Loading...
Note: File does not exist in v4.6.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel-tpmi : Driver to enumerate TPMI features and create devices
4 *
5 * Copyright (c) 2023, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * The TPMI (Topology Aware Register and PM Capsule Interface) provides a
9 * flexible, extendable and PCIe enumerable MMIO interface for PM features.
10 *
11 * For example Intel RAPL (Running Average Power Limit) provides a MMIO
12 * interface using TPMI. This has advantage over traditional MSR
13 * (Model Specific Register) interface, where a thread needs to be scheduled
14 * on the target CPU to read or write. Also the RAPL features vary between
15 * CPU models, and hence lot of model specific code. Here TPMI provides an
16 * architectural interface by providing hierarchical tables and fields,
17 * which will not need any model specific implementation.
18 *
19 * The TPMI interface uses a PCI VSEC structure to expose the location of
20 * MMIO region.
21 *
22 * This VSEC structure is present in the PCI configuration space of the
23 * Intel Out-of-Band (OOB) device, which is handled by the Intel VSEC
24 * driver. The Intel VSEC driver parses VSEC structures present in the PCI
25 * configuration space of the given device and creates an auxiliary device
26 * object for each of them. In particular, it creates an auxiliary device
27 * object representing TPMI that can be bound by an auxiliary driver.
28 *
29 * This TPMI driver will bind to the TPMI auxiliary device object created
30 * by the Intel VSEC driver.
31 *
32 * The TPMI specification defines a PFS (PM Feature Structure) table.
33 * This table is present in the TPMI MMIO region. The starting address
34 * of PFS is derived from the tBIR (Bar Indicator Register) and "Address"
35 * field from the VSEC header.
36 *
37 * Each TPMI PM feature has one entry in the PFS with a unique TPMI
38 * ID and its access details. The TPMI driver creates device nodes
39 * for the supported PM features.
40 *
41 * The names of the devices created by the TPMI driver start with the
42 * "intel_vsec.tpmi-" prefix which is followed by a specific name of the
43 * given PM feature (for example, "intel_vsec.tpmi-rapl.0").
44 *
45 * The device nodes are create by using interface "intel_vsec_add_aux()"
46 * provided by the Intel VSEC driver.
47 */
48
49#include <linux/auxiliary_bus.h>
50#include <linux/bitfield.h>
51#include <linux/debugfs.h>
52#include <linux/delay.h>
53#include <linux/intel_tpmi.h>
54#include <linux/io.h>
55#include <linux/iopoll.h>
56#include <linux/module.h>
57#include <linux/pci.h>
58#include <linux/security.h>
59#include <linux/sizes.h>
60#include <linux/string_helpers.h>
61
62#include "vsec.h"
63
64/**
65 * struct intel_tpmi_pfs_entry - TPMI PM Feature Structure (PFS) entry
66 * @tpmi_id: TPMI feature identifier (what the feature is and its data format).
67 * @num_entries: Number of feature interface instances present in the PFS.
68 * This represents the maximum number of Power domains in the SoC.
69 * @entry_size: Interface instance entry size in 32-bit words.
70 * @cap_offset: Offset from the PM_Features base address to the base of the PM VSEC
71 * register bank in KB.
72 * @attribute: Feature attribute: 0=BIOS. 1=OS. 2-3=Reserved.
73 * @reserved: Bits for use in the future.
74 *
75 * Represents one TPMI feature entry data in the PFS retrieved as is
76 * from the hardware.
77 */
78struct intel_tpmi_pfs_entry {
79 u64 tpmi_id:8;
80 u64 num_entries:8;
81 u64 entry_size:16;
82 u64 cap_offset:16;
83 u64 attribute:2;
84 u64 reserved:14;
85} __packed;
86
87/**
88 * struct intel_tpmi_pm_feature - TPMI PM Feature information for a TPMI ID
89 * @pfs_header: PFS header retireved from the hardware.
90 * @vsec_offset: Starting MMIO address for this feature in bytes. Essentially
91 * this offset = "Address" from VSEC header + PFS Capability
92 * offset for this feature entry.
93 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
94 *
95 * Represents TPMI instance information for one TPMI ID.
96 */
97struct intel_tpmi_pm_feature {
98 struct intel_tpmi_pfs_entry pfs_header;
99 unsigned int vsec_offset;
100 struct intel_vsec_device *vsec_dev;
101};
102
103/**
104 * struct intel_tpmi_info - TPMI information for all IDs in an instance
105 * @tpmi_features: Pointer to a list of TPMI feature instances
106 * @vsec_dev: Pointer to intel_vsec_device structure for this TPMI device
107 * @feature_count: Number of TPMI of TPMI instances pointed by tpmi_features
108 * @pfs_start: Start of PFS offset for the TPMI instances in this device
109 * @plat_info: Stores platform info which can be used by the client drivers
110 * @tpmi_control_mem: Memory mapped IO for getting control information
111 * @dbgfs_dir: debugfs entry pointer
112 *
113 * Stores the information for all TPMI devices enumerated from a single PCI device.
114 */
115struct intel_tpmi_info {
116 struct intel_tpmi_pm_feature *tpmi_features;
117 struct intel_vsec_device *vsec_dev;
118 int feature_count;
119 u64 pfs_start;
120 struct intel_tpmi_plat_info plat_info;
121 void __iomem *tpmi_control_mem;
122 struct dentry *dbgfs_dir;
123};
124
125/**
126 * struct tpmi_info_header - CPU package ID to PCI device mapping information
127 * @fn: PCI function number
128 * @dev: PCI device number
129 * @bus: PCI bus number
130 * @pkg: CPU Package id
131 * @reserved: Reserved for future use
132 * @lock: When set to 1 the register is locked and becomes read-only
133 * until next reset. Not for use by the OS driver.
134 *
135 * The structure to read hardware provided mapping information.
136 */
137struct tpmi_info_header {
138 u64 fn:3;
139 u64 dev:5;
140 u64 bus:8;
141 u64 pkg:8;
142 u64 reserved:39;
143 u64 lock:1;
144} __packed;
145
146/**
147 * struct tpmi_feature_state - Structure to read hardware state of a feature
148 * @enabled: Enable state of a feature, 1: enabled, 0: disabled
149 * @reserved_1: Reserved for future use
150 * @write_blocked: Writes are blocked means all write operations are ignored
151 * @read_blocked: Reads are blocked means will read 0xFFs
152 * @pcs_select: Interface used by out of band software, not used in OS
153 * @reserved_2: Reserved for future use
154 * @id: TPMI ID of the feature
155 * @reserved_3: Reserved for future use
156 * @locked: When set to 1, OS can't change this register.
157 *
158 * The structure is used to read hardware state of a TPMI feature. This
159 * information is used for debug and restricting operations for this feature.
160 */
161struct tpmi_feature_state {
162 u32 enabled:1;
163 u32 reserved_1:3;
164 u32 write_blocked:1;
165 u32 read_blocked:1;
166 u32 pcs_select:1;
167 u32 reserved_2:1;
168 u32 id:8;
169 u32 reserved_3:15;
170 u32 locked:1;
171} __packed;
172
173/*
174 * The size from hardware is in u32 units. This size is from a trusted hardware,
175 * but better to verify for pre silicon platforms. Set size to 0, when invalid.
176 */
177#define TPMI_GET_SINGLE_ENTRY_SIZE(pfs) \
178({ \
179 pfs->pfs_header.entry_size > SZ_1K ? 0 : pfs->pfs_header.entry_size << 2; \
180})
181
182/* Used during auxbus device creation */
183static DEFINE_IDA(intel_vsec_tpmi_ida);
184
185struct intel_tpmi_plat_info *tpmi_get_platform_data(struct auxiliary_device *auxdev)
186{
187 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
188
189 return vsec_dev->priv_data;
190}
191EXPORT_SYMBOL_NS_GPL(tpmi_get_platform_data, INTEL_TPMI);
192
193int tpmi_get_resource_count(struct auxiliary_device *auxdev)
194{
195 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
196
197 if (vsec_dev)
198 return vsec_dev->num_resources;
199
200 return 0;
201}
202EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_count, INTEL_TPMI);
203
204struct resource *tpmi_get_resource_at_index(struct auxiliary_device *auxdev, int index)
205{
206 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
207
208 if (vsec_dev && index < vsec_dev->num_resources)
209 return &vsec_dev->resource[index];
210
211 return NULL;
212}
213EXPORT_SYMBOL_NS_GPL(tpmi_get_resource_at_index, INTEL_TPMI);
214
215/* TPMI Control Interface */
216
217#define TPMI_CONTROL_STATUS_OFFSET 0x00
218#define TPMI_COMMAND_OFFSET 0x08
219#define TMPI_CONTROL_DATA_VAL_OFFSET 0x0c
220
221/*
222 * Spec is calling for max 1 seconds to get ownership at the worst
223 * case. Read at 10 ms timeouts and repeat up to 1 second.
224 */
225#define TPMI_CONTROL_TIMEOUT_US (10 * USEC_PER_MSEC)
226#define TPMI_CONTROL_TIMEOUT_MAX_US (1 * USEC_PER_SEC)
227
228#define TPMI_RB_TIMEOUT_US (10 * USEC_PER_MSEC)
229#define TPMI_RB_TIMEOUT_MAX_US USEC_PER_SEC
230
231/* TPMI Control status register defines */
232
233#define TPMI_CONTROL_STATUS_RB BIT_ULL(0)
234
235#define TPMI_CONTROL_STATUS_OWNER GENMASK_ULL(5, 4)
236#define TPMI_OWNER_NONE 0
237#define TPMI_OWNER_IN_BAND 1
238
239#define TPMI_CONTROL_STATUS_CPL BIT_ULL(6)
240#define TPMI_CONTROL_STATUS_RESULT GENMASK_ULL(15, 8)
241#define TPMI_CONTROL_STATUS_LEN GENMASK_ULL(31, 16)
242
243#define TPMI_CMD_PKT_LEN 2
244#define TPMI_CMD_STATUS_SUCCESS 0x40
245
246/* TPMI command data registers */
247#define TMPI_CONTROL_DATA_CMD GENMASK_ULL(7, 0)
248#define TPMI_CONTROL_DATA_VAL_FEATURE GENMASK_ULL(48, 40)
249
250/* Command to send via control interface */
251#define TPMI_CONTROL_GET_STATE_CMD 0x10
252
253#define TPMI_CONTROL_CMD_MASK GENMASK_ULL(48, 40)
254
255#define TPMI_CMD_LEN_MASK GENMASK_ULL(18, 16)
256
257/* Mutex to complete get feature status without interruption */
258static DEFINE_MUTEX(tpmi_dev_lock);
259
260static int tpmi_wait_for_owner(struct intel_tpmi_info *tpmi_info, u8 owner)
261{
262 u64 control;
263
264 return readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET,
265 control, owner == FIELD_GET(TPMI_CONTROL_STATUS_OWNER, control),
266 TPMI_CONTROL_TIMEOUT_US, TPMI_CONTROL_TIMEOUT_MAX_US);
267}
268
269static int tpmi_read_feature_status(struct intel_tpmi_info *tpmi_info, int feature_id,
270 struct tpmi_feature_state *feature_state)
271{
272 u64 control, data;
273 int ret;
274
275 if (!tpmi_info->tpmi_control_mem)
276 return -EFAULT;
277
278 mutex_lock(&tpmi_dev_lock);
279
280 /* Wait for owner bit set to 0 (none) */
281 ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_NONE);
282 if (ret)
283 goto err_unlock;
284
285 /* set command id to 0x10 for TPMI_GET_STATE */
286 data = FIELD_PREP(TMPI_CONTROL_DATA_CMD, TPMI_CONTROL_GET_STATE_CMD);
287
288 /* 32 bits for DATA offset and +8 for feature_id field */
289 data |= FIELD_PREP(TPMI_CONTROL_DATA_VAL_FEATURE, feature_id);
290
291 /* Write at command offset for qword access */
292 writeq(data, tpmi_info->tpmi_control_mem + TPMI_COMMAND_OFFSET);
293
294 /* Wait for owner bit set to in-band */
295 ret = tpmi_wait_for_owner(tpmi_info, TPMI_OWNER_IN_BAND);
296 if (ret)
297 goto err_unlock;
298
299 /* Set Run Busy and packet length of 2 dwords */
300 control = TPMI_CONTROL_STATUS_RB;
301 control |= FIELD_PREP(TPMI_CONTROL_STATUS_LEN, TPMI_CMD_PKT_LEN);
302
303 /* Write at status offset for qword access */
304 writeq(control, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET);
305
306 /* Wait for Run Busy clear */
307 ret = readq_poll_timeout(tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET,
308 control, !(control & TPMI_CONTROL_STATUS_RB),
309 TPMI_RB_TIMEOUT_US, TPMI_RB_TIMEOUT_MAX_US);
310 if (ret)
311 goto done_proc;
312
313 control = FIELD_GET(TPMI_CONTROL_STATUS_RESULT, control);
314 if (control != TPMI_CMD_STATUS_SUCCESS) {
315 ret = -EBUSY;
316 goto done_proc;
317 }
318
319 /* Response is ready */
320 memcpy_fromio(feature_state, tpmi_info->tpmi_control_mem + TMPI_CONTROL_DATA_VAL_OFFSET,
321 sizeof(*feature_state));
322
323 ret = 0;
324
325done_proc:
326 /* Set CPL "completion" bit */
327 writeq(TPMI_CONTROL_STATUS_CPL, tpmi_info->tpmi_control_mem + TPMI_CONTROL_STATUS_OFFSET);
328
329err_unlock:
330 mutex_unlock(&tpmi_dev_lock);
331
332 return ret;
333}
334
335int tpmi_get_feature_status(struct auxiliary_device *auxdev,
336 int feature_id, bool *read_blocked, bool *write_blocked)
337{
338 struct intel_vsec_device *intel_vsec_dev = dev_to_ivdev(auxdev->dev.parent);
339 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(&intel_vsec_dev->auxdev);
340 struct tpmi_feature_state feature_state;
341 int ret;
342
343 ret = tpmi_read_feature_status(tpmi_info, feature_id, &feature_state);
344 if (ret)
345 return ret;
346
347 *read_blocked = feature_state.read_blocked;
348 *write_blocked = feature_state.write_blocked;
349
350 return 0;
351}
352EXPORT_SYMBOL_NS_GPL(tpmi_get_feature_status, INTEL_TPMI);
353
354static int tpmi_pfs_dbg_show(struct seq_file *s, void *unused)
355{
356 struct intel_tpmi_info *tpmi_info = s->private;
357 int locked, disabled, read_blocked, write_blocked;
358 struct tpmi_feature_state feature_state;
359 struct intel_tpmi_pm_feature *pfs;
360 int ret, i;
361
362
363 seq_printf(s, "tpmi PFS start offset 0x:%llx\n", tpmi_info->pfs_start);
364 seq_puts(s, "tpmi_id\t\tentries\t\tsize\t\tcap_offset\tattribute\tvsec_offset\tlocked\tdisabled\tread_blocked\twrite_blocked\n");
365 for (i = 0; i < tpmi_info->feature_count; ++i) {
366 pfs = &tpmi_info->tpmi_features[i];
367 ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &feature_state);
368 if (ret) {
369 locked = 'U';
370 disabled = 'U';
371 read_blocked = 'U';
372 write_blocked = 'U';
373 } else {
374 disabled = feature_state.enabled ? 'N' : 'Y';
375 locked = feature_state.locked ? 'Y' : 'N';
376 read_blocked = feature_state.read_blocked ? 'Y' : 'N';
377 write_blocked = feature_state.write_blocked ? 'Y' : 'N';
378 }
379 seq_printf(s, "0x%02x\t\t0x%02x\t\t0x%04x\t\t0x%04x\t\t0x%02x\t\t0x%08x\t%c\t%c\t\t%c\t\t%c\n",
380 pfs->pfs_header.tpmi_id, pfs->pfs_header.num_entries,
381 pfs->pfs_header.entry_size, pfs->pfs_header.cap_offset,
382 pfs->pfs_header.attribute, pfs->vsec_offset, locked, disabled,
383 read_blocked, write_blocked);
384 }
385
386 return 0;
387}
388DEFINE_SHOW_ATTRIBUTE(tpmi_pfs_dbg);
389
390#define MEM_DUMP_COLUMN_COUNT 8
391
392static int tpmi_mem_dump_show(struct seq_file *s, void *unused)
393{
394 size_t row_size = MEM_DUMP_COLUMN_COUNT * sizeof(u32);
395 struct intel_tpmi_pm_feature *pfs = s->private;
396 int count, ret = 0;
397 void __iomem *mem;
398 u32 off, size;
399 u8 *buffer;
400
401 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
402 if (!size)
403 return -EIO;
404
405 buffer = kmalloc(size, GFP_KERNEL);
406 if (!buffer)
407 return -ENOMEM;
408
409 off = pfs->vsec_offset;
410
411 mutex_lock(&tpmi_dev_lock);
412
413 for (count = 0; count < pfs->pfs_header.num_entries; ++count) {
414 seq_printf(s, "TPMI Instance:%d offset:0x%x\n", count, off);
415
416 mem = ioremap(off, size);
417 if (!mem) {
418 ret = -ENOMEM;
419 break;
420 }
421
422 memcpy_fromio(buffer, mem, size);
423
424 seq_hex_dump(s, " ", DUMP_PREFIX_OFFSET, row_size, sizeof(u32), buffer, size,
425 false);
426
427 iounmap(mem);
428
429 off += size;
430 }
431
432 mutex_unlock(&tpmi_dev_lock);
433
434 kfree(buffer);
435
436 return ret;
437}
438DEFINE_SHOW_ATTRIBUTE(tpmi_mem_dump);
439
440static ssize_t mem_write(struct file *file, const char __user *userbuf, size_t len, loff_t *ppos)
441{
442 struct seq_file *m = file->private_data;
443 struct intel_tpmi_pm_feature *pfs = m->private;
444 u32 addr, value, punit, size;
445 u32 num_elems, *array;
446 void __iomem *mem;
447 int ret;
448
449 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
450 if (!size)
451 return -EIO;
452
453 ret = parse_int_array_user(userbuf, len, (int **)&array);
454 if (ret < 0)
455 return ret;
456
457 num_elems = *array;
458 if (num_elems != 3) {
459 ret = -EINVAL;
460 goto exit_write;
461 }
462
463 punit = array[1];
464 addr = array[2];
465 value = array[3];
466
467 if (punit >= pfs->pfs_header.num_entries) {
468 ret = -EINVAL;
469 goto exit_write;
470 }
471
472 if (addr >= size) {
473 ret = -EINVAL;
474 goto exit_write;
475 }
476
477 mutex_lock(&tpmi_dev_lock);
478
479 mem = ioremap(pfs->vsec_offset + punit * size, size);
480 if (!mem) {
481 ret = -ENOMEM;
482 goto unlock_mem_write;
483 }
484
485 writel(value, mem + addr);
486
487 iounmap(mem);
488
489 ret = len;
490
491unlock_mem_write:
492 mutex_unlock(&tpmi_dev_lock);
493
494exit_write:
495 kfree(array);
496
497 return ret;
498}
499
500static int mem_write_show(struct seq_file *s, void *unused)
501{
502 return 0;
503}
504
505static int mem_write_open(struct inode *inode, struct file *file)
506{
507 return single_open(file, mem_write_show, inode->i_private);
508}
509
510static const struct file_operations mem_write_ops = {
511 .open = mem_write_open,
512 .read = seq_read,
513 .write = mem_write,
514 .llseek = seq_lseek,
515 .release = single_release,
516};
517
518#define tpmi_to_dev(info) (&info->vsec_dev->pcidev->dev)
519
520static void tpmi_dbgfs_register(struct intel_tpmi_info *tpmi_info)
521{
522 char name[64];
523 int i;
524
525 snprintf(name, sizeof(name), "tpmi-%s", dev_name(tpmi_to_dev(tpmi_info)));
526 tpmi_info->dbgfs_dir = debugfs_create_dir(name, NULL);
527
528 debugfs_create_file("pfs_dump", 0444, tpmi_info->dbgfs_dir, tpmi_info, &tpmi_pfs_dbg_fops);
529
530 for (i = 0; i < tpmi_info->feature_count; ++i) {
531 struct intel_tpmi_pm_feature *pfs;
532 struct dentry *dir;
533
534 pfs = &tpmi_info->tpmi_features[i];
535 snprintf(name, sizeof(name), "tpmi-id-%02x", pfs->pfs_header.tpmi_id);
536 dir = debugfs_create_dir(name, tpmi_info->dbgfs_dir);
537
538 debugfs_create_file("mem_dump", 0444, dir, pfs, &tpmi_mem_dump_fops);
539 debugfs_create_file("mem_write", 0644, dir, pfs, &mem_write_ops);
540 }
541}
542
543static void tpmi_set_control_base(struct auxiliary_device *auxdev,
544 struct intel_tpmi_info *tpmi_info,
545 struct intel_tpmi_pm_feature *pfs)
546{
547 void __iomem *mem;
548 u32 size;
549
550 size = TPMI_GET_SINGLE_ENTRY_SIZE(pfs);
551 if (!size)
552 return;
553
554 mem = devm_ioremap(&auxdev->dev, pfs->vsec_offset, size);
555 if (!mem)
556 return;
557
558 /* mem is pointing to TPMI CONTROL base */
559 tpmi_info->tpmi_control_mem = mem;
560}
561
562static const char *intel_tpmi_name(enum intel_tpmi_id id)
563{
564 switch (id) {
565 case TPMI_ID_RAPL:
566 return "rapl";
567 case TPMI_ID_PEM:
568 return "pem";
569 case TPMI_ID_UNCORE:
570 return "uncore";
571 case TPMI_ID_SST:
572 return "sst";
573 default:
574 return NULL;
575 }
576}
577
578/* String Length for tpmi-"feature_name(upto 8 bytes)" */
579#define TPMI_FEATURE_NAME_LEN 14
580
581static int tpmi_create_device(struct intel_tpmi_info *tpmi_info,
582 struct intel_tpmi_pm_feature *pfs,
583 u64 pfs_start)
584{
585 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
586 char feature_id_name[TPMI_FEATURE_NAME_LEN];
587 struct intel_vsec_device *feature_vsec_dev;
588 struct tpmi_feature_state feature_state;
589 struct resource *res, *tmp;
590 const char *name;
591 int i, ret;
592
593 ret = tpmi_read_feature_status(tpmi_info, pfs->pfs_header.tpmi_id, &feature_state);
594 if (ret)
595 return ret;
596
597 /*
598 * If not enabled, continue to look at other features in the PFS, so return -EOPNOTSUPP.
599 * This will not cause failure of loading of this driver.
600 */
601 if (!feature_state.enabled)
602 return -EOPNOTSUPP;
603
604 name = intel_tpmi_name(pfs->pfs_header.tpmi_id);
605 if (!name)
606 return -EOPNOTSUPP;
607
608 res = kcalloc(pfs->pfs_header.num_entries, sizeof(*res), GFP_KERNEL);
609 if (!res)
610 return -ENOMEM;
611
612 feature_vsec_dev = kzalloc(sizeof(*feature_vsec_dev), GFP_KERNEL);
613 if (!feature_vsec_dev) {
614 kfree(res);
615 return -ENOMEM;
616 }
617
618 snprintf(feature_id_name, sizeof(feature_id_name), "tpmi-%s", name);
619
620 for (i = 0, tmp = res; i < pfs->pfs_header.num_entries; i++, tmp++) {
621 u64 entry_size_bytes = pfs->pfs_header.entry_size * sizeof(u32);
622
623 tmp->start = pfs->vsec_offset + entry_size_bytes * i;
624 tmp->end = tmp->start + entry_size_bytes - 1;
625 tmp->flags = IORESOURCE_MEM;
626 }
627
628 feature_vsec_dev->pcidev = vsec_dev->pcidev;
629 feature_vsec_dev->resource = res;
630 feature_vsec_dev->num_resources = pfs->pfs_header.num_entries;
631 feature_vsec_dev->priv_data = &tpmi_info->plat_info;
632 feature_vsec_dev->priv_data_size = sizeof(tpmi_info->plat_info);
633 feature_vsec_dev->ida = &intel_vsec_tpmi_ida;
634
635 /*
636 * intel_vsec_add_aux() is resource managed, no explicit
637 * delete is required on error or on module unload.
638 * feature_vsec_dev and res memory are also freed as part of
639 * device deletion.
640 */
641 return intel_vsec_add_aux(vsec_dev->pcidev, &vsec_dev->auxdev.dev,
642 feature_vsec_dev, feature_id_name);
643}
644
645static int tpmi_create_devices(struct intel_tpmi_info *tpmi_info)
646{
647 struct intel_vsec_device *vsec_dev = tpmi_info->vsec_dev;
648 int ret, i;
649
650 for (i = 0; i < vsec_dev->num_resources; i++) {
651 ret = tpmi_create_device(tpmi_info, &tpmi_info->tpmi_features[i],
652 tpmi_info->pfs_start);
653 /*
654 * Fail, if the supported features fails to create device,
655 * otherwise, continue. Even if one device failed to create,
656 * fail the loading of driver. Since intel_vsec_add_aux()
657 * is resource managed, no clean up is required for the
658 * successfully created devices.
659 */
660 if (ret && ret != -EOPNOTSUPP)
661 return ret;
662 }
663
664 return 0;
665}
666
667#define TPMI_INFO_BUS_INFO_OFFSET 0x08
668
669static int tpmi_process_info(struct intel_tpmi_info *tpmi_info,
670 struct intel_tpmi_pm_feature *pfs)
671{
672 struct tpmi_info_header header;
673 void __iomem *info_mem;
674
675 info_mem = ioremap(pfs->vsec_offset + TPMI_INFO_BUS_INFO_OFFSET,
676 pfs->pfs_header.entry_size * sizeof(u32) - TPMI_INFO_BUS_INFO_OFFSET);
677 if (!info_mem)
678 return -ENOMEM;
679
680 memcpy_fromio(&header, info_mem, sizeof(header));
681
682 tpmi_info->plat_info.package_id = header.pkg;
683 tpmi_info->plat_info.bus_number = header.bus;
684 tpmi_info->plat_info.device_number = header.dev;
685 tpmi_info->plat_info.function_number = header.fn;
686
687 iounmap(info_mem);
688
689 return 0;
690}
691
692static int tpmi_fetch_pfs_header(struct intel_tpmi_pm_feature *pfs, u64 start, int size)
693{
694 void __iomem *pfs_mem;
695
696 pfs_mem = ioremap(start, size);
697 if (!pfs_mem)
698 return -ENOMEM;
699
700 memcpy_fromio(&pfs->pfs_header, pfs_mem, sizeof(pfs->pfs_header));
701
702 iounmap(pfs_mem);
703
704 return 0;
705}
706
707#define TPMI_CAP_OFFSET_UNIT 1024
708
709static int intel_vsec_tpmi_init(struct auxiliary_device *auxdev)
710{
711 struct intel_vsec_device *vsec_dev = auxdev_to_ivdev(auxdev);
712 struct pci_dev *pci_dev = vsec_dev->pcidev;
713 struct intel_tpmi_info *tpmi_info;
714 u64 pfs_start = 0;
715 int ret, i;
716
717 tpmi_info = devm_kzalloc(&auxdev->dev, sizeof(*tpmi_info), GFP_KERNEL);
718 if (!tpmi_info)
719 return -ENOMEM;
720
721 tpmi_info->vsec_dev = vsec_dev;
722 tpmi_info->feature_count = vsec_dev->num_resources;
723 tpmi_info->plat_info.bus_number = pci_dev->bus->number;
724
725 tpmi_info->tpmi_features = devm_kcalloc(&auxdev->dev, vsec_dev->num_resources,
726 sizeof(*tpmi_info->tpmi_features),
727 GFP_KERNEL);
728 if (!tpmi_info->tpmi_features)
729 return -ENOMEM;
730
731 for (i = 0; i < vsec_dev->num_resources; i++) {
732 struct intel_tpmi_pm_feature *pfs;
733 struct resource *res;
734 u64 res_start;
735 int size, ret;
736
737 pfs = &tpmi_info->tpmi_features[i];
738 pfs->vsec_dev = vsec_dev;
739
740 res = &vsec_dev->resource[i];
741 if (!res)
742 continue;
743
744 res_start = res->start;
745 size = resource_size(res);
746 if (size < 0)
747 continue;
748
749 ret = tpmi_fetch_pfs_header(pfs, res_start, size);
750 if (ret)
751 continue;
752
753 if (!pfs_start)
754 pfs_start = res_start;
755
756 pfs->vsec_offset = pfs_start + pfs->pfs_header.cap_offset * TPMI_CAP_OFFSET_UNIT;
757
758 /*
759 * Process TPMI_INFO to get PCI device to CPU package ID.
760 * Device nodes for TPMI features are not created in this
761 * for loop. So, the mapping information will be available
762 * when actual device nodes created outside this
763 * loop via tpmi_create_devices().
764 */
765 if (pfs->pfs_header.tpmi_id == TPMI_INFO_ID)
766 tpmi_process_info(tpmi_info, pfs);
767
768 if (pfs->pfs_header.tpmi_id == TPMI_CONTROL_ID)
769 tpmi_set_control_base(auxdev, tpmi_info, pfs);
770 }
771
772 tpmi_info->pfs_start = pfs_start;
773
774 auxiliary_set_drvdata(auxdev, tpmi_info);
775
776 ret = tpmi_create_devices(tpmi_info);
777 if (ret)
778 return ret;
779
780 /*
781 * Allow debugfs when security policy allows. Everything this debugfs
782 * interface provides, can also be done via /dev/mem access. If
783 * /dev/mem interface is locked, don't allow debugfs to present any
784 * information. Also check for CAP_SYS_RAWIO as /dev/mem interface.
785 */
786 if (!security_locked_down(LOCKDOWN_DEV_MEM) && capable(CAP_SYS_RAWIO))
787 tpmi_dbgfs_register(tpmi_info);
788
789 return 0;
790}
791
792static int tpmi_probe(struct auxiliary_device *auxdev,
793 const struct auxiliary_device_id *id)
794{
795 return intel_vsec_tpmi_init(auxdev);
796}
797
798static void tpmi_remove(struct auxiliary_device *auxdev)
799{
800 struct intel_tpmi_info *tpmi_info = auxiliary_get_drvdata(auxdev);
801
802 debugfs_remove_recursive(tpmi_info->dbgfs_dir);
803}
804
805static const struct auxiliary_device_id tpmi_id_table[] = {
806 { .name = "intel_vsec.tpmi" },
807 {}
808};
809MODULE_DEVICE_TABLE(auxiliary, tpmi_id_table);
810
811static struct auxiliary_driver tpmi_aux_driver = {
812 .id_table = tpmi_id_table,
813 .probe = tpmi_probe,
814 .remove = tpmi_remove,
815};
816
817module_auxiliary_driver(tpmi_aux_driver);
818
819MODULE_IMPORT_NS(INTEL_VSEC);
820MODULE_DESCRIPTION("Intel TPMI enumeration module");
821MODULE_LICENSE("GPL");