Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v4.6.
  1/*
  2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 21 * SOFTWARE.
 22 *
 23 * Authors:
 24 *    Kevin Tian <kevin.tian@intel.com>
 25 *    Zhi Wang <zhi.a.wang@intel.com>
 26 *
 27 * Contributors:
 28 *    Min he <min.he@intel.com>
 29 *
 30 */
 31
 32#include <linux/eventfd.h>
 33
 34#include "i915_drv.h"
 35#include "i915_reg.h"
 36#include "gvt.h"
 37#include "trace.h"
 38
 39struct intel_gvt_irq_info {
 40	char *name;
 41	i915_reg_t reg_base;
 42	enum intel_gvt_event_type bit_to_event[INTEL_GVT_IRQ_BITWIDTH];
 43	unsigned long warned;
 44	int group;
 45	DECLARE_BITMAP(downstream_irq_bitmap, INTEL_GVT_IRQ_BITWIDTH);
 46	bool has_upstream_irq;
 47};
 48
 49struct intel_gvt_irq_map {
 50	int up_irq_group;
 51	int up_irq_bit;
 52	int down_irq_group;
 53	u32 down_irq_bitmask;
 54};
 55
 56/* common offset among interrupt control registers */
 57#define regbase_to_isr(base)	(base)
 58#define regbase_to_imr(base)	(base + 0x4)
 59#define regbase_to_iir(base)	(base + 0x8)
 60#define regbase_to_ier(base)	(base + 0xC)
 61
 62#define iir_to_regbase(iir)    (iir - 0x8)
 63#define ier_to_regbase(ier)    (ier - 0xC)
 64
 65#define get_event_virt_handler(irq, e)	(irq->events[e].v_handler)
 66#define get_irq_info(irq, e)		(irq->events[e].info)
 67
 68#define irq_to_gvt(irq) \
 69	container_of(irq, struct intel_gvt, irq)
 70
 71static void update_upstream_irq(struct intel_vgpu *vgpu,
 72		struct intel_gvt_irq_info *info);
 73
 74static const char * const irq_name[INTEL_GVT_EVENT_MAX] = {
 75	[RCS_MI_USER_INTERRUPT] = "Render CS MI USER INTERRUPT",
 76	[RCS_DEBUG] = "Render EU debug from SVG",
 77	[RCS_MMIO_SYNC_FLUSH] = "Render MMIO sync flush status",
 78	[RCS_CMD_STREAMER_ERR] = "Render CS error interrupt",
 79	[RCS_PIPE_CONTROL] = "Render PIPE CONTROL notify",
 80	[RCS_WATCHDOG_EXCEEDED] = "Render CS Watchdog counter exceeded",
 81	[RCS_PAGE_DIRECTORY_FAULT] = "Render page directory faults",
 82	[RCS_AS_CONTEXT_SWITCH] = "Render AS Context Switch Interrupt",
 83
 84	[VCS_MI_USER_INTERRUPT] = "Video CS MI USER INTERRUPT",
 85	[VCS_MMIO_SYNC_FLUSH] = "Video MMIO sync flush status",
 86	[VCS_CMD_STREAMER_ERR] = "Video CS error interrupt",
 87	[VCS_MI_FLUSH_DW] = "Video MI FLUSH DW notify",
 88	[VCS_WATCHDOG_EXCEEDED] = "Video CS Watchdog counter exceeded",
 89	[VCS_PAGE_DIRECTORY_FAULT] = "Video page directory faults",
 90	[VCS_AS_CONTEXT_SWITCH] = "Video AS Context Switch Interrupt",
 91	[VCS2_MI_USER_INTERRUPT] = "VCS2 Video CS MI USER INTERRUPT",
 92	[VCS2_MI_FLUSH_DW] = "VCS2 Video MI FLUSH DW notify",
 93	[VCS2_AS_CONTEXT_SWITCH] = "VCS2 Context Switch Interrupt",
 94
 95	[BCS_MI_USER_INTERRUPT] = "Blitter CS MI USER INTERRUPT",
 96	[BCS_MMIO_SYNC_FLUSH] = "Billter MMIO sync flush status",
 97	[BCS_CMD_STREAMER_ERR] = "Blitter CS error interrupt",
 98	[BCS_MI_FLUSH_DW] = "Blitter MI FLUSH DW notify",
 99	[BCS_PAGE_DIRECTORY_FAULT] = "Blitter page directory faults",
100	[BCS_AS_CONTEXT_SWITCH] = "Blitter AS Context Switch Interrupt",
101
102	[VECS_MI_FLUSH_DW] = "Video Enhanced Streamer MI FLUSH DW notify",
103	[VECS_AS_CONTEXT_SWITCH] = "VECS Context Switch Interrupt",
104
105	[PIPE_A_FIFO_UNDERRUN] = "Pipe A FIFO underrun",
106	[PIPE_A_CRC_ERR] = "Pipe A CRC error",
107	[PIPE_A_CRC_DONE] = "Pipe A CRC done",
108	[PIPE_A_VSYNC] = "Pipe A vsync",
109	[PIPE_A_LINE_COMPARE] = "Pipe A line compare",
110	[PIPE_A_ODD_FIELD] = "Pipe A odd field",
111	[PIPE_A_EVEN_FIELD] = "Pipe A even field",
112	[PIPE_A_VBLANK] = "Pipe A vblank",
113	[PIPE_B_FIFO_UNDERRUN] = "Pipe B FIFO underrun",
114	[PIPE_B_CRC_ERR] = "Pipe B CRC error",
115	[PIPE_B_CRC_DONE] = "Pipe B CRC done",
116	[PIPE_B_VSYNC] = "Pipe B vsync",
117	[PIPE_B_LINE_COMPARE] = "Pipe B line compare",
118	[PIPE_B_ODD_FIELD] = "Pipe B odd field",
119	[PIPE_B_EVEN_FIELD] = "Pipe B even field",
120	[PIPE_B_VBLANK] = "Pipe B vblank",
121	[PIPE_C_VBLANK] = "Pipe C vblank",
122	[DPST_PHASE_IN] = "DPST phase in event",
123	[DPST_HISTOGRAM] = "DPST histogram event",
124	[GSE] = "GSE",
125	[DP_A_HOTPLUG] = "DP A Hotplug",
126	[AUX_CHANNEL_A] = "AUX Channel A",
127	[PERF_COUNTER] = "Performance counter",
128	[POISON] = "Poison",
129	[GTT_FAULT] = "GTT fault",
130	[PRIMARY_A_FLIP_DONE] = "Primary Plane A flip done",
131	[PRIMARY_B_FLIP_DONE] = "Primary Plane B flip done",
132	[PRIMARY_C_FLIP_DONE] = "Primary Plane C flip done",
133	[SPRITE_A_FLIP_DONE] = "Sprite Plane A flip done",
134	[SPRITE_B_FLIP_DONE] = "Sprite Plane B flip done",
135	[SPRITE_C_FLIP_DONE] = "Sprite Plane C flip done",
136
137	[PCU_THERMAL] = "PCU Thermal Event",
138	[PCU_PCODE2DRIVER_MAILBOX] = "PCU pcode2driver mailbox event",
139
140	[FDI_RX_INTERRUPTS_TRANSCODER_A] = "FDI RX Interrupts Combined A",
141	[AUDIO_CP_CHANGE_TRANSCODER_A] = "Audio CP Change Transcoder A",
142	[AUDIO_CP_REQUEST_TRANSCODER_A] = "Audio CP Request Transcoder A",
143	[FDI_RX_INTERRUPTS_TRANSCODER_B] = "FDI RX Interrupts Combined B",
144	[AUDIO_CP_CHANGE_TRANSCODER_B] = "Audio CP Change Transcoder B",
145	[AUDIO_CP_REQUEST_TRANSCODER_B] = "Audio CP Request Transcoder B",
146	[FDI_RX_INTERRUPTS_TRANSCODER_C] = "FDI RX Interrupts Combined C",
147	[AUDIO_CP_CHANGE_TRANSCODER_C] = "Audio CP Change Transcoder C",
148	[AUDIO_CP_REQUEST_TRANSCODER_C] = "Audio CP Request Transcoder C",
149	[ERR_AND_DBG] = "South Error and Debug Interrupts Combined",
150	[GMBUS] = "Gmbus",
151	[SDVO_B_HOTPLUG] = "SDVO B hotplug",
152	[CRT_HOTPLUG] = "CRT Hotplug",
153	[DP_B_HOTPLUG] = "DisplayPort/HDMI/DVI B Hotplug",
154	[DP_C_HOTPLUG] = "DisplayPort/HDMI/DVI C Hotplug",
155	[DP_D_HOTPLUG] = "DisplayPort/HDMI/DVI D Hotplug",
156	[AUX_CHANNEL_B] = "AUX Channel B",
157	[AUX_CHANNEL_C] = "AUX Channel C",
158	[AUX_CHANNEL_D] = "AUX Channel D",
159	[AUDIO_POWER_STATE_CHANGE_B] = "Audio Power State change Port B",
160	[AUDIO_POWER_STATE_CHANGE_C] = "Audio Power State change Port C",
161	[AUDIO_POWER_STATE_CHANGE_D] = "Audio Power State change Port D",
162
163	[INTEL_GVT_EVENT_RESERVED] = "RESERVED EVENTS!!!",
164};
165
166static inline struct intel_gvt_irq_info *regbase_to_irq_info(
167		struct intel_gvt *gvt,
168		unsigned int reg)
169{
170	struct intel_gvt_irq *irq = &gvt->irq;
171	int i;
172
173	for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) {
174		if (i915_mmio_reg_offset(irq->info[i]->reg_base) == reg)
175			return irq->info[i];
176	}
177
178	return NULL;
179}
180
181/**
182 * intel_vgpu_reg_imr_handler - Generic IMR register emulation write handler
183 * @vgpu: a vGPU
184 * @reg: register offset written by guest
185 * @p_data: register data written by guest
186 * @bytes: register data length
187 *
188 * This function is used to emulate the generic IMR register bit change
189 * behavior.
190 *
191 * Returns:
192 * Zero on success, negative error code if failed.
193 *
194 */
195int intel_vgpu_reg_imr_handler(struct intel_vgpu *vgpu,
196	unsigned int reg, void *p_data, unsigned int bytes)
197{
198	struct intel_gvt *gvt = vgpu->gvt;
199	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
200	u32 imr = *(u32 *)p_data;
201
202	trace_write_ir(vgpu->id, "IMR", reg, imr, vgpu_vreg(vgpu, reg),
203		       (vgpu_vreg(vgpu, reg) ^ imr));
204
205	vgpu_vreg(vgpu, reg) = imr;
206
207	ops->check_pending_irq(vgpu);
208
209	return 0;
210}
211
212/**
213 * intel_vgpu_reg_master_irq_handler - master IRQ write emulation handler
214 * @vgpu: a vGPU
215 * @reg: register offset written by guest
216 * @p_data: register data written by guest
217 * @bytes: register data length
218 *
219 * This function is used to emulate the master IRQ register on gen8+.
220 *
221 * Returns:
222 * Zero on success, negative error code if failed.
223 *
224 */
225int intel_vgpu_reg_master_irq_handler(struct intel_vgpu *vgpu,
226	unsigned int reg, void *p_data, unsigned int bytes)
227{
228	struct intel_gvt *gvt = vgpu->gvt;
229	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
230	u32 ier = *(u32 *)p_data;
231	u32 virtual_ier = vgpu_vreg(vgpu, reg);
232
233	trace_write_ir(vgpu->id, "MASTER_IRQ", reg, ier, virtual_ier,
234		       (virtual_ier ^ ier));
235
236	/*
237	 * GEN8_MASTER_IRQ is a special irq register,
238	 * only bit 31 is allowed to be modified
239	 * and treated as an IER bit.
240	 */
241	ier &= GEN8_MASTER_IRQ_CONTROL;
242	virtual_ier &= GEN8_MASTER_IRQ_CONTROL;
243	vgpu_vreg(vgpu, reg) &= ~GEN8_MASTER_IRQ_CONTROL;
244	vgpu_vreg(vgpu, reg) |= ier;
245
246	ops->check_pending_irq(vgpu);
247
248	return 0;
249}
250
251/**
252 * intel_vgpu_reg_ier_handler - Generic IER write emulation handler
253 * @vgpu: a vGPU
254 * @reg: register offset written by guest
255 * @p_data: register data written by guest
256 * @bytes: register data length
257 *
258 * This function is used to emulate the generic IER register behavior.
259 *
260 * Returns:
261 * Zero on success, negative error code if failed.
262 *
263 */
264int intel_vgpu_reg_ier_handler(struct intel_vgpu *vgpu,
265	unsigned int reg, void *p_data, unsigned int bytes)
266{
267	struct intel_gvt *gvt = vgpu->gvt;
268	struct drm_i915_private *i915 = gvt->gt->i915;
269	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
270	struct intel_gvt_irq_info *info;
271	u32 ier = *(u32 *)p_data;
272
273	trace_write_ir(vgpu->id, "IER", reg, ier, vgpu_vreg(vgpu, reg),
274		       (vgpu_vreg(vgpu, reg) ^ ier));
275
276	vgpu_vreg(vgpu, reg) = ier;
277
278	info = regbase_to_irq_info(gvt, ier_to_regbase(reg));
279	if (drm_WARN_ON(&i915->drm, !info))
280		return -EINVAL;
281
282	if (info->has_upstream_irq)
283		update_upstream_irq(vgpu, info);
284
285	ops->check_pending_irq(vgpu);
286
287	return 0;
288}
289
290/**
291 * intel_vgpu_reg_iir_handler - Generic IIR write emulation handler
292 * @vgpu: a vGPU
293 * @reg: register offset written by guest
294 * @p_data: register data written by guest
295 * @bytes: register data length
296 *
297 * This function is used to emulate the generic IIR register behavior.
298 *
299 * Returns:
300 * Zero on success, negative error code if failed.
301 *
302 */
303int intel_vgpu_reg_iir_handler(struct intel_vgpu *vgpu, unsigned int reg,
304	void *p_data, unsigned int bytes)
305{
306	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
307	struct intel_gvt_irq_info *info = regbase_to_irq_info(vgpu->gvt,
308		iir_to_regbase(reg));
309	u32 iir = *(u32 *)p_data;
310
311	trace_write_ir(vgpu->id, "IIR", reg, iir, vgpu_vreg(vgpu, reg),
312		       (vgpu_vreg(vgpu, reg) ^ iir));
313
314	if (drm_WARN_ON(&i915->drm, !info))
315		return -EINVAL;
316
317	vgpu_vreg(vgpu, reg) &= ~iir;
318
319	if (info->has_upstream_irq)
320		update_upstream_irq(vgpu, info);
321	return 0;
322}
323
324static struct intel_gvt_irq_map gen8_irq_map[] = {
325	{ INTEL_GVT_IRQ_INFO_MASTER, 0, INTEL_GVT_IRQ_INFO_GT0, 0xffff },
326	{ INTEL_GVT_IRQ_INFO_MASTER, 1, INTEL_GVT_IRQ_INFO_GT0, 0xffff0000 },
327	{ INTEL_GVT_IRQ_INFO_MASTER, 2, INTEL_GVT_IRQ_INFO_GT1, 0xffff },
328	{ INTEL_GVT_IRQ_INFO_MASTER, 3, INTEL_GVT_IRQ_INFO_GT1, 0xffff0000 },
329	{ INTEL_GVT_IRQ_INFO_MASTER, 4, INTEL_GVT_IRQ_INFO_GT2, 0xffff },
330	{ INTEL_GVT_IRQ_INFO_MASTER, 6, INTEL_GVT_IRQ_INFO_GT3, 0xffff },
331	{ INTEL_GVT_IRQ_INFO_MASTER, 16, INTEL_GVT_IRQ_INFO_DE_PIPE_A, ~0 },
332	{ INTEL_GVT_IRQ_INFO_MASTER, 17, INTEL_GVT_IRQ_INFO_DE_PIPE_B, ~0 },
333	{ INTEL_GVT_IRQ_INFO_MASTER, 18, INTEL_GVT_IRQ_INFO_DE_PIPE_C, ~0 },
334	{ INTEL_GVT_IRQ_INFO_MASTER, 20, INTEL_GVT_IRQ_INFO_DE_PORT, ~0 },
335	{ INTEL_GVT_IRQ_INFO_MASTER, 22, INTEL_GVT_IRQ_INFO_DE_MISC, ~0 },
336	{ INTEL_GVT_IRQ_INFO_MASTER, 23, INTEL_GVT_IRQ_INFO_PCH, ~0 },
337	{ INTEL_GVT_IRQ_INFO_MASTER, 30, INTEL_GVT_IRQ_INFO_PCU, ~0 },
338	{ -1, -1, ~0 },
339};
340
341static void update_upstream_irq(struct intel_vgpu *vgpu,
342		struct intel_gvt_irq_info *info)
343{
344	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
345	struct intel_gvt_irq *irq = &vgpu->gvt->irq;
346	struct intel_gvt_irq_map *map = irq->irq_map;
347	struct intel_gvt_irq_info *up_irq_info = NULL;
348	u32 set_bits = 0;
349	u32 clear_bits = 0;
350	int bit;
351	u32 val = vgpu_vreg(vgpu,
352			regbase_to_iir(i915_mmio_reg_offset(info->reg_base)))
353		& vgpu_vreg(vgpu,
354			regbase_to_ier(i915_mmio_reg_offset(info->reg_base)));
355
356	if (!info->has_upstream_irq)
357		return;
358
359	for (map = irq->irq_map; map->up_irq_bit != -1; map++) {
360		if (info->group != map->down_irq_group)
361			continue;
362
363		if (!up_irq_info)
364			up_irq_info = irq->info[map->up_irq_group];
365		else
366			drm_WARN_ON(&i915->drm, up_irq_info !=
367				    irq->info[map->up_irq_group]);
368
369		bit = map->up_irq_bit;
370
371		if (val & map->down_irq_bitmask)
372			set_bits |= (1 << bit);
373		else
374			clear_bits |= (1 << bit);
375	}
376
377	if (drm_WARN_ON(&i915->drm, !up_irq_info))
378		return;
379
380	if (up_irq_info->group == INTEL_GVT_IRQ_INFO_MASTER) {
381		u32 isr = i915_mmio_reg_offset(up_irq_info->reg_base);
382
383		vgpu_vreg(vgpu, isr) &= ~clear_bits;
384		vgpu_vreg(vgpu, isr) |= set_bits;
385	} else {
386		u32 iir = regbase_to_iir(
387			i915_mmio_reg_offset(up_irq_info->reg_base));
388		u32 imr = regbase_to_imr(
389			i915_mmio_reg_offset(up_irq_info->reg_base));
390
391		vgpu_vreg(vgpu, iir) |= (set_bits & ~vgpu_vreg(vgpu, imr));
392	}
393
394	if (up_irq_info->has_upstream_irq)
395		update_upstream_irq(vgpu, up_irq_info);
396}
397
398static void init_irq_map(struct intel_gvt_irq *irq)
399{
400	struct intel_gvt_irq_map *map;
401	struct intel_gvt_irq_info *up_info, *down_info;
402	int up_bit;
403
404	for (map = irq->irq_map; map->up_irq_bit != -1; map++) {
405		up_info = irq->info[map->up_irq_group];
406		up_bit = map->up_irq_bit;
407		down_info = irq->info[map->down_irq_group];
408
409		set_bit(up_bit, up_info->downstream_irq_bitmap);
410		down_info->has_upstream_irq = true;
411
412		gvt_dbg_irq("[up] grp %d bit %d -> [down] grp %d bitmask %x\n",
413			up_info->group, up_bit,
414			down_info->group, map->down_irq_bitmask);
415	}
416}
417
418/* =======================vEvent injection===================== */
419
420#define MSI_CAP_CONTROL(offset) (offset + 2)
421#define MSI_CAP_ADDRESS(offset) (offset + 4)
422#define MSI_CAP_DATA(offset) (offset + 8)
423#define MSI_CAP_EN 0x1
424
425static void inject_virtual_interrupt(struct intel_vgpu *vgpu)
426{
427	unsigned long offset = vgpu->gvt->device_info.msi_cap_offset;
428	u16 control, data;
429	u32 addr;
430
431	control = *(u16 *)(vgpu_cfg_space(vgpu) + MSI_CAP_CONTROL(offset));
432	addr = *(u32 *)(vgpu_cfg_space(vgpu) + MSI_CAP_ADDRESS(offset));
433	data = *(u16 *)(vgpu_cfg_space(vgpu) + MSI_CAP_DATA(offset));
434
435	/* Do not generate MSI if MSIEN is disabled */
436	if (!(control & MSI_CAP_EN))
437		return;
438
439	if (WARN(control & GENMASK(15, 1), "only support one MSI format\n"))
440		return;
441
442	trace_inject_msi(vgpu->id, addr, data);
443
444	/*
445	 * When guest is powered off, msi_trigger is set to NULL, but vgpu's
446	 * config and mmio register isn't restored to default during guest
447	 * poweroff. If this vgpu is still used in next vm, this vgpu's pipe
448	 * may be enabled, then once this vgpu is active, it will get inject
449	 * vblank interrupt request. But msi_trigger is null until msi is
450	 * enabled by guest. so if msi_trigger is null, success is still
451	 * returned and don't inject interrupt into guest.
452	 */
453	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
454		return;
455	if (vgpu->msi_trigger)
456		eventfd_signal(vgpu->msi_trigger);
457}
458
459static void propagate_event(struct intel_gvt_irq *irq,
460	enum intel_gvt_event_type event, struct intel_vgpu *vgpu)
461{
462	struct intel_gvt_irq_info *info;
463	unsigned int reg_base;
464	int bit;
465
466	info = get_irq_info(irq, event);
467	if (WARN_ON(!info))
468		return;
469
470	reg_base = i915_mmio_reg_offset(info->reg_base);
471	bit = irq->events[event].bit;
472
473	if (!test_bit(bit, (void *)&vgpu_vreg(vgpu,
474					regbase_to_imr(reg_base)))) {
475		trace_propagate_event(vgpu->id, irq_name[event], bit);
476		set_bit(bit, (void *)&vgpu_vreg(vgpu,
477					regbase_to_iir(reg_base)));
478	}
479}
480
481/* =======================vEvent Handlers===================== */
482static void handle_default_event_virt(struct intel_gvt_irq *irq,
483	enum intel_gvt_event_type event, struct intel_vgpu *vgpu)
484{
485	if (!vgpu->irq.irq_warn_once[event]) {
486		gvt_dbg_core("vgpu%d: IRQ receive event %d (%s)\n",
487			vgpu->id, event, irq_name[event]);
488		vgpu->irq.irq_warn_once[event] = true;
489	}
490	propagate_event(irq, event, vgpu);
491}
492
493/* =====================GEN specific logic======================= */
494/* GEN8 interrupt routines. */
495
496#define DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(regname, regbase) \
497static struct intel_gvt_irq_info gen8_##regname##_info = { \
498	.name = #regname"-IRQ", \
499	.reg_base = (regbase), \
500	.bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = \
501		INTEL_GVT_EVENT_RESERVED}, \
502}
503
504DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt0, GEN8_GT_ISR(0));
505DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt1, GEN8_GT_ISR(1));
506DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt2, GEN8_GT_ISR(2));
507DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt3, GEN8_GT_ISR(3));
508DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_a, GEN8_DE_PIPE_ISR(PIPE_A));
509DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_b, GEN8_DE_PIPE_ISR(PIPE_B));
510DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_c, GEN8_DE_PIPE_ISR(PIPE_C));
511DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_port, GEN8_DE_PORT_ISR);
512DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_misc, GEN8_DE_MISC_ISR);
513DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(pcu, GEN8_PCU_ISR);
514DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(master, GEN8_MASTER_IRQ);
515
516static struct intel_gvt_irq_info gvt_base_pch_info = {
517	.name = "PCH-IRQ",
518	.reg_base = SDEISR,
519	.bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] =
520		INTEL_GVT_EVENT_RESERVED},
521};
522
523static void gen8_check_pending_irq(struct intel_vgpu *vgpu)
524{
525	struct intel_gvt_irq *irq = &vgpu->gvt->irq;
526	int i;
527
528	if (!(vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) &
529				GEN8_MASTER_IRQ_CONTROL))
530		return;
531
532	for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) {
533		struct intel_gvt_irq_info *info = irq->info[i];
534		u32 reg_base;
535
536		if (!info->has_upstream_irq)
537			continue;
538
539		reg_base = i915_mmio_reg_offset(info->reg_base);
540		if ((vgpu_vreg(vgpu, regbase_to_iir(reg_base))
541				& vgpu_vreg(vgpu, regbase_to_ier(reg_base))))
542			update_upstream_irq(vgpu, info);
543	}
544
545	if (vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ))
546			& ~GEN8_MASTER_IRQ_CONTROL)
547		inject_virtual_interrupt(vgpu);
548}
549
550static void gen8_init_irq(
551		struct intel_gvt_irq *irq)
552{
553	struct intel_gvt *gvt = irq_to_gvt(irq);
554
555#define SET_BIT_INFO(s, b, e, i)		\
556	do {					\
557		s->events[e].bit = b;		\
558		s->events[e].info = s->info[i];	\
559		s->info[i]->bit_to_event[b] = e;\
560	} while (0)
561
562#define SET_IRQ_GROUP(s, g, i) \
563	do { \
564		s->info[g] = i; \
565		(i)->group = g; \
566		set_bit(g, s->irq_info_bitmap); \
567	} while (0)
568
569	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_MASTER, &gen8_master_info);
570	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT0, &gen8_gt0_info);
571	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT1, &gen8_gt1_info);
572	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT2, &gen8_gt2_info);
573	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT3, &gen8_gt3_info);
574	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_A, &gen8_de_pipe_a_info);
575	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_B, &gen8_de_pipe_b_info);
576	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_C, &gen8_de_pipe_c_info);
577	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PORT, &gen8_de_port_info);
578	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_MISC, &gen8_de_misc_info);
579	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCU, &gen8_pcu_info);
580	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCH, &gvt_base_pch_info);
581
582	/* GEN8 level 2 interrupts. */
583
584	/* GEN8 interrupt GT0 events */
585	SET_BIT_INFO(irq, 0, RCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0);
586	SET_BIT_INFO(irq, 4, RCS_PIPE_CONTROL, INTEL_GVT_IRQ_INFO_GT0);
587	SET_BIT_INFO(irq, 8, RCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0);
588
589	SET_BIT_INFO(irq, 16, BCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0);
590	SET_BIT_INFO(irq, 20, BCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT0);
591	SET_BIT_INFO(irq, 24, BCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0);
592
593	/* GEN8 interrupt GT1 events */
594	SET_BIT_INFO(irq, 0, VCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT1);
595	SET_BIT_INFO(irq, 4, VCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT1);
596	SET_BIT_INFO(irq, 8, VCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT1);
597
598	if (HAS_ENGINE(gvt->gt, VCS1)) {
599		SET_BIT_INFO(irq, 16, VCS2_MI_USER_INTERRUPT,
600			INTEL_GVT_IRQ_INFO_GT1);
601		SET_BIT_INFO(irq, 20, VCS2_MI_FLUSH_DW,
602			INTEL_GVT_IRQ_INFO_GT1);
603		SET_BIT_INFO(irq, 24, VCS2_AS_CONTEXT_SWITCH,
604			INTEL_GVT_IRQ_INFO_GT1);
605	}
606
607	/* GEN8 interrupt GT3 events */
608	SET_BIT_INFO(irq, 0, VECS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT3);
609	SET_BIT_INFO(irq, 4, VECS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT3);
610	SET_BIT_INFO(irq, 8, VECS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT3);
611
612	SET_BIT_INFO(irq, 0, PIPE_A_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
613	SET_BIT_INFO(irq, 0, PIPE_B_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
614	SET_BIT_INFO(irq, 0, PIPE_C_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
615
616	/* GEN8 interrupt DE PORT events */
617	SET_BIT_INFO(irq, 0, AUX_CHANNEL_A, INTEL_GVT_IRQ_INFO_DE_PORT);
618	SET_BIT_INFO(irq, 3, DP_A_HOTPLUG, INTEL_GVT_IRQ_INFO_DE_PORT);
619
620	/* GEN8 interrupt DE MISC events */
621	SET_BIT_INFO(irq, 0, GSE, INTEL_GVT_IRQ_INFO_DE_MISC);
622
623	/* PCH events */
624	SET_BIT_INFO(irq, 17, GMBUS, INTEL_GVT_IRQ_INFO_PCH);
625	SET_BIT_INFO(irq, 19, CRT_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
626	SET_BIT_INFO(irq, 21, DP_B_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
627	SET_BIT_INFO(irq, 22, DP_C_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
628	SET_BIT_INFO(irq, 23, DP_D_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
629
630	if (IS_BROADWELL(gvt->gt->i915)) {
631		SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_PCH);
632		SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_PCH);
633		SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_PCH);
634
635		SET_BIT_INFO(irq, 4, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
636		SET_BIT_INFO(irq, 5, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
637
638		SET_BIT_INFO(irq, 4, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
639		SET_BIT_INFO(irq, 5, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
640
641		SET_BIT_INFO(irq, 4, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
642		SET_BIT_INFO(irq, 5, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
643	} else if (GRAPHICS_VER(gvt->gt->i915) >= 9) {
644		SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_DE_PORT);
645		SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_DE_PORT);
646		SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_DE_PORT);
647
648		SET_BIT_INFO(irq, 3, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
649		SET_BIT_INFO(irq, 3, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
650		SET_BIT_INFO(irq, 3, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
651
652		SET_BIT_INFO(irq, 4, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
653		SET_BIT_INFO(irq, 4, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
654		SET_BIT_INFO(irq, 4, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
655	}
656
657	/* GEN8 interrupt PCU events */
658	SET_BIT_INFO(irq, 24, PCU_THERMAL, INTEL_GVT_IRQ_INFO_PCU);
659	SET_BIT_INFO(irq, 25, PCU_PCODE2DRIVER_MAILBOX, INTEL_GVT_IRQ_INFO_PCU);
660}
661
662static const struct intel_gvt_irq_ops gen8_irq_ops = {
663	.init_irq = gen8_init_irq,
664	.check_pending_irq = gen8_check_pending_irq,
665};
666
667/**
668 * intel_vgpu_trigger_virtual_event - Trigger a virtual event for a vGPU
669 * @vgpu: a vGPU
670 * @event: interrupt event
671 *
672 * This function is used to trigger a virtual interrupt event for vGPU.
673 * The caller provides the event to be triggered, the framework itself
674 * will emulate the IRQ register bit change.
675 *
676 */
677void intel_vgpu_trigger_virtual_event(struct intel_vgpu *vgpu,
678	enum intel_gvt_event_type event)
679{
680	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
681	struct intel_gvt *gvt = vgpu->gvt;
682	struct intel_gvt_irq *irq = &gvt->irq;
683	gvt_event_virt_handler_t handler;
684	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
685
686	handler = get_event_virt_handler(irq, event);
687	drm_WARN_ON(&i915->drm, !handler);
688
689	handler(irq, event, vgpu);
690
691	ops->check_pending_irq(vgpu);
692}
693
694static void init_events(
695	struct intel_gvt_irq *irq)
696{
697	int i;
698
699	for (i = 0; i < INTEL_GVT_EVENT_MAX; i++) {
700		irq->events[i].info = NULL;
701		irq->events[i].v_handler = handle_default_event_virt;
702	}
703}
704
705/**
706 * intel_gvt_init_irq - initialize GVT-g IRQ emulation subsystem
707 * @gvt: a GVT device
708 *
709 * This function is called at driver loading stage, to initialize the GVT-g IRQ
710 * emulation subsystem.
711 *
712 * Returns:
713 * Zero on success, negative error code if failed.
714 */
715int intel_gvt_init_irq(struct intel_gvt *gvt)
716{
717	struct intel_gvt_irq *irq = &gvt->irq;
718
719	gvt_dbg_core("init irq framework\n");
720
721	irq->ops = &gen8_irq_ops;
722	irq->irq_map = gen8_irq_map;
723
724	/* common event initialization */
725	init_events(irq);
726
727	/* gen specific initialization */
728	irq->ops->init_irq(irq);
729
730	init_irq_map(irq);
731
732	return 0;
733}