Loading...
1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32#include <linux/semaphore.h>
33
34#include <linux/hid.h>
35#include <linux/hiddev.h>
36#include <linux/hid-debug.h>
37#include <linux/hidraw.h>
38
39#include "hid-ids.h"
40
41/*
42 * Version Information
43 */
44
45#define DRIVER_DESC "HID core driver"
46#define DRIVER_LICENSE "GPL"
47
48int hid_debug = 0;
49module_param_named(debug, hid_debug, int, 0600);
50MODULE_PARM_DESC(debug, "toggle HID debugging messages");
51EXPORT_SYMBOL_GPL(hid_debug);
52
53static int hid_ignore_special_drivers = 0;
54module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
55MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
56
57/*
58 * Register a new report for a device.
59 */
60
61struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
62{
63 struct hid_report_enum *report_enum = device->report_enum + type;
64 struct hid_report *report;
65
66 if (id >= HID_MAX_IDS)
67 return NULL;
68 if (report_enum->report_id_hash[id])
69 return report_enum->report_id_hash[id];
70
71 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
72 if (!report)
73 return NULL;
74
75 if (id != 0)
76 report_enum->numbered = 1;
77
78 report->id = id;
79 report->type = type;
80 report->size = 0;
81 report->device = device;
82 report_enum->report_id_hash[id] = report;
83
84 list_add_tail(&report->list, &report_enum->report_list);
85
86 return report;
87}
88EXPORT_SYMBOL_GPL(hid_register_report);
89
90/*
91 * Register a new field for this report.
92 */
93
94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
95{
96 struct hid_field *field;
97
98 if (report->maxfield == HID_MAX_FIELDS) {
99 hid_err(report->device, "too many fields in report\n");
100 return NULL;
101 }
102
103 field = kzalloc((sizeof(struct hid_field) +
104 usages * sizeof(struct hid_usage) +
105 values * sizeof(unsigned)), GFP_KERNEL);
106 if (!field)
107 return NULL;
108
109 field->index = report->maxfield++;
110 report->field[field->index] = field;
111 field->usage = (struct hid_usage *)(field + 1);
112 field->value = (s32 *)(field->usage + usages);
113 field->report = report;
114
115 return field;
116}
117
118/*
119 * Open a collection. The type/usage is pushed on the stack.
120 */
121
122static int open_collection(struct hid_parser *parser, unsigned type)
123{
124 struct hid_collection *collection;
125 unsigned usage;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
130 hid_err(parser->device, "collection stack overflow\n");
131 return -EINVAL;
132 }
133
134 if (parser->device->maxcollection == parser->device->collection_size) {
135 collection = kmalloc(sizeof(struct hid_collection) *
136 parser->device->collection_size * 2, GFP_KERNEL);
137 if (collection == NULL) {
138 hid_err(parser->device, "failed to reallocate collection array\n");
139 return -ENOMEM;
140 }
141 memcpy(collection, parser->device->collection,
142 sizeof(struct hid_collection) *
143 parser->device->collection_size);
144 memset(collection + parser->device->collection_size, 0,
145 sizeof(struct hid_collection) *
146 parser->device->collection_size);
147 kfree(parser->device->collection);
148 parser->device->collection = collection;
149 parser->device->collection_size *= 2;
150 }
151
152 parser->collection_stack[parser->collection_stack_ptr++] =
153 parser->device->maxcollection;
154
155 collection = parser->device->collection +
156 parser->device->maxcollection++;
157 collection->type = type;
158 collection->usage = usage;
159 collection->level = parser->collection_stack_ptr - 1;
160
161 if (type == HID_COLLECTION_APPLICATION)
162 parser->device->maxapplication++;
163
164 return 0;
165}
166
167/*
168 * Close a collection.
169 */
170
171static int close_collection(struct hid_parser *parser)
172{
173 if (!parser->collection_stack_ptr) {
174 hid_err(parser->device, "collection stack underflow\n");
175 return -EINVAL;
176 }
177 parser->collection_stack_ptr--;
178 return 0;
179}
180
181/*
182 * Climb up the stack, search for the specified collection type
183 * and return the usage.
184 */
185
186static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
187{
188 struct hid_collection *collection = parser->device->collection;
189 int n;
190
191 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
192 unsigned index = parser->collection_stack[n];
193 if (collection[index].type == type)
194 return collection[index].usage;
195 }
196 return 0; /* we know nothing about this usage type */
197}
198
199/*
200 * Add a usage to the temporary parser table.
201 */
202
203static int hid_add_usage(struct hid_parser *parser, unsigned usage)
204{
205 if (parser->local.usage_index >= HID_MAX_USAGES) {
206 hid_err(parser->device, "usage index exceeded\n");
207 return -1;
208 }
209 parser->local.usage[parser->local.usage_index] = usage;
210 parser->local.collection_index[parser->local.usage_index] =
211 parser->collection_stack_ptr ?
212 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
213 parser->local.usage_index++;
214 return 0;
215}
216
217/*
218 * Register a new field for this report.
219 */
220
221static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
222{
223 struct hid_report *report;
224 struct hid_field *field;
225 unsigned usages;
226 unsigned offset;
227 unsigned i;
228
229 report = hid_register_report(parser->device, report_type, parser->global.report_id);
230 if (!report) {
231 hid_err(parser->device, "hid_register_report failed\n");
232 return -1;
233 }
234
235 /* Handle both signed and unsigned cases properly */
236 if ((parser->global.logical_minimum < 0 &&
237 parser->global.logical_maximum <
238 parser->global.logical_minimum) ||
239 (parser->global.logical_minimum >= 0 &&
240 (__u32)parser->global.logical_maximum <
241 (__u32)parser->global.logical_minimum)) {
242 dbg_hid("logical range invalid 0x%x 0x%x\n",
243 parser->global.logical_minimum,
244 parser->global.logical_maximum);
245 return -1;
246 }
247
248 offset = report->size;
249 report->size += parser->global.report_size * parser->global.report_count;
250
251 if (!parser->local.usage_index) /* Ignore padding fields */
252 return 0;
253
254 usages = max_t(unsigned, parser->local.usage_index,
255 parser->global.report_count);
256
257 field = hid_register_field(report, usages, parser->global.report_count);
258 if (!field)
259 return 0;
260
261 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
262 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
263 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
264
265 for (i = 0; i < usages; i++) {
266 unsigned j = i;
267 /* Duplicate the last usage we parsed if we have excess values */
268 if (i >= parser->local.usage_index)
269 j = parser->local.usage_index - 1;
270 field->usage[i].hid = parser->local.usage[j];
271 field->usage[i].collection_index =
272 parser->local.collection_index[j];
273 field->usage[i].usage_index = i;
274 }
275
276 field->maxusage = usages;
277 field->flags = flags;
278 field->report_offset = offset;
279 field->report_type = report_type;
280 field->report_size = parser->global.report_size;
281 field->report_count = parser->global.report_count;
282 field->logical_minimum = parser->global.logical_minimum;
283 field->logical_maximum = parser->global.logical_maximum;
284 field->physical_minimum = parser->global.physical_minimum;
285 field->physical_maximum = parser->global.physical_maximum;
286 field->unit_exponent = parser->global.unit_exponent;
287 field->unit = parser->global.unit;
288
289 return 0;
290}
291
292/*
293 * Read data value from item.
294 */
295
296static u32 item_udata(struct hid_item *item)
297{
298 switch (item->size) {
299 case 1: return item->data.u8;
300 case 2: return item->data.u16;
301 case 4: return item->data.u32;
302 }
303 return 0;
304}
305
306static s32 item_sdata(struct hid_item *item)
307{
308 switch (item->size) {
309 case 1: return item->data.s8;
310 case 2: return item->data.s16;
311 case 4: return item->data.s32;
312 }
313 return 0;
314}
315
316/*
317 * Process a global item.
318 */
319
320static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
321{
322 __s32 raw_value;
323 switch (item->tag) {
324 case HID_GLOBAL_ITEM_TAG_PUSH:
325
326 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
327 hid_err(parser->device, "global environment stack overflow\n");
328 return -1;
329 }
330
331 memcpy(parser->global_stack + parser->global_stack_ptr++,
332 &parser->global, sizeof(struct hid_global));
333 return 0;
334
335 case HID_GLOBAL_ITEM_TAG_POP:
336
337 if (!parser->global_stack_ptr) {
338 hid_err(parser->device, "global environment stack underflow\n");
339 return -1;
340 }
341
342 memcpy(&parser->global, parser->global_stack +
343 --parser->global_stack_ptr, sizeof(struct hid_global));
344 return 0;
345
346 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
347 parser->global.usage_page = item_udata(item);
348 return 0;
349
350 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
351 parser->global.logical_minimum = item_sdata(item);
352 return 0;
353
354 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
355 if (parser->global.logical_minimum < 0)
356 parser->global.logical_maximum = item_sdata(item);
357 else
358 parser->global.logical_maximum = item_udata(item);
359 return 0;
360
361 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
362 parser->global.physical_minimum = item_sdata(item);
363 return 0;
364
365 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
366 if (parser->global.physical_minimum < 0)
367 parser->global.physical_maximum = item_sdata(item);
368 else
369 parser->global.physical_maximum = item_udata(item);
370 return 0;
371
372 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
373 /* Many devices provide unit exponent as a two's complement
374 * nibble due to the common misunderstanding of HID
375 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
376 * both this and the standard encoding. */
377 raw_value = item_sdata(item);
378 if (!(raw_value & 0xfffffff0))
379 parser->global.unit_exponent = hid_snto32(raw_value, 4);
380 else
381 parser->global.unit_exponent = raw_value;
382 return 0;
383
384 case HID_GLOBAL_ITEM_TAG_UNIT:
385 parser->global.unit = item_udata(item);
386 return 0;
387
388 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
389 parser->global.report_size = item_udata(item);
390 if (parser->global.report_size > 128) {
391 hid_err(parser->device, "invalid report_size %d\n",
392 parser->global.report_size);
393 return -1;
394 }
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
398 parser->global.report_count = item_udata(item);
399 if (parser->global.report_count > HID_MAX_USAGES) {
400 hid_err(parser->device, "invalid report_count %d\n",
401 parser->global.report_count);
402 return -1;
403 }
404 return 0;
405
406 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
407 parser->global.report_id = item_udata(item);
408 if (parser->global.report_id == 0 ||
409 parser->global.report_id >= HID_MAX_IDS) {
410 hid_err(parser->device, "report_id %u is invalid\n",
411 parser->global.report_id);
412 return -1;
413 }
414 return 0;
415
416 default:
417 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
418 return -1;
419 }
420}
421
422/*
423 * Process a local item.
424 */
425
426static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
427{
428 __u32 data;
429 unsigned n;
430 __u32 count;
431
432 data = item_udata(item);
433
434 switch (item->tag) {
435 case HID_LOCAL_ITEM_TAG_DELIMITER:
436
437 if (data) {
438 /*
439 * We treat items before the first delimiter
440 * as global to all usage sets (branch 0).
441 * In the moment we process only these global
442 * items and the first delimiter set.
443 */
444 if (parser->local.delimiter_depth != 0) {
445 hid_err(parser->device, "nested delimiters\n");
446 return -1;
447 }
448 parser->local.delimiter_depth++;
449 parser->local.delimiter_branch++;
450 } else {
451 if (parser->local.delimiter_depth < 1) {
452 hid_err(parser->device, "bogus close delimiter\n");
453 return -1;
454 }
455 parser->local.delimiter_depth--;
456 }
457 return 0;
458
459 case HID_LOCAL_ITEM_TAG_USAGE:
460
461 if (parser->local.delimiter_branch > 1) {
462 dbg_hid("alternative usage ignored\n");
463 return 0;
464 }
465
466 if (item->size <= 2)
467 data = (parser->global.usage_page << 16) + data;
468
469 return hid_add_usage(parser, data);
470
471 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
472
473 if (parser->local.delimiter_branch > 1) {
474 dbg_hid("alternative usage ignored\n");
475 return 0;
476 }
477
478 if (item->size <= 2)
479 data = (parser->global.usage_page << 16) + data;
480
481 parser->local.usage_minimum = data;
482 return 0;
483
484 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
485
486 if (parser->local.delimiter_branch > 1) {
487 dbg_hid("alternative usage ignored\n");
488 return 0;
489 }
490
491 if (item->size <= 2)
492 data = (parser->global.usage_page << 16) + data;
493
494 count = data - parser->local.usage_minimum;
495 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
496 /*
497 * We do not warn if the name is not set, we are
498 * actually pre-scanning the device.
499 */
500 if (dev_name(&parser->device->dev))
501 hid_warn(parser->device,
502 "ignoring exceeding usage max\n");
503 data = HID_MAX_USAGES - parser->local.usage_index +
504 parser->local.usage_minimum - 1;
505 if (data <= 0) {
506 hid_err(parser->device,
507 "no more usage index available\n");
508 return -1;
509 }
510 }
511
512 for (n = parser->local.usage_minimum; n <= data; n++)
513 if (hid_add_usage(parser, n)) {
514 dbg_hid("hid_add_usage failed\n");
515 return -1;
516 }
517 return 0;
518
519 default:
520
521 dbg_hid("unknown local item tag 0x%x\n", item->tag);
522 return 0;
523 }
524 return 0;
525}
526
527/*
528 * Process a main item.
529 */
530
531static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
532{
533 __u32 data;
534 int ret;
535
536 data = item_udata(item);
537
538 switch (item->tag) {
539 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
540 ret = open_collection(parser, data & 0xff);
541 break;
542 case HID_MAIN_ITEM_TAG_END_COLLECTION:
543 ret = close_collection(parser);
544 break;
545 case HID_MAIN_ITEM_TAG_INPUT:
546 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
547 break;
548 case HID_MAIN_ITEM_TAG_OUTPUT:
549 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
550 break;
551 case HID_MAIN_ITEM_TAG_FEATURE:
552 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
553 break;
554 default:
555 hid_err(parser->device, "unknown main item tag 0x%x\n", item->tag);
556 ret = 0;
557 }
558
559 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
560
561 return ret;
562}
563
564/*
565 * Process a reserved item.
566 */
567
568static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
569{
570 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
571 return 0;
572}
573
574/*
575 * Free a report and all registered fields. The field->usage and
576 * field->value table's are allocated behind the field, so we need
577 * only to free(field) itself.
578 */
579
580static void hid_free_report(struct hid_report *report)
581{
582 unsigned n;
583
584 for (n = 0; n < report->maxfield; n++)
585 kfree(report->field[n]);
586 kfree(report);
587}
588
589/*
590 * Close report. This function returns the device
591 * state to the point prior to hid_open_report().
592 */
593static void hid_close_report(struct hid_device *device)
594{
595 unsigned i, j;
596
597 for (i = 0; i < HID_REPORT_TYPES; i++) {
598 struct hid_report_enum *report_enum = device->report_enum + i;
599
600 for (j = 0; j < HID_MAX_IDS; j++) {
601 struct hid_report *report = report_enum->report_id_hash[j];
602 if (report)
603 hid_free_report(report);
604 }
605 memset(report_enum, 0, sizeof(*report_enum));
606 INIT_LIST_HEAD(&report_enum->report_list);
607 }
608
609 kfree(device->rdesc);
610 device->rdesc = NULL;
611 device->rsize = 0;
612
613 kfree(device->collection);
614 device->collection = NULL;
615 device->collection_size = 0;
616 device->maxcollection = 0;
617 device->maxapplication = 0;
618
619 device->status &= ~HID_STAT_PARSED;
620}
621
622/*
623 * Free a device structure, all reports, and all fields.
624 */
625
626static void hid_device_release(struct device *dev)
627{
628 struct hid_device *hid = to_hid_device(dev);
629
630 hid_close_report(hid);
631 kfree(hid->dev_rdesc);
632 kfree(hid);
633}
634
635/*
636 * Fetch a report description item from the data stream. We support long
637 * items, though they are not used yet.
638 */
639
640static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
641{
642 u8 b;
643
644 if ((end - start) <= 0)
645 return NULL;
646
647 b = *start++;
648
649 item->type = (b >> 2) & 3;
650 item->tag = (b >> 4) & 15;
651
652 if (item->tag == HID_ITEM_TAG_LONG) {
653
654 item->format = HID_ITEM_FORMAT_LONG;
655
656 if ((end - start) < 2)
657 return NULL;
658
659 item->size = *start++;
660 item->tag = *start++;
661
662 if ((end - start) < item->size)
663 return NULL;
664
665 item->data.longdata = start;
666 start += item->size;
667 return start;
668 }
669
670 item->format = HID_ITEM_FORMAT_SHORT;
671 item->size = b & 3;
672
673 switch (item->size) {
674 case 0:
675 return start;
676
677 case 1:
678 if ((end - start) < 1)
679 return NULL;
680 item->data.u8 = *start++;
681 return start;
682
683 case 2:
684 if ((end - start) < 2)
685 return NULL;
686 item->data.u16 = get_unaligned_le16(start);
687 start = (__u8 *)((__le16 *)start + 1);
688 return start;
689
690 case 3:
691 item->size++;
692 if ((end - start) < 4)
693 return NULL;
694 item->data.u32 = get_unaligned_le32(start);
695 start = (__u8 *)((__le32 *)start + 1);
696 return start;
697 }
698
699 return NULL;
700}
701
702static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
703{
704 struct hid_device *hid = parser->device;
705
706 if (usage == HID_DG_CONTACTID)
707 hid->group = HID_GROUP_MULTITOUCH;
708}
709
710static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
711{
712 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
713 parser->global.report_size == 8)
714 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
715}
716
717static void hid_scan_collection(struct hid_parser *parser, unsigned type)
718{
719 struct hid_device *hid = parser->device;
720 int i;
721
722 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
723 type == HID_COLLECTION_PHYSICAL)
724 hid->group = HID_GROUP_SENSOR_HUB;
725
726 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
727 (hid->product == USB_DEVICE_ID_MS_TYPE_COVER_PRO_3 ||
728 hid->product == USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_2 ||
729 hid->product == USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_JP ||
730 hid->product == USB_DEVICE_ID_MS_TYPE_COVER_3 ||
731 hid->product == USB_DEVICE_ID_MS_POWER_COVER) &&
732 hid->group == HID_GROUP_MULTITOUCH)
733 hid->group = HID_GROUP_GENERIC;
734
735 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
736 for (i = 0; i < parser->local.usage_index; i++)
737 if (parser->local.usage[i] == HID_GD_POINTER)
738 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
739
740 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
741 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
742}
743
744static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
745{
746 __u32 data;
747 int i;
748
749 data = item_udata(item);
750
751 switch (item->tag) {
752 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
753 hid_scan_collection(parser, data & 0xff);
754 break;
755 case HID_MAIN_ITEM_TAG_END_COLLECTION:
756 break;
757 case HID_MAIN_ITEM_TAG_INPUT:
758 /* ignore constant inputs, they will be ignored by hid-input */
759 if (data & HID_MAIN_ITEM_CONSTANT)
760 break;
761 for (i = 0; i < parser->local.usage_index; i++)
762 hid_scan_input_usage(parser, parser->local.usage[i]);
763 break;
764 case HID_MAIN_ITEM_TAG_OUTPUT:
765 break;
766 case HID_MAIN_ITEM_TAG_FEATURE:
767 for (i = 0; i < parser->local.usage_index; i++)
768 hid_scan_feature_usage(parser, parser->local.usage[i]);
769 break;
770 }
771
772 /* Reset the local parser environment */
773 memset(&parser->local, 0, sizeof(parser->local));
774
775 return 0;
776}
777
778/*
779 * Scan a report descriptor before the device is added to the bus.
780 * Sets device groups and other properties that determine what driver
781 * to load.
782 */
783static int hid_scan_report(struct hid_device *hid)
784{
785 struct hid_parser *parser;
786 struct hid_item item;
787 __u8 *start = hid->dev_rdesc;
788 __u8 *end = start + hid->dev_rsize;
789 static int (*dispatch_type[])(struct hid_parser *parser,
790 struct hid_item *item) = {
791 hid_scan_main,
792 hid_parser_global,
793 hid_parser_local,
794 hid_parser_reserved
795 };
796
797 parser = vzalloc(sizeof(struct hid_parser));
798 if (!parser)
799 return -ENOMEM;
800
801 parser->device = hid;
802 hid->group = HID_GROUP_GENERIC;
803
804 /*
805 * The parsing is simpler than the one in hid_open_report() as we should
806 * be robust against hid errors. Those errors will be raised by
807 * hid_open_report() anyway.
808 */
809 while ((start = fetch_item(start, end, &item)) != NULL)
810 dispatch_type[item.type](parser, &item);
811
812 /*
813 * Handle special flags set during scanning.
814 */
815 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
816 (hid->group == HID_GROUP_MULTITOUCH))
817 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
818
819 /*
820 * Vendor specific handlings
821 */
822 switch (hid->vendor) {
823 case USB_VENDOR_ID_WACOM:
824 hid->group = HID_GROUP_WACOM;
825 break;
826 case USB_VENDOR_ID_SYNAPTICS:
827 if (hid->group == HID_GROUP_GENERIC)
828 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
829 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
830 /*
831 * hid-rmi should take care of them,
832 * not hid-generic
833 */
834 hid->group = HID_GROUP_RMI;
835 break;
836 }
837
838 vfree(parser);
839 return 0;
840}
841
842/**
843 * hid_parse_report - parse device report
844 *
845 * @device: hid device
846 * @start: report start
847 * @size: report size
848 *
849 * Allocate the device report as read by the bus driver. This function should
850 * only be called from parse() in ll drivers.
851 */
852int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
853{
854 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
855 if (!hid->dev_rdesc)
856 return -ENOMEM;
857 hid->dev_rsize = size;
858 return 0;
859}
860EXPORT_SYMBOL_GPL(hid_parse_report);
861
862static const char * const hid_report_names[] = {
863 "HID_INPUT_REPORT",
864 "HID_OUTPUT_REPORT",
865 "HID_FEATURE_REPORT",
866};
867/**
868 * hid_validate_values - validate existing device report's value indexes
869 *
870 * @device: hid device
871 * @type: which report type to examine
872 * @id: which report ID to examine (0 for first)
873 * @field_index: which report field to examine
874 * @report_counts: expected number of values
875 *
876 * Validate the number of values in a given field of a given report, after
877 * parsing.
878 */
879struct hid_report *hid_validate_values(struct hid_device *hid,
880 unsigned int type, unsigned int id,
881 unsigned int field_index,
882 unsigned int report_counts)
883{
884 struct hid_report *report;
885
886 if (type > HID_FEATURE_REPORT) {
887 hid_err(hid, "invalid HID report type %u\n", type);
888 return NULL;
889 }
890
891 if (id >= HID_MAX_IDS) {
892 hid_err(hid, "invalid HID report id %u\n", id);
893 return NULL;
894 }
895
896 /*
897 * Explicitly not using hid_get_report() here since it depends on
898 * ->numbered being checked, which may not always be the case when
899 * drivers go to access report values.
900 */
901 if (id == 0) {
902 /*
903 * Validating on id 0 means we should examine the first
904 * report in the list.
905 */
906 report = list_entry(
907 hid->report_enum[type].report_list.next,
908 struct hid_report, list);
909 } else {
910 report = hid->report_enum[type].report_id_hash[id];
911 }
912 if (!report) {
913 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
914 return NULL;
915 }
916 if (report->maxfield <= field_index) {
917 hid_err(hid, "not enough fields in %s %u\n",
918 hid_report_names[type], id);
919 return NULL;
920 }
921 if (report->field[field_index]->report_count < report_counts) {
922 hid_err(hid, "not enough values in %s %u field %u\n",
923 hid_report_names[type], id, field_index);
924 return NULL;
925 }
926 return report;
927}
928EXPORT_SYMBOL_GPL(hid_validate_values);
929
930/**
931 * hid_open_report - open a driver-specific device report
932 *
933 * @device: hid device
934 *
935 * Parse a report description into a hid_device structure. Reports are
936 * enumerated, fields are attached to these reports.
937 * 0 returned on success, otherwise nonzero error value.
938 *
939 * This function (or the equivalent hid_parse() macro) should only be
940 * called from probe() in drivers, before starting the device.
941 */
942int hid_open_report(struct hid_device *device)
943{
944 struct hid_parser *parser;
945 struct hid_item item;
946 unsigned int size;
947 __u8 *start;
948 __u8 *buf;
949 __u8 *end;
950 int ret;
951 static int (*dispatch_type[])(struct hid_parser *parser,
952 struct hid_item *item) = {
953 hid_parser_main,
954 hid_parser_global,
955 hid_parser_local,
956 hid_parser_reserved
957 };
958
959 if (WARN_ON(device->status & HID_STAT_PARSED))
960 return -EBUSY;
961
962 start = device->dev_rdesc;
963 if (WARN_ON(!start))
964 return -ENODEV;
965 size = device->dev_rsize;
966
967 buf = kmemdup(start, size, GFP_KERNEL);
968 if (buf == NULL)
969 return -ENOMEM;
970
971 if (device->driver->report_fixup)
972 start = device->driver->report_fixup(device, buf, &size);
973 else
974 start = buf;
975
976 start = kmemdup(start, size, GFP_KERNEL);
977 kfree(buf);
978 if (start == NULL)
979 return -ENOMEM;
980
981 device->rdesc = start;
982 device->rsize = size;
983
984 parser = vzalloc(sizeof(struct hid_parser));
985 if (!parser) {
986 ret = -ENOMEM;
987 goto err;
988 }
989
990 parser->device = device;
991
992 end = start + size;
993
994 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
995 sizeof(struct hid_collection), GFP_KERNEL);
996 if (!device->collection) {
997 ret = -ENOMEM;
998 goto err;
999 }
1000 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1001
1002 ret = -EINVAL;
1003 while ((start = fetch_item(start, end, &item)) != NULL) {
1004
1005 if (item.format != HID_ITEM_FORMAT_SHORT) {
1006 hid_err(device, "unexpected long global item\n");
1007 goto err;
1008 }
1009
1010 if (dispatch_type[item.type](parser, &item)) {
1011 hid_err(device, "item %u %u %u %u parsing failed\n",
1012 item.format, (unsigned)item.size,
1013 (unsigned)item.type, (unsigned)item.tag);
1014 goto err;
1015 }
1016
1017 if (start == end) {
1018 if (parser->collection_stack_ptr) {
1019 hid_err(device, "unbalanced collection at end of report description\n");
1020 goto err;
1021 }
1022 if (parser->local.delimiter_depth) {
1023 hid_err(device, "unbalanced delimiter at end of report description\n");
1024 goto err;
1025 }
1026 vfree(parser);
1027 device->status |= HID_STAT_PARSED;
1028 return 0;
1029 }
1030 }
1031
1032 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1033err:
1034 vfree(parser);
1035 hid_close_report(device);
1036 return ret;
1037}
1038EXPORT_SYMBOL_GPL(hid_open_report);
1039
1040/*
1041 * Convert a signed n-bit integer to signed 32-bit integer. Common
1042 * cases are done through the compiler, the screwed things has to be
1043 * done by hand.
1044 */
1045
1046static s32 snto32(__u32 value, unsigned n)
1047{
1048 switch (n) {
1049 case 8: return ((__s8)value);
1050 case 16: return ((__s16)value);
1051 case 32: return ((__s32)value);
1052 }
1053 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
1054}
1055
1056s32 hid_snto32(__u32 value, unsigned n)
1057{
1058 return snto32(value, n);
1059}
1060EXPORT_SYMBOL_GPL(hid_snto32);
1061
1062/*
1063 * Convert a signed 32-bit integer to a signed n-bit integer.
1064 */
1065
1066static u32 s32ton(__s32 value, unsigned n)
1067{
1068 s32 a = value >> (n - 1);
1069 if (a && a != -1)
1070 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1071 return value & ((1 << n) - 1);
1072}
1073
1074/*
1075 * Extract/implement a data field from/to a little endian report (bit array).
1076 *
1077 * Code sort-of follows HID spec:
1078 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1079 *
1080 * While the USB HID spec allows unlimited length bit fields in "report
1081 * descriptors", most devices never use more than 16 bits.
1082 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1083 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1084 */
1085
1086static u32 __extract(u8 *report, unsigned offset, int n)
1087{
1088 unsigned int idx = offset / 8;
1089 unsigned int bit_nr = 0;
1090 unsigned int bit_shift = offset % 8;
1091 int bits_to_copy = 8 - bit_shift;
1092 u32 value = 0;
1093 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1094
1095 while (n > 0) {
1096 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1097 n -= bits_to_copy;
1098 bit_nr += bits_to_copy;
1099 bits_to_copy = 8;
1100 bit_shift = 0;
1101 idx++;
1102 }
1103
1104 return value & mask;
1105}
1106
1107u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1108 unsigned offset, unsigned n)
1109{
1110 if (n > 32) {
1111 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1112 n, current->comm);
1113 n = 32;
1114 }
1115
1116 return __extract(report, offset, n);
1117}
1118EXPORT_SYMBOL_GPL(hid_field_extract);
1119
1120/*
1121 * "implement" : set bits in a little endian bit stream.
1122 * Same concepts as "extract" (see comments above).
1123 * The data mangled in the bit stream remains in little endian
1124 * order the whole time. It make more sense to talk about
1125 * endianness of register values by considering a register
1126 * a "cached" copy of the little endian bit stream.
1127 */
1128
1129static void __implement(u8 *report, unsigned offset, int n, u32 value)
1130{
1131 unsigned int idx = offset / 8;
1132 unsigned int size = offset + n;
1133 unsigned int bit_shift = offset % 8;
1134 int bits_to_set = 8 - bit_shift;
1135 u8 bit_mask = 0xff << bit_shift;
1136
1137 while (n - bits_to_set >= 0) {
1138 report[idx] &= ~bit_mask;
1139 report[idx] |= value << bit_shift;
1140 value >>= bits_to_set;
1141 n -= bits_to_set;
1142 bits_to_set = 8;
1143 bit_mask = 0xff;
1144 bit_shift = 0;
1145 idx++;
1146 }
1147
1148 /* last nibble */
1149 if (n) {
1150 if (size % 8)
1151 bit_mask &= (1U << (size % 8)) - 1;
1152 report[idx] &= ~bit_mask;
1153 report[idx] |= (value << bit_shift) & bit_mask;
1154 }
1155}
1156
1157static void implement(const struct hid_device *hid, u8 *report,
1158 unsigned offset, unsigned n, u32 value)
1159{
1160 u64 m;
1161
1162 if (n > 32) {
1163 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1164 __func__, n, current->comm);
1165 n = 32;
1166 }
1167
1168 m = (1ULL << n) - 1;
1169 if (value > m)
1170 hid_warn(hid, "%s() called with too large value %d! (%s)\n",
1171 __func__, value, current->comm);
1172 WARN_ON(value > m);
1173 value &= m;
1174
1175 __implement(report, offset, n, value);
1176}
1177
1178/*
1179 * Search an array for a value.
1180 */
1181
1182static int search(__s32 *array, __s32 value, unsigned n)
1183{
1184 while (n--) {
1185 if (*array++ == value)
1186 return 0;
1187 }
1188 return -1;
1189}
1190
1191/**
1192 * hid_match_report - check if driver's raw_event should be called
1193 *
1194 * @hid: hid device
1195 * @report_type: type to match against
1196 *
1197 * compare hid->driver->report_table->report_type to report->type
1198 */
1199static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1200{
1201 const struct hid_report_id *id = hid->driver->report_table;
1202
1203 if (!id) /* NULL means all */
1204 return 1;
1205
1206 for (; id->report_type != HID_TERMINATOR; id++)
1207 if (id->report_type == HID_ANY_ID ||
1208 id->report_type == report->type)
1209 return 1;
1210 return 0;
1211}
1212
1213/**
1214 * hid_match_usage - check if driver's event should be called
1215 *
1216 * @hid: hid device
1217 * @usage: usage to match against
1218 *
1219 * compare hid->driver->usage_table->usage_{type,code} to
1220 * usage->usage_{type,code}
1221 */
1222static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1223{
1224 const struct hid_usage_id *id = hid->driver->usage_table;
1225
1226 if (!id) /* NULL means all */
1227 return 1;
1228
1229 for (; id->usage_type != HID_ANY_ID - 1; id++)
1230 if ((id->usage_hid == HID_ANY_ID ||
1231 id->usage_hid == usage->hid) &&
1232 (id->usage_type == HID_ANY_ID ||
1233 id->usage_type == usage->type) &&
1234 (id->usage_code == HID_ANY_ID ||
1235 id->usage_code == usage->code))
1236 return 1;
1237 return 0;
1238}
1239
1240static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1241 struct hid_usage *usage, __s32 value, int interrupt)
1242{
1243 struct hid_driver *hdrv = hid->driver;
1244 int ret;
1245
1246 if (!list_empty(&hid->debug_list))
1247 hid_dump_input(hid, usage, value);
1248
1249 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1250 ret = hdrv->event(hid, field, usage, value);
1251 if (ret != 0) {
1252 if (ret < 0)
1253 hid_err(hid, "%s's event failed with %d\n",
1254 hdrv->name, ret);
1255 return;
1256 }
1257 }
1258
1259 if (hid->claimed & HID_CLAIMED_INPUT)
1260 hidinput_hid_event(hid, field, usage, value);
1261 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1262 hid->hiddev_hid_event(hid, field, usage, value);
1263}
1264
1265/*
1266 * Analyse a received field, and fetch the data from it. The field
1267 * content is stored for next report processing (we do differential
1268 * reporting to the layer).
1269 */
1270
1271static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1272 __u8 *data, int interrupt)
1273{
1274 unsigned n;
1275 unsigned count = field->report_count;
1276 unsigned offset = field->report_offset;
1277 unsigned size = field->report_size;
1278 __s32 min = field->logical_minimum;
1279 __s32 max = field->logical_maximum;
1280 __s32 *value;
1281
1282 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1283 if (!value)
1284 return;
1285
1286 for (n = 0; n < count; n++) {
1287
1288 value[n] = min < 0 ?
1289 snto32(hid_field_extract(hid, data, offset + n * size,
1290 size), size) :
1291 hid_field_extract(hid, data, offset + n * size, size);
1292
1293 /* Ignore report if ErrorRollOver */
1294 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1295 value[n] >= min && value[n] <= max &&
1296 value[n] - min < field->maxusage &&
1297 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1298 goto exit;
1299 }
1300
1301 for (n = 0; n < count; n++) {
1302
1303 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1304 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1305 continue;
1306 }
1307
1308 if (field->value[n] >= min && field->value[n] <= max
1309 && field->value[n] - min < field->maxusage
1310 && field->usage[field->value[n] - min].hid
1311 && search(value, field->value[n], count))
1312 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1313
1314 if (value[n] >= min && value[n] <= max
1315 && value[n] - min < field->maxusage
1316 && field->usage[value[n] - min].hid
1317 && search(field->value, value[n], count))
1318 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1319 }
1320
1321 memcpy(field->value, value, count * sizeof(__s32));
1322exit:
1323 kfree(value);
1324}
1325
1326/*
1327 * Output the field into the report.
1328 */
1329
1330static void hid_output_field(const struct hid_device *hid,
1331 struct hid_field *field, __u8 *data)
1332{
1333 unsigned count = field->report_count;
1334 unsigned offset = field->report_offset;
1335 unsigned size = field->report_size;
1336 unsigned n;
1337
1338 for (n = 0; n < count; n++) {
1339 if (field->logical_minimum < 0) /* signed values */
1340 implement(hid, data, offset + n * size, size,
1341 s32ton(field->value[n], size));
1342 else /* unsigned values */
1343 implement(hid, data, offset + n * size, size,
1344 field->value[n]);
1345 }
1346}
1347
1348/*
1349 * Create a report. 'data' has to be allocated using
1350 * hid_alloc_report_buf() so that it has proper size.
1351 */
1352
1353void hid_output_report(struct hid_report *report, __u8 *data)
1354{
1355 unsigned n;
1356
1357 if (report->id > 0)
1358 *data++ = report->id;
1359
1360 memset(data, 0, ((report->size - 1) >> 3) + 1);
1361 for (n = 0; n < report->maxfield; n++)
1362 hid_output_field(report->device, report->field[n], data);
1363}
1364EXPORT_SYMBOL_GPL(hid_output_report);
1365
1366/*
1367 * Allocator for buffer that is going to be passed to hid_output_report()
1368 */
1369u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1370{
1371 /*
1372 * 7 extra bytes are necessary to achieve proper functionality
1373 * of implement() working on 8 byte chunks
1374 */
1375
1376 int len = hid_report_len(report) + 7;
1377
1378 return kmalloc(len, flags);
1379}
1380EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1381
1382/*
1383 * Set a field value. The report this field belongs to has to be
1384 * created and transferred to the device, to set this value in the
1385 * device.
1386 */
1387
1388int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1389{
1390 unsigned size;
1391
1392 if (!field)
1393 return -1;
1394
1395 size = field->report_size;
1396
1397 hid_dump_input(field->report->device, field->usage + offset, value);
1398
1399 if (offset >= field->report_count) {
1400 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1401 offset, field->report_count);
1402 return -1;
1403 }
1404 if (field->logical_minimum < 0) {
1405 if (value != snto32(s32ton(value, size), size)) {
1406 hid_err(field->report->device, "value %d is out of range\n", value);
1407 return -1;
1408 }
1409 }
1410 field->value[offset] = value;
1411 return 0;
1412}
1413EXPORT_SYMBOL_GPL(hid_set_field);
1414
1415static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1416 const u8 *data)
1417{
1418 struct hid_report *report;
1419 unsigned int n = 0; /* Normally report number is 0 */
1420
1421 /* Device uses numbered reports, data[0] is report number */
1422 if (report_enum->numbered)
1423 n = *data;
1424
1425 report = report_enum->report_id_hash[n];
1426 if (report == NULL)
1427 dbg_hid("undefined report_id %u received\n", n);
1428
1429 return report;
1430}
1431
1432/*
1433 * Implement a generic .request() callback, using .raw_request()
1434 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1435 */
1436void __hid_request(struct hid_device *hid, struct hid_report *report,
1437 int reqtype)
1438{
1439 char *buf;
1440 int ret;
1441 int len;
1442
1443 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1444 if (!buf)
1445 return;
1446
1447 len = hid_report_len(report);
1448
1449 if (reqtype == HID_REQ_SET_REPORT)
1450 hid_output_report(report, buf);
1451
1452 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1453 report->type, reqtype);
1454 if (ret < 0) {
1455 dbg_hid("unable to complete request: %d\n", ret);
1456 goto out;
1457 }
1458
1459 if (reqtype == HID_REQ_GET_REPORT)
1460 hid_input_report(hid, report->type, buf, ret, 0);
1461
1462out:
1463 kfree(buf);
1464}
1465EXPORT_SYMBOL_GPL(__hid_request);
1466
1467int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1468 int interrupt)
1469{
1470 struct hid_report_enum *report_enum = hid->report_enum + type;
1471 struct hid_report *report;
1472 struct hid_driver *hdrv;
1473 unsigned int a;
1474 int rsize, csize = size;
1475 u8 *cdata = data;
1476 int ret = 0;
1477
1478 report = hid_get_report(report_enum, data);
1479 if (!report)
1480 goto out;
1481
1482 if (report_enum->numbered) {
1483 cdata++;
1484 csize--;
1485 }
1486
1487 rsize = ((report->size - 1) >> 3) + 1;
1488
1489 if (rsize > HID_MAX_BUFFER_SIZE)
1490 rsize = HID_MAX_BUFFER_SIZE;
1491
1492 if (csize < rsize) {
1493 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1494 csize, rsize);
1495 memset(cdata + csize, 0, rsize - csize);
1496 }
1497
1498 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1499 hid->hiddev_report_event(hid, report);
1500 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1501 ret = hidraw_report_event(hid, data, size);
1502 if (ret)
1503 goto out;
1504 }
1505
1506 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1507 for (a = 0; a < report->maxfield; a++)
1508 hid_input_field(hid, report->field[a], cdata, interrupt);
1509 hdrv = hid->driver;
1510 if (hdrv && hdrv->report)
1511 hdrv->report(hid, report);
1512 }
1513
1514 if (hid->claimed & HID_CLAIMED_INPUT)
1515 hidinput_report_event(hid, report);
1516out:
1517 return ret;
1518}
1519EXPORT_SYMBOL_GPL(hid_report_raw_event);
1520
1521/**
1522 * hid_input_report - report data from lower layer (usb, bt...)
1523 *
1524 * @hid: hid device
1525 * @type: HID report type (HID_*_REPORT)
1526 * @data: report contents
1527 * @size: size of data parameter
1528 * @interrupt: distinguish between interrupt and control transfers
1529 *
1530 * This is data entry for lower layers.
1531 */
1532int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1533{
1534 struct hid_report_enum *report_enum;
1535 struct hid_driver *hdrv;
1536 struct hid_report *report;
1537 int ret = 0;
1538
1539 if (!hid)
1540 return -ENODEV;
1541
1542 if (down_trylock(&hid->driver_input_lock))
1543 return -EBUSY;
1544
1545 if (!hid->driver) {
1546 ret = -ENODEV;
1547 goto unlock;
1548 }
1549 report_enum = hid->report_enum + type;
1550 hdrv = hid->driver;
1551
1552 if (!size) {
1553 dbg_hid("empty report\n");
1554 ret = -1;
1555 goto unlock;
1556 }
1557
1558 /* Avoid unnecessary overhead if debugfs is disabled */
1559 if (!list_empty(&hid->debug_list))
1560 hid_dump_report(hid, type, data, size);
1561
1562 report = hid_get_report(report_enum, data);
1563
1564 if (!report) {
1565 ret = -1;
1566 goto unlock;
1567 }
1568
1569 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1570 ret = hdrv->raw_event(hid, report, data, size);
1571 if (ret < 0)
1572 goto unlock;
1573 }
1574
1575 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1576
1577unlock:
1578 up(&hid->driver_input_lock);
1579 return ret;
1580}
1581EXPORT_SYMBOL_GPL(hid_input_report);
1582
1583static bool hid_match_one_id(struct hid_device *hdev,
1584 const struct hid_device_id *id)
1585{
1586 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1587 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1588 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1589 (id->product == HID_ANY_ID || id->product == hdev->product);
1590}
1591
1592const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1593 const struct hid_device_id *id)
1594{
1595 for (; id->bus; id++)
1596 if (hid_match_one_id(hdev, id))
1597 return id;
1598
1599 return NULL;
1600}
1601
1602static const struct hid_device_id hid_hiddev_list[] = {
1603 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1604 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1605 { }
1606};
1607
1608static bool hid_hiddev(struct hid_device *hdev)
1609{
1610 return !!hid_match_id(hdev, hid_hiddev_list);
1611}
1612
1613
1614static ssize_t
1615read_report_descriptor(struct file *filp, struct kobject *kobj,
1616 struct bin_attribute *attr,
1617 char *buf, loff_t off, size_t count)
1618{
1619 struct device *dev = kobj_to_dev(kobj);
1620 struct hid_device *hdev = to_hid_device(dev);
1621
1622 if (off >= hdev->rsize)
1623 return 0;
1624
1625 if (off + count > hdev->rsize)
1626 count = hdev->rsize - off;
1627
1628 memcpy(buf, hdev->rdesc + off, count);
1629
1630 return count;
1631}
1632
1633static ssize_t
1634show_country(struct device *dev, struct device_attribute *attr,
1635 char *buf)
1636{
1637 struct hid_device *hdev = to_hid_device(dev);
1638
1639 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1640}
1641
1642static struct bin_attribute dev_bin_attr_report_desc = {
1643 .attr = { .name = "report_descriptor", .mode = 0444 },
1644 .read = read_report_descriptor,
1645 .size = HID_MAX_DESCRIPTOR_SIZE,
1646};
1647
1648static struct device_attribute dev_attr_country = {
1649 .attr = { .name = "country", .mode = 0444 },
1650 .show = show_country,
1651};
1652
1653int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1654{
1655 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1656 "Joystick", "Gamepad", "Keyboard", "Keypad",
1657 "Multi-Axis Controller"
1658 };
1659 const char *type, *bus;
1660 char buf[64] = "";
1661 unsigned int i;
1662 int len;
1663 int ret;
1664
1665 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1666 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1667 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1668 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1669 if (hdev->bus != BUS_USB)
1670 connect_mask &= ~HID_CONNECT_HIDDEV;
1671 if (hid_hiddev(hdev))
1672 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1673
1674 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1675 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1676 hdev->claimed |= HID_CLAIMED_INPUT;
1677
1678 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1679 !hdev->hiddev_connect(hdev,
1680 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1681 hdev->claimed |= HID_CLAIMED_HIDDEV;
1682 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1683 hdev->claimed |= HID_CLAIMED_HIDRAW;
1684
1685 if (connect_mask & HID_CONNECT_DRIVER)
1686 hdev->claimed |= HID_CLAIMED_DRIVER;
1687
1688 /* Drivers with the ->raw_event callback set are not required to connect
1689 * to any other listener. */
1690 if (!hdev->claimed && !hdev->driver->raw_event) {
1691 hid_err(hdev, "device has no listeners, quitting\n");
1692 return -ENODEV;
1693 }
1694
1695 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1696 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1697 hdev->ff_init(hdev);
1698
1699 len = 0;
1700 if (hdev->claimed & HID_CLAIMED_INPUT)
1701 len += sprintf(buf + len, "input");
1702 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1703 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1704 hdev->minor);
1705 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1706 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1707 ((struct hidraw *)hdev->hidraw)->minor);
1708
1709 type = "Device";
1710 for (i = 0; i < hdev->maxcollection; i++) {
1711 struct hid_collection *col = &hdev->collection[i];
1712 if (col->type == HID_COLLECTION_APPLICATION &&
1713 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1714 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1715 type = types[col->usage & 0xffff];
1716 break;
1717 }
1718 }
1719
1720 switch (hdev->bus) {
1721 case BUS_USB:
1722 bus = "USB";
1723 break;
1724 case BUS_BLUETOOTH:
1725 bus = "BLUETOOTH";
1726 break;
1727 case BUS_I2C:
1728 bus = "I2C";
1729 break;
1730 default:
1731 bus = "<UNKNOWN>";
1732 }
1733
1734 ret = device_create_file(&hdev->dev, &dev_attr_country);
1735 if (ret)
1736 hid_warn(hdev,
1737 "can't create sysfs country code attribute err: %d\n", ret);
1738
1739 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1740 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1741 type, hdev->name, hdev->phys);
1742
1743 return 0;
1744}
1745EXPORT_SYMBOL_GPL(hid_connect);
1746
1747void hid_disconnect(struct hid_device *hdev)
1748{
1749 device_remove_file(&hdev->dev, &dev_attr_country);
1750 if (hdev->claimed & HID_CLAIMED_INPUT)
1751 hidinput_disconnect(hdev);
1752 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1753 hdev->hiddev_disconnect(hdev);
1754 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1755 hidraw_disconnect(hdev);
1756 hdev->claimed = 0;
1757}
1758EXPORT_SYMBOL_GPL(hid_disconnect);
1759
1760/*
1761 * A list of devices for which there is a specialized driver on HID bus.
1762 *
1763 * Please note that for multitouch devices (driven by hid-multitouch driver),
1764 * there is a proper autodetection and autoloading in place (based on presence
1765 * of HID_DG_CONTACTID), so those devices don't need to be added to this list,
1766 * as we are doing the right thing in hid_scan_usage().
1767 *
1768 * Autodetection for (USB) HID sensor hubs exists too. If a collection of type
1769 * physical is found inside a usage page of type sensor, hid-sensor-hub will be
1770 * used as a driver. See hid_scan_report().
1771 */
1772static const struct hid_device_id hid_have_special_driver[] = {
1773 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1774 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1775 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1776 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1777 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0xf705) },
1778 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1779 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1780 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1781 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1782 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1783 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1784 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1785 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1786 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1787 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1788 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1789 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1790 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1791 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1792 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1793 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1794 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1796 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1797 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1798 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1799 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1800 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1801 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL) },
1802 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL2) },
1803 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL3) },
1804 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1805 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL5) },
1806 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1807 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1808 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1809 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1810 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1812 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1813 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1814 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1815 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1816 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1817 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1818 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1819 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1820 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1821 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1822 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1823 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1824 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1825 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1826 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1827 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
1828 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
1829 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
1830 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1831 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1832 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1833 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
1834 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
1835 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
1836 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
1837 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
1838 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
1839 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
1840 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
1841 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
1842 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
1843 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
1844 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
1845 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
1846 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
1847 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
1848 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ANSI) },
1849 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ISO) },
1850 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_JIS) },
1851 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1852 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1853 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1854 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI) },
1855 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO) },
1856 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_JIS) },
1857 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1858 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1859 { HID_USB_DEVICE(USB_VENDOR_ID_AUREAL, USB_DEVICE_ID_AUREAL_W01RN) },
1860 { HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1861 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185BFM, 0x2208) },
1862 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185PC, 0x5506) },
1863 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185V2PC, 0x1850) },
1864 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185V2BFM, 0x5500) },
1865 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1866 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1867 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1868 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1869 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1870 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1871 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS2) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_AK1D) },
1873 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_ACER_SWITCH12) },
1874 { HID_USB_DEVICE(USB_VENDOR_ID_CORSAIR, USB_DEVICE_ID_CORSAIR_K90) },
1875 { HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1876 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_CP2112) },
1877 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1878 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1879 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1880 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_4) },
1881 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1882 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1883 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1884 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1885 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0009) },
1886 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0030) },
1887 { HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1888 { HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1889 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1890 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1891 { HID_USB_DEVICE(USB_VENDOR_ID_GEMBIRD, USB_DEVICE_ID_GEMBIRD_JPD_DUALFORCE2) },
1892 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1893 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1894 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1895 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1896 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1897 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1898 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_KEYBOARD) },
1899 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A04A) },
1900 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A067) },
1901 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A070) },
1902 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A072) },
1903 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A081) },
1904 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A0C2) },
1905 { HID_USB_DEVICE(USB_VENDOR_ID_HUION, USB_DEVICE_ID_HUION_TABLET) },
1906 { HID_USB_DEVICE(USB_VENDOR_ID_JESS2, USB_DEVICE_ID_JESS2_COLOR_RUMBLE_PAD) },
1907 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ION, USB_DEVICE_ID_ICADE) },
1908 { HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1909 { HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1910 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GILA_GAMING_MOUSE) },
1911 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_MANTICORE) },
1912 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GX_IMPERATOR) },
1913 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1914 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_I405X) },
1915 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X) },
1916 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X_2) },
1917 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_M610X) },
1918 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_PENSKETCH_M912) },
1919 { HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1920 { HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1921#if IS_ENABLED(CONFIG_HID_LENOVO)
1922 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPKBD) },
1923 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_CUSBKBD) },
1924 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_CBTKBD) },
1925 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPPRODOCK) },
1926#endif
1927 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1928 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1929 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1930 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1931 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_HARMONY_PS3) },
1932 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_T651) },
1933 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1934 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1935 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1936 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1937 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1938 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1939 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DUAL_ACTION) },
1940 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1941 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1942 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1943 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1944 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G29_WHEEL) },
1945 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL) },
1946 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1947 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1948 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1949 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1950 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1951 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1952 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_VIBRATION_WHEEL) },
1953 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1954 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFGT_WHEEL) },
1955 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1956 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1957#if IS_ENABLED(CONFIG_HID_LOGITECH_DJ)
1958 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER) },
1959 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER_2) },
1960#endif
1961 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1962 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1963 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1964 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1965 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1966 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1967 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1968 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_KEYBOARD) },
1969 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1970 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1971 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K_JP) },
1972 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE7K) },
1973 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1974 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1975 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1976 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1977 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_OFFICE_KB) },
1978 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_PRO_3) },
1979 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_2) },
1980 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_JP) },
1981 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_3) },
1982 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_7K) },
1983 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_600) },
1984 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3KV1) },
1985 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_POWER_COVER) },
1986 { HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1987 { HID_USB_DEVICE(USB_VENDOR_ID_MSI, USB_DEVICE_ID_MSI_GT683R_LED_PANEL) },
1988 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1989 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1990 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1991 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1992 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1993 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1994 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1995 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1996 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1997 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1998 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1999 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
2000 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
2001 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
2002 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
2003 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
2004 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
2005 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
2006 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
2007 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
2008 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
2009 { HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_6000) },
2010 { HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
2011 { HID_USB_DEVICE(USB_VENDOR_ID_PLANTRONICS, HID_ANY_ID) },
2012 { HID_USB_DEVICE(USB_VENDOR_ID_PRIMAX, USB_DEVICE_ID_PRIMAX_KEYBOARD) },
2013#if IS_ENABLED(CONFIG_HID_ROCCAT)
2014 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
2015 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKU) },
2016 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKUFX) },
2017 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
2018 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
2019 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE) },
2020 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE_OPTICAL) },
2021 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEXTD) },
2022 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
2023 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_LUA) },
2024 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
2025 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
2026 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK) },
2027 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_GLOW) },
2028 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_PRO) },
2029 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_SAVU) },
2030#endif
2031#if IS_ENABLED(CONFIG_HID_SAITEK)
2032 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_PS1000) },
2033 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RAT7_OLD) },
2034 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RAT7) },
2035 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_MMO7) },
2036 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_RAT5) },
2037 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_RAT9) },
2038#endif
2039 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
2040 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
2041 { HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
2042 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SMK, USB_DEVICE_ID_SMK_PS3_BDREMOTE) },
2043 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_BUZZ_CONTROLLER) },
2044 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_WIRELESS_BUZZ_CONTROLLER) },
2045 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_MOTION_CONTROLLER) },
2046 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_MOTION_CONTROLLER) },
2047 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
2048 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
2049 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_BDREMOTE) },
2050 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
2051 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
2052 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
2053 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
2054 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
2055 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGP_MOUSE) },
2056 { HID_USB_DEVICE(USB_VENDOR_ID_SINO_LITE, USB_DEVICE_ID_SINO_LITE_CONTROLLER) },
2057 { HID_USB_DEVICE(USB_VENDOR_ID_STEELSERIES, USB_DEVICE_ID_STEELSERIES_SRWS1) },
2058 { HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
2059 { HID_USB_DEVICE(USB_VENDOR_ID_THINGM, USB_DEVICE_ID_BLINK1) },
2060 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
2061 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
2062 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
2063 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
2064 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
2065 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
2066 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
2067 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
2068 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_BT) },
2069 { HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE) },
2070 { HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_PRO) },
2071 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
2072 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
2073 { HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
2074 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
2075 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
2076 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
2077 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
2078 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
2079 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_WIRELESS_TABLET_TWHL850) },
2080 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_TWHA60) },
2081 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
2082 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SUPER_JOY_BOX_3) },
2083 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_DUAL_USB_JOYPAD) },
2084 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_3_PRO) },
2085 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_DUAL_BOX_PRO) },
2086 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_5_PRO) },
2087 { HID_USB_DEVICE(USB_VENDOR_ID_PLAYDOTCOM, USB_DEVICE_ID_PLAYDOTCOM_EMS_USBII) },
2088 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
2089 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
2090 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_Q_PAD) },
2091 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_PID_0038) },
2092 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
2093 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
2094 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SIRIUS_BATTERY_FREE_TABLET) },
2095 { HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
2096 { HID_USB_DEVICE(USB_VENDOR_ID_XIN_MO, USB_DEVICE_ID_XIN_MO_DUAL_ARCADE) },
2097 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
2098 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
2099 { HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
2100
2101 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
2102 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
2103 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE2) },
2104 { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14) },
2105 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM6533) },
2106 { }
2107};
2108
2109struct hid_dynid {
2110 struct list_head list;
2111 struct hid_device_id id;
2112};
2113
2114/**
2115 * store_new_id - add a new HID device ID to this driver and re-probe devices
2116 * @driver: target device driver
2117 * @buf: buffer for scanning device ID data
2118 * @count: input size
2119 *
2120 * Adds a new dynamic hid device ID to this driver,
2121 * and causes the driver to probe for all devices again.
2122 */
2123static ssize_t store_new_id(struct device_driver *drv, const char *buf,
2124 size_t count)
2125{
2126 struct hid_driver *hdrv = to_hid_driver(drv);
2127 struct hid_dynid *dynid;
2128 __u32 bus, vendor, product;
2129 unsigned long driver_data = 0;
2130 int ret;
2131
2132 ret = sscanf(buf, "%x %x %x %lx",
2133 &bus, &vendor, &product, &driver_data);
2134 if (ret < 3)
2135 return -EINVAL;
2136
2137 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2138 if (!dynid)
2139 return -ENOMEM;
2140
2141 dynid->id.bus = bus;
2142 dynid->id.group = HID_GROUP_ANY;
2143 dynid->id.vendor = vendor;
2144 dynid->id.product = product;
2145 dynid->id.driver_data = driver_data;
2146
2147 spin_lock(&hdrv->dyn_lock);
2148 list_add_tail(&dynid->list, &hdrv->dyn_list);
2149 spin_unlock(&hdrv->dyn_lock);
2150
2151 ret = driver_attach(&hdrv->driver);
2152
2153 return ret ? : count;
2154}
2155static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
2156
2157static void hid_free_dynids(struct hid_driver *hdrv)
2158{
2159 struct hid_dynid *dynid, *n;
2160
2161 spin_lock(&hdrv->dyn_lock);
2162 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2163 list_del(&dynid->list);
2164 kfree(dynid);
2165 }
2166 spin_unlock(&hdrv->dyn_lock);
2167}
2168
2169static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2170 struct hid_driver *hdrv)
2171{
2172 struct hid_dynid *dynid;
2173
2174 spin_lock(&hdrv->dyn_lock);
2175 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2176 if (hid_match_one_id(hdev, &dynid->id)) {
2177 spin_unlock(&hdrv->dyn_lock);
2178 return &dynid->id;
2179 }
2180 }
2181 spin_unlock(&hdrv->dyn_lock);
2182
2183 return hid_match_id(hdev, hdrv->id_table);
2184}
2185
2186static int hid_bus_match(struct device *dev, struct device_driver *drv)
2187{
2188 struct hid_driver *hdrv = to_hid_driver(drv);
2189 struct hid_device *hdev = to_hid_device(dev);
2190
2191 return hid_match_device(hdev, hdrv) != NULL;
2192}
2193
2194static int hid_device_probe(struct device *dev)
2195{
2196 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2197 struct hid_device *hdev = to_hid_device(dev);
2198 const struct hid_device_id *id;
2199 int ret = 0;
2200
2201 if (down_interruptible(&hdev->driver_lock))
2202 return -EINTR;
2203 if (down_interruptible(&hdev->driver_input_lock)) {
2204 ret = -EINTR;
2205 goto unlock_driver_lock;
2206 }
2207 hdev->io_started = false;
2208
2209 if (!hdev->driver) {
2210 id = hid_match_device(hdev, hdrv);
2211 if (id == NULL) {
2212 ret = -ENODEV;
2213 goto unlock;
2214 }
2215
2216 hdev->driver = hdrv;
2217 if (hdrv->probe) {
2218 ret = hdrv->probe(hdev, id);
2219 } else { /* default probe */
2220 ret = hid_open_report(hdev);
2221 if (!ret)
2222 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2223 }
2224 if (ret) {
2225 hid_close_report(hdev);
2226 hdev->driver = NULL;
2227 }
2228 }
2229unlock:
2230 if (!hdev->io_started)
2231 up(&hdev->driver_input_lock);
2232unlock_driver_lock:
2233 up(&hdev->driver_lock);
2234 return ret;
2235}
2236
2237static int hid_device_remove(struct device *dev)
2238{
2239 struct hid_device *hdev = to_hid_device(dev);
2240 struct hid_driver *hdrv;
2241 int ret = 0;
2242
2243 if (down_interruptible(&hdev->driver_lock))
2244 return -EINTR;
2245 if (down_interruptible(&hdev->driver_input_lock)) {
2246 ret = -EINTR;
2247 goto unlock_driver_lock;
2248 }
2249 hdev->io_started = false;
2250
2251 hdrv = hdev->driver;
2252 if (hdrv) {
2253 if (hdrv->remove)
2254 hdrv->remove(hdev);
2255 else /* default remove */
2256 hid_hw_stop(hdev);
2257 hid_close_report(hdev);
2258 hdev->driver = NULL;
2259 }
2260
2261 if (!hdev->io_started)
2262 up(&hdev->driver_input_lock);
2263unlock_driver_lock:
2264 up(&hdev->driver_lock);
2265 return ret;
2266}
2267
2268static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2269 char *buf)
2270{
2271 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2272
2273 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2274 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2275}
2276static DEVICE_ATTR_RO(modalias);
2277
2278static struct attribute *hid_dev_attrs[] = {
2279 &dev_attr_modalias.attr,
2280 NULL,
2281};
2282static struct bin_attribute *hid_dev_bin_attrs[] = {
2283 &dev_bin_attr_report_desc,
2284 NULL
2285};
2286static const struct attribute_group hid_dev_group = {
2287 .attrs = hid_dev_attrs,
2288 .bin_attrs = hid_dev_bin_attrs,
2289};
2290__ATTRIBUTE_GROUPS(hid_dev);
2291
2292static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2293{
2294 struct hid_device *hdev = to_hid_device(dev);
2295
2296 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2297 hdev->bus, hdev->vendor, hdev->product))
2298 return -ENOMEM;
2299
2300 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2301 return -ENOMEM;
2302
2303 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2304 return -ENOMEM;
2305
2306 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2307 return -ENOMEM;
2308
2309 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2310 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2311 return -ENOMEM;
2312
2313 return 0;
2314}
2315
2316static struct bus_type hid_bus_type = {
2317 .name = "hid",
2318 .dev_groups = hid_dev_groups,
2319 .match = hid_bus_match,
2320 .probe = hid_device_probe,
2321 .remove = hid_device_remove,
2322 .uevent = hid_uevent,
2323};
2324
2325/* a list of devices that shouldn't be handled by HID core at all */
2326static const struct hid_device_id hid_ignore_list[] = {
2327 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
2328 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
2329 { HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
2330 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
2331 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
2332 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
2333 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
2334 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
2335 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
2336 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
2337 { HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
2338 { HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
2339 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
2340 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
2341 { HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
2342 { HID_USB_DEVICE(USB_VENDOR_ID_AXENTIA, USB_DEVICE_ID_AXENTIA_FM_RADIO) },
2343 { HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
2344 { HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
2345 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
2346 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI4713) },
2347 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
2348 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
2349 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
2350 { HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
2351 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
2352 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
2353 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
2354 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x000a) },
2355 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, 0x0400) },
2356 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, 0x0401) },
2357 { HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
2358 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
2359 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
2360 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0001) },
2361 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
2362 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
2363 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
2364 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
2365 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
2366 { HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
2367 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
2368 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
2369 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_RADIOSHARK) },
2370 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
2371 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
2372 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
2373 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
2374 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
2375 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
2376 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
2377 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
2378 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
2379 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
2380 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
2381 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
2382 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
2383 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
2384 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
2385 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
2386 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
2387 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
2388 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
2389 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
2390 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
2391 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
2392 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
2393 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
2394 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
2395 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
2396 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
2397 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
2398 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
2399 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
2400 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
2401 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
2402 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
2403 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
2404 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
2405 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
2406 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
2407 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
2408 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
2409 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
2410 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
2411 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
2412 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
2413 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
2414 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
2415 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
2416 { HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
2417 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_410) },
2418 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_510) },
2419 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_GN9350E) },
2420 { HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
2421 { HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
2422 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
2423 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
2424 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
2425 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
2426 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
2427 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
2428 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
2429 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
2430 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
2431 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
2432 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
2433 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
2434 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
2435 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
2436 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
2437 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
2438 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
2439 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
2440 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
2441 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
2442 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
2443 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
2444 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
2445 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
2446 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
2447 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
2448 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
2449 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
2450 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
2451 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
2452 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
2453 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
2454 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
2455 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
2456 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_BEATPAD) },
2457 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
2458 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
2459 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
2460 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
2461 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICK16F1454) },
2462 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICK16F1454_V2) },
2463 { HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
2464 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
2465 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
2466 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
2467 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
2468 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
2469 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
2470 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
2471 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
2472 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
2473 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
2474 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
2475 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
2476 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
2477 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
2478 { HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
2479 { HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
2480#if defined(CONFIG_MOUSE_SYNAPTICS_USB) || defined(CONFIG_MOUSE_SYNAPTICS_USB_MODULE)
2481 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_TP) },
2482 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_INT_TP) },
2483 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_CPAD) },
2484 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_STICK) },
2485 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WP) },
2486 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_COMP_TP) },
2487 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WTP) },
2488 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_DPAD) },
2489#endif
2490 { HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
2491 { HID_USB_DEVICE(USB_VENDOR_ID_RISO_KAGAKU, USB_DEVICE_ID_RI_KA_WEBMAIL) },
2492 { }
2493};
2494
2495/**
2496 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
2497 *
2498 * There are composite devices for which we want to ignore only a certain
2499 * interface. This is a list of devices for which only the mouse interface will
2500 * be ignored. This allows a dedicated driver to take care of the interface.
2501 */
2502static const struct hid_device_id hid_mouse_ignore_list[] = {
2503 /* appletouch driver */
2504 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
2505 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
2506 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
2507 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
2508 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
2509 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
2510 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
2511 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
2512 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
2513 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
2514 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
2515 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
2516 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
2517 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
2518 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
2519 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
2520 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
2521 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
2522 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
2523 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
2524 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
2525 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
2526 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
2527 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
2528 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
2529 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
2530 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
2531 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
2532 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
2533 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
2534 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
2535 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
2536 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
2537 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
2538 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
2539 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
2540 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
2541 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
2542 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
2543 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
2544 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
2545 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
2546 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
2547 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
2548 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
2549 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
2550 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
2551 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
2552 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
2553 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
2554 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ANSI) },
2555 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ISO) },
2556 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_JIS) },
2557 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
2558 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
2559 { }
2560};
2561
2562bool hid_ignore(struct hid_device *hdev)
2563{
2564 if (hdev->quirks & HID_QUIRK_NO_IGNORE)
2565 return false;
2566 if (hdev->quirks & HID_QUIRK_IGNORE)
2567 return true;
2568
2569 switch (hdev->vendor) {
2570 case USB_VENDOR_ID_CODEMERCS:
2571 /* ignore all Code Mercenaries IOWarrior devices */
2572 if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
2573 hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
2574 return true;
2575 break;
2576 case USB_VENDOR_ID_LOGITECH:
2577 if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
2578 hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
2579 return true;
2580 /*
2581 * The Keene FM transmitter USB device has the same USB ID as
2582 * the Logitech AudioHub Speaker, but it should ignore the hid.
2583 * Check if the name is that of the Keene device.
2584 * For reference: the name of the AudioHub is
2585 * "HOLTEK AudioHub Speaker".
2586 */
2587 if (hdev->product == USB_DEVICE_ID_LOGITECH_AUDIOHUB &&
2588 !strcmp(hdev->name, "HOLTEK B-LINK USB Audio "))
2589 return true;
2590 break;
2591 case USB_VENDOR_ID_SOUNDGRAPH:
2592 if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
2593 hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
2594 return true;
2595 break;
2596 case USB_VENDOR_ID_HANWANG:
2597 if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
2598 hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
2599 return true;
2600 break;
2601 case USB_VENDOR_ID_JESS:
2602 if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
2603 hdev->type == HID_TYPE_USBNONE)
2604 return true;
2605 break;
2606 case USB_VENDOR_ID_VELLEMAN:
2607 /* These are not HID devices. They are handled by comedi. */
2608 if ((hdev->product >= USB_DEVICE_ID_VELLEMAN_K8055_FIRST &&
2609 hdev->product <= USB_DEVICE_ID_VELLEMAN_K8055_LAST) ||
2610 (hdev->product >= USB_DEVICE_ID_VELLEMAN_K8061_FIRST &&
2611 hdev->product <= USB_DEVICE_ID_VELLEMAN_K8061_LAST))
2612 return true;
2613 break;
2614 case USB_VENDOR_ID_ATMEL_V_USB:
2615 /* Masterkit MA901 usb radio based on Atmel tiny85 chip and
2616 * it has the same USB ID as many Atmel V-USB devices. This
2617 * usb radio is handled by radio-ma901.c driver so we want
2618 * ignore the hid. Check the name, bus, product and ignore
2619 * if we have MA901 usb radio.
2620 */
2621 if (hdev->product == USB_DEVICE_ID_ATMEL_V_USB &&
2622 hdev->bus == BUS_USB &&
2623 strncmp(hdev->name, "www.masterkit.ru MA901", 22) == 0)
2624 return true;
2625 break;
2626 }
2627
2628 if (hdev->type == HID_TYPE_USBMOUSE &&
2629 hid_match_id(hdev, hid_mouse_ignore_list))
2630 return true;
2631
2632 return !!hid_match_id(hdev, hid_ignore_list);
2633}
2634EXPORT_SYMBOL_GPL(hid_ignore);
2635
2636int hid_add_device(struct hid_device *hdev)
2637{
2638 static atomic_t id = ATOMIC_INIT(0);
2639 int ret;
2640
2641 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2642 return -EBUSY;
2643
2644 /* we need to kill them here, otherwise they will stay allocated to
2645 * wait for coming driver */
2646 if (hid_ignore(hdev))
2647 return -ENODEV;
2648
2649 /*
2650 * Check for the mandatory transport channel.
2651 */
2652 if (!hdev->ll_driver->raw_request) {
2653 hid_err(hdev, "transport driver missing .raw_request()\n");
2654 return -EINVAL;
2655 }
2656
2657 /*
2658 * Read the device report descriptor once and use as template
2659 * for the driver-specific modifications.
2660 */
2661 ret = hdev->ll_driver->parse(hdev);
2662 if (ret)
2663 return ret;
2664 if (!hdev->dev_rdesc)
2665 return -ENODEV;
2666
2667 /*
2668 * Scan generic devices for group information
2669 */
2670 if (hid_ignore_special_drivers) {
2671 hdev->group = HID_GROUP_GENERIC;
2672 } else if (!hdev->group &&
2673 !hid_match_id(hdev, hid_have_special_driver)) {
2674 ret = hid_scan_report(hdev);
2675 if (ret)
2676 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2677 }
2678
2679 /* XXX hack, any other cleaner solution after the driver core
2680 * is converted to allow more than 20 bytes as the device name? */
2681 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2682 hdev->vendor, hdev->product, atomic_inc_return(&id));
2683
2684 hid_debug_register(hdev, dev_name(&hdev->dev));
2685 ret = device_add(&hdev->dev);
2686 if (!ret)
2687 hdev->status |= HID_STAT_ADDED;
2688 else
2689 hid_debug_unregister(hdev);
2690
2691 return ret;
2692}
2693EXPORT_SYMBOL_GPL(hid_add_device);
2694
2695/**
2696 * hid_allocate_device - allocate new hid device descriptor
2697 *
2698 * Allocate and initialize hid device, so that hid_destroy_device might be
2699 * used to free it.
2700 *
2701 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2702 * error value.
2703 */
2704struct hid_device *hid_allocate_device(void)
2705{
2706 struct hid_device *hdev;
2707 int ret = -ENOMEM;
2708
2709 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2710 if (hdev == NULL)
2711 return ERR_PTR(ret);
2712
2713 device_initialize(&hdev->dev);
2714 hdev->dev.release = hid_device_release;
2715 hdev->dev.bus = &hid_bus_type;
2716 device_enable_async_suspend(&hdev->dev);
2717
2718 hid_close_report(hdev);
2719
2720 init_waitqueue_head(&hdev->debug_wait);
2721 INIT_LIST_HEAD(&hdev->debug_list);
2722 spin_lock_init(&hdev->debug_list_lock);
2723 sema_init(&hdev->driver_lock, 1);
2724 sema_init(&hdev->driver_input_lock, 1);
2725
2726 return hdev;
2727}
2728EXPORT_SYMBOL_GPL(hid_allocate_device);
2729
2730static void hid_remove_device(struct hid_device *hdev)
2731{
2732 if (hdev->status & HID_STAT_ADDED) {
2733 device_del(&hdev->dev);
2734 hid_debug_unregister(hdev);
2735 hdev->status &= ~HID_STAT_ADDED;
2736 }
2737 kfree(hdev->dev_rdesc);
2738 hdev->dev_rdesc = NULL;
2739 hdev->dev_rsize = 0;
2740}
2741
2742/**
2743 * hid_destroy_device - free previously allocated device
2744 *
2745 * @hdev: hid device
2746 *
2747 * If you allocate hid_device through hid_allocate_device, you should ever
2748 * free by this function.
2749 */
2750void hid_destroy_device(struct hid_device *hdev)
2751{
2752 hid_remove_device(hdev);
2753 put_device(&hdev->dev);
2754}
2755EXPORT_SYMBOL_GPL(hid_destroy_device);
2756
2757int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2758 const char *mod_name)
2759{
2760 int ret;
2761
2762 hdrv->driver.name = hdrv->name;
2763 hdrv->driver.bus = &hid_bus_type;
2764 hdrv->driver.owner = owner;
2765 hdrv->driver.mod_name = mod_name;
2766
2767 INIT_LIST_HEAD(&hdrv->dyn_list);
2768 spin_lock_init(&hdrv->dyn_lock);
2769
2770 ret = driver_register(&hdrv->driver);
2771 if (ret)
2772 return ret;
2773
2774 ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2775 if (ret)
2776 driver_unregister(&hdrv->driver);
2777
2778 return ret;
2779}
2780EXPORT_SYMBOL_GPL(__hid_register_driver);
2781
2782void hid_unregister_driver(struct hid_driver *hdrv)
2783{
2784 driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2785 driver_unregister(&hdrv->driver);
2786 hid_free_dynids(hdrv);
2787}
2788EXPORT_SYMBOL_GPL(hid_unregister_driver);
2789
2790int hid_check_keys_pressed(struct hid_device *hid)
2791{
2792 struct hid_input *hidinput;
2793 int i;
2794
2795 if (!(hid->claimed & HID_CLAIMED_INPUT))
2796 return 0;
2797
2798 list_for_each_entry(hidinput, &hid->inputs, list) {
2799 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2800 if (hidinput->input->key[i])
2801 return 1;
2802 }
2803
2804 return 0;
2805}
2806
2807EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2808
2809static int __init hid_init(void)
2810{
2811 int ret;
2812
2813 if (hid_debug)
2814 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2815 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2816
2817 ret = bus_register(&hid_bus_type);
2818 if (ret) {
2819 pr_err("can't register hid bus\n");
2820 goto err;
2821 }
2822
2823 ret = hidraw_init();
2824 if (ret)
2825 goto err_bus;
2826
2827 hid_debug_init();
2828
2829 return 0;
2830err_bus:
2831 bus_unregister(&hid_bus_type);
2832err:
2833 return ret;
2834}
2835
2836static void __exit hid_exit(void)
2837{
2838 hid_debug_exit();
2839 hidraw_exit();
2840 bus_unregister(&hid_bus_type);
2841}
2842
2843module_init(hid_init);
2844module_exit(hid_exit);
2845
2846MODULE_AUTHOR("Andreas Gal");
2847MODULE_AUTHOR("Vojtech Pavlik");
2848MODULE_AUTHOR("Jiri Kosina");
2849MODULE_LICENSE(DRIVER_LICENSE);
2850
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <asm/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44static int hid_ignore_special_drivers = 0;
45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48/*
49 * Register a new report for a device.
50 */
51
52struct hid_report *hid_register_report(struct hid_device *device,
53 enum hid_report_type type, unsigned int id,
54 unsigned int application)
55{
56 struct hid_report_enum *report_enum = device->report_enum + type;
57 struct hid_report *report;
58
59 if (id >= HID_MAX_IDS)
60 return NULL;
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
63
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 if (!report)
66 return NULL;
67
68 if (id != 0)
69 report_enum->numbered = 1;
70
71 report->id = id;
72 report->type = type;
73 report->size = 0;
74 report->device = device;
75 report->application = application;
76 report_enum->report_id_hash[id] = report;
77
78 list_add_tail(&report->list, &report_enum->report_list);
79 INIT_LIST_HEAD(&report->field_entry_list);
80
81 return report;
82}
83EXPORT_SYMBOL_GPL(hid_register_report);
84
85/*
86 * Register a new field for this report.
87 */
88
89static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90{
91 struct hid_field *field;
92
93 if (report->maxfield == HID_MAX_FIELDS) {
94 hid_err(report->device, "too many fields in report\n");
95 return NULL;
96 }
97
98 field = kzalloc((sizeof(struct hid_field) +
99 usages * sizeof(struct hid_usage) +
100 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 if (!field)
102 return NULL;
103
104 field->index = report->maxfield++;
105 report->field[field->index] = field;
106 field->usage = (struct hid_usage *)(field + 1);
107 field->value = (s32 *)(field->usage + usages);
108 field->new_value = (s32 *)(field->value + usages);
109 field->usages_priorities = (s32 *)(field->new_value + usages);
110 field->report = report;
111
112 return field;
113}
114
115/*
116 * Open a collection. The type/usage is pushed on the stack.
117 */
118
119static int open_collection(struct hid_parser *parser, unsigned type)
120{
121 struct hid_collection *collection;
122 unsigned usage;
123 int collection_index;
124
125 usage = parser->local.usage[0];
126
127 if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 unsigned int *collection_stack;
129 unsigned int new_size = parser->collection_stack_size +
130 HID_COLLECTION_STACK_SIZE;
131
132 collection_stack = krealloc(parser->collection_stack,
133 new_size * sizeof(unsigned int),
134 GFP_KERNEL);
135 if (!collection_stack)
136 return -ENOMEM;
137
138 parser->collection_stack = collection_stack;
139 parser->collection_stack_size = new_size;
140 }
141
142 if (parser->device->maxcollection == parser->device->collection_size) {
143 collection = kmalloc(
144 array3_size(sizeof(struct hid_collection),
145 parser->device->collection_size,
146 2),
147 GFP_KERNEL);
148 if (collection == NULL) {
149 hid_err(parser->device, "failed to reallocate collection array\n");
150 return -ENOMEM;
151 }
152 memcpy(collection, parser->device->collection,
153 sizeof(struct hid_collection) *
154 parser->device->collection_size);
155 memset(collection + parser->device->collection_size, 0,
156 sizeof(struct hid_collection) *
157 parser->device->collection_size);
158 kfree(parser->device->collection);
159 parser->device->collection = collection;
160 parser->device->collection_size *= 2;
161 }
162
163 parser->collection_stack[parser->collection_stack_ptr++] =
164 parser->device->maxcollection;
165
166 collection_index = parser->device->maxcollection++;
167 collection = parser->device->collection + collection_index;
168 collection->type = type;
169 collection->usage = usage;
170 collection->level = parser->collection_stack_ptr - 1;
171 collection->parent_idx = (collection->level == 0) ? -1 :
172 parser->collection_stack[collection->level - 1];
173
174 if (type == HID_COLLECTION_APPLICATION)
175 parser->device->maxapplication++;
176
177 return 0;
178}
179
180/*
181 * Close a collection.
182 */
183
184static int close_collection(struct hid_parser *parser)
185{
186 if (!parser->collection_stack_ptr) {
187 hid_err(parser->device, "collection stack underflow\n");
188 return -EINVAL;
189 }
190 parser->collection_stack_ptr--;
191 return 0;
192}
193
194/*
195 * Climb up the stack, search for the specified collection type
196 * and return the usage.
197 */
198
199static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200{
201 struct hid_collection *collection = parser->device->collection;
202 int n;
203
204 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 unsigned index = parser->collection_stack[n];
206 if (collection[index].type == type)
207 return collection[index].usage;
208 }
209 return 0; /* we know nothing about this usage type */
210}
211
212/*
213 * Concatenate usage which defines 16 bits or less with the
214 * currently defined usage page to form a 32 bit usage
215 */
216
217static void complete_usage(struct hid_parser *parser, unsigned int index)
218{
219 parser->local.usage[index] &= 0xFFFF;
220 parser->local.usage[index] |=
221 (parser->global.usage_page & 0xFFFF) << 16;
222}
223
224/*
225 * Add a usage to the temporary parser table.
226 */
227
228static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229{
230 if (parser->local.usage_index >= HID_MAX_USAGES) {
231 hid_err(parser->device, "usage index exceeded\n");
232 return -1;
233 }
234 parser->local.usage[parser->local.usage_index] = usage;
235
236 /*
237 * If Usage item only includes usage id, concatenate it with
238 * currently defined usage page
239 */
240 if (size <= 2)
241 complete_usage(parser, parser->local.usage_index);
242
243 parser->local.usage_size[parser->local.usage_index] = size;
244 parser->local.collection_index[parser->local.usage_index] =
245 parser->collection_stack_ptr ?
246 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 parser->local.usage_index++;
248 return 0;
249}
250
251/*
252 * Register a new field for this report.
253 */
254
255static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256{
257 struct hid_report *report;
258 struct hid_field *field;
259 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260 unsigned int usages;
261 unsigned int offset;
262 unsigned int i;
263 unsigned int application;
264
265 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
266
267 report = hid_register_report(parser->device, report_type,
268 parser->global.report_id, application);
269 if (!report) {
270 hid_err(parser->device, "hid_register_report failed\n");
271 return -1;
272 }
273
274 /* Handle both signed and unsigned cases properly */
275 if ((parser->global.logical_minimum < 0 &&
276 parser->global.logical_maximum <
277 parser->global.logical_minimum) ||
278 (parser->global.logical_minimum >= 0 &&
279 (__u32)parser->global.logical_maximum <
280 (__u32)parser->global.logical_minimum)) {
281 dbg_hid("logical range invalid 0x%x 0x%x\n",
282 parser->global.logical_minimum,
283 parser->global.logical_maximum);
284 return -1;
285 }
286
287 offset = report->size;
288 report->size += parser->global.report_size * parser->global.report_count;
289
290 if (parser->device->ll_driver->max_buffer_size)
291 max_buffer_size = parser->device->ll_driver->max_buffer_size;
292
293 /* Total size check: Allow for possible report index byte */
294 if (report->size > (max_buffer_size - 1) << 3) {
295 hid_err(parser->device, "report is too long\n");
296 return -1;
297 }
298
299 if (!parser->local.usage_index) /* Ignore padding fields */
300 return 0;
301
302 usages = max_t(unsigned, parser->local.usage_index,
303 parser->global.report_count);
304
305 field = hid_register_field(report, usages);
306 if (!field)
307 return 0;
308
309 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311 field->application = application;
312
313 for (i = 0; i < usages; i++) {
314 unsigned j = i;
315 /* Duplicate the last usage we parsed if we have excess values */
316 if (i >= parser->local.usage_index)
317 j = parser->local.usage_index - 1;
318 field->usage[i].hid = parser->local.usage[j];
319 field->usage[i].collection_index =
320 parser->local.collection_index[j];
321 field->usage[i].usage_index = i;
322 field->usage[i].resolution_multiplier = 1;
323 }
324
325 field->maxusage = usages;
326 field->flags = flags;
327 field->report_offset = offset;
328 field->report_type = report_type;
329 field->report_size = parser->global.report_size;
330 field->report_count = parser->global.report_count;
331 field->logical_minimum = parser->global.logical_minimum;
332 field->logical_maximum = parser->global.logical_maximum;
333 field->physical_minimum = parser->global.physical_minimum;
334 field->physical_maximum = parser->global.physical_maximum;
335 field->unit_exponent = parser->global.unit_exponent;
336 field->unit = parser->global.unit;
337
338 return 0;
339}
340
341/*
342 * Read data value from item.
343 */
344
345static u32 item_udata(struct hid_item *item)
346{
347 switch (item->size) {
348 case 1: return item->data.u8;
349 case 2: return item->data.u16;
350 case 4: return item->data.u32;
351 }
352 return 0;
353}
354
355static s32 item_sdata(struct hid_item *item)
356{
357 switch (item->size) {
358 case 1: return item->data.s8;
359 case 2: return item->data.s16;
360 case 4: return item->data.s32;
361 }
362 return 0;
363}
364
365/*
366 * Process a global item.
367 */
368
369static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
370{
371 __s32 raw_value;
372 switch (item->tag) {
373 case HID_GLOBAL_ITEM_TAG_PUSH:
374
375 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376 hid_err(parser->device, "global environment stack overflow\n");
377 return -1;
378 }
379
380 memcpy(parser->global_stack + parser->global_stack_ptr++,
381 &parser->global, sizeof(struct hid_global));
382 return 0;
383
384 case HID_GLOBAL_ITEM_TAG_POP:
385
386 if (!parser->global_stack_ptr) {
387 hid_err(parser->device, "global environment stack underflow\n");
388 return -1;
389 }
390
391 memcpy(&parser->global, parser->global_stack +
392 --parser->global_stack_ptr, sizeof(struct hid_global));
393 return 0;
394
395 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396 parser->global.usage_page = item_udata(item);
397 return 0;
398
399 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400 parser->global.logical_minimum = item_sdata(item);
401 return 0;
402
403 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404 if (parser->global.logical_minimum < 0)
405 parser->global.logical_maximum = item_sdata(item);
406 else
407 parser->global.logical_maximum = item_udata(item);
408 return 0;
409
410 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411 parser->global.physical_minimum = item_sdata(item);
412 return 0;
413
414 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415 if (parser->global.physical_minimum < 0)
416 parser->global.physical_maximum = item_sdata(item);
417 else
418 parser->global.physical_maximum = item_udata(item);
419 return 0;
420
421 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422 /* Many devices provide unit exponent as a two's complement
423 * nibble due to the common misunderstanding of HID
424 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425 * both this and the standard encoding. */
426 raw_value = item_sdata(item);
427 if (!(raw_value & 0xfffffff0))
428 parser->global.unit_exponent = hid_snto32(raw_value, 4);
429 else
430 parser->global.unit_exponent = raw_value;
431 return 0;
432
433 case HID_GLOBAL_ITEM_TAG_UNIT:
434 parser->global.unit = item_udata(item);
435 return 0;
436
437 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438 parser->global.report_size = item_udata(item);
439 if (parser->global.report_size > 256) {
440 hid_err(parser->device, "invalid report_size %d\n",
441 parser->global.report_size);
442 return -1;
443 }
444 return 0;
445
446 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447 parser->global.report_count = item_udata(item);
448 if (parser->global.report_count > HID_MAX_USAGES) {
449 hid_err(parser->device, "invalid report_count %d\n",
450 parser->global.report_count);
451 return -1;
452 }
453 return 0;
454
455 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456 parser->global.report_id = item_udata(item);
457 if (parser->global.report_id == 0 ||
458 parser->global.report_id >= HID_MAX_IDS) {
459 hid_err(parser->device, "report_id %u is invalid\n",
460 parser->global.report_id);
461 return -1;
462 }
463 return 0;
464
465 default:
466 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467 return -1;
468 }
469}
470
471/*
472 * Process a local item.
473 */
474
475static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
476{
477 __u32 data;
478 unsigned n;
479 __u32 count;
480
481 data = item_udata(item);
482
483 switch (item->tag) {
484 case HID_LOCAL_ITEM_TAG_DELIMITER:
485
486 if (data) {
487 /*
488 * We treat items before the first delimiter
489 * as global to all usage sets (branch 0).
490 * In the moment we process only these global
491 * items and the first delimiter set.
492 */
493 if (parser->local.delimiter_depth != 0) {
494 hid_err(parser->device, "nested delimiters\n");
495 return -1;
496 }
497 parser->local.delimiter_depth++;
498 parser->local.delimiter_branch++;
499 } else {
500 if (parser->local.delimiter_depth < 1) {
501 hid_err(parser->device, "bogus close delimiter\n");
502 return -1;
503 }
504 parser->local.delimiter_depth--;
505 }
506 return 0;
507
508 case HID_LOCAL_ITEM_TAG_USAGE:
509
510 if (parser->local.delimiter_branch > 1) {
511 dbg_hid("alternative usage ignored\n");
512 return 0;
513 }
514
515 return hid_add_usage(parser, data, item->size);
516
517 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
518
519 if (parser->local.delimiter_branch > 1) {
520 dbg_hid("alternative usage ignored\n");
521 return 0;
522 }
523
524 parser->local.usage_minimum = data;
525 return 0;
526
527 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
528
529 if (parser->local.delimiter_branch > 1) {
530 dbg_hid("alternative usage ignored\n");
531 return 0;
532 }
533
534 count = data - parser->local.usage_minimum;
535 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
536 /*
537 * We do not warn if the name is not set, we are
538 * actually pre-scanning the device.
539 */
540 if (dev_name(&parser->device->dev))
541 hid_warn(parser->device,
542 "ignoring exceeding usage max\n");
543 data = HID_MAX_USAGES - parser->local.usage_index +
544 parser->local.usage_minimum - 1;
545 if (data <= 0) {
546 hid_err(parser->device,
547 "no more usage index available\n");
548 return -1;
549 }
550 }
551
552 for (n = parser->local.usage_minimum; n <= data; n++)
553 if (hid_add_usage(parser, n, item->size)) {
554 dbg_hid("hid_add_usage failed\n");
555 return -1;
556 }
557 return 0;
558
559 default:
560
561 dbg_hid("unknown local item tag 0x%x\n", item->tag);
562 return 0;
563 }
564 return 0;
565}
566
567/*
568 * Concatenate Usage Pages into Usages where relevant:
569 * As per specification, 6.2.2.8: "When the parser encounters a main item it
570 * concatenates the last declared Usage Page with a Usage to form a complete
571 * usage value."
572 */
573
574static void hid_concatenate_last_usage_page(struct hid_parser *parser)
575{
576 int i;
577 unsigned int usage_page;
578 unsigned int current_page;
579
580 if (!parser->local.usage_index)
581 return;
582
583 usage_page = parser->global.usage_page;
584
585 /*
586 * Concatenate usage page again only if last declared Usage Page
587 * has not been already used in previous usages concatenation
588 */
589 for (i = parser->local.usage_index - 1; i >= 0; i--) {
590 if (parser->local.usage_size[i] > 2)
591 /* Ignore extended usages */
592 continue;
593
594 current_page = parser->local.usage[i] >> 16;
595 if (current_page == usage_page)
596 break;
597
598 complete_usage(parser, i);
599 }
600}
601
602/*
603 * Process a main item.
604 */
605
606static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
607{
608 __u32 data;
609 int ret;
610
611 hid_concatenate_last_usage_page(parser);
612
613 data = item_udata(item);
614
615 switch (item->tag) {
616 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617 ret = open_collection(parser, data & 0xff);
618 break;
619 case HID_MAIN_ITEM_TAG_END_COLLECTION:
620 ret = close_collection(parser);
621 break;
622 case HID_MAIN_ITEM_TAG_INPUT:
623 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624 break;
625 case HID_MAIN_ITEM_TAG_OUTPUT:
626 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627 break;
628 case HID_MAIN_ITEM_TAG_FEATURE:
629 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630 break;
631 default:
632 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633 ret = 0;
634 }
635
636 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
637
638 return ret;
639}
640
641/*
642 * Process a reserved item.
643 */
644
645static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
646{
647 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648 return 0;
649}
650
651/*
652 * Free a report and all registered fields. The field->usage and
653 * field->value table's are allocated behind the field, so we need
654 * only to free(field) itself.
655 */
656
657static void hid_free_report(struct hid_report *report)
658{
659 unsigned n;
660
661 kfree(report->field_entries);
662
663 for (n = 0; n < report->maxfield; n++)
664 kfree(report->field[n]);
665 kfree(report);
666}
667
668/*
669 * Close report. This function returns the device
670 * state to the point prior to hid_open_report().
671 */
672static void hid_close_report(struct hid_device *device)
673{
674 unsigned i, j;
675
676 for (i = 0; i < HID_REPORT_TYPES; i++) {
677 struct hid_report_enum *report_enum = device->report_enum + i;
678
679 for (j = 0; j < HID_MAX_IDS; j++) {
680 struct hid_report *report = report_enum->report_id_hash[j];
681 if (report)
682 hid_free_report(report);
683 }
684 memset(report_enum, 0, sizeof(*report_enum));
685 INIT_LIST_HEAD(&report_enum->report_list);
686 }
687
688 kfree(device->rdesc);
689 device->rdesc = NULL;
690 device->rsize = 0;
691
692 kfree(device->collection);
693 device->collection = NULL;
694 device->collection_size = 0;
695 device->maxcollection = 0;
696 device->maxapplication = 0;
697
698 device->status &= ~HID_STAT_PARSED;
699}
700
701/*
702 * Free a device structure, all reports, and all fields.
703 */
704
705void hiddev_free(struct kref *ref)
706{
707 struct hid_device *hid = container_of(ref, struct hid_device, ref);
708
709 hid_close_report(hid);
710 kfree(hid->dev_rdesc);
711 kfree(hid);
712}
713
714static void hid_device_release(struct device *dev)
715{
716 struct hid_device *hid = to_hid_device(dev);
717
718 kref_put(&hid->ref, hiddev_free);
719}
720
721/*
722 * Fetch a report description item from the data stream. We support long
723 * items, though they are not used yet.
724 */
725
726static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
727{
728 u8 b;
729
730 if ((end - start) <= 0)
731 return NULL;
732
733 b = *start++;
734
735 item->type = (b >> 2) & 3;
736 item->tag = (b >> 4) & 15;
737
738 if (item->tag == HID_ITEM_TAG_LONG) {
739
740 item->format = HID_ITEM_FORMAT_LONG;
741
742 if ((end - start) < 2)
743 return NULL;
744
745 item->size = *start++;
746 item->tag = *start++;
747
748 if ((end - start) < item->size)
749 return NULL;
750
751 item->data.longdata = start;
752 start += item->size;
753 return start;
754 }
755
756 item->format = HID_ITEM_FORMAT_SHORT;
757 item->size = b & 3;
758
759 switch (item->size) {
760 case 0:
761 return start;
762
763 case 1:
764 if ((end - start) < 1)
765 return NULL;
766 item->data.u8 = *start++;
767 return start;
768
769 case 2:
770 if ((end - start) < 2)
771 return NULL;
772 item->data.u16 = get_unaligned_le16(start);
773 start = (__u8 *)((__le16 *)start + 1);
774 return start;
775
776 case 3:
777 item->size++;
778 if ((end - start) < 4)
779 return NULL;
780 item->data.u32 = get_unaligned_le32(start);
781 start = (__u8 *)((__le32 *)start + 1);
782 return start;
783 }
784
785 return NULL;
786}
787
788static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
789{
790 struct hid_device *hid = parser->device;
791
792 if (usage == HID_DG_CONTACTID)
793 hid->group = HID_GROUP_MULTITOUCH;
794}
795
796static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
797{
798 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
799 parser->global.report_size == 8)
800 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
801
802 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
803 parser->global.report_size == 8)
804 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
805}
806
807static void hid_scan_collection(struct hid_parser *parser, unsigned type)
808{
809 struct hid_device *hid = parser->device;
810 int i;
811
812 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
813 (type == HID_COLLECTION_PHYSICAL ||
814 type == HID_COLLECTION_APPLICATION))
815 hid->group = HID_GROUP_SENSOR_HUB;
816
817 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
818 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
819 hid->group == HID_GROUP_MULTITOUCH)
820 hid->group = HID_GROUP_GENERIC;
821
822 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
823 for (i = 0; i < parser->local.usage_index; i++)
824 if (parser->local.usage[i] == HID_GD_POINTER)
825 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
826
827 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
828 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
829
830 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
831 for (i = 0; i < parser->local.usage_index; i++)
832 if (parser->local.usage[i] ==
833 (HID_UP_GOOGLEVENDOR | 0x0001))
834 parser->device->group =
835 HID_GROUP_VIVALDI;
836}
837
838static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
839{
840 __u32 data;
841 int i;
842
843 hid_concatenate_last_usage_page(parser);
844
845 data = item_udata(item);
846
847 switch (item->tag) {
848 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
849 hid_scan_collection(parser, data & 0xff);
850 break;
851 case HID_MAIN_ITEM_TAG_END_COLLECTION:
852 break;
853 case HID_MAIN_ITEM_TAG_INPUT:
854 /* ignore constant inputs, they will be ignored by hid-input */
855 if (data & HID_MAIN_ITEM_CONSTANT)
856 break;
857 for (i = 0; i < parser->local.usage_index; i++)
858 hid_scan_input_usage(parser, parser->local.usage[i]);
859 break;
860 case HID_MAIN_ITEM_TAG_OUTPUT:
861 break;
862 case HID_MAIN_ITEM_TAG_FEATURE:
863 for (i = 0; i < parser->local.usage_index; i++)
864 hid_scan_feature_usage(parser, parser->local.usage[i]);
865 break;
866 }
867
868 /* Reset the local parser environment */
869 memset(&parser->local, 0, sizeof(parser->local));
870
871 return 0;
872}
873
874/*
875 * Scan a report descriptor before the device is added to the bus.
876 * Sets device groups and other properties that determine what driver
877 * to load.
878 */
879static int hid_scan_report(struct hid_device *hid)
880{
881 struct hid_parser *parser;
882 struct hid_item item;
883 __u8 *start = hid->dev_rdesc;
884 __u8 *end = start + hid->dev_rsize;
885 static int (*dispatch_type[])(struct hid_parser *parser,
886 struct hid_item *item) = {
887 hid_scan_main,
888 hid_parser_global,
889 hid_parser_local,
890 hid_parser_reserved
891 };
892
893 parser = vzalloc(sizeof(struct hid_parser));
894 if (!parser)
895 return -ENOMEM;
896
897 parser->device = hid;
898 hid->group = HID_GROUP_GENERIC;
899
900 /*
901 * The parsing is simpler than the one in hid_open_report() as we should
902 * be robust against hid errors. Those errors will be raised by
903 * hid_open_report() anyway.
904 */
905 while ((start = fetch_item(start, end, &item)) != NULL)
906 dispatch_type[item.type](parser, &item);
907
908 /*
909 * Handle special flags set during scanning.
910 */
911 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
912 (hid->group == HID_GROUP_MULTITOUCH))
913 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
914
915 /*
916 * Vendor specific handlings
917 */
918 switch (hid->vendor) {
919 case USB_VENDOR_ID_WACOM:
920 hid->group = HID_GROUP_WACOM;
921 break;
922 case USB_VENDOR_ID_SYNAPTICS:
923 if (hid->group == HID_GROUP_GENERIC)
924 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
925 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
926 /*
927 * hid-rmi should take care of them,
928 * not hid-generic
929 */
930 hid->group = HID_GROUP_RMI;
931 break;
932 }
933
934 kfree(parser->collection_stack);
935 vfree(parser);
936 return 0;
937}
938
939/**
940 * hid_parse_report - parse device report
941 *
942 * @hid: hid device
943 * @start: report start
944 * @size: report size
945 *
946 * Allocate the device report as read by the bus driver. This function should
947 * only be called from parse() in ll drivers.
948 */
949int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
950{
951 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
952 if (!hid->dev_rdesc)
953 return -ENOMEM;
954 hid->dev_rsize = size;
955 return 0;
956}
957EXPORT_SYMBOL_GPL(hid_parse_report);
958
959static const char * const hid_report_names[] = {
960 "HID_INPUT_REPORT",
961 "HID_OUTPUT_REPORT",
962 "HID_FEATURE_REPORT",
963};
964/**
965 * hid_validate_values - validate existing device report's value indexes
966 *
967 * @hid: hid device
968 * @type: which report type to examine
969 * @id: which report ID to examine (0 for first)
970 * @field_index: which report field to examine
971 * @report_counts: expected number of values
972 *
973 * Validate the number of values in a given field of a given report, after
974 * parsing.
975 */
976struct hid_report *hid_validate_values(struct hid_device *hid,
977 enum hid_report_type type, unsigned int id,
978 unsigned int field_index,
979 unsigned int report_counts)
980{
981 struct hid_report *report;
982
983 if (type > HID_FEATURE_REPORT) {
984 hid_err(hid, "invalid HID report type %u\n", type);
985 return NULL;
986 }
987
988 if (id >= HID_MAX_IDS) {
989 hid_err(hid, "invalid HID report id %u\n", id);
990 return NULL;
991 }
992
993 /*
994 * Explicitly not using hid_get_report() here since it depends on
995 * ->numbered being checked, which may not always be the case when
996 * drivers go to access report values.
997 */
998 if (id == 0) {
999 /*
1000 * Validating on id 0 means we should examine the first
1001 * report in the list.
1002 */
1003 report = list_first_entry_or_null(
1004 &hid->report_enum[type].report_list,
1005 struct hid_report, list);
1006 } else {
1007 report = hid->report_enum[type].report_id_hash[id];
1008 }
1009 if (!report) {
1010 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1011 return NULL;
1012 }
1013 if (report->maxfield <= field_index) {
1014 hid_err(hid, "not enough fields in %s %u\n",
1015 hid_report_names[type], id);
1016 return NULL;
1017 }
1018 if (report->field[field_index]->report_count < report_counts) {
1019 hid_err(hid, "not enough values in %s %u field %u\n",
1020 hid_report_names[type], id, field_index);
1021 return NULL;
1022 }
1023 return report;
1024}
1025EXPORT_SYMBOL_GPL(hid_validate_values);
1026
1027static int hid_calculate_multiplier(struct hid_device *hid,
1028 struct hid_field *multiplier)
1029{
1030 int m;
1031 __s32 v = *multiplier->value;
1032 __s32 lmin = multiplier->logical_minimum;
1033 __s32 lmax = multiplier->logical_maximum;
1034 __s32 pmin = multiplier->physical_minimum;
1035 __s32 pmax = multiplier->physical_maximum;
1036
1037 /*
1038 * "Because OS implementations will generally divide the control's
1039 * reported count by the Effective Resolution Multiplier, designers
1040 * should take care not to establish a potential Effective
1041 * Resolution Multiplier of zero."
1042 * HID Usage Table, v1.12, Section 4.3.1, p31
1043 */
1044 if (lmax - lmin == 0)
1045 return 1;
1046 /*
1047 * Handling the unit exponent is left as an exercise to whoever
1048 * finds a device where that exponent is not 0.
1049 */
1050 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1051 if (unlikely(multiplier->unit_exponent != 0)) {
1052 hid_warn(hid,
1053 "unsupported Resolution Multiplier unit exponent %d\n",
1054 multiplier->unit_exponent);
1055 }
1056
1057 /* There are no devices with an effective multiplier > 255 */
1058 if (unlikely(m == 0 || m > 255 || m < -255)) {
1059 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1060 m = 1;
1061 }
1062
1063 return m;
1064}
1065
1066static void hid_apply_multiplier_to_field(struct hid_device *hid,
1067 struct hid_field *field,
1068 struct hid_collection *multiplier_collection,
1069 int effective_multiplier)
1070{
1071 struct hid_collection *collection;
1072 struct hid_usage *usage;
1073 int i;
1074
1075 /*
1076 * If multiplier_collection is NULL, the multiplier applies
1077 * to all fields in the report.
1078 * Otherwise, it is the Logical Collection the multiplier applies to
1079 * but our field may be in a subcollection of that collection.
1080 */
1081 for (i = 0; i < field->maxusage; i++) {
1082 usage = &field->usage[i];
1083
1084 collection = &hid->collection[usage->collection_index];
1085 while (collection->parent_idx != -1 &&
1086 collection != multiplier_collection)
1087 collection = &hid->collection[collection->parent_idx];
1088
1089 if (collection->parent_idx != -1 ||
1090 multiplier_collection == NULL)
1091 usage->resolution_multiplier = effective_multiplier;
1092
1093 }
1094}
1095
1096static void hid_apply_multiplier(struct hid_device *hid,
1097 struct hid_field *multiplier)
1098{
1099 struct hid_report_enum *rep_enum;
1100 struct hid_report *rep;
1101 struct hid_field *field;
1102 struct hid_collection *multiplier_collection;
1103 int effective_multiplier;
1104 int i;
1105
1106 /*
1107 * "The Resolution Multiplier control must be contained in the same
1108 * Logical Collection as the control(s) to which it is to be applied.
1109 * If no Resolution Multiplier is defined, then the Resolution
1110 * Multiplier defaults to 1. If more than one control exists in a
1111 * Logical Collection, the Resolution Multiplier is associated with
1112 * all controls in the collection. If no Logical Collection is
1113 * defined, the Resolution Multiplier is associated with all
1114 * controls in the report."
1115 * HID Usage Table, v1.12, Section 4.3.1, p30
1116 *
1117 * Thus, search from the current collection upwards until we find a
1118 * logical collection. Then search all fields for that same parent
1119 * collection. Those are the fields the multiplier applies to.
1120 *
1121 * If we have more than one multiplier, it will overwrite the
1122 * applicable fields later.
1123 */
1124 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1125 while (multiplier_collection->parent_idx != -1 &&
1126 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1127 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1128
1129 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1130
1131 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1132 list_for_each_entry(rep, &rep_enum->report_list, list) {
1133 for (i = 0; i < rep->maxfield; i++) {
1134 field = rep->field[i];
1135 hid_apply_multiplier_to_field(hid, field,
1136 multiplier_collection,
1137 effective_multiplier);
1138 }
1139 }
1140}
1141
1142/*
1143 * hid_setup_resolution_multiplier - set up all resolution multipliers
1144 *
1145 * @device: hid device
1146 *
1147 * Search for all Resolution Multiplier Feature Reports and apply their
1148 * value to all matching Input items. This only updates the internal struct
1149 * fields.
1150 *
1151 * The Resolution Multiplier is applied by the hardware. If the multiplier
1152 * is anything other than 1, the hardware will send pre-multiplied events
1153 * so that the same physical interaction generates an accumulated
1154 * accumulated_value = value * * multiplier
1155 * This may be achieved by sending
1156 * - "value * multiplier" for each event, or
1157 * - "value" but "multiplier" times as frequently, or
1158 * - a combination of the above
1159 * The only guarantee is that the same physical interaction always generates
1160 * an accumulated 'value * multiplier'.
1161 *
1162 * This function must be called before any event processing and after
1163 * any SetRequest to the Resolution Multiplier.
1164 */
1165void hid_setup_resolution_multiplier(struct hid_device *hid)
1166{
1167 struct hid_report_enum *rep_enum;
1168 struct hid_report *rep;
1169 struct hid_usage *usage;
1170 int i, j;
1171
1172 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1173 list_for_each_entry(rep, &rep_enum->report_list, list) {
1174 for (i = 0; i < rep->maxfield; i++) {
1175 /* Ignore if report count is out of bounds. */
1176 if (rep->field[i]->report_count < 1)
1177 continue;
1178
1179 for (j = 0; j < rep->field[i]->maxusage; j++) {
1180 usage = &rep->field[i]->usage[j];
1181 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1182 hid_apply_multiplier(hid,
1183 rep->field[i]);
1184 }
1185 }
1186 }
1187}
1188EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1189
1190/**
1191 * hid_open_report - open a driver-specific device report
1192 *
1193 * @device: hid device
1194 *
1195 * Parse a report description into a hid_device structure. Reports are
1196 * enumerated, fields are attached to these reports.
1197 * 0 returned on success, otherwise nonzero error value.
1198 *
1199 * This function (or the equivalent hid_parse() macro) should only be
1200 * called from probe() in drivers, before starting the device.
1201 */
1202int hid_open_report(struct hid_device *device)
1203{
1204 struct hid_parser *parser;
1205 struct hid_item item;
1206 unsigned int size;
1207 __u8 *start;
1208 __u8 *buf;
1209 __u8 *end;
1210 __u8 *next;
1211 int ret;
1212 int i;
1213 static int (*dispatch_type[])(struct hid_parser *parser,
1214 struct hid_item *item) = {
1215 hid_parser_main,
1216 hid_parser_global,
1217 hid_parser_local,
1218 hid_parser_reserved
1219 };
1220
1221 if (WARN_ON(device->status & HID_STAT_PARSED))
1222 return -EBUSY;
1223
1224 start = device->dev_rdesc;
1225 if (WARN_ON(!start))
1226 return -ENODEV;
1227 size = device->dev_rsize;
1228
1229 /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1230 buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1231 if (buf == NULL)
1232 return -ENOMEM;
1233
1234 if (device->driver->report_fixup)
1235 start = device->driver->report_fixup(device, buf, &size);
1236 else
1237 start = buf;
1238
1239 start = kmemdup(start, size, GFP_KERNEL);
1240 kfree(buf);
1241 if (start == NULL)
1242 return -ENOMEM;
1243
1244 device->rdesc = start;
1245 device->rsize = size;
1246
1247 parser = vzalloc(sizeof(struct hid_parser));
1248 if (!parser) {
1249 ret = -ENOMEM;
1250 goto alloc_err;
1251 }
1252
1253 parser->device = device;
1254
1255 end = start + size;
1256
1257 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1258 sizeof(struct hid_collection), GFP_KERNEL);
1259 if (!device->collection) {
1260 ret = -ENOMEM;
1261 goto err;
1262 }
1263 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1264 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1265 device->collection[i].parent_idx = -1;
1266
1267 ret = -EINVAL;
1268 while ((next = fetch_item(start, end, &item)) != NULL) {
1269 start = next;
1270
1271 if (item.format != HID_ITEM_FORMAT_SHORT) {
1272 hid_err(device, "unexpected long global item\n");
1273 goto err;
1274 }
1275
1276 if (dispatch_type[item.type](parser, &item)) {
1277 hid_err(device, "item %u %u %u %u parsing failed\n",
1278 item.format, (unsigned)item.size,
1279 (unsigned)item.type, (unsigned)item.tag);
1280 goto err;
1281 }
1282
1283 if (start == end) {
1284 if (parser->collection_stack_ptr) {
1285 hid_err(device, "unbalanced collection at end of report description\n");
1286 goto err;
1287 }
1288 if (parser->local.delimiter_depth) {
1289 hid_err(device, "unbalanced delimiter at end of report description\n");
1290 goto err;
1291 }
1292
1293 /*
1294 * fetch initial values in case the device's
1295 * default multiplier isn't the recommended 1
1296 */
1297 hid_setup_resolution_multiplier(device);
1298
1299 kfree(parser->collection_stack);
1300 vfree(parser);
1301 device->status |= HID_STAT_PARSED;
1302
1303 return 0;
1304 }
1305 }
1306
1307 hid_err(device, "item fetching failed at offset %u/%u\n",
1308 size - (unsigned int)(end - start), size);
1309err:
1310 kfree(parser->collection_stack);
1311alloc_err:
1312 vfree(parser);
1313 hid_close_report(device);
1314 return ret;
1315}
1316EXPORT_SYMBOL_GPL(hid_open_report);
1317
1318/*
1319 * Convert a signed n-bit integer to signed 32-bit integer. Common
1320 * cases are done through the compiler, the screwed things has to be
1321 * done by hand.
1322 */
1323
1324static s32 snto32(__u32 value, unsigned n)
1325{
1326 if (!value || !n)
1327 return 0;
1328
1329 if (n > 32)
1330 n = 32;
1331
1332 switch (n) {
1333 case 8: return ((__s8)value);
1334 case 16: return ((__s16)value);
1335 case 32: return ((__s32)value);
1336 }
1337 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1338}
1339
1340s32 hid_snto32(__u32 value, unsigned n)
1341{
1342 return snto32(value, n);
1343}
1344EXPORT_SYMBOL_GPL(hid_snto32);
1345
1346/*
1347 * Convert a signed 32-bit integer to a signed n-bit integer.
1348 */
1349
1350static u32 s32ton(__s32 value, unsigned n)
1351{
1352 s32 a = value >> (n - 1);
1353 if (a && a != -1)
1354 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1355 return value & ((1 << n) - 1);
1356}
1357
1358/*
1359 * Extract/implement a data field from/to a little endian report (bit array).
1360 *
1361 * Code sort-of follows HID spec:
1362 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1363 *
1364 * While the USB HID spec allows unlimited length bit fields in "report
1365 * descriptors", most devices never use more than 16 bits.
1366 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1367 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1368 */
1369
1370static u32 __extract(u8 *report, unsigned offset, int n)
1371{
1372 unsigned int idx = offset / 8;
1373 unsigned int bit_nr = 0;
1374 unsigned int bit_shift = offset % 8;
1375 int bits_to_copy = 8 - bit_shift;
1376 u32 value = 0;
1377 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1378
1379 while (n > 0) {
1380 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1381 n -= bits_to_copy;
1382 bit_nr += bits_to_copy;
1383 bits_to_copy = 8;
1384 bit_shift = 0;
1385 idx++;
1386 }
1387
1388 return value & mask;
1389}
1390
1391u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1392 unsigned offset, unsigned n)
1393{
1394 if (n > 32) {
1395 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1396 __func__, n, current->comm);
1397 n = 32;
1398 }
1399
1400 return __extract(report, offset, n);
1401}
1402EXPORT_SYMBOL_GPL(hid_field_extract);
1403
1404/*
1405 * "implement" : set bits in a little endian bit stream.
1406 * Same concepts as "extract" (see comments above).
1407 * The data mangled in the bit stream remains in little endian
1408 * order the whole time. It make more sense to talk about
1409 * endianness of register values by considering a register
1410 * a "cached" copy of the little endian bit stream.
1411 */
1412
1413static void __implement(u8 *report, unsigned offset, int n, u32 value)
1414{
1415 unsigned int idx = offset / 8;
1416 unsigned int bit_shift = offset % 8;
1417 int bits_to_set = 8 - bit_shift;
1418
1419 while (n - bits_to_set >= 0) {
1420 report[idx] &= ~(0xff << bit_shift);
1421 report[idx] |= value << bit_shift;
1422 value >>= bits_to_set;
1423 n -= bits_to_set;
1424 bits_to_set = 8;
1425 bit_shift = 0;
1426 idx++;
1427 }
1428
1429 /* last nibble */
1430 if (n) {
1431 u8 bit_mask = ((1U << n) - 1);
1432 report[idx] &= ~(bit_mask << bit_shift);
1433 report[idx] |= value << bit_shift;
1434 }
1435}
1436
1437static void implement(const struct hid_device *hid, u8 *report,
1438 unsigned offset, unsigned n, u32 value)
1439{
1440 if (unlikely(n > 32)) {
1441 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1442 __func__, n, current->comm);
1443 n = 32;
1444 } else if (n < 32) {
1445 u32 m = (1U << n) - 1;
1446
1447 if (unlikely(value > m)) {
1448 hid_warn(hid,
1449 "%s() called with too large value %d (n: %d)! (%s)\n",
1450 __func__, value, n, current->comm);
1451 WARN_ON(1);
1452 value &= m;
1453 }
1454 }
1455
1456 __implement(report, offset, n, value);
1457}
1458
1459/*
1460 * Search an array for a value.
1461 */
1462
1463static int search(__s32 *array, __s32 value, unsigned n)
1464{
1465 while (n--) {
1466 if (*array++ == value)
1467 return 0;
1468 }
1469 return -1;
1470}
1471
1472/**
1473 * hid_match_report - check if driver's raw_event should be called
1474 *
1475 * @hid: hid device
1476 * @report: hid report to match against
1477 *
1478 * compare hid->driver->report_table->report_type to report->type
1479 */
1480static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1481{
1482 const struct hid_report_id *id = hid->driver->report_table;
1483
1484 if (!id) /* NULL means all */
1485 return 1;
1486
1487 for (; id->report_type != HID_TERMINATOR; id++)
1488 if (id->report_type == HID_ANY_ID ||
1489 id->report_type == report->type)
1490 return 1;
1491 return 0;
1492}
1493
1494/**
1495 * hid_match_usage - check if driver's event should be called
1496 *
1497 * @hid: hid device
1498 * @usage: usage to match against
1499 *
1500 * compare hid->driver->usage_table->usage_{type,code} to
1501 * usage->usage_{type,code}
1502 */
1503static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1504{
1505 const struct hid_usage_id *id = hid->driver->usage_table;
1506
1507 if (!id) /* NULL means all */
1508 return 1;
1509
1510 for (; id->usage_type != HID_ANY_ID - 1; id++)
1511 if ((id->usage_hid == HID_ANY_ID ||
1512 id->usage_hid == usage->hid) &&
1513 (id->usage_type == HID_ANY_ID ||
1514 id->usage_type == usage->type) &&
1515 (id->usage_code == HID_ANY_ID ||
1516 id->usage_code == usage->code))
1517 return 1;
1518 return 0;
1519}
1520
1521static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1522 struct hid_usage *usage, __s32 value, int interrupt)
1523{
1524 struct hid_driver *hdrv = hid->driver;
1525 int ret;
1526
1527 if (!list_empty(&hid->debug_list))
1528 hid_dump_input(hid, usage, value);
1529
1530 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1531 ret = hdrv->event(hid, field, usage, value);
1532 if (ret != 0) {
1533 if (ret < 0)
1534 hid_err(hid, "%s's event failed with %d\n",
1535 hdrv->name, ret);
1536 return;
1537 }
1538 }
1539
1540 if (hid->claimed & HID_CLAIMED_INPUT)
1541 hidinput_hid_event(hid, field, usage, value);
1542 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1543 hid->hiddev_hid_event(hid, field, usage, value);
1544}
1545
1546/*
1547 * Checks if the given value is valid within this field
1548 */
1549static inline int hid_array_value_is_valid(struct hid_field *field,
1550 __s32 value)
1551{
1552 __s32 min = field->logical_minimum;
1553
1554 /*
1555 * Value needs to be between logical min and max, and
1556 * (value - min) is used as an index in the usage array.
1557 * This array is of size field->maxusage
1558 */
1559 return value >= min &&
1560 value <= field->logical_maximum &&
1561 value - min < field->maxusage;
1562}
1563
1564/*
1565 * Fetch the field from the data. The field content is stored for next
1566 * report processing (we do differential reporting to the layer).
1567 */
1568static void hid_input_fetch_field(struct hid_device *hid,
1569 struct hid_field *field,
1570 __u8 *data)
1571{
1572 unsigned n;
1573 unsigned count = field->report_count;
1574 unsigned offset = field->report_offset;
1575 unsigned size = field->report_size;
1576 __s32 min = field->logical_minimum;
1577 __s32 *value;
1578
1579 value = field->new_value;
1580 memset(value, 0, count * sizeof(__s32));
1581 field->ignored = false;
1582
1583 for (n = 0; n < count; n++) {
1584
1585 value[n] = min < 0 ?
1586 snto32(hid_field_extract(hid, data, offset + n * size,
1587 size), size) :
1588 hid_field_extract(hid, data, offset + n * size, size);
1589
1590 /* Ignore report if ErrorRollOver */
1591 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1592 hid_array_value_is_valid(field, value[n]) &&
1593 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1594 field->ignored = true;
1595 return;
1596 }
1597 }
1598}
1599
1600/*
1601 * Process a received variable field.
1602 */
1603
1604static void hid_input_var_field(struct hid_device *hid,
1605 struct hid_field *field,
1606 int interrupt)
1607{
1608 unsigned int count = field->report_count;
1609 __s32 *value = field->new_value;
1610 unsigned int n;
1611
1612 for (n = 0; n < count; n++)
1613 hid_process_event(hid,
1614 field,
1615 &field->usage[n],
1616 value[n],
1617 interrupt);
1618
1619 memcpy(field->value, value, count * sizeof(__s32));
1620}
1621
1622/*
1623 * Process a received array field. The field content is stored for
1624 * next report processing (we do differential reporting to the layer).
1625 */
1626
1627static void hid_input_array_field(struct hid_device *hid,
1628 struct hid_field *field,
1629 int interrupt)
1630{
1631 unsigned int n;
1632 unsigned int count = field->report_count;
1633 __s32 min = field->logical_minimum;
1634 __s32 *value;
1635
1636 value = field->new_value;
1637
1638 /* ErrorRollOver */
1639 if (field->ignored)
1640 return;
1641
1642 for (n = 0; n < count; n++) {
1643 if (hid_array_value_is_valid(field, field->value[n]) &&
1644 search(value, field->value[n], count))
1645 hid_process_event(hid,
1646 field,
1647 &field->usage[field->value[n] - min],
1648 0,
1649 interrupt);
1650
1651 if (hid_array_value_is_valid(field, value[n]) &&
1652 search(field->value, value[n], count))
1653 hid_process_event(hid,
1654 field,
1655 &field->usage[value[n] - min],
1656 1,
1657 interrupt);
1658 }
1659
1660 memcpy(field->value, value, count * sizeof(__s32));
1661}
1662
1663/*
1664 * Analyse a received report, and fetch the data from it. The field
1665 * content is stored for next report processing (we do differential
1666 * reporting to the layer).
1667 */
1668static void hid_process_report(struct hid_device *hid,
1669 struct hid_report *report,
1670 __u8 *data,
1671 int interrupt)
1672{
1673 unsigned int a;
1674 struct hid_field_entry *entry;
1675 struct hid_field *field;
1676
1677 /* first retrieve all incoming values in data */
1678 for (a = 0; a < report->maxfield; a++)
1679 hid_input_fetch_field(hid, report->field[a], data);
1680
1681 if (!list_empty(&report->field_entry_list)) {
1682 /* INPUT_REPORT, we have a priority list of fields */
1683 list_for_each_entry(entry,
1684 &report->field_entry_list,
1685 list) {
1686 field = entry->field;
1687
1688 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1689 hid_process_event(hid,
1690 field,
1691 &field->usage[entry->index],
1692 field->new_value[entry->index],
1693 interrupt);
1694 else
1695 hid_input_array_field(hid, field, interrupt);
1696 }
1697
1698 /* we need to do the memcpy at the end for var items */
1699 for (a = 0; a < report->maxfield; a++) {
1700 field = report->field[a];
1701
1702 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1703 memcpy(field->value, field->new_value,
1704 field->report_count * sizeof(__s32));
1705 }
1706 } else {
1707 /* FEATURE_REPORT, regular processing */
1708 for (a = 0; a < report->maxfield; a++) {
1709 field = report->field[a];
1710
1711 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1712 hid_input_var_field(hid, field, interrupt);
1713 else
1714 hid_input_array_field(hid, field, interrupt);
1715 }
1716 }
1717}
1718
1719/*
1720 * Insert a given usage_index in a field in the list
1721 * of processed usages in the report.
1722 *
1723 * The elements of lower priority score are processed
1724 * first.
1725 */
1726static void __hid_insert_field_entry(struct hid_device *hid,
1727 struct hid_report *report,
1728 struct hid_field_entry *entry,
1729 struct hid_field *field,
1730 unsigned int usage_index)
1731{
1732 struct hid_field_entry *next;
1733
1734 entry->field = field;
1735 entry->index = usage_index;
1736 entry->priority = field->usages_priorities[usage_index];
1737
1738 /* insert the element at the correct position */
1739 list_for_each_entry(next,
1740 &report->field_entry_list,
1741 list) {
1742 /*
1743 * the priority of our element is strictly higher
1744 * than the next one, insert it before
1745 */
1746 if (entry->priority > next->priority) {
1747 list_add_tail(&entry->list, &next->list);
1748 return;
1749 }
1750 }
1751
1752 /* lowest priority score: insert at the end */
1753 list_add_tail(&entry->list, &report->field_entry_list);
1754}
1755
1756static void hid_report_process_ordering(struct hid_device *hid,
1757 struct hid_report *report)
1758{
1759 struct hid_field *field;
1760 struct hid_field_entry *entries;
1761 unsigned int a, u, usages;
1762 unsigned int count = 0;
1763
1764 /* count the number of individual fields in the report */
1765 for (a = 0; a < report->maxfield; a++) {
1766 field = report->field[a];
1767
1768 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1769 count += field->report_count;
1770 else
1771 count++;
1772 }
1773
1774 /* allocate the memory to process the fields */
1775 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1776 if (!entries)
1777 return;
1778
1779 report->field_entries = entries;
1780
1781 /*
1782 * walk through all fields in the report and
1783 * store them by priority order in report->field_entry_list
1784 *
1785 * - Var elements are individualized (field + usage_index)
1786 * - Arrays are taken as one, we can not chose an order for them
1787 */
1788 usages = 0;
1789 for (a = 0; a < report->maxfield; a++) {
1790 field = report->field[a];
1791
1792 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1793 for (u = 0; u < field->report_count; u++) {
1794 __hid_insert_field_entry(hid, report,
1795 &entries[usages],
1796 field, u);
1797 usages++;
1798 }
1799 } else {
1800 __hid_insert_field_entry(hid, report, &entries[usages],
1801 field, 0);
1802 usages++;
1803 }
1804 }
1805}
1806
1807static void hid_process_ordering(struct hid_device *hid)
1808{
1809 struct hid_report *report;
1810 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1811
1812 list_for_each_entry(report, &report_enum->report_list, list)
1813 hid_report_process_ordering(hid, report);
1814}
1815
1816/*
1817 * Output the field into the report.
1818 */
1819
1820static void hid_output_field(const struct hid_device *hid,
1821 struct hid_field *field, __u8 *data)
1822{
1823 unsigned count = field->report_count;
1824 unsigned offset = field->report_offset;
1825 unsigned size = field->report_size;
1826 unsigned n;
1827
1828 for (n = 0; n < count; n++) {
1829 if (field->logical_minimum < 0) /* signed values */
1830 implement(hid, data, offset + n * size, size,
1831 s32ton(field->value[n], size));
1832 else /* unsigned values */
1833 implement(hid, data, offset + n * size, size,
1834 field->value[n]);
1835 }
1836}
1837
1838/*
1839 * Compute the size of a report.
1840 */
1841static size_t hid_compute_report_size(struct hid_report *report)
1842{
1843 if (report->size)
1844 return ((report->size - 1) >> 3) + 1;
1845
1846 return 0;
1847}
1848
1849/*
1850 * Create a report. 'data' has to be allocated using
1851 * hid_alloc_report_buf() so that it has proper size.
1852 */
1853
1854void hid_output_report(struct hid_report *report, __u8 *data)
1855{
1856 unsigned n;
1857
1858 if (report->id > 0)
1859 *data++ = report->id;
1860
1861 memset(data, 0, hid_compute_report_size(report));
1862 for (n = 0; n < report->maxfield; n++)
1863 hid_output_field(report->device, report->field[n], data);
1864}
1865EXPORT_SYMBOL_GPL(hid_output_report);
1866
1867/*
1868 * Allocator for buffer that is going to be passed to hid_output_report()
1869 */
1870u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1871{
1872 /*
1873 * 7 extra bytes are necessary to achieve proper functionality
1874 * of implement() working on 8 byte chunks
1875 */
1876
1877 u32 len = hid_report_len(report) + 7;
1878
1879 return kmalloc(len, flags);
1880}
1881EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1882
1883/*
1884 * Set a field value. The report this field belongs to has to be
1885 * created and transferred to the device, to set this value in the
1886 * device.
1887 */
1888
1889int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1890{
1891 unsigned size;
1892
1893 if (!field)
1894 return -1;
1895
1896 size = field->report_size;
1897
1898 hid_dump_input(field->report->device, field->usage + offset, value);
1899
1900 if (offset >= field->report_count) {
1901 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1902 offset, field->report_count);
1903 return -1;
1904 }
1905 if (field->logical_minimum < 0) {
1906 if (value != snto32(s32ton(value, size), size)) {
1907 hid_err(field->report->device, "value %d is out of range\n", value);
1908 return -1;
1909 }
1910 }
1911 field->value[offset] = value;
1912 return 0;
1913}
1914EXPORT_SYMBOL_GPL(hid_set_field);
1915
1916static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1917 const u8 *data)
1918{
1919 struct hid_report *report;
1920 unsigned int n = 0; /* Normally report number is 0 */
1921
1922 /* Device uses numbered reports, data[0] is report number */
1923 if (report_enum->numbered)
1924 n = *data;
1925
1926 report = report_enum->report_id_hash[n];
1927 if (report == NULL)
1928 dbg_hid("undefined report_id %u received\n", n);
1929
1930 return report;
1931}
1932
1933/*
1934 * Implement a generic .request() callback, using .raw_request()
1935 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1936 */
1937int __hid_request(struct hid_device *hid, struct hid_report *report,
1938 enum hid_class_request reqtype)
1939{
1940 char *buf;
1941 int ret;
1942 u32 len;
1943
1944 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1945 if (!buf)
1946 return -ENOMEM;
1947
1948 len = hid_report_len(report);
1949
1950 if (reqtype == HID_REQ_SET_REPORT)
1951 hid_output_report(report, buf);
1952
1953 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1954 report->type, reqtype);
1955 if (ret < 0) {
1956 dbg_hid("unable to complete request: %d\n", ret);
1957 goto out;
1958 }
1959
1960 if (reqtype == HID_REQ_GET_REPORT)
1961 hid_input_report(hid, report->type, buf, ret, 0);
1962
1963 ret = 0;
1964
1965out:
1966 kfree(buf);
1967 return ret;
1968}
1969EXPORT_SYMBOL_GPL(__hid_request);
1970
1971int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1972 int interrupt)
1973{
1974 struct hid_report_enum *report_enum = hid->report_enum + type;
1975 struct hid_report *report;
1976 struct hid_driver *hdrv;
1977 int max_buffer_size = HID_MAX_BUFFER_SIZE;
1978 u32 rsize, csize = size;
1979 u8 *cdata = data;
1980 int ret = 0;
1981
1982 report = hid_get_report(report_enum, data);
1983 if (!report)
1984 goto out;
1985
1986 if (report_enum->numbered) {
1987 cdata++;
1988 csize--;
1989 }
1990
1991 rsize = hid_compute_report_size(report);
1992
1993 if (hid->ll_driver->max_buffer_size)
1994 max_buffer_size = hid->ll_driver->max_buffer_size;
1995
1996 if (report_enum->numbered && rsize >= max_buffer_size)
1997 rsize = max_buffer_size - 1;
1998 else if (rsize > max_buffer_size)
1999 rsize = max_buffer_size;
2000
2001 if (csize < rsize) {
2002 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2003 csize, rsize);
2004 memset(cdata + csize, 0, rsize - csize);
2005 }
2006
2007 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2008 hid->hiddev_report_event(hid, report);
2009 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2010 ret = hidraw_report_event(hid, data, size);
2011 if (ret)
2012 goto out;
2013 }
2014
2015 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2016 hid_process_report(hid, report, cdata, interrupt);
2017 hdrv = hid->driver;
2018 if (hdrv && hdrv->report)
2019 hdrv->report(hid, report);
2020 }
2021
2022 if (hid->claimed & HID_CLAIMED_INPUT)
2023 hidinput_report_event(hid, report);
2024out:
2025 return ret;
2026}
2027EXPORT_SYMBOL_GPL(hid_report_raw_event);
2028
2029/**
2030 * hid_input_report - report data from lower layer (usb, bt...)
2031 *
2032 * @hid: hid device
2033 * @type: HID report type (HID_*_REPORT)
2034 * @data: report contents
2035 * @size: size of data parameter
2036 * @interrupt: distinguish between interrupt and control transfers
2037 *
2038 * This is data entry for lower layers.
2039 */
2040int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2041 int interrupt)
2042{
2043 struct hid_report_enum *report_enum;
2044 struct hid_driver *hdrv;
2045 struct hid_report *report;
2046 int ret = 0;
2047
2048 if (!hid)
2049 return -ENODEV;
2050
2051 if (down_trylock(&hid->driver_input_lock))
2052 return -EBUSY;
2053
2054 if (!hid->driver) {
2055 ret = -ENODEV;
2056 goto unlock;
2057 }
2058 report_enum = hid->report_enum + type;
2059 hdrv = hid->driver;
2060
2061 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2062 if (IS_ERR(data)) {
2063 ret = PTR_ERR(data);
2064 goto unlock;
2065 }
2066
2067 if (!size) {
2068 dbg_hid("empty report\n");
2069 ret = -1;
2070 goto unlock;
2071 }
2072
2073 /* Avoid unnecessary overhead if debugfs is disabled */
2074 if (!list_empty(&hid->debug_list))
2075 hid_dump_report(hid, type, data, size);
2076
2077 report = hid_get_report(report_enum, data);
2078
2079 if (!report) {
2080 ret = -1;
2081 goto unlock;
2082 }
2083
2084 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2085 ret = hdrv->raw_event(hid, report, data, size);
2086 if (ret < 0)
2087 goto unlock;
2088 }
2089
2090 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2091
2092unlock:
2093 up(&hid->driver_input_lock);
2094 return ret;
2095}
2096EXPORT_SYMBOL_GPL(hid_input_report);
2097
2098bool hid_match_one_id(const struct hid_device *hdev,
2099 const struct hid_device_id *id)
2100{
2101 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2102 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2103 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2104 (id->product == HID_ANY_ID || id->product == hdev->product);
2105}
2106
2107const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2108 const struct hid_device_id *id)
2109{
2110 for (; id->bus; id++)
2111 if (hid_match_one_id(hdev, id))
2112 return id;
2113
2114 return NULL;
2115}
2116EXPORT_SYMBOL_GPL(hid_match_id);
2117
2118static const struct hid_device_id hid_hiddev_list[] = {
2119 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2120 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2121 { }
2122};
2123
2124static bool hid_hiddev(struct hid_device *hdev)
2125{
2126 return !!hid_match_id(hdev, hid_hiddev_list);
2127}
2128
2129
2130static ssize_t
2131read_report_descriptor(struct file *filp, struct kobject *kobj,
2132 struct bin_attribute *attr,
2133 char *buf, loff_t off, size_t count)
2134{
2135 struct device *dev = kobj_to_dev(kobj);
2136 struct hid_device *hdev = to_hid_device(dev);
2137
2138 if (off >= hdev->rsize)
2139 return 0;
2140
2141 if (off + count > hdev->rsize)
2142 count = hdev->rsize - off;
2143
2144 memcpy(buf, hdev->rdesc + off, count);
2145
2146 return count;
2147}
2148
2149static ssize_t
2150show_country(struct device *dev, struct device_attribute *attr,
2151 char *buf)
2152{
2153 struct hid_device *hdev = to_hid_device(dev);
2154
2155 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2156}
2157
2158static struct bin_attribute dev_bin_attr_report_desc = {
2159 .attr = { .name = "report_descriptor", .mode = 0444 },
2160 .read = read_report_descriptor,
2161 .size = HID_MAX_DESCRIPTOR_SIZE,
2162};
2163
2164static const struct device_attribute dev_attr_country = {
2165 .attr = { .name = "country", .mode = 0444 },
2166 .show = show_country,
2167};
2168
2169int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2170{
2171 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2172 "Joystick", "Gamepad", "Keyboard", "Keypad",
2173 "Multi-Axis Controller"
2174 };
2175 const char *type, *bus;
2176 char buf[64] = "";
2177 unsigned int i;
2178 int len;
2179 int ret;
2180
2181 ret = hid_bpf_connect_device(hdev);
2182 if (ret)
2183 return ret;
2184
2185 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2186 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2187 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2188 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2189 if (hdev->bus != BUS_USB)
2190 connect_mask &= ~HID_CONNECT_HIDDEV;
2191 if (hid_hiddev(hdev))
2192 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2193
2194 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2195 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2196 hdev->claimed |= HID_CLAIMED_INPUT;
2197
2198 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2199 !hdev->hiddev_connect(hdev,
2200 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2201 hdev->claimed |= HID_CLAIMED_HIDDEV;
2202 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2203 hdev->claimed |= HID_CLAIMED_HIDRAW;
2204
2205 if (connect_mask & HID_CONNECT_DRIVER)
2206 hdev->claimed |= HID_CLAIMED_DRIVER;
2207
2208 /* Drivers with the ->raw_event callback set are not required to connect
2209 * to any other listener. */
2210 if (!hdev->claimed && !hdev->driver->raw_event) {
2211 hid_err(hdev, "device has no listeners, quitting\n");
2212 return -ENODEV;
2213 }
2214
2215 hid_process_ordering(hdev);
2216
2217 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2218 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2219 hdev->ff_init(hdev);
2220
2221 len = 0;
2222 if (hdev->claimed & HID_CLAIMED_INPUT)
2223 len += sprintf(buf + len, "input");
2224 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2225 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2226 ((struct hiddev *)hdev->hiddev)->minor);
2227 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2228 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2229 ((struct hidraw *)hdev->hidraw)->minor);
2230
2231 type = "Device";
2232 for (i = 0; i < hdev->maxcollection; i++) {
2233 struct hid_collection *col = &hdev->collection[i];
2234 if (col->type == HID_COLLECTION_APPLICATION &&
2235 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2236 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2237 type = types[col->usage & 0xffff];
2238 break;
2239 }
2240 }
2241
2242 switch (hdev->bus) {
2243 case BUS_USB:
2244 bus = "USB";
2245 break;
2246 case BUS_BLUETOOTH:
2247 bus = "BLUETOOTH";
2248 break;
2249 case BUS_I2C:
2250 bus = "I2C";
2251 break;
2252 case BUS_VIRTUAL:
2253 bus = "VIRTUAL";
2254 break;
2255 case BUS_INTEL_ISHTP:
2256 case BUS_AMD_SFH:
2257 bus = "SENSOR HUB";
2258 break;
2259 default:
2260 bus = "<UNKNOWN>";
2261 }
2262
2263 ret = device_create_file(&hdev->dev, &dev_attr_country);
2264 if (ret)
2265 hid_warn(hdev,
2266 "can't create sysfs country code attribute err: %d\n", ret);
2267
2268 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2269 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2270 type, hdev->name, hdev->phys);
2271
2272 return 0;
2273}
2274EXPORT_SYMBOL_GPL(hid_connect);
2275
2276void hid_disconnect(struct hid_device *hdev)
2277{
2278 device_remove_file(&hdev->dev, &dev_attr_country);
2279 if (hdev->claimed & HID_CLAIMED_INPUT)
2280 hidinput_disconnect(hdev);
2281 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2282 hdev->hiddev_disconnect(hdev);
2283 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2284 hidraw_disconnect(hdev);
2285 hdev->claimed = 0;
2286
2287 hid_bpf_disconnect_device(hdev);
2288}
2289EXPORT_SYMBOL_GPL(hid_disconnect);
2290
2291/**
2292 * hid_hw_start - start underlying HW
2293 * @hdev: hid device
2294 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2295 *
2296 * Call this in probe function *after* hid_parse. This will setup HW
2297 * buffers and start the device (if not defeirred to device open).
2298 * hid_hw_stop must be called if this was successful.
2299 */
2300int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2301{
2302 int error;
2303
2304 error = hdev->ll_driver->start(hdev);
2305 if (error)
2306 return error;
2307
2308 if (connect_mask) {
2309 error = hid_connect(hdev, connect_mask);
2310 if (error) {
2311 hdev->ll_driver->stop(hdev);
2312 return error;
2313 }
2314 }
2315
2316 return 0;
2317}
2318EXPORT_SYMBOL_GPL(hid_hw_start);
2319
2320/**
2321 * hid_hw_stop - stop underlying HW
2322 * @hdev: hid device
2323 *
2324 * This is usually called from remove function or from probe when something
2325 * failed and hid_hw_start was called already.
2326 */
2327void hid_hw_stop(struct hid_device *hdev)
2328{
2329 hid_disconnect(hdev);
2330 hdev->ll_driver->stop(hdev);
2331}
2332EXPORT_SYMBOL_GPL(hid_hw_stop);
2333
2334/**
2335 * hid_hw_open - signal underlying HW to start delivering events
2336 * @hdev: hid device
2337 *
2338 * Tell underlying HW to start delivering events from the device.
2339 * This function should be called sometime after successful call
2340 * to hid_hw_start().
2341 */
2342int hid_hw_open(struct hid_device *hdev)
2343{
2344 int ret;
2345
2346 ret = mutex_lock_killable(&hdev->ll_open_lock);
2347 if (ret)
2348 return ret;
2349
2350 if (!hdev->ll_open_count++) {
2351 ret = hdev->ll_driver->open(hdev);
2352 if (ret)
2353 hdev->ll_open_count--;
2354 }
2355
2356 mutex_unlock(&hdev->ll_open_lock);
2357 return ret;
2358}
2359EXPORT_SYMBOL_GPL(hid_hw_open);
2360
2361/**
2362 * hid_hw_close - signal underlaying HW to stop delivering events
2363 *
2364 * @hdev: hid device
2365 *
2366 * This function indicates that we are not interested in the events
2367 * from this device anymore. Delivery of events may or may not stop,
2368 * depending on the number of users still outstanding.
2369 */
2370void hid_hw_close(struct hid_device *hdev)
2371{
2372 mutex_lock(&hdev->ll_open_lock);
2373 if (!--hdev->ll_open_count)
2374 hdev->ll_driver->close(hdev);
2375 mutex_unlock(&hdev->ll_open_lock);
2376}
2377EXPORT_SYMBOL_GPL(hid_hw_close);
2378
2379/**
2380 * hid_hw_request - send report request to device
2381 *
2382 * @hdev: hid device
2383 * @report: report to send
2384 * @reqtype: hid request type
2385 */
2386void hid_hw_request(struct hid_device *hdev,
2387 struct hid_report *report, enum hid_class_request reqtype)
2388{
2389 if (hdev->ll_driver->request)
2390 return hdev->ll_driver->request(hdev, report, reqtype);
2391
2392 __hid_request(hdev, report, reqtype);
2393}
2394EXPORT_SYMBOL_GPL(hid_hw_request);
2395
2396/**
2397 * hid_hw_raw_request - send report request to device
2398 *
2399 * @hdev: hid device
2400 * @reportnum: report ID
2401 * @buf: in/out data to transfer
2402 * @len: length of buf
2403 * @rtype: HID report type
2404 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2405 *
2406 * Return: count of data transferred, negative if error
2407 *
2408 * Same behavior as hid_hw_request, but with raw buffers instead.
2409 */
2410int hid_hw_raw_request(struct hid_device *hdev,
2411 unsigned char reportnum, __u8 *buf,
2412 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2413{
2414 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2415
2416 if (hdev->ll_driver->max_buffer_size)
2417 max_buffer_size = hdev->ll_driver->max_buffer_size;
2418
2419 if (len < 1 || len > max_buffer_size || !buf)
2420 return -EINVAL;
2421
2422 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2423 rtype, reqtype);
2424}
2425EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2426
2427/**
2428 * hid_hw_output_report - send output report to device
2429 *
2430 * @hdev: hid device
2431 * @buf: raw data to transfer
2432 * @len: length of buf
2433 *
2434 * Return: count of data transferred, negative if error
2435 */
2436int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2437{
2438 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2439
2440 if (hdev->ll_driver->max_buffer_size)
2441 max_buffer_size = hdev->ll_driver->max_buffer_size;
2442
2443 if (len < 1 || len > max_buffer_size || !buf)
2444 return -EINVAL;
2445
2446 if (hdev->ll_driver->output_report)
2447 return hdev->ll_driver->output_report(hdev, buf, len);
2448
2449 return -ENOSYS;
2450}
2451EXPORT_SYMBOL_GPL(hid_hw_output_report);
2452
2453#ifdef CONFIG_PM
2454int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2455{
2456 if (hdev->driver && hdev->driver->suspend)
2457 return hdev->driver->suspend(hdev, state);
2458
2459 return 0;
2460}
2461EXPORT_SYMBOL_GPL(hid_driver_suspend);
2462
2463int hid_driver_reset_resume(struct hid_device *hdev)
2464{
2465 if (hdev->driver && hdev->driver->reset_resume)
2466 return hdev->driver->reset_resume(hdev);
2467
2468 return 0;
2469}
2470EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2471
2472int hid_driver_resume(struct hid_device *hdev)
2473{
2474 if (hdev->driver && hdev->driver->resume)
2475 return hdev->driver->resume(hdev);
2476
2477 return 0;
2478}
2479EXPORT_SYMBOL_GPL(hid_driver_resume);
2480#endif /* CONFIG_PM */
2481
2482struct hid_dynid {
2483 struct list_head list;
2484 struct hid_device_id id;
2485};
2486
2487/**
2488 * new_id_store - add a new HID device ID to this driver and re-probe devices
2489 * @drv: target device driver
2490 * @buf: buffer for scanning device ID data
2491 * @count: input size
2492 *
2493 * Adds a new dynamic hid device ID to this driver,
2494 * and causes the driver to probe for all devices again.
2495 */
2496static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2497 size_t count)
2498{
2499 struct hid_driver *hdrv = to_hid_driver(drv);
2500 struct hid_dynid *dynid;
2501 __u32 bus, vendor, product;
2502 unsigned long driver_data = 0;
2503 int ret;
2504
2505 ret = sscanf(buf, "%x %x %x %lx",
2506 &bus, &vendor, &product, &driver_data);
2507 if (ret < 3)
2508 return -EINVAL;
2509
2510 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2511 if (!dynid)
2512 return -ENOMEM;
2513
2514 dynid->id.bus = bus;
2515 dynid->id.group = HID_GROUP_ANY;
2516 dynid->id.vendor = vendor;
2517 dynid->id.product = product;
2518 dynid->id.driver_data = driver_data;
2519
2520 spin_lock(&hdrv->dyn_lock);
2521 list_add_tail(&dynid->list, &hdrv->dyn_list);
2522 spin_unlock(&hdrv->dyn_lock);
2523
2524 ret = driver_attach(&hdrv->driver);
2525
2526 return ret ? : count;
2527}
2528static DRIVER_ATTR_WO(new_id);
2529
2530static struct attribute *hid_drv_attrs[] = {
2531 &driver_attr_new_id.attr,
2532 NULL,
2533};
2534ATTRIBUTE_GROUPS(hid_drv);
2535
2536static void hid_free_dynids(struct hid_driver *hdrv)
2537{
2538 struct hid_dynid *dynid, *n;
2539
2540 spin_lock(&hdrv->dyn_lock);
2541 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2542 list_del(&dynid->list);
2543 kfree(dynid);
2544 }
2545 spin_unlock(&hdrv->dyn_lock);
2546}
2547
2548const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2549 struct hid_driver *hdrv)
2550{
2551 struct hid_dynid *dynid;
2552
2553 spin_lock(&hdrv->dyn_lock);
2554 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2555 if (hid_match_one_id(hdev, &dynid->id)) {
2556 spin_unlock(&hdrv->dyn_lock);
2557 return &dynid->id;
2558 }
2559 }
2560 spin_unlock(&hdrv->dyn_lock);
2561
2562 return hid_match_id(hdev, hdrv->id_table);
2563}
2564EXPORT_SYMBOL_GPL(hid_match_device);
2565
2566static int hid_bus_match(struct device *dev, struct device_driver *drv)
2567{
2568 struct hid_driver *hdrv = to_hid_driver(drv);
2569 struct hid_device *hdev = to_hid_device(dev);
2570
2571 return hid_match_device(hdev, hdrv) != NULL;
2572}
2573
2574/**
2575 * hid_compare_device_paths - check if both devices share the same path
2576 * @hdev_a: hid device
2577 * @hdev_b: hid device
2578 * @separator: char to use as separator
2579 *
2580 * Check if two devices share the same path up to the last occurrence of
2581 * the separator char. Both paths must exist (i.e., zero-length paths
2582 * don't match).
2583 */
2584bool hid_compare_device_paths(struct hid_device *hdev_a,
2585 struct hid_device *hdev_b, char separator)
2586{
2587 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2588 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2589
2590 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2591 return false;
2592
2593 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2594}
2595EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2596
2597static bool hid_check_device_match(struct hid_device *hdev,
2598 struct hid_driver *hdrv,
2599 const struct hid_device_id **id)
2600{
2601 *id = hid_match_device(hdev, hdrv);
2602 if (!*id)
2603 return false;
2604
2605 if (hdrv->match)
2606 return hdrv->match(hdev, hid_ignore_special_drivers);
2607
2608 /*
2609 * hid-generic implements .match(), so we must be dealing with a
2610 * different HID driver here, and can simply check if
2611 * hid_ignore_special_drivers is set or not.
2612 */
2613 return !hid_ignore_special_drivers;
2614}
2615
2616static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2617{
2618 const struct hid_device_id *id;
2619 int ret;
2620
2621 if (!hid_check_device_match(hdev, hdrv, &id))
2622 return -ENODEV;
2623
2624 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2625 if (!hdev->devres_group_id)
2626 return -ENOMEM;
2627
2628 /* reset the quirks that has been previously set */
2629 hdev->quirks = hid_lookup_quirk(hdev);
2630 hdev->driver = hdrv;
2631
2632 if (hdrv->probe) {
2633 ret = hdrv->probe(hdev, id);
2634 } else { /* default probe */
2635 ret = hid_open_report(hdev);
2636 if (!ret)
2637 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2638 }
2639
2640 /*
2641 * Note that we are not closing the devres group opened above so
2642 * even resources that were attached to the device after probe is
2643 * run are released when hid_device_remove() is executed. This is
2644 * needed as some drivers would allocate additional resources,
2645 * for example when updating firmware.
2646 */
2647
2648 if (ret) {
2649 devres_release_group(&hdev->dev, hdev->devres_group_id);
2650 hid_close_report(hdev);
2651 hdev->driver = NULL;
2652 }
2653
2654 return ret;
2655}
2656
2657static int hid_device_probe(struct device *dev)
2658{
2659 struct hid_device *hdev = to_hid_device(dev);
2660 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2661 int ret = 0;
2662
2663 if (down_interruptible(&hdev->driver_input_lock))
2664 return -EINTR;
2665
2666 hdev->io_started = false;
2667 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2668
2669 if (!hdev->driver)
2670 ret = __hid_device_probe(hdev, hdrv);
2671
2672 if (!hdev->io_started)
2673 up(&hdev->driver_input_lock);
2674
2675 return ret;
2676}
2677
2678static void hid_device_remove(struct device *dev)
2679{
2680 struct hid_device *hdev = to_hid_device(dev);
2681 struct hid_driver *hdrv;
2682
2683 down(&hdev->driver_input_lock);
2684 hdev->io_started = false;
2685
2686 hdrv = hdev->driver;
2687 if (hdrv) {
2688 if (hdrv->remove)
2689 hdrv->remove(hdev);
2690 else /* default remove */
2691 hid_hw_stop(hdev);
2692
2693 /* Release all devres resources allocated by the driver */
2694 devres_release_group(&hdev->dev, hdev->devres_group_id);
2695
2696 hid_close_report(hdev);
2697 hdev->driver = NULL;
2698 }
2699
2700 if (!hdev->io_started)
2701 up(&hdev->driver_input_lock);
2702}
2703
2704static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2705 char *buf)
2706{
2707 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2708
2709 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2710 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2711}
2712static DEVICE_ATTR_RO(modalias);
2713
2714static struct attribute *hid_dev_attrs[] = {
2715 &dev_attr_modalias.attr,
2716 NULL,
2717};
2718static struct bin_attribute *hid_dev_bin_attrs[] = {
2719 &dev_bin_attr_report_desc,
2720 NULL
2721};
2722static const struct attribute_group hid_dev_group = {
2723 .attrs = hid_dev_attrs,
2724 .bin_attrs = hid_dev_bin_attrs,
2725};
2726__ATTRIBUTE_GROUPS(hid_dev);
2727
2728static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2729{
2730 const struct hid_device *hdev = to_hid_device(dev);
2731
2732 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2733 hdev->bus, hdev->vendor, hdev->product))
2734 return -ENOMEM;
2735
2736 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2737 return -ENOMEM;
2738
2739 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2740 return -ENOMEM;
2741
2742 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2743 return -ENOMEM;
2744
2745 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2746 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2747 return -ENOMEM;
2748
2749 return 0;
2750}
2751
2752const struct bus_type hid_bus_type = {
2753 .name = "hid",
2754 .dev_groups = hid_dev_groups,
2755 .drv_groups = hid_drv_groups,
2756 .match = hid_bus_match,
2757 .probe = hid_device_probe,
2758 .remove = hid_device_remove,
2759 .uevent = hid_uevent,
2760};
2761EXPORT_SYMBOL(hid_bus_type);
2762
2763int hid_add_device(struct hid_device *hdev)
2764{
2765 static atomic_t id = ATOMIC_INIT(0);
2766 int ret;
2767
2768 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2769 return -EBUSY;
2770
2771 hdev->quirks = hid_lookup_quirk(hdev);
2772
2773 /* we need to kill them here, otherwise they will stay allocated to
2774 * wait for coming driver */
2775 if (hid_ignore(hdev))
2776 return -ENODEV;
2777
2778 /*
2779 * Check for the mandatory transport channel.
2780 */
2781 if (!hdev->ll_driver->raw_request) {
2782 hid_err(hdev, "transport driver missing .raw_request()\n");
2783 return -EINVAL;
2784 }
2785
2786 /*
2787 * Read the device report descriptor once and use as template
2788 * for the driver-specific modifications.
2789 */
2790 ret = hdev->ll_driver->parse(hdev);
2791 if (ret)
2792 return ret;
2793 if (!hdev->dev_rdesc)
2794 return -ENODEV;
2795
2796 /*
2797 * Scan generic devices for group information
2798 */
2799 if (hid_ignore_special_drivers) {
2800 hdev->group = HID_GROUP_GENERIC;
2801 } else if (!hdev->group &&
2802 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2803 ret = hid_scan_report(hdev);
2804 if (ret)
2805 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2806 }
2807
2808 hdev->id = atomic_inc_return(&id);
2809
2810 /* XXX hack, any other cleaner solution after the driver core
2811 * is converted to allow more than 20 bytes as the device name? */
2812 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2813 hdev->vendor, hdev->product, hdev->id);
2814
2815 hid_debug_register(hdev, dev_name(&hdev->dev));
2816 ret = device_add(&hdev->dev);
2817 if (!ret)
2818 hdev->status |= HID_STAT_ADDED;
2819 else
2820 hid_debug_unregister(hdev);
2821
2822 return ret;
2823}
2824EXPORT_SYMBOL_GPL(hid_add_device);
2825
2826/**
2827 * hid_allocate_device - allocate new hid device descriptor
2828 *
2829 * Allocate and initialize hid device, so that hid_destroy_device might be
2830 * used to free it.
2831 *
2832 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2833 * error value.
2834 */
2835struct hid_device *hid_allocate_device(void)
2836{
2837 struct hid_device *hdev;
2838 int ret = -ENOMEM;
2839
2840 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2841 if (hdev == NULL)
2842 return ERR_PTR(ret);
2843
2844 device_initialize(&hdev->dev);
2845 hdev->dev.release = hid_device_release;
2846 hdev->dev.bus = &hid_bus_type;
2847 device_enable_async_suspend(&hdev->dev);
2848
2849 hid_close_report(hdev);
2850
2851 init_waitqueue_head(&hdev->debug_wait);
2852 INIT_LIST_HEAD(&hdev->debug_list);
2853 spin_lock_init(&hdev->debug_list_lock);
2854 sema_init(&hdev->driver_input_lock, 1);
2855 mutex_init(&hdev->ll_open_lock);
2856 kref_init(&hdev->ref);
2857
2858 hid_bpf_device_init(hdev);
2859
2860 return hdev;
2861}
2862EXPORT_SYMBOL_GPL(hid_allocate_device);
2863
2864static void hid_remove_device(struct hid_device *hdev)
2865{
2866 if (hdev->status & HID_STAT_ADDED) {
2867 device_del(&hdev->dev);
2868 hid_debug_unregister(hdev);
2869 hdev->status &= ~HID_STAT_ADDED;
2870 }
2871 kfree(hdev->dev_rdesc);
2872 hdev->dev_rdesc = NULL;
2873 hdev->dev_rsize = 0;
2874}
2875
2876/**
2877 * hid_destroy_device - free previously allocated device
2878 *
2879 * @hdev: hid device
2880 *
2881 * If you allocate hid_device through hid_allocate_device, you should ever
2882 * free by this function.
2883 */
2884void hid_destroy_device(struct hid_device *hdev)
2885{
2886 hid_bpf_destroy_device(hdev);
2887 hid_remove_device(hdev);
2888 put_device(&hdev->dev);
2889}
2890EXPORT_SYMBOL_GPL(hid_destroy_device);
2891
2892
2893static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2894{
2895 struct hid_driver *hdrv = data;
2896 struct hid_device *hdev = to_hid_device(dev);
2897
2898 if (hdev->driver == hdrv &&
2899 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2900 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2901 return device_reprobe(dev);
2902
2903 return 0;
2904}
2905
2906static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2907{
2908 struct hid_driver *hdrv = to_hid_driver(drv);
2909
2910 if (hdrv->match) {
2911 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2912 __hid_bus_reprobe_drivers);
2913 }
2914
2915 return 0;
2916}
2917
2918static int __bus_removed_driver(struct device_driver *drv, void *data)
2919{
2920 return bus_rescan_devices(&hid_bus_type);
2921}
2922
2923int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2924 const char *mod_name)
2925{
2926 int ret;
2927
2928 hdrv->driver.name = hdrv->name;
2929 hdrv->driver.bus = &hid_bus_type;
2930 hdrv->driver.owner = owner;
2931 hdrv->driver.mod_name = mod_name;
2932
2933 INIT_LIST_HEAD(&hdrv->dyn_list);
2934 spin_lock_init(&hdrv->dyn_lock);
2935
2936 ret = driver_register(&hdrv->driver);
2937
2938 if (ret == 0)
2939 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2940 __hid_bus_driver_added);
2941
2942 return ret;
2943}
2944EXPORT_SYMBOL_GPL(__hid_register_driver);
2945
2946void hid_unregister_driver(struct hid_driver *hdrv)
2947{
2948 driver_unregister(&hdrv->driver);
2949 hid_free_dynids(hdrv);
2950
2951 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2952}
2953EXPORT_SYMBOL_GPL(hid_unregister_driver);
2954
2955int hid_check_keys_pressed(struct hid_device *hid)
2956{
2957 struct hid_input *hidinput;
2958 int i;
2959
2960 if (!(hid->claimed & HID_CLAIMED_INPUT))
2961 return 0;
2962
2963 list_for_each_entry(hidinput, &hid->inputs, list) {
2964 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2965 if (hidinput->input->key[i])
2966 return 1;
2967 }
2968
2969 return 0;
2970}
2971EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2972
2973#ifdef CONFIG_HID_BPF
2974static struct hid_bpf_ops hid_ops = {
2975 .hid_get_report = hid_get_report,
2976 .hid_hw_raw_request = hid_hw_raw_request,
2977 .owner = THIS_MODULE,
2978 .bus_type = &hid_bus_type,
2979};
2980#endif
2981
2982static int __init hid_init(void)
2983{
2984 int ret;
2985
2986 ret = bus_register(&hid_bus_type);
2987 if (ret) {
2988 pr_err("can't register hid bus\n");
2989 goto err;
2990 }
2991
2992#ifdef CONFIG_HID_BPF
2993 hid_bpf_ops = &hid_ops;
2994#endif
2995
2996 ret = hidraw_init();
2997 if (ret)
2998 goto err_bus;
2999
3000 hid_debug_init();
3001
3002 return 0;
3003err_bus:
3004 bus_unregister(&hid_bus_type);
3005err:
3006 return ret;
3007}
3008
3009static void __exit hid_exit(void)
3010{
3011#ifdef CONFIG_HID_BPF
3012 hid_bpf_ops = NULL;
3013#endif
3014 hid_debug_exit();
3015 hidraw_exit();
3016 bus_unregister(&hid_bus_type);
3017 hid_quirks_exit(HID_BUS_ANY);
3018}
3019
3020module_init(hid_init);
3021module_exit(hid_exit);
3022
3023MODULE_AUTHOR("Andreas Gal");
3024MODULE_AUTHOR("Vojtech Pavlik");
3025MODULE_AUTHOR("Jiri Kosina");
3026MODULE_LICENSE("GPL");