sock *sk);
1964
1965static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1966{
1967	return skb_rb_first(&sk->tcp_rtx_queue);
1968}
1969
1970static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1971{
1972	return skb_rb_last(&sk->tcp_rtx_queue);
1973}
1974
1975static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1976{
1977	return skb_peek_tail(&sk->sk_write_queue);
1978}
1979
1980#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1981	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1982
1983static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1984{
1985	return skb_peek(&sk->sk_write_queue);
1986}
1987
1988static inline bool tcp_skb_is_last(const struct sock *sk,
1989				   const struct sk_buff *skb)
1990{
1991	return skb_queue_is_last(&sk->sk_write_queue, skb);
1992}
1993
1994/**
1995 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1996 * @sk: socket
1997 *
1998 * Since the write queue can have a temporary empty skb in it,
1999 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2000 */
2001static inline bool tcp_write_queue_empty(const struct sock *sk)
2002{
2003	const struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
2004
2005	return tp->write_seq == tp->snd_nxt;
 
 
 
2006}
2007
2008static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2009{
2010	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2011}
2012
2013static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2014{
2015	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2016}
2017
2018static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2019{
2020	__skb_queue_tail(&sk->sk_write_queue, skb);
2021
2022	/* Queue it, remembering where we must start sending. */
2023	if (sk->sk_write_queue.next == skb)
2024		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025}
2026
2027/* Insert new before skb on the write queue of sk.  */
2028static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2029						  struct sk_buff *skb,
2030						  struct sock *sk)
2031{
2032	__skb_queue_before(&sk->sk_write_queue, skb, new);
 
 
 
2033}
2034
2035static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2036{
2037	tcp_skb_tsorted_anchor_cleanup(skb);
2038	__skb_unlink(skb, &sk->sk_write_queue);
2039}
2040
2041void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2042
2043static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2044{
2045	tcp_skb_tsorted_anchor_cleanup(skb);
2046	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2047}
2048
2049static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2050{
2051	list_del(&skb->tcp_tsorted_anchor);
2052	tcp_rtx_queue_unlink(skb, sk);
2053	tcp_wmem_free_skb(sk, skb);
2054}
2055
2056static inline void tcp_push_pending_frames(struct sock *sk)
2057{
2058	if (tcp_send_head(sk)) {
2059		struct tcp_sock *tp = tcp_sk(sk);
2060
2061		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2062	}
2063}
2064
2065/* Start sequence of the skb just after the highest skb with SACKed
2066 * bit, valid only if sacked_out > 0 or when the caller has ensured
2067 * validity by itself.
2068 */
2069static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2070{
2071	if (!tp->sacked_out)
2072		return tp->snd_una;
2073
2074	if (tp->highest_sack == NULL)
2075		return tp->snd_nxt;
2076
2077	return TCP_SKB_CB(tp->highest_sack)->seq;
2078}
2079
2080static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2081{
2082	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
 
2083}
2084
2085static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2086{
2087	return tcp_sk(sk)->highest_sack;
2088}
2089
2090static inline void tcp_highest_sack_reset(struct sock *sk)
2091{
2092	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2093}
2094
2095/* Called when old skb is about to be deleted and replaced by new skb */
2096static inline void tcp_highest_sack_replace(struct sock *sk,
2097					    struct sk_buff *old,
2098					    struct sk_buff *new)
2099{
2100	if (old == tcp_highest_sack(sk))
2101		tcp_sk(sk)->highest_sack = new;
2102}
2103
2104/* This helper checks if socket has IP_TRANSPARENT set */
2105static inline bool inet_sk_transparent(const struct sock *sk)
2106{
2107	switch (sk->sk_state) {
2108	case TCP_TIME_WAIT:
2109		return inet_twsk(sk)->tw_transparent;
2110	case TCP_NEW_SYN_RECV:
2111		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2112	}
2113	return inet_test_bit(TRANSPARENT, sk);
2114}
2115
2116/* Determines whether this is a thin stream (which may suffer from
2117 * increased latency). Used to trigger latency-reducing mechanisms.
2118 */
2119static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2120{
2121	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2122}
2123
2124/* /proc */
2125enum tcp_seq_states {
2126	TCP_SEQ_STATE_LISTENING,
2127	TCP_SEQ_STATE_ESTABLISHED,
2128};
2129
2130void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2131void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2132void tcp_seq_stop(struct seq_file *seq, void *v);
2133
2134struct tcp_seq_afinfo {
 
2135	sa_family_t			family;
 
 
2136};
2137
2138struct tcp_iter_state {
2139	struct seq_net_private	p;
 
2140	enum tcp_seq_states	state;
2141	struct sock		*syn_wait_sk;
2142	int			bucket, offset, sbucket, num;
2143	loff_t			last_pos;
2144};
2145
 
 
 
2146extern struct request_sock_ops tcp_request_sock_ops;
2147extern struct request_sock_ops tcp6_request_sock_ops;
2148
2149void tcp_v4_destroy_sock(struct sock *sk);
2150
2151struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2152				netdev_features_t features);
2153struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2154INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2155INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2156INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2157INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2158#ifdef CONFIG_INET
2159void tcp_gro_complete(struct sk_buff *skb);
2160#else
2161static inline void tcp_gro_complete(struct sk_buff *skb) { }
2162#endif
2163
2164void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2165
2166static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2167{
2168	struct net *net = sock_net((struct sock *)tp);
2169	u32 val;
 
2170
2171	val = READ_ONCE(tp->notsent_lowat);
 
 
 
2172
2173	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2174}
2175
2176bool tcp_stream_memory_free(const struct sock *sk, int wake);
2177
2178#ifdef CONFIG_PROC_FS
2179int tcp4_proc_init(void);
2180void tcp4_proc_exit(void);
2181#endif
2182
2183int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2184int tcp_conn_request(struct request_sock_ops *rsk_ops,
2185		     const struct tcp_request_sock_ops *af_ops,
2186		     struct sock *sk, struct sk_buff *skb);
2187
2188/* TCP af-specific functions */
2189struct tcp_sock_af_ops {
2190#ifdef CONFIG_TCP_MD5SIG
2191	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2192						const struct sock *addr_sk);
2193	int		(*calc_md5_hash)(char *location,
2194					 const struct tcp_md5sig_key *md5,
2195					 const struct sock *sk,
2196					 const struct sk_buff *skb);
2197	int		(*md5_parse)(struct sock *sk,
2198				     int optname,
2199				     sockptr_t optval,
2200				     int optlen);
2201#endif
2202#ifdef CONFIG_TCP_AO
2203	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2204	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2205					struct sock *addr_sk,
2206					int sndid, int rcvid);
2207	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2208			      const struct sock *sk,
2209			      __be32 sisn, __be32 disn, bool send);
2210	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2211			    const struct sock *sk, const struct sk_buff *skb,
2212			    const u8 *tkey, int hash_offset, u32 sne);
2213#endif
2214};
2215
2216struct tcp_request_sock_ops {
2217	u16 mss_clamp;
2218#ifdef CONFIG_TCP_MD5SIG
2219	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2220						 const struct sock *addr_sk);
2221	int		(*calc_md5_hash) (char *location,
2222					  const struct tcp_md5sig_key *md5,
2223					  const struct sock *sk,
2224					  const struct sk_buff *skb);
2225#endif
2226#ifdef CONFIG_TCP_AO
2227	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2228					struct request_sock *req,
2229					int sndid, int rcvid);
2230	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2231	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2232			      struct request_sock *req, const struct sk_buff *skb,
2233			      int hash_offset, u32 sne);
2234#endif
2235#ifdef CONFIG_SYN_COOKIES
2236	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2237				 __u16 *mss);
2238#endif
2239	struct dst_entry *(*route_req)(const struct sock *sk,
2240				       struct sk_buff *skb,
2241				       struct flowi *fl,
2242				       struct request_sock *req);
2243	u32 (*init_seq)(const struct sk_buff *skb);
2244	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2245	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2246			   struct flowi *fl, struct request_sock *req,
2247			   struct tcp_fastopen_cookie *foc,
2248			   enum tcp_synack_type synack_type,
2249			   struct sk_buff *syn_skb);
2250};
2251
2252extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2253#if IS_ENABLED(CONFIG_IPV6)
2254extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2255#endif
2256
2257#ifdef CONFIG_SYN_COOKIES
2258static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2259					 const struct sock *sk, struct sk_buff *skb,
2260					 __u16 *mss)
2261{
2262	tcp_synq_overflow(sk);
2263	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2264	return ops->cookie_init_seq(skb, mss);
2265}
2266#else
2267static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2268					 const struct sock *sk, struct sk_buff *skb,
2269					 __u16 *mss)
2270{
2271	return 0;
2272}
2273#endif
2274
2275struct tcp_key {
2276	union {
2277		struct {
2278			struct tcp_ao_key *ao_key;
2279			char *traffic_key;
2280			u32 sne;
2281			u8 rcv_next;
2282		};
2283		struct tcp_md5sig_key *md5_key;
2284	};
2285	enum {
2286		TCP_KEY_NONE = 0,
2287		TCP_KEY_MD5,
2288		TCP_KEY_AO,
2289	} type;
2290};
2291
2292static inline void tcp_get_current_key(const struct sock *sk,
2293				       struct tcp_key *out)
2294{
2295#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2296	const struct tcp_sock *tp = tcp_sk(sk);
2297#endif
2298
2299#ifdef CONFIG_TCP_AO
2300	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2301		struct tcp_ao_info *ao;
2302
2303		ao = rcu_dereference_protected(tp->ao_info,
2304					       lockdep_sock_is_held(sk));
2305		if (ao) {
2306			out->ao_key = READ_ONCE(ao->current_key);
2307			out->type = TCP_KEY_AO;
2308			return;
2309		}
2310	}
2311#endif
2312#ifdef CONFIG_TCP_MD5SIG
2313	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2314	    rcu_access_pointer(tp->md5sig_info)) {
2315		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2316		if (out->md5_key) {
2317			out->type = TCP_KEY_MD5;
2318			return;
2319		}
2320	}
2321#endif
2322	out->type = TCP_KEY_NONE;
2323}
2324
2325static inline bool tcp_key_is_md5(const struct tcp_key *key)
2326{
2327#ifdef CONFIG_TCP_MD5SIG
2328	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2329	    key->type == TCP_KEY_MD5)
2330		return true;
2331#endif
2332	return false;
2333}
2334
2335static inline bool tcp_key_is_ao(const struct tcp_key *key)
2336{
2337#ifdef CONFIG_TCP_AO
2338	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2339	    key->type == TCP_KEY_AO)
2340		return true;
2341#endif
2342	return false;
2343}
2344
2345int tcpv4_offload_init(void);
2346
2347void tcp_v4_init(void);
2348void tcp_init(void);
2349
2350/* tcp_recovery.c */
2351void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2352void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2353extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2354				u32 reo_wnd);
2355extern bool tcp_rack_mark_lost(struct sock *sk);
2356extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2357			     u64 xmit_time);
2358extern void tcp_rack_reo_timeout(struct sock *sk);
2359extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2360
2361/* tcp_plb.c */
2362
2363/*
2364 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2365 * expects cong_ratio which represents fraction of traffic that experienced
2366 * congestion over a single RTT. In order to avoid floating point operations,
2367 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2368 */
2369#define TCP_PLB_SCALE 8
2370
2371/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2372struct tcp_plb_state {
2373	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2374		unused:3;
2375	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2376};
2377
2378static inline void tcp_plb_init(const struct sock *sk,
2379				struct tcp_plb_state *plb)
2380{
2381	plb->consec_cong_rounds = 0;
2382	plb->pause_until = 0;
2383}
2384void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2385			  const int cong_ratio);
2386void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2387void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2388
2389/* At how many usecs into the future should the RTO fire? */
2390static inline s64 tcp_rto_delta_us(const struct sock *sk)
2391{
2392	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2393	u32 rto = inet_csk(sk)->icsk_rto;
2394	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2395
2396	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2397}
2398
2399/*
2400 * Save and compile IPv4 options, return a pointer to it
2401 */
2402static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2403							 struct sk_buff *skb)
2404{
2405	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2406	struct ip_options_rcu *dopt = NULL;
2407
2408	if (opt->optlen) {
2409		int opt_size = sizeof(*dopt) + opt->optlen;
2410
2411		dopt = kmalloc(opt_size, GFP_ATOMIC);
2412		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2413			kfree(dopt);
2414			dopt = NULL;
2415		}
2416	}
2417	return dopt;
2418}
2419
2420/* locally generated TCP pure ACKs have skb->truesize == 2
2421 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2422 * This is much faster than dissecting the packet to find out.
2423 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2424 */
2425static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2426{
2427	return skb->truesize == 2;
2428}
2429
2430static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2431{
2432	skb->truesize = 2;
2433}
2434
2435static inline int tcp_inq(struct sock *sk)
2436{
2437	struct tcp_sock *tp = tcp_sk(sk);
2438	int answ;
2439
2440	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2441		answ = 0;
2442	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2443		   !tp->urg_data ||
2444		   before(tp->urg_seq, tp->copied_seq) ||
2445		   !before(tp->urg_seq, tp->rcv_nxt)) {
2446
2447		answ = tp->rcv_nxt - tp->copied_seq;
2448
2449		/* Subtract 1, if FIN was received */
2450		if (answ && sock_flag(sk, SOCK_DONE))
2451			answ--;
2452	} else {
2453		answ = tp->urg_seq - tp->copied_seq;
2454	}
2455
2456	return answ;
2457}
2458
2459int tcp_peek_len(struct socket *sock);
2460
2461static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2462{
2463	u16 segs_in;
2464
2465	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2466
2467	/* We update these fields while other threads might
2468	 * read them from tcp_get_info()
2469	 */
2470	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2471	if (skb->len > tcp_hdrlen(skb))
2472		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2473}
2474
2475/*
2476 * TCP listen path runs lockless.
2477 * We forced "struct sock" to be const qualified to make sure
2478 * we don't modify one of its field by mistake.
2479 * Here, we increment sk_drops which is an atomic_t, so we can safely
2480 * make sock writable again.
2481 */
2482static inline void tcp_listendrop(const struct sock *sk)
2483{
2484	atomic_inc(&((struct sock *)sk)->sk_drops);
2485	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2486}
2487
2488enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2489
2490/*
2491 * Interface for adding Upper Level Protocols over TCP
2492 */
2493
2494#define TCP_ULP_NAME_MAX	16
2495#define TCP_ULP_MAX		128
2496#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2497
2498struct tcp_ulp_ops {
2499	struct list_head	list;
2500
2501	/* initialize ulp */
2502	int (*init)(struct sock *sk);
2503	/* update ulp */
2504	void (*update)(struct sock *sk, struct proto *p,
2505		       void (*write_space)(struct sock *sk));
2506	/* cleanup ulp */
2507	void (*release)(struct sock *sk);
2508	/* diagnostic */
2509	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2510	size_t (*get_info_size)(const struct sock *sk);
2511	/* clone ulp */
2512	void (*clone)(const struct request_sock *req, struct sock *newsk,
2513		      const gfp_t priority);
2514
2515	char		name[TCP_ULP_NAME_MAX];
2516	struct module	*owner;
2517};
2518int tcp_register_ulp(struct tcp_ulp_ops *type);
2519void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2520int tcp_set_ulp(struct sock *sk, const char *name);
2521void tcp_get_available_ulp(char *buf, size_t len);
2522void tcp_cleanup_ulp(struct sock *sk);
2523void tcp_update_ulp(struct sock *sk, struct proto *p,
2524		    void (*write_space)(struct sock *sk));
2525
2526#define MODULE_ALIAS_TCP_ULP(name)				\
2527	__MODULE_INFO(alias, alias_userspace, name);		\
2528	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2529
2530#ifdef CONFIG_NET_SOCK_MSG
2531struct sk_msg;
2532struct sk_psock;
2533
2534#ifdef CONFIG_BPF_SYSCALL
2535int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2536void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2537#endif /* CONFIG_BPF_SYSCALL */
2538
2539#ifdef CONFIG_INET
2540void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2541#else
2542static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2543{
2544}
2545#endif
2546
2547int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2548			  struct sk_msg *msg, u32 bytes, int flags);
2549#endif /* CONFIG_NET_SOCK_MSG */
2550
2551#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2552static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2553{
2554}
2555#endif
2556
2557#ifdef CONFIG_CGROUP_BPF
2558static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2559				      struct sk_buff *skb,
2560				      unsigned int end_offset)
2561{
2562	skops->skb = skb;
2563	skops->skb_data_end = skb->data + end_offset;
2564}
2565#else
2566static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2567				      struct sk_buff *skb,
2568				      unsigned int end_offset)
2569{
2570}
2571#endif
2572
2573/* Call BPF_SOCK_OPS program that returns an int. If the return value
2574 * is < 0, then the BPF op failed (for example if the loaded BPF
2575 * program does not support the chosen operation or there is no BPF
2576 * program loaded).
2577 */
2578#ifdef CONFIG_BPF
2579static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2580{
2581	struct bpf_sock_ops_kern sock_ops;
2582	int ret;
2583
2584	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2585	if (sk_fullsock(sk)) {
2586		sock_ops.is_fullsock = 1;
2587		sock_owned_by_me(sk);
2588	}
2589
2590	sock_ops.sk = sk;
2591	sock_ops.op = op;
2592	if (nargs > 0)
2593		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2594
2595	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2596	if (ret == 0)
2597		ret = sock_ops.reply;
2598	else
2599		ret = -1;
2600	return ret;
2601}
2602
2603static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2604{
2605	u32 args[2] = {arg1, arg2};
2606
2607	return tcp_call_bpf(sk, op, 2, args);
2608}
2609
2610static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2611				    u32 arg3)
2612{
2613	u32 args[3] = {arg1, arg2, arg3};
2614
2615	return tcp_call_bpf(sk, op, 3, args);
2616}
2617
2618#else
2619static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2620{
2621	return -EPERM;
2622}
2623
2624static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2625{
2626	return -EPERM;
2627}
2628
2629static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2630				    u32 arg3)
2631{
2632	return -EPERM;
2633}
2634
2635#endif
2636
2637static inline u32 tcp_timeout_init(struct sock *sk)
2638{
2639	int timeout;
2640
2641	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2642
2643	if (timeout <= 0)
2644		timeout = TCP_TIMEOUT_INIT;
2645	return min_t(int, timeout, TCP_RTO_MAX);
2646}
2647
2648static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2649{
2650	int rwnd;
2651
2652	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2653
2654	if (rwnd < 0)
2655		rwnd = 0;
2656	return rwnd;
2657}
2658
2659static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2660{
2661	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2662}
2663
2664static inline void tcp_bpf_rtt(struct sock *sk)
2665{
2666	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2667		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2668}
2669
2670#if IS_ENABLED(CONFIG_SMC)
2671extern struct static_key_false tcp_have_smc;
2672#endif
2673
2674#if IS_ENABLED(CONFIG_TLS_DEVICE)
2675void clean_acked_data_enable(struct inet_connection_sock *icsk,
2676			     void (*cad)(struct sock *sk, u32 ack_seq));
2677void clean_acked_data_disable(struct inet_connection_sock *icsk);
2678void clean_acked_data_flush(void);
2679#endif
2680
2681DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2682static inline void tcp_add_tx_delay(struct sk_buff *skb,
2683				    const struct tcp_sock *tp)
2684{
2685	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2686		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2687}
2688
2689/* Compute Earliest Departure Time for some control packets
2690 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2691 */
2692static inline u64 tcp_transmit_time(const struct sock *sk)
2693{
2694	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2695		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2696			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2697
2698		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2699	}
2700	return 0;
2701}
2702
2703static inline int tcp_parse_auth_options(const struct tcphdr *th,
2704		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2705{
2706	const u8 *md5_tmp, *ao_tmp;
2707	int ret;
2708
2709	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2710	if (ret)
2711		return ret;
2712
2713	if (md5_hash)
2714		*md5_hash = md5_tmp;
2715
2716	if (aoh) {
2717		if (!ao_tmp)
2718			*aoh = NULL;
2719		else
2720			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2721	}
2722
2723	return 0;
2724}
2725
2726static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2727				   int family, int l3index, bool stat_inc)
2728{
2729#ifdef CONFIG_TCP_AO
2730	struct tcp_ao_info *ao_info;
2731	struct tcp_ao_key *ao_key;
2732
2733	if (!static_branch_unlikely(&tcp_ao_needed.key))
2734		return false;
2735
2736	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2737					lockdep_sock_is_held(sk));
2738	if (!ao_info)
2739		return false;
2740
2741	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2742	if (ao_info->ao_required || ao_key) {
2743		if (stat_inc) {
2744			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2745			atomic64_inc(&ao_info->counters.ao_required);
2746		}
2747		return true;
2748	}
2749#endif
2750	return false;
2751}
2752
2753/* Called with rcu_read_lock() */
2754static inline enum skb_drop_reason
2755tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2756		 const struct sk_buff *skb,
2757		 const void *saddr, const void *daddr,
2758		 int family, int dif, int sdif)
2759{
2760	const struct tcphdr *th = tcp_hdr(skb);
2761	const struct tcp_ao_hdr *aoh;
2762	const __u8 *md5_location;
2763	int l3index;
2764
2765	/* Invalid option or two times meet any of auth options */
2766	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2767		tcp_hash_fail("TCP segment has incorrect auth options set",
2768			      family, skb, "");
2769		return SKB_DROP_REASON_TCP_AUTH_HDR;
2770	}
2771
2772	if (req) {
2773		if (tcp_rsk_used_ao(req) != !!aoh) {
2774			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2775			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2776				      family, skb, "%s",
2777				      !aoh ? "missing AO" : "AO signed");
2778			return SKB_DROP_REASON_TCP_AOFAILURE;
2779		}
2780	}
2781
2782	/* sdif set, means packet ingressed via a device
2783	 * in an L3 domain and dif is set to the l3mdev
2784	 */
2785	l3index = sdif ? dif : 0;
2786
2787	/* Fast path: unsigned segments */
2788	if (likely(!md5_location && !aoh)) {
2789		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2790		 * for the remote peer. On TCP-AO established connection
2791		 * the last key is impossible to remove, so there's
2792		 * always at least one current_key.
2793		 */
2794		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2795			tcp_hash_fail("AO hash is required, but not found",
2796					family, skb, "L3 index %d", l3index);
2797			return SKB_DROP_REASON_TCP_AONOTFOUND;
2798		}
2799		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2800			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2801			tcp_hash_fail("MD5 Hash not found",
2802				      family, skb, "L3 index %d", l3index);
2803			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2804		}
2805		return SKB_NOT_DROPPED_YET;
2806	}
2807
2808	if (aoh)
2809		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2810
2811	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2812				    l3index, md5_location);
2813}
2814
2815#endif	/* _TCP_H */