Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2021-2023 Intel Corporation
  4 */
  5
  6#include <linux/minmax.h>
  7
  8#include "xe_mmio.h"
  9
 10#include <drm/drm_managed.h>
 11#include <drm/xe_drm.h>
 12
 13#include "regs/xe_engine_regs.h"
 14#include "regs/xe_gt_regs.h"
 15#include "regs/xe_regs.h"
 16#include "xe_bo.h"
 17#include "xe_device.h"
 18#include "xe_ggtt.h"
 19#include "xe_gt.h"
 20#include "xe_gt_mcr.h"
 21#include "xe_macros.h"
 22#include "xe_module.h"
 23#include "xe_tile.h"
 24
 25#define XEHP_MTCFG_ADDR		XE_REG(0x101800)
 26#define TILE_COUNT		REG_GENMASK(15, 8)
 27
 28#define BAR_SIZE_SHIFT 20
 29
 30static void
 31_resize_bar(struct xe_device *xe, int resno, resource_size_t size)
 32{
 33	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
 34	int bar_size = pci_rebar_bytes_to_size(size);
 35	int ret;
 36
 37	if (pci_resource_len(pdev, resno))
 38		pci_release_resource(pdev, resno);
 39
 40	ret = pci_resize_resource(pdev, resno, bar_size);
 41	if (ret) {
 42		drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
 43			 resno, 1 << bar_size, ERR_PTR(ret));
 44		return;
 45	}
 46
 47	drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
 48}
 49
 50/*
 51 * if force_vram_bar_size is set, attempt to set to the requested size
 52 * else set to maximum possible size
 53 */
 54static void xe_resize_vram_bar(struct xe_device *xe)
 55{
 56	u64 force_vram_bar_size = xe_modparam.force_vram_bar_size;
 57	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
 58	struct pci_bus *root = pdev->bus;
 59	resource_size_t current_size;
 60	resource_size_t rebar_size;
 61	struct resource *root_res;
 62	u32 bar_size_mask;
 63	u32 pci_cmd;
 64	int i;
 65
 66	/* gather some relevant info */
 67	current_size = pci_resource_len(pdev, LMEM_BAR);
 68	bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
 69
 70	if (!bar_size_mask)
 71		return;
 72
 73	/* set to a specific size? */
 74	if (force_vram_bar_size) {
 75		u32 bar_size_bit;
 76
 77		rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
 78
 79		bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
 80
 81		if (!bar_size_bit) {
 82			drm_info(&xe->drm,
 83				 "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
 84				 (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
 85			return;
 86		}
 87
 88		rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
 89
 90		if (rebar_size == current_size)
 91			return;
 92	} else {
 93		rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
 94
 95		/* only resize if larger than current */
 96		if (rebar_size <= current_size)
 97			return;
 98	}
 99
100	drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
101		 (u64)current_size >> 20, (u64)rebar_size >> 20);
102
103	while (root->parent)
104		root = root->parent;
105
106	pci_bus_for_each_resource(root, root_res, i) {
107		if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
108		    (u64)root_res->start > 0x100000000ul)
109			break;
110	}
111
112	if (!root_res) {
113		drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
114		return;
115	}
116
117	pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
118	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
119
120	_resize_bar(xe, LMEM_BAR, rebar_size);
121
122	pci_assign_unassigned_bus_resources(pdev->bus);
123	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
124}
125
126static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar)
127{
128	if (!pci_resource_flags(pdev, bar))
129		return false;
130
131	if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
132		return false;
133
134	if (!pci_resource_len(pdev, bar))
135		return false;
136
137	return true;
138}
139
140static int xe_determine_lmem_bar_size(struct xe_device *xe)
141{
142	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
143
144	if (!xe_pci_resource_valid(pdev, LMEM_BAR)) {
145		drm_err(&xe->drm, "pci resource is not valid\n");
146		return -ENXIO;
147	}
148
149	xe_resize_vram_bar(xe);
150
151	xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR);
152	xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR);
153	if (!xe->mem.vram.io_size)
154		return -EIO;
155
156	/* XXX: Need to change when xe link code is ready */
157	xe->mem.vram.dpa_base = 0;
158
159	/* set up a map to the total memory area. */
160	xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size);
161
162	return 0;
163}
164
165/**
166 * xe_mmio_tile_vram_size() - Collect vram size and offset information
167 * @tile: tile to get info for
168 * @vram_size: available vram (size - device reserved portions)
169 * @tile_size: actual vram size
170 * @tile_offset: physical start point in the vram address space
171 *
172 * There are 4 places for size information:
173 * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
174 * - TILEx size (actual vram size)
175 * - GSMBASE offset (TILEx - "stolen")
176 * - CSSBASE offset (TILEx - CSS space necessary)
177 *
178 * CSSBASE is always a lower/smaller offset then GSMBASE.
179 *
180 * The actual available size of memory is to the CCS or GSM base.
181 * NOTE: multi-tile bases will include the tile offset.
182 *
183 */
184static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size,
185				  u64 *tile_size, u64 *tile_offset)
186{
187	struct xe_device *xe = tile_to_xe(tile);
188	struct xe_gt *gt = tile->primary_gt;
189	u64 offset;
190	int err;
191	u32 reg;
192
193	err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
194	if (err)
195		return err;
196
197	/* actual size */
198	if (unlikely(xe->info.platform == XE_DG1)) {
199		*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
200		*tile_offset = 0;
201	} else {
202		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id));
203		*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
204		*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
205	}
206
207	/* minus device usage */
208	if (xe->info.has_flat_ccs) {
209		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
210		offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K;
211	} else {
212		offset = xe_mmio_read64_2x32(gt, GSMBASE);
213	}
214
215	/* remove the tile offset so we have just the available size */
216	*vram_size = offset - *tile_offset;
217
218	return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
219}
220
221int xe_mmio_probe_vram(struct xe_device *xe)
222{
223	struct xe_tile *tile;
224	resource_size_t io_size;
225	u64 available_size = 0;
226	u64 total_size = 0;
227	u64 tile_offset;
228	u64 tile_size;
229	u64 vram_size;
230	int err;
231	u8 id;
232
233	if (!IS_DGFX(xe))
234		return 0;
235
236	/* Get the size of the root tile's vram for later accessibility comparison */
237	tile = xe_device_get_root_tile(xe);
238	err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
239	if (err)
240		return err;
241
242	err = xe_determine_lmem_bar_size(xe);
243	if (err)
244		return err;
245
246	drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
247		 &xe->mem.vram.io_size);
248
249	io_size = xe->mem.vram.io_size;
250
251	/* tile specific ranges */
252	for_each_tile(tile, xe, id) {
253		err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset);
254		if (err)
255			return err;
256
257		tile->mem.vram.actual_physical_size = tile_size;
258		tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset;
259		tile->mem.vram.io_size = min_t(u64, vram_size, io_size);
260
261		if (!tile->mem.vram.io_size) {
262			drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
263			return -ENODEV;
264		}
265
266		tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset;
267		tile->mem.vram.usable_size = vram_size;
268		tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset;
269
270		if (tile->mem.vram.io_size < tile->mem.vram.usable_size)
271			drm_info(&xe->drm, "Small BAR device\n");
272		drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id,
273			 tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size);
274		drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id,
275			 &tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size,
276			 &tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size);
277
278		/* calculate total size using tile size to get the correct HW sizing */
279		total_size += tile_size;
280		available_size += vram_size;
281
282		if (total_size > xe->mem.vram.io_size) {
283			drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
284				 &total_size, &xe->mem.vram.io_size);
285		}
286
287		io_size -= min_t(u64, tile_size, io_size);
288	}
289
290	xe->mem.vram.actual_physical_size = total_size;
291
292	drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
293		 &xe->mem.vram.actual_physical_size);
294	drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start,
295		 &available_size);
296
297	return 0;
298}
299
300void xe_mmio_probe_tiles(struct xe_device *xe)
301{
302	size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size;
303	u8 id, tile_count = xe->info.tile_count;
304	struct xe_gt *gt = xe_root_mmio_gt(xe);
305	struct xe_tile *tile;
306	void __iomem *regs;
307	u32 mtcfg;
308
309	if (tile_count == 1)
310		goto add_mmio_ext;
311
312	if (!xe->info.skip_mtcfg) {
313		mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR);
314		tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
315		if (tile_count < xe->info.tile_count) {
316			drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
317					xe->info.tile_count, tile_count);
318			xe->info.tile_count = tile_count;
319
320			/*
321			 * FIXME: Needs some work for standalone media, but should be impossible
322			 * with multi-tile for now.
323			 */
324			xe->info.gt_count = xe->info.tile_count;
325		}
326	}
327
328	regs = xe->mmio.regs;
329	for_each_tile(tile, xe, id) {
330		tile->mmio.size = tile_mmio_size;
331		tile->mmio.regs = regs;
332		regs += tile_mmio_size;
333	}
334
335add_mmio_ext:
336	/*
337	 * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile).
338	 * When supported, there could be an additional contiguous multi-tile MMIO extension
339	 * space ON TOP of it, and hence the necessity for distinguished MMIO spaces.
340	 */
341	if (xe->info.has_mmio_ext) {
342		regs = xe->mmio.regs + tile_mmio_size * tile_count;
343
344		for_each_tile(tile, xe, id) {
345			tile->mmio_ext.size = tile_mmio_ext_size;
346			tile->mmio_ext.regs = regs;
347
348			regs += tile_mmio_ext_size;
349		}
350	}
351}
352
353static void mmio_fini(struct drm_device *drm, void *arg)
354{
355	struct xe_device *xe = arg;
356
357	pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
358	if (xe->mem.vram.mapping)
359		iounmap(xe->mem.vram.mapping);
360}
361
362static int xe_verify_lmem_ready(struct xe_device *xe)
363{
364	struct xe_gt *gt = xe_root_mmio_gt(xe);
365
366	/*
367	 * The boot firmware initializes local memory and assesses its health.
368	 * If memory training fails, the punit will have been instructed to
369	 * keep the GT powered down; we won't be able to communicate with it
370	 * and we should not continue with driver initialization.
371	 */
372	if (IS_DGFX(xe) && !(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) {
373		drm_err(&xe->drm, "VRAM not initialized by firmware\n");
374		return -ENODEV;
375	}
376
377	return 0;
378}
379
380int xe_mmio_init(struct xe_device *xe)
381{
382	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
383	const int mmio_bar = 0;
384
385	/*
386	 * Map the entire BAR.
387	 * The first 16MB of the BAR, belong to the root tile, and include:
388	 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
389	 */
390	xe->mmio.size = pci_resource_len(pdev, mmio_bar);
391	xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0);
392	if (xe->mmio.regs == NULL) {
393		drm_err(&xe->drm, "failed to map registers\n");
394		return -EIO;
395	}
396
397	return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe);
398}
399
400int xe_mmio_root_tile_init(struct xe_device *xe)
401{
402	struct xe_tile *root_tile = xe_device_get_root_tile(xe);
403	int err;
404
405	/* Setup first tile; other tiles (if present) will be setup later. */
406	root_tile->mmio.size = SZ_16M;
407	root_tile->mmio.regs = xe->mmio.regs;
408
409	err = xe_verify_lmem_ready(xe);
410	if (err)
411		return err;
412
413	return 0;
414}
415
416/**
417 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
418 * @gt: MMIO target GT
419 * @reg: register to read value from
420 *
421 * Although Intel GPUs have some 64-bit registers, the hardware officially
422 * only supports GTTMMADR register reads of 32 bits or smaller.  Even if
423 * a readq operation may return a reasonable value, that violation of the
424 * spec shouldn't be relied upon and all 64-bit register reads should be
425 * performed as two 32-bit reads of the upper and lower dwords.
426 *
427 * When reading registers that may be changing (such as
428 * counters), a rollover of the lower dword between the two 32-bit reads
429 * can be problematic.  This function attempts to ensure the upper dword has
430 * stabilized before returning the 64-bit value.
431 *
432 * Note that because this function may re-read the register multiple times
433 * while waiting for the value to stabilize it should not be used to read
434 * any registers where read operations have side effects.
435 *
436 * Returns the value of the 64-bit register.
437 */
438u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg)
439{
440	struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
441	u32 ldw, udw, oldudw, retries;
442
443	if (reg.addr < gt->mmio.adj_limit) {
444		reg.addr += gt->mmio.adj_offset;
445		reg_udw.addr += gt->mmio.adj_offset;
446	}
447
448	oldudw = xe_mmio_read32(gt, reg_udw);
449	for (retries = 5; retries; --retries) {
450		ldw = xe_mmio_read32(gt, reg);
451		udw = xe_mmio_read32(gt, reg_udw);
452
453		if (udw == oldudw)
454			break;
455
456		oldudw = udw;
457	}
458
459	xe_gt_WARN(gt, retries == 0,
460		   "64-bit read of %#x did not stabilize\n", reg.addr);
461
462	return (u64)udw << 32 | ldw;
463}
464
465/**
466 * xe_mmio_wait32() - Wait for a register to match the desired masked value
467 * @gt: MMIO target GT
468 * @reg: register to read value from
469 * @mask: mask to be applied to the value read from the register
470 * @val: desired value after applying the mask
471 * @timeout_us: time out after this period of time. Wait logic tries to be
472 * smart, applying an exponential backoff until @timeout_us is reached.
473 * @out_val: if not NULL, points where to store the last unmasked value
474 * @atomic: needs to be true if calling from an atomic context
475 *
476 * This function polls for the desired masked value and returns zero on success
477 * or -ETIMEDOUT if timed out.
478 *
479 * Note that @timeout_us represents the minimum amount of time to wait before
480 * giving up. The actual time taken by this function can be a little more than
481 * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
482 * it is possible that this function succeeds even after @timeout_us has passed.
483 */
484int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
485		   u32 *out_val, bool atomic)
486{
487	ktime_t cur = ktime_get_raw();
488	const ktime_t end = ktime_add_us(cur, timeout_us);
489	int ret = -ETIMEDOUT;
490	s64 wait = 10;
491	u32 read;
492
493	for (;;) {
494		read = xe_mmio_read32(gt, reg);
495		if ((read & mask) == val) {
496			ret = 0;
497			break;
498		}
499
500		cur = ktime_get_raw();
501		if (!ktime_before(cur, end))
502			break;
503
504		if (ktime_after(ktime_add_us(cur, wait), end))
505			wait = ktime_us_delta(end, cur);
506
507		if (atomic)
508			udelay(wait);
509		else
510			usleep_range(wait, wait << 1);
511		wait <<= 1;
512	}
513
514	if (ret != 0) {
515		read = xe_mmio_read32(gt, reg);
516		if ((read & mask) == val)
517			ret = 0;
518	}
519
520	if (out_val)
521		*out_val = read;
522
523	return ret;
524}