Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright 2011 Freescale Semiconductor, Inc
  3 *
  4 * Freescale Integrated Flash Controller
  5 *
  6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
  7 *
  8 * This program is free software; you can redistribute  it and/or modify it
  9 * under  the terms of  the GNU General  Public License as published by the
 10 * Free Software Foundation;  either version 2 of the  License, or (at your
 11 * option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 21 */
 22#include <linux/module.h>
 23#include <linux/kernel.h>
 24#include <linux/compiler.h>
 25#include <linux/sched.h>
 26#include <linux/spinlock.h>
 27#include <linux/types.h>
 28#include <linux/slab.h>
 29#include <linux/io.h>
 30#include <linux/of.h>
 31#include <linux/of_device.h>
 32#include <linux/platform_device.h>
 33#include <linux/fsl_ifc.h>
 34#include <asm/prom.h>
 
 
 35
 36struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
 37EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
 38
 39/*
 40 * convert_ifc_address - convert the base address
 41 * @addr_base:	base address of the memory bank
 42 */
 43unsigned int convert_ifc_address(phys_addr_t addr_base)
 44{
 45	return addr_base & CSPR_BA;
 46}
 47EXPORT_SYMBOL(convert_ifc_address);
 48
 49/*
 50 * fsl_ifc_find - find IFC bank
 51 * @addr_base:	base address of the memory bank
 52 *
 53 * This function walks IFC banks comparing "Base address" field of the CSPR
 54 * registers with the supplied addr_base argument. When bases match this
 55 * function returns bank number (starting with 0), otherwise it returns
 56 * appropriate errno value.
 57 */
 58int fsl_ifc_find(phys_addr_t addr_base)
 59{
 60	int i = 0;
 61
 62	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
 63		return -ENODEV;
 64
 65	for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
 66		u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->regs->cspr_cs[i].cspr);
 
 67		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
 68				convert_ifc_address(addr_base))
 69			return i;
 70	}
 71
 72	return -ENOENT;
 73}
 74EXPORT_SYMBOL(fsl_ifc_find);
 75
 76static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
 77{
 78	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
 79
 80	/*
 81	 * Clear all the common status and event registers
 82	 */
 83	if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
 84		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
 85
 86	/* enable all error and events */
 87	ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
 88
 89	/* enable all error and event interrupts */
 90	ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
 91	ifc_out32(0x0, &ifc->cm_erattr0);
 92	ifc_out32(0x0, &ifc->cm_erattr1);
 93
 94	return 0;
 95}
 96
 97static int fsl_ifc_ctrl_remove(struct platform_device *dev)
 98{
 99	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
100
 
101	free_irq(ctrl->nand_irq, ctrl);
102	free_irq(ctrl->irq, ctrl);
103
104	irq_dispose_mapping(ctrl->nand_irq);
105	irq_dispose_mapping(ctrl->irq);
106
107	iounmap(ctrl->regs);
108
109	dev_set_drvdata(&dev->dev, NULL);
110	kfree(ctrl);
111
112	return 0;
113}
114
115/*
116 * NAND events are split between an operational interrupt which only
117 * receives OPC, and an error interrupt that receives everything else,
118 * including non-NAND errors.  Whichever interrupt gets to it first
119 * records the status and wakes the wait queue.
120 */
121static DEFINE_SPINLOCK(nand_irq_lock);
122
123static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
124{
125	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
126	unsigned long flags;
127	u32 stat;
128
129	spin_lock_irqsave(&nand_irq_lock, flags);
130
131	stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
132	if (stat) {
133		ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
134		ctrl->nand_stat = stat;
135		wake_up(&ctrl->nand_wait);
136	}
137
138	spin_unlock_irqrestore(&nand_irq_lock, flags);
139
140	return stat;
141}
142
143static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
144{
145	struct fsl_ifc_ctrl *ctrl = data;
146
147	if (check_nand_stat(ctrl))
148		return IRQ_HANDLED;
149
150	return IRQ_NONE;
151}
152
153/*
154 * NOTE: This interrupt is used to report ifc events of various kinds,
155 * such as transaction errors on the chipselects.
156 */
157static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
158{
159	struct fsl_ifc_ctrl *ctrl = data;
160	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
161	u32 err_axiid, err_srcid, status, cs_err, err_addr;
162	irqreturn_t ret = IRQ_NONE;
163
164	/* read for chip select error */
165	cs_err = ifc_in32(&ifc->cm_evter_stat);
166	if (cs_err) {
167		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to"
168				"any memory bank 0x%08X\n", cs_err);
169		/* clear the chip select error */
170		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
171
172		/* read error attribute registers print the error information */
173		status = ifc_in32(&ifc->cm_erattr0);
174		err_addr = ifc_in32(&ifc->cm_erattr1);
175
176		if (status & IFC_CM_ERATTR0_ERTYP_READ)
177			dev_err(ctrl->dev, "Read transaction error"
178				"CM_ERATTR0 0x%08X\n", status);
179		else
180			dev_err(ctrl->dev, "Write transaction error"
181				"CM_ERATTR0 0x%08X\n", status);
182
183		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
184					IFC_CM_ERATTR0_ERAID_SHIFT;
185		dev_err(ctrl->dev, "AXI ID of the error"
186					"transaction 0x%08X\n", err_axiid);
187
188		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
189					IFC_CM_ERATTR0_ESRCID_SHIFT;
190		dev_err(ctrl->dev, "SRC ID of the error"
191					"transaction 0x%08X\n", err_srcid);
192
193		dev_err(ctrl->dev, "Transaction Address corresponding to error"
194					"ERADDR 0x%08X\n", err_addr);
195
196		ret = IRQ_HANDLED;
197	}
198
199	if (check_nand_stat(ctrl))
200		ret = IRQ_HANDLED;
201
202	return ret;
203}
204
205/*
206 * fsl_ifc_ctrl_probe
207 *
208 * called by device layer when it finds a device matching
209 * one our driver can handled. This code allocates all of
210 * the resources needed for the controller only.  The
211 * resources for the NAND banks themselves are allocated
212 * in the chip probe function.
213*/
214static int fsl_ifc_ctrl_probe(struct platform_device *dev)
215{
216	int ret = 0;
217	int version, banks;
 
218
219	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
220
221	fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
 
222	if (!fsl_ifc_ctrl_dev)
223		return -ENOMEM;
224
225	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
226
227	/* IOMAP the entire IFC region */
228	fsl_ifc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
229	if (!fsl_ifc_ctrl_dev->regs) {
230		dev_err(&dev->dev, "failed to get memory region\n");
231		ret = -ENODEV;
232		goto err;
233	}
234
235	version = ifc_in32(&fsl_ifc_ctrl_dev->regs->ifc_rev) &
236			FSL_IFC_VERSION_MASK;
237	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
238	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
239		version >> 24, (version >> 16) & 0xf, banks);
240
241	fsl_ifc_ctrl_dev->version = version;
242	fsl_ifc_ctrl_dev->banks = banks;
243
244	if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
245		fsl_ifc_ctrl_dev->little_endian = true;
246		dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
247	} else {
248		fsl_ifc_ctrl_dev->little_endian = false;
249		dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
250	}
251
252	version = ioread32be(&fsl_ifc_ctrl_dev->regs->ifc_rev) &
253			FSL_IFC_VERSION_MASK;
 
254	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
255	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
256		version >> 24, (version >> 16) & 0xf, banks);
257
258	fsl_ifc_ctrl_dev->version = version;
259	fsl_ifc_ctrl_dev->banks = banks;
260
 
 
 
 
 
 
 
261	/* get the Controller level irq */
262	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
263	if (fsl_ifc_ctrl_dev->irq == 0) {
264		dev_err(&dev->dev, "failed to get irq resource "
265							"for IFC\n");
266		ret = -ENODEV;
267		goto err;
268	}
269
270	/* get the nand machine irq */
271	fsl_ifc_ctrl_dev->nand_irq =
272			irq_of_parse_and_map(dev->dev.of_node, 1);
273
274	fsl_ifc_ctrl_dev->dev = &dev->dev;
275
276	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
277	if (ret < 0)
278		goto err;
279
280	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
281
282	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
283			  "fsl-ifc", fsl_ifc_ctrl_dev);
284	if (ret != 0) {
285		dev_err(&dev->dev, "failed to install irq (%d)\n",
286			fsl_ifc_ctrl_dev->irq);
287		goto err_irq;
288	}
289
290	if (fsl_ifc_ctrl_dev->nand_irq) {
291		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
292				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
293		if (ret != 0) {
294			dev_err(&dev->dev, "failed to install irq (%d)\n",
295				fsl_ifc_ctrl_dev->nand_irq);
296			goto err_nandirq;
297		}
298	}
299
 
 
 
 
 
300	return 0;
301
302err_nandirq:
303	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
304	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
305err_irq:
306	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
 
 
307	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
308err:
 
309	return ret;
310}
311
312static const struct of_device_id fsl_ifc_match[] = {
313	{
314		.compatible = "fsl,ifc",
315	},
316	{},
317};
318
319static struct platform_driver fsl_ifc_ctrl_driver = {
320	.driver = {
321		.name	= "fsl-ifc",
322		.of_match_table = fsl_ifc_match,
323	},
324	.probe       = fsl_ifc_ctrl_probe,
325	.remove      = fsl_ifc_ctrl_remove,
326};
327
328static int __init fsl_ifc_init(void)
329{
330	return platform_driver_register(&fsl_ifc_ctrl_driver);
331}
332subsys_initcall(fsl_ifc_init);
333
334MODULE_LICENSE("GPL");
335MODULE_AUTHOR("Freescale Semiconductor");
336MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright 2011 Freescale Semiconductor, Inc
  4 *
  5 * Freescale Integrated Flash Controller
  6 *
  7 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9#include <linux/module.h>
 10#include <linux/kernel.h>
 11#include <linux/compiler.h>
 12#include <linux/sched.h>
 13#include <linux/spinlock.h>
 14#include <linux/types.h>
 15#include <linux/slab.h>
 16#include <linux/io.h>
 17#include <linux/of.h>
 18#include <linux/of_platform.h>
 19#include <linux/platform_device.h>
 20#include <linux/fsl_ifc.h>
 21#include <linux/irqdomain.h>
 22#include <linux/of_address.h>
 23#include <linux/of_irq.h>
 24
 25struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
 26EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
 27
 28/*
 29 * convert_ifc_address - convert the base address
 30 * @addr_base:	base address of the memory bank
 31 */
 32unsigned int convert_ifc_address(phys_addr_t addr_base)
 33{
 34	return addr_base & CSPR_BA;
 35}
 36EXPORT_SYMBOL(convert_ifc_address);
 37
 38/*
 39 * fsl_ifc_find - find IFC bank
 40 * @addr_base:	base address of the memory bank
 41 *
 42 * This function walks IFC banks comparing "Base address" field of the CSPR
 43 * registers with the supplied addr_base argument. When bases match this
 44 * function returns bank number (starting with 0), otherwise it returns
 45 * appropriate errno value.
 46 */
 47int fsl_ifc_find(phys_addr_t addr_base)
 48{
 49	int i = 0;
 50
 51	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
 52		return -ENODEV;
 53
 54	for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
 55		u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
 56
 57		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
 58				convert_ifc_address(addr_base))
 59			return i;
 60	}
 61
 62	return -ENOENT;
 63}
 64EXPORT_SYMBOL(fsl_ifc_find);
 65
 66static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
 67{
 68	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
 69
 70	/*
 71	 * Clear all the common status and event registers
 72	 */
 73	if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
 74		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
 75
 76	/* enable all error and events */
 77	ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
 78
 79	/* enable all error and event interrupts */
 80	ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
 81	ifc_out32(0x0, &ifc->cm_erattr0);
 82	ifc_out32(0x0, &ifc->cm_erattr1);
 83
 84	return 0;
 85}
 86
 87static void fsl_ifc_ctrl_remove(struct platform_device *dev)
 88{
 89	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
 90
 91	of_platform_depopulate(&dev->dev);
 92	free_irq(ctrl->nand_irq, ctrl);
 93	free_irq(ctrl->irq, ctrl);
 94
 95	irq_dispose_mapping(ctrl->nand_irq);
 96	irq_dispose_mapping(ctrl->irq);
 97
 98	iounmap(ctrl->gregs);
 99
100	dev_set_drvdata(&dev->dev, NULL);
 
 
 
101}
102
103/*
104 * NAND events are split between an operational interrupt which only
105 * receives OPC, and an error interrupt that receives everything else,
106 * including non-NAND errors.  Whichever interrupt gets to it first
107 * records the status and wakes the wait queue.
108 */
109static DEFINE_SPINLOCK(nand_irq_lock);
110
111static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
112{
113	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
114	unsigned long flags;
115	u32 stat;
116
117	spin_lock_irqsave(&nand_irq_lock, flags);
118
119	stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
120	if (stat) {
121		ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
122		ctrl->nand_stat = stat;
123		wake_up(&ctrl->nand_wait);
124	}
125
126	spin_unlock_irqrestore(&nand_irq_lock, flags);
127
128	return stat;
129}
130
131static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
132{
133	struct fsl_ifc_ctrl *ctrl = data;
134
135	if (check_nand_stat(ctrl))
136		return IRQ_HANDLED;
137
138	return IRQ_NONE;
139}
140
141/*
142 * NOTE: This interrupt is used to report ifc events of various kinds,
143 * such as transaction errors on the chipselects.
144 */
145static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
146{
147	struct fsl_ifc_ctrl *ctrl = data;
148	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
149	u32 err_axiid, err_srcid, status, cs_err, err_addr;
150	irqreturn_t ret = IRQ_NONE;
151
152	/* read for chip select error */
153	cs_err = ifc_in32(&ifc->cm_evter_stat);
154	if (cs_err) {
155		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
156			cs_err);
157		/* clear the chip select error */
158		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
159
160		/* read error attribute registers print the error information */
161		status = ifc_in32(&ifc->cm_erattr0);
162		err_addr = ifc_in32(&ifc->cm_erattr1);
163
164		if (status & IFC_CM_ERATTR0_ERTYP_READ)
165			dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
166				status);
167		else
168			dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
169				status);
170
171		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
172					IFC_CM_ERATTR0_ERAID_SHIFT;
173		dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
174			err_axiid);
175
176		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
177					IFC_CM_ERATTR0_ESRCID_SHIFT;
178		dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
179			err_srcid);
180
181		dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
182			err_addr);
183
184		ret = IRQ_HANDLED;
185	}
186
187	if (check_nand_stat(ctrl))
188		ret = IRQ_HANDLED;
189
190	return ret;
191}
192
193/*
194 * fsl_ifc_ctrl_probe
195 *
196 * called by device layer when it finds a device matching
197 * one our driver can handled. This code allocates all of
198 * the resources needed for the controller only.  The
199 * resources for the NAND banks themselves are allocated
200 * in the chip probe function.
201 */
202static int fsl_ifc_ctrl_probe(struct platform_device *dev)
203{
204	int ret = 0;
205	int version, banks;
206	void __iomem *addr;
207
208	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
209
210	fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
211					GFP_KERNEL);
212	if (!fsl_ifc_ctrl_dev)
213		return -ENOMEM;
214
215	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
216
217	/* IOMAP the entire IFC region */
218	fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
219	if (!fsl_ifc_ctrl_dev->gregs) {
220		dev_err(&dev->dev, "failed to get memory region\n");
221		return -ENODEV;
 
222	}
223
 
 
 
 
 
 
 
 
 
224	if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
225		fsl_ifc_ctrl_dev->little_endian = true;
226		dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
227	} else {
228		fsl_ifc_ctrl_dev->little_endian = false;
229		dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
230	}
231
232	version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
233			FSL_IFC_VERSION_MASK;
234
235	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
236	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
237		version >> 24, (version >> 16) & 0xf, banks);
238
239	fsl_ifc_ctrl_dev->version = version;
240	fsl_ifc_ctrl_dev->banks = banks;
241
242	addr = fsl_ifc_ctrl_dev->gregs;
243	if (version >= FSL_IFC_VERSION_2_0_0)
244		addr += PGOFFSET_64K;
245	else
246		addr += PGOFFSET_4K;
247	fsl_ifc_ctrl_dev->rregs = addr;
248
249	/* get the Controller level irq */
250	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
251	if (fsl_ifc_ctrl_dev->irq == 0) {
252		dev_err(&dev->dev, "failed to get irq resource for IFC\n");
 
253		ret = -ENODEV;
254		goto err;
255	}
256
257	/* get the nand machine irq */
258	fsl_ifc_ctrl_dev->nand_irq =
259			irq_of_parse_and_map(dev->dev.of_node, 1);
260
261	fsl_ifc_ctrl_dev->dev = &dev->dev;
262
263	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
264	if (ret < 0)
265		goto err_unmap_nandirq;
266
267	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
268
269	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
270			  "fsl-ifc", fsl_ifc_ctrl_dev);
271	if (ret != 0) {
272		dev_err(&dev->dev, "failed to install irq (%d)\n",
273			fsl_ifc_ctrl_dev->irq);
274		goto err_unmap_nandirq;
275	}
276
277	if (fsl_ifc_ctrl_dev->nand_irq) {
278		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
279				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
280		if (ret != 0) {
281			dev_err(&dev->dev, "failed to install irq (%d)\n",
282				fsl_ifc_ctrl_dev->nand_irq);
283			goto err_free_irq;
284		}
285	}
286
287	/* legacy dts may still use "simple-bus" compatible */
288	ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
289	if (ret)
290		goto err_free_nandirq;
291
292	return 0;
293
294err_free_nandirq:
295	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
296err_free_irq:
 
297	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
298err_unmap_nandirq:
299	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
300	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
301err:
302	iounmap(fsl_ifc_ctrl_dev->gregs);
303	return ret;
304}
305
306static const struct of_device_id fsl_ifc_match[] = {
307	{
308		.compatible = "fsl,ifc",
309	},
310	{},
311};
312
313static struct platform_driver fsl_ifc_ctrl_driver = {
314	.driver = {
315		.name	= "fsl-ifc",
316		.of_match_table = fsl_ifc_match,
317	},
318	.probe       = fsl_ifc_ctrl_probe,
319	.remove_new  = fsl_ifc_ctrl_remove,
320};
321
322static int __init fsl_ifc_init(void)
323{
324	return platform_driver_register(&fsl_ifc_ctrl_driver);
325}
326subsys_initcall(fsl_ifc_init);
327
 
328MODULE_AUTHOR("Freescale Semiconductor");
329MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");