Loading...
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include <linux/mutex.h>
24#include <linux/log2.h>
25#include <linux/sched.h>
26#include <linux/slab.h>
27#include <linux/amd-iommu.h>
28#include <linux/notifier.h>
29#include <linux/compat.h>
30
31struct mm_struct;
32
33#include "kfd_priv.h"
34#include "kfd_dbgmgr.h"
35
36/*
37 * Initial size for the array of queues.
38 * The allocated size is doubled each time
39 * it is exceeded up to MAX_PROCESS_QUEUES.
40 */
41#define INITIAL_QUEUE_ARRAY_SIZE 16
42
43/*
44 * List of struct kfd_process (field kfd_process).
45 * Unique/indexed by mm_struct*
46 */
47#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
48static DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
49static DEFINE_MUTEX(kfd_processes_mutex);
50
51DEFINE_STATIC_SRCU(kfd_processes_srcu);
52
53static struct workqueue_struct *kfd_process_wq;
54
55struct kfd_process_release_work {
56 struct work_struct kfd_work;
57 struct kfd_process *p;
58};
59
60static struct kfd_process *find_process(const struct task_struct *thread);
61static struct kfd_process *create_process(const struct task_struct *thread);
62
63void kfd_process_create_wq(void)
64{
65 if (!kfd_process_wq)
66 kfd_process_wq = create_workqueue("kfd_process_wq");
67}
68
69void kfd_process_destroy_wq(void)
70{
71 if (kfd_process_wq) {
72 flush_workqueue(kfd_process_wq);
73 destroy_workqueue(kfd_process_wq);
74 kfd_process_wq = NULL;
75 }
76}
77
78struct kfd_process *kfd_create_process(const struct task_struct *thread)
79{
80 struct kfd_process *process;
81
82 BUG_ON(!kfd_process_wq);
83
84 if (thread->mm == NULL)
85 return ERR_PTR(-EINVAL);
86
87 /* Only the pthreads threading model is supported. */
88 if (thread->group_leader->mm != thread->mm)
89 return ERR_PTR(-EINVAL);
90
91 /* Take mmap_sem because we call __mmu_notifier_register inside */
92 down_write(&thread->mm->mmap_sem);
93
94 /*
95 * take kfd processes mutex before starting of process creation
96 * so there won't be a case where two threads of the same process
97 * create two kfd_process structures
98 */
99 mutex_lock(&kfd_processes_mutex);
100
101 /* A prior open of /dev/kfd could have already created the process. */
102 process = find_process(thread);
103 if (process)
104 pr_debug("kfd: process already found\n");
105
106 if (!process)
107 process = create_process(thread);
108
109 mutex_unlock(&kfd_processes_mutex);
110
111 up_write(&thread->mm->mmap_sem);
112
113 return process;
114}
115
116struct kfd_process *kfd_get_process(const struct task_struct *thread)
117{
118 struct kfd_process *process;
119
120 if (thread->mm == NULL)
121 return ERR_PTR(-EINVAL);
122
123 /* Only the pthreads threading model is supported. */
124 if (thread->group_leader->mm != thread->mm)
125 return ERR_PTR(-EINVAL);
126
127 process = find_process(thread);
128
129 return process;
130}
131
132static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
133{
134 struct kfd_process *process;
135
136 hash_for_each_possible_rcu(kfd_processes_table, process,
137 kfd_processes, (uintptr_t)mm)
138 if (process->mm == mm)
139 return process;
140
141 return NULL;
142}
143
144static struct kfd_process *find_process(const struct task_struct *thread)
145{
146 struct kfd_process *p;
147 int idx;
148
149 idx = srcu_read_lock(&kfd_processes_srcu);
150 p = find_process_by_mm(thread->mm);
151 srcu_read_unlock(&kfd_processes_srcu, idx);
152
153 return p;
154}
155
156static void kfd_process_wq_release(struct work_struct *work)
157{
158 struct kfd_process_release_work *my_work;
159 struct kfd_process_device *pdd, *temp;
160 struct kfd_process *p;
161
162 my_work = (struct kfd_process_release_work *) work;
163
164 p = my_work->p;
165
166 pr_debug("Releasing process (pasid %d) in workqueue\n",
167 p->pasid);
168
169 mutex_lock(&p->mutex);
170
171 list_for_each_entry_safe(pdd, temp, &p->per_device_data,
172 per_device_list) {
173 pr_debug("Releasing pdd (topology id %d) for process (pasid %d) in workqueue\n",
174 pdd->dev->id, p->pasid);
175
176 if (pdd->reset_wavefronts)
177 dbgdev_wave_reset_wavefronts(pdd->dev, p);
178
179 amd_iommu_unbind_pasid(pdd->dev->pdev, p->pasid);
180 list_del(&pdd->per_device_list);
181
182 kfree(pdd);
183 }
184
185 kfd_event_free_process(p);
186
187 kfd_pasid_free(p->pasid);
188
189 mutex_unlock(&p->mutex);
190
191 mutex_destroy(&p->mutex);
192
193 kfree(p->queues);
194
195 kfree(p);
196
197 kfree(work);
198}
199
200static void kfd_process_destroy_delayed(struct rcu_head *rcu)
201{
202 struct kfd_process_release_work *work;
203 struct kfd_process *p;
204
205 BUG_ON(!kfd_process_wq);
206
207 p = container_of(rcu, struct kfd_process, rcu);
208 BUG_ON(atomic_read(&p->mm->mm_count) <= 0);
209
210 mmdrop(p->mm);
211
212 work = kmalloc(sizeof(struct kfd_process_release_work), GFP_ATOMIC);
213
214 if (work) {
215 INIT_WORK((struct work_struct *) work, kfd_process_wq_release);
216 work->p = p;
217 queue_work(kfd_process_wq, (struct work_struct *) work);
218 }
219}
220
221static void kfd_process_notifier_release(struct mmu_notifier *mn,
222 struct mm_struct *mm)
223{
224 struct kfd_process *p;
225 struct kfd_process_device *pdd = NULL;
226
227 /*
228 * The kfd_process structure can not be free because the
229 * mmu_notifier srcu is read locked
230 */
231 p = container_of(mn, struct kfd_process, mmu_notifier);
232 BUG_ON(p->mm != mm);
233
234 mutex_lock(&kfd_processes_mutex);
235 hash_del_rcu(&p->kfd_processes);
236 mutex_unlock(&kfd_processes_mutex);
237 synchronize_srcu(&kfd_processes_srcu);
238
239 mutex_lock(&p->mutex);
240
241 /* In case our notifier is called before IOMMU notifier */
242 pqm_uninit(&p->pqm);
243
244 /* Iterate over all process device data structure and check
245 * if we should reset all wavefronts */
246 list_for_each_entry(pdd, &p->per_device_data, per_device_list)
247 if (pdd->reset_wavefronts) {
248 pr_warn("amdkfd: Resetting all wave fronts\n");
249 dbgdev_wave_reset_wavefronts(pdd->dev, p);
250 pdd->reset_wavefronts = false;
251 }
252
253 mutex_unlock(&p->mutex);
254
255 /*
256 * Because we drop mm_count inside kfd_process_destroy_delayed
257 * and because the mmu_notifier_unregister function also drop
258 * mm_count we need to take an extra count here.
259 */
260 atomic_inc(&p->mm->mm_count);
261 mmu_notifier_unregister_no_release(&p->mmu_notifier, p->mm);
262 mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
263}
264
265static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
266 .release = kfd_process_notifier_release,
267};
268
269static struct kfd_process *create_process(const struct task_struct *thread)
270{
271 struct kfd_process *process;
272 int err = -ENOMEM;
273
274 process = kzalloc(sizeof(*process), GFP_KERNEL);
275
276 if (!process)
277 goto err_alloc_process;
278
279 process->queues = kmalloc_array(INITIAL_QUEUE_ARRAY_SIZE,
280 sizeof(process->queues[0]), GFP_KERNEL);
281 if (!process->queues)
282 goto err_alloc_queues;
283
284 process->pasid = kfd_pasid_alloc();
285 if (process->pasid == 0)
286 goto err_alloc_pasid;
287
288 mutex_init(&process->mutex);
289
290 process->mm = thread->mm;
291
292 /* register notifier */
293 process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
294 err = __mmu_notifier_register(&process->mmu_notifier, process->mm);
295 if (err)
296 goto err_mmu_notifier;
297
298 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
299 (uintptr_t)process->mm);
300
301 process->lead_thread = thread->group_leader;
302
303 process->queue_array_size = INITIAL_QUEUE_ARRAY_SIZE;
304
305 INIT_LIST_HEAD(&process->per_device_data);
306
307 kfd_event_init_process(process);
308
309 err = pqm_init(&process->pqm, process);
310 if (err != 0)
311 goto err_process_pqm_init;
312
313 /* init process apertures*/
314 process->is_32bit_user_mode = in_compat_syscall();
315 if (kfd_init_apertures(process) != 0)
316 goto err_init_apretures;
317
318 return process;
319
320err_init_apretures:
321 pqm_uninit(&process->pqm);
322err_process_pqm_init:
323 hash_del_rcu(&process->kfd_processes);
324 synchronize_rcu();
325 mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm);
326err_mmu_notifier:
327 kfd_pasid_free(process->pasid);
328err_alloc_pasid:
329 kfree(process->queues);
330err_alloc_queues:
331 kfree(process);
332err_alloc_process:
333 return ERR_PTR(err);
334}
335
336struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
337 struct kfd_process *p)
338{
339 struct kfd_process_device *pdd = NULL;
340
341 list_for_each_entry(pdd, &p->per_device_data, per_device_list)
342 if (pdd->dev == dev)
343 break;
344
345 return pdd;
346}
347
348struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
349 struct kfd_process *p)
350{
351 struct kfd_process_device *pdd = NULL;
352
353 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
354 if (pdd != NULL) {
355 pdd->dev = dev;
356 INIT_LIST_HEAD(&pdd->qpd.queues_list);
357 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
358 pdd->qpd.dqm = dev->dqm;
359 pdd->reset_wavefronts = false;
360 list_add(&pdd->per_device_list, &p->per_device_data);
361 }
362
363 return pdd;
364}
365
366/*
367 * Direct the IOMMU to bind the process (specifically the pasid->mm)
368 * to the device.
369 * Unbinding occurs when the process dies or the device is removed.
370 *
371 * Assumes that the process lock is held.
372 */
373struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
374 struct kfd_process *p)
375{
376 struct kfd_process_device *pdd;
377 int err;
378
379 pdd = kfd_get_process_device_data(dev, p);
380 if (!pdd) {
381 pr_err("Process device data doesn't exist\n");
382 return ERR_PTR(-ENOMEM);
383 }
384
385 if (pdd->bound)
386 return pdd;
387
388 err = amd_iommu_bind_pasid(dev->pdev, p->pasid, p->lead_thread);
389 if (err < 0)
390 return ERR_PTR(err);
391
392 pdd->bound = true;
393
394 return pdd;
395}
396
397void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid)
398{
399 struct kfd_process *p;
400 struct kfd_process_device *pdd;
401 int idx, i;
402
403 BUG_ON(dev == NULL);
404
405 idx = srcu_read_lock(&kfd_processes_srcu);
406
407 hash_for_each_rcu(kfd_processes_table, i, p, kfd_processes)
408 if (p->pasid == pasid)
409 break;
410
411 srcu_read_unlock(&kfd_processes_srcu, idx);
412
413 BUG_ON(p->pasid != pasid);
414
415 mutex_lock(&p->mutex);
416
417 if ((dev->dbgmgr) && (dev->dbgmgr->pasid == p->pasid))
418 kfd_dbgmgr_destroy(dev->dbgmgr);
419
420 pqm_uninit(&p->pqm);
421
422 pdd = kfd_get_process_device_data(dev, p);
423
424 if (!pdd) {
425 mutex_unlock(&p->mutex);
426 return;
427 }
428
429 if (pdd->reset_wavefronts) {
430 dbgdev_wave_reset_wavefronts(pdd->dev, p);
431 pdd->reset_wavefronts = false;
432 }
433
434 /*
435 * Just mark pdd as unbound, because we still need it to call
436 * amd_iommu_unbind_pasid() in when the process exits.
437 * We don't call amd_iommu_unbind_pasid() here
438 * because the IOMMU called us.
439 */
440 pdd->bound = false;
441
442 mutex_unlock(&p->mutex);
443}
444
445struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p)
446{
447 return list_first_entry(&p->per_device_data,
448 struct kfd_process_device,
449 per_device_list);
450}
451
452struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
453 struct kfd_process_device *pdd)
454{
455 if (list_is_last(&pdd->per_device_list, &p->per_device_data))
456 return NULL;
457 return list_next_entry(pdd, per_device_list);
458}
459
460bool kfd_has_process_device_data(struct kfd_process *p)
461{
462 return !(list_empty(&p->per_device_data));
463}
464
465/* This returns with process->mutex locked. */
466struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
467{
468 struct kfd_process *p;
469 unsigned int temp;
470
471 int idx = srcu_read_lock(&kfd_processes_srcu);
472
473 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
474 if (p->pasid == pasid) {
475 mutex_lock(&p->mutex);
476 break;
477 }
478 }
479
480 srcu_read_unlock(&kfd_processes_srcu, idx);
481
482 return p;
483}
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "kfd_smi_events.h"
45#include "kfd_debug.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69static void kfd_process_ref_release(struct kref *ref);
70static struct kfd_process *create_process(const struct task_struct *thread);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77struct kfd_procfs_tree {
78 struct kobject *kobj;
79};
80
81static struct kfd_procfs_tree procfs;
82
83/*
84 * Structure for SDMA activity tracking
85 */
86struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90};
91
92struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97};
98
99static void kfd_sdma_activity_worker(struct work_struct *work)
100{
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251}
252
253/**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266{
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273
274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 dev = pdd->dev;
276 if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 return -EINVAL;
278
279 cu_cnt = 0;
280 proc = pdd->process;
281 if (pdd->qpd.queue_count == 0) {
282 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 dev->id, proc->pasid);
284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 }
286
287 /* Collect wave count from device if it supports */
288 wave_cnt = 0;
289 max_waves_per_cu = 0;
290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 &max_waves_per_cu, 0);
292
293 /* Translate wave count to number of compute units */
294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296}
297
298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 char *buffer)
300{
301 if (strcmp(attr->name, "pasid") == 0) {
302 struct kfd_process *p = container_of(attr, struct kfd_process,
303 attr_pasid);
304
305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 } else if (strncmp(attr->name, "vram_", 5) == 0) {
307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 attr_vram);
309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 attr_sdma);
313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 kfd_sdma_activity_worker);
317
318 sdma_activity_work_handler.pdd = pdd;
319 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 (sdma_activity_work_handler.sdma_activity_counter)/
327 SDMA_ACTIVITY_DIVISOR);
328 } else {
329 pr_err("Invalid attribute");
330 return -EINVAL;
331 }
332
333 return 0;
334}
335
336static void kfd_procfs_kobj_release(struct kobject *kobj)
337{
338 kfree(kobj);
339}
340
341static const struct sysfs_ops kfd_procfs_ops = {
342 .show = kfd_procfs_show,
343};
344
345static const struct kobj_type procfs_type = {
346 .release = kfd_procfs_kobj_release,
347 .sysfs_ops = &kfd_procfs_ops,
348};
349
350void kfd_procfs_init(void)
351{
352 int ret = 0;
353
354 procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 if (!procfs.kobj)
356 return;
357
358 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 &kfd_device->kobj, "proc");
360 if (ret) {
361 pr_warn("Could not create procfs proc folder");
362 /* If we fail to create the procfs, clean up */
363 kfd_procfs_shutdown();
364 }
365}
366
367void kfd_procfs_shutdown(void)
368{
369 if (procfs.kobj) {
370 kobject_del(procfs.kobj);
371 kobject_put(procfs.kobj);
372 procfs.kobj = NULL;
373 }
374}
375
376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 struct attribute *attr, char *buffer)
378{
379 struct queue *q = container_of(kobj, struct queue, kobj);
380
381 if (!strcmp(attr->name, "size"))
382 return snprintf(buffer, PAGE_SIZE, "%llu",
383 q->properties.queue_size);
384 else if (!strcmp(attr->name, "type"))
385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 else if (!strcmp(attr->name, "gpuid"))
387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 else
389 pr_err("Invalid attribute");
390
391 return 0;
392}
393
394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 struct attribute *attr, char *buffer)
396{
397 if (strcmp(attr->name, "evicted_ms") == 0) {
398 struct kfd_process_device *pdd = container_of(attr,
399 struct kfd_process_device,
400 attr_evict);
401 uint64_t evict_jiffies;
402
403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405 return snprintf(buffer,
406 PAGE_SIZE,
407 "%llu\n",
408 jiffies64_to_msecs(evict_jiffies));
409
410 /* Sysfs handle that gets CU occupancy is per device */
411 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 return kfd_get_cu_occupancy(attr, buffer);
413 } else {
414 pr_err("Invalid attribute");
415 }
416
417 return 0;
418}
419
420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 struct attribute *attr, char *buf)
422{
423 struct kfd_process_device *pdd;
424
425 if (!strcmp(attr->name, "faults")) {
426 pdd = container_of(attr, struct kfd_process_device,
427 attr_faults);
428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 }
430 if (!strcmp(attr->name, "page_in")) {
431 pdd = container_of(attr, struct kfd_process_device,
432 attr_page_in);
433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 }
435 if (!strcmp(attr->name, "page_out")) {
436 pdd = container_of(attr, struct kfd_process_device,
437 attr_page_out);
438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 }
440 return 0;
441}
442
443static struct attribute attr_queue_size = {
444 .name = "size",
445 .mode = KFD_SYSFS_FILE_MODE
446};
447
448static struct attribute attr_queue_type = {
449 .name = "type",
450 .mode = KFD_SYSFS_FILE_MODE
451};
452
453static struct attribute attr_queue_gpuid = {
454 .name = "gpuid",
455 .mode = KFD_SYSFS_FILE_MODE
456};
457
458static struct attribute *procfs_queue_attrs[] = {
459 &attr_queue_size,
460 &attr_queue_type,
461 &attr_queue_gpuid,
462 NULL
463};
464ATTRIBUTE_GROUPS(procfs_queue);
465
466static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468};
469
470static const struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_groups = procfs_queue_groups,
473};
474
475static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477};
478
479static const struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482};
483
484static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486};
487
488static const struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491};
492
493int kfd_procfs_add_queue(struct queue *q)
494{
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515}
516
517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519{
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532}
533
534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535{
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579}
580
581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582{
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624}
625
626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627{
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651}
652
653void kfd_procfs_del_queue(struct queue *q)
654{
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660}
661
662int kfd_process_create_wq(void)
663{
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 WQ_FREEZABLE);
669
670 if (!kfd_process_wq || !kfd_restore_wq) {
671 kfd_process_destroy_wq();
672 return -ENOMEM;
673 }
674
675 return 0;
676}
677
678void kfd_process_destroy_wq(void)
679{
680 if (kfd_process_wq) {
681 destroy_workqueue(kfd_process_wq);
682 kfd_process_wq = NULL;
683 }
684 if (kfd_restore_wq) {
685 destroy_workqueue(kfd_restore_wq);
686 kfd_restore_wq = NULL;
687 }
688}
689
690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 struct kfd_process_device *pdd, void **kptr)
692{
693 struct kfd_node *dev = pdd->dev;
694
695 if (kptr && *kptr) {
696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 *kptr = NULL;
698 }
699
700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 NULL);
703}
704
705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706 * This function should be only called right after the process
707 * is created and when kfd_processes_mutex is still being held
708 * to avoid concurrency. Because of that exclusiveness, we do
709 * not need to take p->mutex.
710 */
711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 uint64_t gpu_va, uint32_t size,
713 uint32_t flags, struct kgd_mem **mem, void **kptr)
714{
715 struct kfd_node *kdev = pdd->dev;
716 int err;
717
718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 pdd->drm_priv, mem, NULL,
720 flags, false);
721 if (err)
722 goto err_alloc_mem;
723
724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 pdd->drm_priv);
726 if (err)
727 goto err_map_mem;
728
729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 if (err) {
731 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 goto sync_memory_failed;
733 }
734
735 if (kptr) {
736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 (struct kgd_mem *)*mem, kptr, NULL);
738 if (err) {
739 pr_debug("Map GTT BO to kernel failed\n");
740 goto sync_memory_failed;
741 }
742 }
743
744 return err;
745
746sync_memory_failed:
747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749err_map_mem:
750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 NULL);
752err_alloc_mem:
753 *mem = NULL;
754 *kptr = NULL;
755 return err;
756}
757
758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759 * process for IB usage The memory reserved is for KFD to submit
760 * IB to AMDGPU from kernel. If the memory is reserved
761 * successfully, ib_kaddr will have the CPU/kernel
762 * address. Check ib_kaddr before accessing the memory.
763 */
764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765{
766 struct qcm_process_device *qpd = &pdd->qpd;
767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 struct kgd_mem *mem;
772 void *kaddr;
773 int ret;
774
775 if (qpd->ib_kaddr || !qpd->ib_base)
776 return 0;
777
778 /* ib_base is only set for dGPU */
779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 &mem, &kaddr);
781 if (ret)
782 return ret;
783
784 qpd->ib_mem = mem;
785 qpd->ib_kaddr = kaddr;
786
787 return 0;
788}
789
790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791{
792 struct qcm_process_device *qpd = &pdd->qpd;
793
794 if (!qpd->ib_kaddr || !qpd->ib_base)
795 return;
796
797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798}
799
800struct kfd_process *kfd_create_process(struct task_struct *thread)
801{
802 struct kfd_process *process;
803 int ret;
804
805 if (!(thread->mm && mmget_not_zero(thread->mm)))
806 return ERR_PTR(-EINVAL);
807
808 /* Only the pthreads threading model is supported. */
809 if (thread->group_leader->mm != thread->mm) {
810 mmput(thread->mm);
811 return ERR_PTR(-EINVAL);
812 }
813
814 /*
815 * take kfd processes mutex before starting of process creation
816 * so there won't be a case where two threads of the same process
817 * create two kfd_process structures
818 */
819 mutex_lock(&kfd_processes_mutex);
820
821 if (kfd_is_locked()) {
822 mutex_unlock(&kfd_processes_mutex);
823 pr_debug("KFD is locked! Cannot create process");
824 return ERR_PTR(-EINVAL);
825 }
826
827 /* A prior open of /dev/kfd could have already created the process. */
828 process = find_process(thread, false);
829 if (process) {
830 pr_debug("Process already found\n");
831 } else {
832 process = create_process(thread);
833 if (IS_ERR(process))
834 goto out;
835
836 if (!procfs.kobj)
837 goto out;
838
839 process->kobj = kfd_alloc_struct(process->kobj);
840 if (!process->kobj) {
841 pr_warn("Creating procfs kobject failed");
842 goto out;
843 }
844 ret = kobject_init_and_add(process->kobj, &procfs_type,
845 procfs.kobj, "%d",
846 (int)process->lead_thread->pid);
847 if (ret) {
848 pr_warn("Creating procfs pid directory failed");
849 kobject_put(process->kobj);
850 goto out;
851 }
852
853 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
854 "pasid");
855
856 process->kobj_queues = kobject_create_and_add("queues",
857 process->kobj);
858 if (!process->kobj_queues)
859 pr_warn("Creating KFD proc/queues folder failed");
860
861 kfd_procfs_add_sysfs_stats(process);
862 kfd_procfs_add_sysfs_files(process);
863 kfd_procfs_add_sysfs_counters(process);
864
865 init_waitqueue_head(&process->wait_irq_drain);
866 }
867out:
868 if (!IS_ERR(process))
869 kref_get(&process->ref);
870 mutex_unlock(&kfd_processes_mutex);
871 mmput(thread->mm);
872
873 return process;
874}
875
876struct kfd_process *kfd_get_process(const struct task_struct *thread)
877{
878 struct kfd_process *process;
879
880 if (!thread->mm)
881 return ERR_PTR(-EINVAL);
882
883 /* Only the pthreads threading model is supported. */
884 if (thread->group_leader->mm != thread->mm)
885 return ERR_PTR(-EINVAL);
886
887 process = find_process(thread, false);
888 if (!process)
889 return ERR_PTR(-EINVAL);
890
891 return process;
892}
893
894static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895{
896 struct kfd_process *process;
897
898 hash_for_each_possible_rcu(kfd_processes_table, process,
899 kfd_processes, (uintptr_t)mm)
900 if (process->mm == mm)
901 return process;
902
903 return NULL;
904}
905
906static struct kfd_process *find_process(const struct task_struct *thread,
907 bool ref)
908{
909 struct kfd_process *p;
910 int idx;
911
912 idx = srcu_read_lock(&kfd_processes_srcu);
913 p = find_process_by_mm(thread->mm);
914 if (p && ref)
915 kref_get(&p->ref);
916 srcu_read_unlock(&kfd_processes_srcu, idx);
917
918 return p;
919}
920
921void kfd_unref_process(struct kfd_process *p)
922{
923 kref_put(&p->ref, kfd_process_ref_release);
924}
925
926/* This increments the process->ref counter. */
927struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
928{
929 struct task_struct *task = NULL;
930 struct kfd_process *p = NULL;
931
932 if (!pid) {
933 task = current;
934 get_task_struct(task);
935 } else {
936 task = get_pid_task(pid, PIDTYPE_PID);
937 }
938
939 if (task) {
940 p = find_process(task, true);
941 put_task_struct(task);
942 }
943
944 return p;
945}
946
947static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
948{
949 struct kfd_process *p = pdd->process;
950 void *mem;
951 int id;
952 int i;
953
954 /*
955 * Remove all handles from idr and release appropriate
956 * local memory object
957 */
958 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
959
960 for (i = 0; i < p->n_pdds; i++) {
961 struct kfd_process_device *peer_pdd = p->pdds[i];
962
963 if (!peer_pdd->drm_priv)
964 continue;
965 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
966 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
967 }
968
969 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
970 pdd->drm_priv, NULL);
971 kfd_process_device_remove_obj_handle(pdd, id);
972 }
973}
974
975/*
976 * Just kunmap and unpin signal BO here. It will be freed in
977 * kfd_process_free_outstanding_kfd_bos()
978 */
979static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
980{
981 struct kfd_process_device *pdd;
982 struct kfd_node *kdev;
983 void *mem;
984
985 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
986 if (!kdev)
987 return;
988
989 mutex_lock(&p->mutex);
990
991 pdd = kfd_get_process_device_data(kdev, p);
992 if (!pdd)
993 goto out;
994
995 mem = kfd_process_device_translate_handle(
996 pdd, GET_IDR_HANDLE(p->signal_handle));
997 if (!mem)
998 goto out;
999
1000 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1001
1002out:
1003 mutex_unlock(&p->mutex);
1004}
1005
1006static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1007{
1008 int i;
1009
1010 for (i = 0; i < p->n_pdds; i++)
1011 kfd_process_device_free_bos(p->pdds[i]);
1012}
1013
1014static void kfd_process_destroy_pdds(struct kfd_process *p)
1015{
1016 int i;
1017
1018 for (i = 0; i < p->n_pdds; i++) {
1019 struct kfd_process_device *pdd = p->pdds[i];
1020
1021 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1022 pdd->dev->id, p->pasid);
1023
1024 kfd_process_device_destroy_cwsr_dgpu(pdd);
1025 kfd_process_device_destroy_ib_mem(pdd);
1026
1027 if (pdd->drm_file) {
1028 amdgpu_amdkfd_gpuvm_release_process_vm(
1029 pdd->dev->adev, pdd->drm_priv);
1030 fput(pdd->drm_file);
1031 }
1032
1033 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1034 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1035 get_order(KFD_CWSR_TBA_TMA_SIZE));
1036
1037 idr_destroy(&pdd->alloc_idr);
1038
1039 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1040
1041 if (pdd->dev->kfd->shared_resources.enable_mes)
1042 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1043 pdd->proc_ctx_bo);
1044 /*
1045 * before destroying pdd, make sure to report availability
1046 * for auto suspend
1047 */
1048 if (pdd->runtime_inuse) {
1049 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1050 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1051 pdd->runtime_inuse = false;
1052 }
1053
1054 kfree(pdd);
1055 p->pdds[i] = NULL;
1056 }
1057 p->n_pdds = 0;
1058}
1059
1060static void kfd_process_remove_sysfs(struct kfd_process *p)
1061{
1062 struct kfd_process_device *pdd;
1063 int i;
1064
1065 if (!p->kobj)
1066 return;
1067
1068 sysfs_remove_file(p->kobj, &p->attr_pasid);
1069 kobject_del(p->kobj_queues);
1070 kobject_put(p->kobj_queues);
1071 p->kobj_queues = NULL;
1072
1073 for (i = 0; i < p->n_pdds; i++) {
1074 pdd = p->pdds[i];
1075
1076 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078
1079 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081 sysfs_remove_file(pdd->kobj_stats,
1082 &pdd->attr_cu_occupancy);
1083 kobject_del(pdd->kobj_stats);
1084 kobject_put(pdd->kobj_stats);
1085 pdd->kobj_stats = NULL;
1086 }
1087
1088 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089 pdd = p->pdds[i];
1090
1091 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094 kobject_del(pdd->kobj_counters);
1095 kobject_put(pdd->kobj_counters);
1096 pdd->kobj_counters = NULL;
1097 }
1098
1099 kobject_del(p->kobj);
1100 kobject_put(p->kobj);
1101 p->kobj = NULL;
1102}
1103
1104/* No process locking is needed in this function, because the process
1105 * is not findable any more. We must assume that no other thread is
1106 * using it any more, otherwise we couldn't safely free the process
1107 * structure in the end.
1108 */
1109static void kfd_process_wq_release(struct work_struct *work)
1110{
1111 struct kfd_process *p = container_of(work, struct kfd_process,
1112 release_work);
1113 struct dma_fence *ef;
1114
1115 kfd_process_dequeue_from_all_devices(p);
1116 pqm_uninit(&p->pqm);
1117
1118 /* Signal the eviction fence after user mode queues are
1119 * destroyed. This allows any BOs to be freed without
1120 * triggering pointless evictions or waiting for fences.
1121 */
1122 synchronize_rcu();
1123 ef = rcu_access_pointer(p->ef);
1124 dma_fence_signal(ef);
1125
1126 kfd_process_remove_sysfs(p);
1127
1128 kfd_process_kunmap_signal_bo(p);
1129 kfd_process_free_outstanding_kfd_bos(p);
1130 svm_range_list_fini(p);
1131
1132 kfd_process_destroy_pdds(p);
1133 dma_fence_put(ef);
1134
1135 kfd_event_free_process(p);
1136
1137 kfd_pasid_free(p->pasid);
1138 mutex_destroy(&p->mutex);
1139
1140 put_task_struct(p->lead_thread);
1141
1142 kfree(p);
1143}
1144
1145static void kfd_process_ref_release(struct kref *ref)
1146{
1147 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1148
1149 INIT_WORK(&p->release_work, kfd_process_wq_release);
1150 queue_work(kfd_process_wq, &p->release_work);
1151}
1152
1153static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1154{
1155 int idx = srcu_read_lock(&kfd_processes_srcu);
1156 struct kfd_process *p = find_process_by_mm(mm);
1157
1158 srcu_read_unlock(&kfd_processes_srcu, idx);
1159
1160 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1161}
1162
1163static void kfd_process_free_notifier(struct mmu_notifier *mn)
1164{
1165 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1166}
1167
1168static void kfd_process_notifier_release_internal(struct kfd_process *p)
1169{
1170 int i;
1171
1172 cancel_delayed_work_sync(&p->eviction_work);
1173 cancel_delayed_work_sync(&p->restore_work);
1174
1175 for (i = 0; i < p->n_pdds; i++) {
1176 struct kfd_process_device *pdd = p->pdds[i];
1177
1178 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1179 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1180 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1181 }
1182
1183 /* Indicate to other users that MM is no longer valid */
1184 p->mm = NULL;
1185 kfd_dbg_trap_disable(p);
1186
1187 if (atomic_read(&p->debugged_process_count) > 0) {
1188 struct kfd_process *target;
1189 unsigned int temp;
1190 int idx = srcu_read_lock(&kfd_processes_srcu);
1191
1192 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1193 if (target->debugger_process && target->debugger_process == p) {
1194 mutex_lock_nested(&target->mutex, 1);
1195 kfd_dbg_trap_disable(target);
1196 mutex_unlock(&target->mutex);
1197 if (atomic_read(&p->debugged_process_count) == 0)
1198 break;
1199 }
1200 }
1201
1202 srcu_read_unlock(&kfd_processes_srcu, idx);
1203 }
1204
1205 mmu_notifier_put(&p->mmu_notifier);
1206}
1207
1208static void kfd_process_notifier_release(struct mmu_notifier *mn,
1209 struct mm_struct *mm)
1210{
1211 struct kfd_process *p;
1212
1213 /*
1214 * The kfd_process structure can not be free because the
1215 * mmu_notifier srcu is read locked
1216 */
1217 p = container_of(mn, struct kfd_process, mmu_notifier);
1218 if (WARN_ON(p->mm != mm))
1219 return;
1220
1221 mutex_lock(&kfd_processes_mutex);
1222 /*
1223 * Do early return if table is empty.
1224 *
1225 * This could potentially happen if this function is called concurrently
1226 * by mmu_notifier and by kfd_cleanup_pocesses.
1227 *
1228 */
1229 if (hash_empty(kfd_processes_table)) {
1230 mutex_unlock(&kfd_processes_mutex);
1231 return;
1232 }
1233 hash_del_rcu(&p->kfd_processes);
1234 mutex_unlock(&kfd_processes_mutex);
1235 synchronize_srcu(&kfd_processes_srcu);
1236
1237 kfd_process_notifier_release_internal(p);
1238}
1239
1240static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1241 .release = kfd_process_notifier_release,
1242 .alloc_notifier = kfd_process_alloc_notifier,
1243 .free_notifier = kfd_process_free_notifier,
1244};
1245
1246/*
1247 * This code handles the case when driver is being unloaded before all
1248 * mm_struct are released. We need to safely free the kfd_process and
1249 * avoid race conditions with mmu_notifier that might try to free them.
1250 *
1251 */
1252void kfd_cleanup_processes(void)
1253{
1254 struct kfd_process *p;
1255 struct hlist_node *p_temp;
1256 unsigned int temp;
1257 HLIST_HEAD(cleanup_list);
1258
1259 /*
1260 * Move all remaining kfd_process from the process table to a
1261 * temp list for processing. Once done, callback from mmu_notifier
1262 * release will not see the kfd_process in the table and do early return,
1263 * avoiding double free issues.
1264 */
1265 mutex_lock(&kfd_processes_mutex);
1266 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1267 hash_del_rcu(&p->kfd_processes);
1268 synchronize_srcu(&kfd_processes_srcu);
1269 hlist_add_head(&p->kfd_processes, &cleanup_list);
1270 }
1271 mutex_unlock(&kfd_processes_mutex);
1272
1273 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1274 kfd_process_notifier_release_internal(p);
1275
1276 /*
1277 * Ensures that all outstanding free_notifier get called, triggering
1278 * the release of the kfd_process struct.
1279 */
1280 mmu_notifier_synchronize();
1281}
1282
1283int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1284{
1285 unsigned long offset;
1286 int i;
1287
1288 if (p->has_cwsr)
1289 return 0;
1290
1291 for (i = 0; i < p->n_pdds; i++) {
1292 struct kfd_node *dev = p->pdds[i]->dev;
1293 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1294
1295 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1296 continue;
1297
1298 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1299 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1300 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1301 MAP_SHARED, offset);
1302
1303 if (IS_ERR_VALUE(qpd->tba_addr)) {
1304 int err = qpd->tba_addr;
1305
1306 pr_err("Failure to set tba address. error %d.\n", err);
1307 qpd->tba_addr = 0;
1308 qpd->cwsr_kaddr = NULL;
1309 return err;
1310 }
1311
1312 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1313
1314 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1315
1316 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1317 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1318 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1319 }
1320
1321 p->has_cwsr = true;
1322
1323 return 0;
1324}
1325
1326static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1327{
1328 struct kfd_node *dev = pdd->dev;
1329 struct qcm_process_device *qpd = &pdd->qpd;
1330 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1331 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1332 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1333 struct kgd_mem *mem;
1334 void *kaddr;
1335 int ret;
1336
1337 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1338 return 0;
1339
1340 /* cwsr_base is only set for dGPU */
1341 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1342 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1343 if (ret)
1344 return ret;
1345
1346 qpd->cwsr_mem = mem;
1347 qpd->cwsr_kaddr = kaddr;
1348 qpd->tba_addr = qpd->cwsr_base;
1349
1350 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1351
1352 kfd_process_set_trap_debug_flag(&pdd->qpd,
1353 pdd->process->debug_trap_enabled);
1354
1355 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358
1359 return 0;
1360}
1361
1362static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1363{
1364 struct kfd_node *dev = pdd->dev;
1365 struct qcm_process_device *qpd = &pdd->qpd;
1366
1367 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1368 return;
1369
1370 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1371}
1372
1373void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1374 uint64_t tba_addr,
1375 uint64_t tma_addr)
1376{
1377 if (qpd->cwsr_kaddr) {
1378 /* KFD trap handler is bound, record as second-level TBA/TMA
1379 * in first-level TMA. First-level trap will jump to second.
1380 */
1381 uint64_t *tma =
1382 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1383 tma[0] = tba_addr;
1384 tma[1] = tma_addr;
1385 } else {
1386 /* No trap handler bound, bind as first-level TBA/TMA. */
1387 qpd->tba_addr = tba_addr;
1388 qpd->tma_addr = tma_addr;
1389 }
1390}
1391
1392bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1393{
1394 int i;
1395
1396 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1397 * boot time retry setting. Mixing processes with different
1398 * XNACK/retry settings can hang the GPU.
1399 *
1400 * Different GPUs can have different noretry settings depending
1401 * on HW bugs or limitations. We need to find at least one
1402 * XNACK mode for this process that's compatible with all GPUs.
1403 * Fortunately GPUs with retry enabled (noretry=0) can run code
1404 * built for XNACK-off. On GFXv9 it may perform slower.
1405 *
1406 * Therefore applications built for XNACK-off can always be
1407 * supported and will be our fallback if any GPU does not
1408 * support retry.
1409 */
1410 for (i = 0; i < p->n_pdds; i++) {
1411 struct kfd_node *dev = p->pdds[i]->dev;
1412
1413 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1414 * support the SVM APIs and don't need to be considered
1415 * for the XNACK mode selection.
1416 */
1417 if (!KFD_IS_SOC15(dev))
1418 continue;
1419 /* Aldebaran can always support XNACK because it can support
1420 * per-process XNACK mode selection. But let the dev->noretry
1421 * setting still influence the default XNACK mode.
1422 */
1423 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1424 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1425 pr_debug("SRIOV platform xnack not supported\n");
1426 return false;
1427 }
1428 continue;
1429 }
1430
1431 /* GFXv10 and later GPUs do not support shader preemption
1432 * during page faults. This can lead to poor QoS for queue
1433 * management and memory-manager-related preemptions or
1434 * even deadlocks.
1435 */
1436 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1437 return false;
1438
1439 if (dev->kfd->noretry)
1440 return false;
1441 }
1442
1443 return true;
1444}
1445
1446void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1447 bool enabled)
1448{
1449 if (qpd->cwsr_kaddr) {
1450 uint64_t *tma =
1451 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1452 tma[2] = enabled;
1453 }
1454}
1455
1456/*
1457 * On return the kfd_process is fully operational and will be freed when the
1458 * mm is released
1459 */
1460static struct kfd_process *create_process(const struct task_struct *thread)
1461{
1462 struct kfd_process *process;
1463 struct mmu_notifier *mn;
1464 int err = -ENOMEM;
1465
1466 process = kzalloc(sizeof(*process), GFP_KERNEL);
1467 if (!process)
1468 goto err_alloc_process;
1469
1470 kref_init(&process->ref);
1471 mutex_init(&process->mutex);
1472 process->mm = thread->mm;
1473 process->lead_thread = thread->group_leader;
1474 process->n_pdds = 0;
1475 process->queues_paused = false;
1476 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1477 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1478 process->last_restore_timestamp = get_jiffies_64();
1479 err = kfd_event_init_process(process);
1480 if (err)
1481 goto err_event_init;
1482 process->is_32bit_user_mode = in_compat_syscall();
1483 process->debug_trap_enabled = false;
1484 process->debugger_process = NULL;
1485 process->exception_enable_mask = 0;
1486 atomic_set(&process->debugged_process_count, 0);
1487 sema_init(&process->runtime_enable_sema, 0);
1488
1489 process->pasid = kfd_pasid_alloc();
1490 if (process->pasid == 0) {
1491 err = -ENOSPC;
1492 goto err_alloc_pasid;
1493 }
1494
1495 err = pqm_init(&process->pqm, process);
1496 if (err != 0)
1497 goto err_process_pqm_init;
1498
1499 /* init process apertures*/
1500 err = kfd_init_apertures(process);
1501 if (err != 0)
1502 goto err_init_apertures;
1503
1504 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1505 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1506
1507 err = svm_range_list_init(process);
1508 if (err)
1509 goto err_init_svm_range_list;
1510
1511 /* alloc_notifier needs to find the process in the hash table */
1512 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1513 (uintptr_t)process->mm);
1514
1515 /* Avoid free_notifier to start kfd_process_wq_release if
1516 * mmu_notifier_get failed because of pending signal.
1517 */
1518 kref_get(&process->ref);
1519
1520 /* MMU notifier registration must be the last call that can fail
1521 * because after this point we cannot unwind the process creation.
1522 * After this point, mmu_notifier_put will trigger the cleanup by
1523 * dropping the last process reference in the free_notifier.
1524 */
1525 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1526 if (IS_ERR(mn)) {
1527 err = PTR_ERR(mn);
1528 goto err_register_notifier;
1529 }
1530 BUG_ON(mn != &process->mmu_notifier);
1531
1532 kfd_unref_process(process);
1533 get_task_struct(process->lead_thread);
1534
1535 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1536
1537 return process;
1538
1539err_register_notifier:
1540 hash_del_rcu(&process->kfd_processes);
1541 svm_range_list_fini(process);
1542err_init_svm_range_list:
1543 kfd_process_free_outstanding_kfd_bos(process);
1544 kfd_process_destroy_pdds(process);
1545err_init_apertures:
1546 pqm_uninit(&process->pqm);
1547err_process_pqm_init:
1548 kfd_pasid_free(process->pasid);
1549err_alloc_pasid:
1550 kfd_event_free_process(process);
1551err_event_init:
1552 mutex_destroy(&process->mutex);
1553 kfree(process);
1554err_alloc_process:
1555 return ERR_PTR(err);
1556}
1557
1558struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1559 struct kfd_process *p)
1560{
1561 int i;
1562
1563 for (i = 0; i < p->n_pdds; i++)
1564 if (p->pdds[i]->dev == dev)
1565 return p->pdds[i];
1566
1567 return NULL;
1568}
1569
1570struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1571 struct kfd_process *p)
1572{
1573 struct kfd_process_device *pdd = NULL;
1574 int retval = 0;
1575
1576 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1577 return NULL;
1578 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1579 if (!pdd)
1580 return NULL;
1581
1582 pdd->dev = dev;
1583 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1584 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1585 pdd->qpd.dqm = dev->dqm;
1586 pdd->qpd.pqm = &p->pqm;
1587 pdd->qpd.evicted = 0;
1588 pdd->qpd.mapped_gws_queue = false;
1589 pdd->process = p;
1590 pdd->bound = PDD_UNBOUND;
1591 pdd->already_dequeued = false;
1592 pdd->runtime_inuse = false;
1593 pdd->vram_usage = 0;
1594 pdd->sdma_past_activity_counter = 0;
1595 pdd->user_gpu_id = dev->id;
1596 atomic64_set(&pdd->evict_duration_counter, 0);
1597
1598 if (dev->kfd->shared_resources.enable_mes) {
1599 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1600 AMDGPU_MES_PROC_CTX_SIZE,
1601 &pdd->proc_ctx_bo,
1602 &pdd->proc_ctx_gpu_addr,
1603 &pdd->proc_ctx_cpu_ptr,
1604 false);
1605 if (retval) {
1606 pr_err("failed to allocate process context bo\n");
1607 goto err_free_pdd;
1608 }
1609 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1610 }
1611
1612 p->pdds[p->n_pdds++] = pdd;
1613 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1614 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1615 pdd->dev->adev,
1616 false,
1617 0);
1618
1619 /* Init idr used for memory handle translation */
1620 idr_init(&pdd->alloc_idr);
1621
1622 return pdd;
1623
1624err_free_pdd:
1625 kfree(pdd);
1626 return NULL;
1627}
1628
1629/**
1630 * kfd_process_device_init_vm - Initialize a VM for a process-device
1631 *
1632 * @pdd: The process-device
1633 * @drm_file: Optional pointer to a DRM file descriptor
1634 *
1635 * If @drm_file is specified, it will be used to acquire the VM from
1636 * that file descriptor. If successful, the @pdd takes ownership of
1637 * the file descriptor.
1638 *
1639 * If @drm_file is NULL, a new VM is created.
1640 *
1641 * Returns 0 on success, -errno on failure.
1642 */
1643int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1644 struct file *drm_file)
1645{
1646 struct amdgpu_fpriv *drv_priv;
1647 struct amdgpu_vm *avm;
1648 struct kfd_process *p;
1649 struct dma_fence *ef;
1650 struct kfd_node *dev;
1651 int ret;
1652
1653 if (!drm_file)
1654 return -EINVAL;
1655
1656 if (pdd->drm_priv)
1657 return -EBUSY;
1658
1659 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1660 if (ret)
1661 return ret;
1662 avm = &drv_priv->vm;
1663
1664 p = pdd->process;
1665 dev = pdd->dev;
1666
1667 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1668 &p->kgd_process_info,
1669 &ef);
1670 if (ret) {
1671 pr_err("Failed to create process VM object\n");
1672 return ret;
1673 }
1674 RCU_INIT_POINTER(p->ef, ef);
1675 pdd->drm_priv = drm_file->private_data;
1676
1677 ret = kfd_process_device_reserve_ib_mem(pdd);
1678 if (ret)
1679 goto err_reserve_ib_mem;
1680 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1681 if (ret)
1682 goto err_init_cwsr;
1683
1684 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1685 if (ret)
1686 goto err_set_pasid;
1687
1688 pdd->drm_file = drm_file;
1689
1690 return 0;
1691
1692err_set_pasid:
1693 kfd_process_device_destroy_cwsr_dgpu(pdd);
1694err_init_cwsr:
1695 kfd_process_device_destroy_ib_mem(pdd);
1696err_reserve_ib_mem:
1697 pdd->drm_priv = NULL;
1698 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1699
1700 return ret;
1701}
1702
1703/*
1704 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1705 * to the device.
1706 * Unbinding occurs when the process dies or the device is removed.
1707 *
1708 * Assumes that the process lock is held.
1709 */
1710struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1711 struct kfd_process *p)
1712{
1713 struct kfd_process_device *pdd;
1714 int err;
1715
1716 pdd = kfd_get_process_device_data(dev, p);
1717 if (!pdd) {
1718 pr_err("Process device data doesn't exist\n");
1719 return ERR_PTR(-ENOMEM);
1720 }
1721
1722 if (!pdd->drm_priv)
1723 return ERR_PTR(-ENODEV);
1724
1725 /*
1726 * signal runtime-pm system to auto resume and prevent
1727 * further runtime suspend once device pdd is created until
1728 * pdd is destroyed.
1729 */
1730 if (!pdd->runtime_inuse) {
1731 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1732 if (err < 0) {
1733 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1734 return ERR_PTR(err);
1735 }
1736 }
1737
1738 /*
1739 * make sure that runtime_usage counter is incremented just once
1740 * per pdd
1741 */
1742 pdd->runtime_inuse = true;
1743
1744 return pdd;
1745}
1746
1747/* Create specific handle mapped to mem from process local memory idr
1748 * Assumes that the process lock is held.
1749 */
1750int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1751 void *mem)
1752{
1753 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1754}
1755
1756/* Translate specific handle from process local memory idr
1757 * Assumes that the process lock is held.
1758 */
1759void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1760 int handle)
1761{
1762 if (handle < 0)
1763 return NULL;
1764
1765 return idr_find(&pdd->alloc_idr, handle);
1766}
1767
1768/* Remove specific handle from process local memory idr
1769 * Assumes that the process lock is held.
1770 */
1771void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1772 int handle)
1773{
1774 if (handle >= 0)
1775 idr_remove(&pdd->alloc_idr, handle);
1776}
1777
1778/* This increments the process->ref counter. */
1779struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1780{
1781 struct kfd_process *p, *ret_p = NULL;
1782 unsigned int temp;
1783
1784 int idx = srcu_read_lock(&kfd_processes_srcu);
1785
1786 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1787 if (p->pasid == pasid) {
1788 kref_get(&p->ref);
1789 ret_p = p;
1790 break;
1791 }
1792 }
1793
1794 srcu_read_unlock(&kfd_processes_srcu, idx);
1795
1796 return ret_p;
1797}
1798
1799/* This increments the process->ref counter. */
1800struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1801{
1802 struct kfd_process *p;
1803
1804 int idx = srcu_read_lock(&kfd_processes_srcu);
1805
1806 p = find_process_by_mm(mm);
1807 if (p)
1808 kref_get(&p->ref);
1809
1810 srcu_read_unlock(&kfd_processes_srcu, idx);
1811
1812 return p;
1813}
1814
1815/* kfd_process_evict_queues - Evict all user queues of a process
1816 *
1817 * Eviction is reference-counted per process-device. This means multiple
1818 * evictions from different sources can be nested safely.
1819 */
1820int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1821{
1822 int r = 0;
1823 int i;
1824 unsigned int n_evicted = 0;
1825
1826 for (i = 0; i < p->n_pdds; i++) {
1827 struct kfd_process_device *pdd = p->pdds[i];
1828
1829 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1830 trigger);
1831
1832 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1833 &pdd->qpd);
1834 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1835 * we would like to set all the queues to be in evicted state to prevent
1836 * them been add back since they actually not be saved right now.
1837 */
1838 if (r && r != -EIO) {
1839 pr_err("Failed to evict process queues\n");
1840 goto fail;
1841 }
1842 n_evicted++;
1843 }
1844
1845 return r;
1846
1847fail:
1848 /* To keep state consistent, roll back partial eviction by
1849 * restoring queues
1850 */
1851 for (i = 0; i < p->n_pdds; i++) {
1852 struct kfd_process_device *pdd = p->pdds[i];
1853
1854 if (n_evicted == 0)
1855 break;
1856
1857 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1858
1859 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1860 &pdd->qpd))
1861 pr_err("Failed to restore queues\n");
1862
1863 n_evicted--;
1864 }
1865
1866 return r;
1867}
1868
1869/* kfd_process_restore_queues - Restore all user queues of a process */
1870int kfd_process_restore_queues(struct kfd_process *p)
1871{
1872 int r, ret = 0;
1873 int i;
1874
1875 for (i = 0; i < p->n_pdds; i++) {
1876 struct kfd_process_device *pdd = p->pdds[i];
1877
1878 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1879
1880 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1881 &pdd->qpd);
1882 if (r) {
1883 pr_err("Failed to restore process queues\n");
1884 if (!ret)
1885 ret = r;
1886 }
1887 }
1888
1889 return ret;
1890}
1891
1892int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1893{
1894 int i;
1895
1896 for (i = 0; i < p->n_pdds; i++)
1897 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1898 return i;
1899 return -EINVAL;
1900}
1901
1902int
1903kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1904 uint32_t *gpuid, uint32_t *gpuidx)
1905{
1906 int i;
1907
1908 for (i = 0; i < p->n_pdds; i++)
1909 if (p->pdds[i] && p->pdds[i]->dev == node) {
1910 *gpuid = p->pdds[i]->user_gpu_id;
1911 *gpuidx = i;
1912 return 0;
1913 }
1914 return -EINVAL;
1915}
1916
1917static int signal_eviction_fence(struct kfd_process *p)
1918{
1919 struct dma_fence *ef;
1920 int ret;
1921
1922 rcu_read_lock();
1923 ef = dma_fence_get_rcu_safe(&p->ef);
1924 rcu_read_unlock();
1925
1926 ret = dma_fence_signal(ef);
1927 dma_fence_put(ef);
1928
1929 return ret;
1930}
1931
1932static void evict_process_worker(struct work_struct *work)
1933{
1934 int ret;
1935 struct kfd_process *p;
1936 struct delayed_work *dwork;
1937
1938 dwork = to_delayed_work(work);
1939
1940 /* Process termination destroys this worker thread. So during the
1941 * lifetime of this thread, kfd_process p will be valid
1942 */
1943 p = container_of(dwork, struct kfd_process, eviction_work);
1944
1945 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1946 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1947 if (!ret) {
1948 /* If another thread already signaled the eviction fence,
1949 * they are responsible stopping the queues and scheduling
1950 * the restore work.
1951 */
1952 if (!signal_eviction_fence(p))
1953 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1954 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1955 else
1956 kfd_process_restore_queues(p);
1957
1958 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1959 } else
1960 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1961}
1962
1963static int restore_process_helper(struct kfd_process *p)
1964{
1965 int ret = 0;
1966
1967 /* VMs may not have been acquired yet during debugging. */
1968 if (p->kgd_process_info) {
1969 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1970 p->kgd_process_info, &p->ef);
1971 if (ret)
1972 return ret;
1973 }
1974
1975 ret = kfd_process_restore_queues(p);
1976 if (!ret)
1977 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1978 else
1979 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1980
1981 return ret;
1982}
1983
1984static void restore_process_worker(struct work_struct *work)
1985{
1986 struct delayed_work *dwork;
1987 struct kfd_process *p;
1988 int ret = 0;
1989
1990 dwork = to_delayed_work(work);
1991
1992 /* Process termination destroys this worker thread. So during the
1993 * lifetime of this thread, kfd_process p will be valid
1994 */
1995 p = container_of(dwork, struct kfd_process, restore_work);
1996 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1997
1998 /* Setting last_restore_timestamp before successful restoration.
1999 * Otherwise this would have to be set by KGD (restore_process_bos)
2000 * before KFD BOs are unreserved. If not, the process can be evicted
2001 * again before the timestamp is set.
2002 * If restore fails, the timestamp will be set again in the next
2003 * attempt. This would mean that the minimum GPU quanta would be
2004 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2005 * functions)
2006 */
2007
2008 p->last_restore_timestamp = get_jiffies_64();
2009
2010 ret = restore_process_helper(p);
2011 if (ret) {
2012 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2013 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2014 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
2015 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
2016 WARN(!ret, "reschedule restore work failed\n");
2017 }
2018}
2019
2020void kfd_suspend_all_processes(void)
2021{
2022 struct kfd_process *p;
2023 unsigned int temp;
2024 int idx = srcu_read_lock(&kfd_processes_srcu);
2025
2026 WARN(debug_evictions, "Evicting all processes");
2027 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2028 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2029 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2030 signal_eviction_fence(p);
2031 }
2032 srcu_read_unlock(&kfd_processes_srcu, idx);
2033}
2034
2035int kfd_resume_all_processes(void)
2036{
2037 struct kfd_process *p;
2038 unsigned int temp;
2039 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2040
2041 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2042 if (restore_process_helper(p)) {
2043 pr_err("Restore process %d failed during resume\n",
2044 p->pasid);
2045 ret = -EFAULT;
2046 }
2047 }
2048 srcu_read_unlock(&kfd_processes_srcu, idx);
2049 return ret;
2050}
2051
2052int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2053 struct vm_area_struct *vma)
2054{
2055 struct kfd_process_device *pdd;
2056 struct qcm_process_device *qpd;
2057
2058 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2059 pr_err("Incorrect CWSR mapping size.\n");
2060 return -EINVAL;
2061 }
2062
2063 pdd = kfd_get_process_device_data(dev, process);
2064 if (!pdd)
2065 return -EINVAL;
2066 qpd = &pdd->qpd;
2067
2068 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2069 get_order(KFD_CWSR_TBA_TMA_SIZE));
2070 if (!qpd->cwsr_kaddr) {
2071 pr_err("Error allocating per process CWSR buffer.\n");
2072 return -ENOMEM;
2073 }
2074
2075 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2076 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2077 /* Mapping pages to user process */
2078 return remap_pfn_range(vma, vma->vm_start,
2079 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2080 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2081}
2082
2083/* assumes caller holds process lock. */
2084int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2085{
2086 uint32_t irq_drain_fence[8];
2087 uint8_t node_id = 0;
2088 int r = 0;
2089
2090 if (!KFD_IS_SOC15(pdd->dev))
2091 return 0;
2092
2093 pdd->process->irq_drain_is_open = true;
2094
2095 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2096 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2097 KFD_IRQ_FENCE_CLIENTID;
2098 irq_drain_fence[3] = pdd->process->pasid;
2099
2100 /*
2101 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2102 */
2103 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2104 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2105 irq_drain_fence[3] |= node_id << 16;
2106 }
2107
2108 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2109 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2110 irq_drain_fence)) {
2111 pdd->process->irq_drain_is_open = false;
2112 return 0;
2113 }
2114
2115 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2116 !READ_ONCE(pdd->process->irq_drain_is_open));
2117 if (r)
2118 pdd->process->irq_drain_is_open = false;
2119
2120 return r;
2121}
2122
2123void kfd_process_close_interrupt_drain(unsigned int pasid)
2124{
2125 struct kfd_process *p;
2126
2127 p = kfd_lookup_process_by_pasid(pasid);
2128
2129 if (!p)
2130 return;
2131
2132 WRITE_ONCE(p->irq_drain_is_open, false);
2133 wake_up_all(&p->wait_irq_drain);
2134 kfd_unref_process(p);
2135}
2136
2137struct send_exception_work_handler_workarea {
2138 struct work_struct work;
2139 struct kfd_process *p;
2140 unsigned int queue_id;
2141 uint64_t error_reason;
2142};
2143
2144static void send_exception_work_handler(struct work_struct *work)
2145{
2146 struct send_exception_work_handler_workarea *workarea;
2147 struct kfd_process *p;
2148 struct queue *q;
2149 struct mm_struct *mm;
2150 struct kfd_context_save_area_header __user *csa_header;
2151 uint64_t __user *err_payload_ptr;
2152 uint64_t cur_err;
2153 uint32_t ev_id;
2154
2155 workarea = container_of(work,
2156 struct send_exception_work_handler_workarea,
2157 work);
2158 p = workarea->p;
2159
2160 mm = get_task_mm(p->lead_thread);
2161
2162 if (!mm)
2163 return;
2164
2165 kthread_use_mm(mm);
2166
2167 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2168
2169 if (!q)
2170 goto out;
2171
2172 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2173
2174 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2175 get_user(cur_err, err_payload_ptr);
2176 cur_err |= workarea->error_reason;
2177 put_user(cur_err, err_payload_ptr);
2178 get_user(ev_id, &csa_header->err_event_id);
2179
2180 kfd_set_event(p, ev_id);
2181
2182out:
2183 kthread_unuse_mm(mm);
2184 mmput(mm);
2185}
2186
2187int kfd_send_exception_to_runtime(struct kfd_process *p,
2188 unsigned int queue_id,
2189 uint64_t error_reason)
2190{
2191 struct send_exception_work_handler_workarea worker;
2192
2193 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2194
2195 worker.p = p;
2196 worker.queue_id = queue_id;
2197 worker.error_reason = error_reason;
2198
2199 schedule_work(&worker.work);
2200 flush_work(&worker.work);
2201 destroy_work_on_stack(&worker.work);
2202
2203 return 0;
2204}
2205
2206struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2207{
2208 int i;
2209
2210 if (gpu_id) {
2211 for (i = 0; i < p->n_pdds; i++) {
2212 struct kfd_process_device *pdd = p->pdds[i];
2213
2214 if (pdd->user_gpu_id == gpu_id)
2215 return pdd;
2216 }
2217 }
2218 return NULL;
2219}
2220
2221int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2222{
2223 int i;
2224
2225 if (!actual_gpu_id)
2226 return 0;
2227
2228 for (i = 0; i < p->n_pdds; i++) {
2229 struct kfd_process_device *pdd = p->pdds[i];
2230
2231 if (pdd->dev->id == actual_gpu_id)
2232 return pdd->user_gpu_id;
2233 }
2234 return -EINVAL;
2235}
2236
2237#if defined(CONFIG_DEBUG_FS)
2238
2239int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2240{
2241 struct kfd_process *p;
2242 unsigned int temp;
2243 int r = 0;
2244
2245 int idx = srcu_read_lock(&kfd_processes_srcu);
2246
2247 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2248 seq_printf(m, "Process %d PASID 0x%x:\n",
2249 p->lead_thread->tgid, p->pasid);
2250
2251 mutex_lock(&p->mutex);
2252 r = pqm_debugfs_mqds(m, &p->pqm);
2253 mutex_unlock(&p->mutex);
2254
2255 if (r)
2256 break;
2257 }
2258
2259 srcu_read_unlock(&kfd_processes_srcu, idx);
2260
2261 return r;
2262}
2263
2264#endif