Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/device.h>
  24#include <linux/export.h>
  25#include <linux/err.h>
  26#include <linux/fs.h>
 
  27#include <linux/sched.h>
  28#include <linux/slab.h>
  29#include <linux/uaccess.h>
  30#include <linux/compat.h>
  31#include <uapi/linux/kfd_ioctl.h>
  32#include <linux/time.h>
  33#include <linux/mm.h>
  34#include <linux/mman.h>
  35#include <asm/processor.h>
 
 
 
  36#include "kfd_priv.h"
  37#include "kfd_device_queue_manager.h"
  38#include "kfd_dbgmgr.h"
 
 
 
 
  39
  40static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  41static int kfd_open(struct inode *, struct file *);
 
  42static int kfd_mmap(struct file *, struct vm_area_struct *);
  43
  44static const char kfd_dev_name[] = "kfd";
  45
  46static const struct file_operations kfd_fops = {
  47	.owner = THIS_MODULE,
  48	.unlocked_ioctl = kfd_ioctl,
  49	.compat_ioctl = kfd_ioctl,
  50	.open = kfd_open,
 
  51	.mmap = kfd_mmap,
  52};
  53
  54static int kfd_char_dev_major = -1;
  55static struct class *kfd_class;
  56struct device *kfd_device;
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58int kfd_chardev_init(void)
  59{
  60	int err = 0;
  61
  62	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  63	err = kfd_char_dev_major;
  64	if (err < 0)
  65		goto err_register_chrdev;
  66
  67	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
  68	err = PTR_ERR(kfd_class);
  69	if (IS_ERR(kfd_class))
  70		goto err_class_create;
  71
  72	kfd_device = device_create(kfd_class, NULL,
  73					MKDEV(kfd_char_dev_major, 0),
  74					NULL, kfd_dev_name);
  75	err = PTR_ERR(kfd_device);
  76	if (IS_ERR(kfd_device))
  77		goto err_device_create;
  78
  79	return 0;
  80
  81err_device_create:
  82	class_destroy(kfd_class);
  83err_class_create:
  84	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  85err_register_chrdev:
  86	return err;
  87}
  88
  89void kfd_chardev_exit(void)
  90{
  91	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
  92	class_destroy(kfd_class);
  93	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  94}
  95
  96struct device *kfd_chardev(void)
  97{
  98	return kfd_device;
  99}
 100
 101
 102static int kfd_open(struct inode *inode, struct file *filep)
 103{
 104	struct kfd_process *process;
 105	bool is_32bit_user_mode;
 106
 107	if (iminor(inode) != 0)
 108		return -ENODEV;
 109
 110	is_32bit_user_mode = in_compat_syscall();
 111
 112	if (is_32bit_user_mode == true) {
 113		dev_warn(kfd_device,
 114			"Process %d (32-bit) failed to open /dev/kfd\n"
 115			"32-bit processes are not supported by amdkfd\n",
 116			current->pid);
 117		return -EPERM;
 118	}
 119
 120	process = kfd_create_process(current);
 121	if (IS_ERR(process))
 122		return PTR_ERR(process);
 123
 
 
 
 
 
 
 
 
 124	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 125		process->pasid, process->is_32bit_user_mode);
 126
 127	return 0;
 128}
 129
 
 
 
 
 
 
 
 
 
 
 130static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 131					void *data)
 132{
 133	struct kfd_ioctl_get_version_args *args = data;
 134	int err = 0;
 135
 136	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 137	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 138
 139	return err;
 140}
 141
 142static int set_queue_properties_from_user(struct queue_properties *q_properties,
 143				struct kfd_ioctl_create_queue_args *args)
 144{
 145	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 146		pr_err("kfd: queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 
 
 
 
 
 147		return -EINVAL;
 148	}
 149
 150	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 151		pr_err("kfd: queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 152		return -EINVAL;
 153	}
 154
 155	if ((args->ring_base_address) &&
 156		(!access_ok(VERIFY_WRITE,
 157			(const void __user *) args->ring_base_address,
 158			sizeof(uint64_t)))) {
 159		pr_err("kfd: can't access ring base address\n");
 160		return -EFAULT;
 161	}
 162
 163	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 164		pr_err("kfd: ring size must be a power of 2 or 0\n");
 165		return -EINVAL;
 166	}
 167
 168	if (!access_ok(VERIFY_WRITE,
 169			(const void __user *) args->read_pointer_address,
 170			sizeof(uint32_t))) {
 171		pr_err("kfd: can't access read pointer\n");
 172		return -EFAULT;
 173	}
 174
 175	if (!access_ok(VERIFY_WRITE,
 176			(const void __user *) args->write_pointer_address,
 177			sizeof(uint32_t))) {
 178		pr_err("kfd: can't access write pointer\n");
 179		return -EFAULT;
 180	}
 181
 182	if (args->eop_buffer_address &&
 183		!access_ok(VERIFY_WRITE,
 184			(const void __user *) args->eop_buffer_address,
 185			sizeof(uint32_t))) {
 186		pr_debug("kfd: can't access eop buffer");
 187		return -EFAULT;
 188	}
 189
 190	if (args->ctx_save_restore_address &&
 191		!access_ok(VERIFY_WRITE,
 192			(const void __user *) args->ctx_save_restore_address,
 193			sizeof(uint32_t))) {
 194		pr_debug("kfd: can't access ctx save restore buffer");
 195		return -EFAULT;
 196	}
 197
 198	q_properties->is_interop = false;
 199	q_properties->queue_percent = args->queue_percentage;
 
 
 
 200	q_properties->priority = args->queue_priority;
 201	q_properties->queue_address = args->ring_base_address;
 202	q_properties->queue_size = args->ring_size;
 203	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 204	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 205	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 206	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 207	q_properties->ctx_save_restore_area_address =
 208			args->ctx_save_restore_address;
 209	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 
 210	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 211		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 212		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 213	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 214		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 
 
 215	else
 216		return -ENOTSUPP;
 217
 218	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 219		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 220	else
 221		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 222
 223	pr_debug("Queue Percentage (%d, %d)\n",
 224			q_properties->queue_percent, args->queue_percentage);
 225
 226	pr_debug("Queue Priority (%d, %d)\n",
 227			q_properties->priority, args->queue_priority);
 228
 229	pr_debug("Queue Address (0x%llX, 0x%llX)\n",
 230			q_properties->queue_address, args->ring_base_address);
 231
 232	pr_debug("Queue Size (0x%llX, %u)\n",
 233			q_properties->queue_size, args->ring_size);
 234
 235	pr_debug("Queue r/w Pointers (0x%llX, 0x%llX)\n",
 236			(uint64_t) q_properties->read_ptr,
 237			(uint64_t) q_properties->write_ptr);
 238
 239	pr_debug("Queue Format (%d)\n", q_properties->format);
 240
 241	pr_debug("Queue EOP (0x%llX)\n", q_properties->eop_ring_buffer_address);
 242
 243	pr_debug("Queue CTX save arex (0x%llX)\n",
 244			q_properties->ctx_save_restore_area_address);
 245
 246	return 0;
 247}
 248
 249static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 250					void *data)
 251{
 252	struct kfd_ioctl_create_queue_args *args = data;
 253	struct kfd_dev *dev;
 254	int err = 0;
 255	unsigned int queue_id;
 256	struct kfd_process_device *pdd;
 257	struct queue_properties q_properties;
 
 
 258
 259	memset(&q_properties, 0, sizeof(struct queue_properties));
 260
 261	pr_debug("kfd: creating queue ioctl\n");
 262
 263	err = set_queue_properties_from_user(&q_properties, args);
 264	if (err)
 265		return err;
 266
 267	pr_debug("kfd: looking for gpu id 0x%x\n", args->gpu_id);
 268	dev = kfd_device_by_id(args->gpu_id);
 269	if (dev == NULL) {
 270		pr_debug("kfd: gpu id 0x%x was not found\n", args->gpu_id);
 271		return -EINVAL;
 272	}
 273
 274	mutex_lock(&p->mutex);
 275
 
 
 
 
 
 
 
 
 276	pdd = kfd_bind_process_to_device(dev, p);
 277	if (IS_ERR(pdd)) {
 278		err = -ESRCH;
 279		goto err_bind_process;
 280	}
 281
 282	pr_debug("kfd: creating queue for PASID %d on GPU 0x%x\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283			p->pasid,
 284			dev->id);
 285
 286	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties,
 287				0, q_properties.type, &queue_id);
 288	if (err != 0)
 289		goto err_create_queue;
 290
 291	args->queue_id = queue_id;
 292
 293
 294	/* Return gpu_id as doorbell offset for mmap usage */
 295	args->doorbell_offset = (KFD_MMAP_DOORBELL_MASK | args->gpu_id);
 296	args->doorbell_offset <<= PAGE_SHIFT;
 
 
 
 
 
 297
 298	mutex_unlock(&p->mutex);
 299
 300	pr_debug("kfd: queue id %d was created successfully\n", args->queue_id);
 301
 302	pr_debug("ring buffer address == 0x%016llX\n",
 303			args->ring_base_address);
 304
 305	pr_debug("read ptr address    == 0x%016llX\n",
 306			args->read_pointer_address);
 307
 308	pr_debug("write ptr address   == 0x%016llX\n",
 309			args->write_pointer_address);
 310
 
 311	return 0;
 312
 313err_create_queue:
 
 
 
 314err_bind_process:
 
 315	mutex_unlock(&p->mutex);
 316	return err;
 317}
 318
 319static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 320					void *data)
 321{
 322	int retval;
 323	struct kfd_ioctl_destroy_queue_args *args = data;
 324
 325	pr_debug("kfd: destroying queue id %d for PASID %d\n",
 326				args->queue_id,
 327				p->pasid);
 328
 329	mutex_lock(&p->mutex);
 330
 331	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 332
 333	mutex_unlock(&p->mutex);
 334	return retval;
 335}
 336
 337static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 338					void *data)
 339{
 340	int retval;
 341	struct kfd_ioctl_update_queue_args *args = data;
 342	struct queue_properties properties;
 343
 344	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 345		pr_err("kfd: queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 
 
 
 
 
 346		return -EINVAL;
 347	}
 348
 349	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 350		pr_err("kfd: queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 351		return -EINVAL;
 352	}
 353
 354	if ((args->ring_base_address) &&
 355		(!access_ok(VERIFY_WRITE,
 356			(const void __user *) args->ring_base_address,
 357			sizeof(uint64_t)))) {
 358		pr_err("kfd: can't access ring base address\n");
 359		return -EFAULT;
 360	}
 361
 362	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 363		pr_err("kfd: ring size must be a power of 2 or 0\n");
 364		return -EINVAL;
 365	}
 366
 367	properties.queue_address = args->ring_base_address;
 368	properties.queue_size = args->ring_size;
 369	properties.queue_percent = args->queue_percentage;
 
 
 370	properties.priority = args->queue_priority;
 371
 372	pr_debug("kfd: updating queue id %d for PASID %d\n",
 373			args->queue_id, p->pasid);
 374
 375	mutex_lock(&p->mutex);
 376
 377	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379	mutex_unlock(&p->mutex);
 380
 
 
 381	return retval;
 382}
 383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384static int kfd_ioctl_set_memory_policy(struct file *filep,
 385					struct kfd_process *p, void *data)
 386{
 387	struct kfd_ioctl_set_memory_policy_args *args = data;
 388	struct kfd_dev *dev;
 389	int err = 0;
 390	struct kfd_process_device *pdd;
 391	enum cache_policy default_policy, alternate_policy;
 392
 393	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 394	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 395		return -EINVAL;
 396	}
 397
 398	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 399	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 400		return -EINVAL;
 401	}
 402
 403	dev = kfd_device_by_id(args->gpu_id);
 404	if (dev == NULL)
 405		return -EINVAL;
 406
 407	mutex_lock(&p->mutex);
 
 
 
 
 
 
 408
 409	pdd = kfd_bind_process_to_device(dev, p);
 410	if (IS_ERR(pdd)) {
 411		err = -ESRCH;
 412		goto out;
 413	}
 414
 415	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 416			 ? cache_policy_coherent : cache_policy_noncoherent;
 417
 418	alternate_policy =
 419		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 420		   ? cache_policy_coherent : cache_policy_noncoherent;
 421
 422	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
 423				&pdd->qpd,
 424				default_policy,
 425				alternate_policy,
 426				(void __user *)args->alternate_aperture_base,
 427				args->alternate_aperture_size))
 428		err = -EINVAL;
 429
 430out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431	mutex_unlock(&p->mutex);
 432
 433	return err;
 434}
 435
 436static int kfd_ioctl_dbg_register(struct file *filep,
 437				struct kfd_process *p, void *data)
 438{
 439	struct kfd_ioctl_dbg_register_args *args = data;
 440	struct kfd_dev *dev;
 441	struct kfd_dbgmgr *dbgmgr_ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	struct kfd_process_device *pdd;
 443	bool create_ok;
 444	long status = 0;
 445
 446	dev = kfd_device_by_id(args->gpu_id);
 447	if (dev == NULL)
 448		return -EINVAL;
 449
 450	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 451		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453	}
 454
 455	mutex_lock(kfd_get_dbgmgr_mutex());
 
 456	mutex_lock(&p->mutex);
 
 
 
 
 
 
 
 457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458	/*
 459	 * make sure that we have pdd, if this the first queue created for
 460	 * this process
 461	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	pdd = kfd_bind_process_to_device(dev, p);
 463	if (IS_ERR(pdd)) {
 464		mutex_unlock(&p->mutex);
 465		mutex_unlock(kfd_get_dbgmgr_mutex());
 466		return PTR_ERR(pdd);
 467	}
 468
 469	if (dev->dbgmgr == NULL) {
 470		/* In case of a legal call, we have no dbgmgr yet */
 471		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
 472		if (create_ok) {
 473			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
 474			if (status != 0)
 475				kfd_dbgmgr_destroy(dbgmgr_ptr);
 476			else
 477				dev->dbgmgr = dbgmgr_ptr;
 
 
 
 
 
 478		}
 479	} else {
 480		pr_debug("debugger already registered\n");
 481		status = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	}
 
 
 
 483
 
 
 
 
 
 484	mutex_unlock(&p->mutex);
 485	mutex_unlock(kfd_get_dbgmgr_mutex());
 
 486
 487	return status;
 488}
 489
 490static int kfd_ioctl_dbg_unrgesiter(struct file *filep,
 491				struct kfd_process *p, void *data)
 492{
 493	struct kfd_ioctl_dbg_unregister_args *args = data;
 494	struct kfd_dev *dev;
 495	long status;
 
 
 
 496
 497	dev = kfd_device_by_id(args->gpu_id);
 498	if (dev == NULL)
 499		return -EINVAL;
 500
 501	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 502		pr_debug("kfd_ioctl_dbg_unrgesiter not supported on CZ\n");
 503		return -EINVAL;
 504	}
 505
 506	mutex_lock(kfd_get_dbgmgr_mutex());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
 509	if (status == 0) {
 510		kfd_dbgmgr_destroy(dev->dbgmgr);
 511		dev->dbgmgr = NULL;
 
 
 
 
 
 
 
 
 
 
 512	}
 513
 514	mutex_unlock(kfd_get_dbgmgr_mutex());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516	return status;
 
 
 
 
 
 
 
 
 
 517}
 518
 519/*
 520 * Parse and generate variable size data structure for address watch.
 521 * Total size of the buffer and # watch points is limited in order
 522 * to prevent kernel abuse. (no bearing to the much smaller HW limitation
 523 * which is enforced by dbgdev module)
 524 * please also note that the watch address itself are not "copied from user",
 525 * since it be set into the HW in user mode values.
 526 *
 527 */
 528static int kfd_ioctl_dbg_address_watch(struct file *filep,
 529					struct kfd_process *p, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530{
 531	struct kfd_ioctl_dbg_address_watch_args *args = data;
 532	struct kfd_dev *dev;
 533	struct dbg_address_watch_info aw_info;
 534	unsigned char *args_buff;
 535	long status;
 536	void __user *cmd_from_user;
 537	uint64_t watch_mask_value = 0;
 538	unsigned int args_idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539
 540	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541
 542	dev = kfd_device_by_id(args->gpu_id);
 543	if (dev == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544		return -EINVAL;
 545
 546	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 547		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549	}
 550
 551	cmd_from_user = (void __user *) args->content_ptr;
 
 
 
 
 
 
 
 
 
 552
 553	/* Validate arguments */
 
 554
 555	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
 556		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
 557		(cmd_from_user == NULL))
 558		return -EINVAL;
 559
 560	/* this is the actual buffer to work with */
 561	args_buff = memdup_user(cmd_from_user,
 562				args->buf_size_in_bytes - sizeof(*args));
 563	if (IS_ERR(args_buff))
 564		return PTR_ERR(args_buff);
 565
 566	aw_info.process = p;
 
 
 
 
 
 
 
 
 
 
 
 
 567
 568	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
 569	args_idx += sizeof(aw_info.num_watch_points);
 
 
 
 
 570
 571	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
 572	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
 573
 574	/*
 575	 * set watch address base pointer to point on the array base
 576	 * within args_buff
 
 577	 */
 578	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
 579
 580	/* skip over the addresses buffer */
 581	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
 582
 583	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
 584		kfree(args_buff);
 585		return -EINVAL;
 586	}
 587
 588	watch_mask_value = (uint64_t) args_buff[args_idx];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589
 590	if (watch_mask_value > 0) {
 591		/*
 592		 * There is an array of masks.
 593		 * set watch mask base pointer to point on the array base
 594		 * within args_buff
 595		 */
 596		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
 597
 598		/* skip over the masks buffer */
 599		args_idx += sizeof(aw_info.watch_mask) *
 600				aw_info.num_watch_points;
 601	} else {
 602		/* just the NULL mask, set to NULL and skip over it */
 603		aw_info.watch_mask = NULL;
 604		args_idx += sizeof(aw_info.watch_mask);
 605	}
 606
 607	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
 608		kfree(args_buff);
 609		return -EINVAL;
 
 
 
 610	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612	/* Currently HSA Event is not supported for DBG */
 613	aw_info.watch_event = NULL;
 614
 615	mutex_lock(kfd_get_dbgmgr_mutex());
 
 
 
 
 
 616
 617	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
 
 
 
 
 618
 619	mutex_unlock(kfd_get_dbgmgr_mutex());
 
 
 
 
 620
 621	kfree(args_buff);
 
 
 
 
 622
 623	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624}
 625
 626/* Parse and generate fixed size data structure for wave control */
 627static int kfd_ioctl_dbg_wave_control(struct file *filep,
 628					struct kfd_process *p, void *data)
 
 
 629{
 630	struct kfd_ioctl_dbg_wave_control_args *args = data;
 631	struct kfd_dev *dev;
 632	struct dbg_wave_control_info wac_info;
 633	unsigned char *args_buff;
 634	uint32_t computed_buff_size;
 635	long status;
 636	void __user *cmd_from_user;
 637	unsigned int args_idx = 0;
 
 
 638
 639	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
 640
 641	/* we use compact form, independent of the packing attribute value */
 642	computed_buff_size = sizeof(*args) +
 643				sizeof(wac_info.mode) +
 644				sizeof(wac_info.operand) +
 645				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
 646				sizeof(wac_info.dbgWave_msg.MemoryVA) +
 647				sizeof(wac_info.trapId);
 648
 649	dev = kfd_device_by_id(args->gpu_id);
 650	if (dev == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651		return -EINVAL;
 652
 653	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 654		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655		return -EINVAL;
 
 
 
 
 
 
 
 
 656	}
 
 657
 658	/* input size must match the computed "compact" size */
 659	if (args->buf_size_in_bytes != computed_buff_size) {
 660		pr_debug("size mismatch, computed : actual %u : %u\n",
 661				args->buf_size_in_bytes, computed_buff_size);
 662		return -EINVAL;
 663	}
 664
 665	cmd_from_user = (void __user *) args->content_ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666
 667	if (cmd_from_user == NULL)
 668		return -EINVAL;
 669
 670	/* copy the entire buffer from user */
 
 671
 672	args_buff = memdup_user(cmd_from_user,
 673				args->buf_size_in_bytes - sizeof(*args));
 674	if (IS_ERR(args_buff))
 675		return PTR_ERR(args_buff);
 676
 677	/* move ptr to the start of the "pay-load" area */
 678	wac_info.process = p;
 
 
 
 
 
 679
 680	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
 681	args_idx += sizeof(wac_info.operand);
 
 
 682
 683	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
 684	args_idx += sizeof(wac_info.mode);
 685
 686	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
 687	args_idx += sizeof(wac_info.trapId);
 
 
 
 688
 689	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
 690					*((uint32_t *)(&args_buff[args_idx]));
 691	wac_info.dbgWave_msg.MemoryVA = NULL;
 
 
 
 
 692
 693	mutex_lock(kfd_get_dbgmgr_mutex());
 
 
 
 
 
 
 
 694
 695	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
 696			wac_info.process, wac_info.operand,
 697			wac_info.mode, wac_info.trapId,
 698			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
 
 
 
 699
 700	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
 
 
 
 701
 702	pr_debug("Returned status of dbg manager is %ld\n", status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704	mutex_unlock(kfd_get_dbgmgr_mutex());
 
 
 
 
 
 705
 706	kfree(args_buff);
 
 
 
 
 707
 708	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709}
 710
 711static int kfd_ioctl_get_clock_counters(struct file *filep,
 712				struct kfd_process *p, void *data)
 
 713{
 714	struct kfd_ioctl_get_clock_counters_args *args = data;
 715	struct kfd_dev *dev;
 716	struct timespec64 time;
 
 
 
 
 
 
 
 
 
 
 
 717
 718	dev = kfd_device_by_id(args->gpu_id);
 719	if (dev == NULL)
 720		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722	/* Reading GPU clock counter from KGD */
 723	args->gpu_clock_counter =
 724		dev->kfd2kgd->get_gpu_clock_counter(dev->kgd);
 
 
 
 
 
 
 
 
 725
 726	/* No access to rdtsc. Using raw monotonic time */
 727	getrawmonotonic64(&time);
 728	args->cpu_clock_counter = (uint64_t)timespec64_to_ns(&time);
 729
 730	get_monotonic_boottime64(&time);
 731	args->system_clock_counter = (uint64_t)timespec64_to_ns(&time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733	/* Since the counter is in nano-seconds we use 1GHz frequency */
 734	args->system_clock_freq = 1000000000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735
 736	return 0;
 737}
 
 
 
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739
 740static int kfd_ioctl_get_process_apertures(struct file *filp,
 741				struct kfd_process *p, void *data)
 
 742{
 743	struct kfd_ioctl_get_process_apertures_args *args = data;
 744	struct kfd_process_device_apertures *pAperture;
 745	struct kfd_process_device *pdd;
 746
 747	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
 
 748
 749	args->num_of_nodes = 0;
 
 
 750
 751	mutex_lock(&p->mutex);
 752
 753	/*if the process-device list isn't empty*/
 754	if (kfd_has_process_device_data(p)) {
 755		/* Run over all pdd of the process */
 756		pdd = kfd_get_first_process_device_data(p);
 757		do {
 758			pAperture =
 759				&args->process_apertures[args->num_of_nodes];
 760			pAperture->gpu_id = pdd->dev->id;
 761			pAperture->lds_base = pdd->lds_base;
 762			pAperture->lds_limit = pdd->lds_limit;
 763			pAperture->gpuvm_base = pdd->gpuvm_base;
 764			pAperture->gpuvm_limit = pdd->gpuvm_limit;
 765			pAperture->scratch_base = pdd->scratch_base;
 766			pAperture->scratch_limit = pdd->scratch_limit;
 767
 768			dev_dbg(kfd_device,
 769				"node id %u\n", args->num_of_nodes);
 770			dev_dbg(kfd_device,
 771				"gpu id %u\n", pdd->dev->id);
 772			dev_dbg(kfd_device,
 773				"lds_base %llX\n", pdd->lds_base);
 774			dev_dbg(kfd_device,
 775				"lds_limit %llX\n", pdd->lds_limit);
 776			dev_dbg(kfd_device,
 777				"gpuvm_base %llX\n", pdd->gpuvm_base);
 778			dev_dbg(kfd_device,
 779				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 780			dev_dbg(kfd_device,
 781				"scratch_base %llX\n", pdd->scratch_base);
 782			dev_dbg(kfd_device,
 783				"scratch_limit %llX\n", pdd->scratch_limit);
 784
 785			args->num_of_nodes++;
 786		} while ((pdd = kfd_get_next_process_device_data(p, pdd)) != NULL &&
 787				(args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
 788	}
 789
 
 790	mutex_unlock(&p->mutex);
 
 
 
 
 791
 792	return 0;
 793}
 794
 795static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 796					void *data)
 
 797{
 798	struct kfd_ioctl_create_event_args *args = data;
 799	int err;
 800
 801	err = kfd_event_create(filp, p, args->event_type,
 802				args->auto_reset != 0, args->node_id,
 803				&args->event_id, &args->event_trigger_data,
 804				&args->event_page_offset,
 805				&args->event_slot_index);
 806
 807	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 808}
 809
 810static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 811					void *data)
 
 812{
 813	struct kfd_ioctl_destroy_event_args *args = data;
 
 
 814
 815	return kfd_event_destroy(p, args->event_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816}
 817
 818static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 819				void *data)
 
 820{
 821	struct kfd_ioctl_set_event_args *args = data;
 822
 823	return kfd_set_event(p, args->event_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824}
 825
 826static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 827				void *data)
 828{
 829	struct kfd_ioctl_reset_event_args *args = data;
 
 830
 831	return kfd_reset_event(p, args->event_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832}
 833
 834static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 835				void *data)
 836{
 837	struct kfd_ioctl_wait_events_args *args = data;
 838	enum kfd_event_wait_result wait_result;
 839	int err;
 840
 841	err = kfd_wait_on_events(p, args->num_events,
 842			(void __user *)args->events_ptr,
 843			(args->wait_for_all != 0),
 844			args->timeout, &wait_result);
 845
 846	args->wait_result = wait_result;
 
 847
 848	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849}
 850
 851#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
 852	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, .cmd_drv = 0, .name = #ioctl}
 
 853
 854/** Ioctl table */
 855static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
 856	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
 857			kfd_ioctl_get_version, 0),
 858
 859	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
 860			kfd_ioctl_create_queue, 0),
 861
 862	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
 863			kfd_ioctl_destroy_queue, 0),
 864
 865	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
 866			kfd_ioctl_set_memory_policy, 0),
 867
 868	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
 869			kfd_ioctl_get_clock_counters, 0),
 870
 871	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
 872			kfd_ioctl_get_process_apertures, 0),
 873
 874	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
 875			kfd_ioctl_update_queue, 0),
 876
 877	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
 878			kfd_ioctl_create_event, 0),
 879
 880	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
 881			kfd_ioctl_destroy_event, 0),
 882
 883	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
 884			kfd_ioctl_set_event, 0),
 885
 886	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
 887			kfd_ioctl_reset_event, 0),
 888
 889	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
 890			kfd_ioctl_wait_events, 0),
 891
 892	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
 893			kfd_ioctl_dbg_register, 0),
 894
 895	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
 896			kfd_ioctl_dbg_unrgesiter, 0),
 897
 898	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
 899			kfd_ioctl_dbg_address_watch, 0),
 900
 901	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
 902			kfd_ioctl_dbg_wave_control, 0),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903};
 904
 905#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
 906
 907static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
 908{
 909	struct kfd_process *process;
 910	amdkfd_ioctl_t *func;
 911	const struct amdkfd_ioctl_desc *ioctl = NULL;
 912	unsigned int nr = _IOC_NR(cmd);
 913	char stack_kdata[128];
 914	char *kdata = NULL;
 915	unsigned int usize, asize;
 916	int retcode = -EINVAL;
 
 917
 918	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
 919		goto err_i1;
 920
 921	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
 922		u32 amdkfd_size;
 923
 924		ioctl = &amdkfd_ioctls[nr];
 925
 926		amdkfd_size = _IOC_SIZE(ioctl->cmd);
 927		usize = asize = _IOC_SIZE(cmd);
 928		if (amdkfd_size > asize)
 929			asize = amdkfd_size;
 930
 931		cmd = ioctl->cmd;
 932	} else
 933		goto err_i1;
 934
 935	dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
 936
 937	process = kfd_get_process(current);
 938	if (IS_ERR(process)) {
 939		dev_dbg(kfd_device, "no process\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 940		goto err_i1;
 941	}
 942
 943	/* Do not trust userspace, use our own definition */
 944	func = ioctl->func;
 945
 946	if (unlikely(!func)) {
 947		dev_dbg(kfd_device, "no function\n");
 948		retcode = -EINVAL;
 949		goto err_i1;
 950	}
 951
 
 
 
 
 
 
 
 
 
 
 
 
 
 952	if (cmd & (IOC_IN | IOC_OUT)) {
 953		if (asize <= sizeof(stack_kdata)) {
 954			kdata = stack_kdata;
 955		} else {
 956			kdata = kmalloc(asize, GFP_KERNEL);
 957			if (!kdata) {
 958				retcode = -ENOMEM;
 959				goto err_i1;
 960			}
 961		}
 962		if (asize > usize)
 963			memset(kdata + usize, 0, asize - usize);
 964	}
 965
 966	if (cmd & IOC_IN) {
 967		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
 968			retcode = -EFAULT;
 969			goto err_i1;
 970		}
 971	} else if (cmd & IOC_OUT) {
 972		memset(kdata, 0, usize);
 973	}
 974
 975	retcode = func(filep, process, kdata);
 976
 977	if (cmd & IOC_OUT)
 978		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
 979			retcode = -EFAULT;
 980
 981err_i1:
 982	if (!ioctl)
 983		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
 984			  task_pid_nr(current), cmd, nr);
 985
 986	if (kdata != stack_kdata)
 987		kfree(kdata);
 988
 989	if (retcode)
 990		dev_dbg(kfd_device, "ret = %d\n", retcode);
 
 991
 992	return retcode;
 993}
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
 996{
 997	struct kfd_process *process;
 
 
 
 998
 999	process = kfd_get_process(current);
1000	if (IS_ERR(process))
1001		return PTR_ERR(process);
1002
1003	if ((vma->vm_pgoff & KFD_MMAP_DOORBELL_MASK) ==
1004			KFD_MMAP_DOORBELL_MASK) {
1005		vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_DOORBELL_MASK;
1006		return kfd_doorbell_mmap(process, vma);
1007	} else if ((vma->vm_pgoff & KFD_MMAP_EVENTS_MASK) ==
1008			KFD_MMAP_EVENTS_MASK) {
1009		vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK;
 
 
 
 
 
1010		return kfd_event_mmap(process, vma);
 
 
 
 
 
 
 
 
 
1011	}
1012
1013	return -EFAULT;
1014}
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/device.h>
  25#include <linux/export.h>
  26#include <linux/err.h>
  27#include <linux/fs.h>
  28#include <linux/file.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/compat.h>
  33#include <uapi/linux/kfd_ioctl.h>
  34#include <linux/time.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/ptrace.h>
  38#include <linux/dma-buf.h>
  39#include <linux/fdtable.h>
  40#include <linux/processor.h>
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "amdgpu_amdkfd.h"
  45#include "kfd_smi_events.h"
  46#include "amdgpu_dma_buf.h"
  47#include "kfd_debug.h"
  48
  49static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  50static int kfd_open(struct inode *, struct file *);
  51static int kfd_release(struct inode *, struct file *);
  52static int kfd_mmap(struct file *, struct vm_area_struct *);
  53
  54static const char kfd_dev_name[] = "kfd";
  55
  56static const struct file_operations kfd_fops = {
  57	.owner = THIS_MODULE,
  58	.unlocked_ioctl = kfd_ioctl,
  59	.compat_ioctl = compat_ptr_ioctl,
  60	.open = kfd_open,
  61	.release = kfd_release,
  62	.mmap = kfd_mmap,
  63};
  64
  65static int kfd_char_dev_major = -1;
  66static struct class *kfd_class;
  67struct device *kfd_device;
  68
  69static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
  70{
  71	struct kfd_process_device *pdd;
  72
  73	mutex_lock(&p->mutex);
  74	pdd = kfd_process_device_data_by_id(p, gpu_id);
  75
  76	if (pdd)
  77		return pdd;
  78
  79	mutex_unlock(&p->mutex);
  80	return NULL;
  81}
  82
  83static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
  84{
  85	mutex_unlock(&pdd->process->mutex);
  86}
  87
  88int kfd_chardev_init(void)
  89{
  90	int err = 0;
  91
  92	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  93	err = kfd_char_dev_major;
  94	if (err < 0)
  95		goto err_register_chrdev;
  96
  97	kfd_class = class_create(kfd_dev_name);
  98	err = PTR_ERR(kfd_class);
  99	if (IS_ERR(kfd_class))
 100		goto err_class_create;
 101
 102	kfd_device = device_create(kfd_class, NULL,
 103					MKDEV(kfd_char_dev_major, 0),
 104					NULL, kfd_dev_name);
 105	err = PTR_ERR(kfd_device);
 106	if (IS_ERR(kfd_device))
 107		goto err_device_create;
 108
 109	return 0;
 110
 111err_device_create:
 112	class_destroy(kfd_class);
 113err_class_create:
 114	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 115err_register_chrdev:
 116	return err;
 117}
 118
 119void kfd_chardev_exit(void)
 120{
 121	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
 122	class_destroy(kfd_class);
 123	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 124	kfd_device = NULL;
 
 
 
 
 125}
 126
 127
 128static int kfd_open(struct inode *inode, struct file *filep)
 129{
 130	struct kfd_process *process;
 131	bool is_32bit_user_mode;
 132
 133	if (iminor(inode) != 0)
 134		return -ENODEV;
 135
 136	is_32bit_user_mode = in_compat_syscall();
 137
 138	if (is_32bit_user_mode) {
 139		dev_warn(kfd_device,
 140			"Process %d (32-bit) failed to open /dev/kfd\n"
 141			"32-bit processes are not supported by amdkfd\n",
 142			current->pid);
 143		return -EPERM;
 144	}
 145
 146	process = kfd_create_process(current);
 147	if (IS_ERR(process))
 148		return PTR_ERR(process);
 149
 150	if (kfd_process_init_cwsr_apu(process, filep)) {
 151		kfd_unref_process(process);
 152		return -EFAULT;
 153	}
 154
 155	/* filep now owns the reference returned by kfd_create_process */
 156	filep->private_data = process;
 157
 158	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 159		process->pasid, process->is_32bit_user_mode);
 160
 161	return 0;
 162}
 163
 164static int kfd_release(struct inode *inode, struct file *filep)
 165{
 166	struct kfd_process *process = filep->private_data;
 167
 168	if (process)
 169		kfd_unref_process(process);
 170
 171	return 0;
 172}
 173
 174static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 175					void *data)
 176{
 177	struct kfd_ioctl_get_version_args *args = data;
 
 178
 179	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 180	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 181
 182	return 0;
 183}
 184
 185static int set_queue_properties_from_user(struct queue_properties *q_properties,
 186				struct kfd_ioctl_create_queue_args *args)
 187{
 188	/*
 189	 * Repurpose queue percentage to accommodate new features:
 190	 * bit 0-7: queue percentage
 191	 * bit 8-15: pm4_target_xcc
 192	 */
 193	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 194		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 195		return -EINVAL;
 196	}
 197
 198	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 199		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 200		return -EINVAL;
 201	}
 202
 203	if ((args->ring_base_address) &&
 204		(!access_ok((const void __user *) args->ring_base_address,
 
 205			sizeof(uint64_t)))) {
 206		pr_err("Can't access ring base address\n");
 207		return -EFAULT;
 208	}
 209
 210	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 211		pr_err("Ring size must be a power of 2 or 0\n");
 212		return -EINVAL;
 213	}
 214
 215	if (!access_ok((const void __user *) args->read_pointer_address,
 
 216			sizeof(uint32_t))) {
 217		pr_err("Can't access read pointer\n");
 218		return -EFAULT;
 219	}
 220
 221	if (!access_ok((const void __user *) args->write_pointer_address,
 
 222			sizeof(uint32_t))) {
 223		pr_err("Can't access write pointer\n");
 224		return -EFAULT;
 225	}
 226
 227	if (args->eop_buffer_address &&
 228		!access_ok((const void __user *) args->eop_buffer_address,
 
 229			sizeof(uint32_t))) {
 230		pr_debug("Can't access eop buffer");
 231		return -EFAULT;
 232	}
 233
 234	if (args->ctx_save_restore_address &&
 235		!access_ok((const void __user *) args->ctx_save_restore_address,
 
 236			sizeof(uint32_t))) {
 237		pr_debug("Can't access ctx save restore buffer");
 238		return -EFAULT;
 239	}
 240
 241	q_properties->is_interop = false;
 242	q_properties->is_gws = false;
 243	q_properties->queue_percent = args->queue_percentage & 0xFF;
 244	/* bit 8-15 are repurposed to be PM4 target XCC */
 245	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 246	q_properties->priority = args->queue_priority;
 247	q_properties->queue_address = args->ring_base_address;
 248	q_properties->queue_size = args->ring_size;
 249	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 250	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 251	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 252	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 253	q_properties->ctx_save_restore_area_address =
 254			args->ctx_save_restore_address;
 255	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 256	q_properties->ctl_stack_size = args->ctl_stack_size;
 257	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 258		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 259		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 260	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 261		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 262	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 263		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 264	else
 265		return -ENOTSUPP;
 266
 267	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 268		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 269	else
 270		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 271
 272	pr_debug("Queue Percentage: %d, %d\n",
 273			q_properties->queue_percent, args->queue_percentage);
 274
 275	pr_debug("Queue Priority: %d, %d\n",
 276			q_properties->priority, args->queue_priority);
 277
 278	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 279			q_properties->queue_address, args->ring_base_address);
 280
 281	pr_debug("Queue Size: 0x%llX, %u\n",
 282			q_properties->queue_size, args->ring_size);
 283
 284	pr_debug("Queue r/w Pointers: %px, %px\n",
 285			q_properties->read_ptr,
 286			q_properties->write_ptr);
 287
 288	pr_debug("Queue Format: %d\n", q_properties->format);
 289
 290	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 291
 292	pr_debug("Queue CTX save area: 0x%llX\n",
 293			q_properties->ctx_save_restore_area_address);
 294
 295	return 0;
 296}
 297
 298static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 299					void *data)
 300{
 301	struct kfd_ioctl_create_queue_args *args = data;
 302	struct kfd_node *dev;
 303	int err = 0;
 304	unsigned int queue_id;
 305	struct kfd_process_device *pdd;
 306	struct queue_properties q_properties;
 307	uint32_t doorbell_offset_in_process = 0;
 308	struct amdgpu_bo *wptr_bo = NULL;
 309
 310	memset(&q_properties, 0, sizeof(struct queue_properties));
 311
 312	pr_debug("Creating queue ioctl\n");
 313
 314	err = set_queue_properties_from_user(&q_properties, args);
 315	if (err)
 316		return err;
 317
 318	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 
 
 
 
 
 319
 320	mutex_lock(&p->mutex);
 321
 322	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 323	if (!pdd) {
 324		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 325		err = -EINVAL;
 326		goto err_pdd;
 327	}
 328	dev = pdd->dev;
 329
 330	pdd = kfd_bind_process_to_device(dev, p);
 331	if (IS_ERR(pdd)) {
 332		err = -ESRCH;
 333		goto err_bind_process;
 334	}
 335
 336	if (!pdd->qpd.proc_doorbells) {
 337		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
 338		if (err) {
 339			pr_debug("failed to allocate process doorbells\n");
 340			goto err_bind_process;
 341		}
 342	}
 343
 344	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
 345	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
 346	 */
 347	if (dev->kfd->shared_resources.enable_mes &&
 348			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
 349			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
 350		struct amdgpu_bo_va_mapping *wptr_mapping;
 351		struct amdgpu_vm *wptr_vm;
 352
 353		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
 354		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
 355		if (err)
 356			goto err_wptr_map_gart;
 357
 358		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
 359				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
 360		amdgpu_bo_unreserve(wptr_vm->root.bo);
 361		if (!wptr_mapping) {
 362			pr_err("Failed to lookup wptr bo\n");
 363			err = -EINVAL;
 364			goto err_wptr_map_gart;
 365		}
 366
 367		wptr_bo = wptr_mapping->bo_va->base.bo;
 368		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
 369			pr_err("Requested GART mapping for wptr bo larger than one page\n");
 370			err = -EINVAL;
 371			goto err_wptr_map_gart;
 372		}
 373
 374		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
 375		if (err) {
 376			pr_err("Failed to map wptr bo to GART\n");
 377			goto err_wptr_map_gart;
 378		}
 379	}
 380
 381	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 382			p->pasid,
 383			dev->id);
 384
 385	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
 386			NULL, NULL, NULL, &doorbell_offset_in_process);
 387	if (err != 0)
 388		goto err_create_queue;
 389
 390	args->queue_id = queue_id;
 391
 392
 393	/* Return gpu_id as doorbell offset for mmap usage */
 394	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 395	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 396	if (KFD_IS_SOC15(dev))
 397		/* On SOC15 ASICs, include the doorbell offset within the
 398		 * process doorbell frame, which is 2 pages.
 399		 */
 400		args->doorbell_offset |= doorbell_offset_in_process;
 401
 402	mutex_unlock(&p->mutex);
 403
 404	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 405
 406	pr_debug("Ring buffer address == 0x%016llX\n",
 407			args->ring_base_address);
 408
 409	pr_debug("Read ptr address    == 0x%016llX\n",
 410			args->read_pointer_address);
 411
 412	pr_debug("Write ptr address   == 0x%016llX\n",
 413			args->write_pointer_address);
 414
 415	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
 416	return 0;
 417
 418err_create_queue:
 419	if (wptr_bo)
 420		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
 421err_wptr_map_gart:
 422err_bind_process:
 423err_pdd:
 424	mutex_unlock(&p->mutex);
 425	return err;
 426}
 427
 428static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 429					void *data)
 430{
 431	int retval;
 432	struct kfd_ioctl_destroy_queue_args *args = data;
 433
 434	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 435				args->queue_id,
 436				p->pasid);
 437
 438	mutex_lock(&p->mutex);
 439
 440	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 441
 442	mutex_unlock(&p->mutex);
 443	return retval;
 444}
 445
 446static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 447					void *data)
 448{
 449	int retval;
 450	struct kfd_ioctl_update_queue_args *args = data;
 451	struct queue_properties properties;
 452
 453	/*
 454	 * Repurpose queue percentage to accommodate new features:
 455	 * bit 0-7: queue percentage
 456	 * bit 8-15: pm4_target_xcc
 457	 */
 458	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 459		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 460		return -EINVAL;
 461	}
 462
 463	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 464		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 465		return -EINVAL;
 466	}
 467
 468	if ((args->ring_base_address) &&
 469		(!access_ok((const void __user *) args->ring_base_address,
 
 470			sizeof(uint64_t)))) {
 471		pr_err("Can't access ring base address\n");
 472		return -EFAULT;
 473	}
 474
 475	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 476		pr_err("Ring size must be a power of 2 or 0\n");
 477		return -EINVAL;
 478	}
 479
 480	properties.queue_address = args->ring_base_address;
 481	properties.queue_size = args->ring_size;
 482	properties.queue_percent = args->queue_percentage & 0xFF;
 483	/* bit 8-15 are repurposed to be PM4 target XCC */
 484	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 485	properties.priority = args->queue_priority;
 486
 487	pr_debug("Updating queue id %d for pasid 0x%x\n",
 488			args->queue_id, p->pasid);
 489
 490	mutex_lock(&p->mutex);
 491
 492	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
 493
 494	mutex_unlock(&p->mutex);
 495
 496	return retval;
 497}
 498
 499static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 500					void *data)
 501{
 502	int retval;
 503	const int max_num_cus = 1024;
 504	struct kfd_ioctl_set_cu_mask_args *args = data;
 505	struct mqd_update_info minfo = {0};
 506	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 507	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 508
 509	if ((args->num_cu_mask % 32) != 0) {
 510		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 511				args->num_cu_mask);
 512		return -EINVAL;
 513	}
 514
 515	minfo.cu_mask.count = args->num_cu_mask;
 516	if (minfo.cu_mask.count == 0) {
 517		pr_debug("CU mask cannot be 0");
 518		return -EINVAL;
 519	}
 520
 521	/* To prevent an unreasonably large CU mask size, set an arbitrary
 522	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 523	 * past max_num_cus bits and just use the first max_num_cus bits.
 524	 */
 525	if (minfo.cu_mask.count > max_num_cus) {
 526		pr_debug("CU mask cannot be greater than 1024 bits");
 527		minfo.cu_mask.count = max_num_cus;
 528		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 529	}
 530
 531	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
 532	if (!minfo.cu_mask.ptr)
 533		return -ENOMEM;
 534
 535	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
 536	if (retval) {
 537		pr_debug("Could not copy CU mask from userspace");
 538		retval = -EFAULT;
 539		goto out;
 540	}
 541
 542	mutex_lock(&p->mutex);
 543
 544	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
 545
 546	mutex_unlock(&p->mutex);
 547
 548out:
 549	kfree(minfo.cu_mask.ptr);
 550	return retval;
 551}
 552
 553static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 554					  struct kfd_process *p, void *data)
 555{
 556	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 557	int r;
 558
 559	mutex_lock(&p->mutex);
 560
 561	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 562			       (void __user *)args->ctl_stack_address,
 563			       &args->ctl_stack_used_size,
 564			       &args->save_area_used_size);
 565
 566	mutex_unlock(&p->mutex);
 567
 568	return r;
 569}
 570
 571static int kfd_ioctl_set_memory_policy(struct file *filep,
 572					struct kfd_process *p, void *data)
 573{
 574	struct kfd_ioctl_set_memory_policy_args *args = data;
 
 575	int err = 0;
 576	struct kfd_process_device *pdd;
 577	enum cache_policy default_policy, alternate_policy;
 578
 579	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 580	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 581		return -EINVAL;
 582	}
 583
 584	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 585	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 586		return -EINVAL;
 587	}
 588
 
 
 
 
 589	mutex_lock(&p->mutex);
 590	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 591	if (!pdd) {
 592		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 593		err = -EINVAL;
 594		goto err_pdd;
 595	}
 596
 597	pdd = kfd_bind_process_to_device(pdd->dev, p);
 598	if (IS_ERR(pdd)) {
 599		err = -ESRCH;
 600		goto out;
 601	}
 602
 603	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 604			 ? cache_policy_coherent : cache_policy_noncoherent;
 605
 606	alternate_policy =
 607		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 608		   ? cache_policy_coherent : cache_policy_noncoherent;
 609
 610	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
 611				&pdd->qpd,
 612				default_policy,
 613				alternate_policy,
 614				(void __user *)args->alternate_aperture_base,
 615				args->alternate_aperture_size))
 616		err = -EINVAL;
 617
 618out:
 619err_pdd:
 620	mutex_unlock(&p->mutex);
 621
 622	return err;
 623}
 624
 625static int kfd_ioctl_set_trap_handler(struct file *filep,
 626					struct kfd_process *p, void *data)
 627{
 628	struct kfd_ioctl_set_trap_handler_args *args = data;
 629	int err = 0;
 630	struct kfd_process_device *pdd;
 631
 632	mutex_lock(&p->mutex);
 633
 634	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 635	if (!pdd) {
 636		err = -EINVAL;
 637		goto err_pdd;
 638	}
 639
 640	pdd = kfd_bind_process_to_device(pdd->dev, p);
 641	if (IS_ERR(pdd)) {
 642		err = -ESRCH;
 643		goto out;
 644	}
 645
 646	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 647
 648out:
 649err_pdd:
 650	mutex_unlock(&p->mutex);
 651
 652	return err;
 653}
 654
 655static int kfd_ioctl_dbg_register(struct file *filep,
 656				struct kfd_process *p, void *data)
 657{
 658	return -EPERM;
 659}
 660
 661static int kfd_ioctl_dbg_unregister(struct file *filep,
 662				struct kfd_process *p, void *data)
 663{
 664	return -EPERM;
 665}
 666
 667static int kfd_ioctl_dbg_address_watch(struct file *filep,
 668					struct kfd_process *p, void *data)
 669{
 670	return -EPERM;
 671}
 672
 673/* Parse and generate fixed size data structure for wave control */
 674static int kfd_ioctl_dbg_wave_control(struct file *filep,
 675					struct kfd_process *p, void *data)
 676{
 677	return -EPERM;
 678}
 679
 680static int kfd_ioctl_get_clock_counters(struct file *filep,
 681				struct kfd_process *p, void *data)
 682{
 683	struct kfd_ioctl_get_clock_counters_args *args = data;
 684	struct kfd_process_device *pdd;
 685
 686	mutex_lock(&p->mutex);
 687	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 688	mutex_unlock(&p->mutex);
 689	if (pdd)
 690		/* Reading GPU clock counter from KGD */
 691		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
 692	else
 693		/* Node without GPU resource */
 694		args->gpu_clock_counter = 0;
 695
 696	/* No access to rdtsc. Using raw monotonic time */
 697	args->cpu_clock_counter = ktime_get_raw_ns();
 698	args->system_clock_counter = ktime_get_boottime_ns();
 699
 700	/* Since the counter is in nano-seconds we use 1GHz frequency */
 701	args->system_clock_freq = 1000000000;
 702
 703	return 0;
 704}
 705
 706
 707static int kfd_ioctl_get_process_apertures(struct file *filp,
 708				struct kfd_process *p, void *data)
 709{
 710	struct kfd_ioctl_get_process_apertures_args *args = data;
 711	struct kfd_process_device_apertures *pAperture;
 712	int i;
 713
 714	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 715
 716	args->num_of_nodes = 0;
 717
 718	mutex_lock(&p->mutex);
 719	/* Run over all pdd of the process */
 720	for (i = 0; i < p->n_pdds; i++) {
 721		struct kfd_process_device *pdd = p->pdds[i];
 722
 723		pAperture =
 724			&args->process_apertures[args->num_of_nodes];
 725		pAperture->gpu_id = pdd->dev->id;
 726		pAperture->lds_base = pdd->lds_base;
 727		pAperture->lds_limit = pdd->lds_limit;
 728		pAperture->gpuvm_base = pdd->gpuvm_base;
 729		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 730		pAperture->scratch_base = pdd->scratch_base;
 731		pAperture->scratch_limit = pdd->scratch_limit;
 732
 733		dev_dbg(kfd_device,
 734			"node id %u\n", args->num_of_nodes);
 735		dev_dbg(kfd_device,
 736			"gpu id %u\n", pdd->dev->id);
 737		dev_dbg(kfd_device,
 738			"lds_base %llX\n", pdd->lds_base);
 739		dev_dbg(kfd_device,
 740			"lds_limit %llX\n", pdd->lds_limit);
 741		dev_dbg(kfd_device,
 742			"gpuvm_base %llX\n", pdd->gpuvm_base);
 743		dev_dbg(kfd_device,
 744			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 745		dev_dbg(kfd_device,
 746			"scratch_base %llX\n", pdd->scratch_base);
 747		dev_dbg(kfd_device,
 748			"scratch_limit %llX\n", pdd->scratch_limit);
 749
 750		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 751			break;
 752	}
 753	mutex_unlock(&p->mutex);
 754
 755	return 0;
 756}
 757
 758static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 759				struct kfd_process *p, void *data)
 760{
 761	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 762	struct kfd_process_device_apertures *pa;
 763	int ret;
 764	int i;
 765
 766	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 767
 768	if (args->num_of_nodes == 0) {
 769		/* Return number of nodes, so that user space can alloacate
 770		 * sufficient memory
 771		 */
 772		mutex_lock(&p->mutex);
 773		args->num_of_nodes = p->n_pdds;
 774		goto out_unlock;
 775	}
 776
 777	/* Fill in process-aperture information for all available
 778	 * nodes, but not more than args->num_of_nodes as that is
 779	 * the amount of memory allocated by user
 780	 */
 781	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 782				args->num_of_nodes), GFP_KERNEL);
 783	if (!pa)
 784		return -ENOMEM;
 785
 786	mutex_lock(&p->mutex);
 787
 788	if (!p->n_pdds) {
 789		args->num_of_nodes = 0;
 790		kfree(pa);
 791		goto out_unlock;
 792	}
 793
 794	/* Run over all pdd of the process */
 795	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 796		struct kfd_process_device *pdd = p->pdds[i];
 797
 798		pa[i].gpu_id = pdd->dev->id;
 799		pa[i].lds_base = pdd->lds_base;
 800		pa[i].lds_limit = pdd->lds_limit;
 801		pa[i].gpuvm_base = pdd->gpuvm_base;
 802		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 803		pa[i].scratch_base = pdd->scratch_base;
 804		pa[i].scratch_limit = pdd->scratch_limit;
 805
 806		dev_dbg(kfd_device,
 807			"gpu id %u\n", pdd->dev->id);
 808		dev_dbg(kfd_device,
 809			"lds_base %llX\n", pdd->lds_base);
 810		dev_dbg(kfd_device,
 811			"lds_limit %llX\n", pdd->lds_limit);
 812		dev_dbg(kfd_device,
 813			"gpuvm_base %llX\n", pdd->gpuvm_base);
 814		dev_dbg(kfd_device,
 815			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 816		dev_dbg(kfd_device,
 817			"scratch_base %llX\n", pdd->scratch_base);
 818		dev_dbg(kfd_device,
 819			"scratch_limit %llX\n", pdd->scratch_limit);
 820	}
 821	mutex_unlock(&p->mutex);
 822
 823	args->num_of_nodes = i;
 824	ret = copy_to_user(
 825			(void __user *)args->kfd_process_device_apertures_ptr,
 826			pa,
 827			(i * sizeof(struct kfd_process_device_apertures)));
 828	kfree(pa);
 829	return ret ? -EFAULT : 0;
 830
 831out_unlock:
 832	mutex_unlock(&p->mutex);
 833	return 0;
 834}
 835
 836static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 837					void *data)
 838{
 839	struct kfd_ioctl_create_event_args *args = data;
 840	int err;
 841
 842	/* For dGPUs the event page is allocated in user mode. The
 843	 * handle is passed to KFD with the first call to this IOCTL
 844	 * through the event_page_offset field.
 845	 */
 846	if (args->event_page_offset) {
 847		mutex_lock(&p->mutex);
 848		err = kfd_kmap_event_page(p, args->event_page_offset);
 849		mutex_unlock(&p->mutex);
 850		if (err)
 851			return err;
 852	}
 853
 854	err = kfd_event_create(filp, p, args->event_type,
 855				args->auto_reset != 0, args->node_id,
 856				&args->event_id, &args->event_trigger_data,
 857				&args->event_page_offset,
 858				&args->event_slot_index);
 859
 860	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
 861	return err;
 862}
 863
 864static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 865					void *data)
 866{
 867	struct kfd_ioctl_destroy_event_args *args = data;
 868
 869	return kfd_event_destroy(p, args->event_id);
 870}
 871
 872static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 873				void *data)
 874{
 875	struct kfd_ioctl_set_event_args *args = data;
 876
 877	return kfd_set_event(p, args->event_id);
 878}
 879
 880static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 881				void *data)
 882{
 883	struct kfd_ioctl_reset_event_args *args = data;
 884
 885	return kfd_reset_event(p, args->event_id);
 886}
 887
 888static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 889				void *data)
 890{
 891	struct kfd_ioctl_wait_events_args *args = data;
 892
 893	return kfd_wait_on_events(p, args->num_events,
 894			(void __user *)args->events_ptr,
 895			(args->wait_for_all != 0),
 896			&args->timeout, &args->wait_result);
 897}
 898static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
 899					struct kfd_process *p, void *data)
 900{
 901	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
 902	struct kfd_process_device *pdd;
 903	struct kfd_node *dev;
 904	long err;
 905
 906	mutex_lock(&p->mutex);
 907	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 908	if (!pdd) {
 909		err = -EINVAL;
 910		goto err_pdd;
 911	}
 912	dev = pdd->dev;
 913
 914	pdd = kfd_bind_process_to_device(dev, p);
 915	if (IS_ERR(pdd)) {
 916		err = PTR_ERR(pdd);
 917		goto bind_process_to_device_fail;
 918	}
 919
 920	pdd->qpd.sh_hidden_private_base = args->va_addr;
 921
 922	mutex_unlock(&p->mutex);
 923
 924	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
 925	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
 926		dev->kfd2kgd->set_scratch_backing_va(
 927			dev->adev, args->va_addr, pdd->qpd.vmid);
 928
 929	return 0;
 930
 931bind_process_to_device_fail:
 932err_pdd:
 933	mutex_unlock(&p->mutex);
 934	return err;
 935}
 936
 937static int kfd_ioctl_get_tile_config(struct file *filep,
 938		struct kfd_process *p, void *data)
 939{
 940	struct kfd_ioctl_get_tile_config_args *args = data;
 941	struct kfd_process_device *pdd;
 942	struct tile_config config;
 943	int err = 0;
 944
 945	mutex_lock(&p->mutex);
 946	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 947	mutex_unlock(&p->mutex);
 948	if (!pdd)
 949		return -EINVAL;
 950
 951	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
 952
 953	args->gb_addr_config = config.gb_addr_config;
 954	args->num_banks = config.num_banks;
 955	args->num_ranks = config.num_ranks;
 956
 957	if (args->num_tile_configs > config.num_tile_configs)
 958		args->num_tile_configs = config.num_tile_configs;
 959	err = copy_to_user((void __user *)args->tile_config_ptr,
 960			config.tile_config_ptr,
 961			args->num_tile_configs * sizeof(uint32_t));
 962	if (err) {
 963		args->num_tile_configs = 0;
 964		return -EFAULT;
 965	}
 966
 967	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
 968		args->num_macro_tile_configs =
 969				config.num_macro_tile_configs;
 970	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
 971			config.macro_tile_config_ptr,
 972			args->num_macro_tile_configs * sizeof(uint32_t));
 973	if (err) {
 974		args->num_macro_tile_configs = 0;
 975		return -EFAULT;
 976	}
 977
 978	return 0;
 979}
 980
 981static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
 982				void *data)
 983{
 984	struct kfd_ioctl_acquire_vm_args *args = data;
 985	struct kfd_process_device *pdd;
 986	struct file *drm_file;
 987	int ret;
 988
 989	drm_file = fget(args->drm_fd);
 990	if (!drm_file)
 991		return -EINVAL;
 992
 993	mutex_lock(&p->mutex);
 994	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 995	if (!pdd) {
 996		ret = -EINVAL;
 997		goto err_pdd;
 998	}
 999
1000	if (pdd->drm_file) {
1001		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002		goto err_drm_file;
1003	}
1004
1005	ret = kfd_process_device_init_vm(pdd, drm_file);
1006	if (ret)
1007		goto err_unlock;
1008
1009	/* On success, the PDD keeps the drm_file reference */
1010	mutex_unlock(&p->mutex);
1011
1012	return 0;
1013
1014err_unlock:
1015err_pdd:
1016err_drm_file:
1017	mutex_unlock(&p->mutex);
1018	fput(drm_file);
1019	return ret;
1020}
1021
1022bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023{
1024	if (dev->kfd->adev->debug_largebar) {
1025		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026		return true;
1027	}
1028
1029	if (dev->local_mem_info.local_mem_size_private == 0 &&
1030	    dev->local_mem_info.local_mem_size_public > 0)
1031		return true;
1032
1033	if (dev->local_mem_info.local_mem_size_public == 0 &&
1034	    dev->kfd->adev->gmc.is_app_apu) {
1035		pr_debug("APP APU, Consider like a large bar system\n");
1036		return true;
1037	}
1038
1039	return false;
1040}
1041
1042static int kfd_ioctl_get_available_memory(struct file *filep,
1043					  struct kfd_process *p, void *data)
1044{
1045	struct kfd_ioctl_get_available_memory_args *args = data;
1046	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1047
1048	if (!pdd)
1049		return -EINVAL;
1050	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1051							pdd->dev->node_id);
1052	kfd_unlock_pdd(pdd);
1053	return 0;
1054}
1055
1056static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057					struct kfd_process *p, void *data)
1058{
1059	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060	struct kfd_process_device *pdd;
1061	void *mem;
1062	struct kfd_node *dev;
1063	int idr_handle;
1064	long err;
1065	uint64_t offset = args->mmap_offset;
1066	uint32_t flags = args->flags;
1067
1068	if (args->size == 0)
1069		return -EINVAL;
1070
1071#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072	/* Flush pending deferred work to avoid racing with deferred actions
1073	 * from previous memory map changes (e.g. munmap).
1074	 */
1075	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076	mutex_lock(&p->svms.lock);
1077	mmap_write_unlock(current->mm);
1078	if (interval_tree_iter_first(&p->svms.objects,
1079				     args->va_addr >> PAGE_SHIFT,
1080				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081		pr_err("Address: 0x%llx already allocated by SVM\n",
1082			args->va_addr);
1083		mutex_unlock(&p->svms.lock);
1084		return -EADDRINUSE;
1085	}
1086
1087	/* When register user buffer check if it has been registered by svm by
1088	 * buffer cpu virtual address.
1089	 */
1090	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091	    interval_tree_iter_first(&p->svms.objects,
1092				     args->mmap_offset >> PAGE_SHIFT,
1093				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1094		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095			args->mmap_offset);
1096		mutex_unlock(&p->svms.lock);
1097		return -EADDRINUSE;
1098	}
1099
1100	mutex_unlock(&p->svms.lock);
1101#endif
1102	mutex_lock(&p->mutex);
1103	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1104	if (!pdd) {
1105		err = -EINVAL;
1106		goto err_pdd;
1107	}
1108
1109	dev = pdd->dev;
1110
1111	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113		!kfd_dev_is_large_bar(dev)) {
1114		pr_err("Alloc host visible vram on small bar is not allowed\n");
1115		err = -EINVAL;
1116		goto err_large_bar;
1117	}
1118
1119	pdd = kfd_bind_process_to_device(dev, p);
1120	if (IS_ERR(pdd)) {
1121		err = PTR_ERR(pdd);
1122		goto err_unlock;
1123	}
1124
1125	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1127			err = -EINVAL;
1128			goto err_unlock;
1129		}
1130		offset = kfd_get_process_doorbells(pdd);
1131		if (!offset) {
1132			err = -ENOMEM;
1133			goto err_unlock;
1134		}
1135	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136		if (args->size != PAGE_SIZE) {
1137			err = -EINVAL;
1138			goto err_unlock;
1139		}
1140		offset = dev->adev->rmmio_remap.bus_addr;
1141		if (!offset) {
1142			err = -ENOMEM;
1143			goto err_unlock;
1144		}
1145	}
1146
1147	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148		dev->adev, args->va_addr, args->size,
1149		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1150		flags, false);
1151
1152	if (err)
1153		goto err_unlock;
1154
1155	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156	if (idr_handle < 0) {
1157		err = -EFAULT;
1158		goto err_free;
1159	}
1160
1161	/* Update the VRAM usage count */
1162	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163		uint64_t size = args->size;
1164
1165		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166			size >>= 1;
1167		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1168	}
1169
1170	mutex_unlock(&p->mutex);
1171
1172	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173	args->mmap_offset = offset;
1174
1175	/* MMIO is mapped through kfd device
1176	 * Generate a kfd mmap offset
1177	 */
1178	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180					| KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182	return 0;
1183
1184err_free:
1185	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186					       pdd->drm_priv, NULL);
1187err_unlock:
1188err_pdd:
1189err_large_bar:
1190	mutex_unlock(&p->mutex);
1191	return err;
1192}
1193
1194static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195					struct kfd_process *p, void *data)
1196{
1197	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198	struct kfd_process_device *pdd;
1199	void *mem;
1200	int ret;
1201	uint64_t size = 0;
1202
1203	mutex_lock(&p->mutex);
1204	/*
1205	 * Safeguard to prevent user space from freeing signal BO.
1206	 * It will be freed at process termination.
1207	 */
1208	if (p->signal_handle && (p->signal_handle == args->handle)) {
1209		pr_err("Free signal BO is not allowed\n");
1210		ret = -EPERM;
1211		goto err_unlock;
1212	}
1213
1214	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1215	if (!pdd) {
1216		pr_err("Process device data doesn't exist\n");
1217		ret = -EINVAL;
1218		goto err_pdd;
1219	}
1220
1221	mem = kfd_process_device_translate_handle(
1222		pdd, GET_IDR_HANDLE(args->handle));
1223	if (!mem) {
1224		ret = -EINVAL;
1225		goto err_unlock;
1226	}
1227
1228	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1230
1231	/* If freeing the buffer failed, leave the handle in place for
1232	 * clean-up during process tear-down.
1233	 */
1234	if (!ret)
1235		kfd_process_device_remove_obj_handle(
1236			pdd, GET_IDR_HANDLE(args->handle));
1237
1238	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1239
1240err_unlock:
1241err_pdd:
1242	mutex_unlock(&p->mutex);
1243	return ret;
1244}
1245
1246static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247					struct kfd_process *p, void *data)
1248{
1249	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250	struct kfd_process_device *pdd, *peer_pdd;
1251	void *mem;
1252	struct kfd_node *dev;
1253	long err = 0;
1254	int i;
1255	uint32_t *devices_arr = NULL;
1256
1257	if (!args->n_devices) {
1258		pr_debug("Device IDs array empty\n");
1259		return -EINVAL;
1260	}
1261	if (args->n_success > args->n_devices) {
1262		pr_debug("n_success exceeds n_devices\n");
1263		return -EINVAL;
1264	}
1265
1266	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1267				    GFP_KERNEL);
1268	if (!devices_arr)
1269		return -ENOMEM;
1270
1271	err = copy_from_user(devices_arr,
1272			     (void __user *)args->device_ids_array_ptr,
1273			     args->n_devices * sizeof(*devices_arr));
1274	if (err != 0) {
1275		err = -EFAULT;
1276		goto copy_from_user_failed;
1277	}
1278
1279	mutex_lock(&p->mutex);
1280	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1281	if (!pdd) {
1282		err = -EINVAL;
1283		goto get_process_device_data_failed;
1284	}
1285	dev = pdd->dev;
1286
1287	pdd = kfd_bind_process_to_device(dev, p);
1288	if (IS_ERR(pdd)) {
1289		err = PTR_ERR(pdd);
1290		goto bind_process_to_device_failed;
 
1291	}
1292
1293	mem = kfd_process_device_translate_handle(pdd,
1294						GET_IDR_HANDLE(args->handle));
1295	if (!mem) {
1296		err = -ENOMEM;
1297		goto get_mem_obj_from_handle_failed;
1298	}
1299
1300	for (i = args->n_success; i < args->n_devices; i++) {
1301		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1302		if (!peer_pdd) {
1303			pr_debug("Getting device by id failed for 0x%x\n",
1304				 devices_arr[i]);
1305			err = -EINVAL;
1306			goto get_mem_obj_from_handle_failed;
1307		}
1308
1309		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310		if (IS_ERR(peer_pdd)) {
1311			err = PTR_ERR(peer_pdd);
1312			goto get_mem_obj_from_handle_failed;
1313		}
1314
1315		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317			peer_pdd->drm_priv);
1318		if (err) {
1319			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321			dev_err(dev->adev->dev,
1322			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323			       pci_domain_nr(pdev->bus),
1324			       pdev->bus->number,
1325			       PCI_SLOT(pdev->devfn),
1326			       PCI_FUNC(pdev->devfn),
1327			       ((struct kgd_mem *)mem)->domain);
1328			goto map_memory_to_gpu_failed;
1329		}
1330		args->n_success = i+1;
1331	}
1332
1333	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1334	if (err) {
1335		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336		goto sync_memory_failed;
1337	}
1338
1339	mutex_unlock(&p->mutex);
1340
1341	/* Flush TLBs after waiting for the page table updates to complete */
1342	for (i = 0; i < args->n_devices; i++) {
1343		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1344		if (WARN_ON_ONCE(!peer_pdd))
1345			continue;
1346		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1347	}
1348	kfree(devices_arr);
1349
1350	return err;
1351
1352get_process_device_data_failed:
1353bind_process_to_device_failed:
1354get_mem_obj_from_handle_failed:
1355map_memory_to_gpu_failed:
1356sync_memory_failed:
1357	mutex_unlock(&p->mutex);
1358copy_from_user_failed:
1359	kfree(devices_arr);
1360
1361	return err;
1362}
1363
1364static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365					struct kfd_process *p, void *data)
1366{
1367	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368	struct kfd_process_device *pdd, *peer_pdd;
1369	void *mem;
1370	long err = 0;
1371	uint32_t *devices_arr = NULL, i;
1372	bool flush_tlb;
1373
1374	if (!args->n_devices) {
1375		pr_debug("Device IDs array empty\n");
1376		return -EINVAL;
1377	}
1378	if (args->n_success > args->n_devices) {
1379		pr_debug("n_success exceeds n_devices\n");
1380		return -EINVAL;
1381	}
1382
1383	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1384				    GFP_KERNEL);
1385	if (!devices_arr)
1386		return -ENOMEM;
1387
1388	err = copy_from_user(devices_arr,
1389			     (void __user *)args->device_ids_array_ptr,
1390			     args->n_devices * sizeof(*devices_arr));
1391	if (err != 0) {
1392		err = -EFAULT;
1393		goto copy_from_user_failed;
1394	}
1395
1396	mutex_lock(&p->mutex);
1397	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1398	if (!pdd) {
1399		err = -EINVAL;
1400		goto bind_process_to_device_failed;
1401	}
1402
1403	mem = kfd_process_device_translate_handle(pdd,
1404						GET_IDR_HANDLE(args->handle));
1405	if (!mem) {
1406		err = -ENOMEM;
1407		goto get_mem_obj_from_handle_failed;
1408	}
1409
1410	for (i = args->n_success; i < args->n_devices; i++) {
1411		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1412		if (!peer_pdd) {
1413			err = -EINVAL;
1414			goto get_mem_obj_from_handle_failed;
1415		}
1416		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1418		if (err) {
1419			pr_err("Failed to unmap from gpu %d/%d\n",
1420			       i, args->n_devices);
1421			goto unmap_memory_from_gpu_failed;
1422		}
1423		args->n_success = i+1;
1424	}
1425
1426	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1427	if (flush_tlb) {
1428		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429				(struct kgd_mem *) mem, true);
1430		if (err) {
1431			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432			goto sync_memory_failed;
1433		}
1434	}
1435
1436	/* Flush TLBs after waiting for the page table updates to complete */
1437	for (i = 0; i < args->n_devices; i++) {
1438		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1439		if (WARN_ON_ONCE(!peer_pdd))
1440			continue;
1441		if (flush_tlb)
1442			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1443
1444		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1446		if (err)
1447			goto sync_memory_failed;
1448	}
1449
1450	mutex_unlock(&p->mutex);
1451
1452	kfree(devices_arr);
1453
1454	return 0;
1455
1456bind_process_to_device_failed:
1457get_mem_obj_from_handle_failed:
1458unmap_memory_from_gpu_failed:
1459sync_memory_failed:
1460	mutex_unlock(&p->mutex);
1461copy_from_user_failed:
1462	kfree(devices_arr);
1463	return err;
1464}
1465
1466static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1467		struct kfd_process *p, void *data)
1468{
1469	int retval;
1470	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1471	struct queue *q;
1472	struct kfd_node *dev;
1473
1474	mutex_lock(&p->mutex);
1475	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1476
1477	if (q) {
1478		dev = q->device;
1479	} else {
1480		retval = -EINVAL;
1481		goto out_unlock;
1482	}
1483
1484	if (!dev->gws) {
1485		retval = -ENODEV;
1486		goto out_unlock;
1487	}
1488
1489	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1490		retval = -ENODEV;
1491		goto out_unlock;
1492	}
1493
1494	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1495				      kfd_dbg_has_cwsr_workaround(dev))) {
1496		retval = -EBUSY;
1497		goto out_unlock;
1498	}
1499
1500	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1501	mutex_unlock(&p->mutex);
1502
1503	args->first_gws = 0;
1504	return retval;
1505
1506out_unlock:
1507	mutex_unlock(&p->mutex);
1508	return retval;
1509}
1510
1511static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1512		struct kfd_process *p, void *data)
1513{
1514	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1515	struct kfd_node *dev = NULL;
1516	struct amdgpu_device *dmabuf_adev;
1517	void *metadata_buffer = NULL;
1518	uint32_t flags;
1519	int8_t xcp_id;
1520	unsigned int i;
1521	int r;
1522
1523	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1524	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1525		if (dev)
1526			break;
1527	if (!dev)
1528		return -EINVAL;
1529
1530	if (args->metadata_ptr) {
1531		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1532		if (!metadata_buffer)
1533			return -ENOMEM;
1534	}
1535
1536	/* Get dmabuf info from KGD */
1537	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1538					  &dmabuf_adev, &args->size,
1539					  metadata_buffer, args->metadata_size,
1540					  &args->metadata_size, &flags, &xcp_id);
1541	if (r)
1542		goto exit;
1543
1544	if (xcp_id >= 0)
1545		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1546	else
1547		args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1548	args->flags = flags;
1549
1550	/* Copy metadata buffer to user mode */
1551	if (metadata_buffer) {
1552		r = copy_to_user((void __user *)args->metadata_ptr,
1553				 metadata_buffer, args->metadata_size);
1554		if (r != 0)
1555			r = -EFAULT;
1556	}
1557
1558exit:
1559	kfree(metadata_buffer);
1560
1561	return r;
1562}
1563
1564static int kfd_ioctl_import_dmabuf(struct file *filep,
1565				   struct kfd_process *p, void *data)
1566{
1567	struct kfd_ioctl_import_dmabuf_args *args = data;
1568	struct kfd_process_device *pdd;
1569	int idr_handle;
1570	uint64_t size;
1571	void *mem;
1572	int r;
1573
1574	mutex_lock(&p->mutex);
1575	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1576	if (!pdd) {
1577		r = -EINVAL;
1578		goto err_unlock;
1579	}
1580
1581	pdd = kfd_bind_process_to_device(pdd->dev, p);
1582	if (IS_ERR(pdd)) {
1583		r = PTR_ERR(pdd);
1584		goto err_unlock;
1585	}
1586
1587	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1588						 args->va_addr, pdd->drm_priv,
1589						 (struct kgd_mem **)&mem, &size,
1590						 NULL);
1591	if (r)
1592		goto err_unlock;
1593
1594	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1595	if (idr_handle < 0) {
1596		r = -EFAULT;
1597		goto err_free;
1598	}
1599
1600	mutex_unlock(&p->mutex);
1601
1602	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1603
1604	return 0;
1605
1606err_free:
1607	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1608					       pdd->drm_priv, NULL);
1609err_unlock:
1610	mutex_unlock(&p->mutex);
1611	return r;
1612}
1613
1614static int kfd_ioctl_export_dmabuf(struct file *filep,
1615				   struct kfd_process *p, void *data)
1616{
1617	struct kfd_ioctl_export_dmabuf_args *args = data;
1618	struct kfd_process_device *pdd;
1619	struct dma_buf *dmabuf;
1620	struct kfd_node *dev;
1621	void *mem;
1622	int ret = 0;
1623
1624	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1625	if (!dev)
1626		return -EINVAL;
1627
1628	mutex_lock(&p->mutex);
1629
1630	pdd = kfd_get_process_device_data(dev, p);
1631	if (!pdd) {
1632		ret = -EINVAL;
1633		goto err_unlock;
1634	}
1635
1636	mem = kfd_process_device_translate_handle(pdd,
1637						GET_IDR_HANDLE(args->handle));
1638	if (!mem) {
1639		ret = -EINVAL;
1640		goto err_unlock;
1641	}
1642
1643	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1644	mutex_unlock(&p->mutex);
1645	if (ret)
1646		goto err_out;
1647
1648	ret = dma_buf_fd(dmabuf, args->flags);
1649	if (ret < 0) {
1650		dma_buf_put(dmabuf);
1651		goto err_out;
1652	}
1653	/* dma_buf_fd assigns the reference count to the fd, no need to
1654	 * put the reference here.
1655	 */
1656	args->dmabuf_fd = ret;
1657
1658	return 0;
1659
1660err_unlock:
1661	mutex_unlock(&p->mutex);
1662err_out:
1663	return ret;
1664}
1665
1666/* Handle requests for watching SMI events */
1667static int kfd_ioctl_smi_events(struct file *filep,
1668				struct kfd_process *p, void *data)
1669{
1670	struct kfd_ioctl_smi_events_args *args = data;
1671	struct kfd_process_device *pdd;
1672
1673	mutex_lock(&p->mutex);
1674
1675	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1676	mutex_unlock(&p->mutex);
1677	if (!pdd)
1678		return -EINVAL;
1679
1680	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1681}
1682
1683#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1684
1685static int kfd_ioctl_set_xnack_mode(struct file *filep,
1686				    struct kfd_process *p, void *data)
1687{
1688	struct kfd_ioctl_set_xnack_mode_args *args = data;
1689	int r = 0;
1690
1691	mutex_lock(&p->mutex);
1692	if (args->xnack_enabled >= 0) {
1693		if (!list_empty(&p->pqm.queues)) {
1694			pr_debug("Process has user queues running\n");
1695			r = -EBUSY;
1696			goto out_unlock;
1697		}
1698
1699		if (p->xnack_enabled == args->xnack_enabled)
1700			goto out_unlock;
1701
1702		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1703			r = -EPERM;
1704			goto out_unlock;
1705		}
1706
1707		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1708	} else {
1709		args->xnack_enabled = p->xnack_enabled;
1710	}
1711
1712out_unlock:
1713	mutex_unlock(&p->mutex);
1714
1715	return r;
1716}
1717
1718static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1719{
1720	struct kfd_ioctl_svm_args *args = data;
1721	int r = 0;
1722
1723	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1724		 args->start_addr, args->size, args->op, args->nattr);
1725
1726	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1727		return -EINVAL;
1728	if (!args->start_addr || !args->size)
1729		return -EINVAL;
1730
1731	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1732		      args->attrs);
 
 
 
1733
1734	return r;
1735}
1736#else
1737static int kfd_ioctl_set_xnack_mode(struct file *filep,
1738				    struct kfd_process *p, void *data)
1739{
1740	return -EPERM;
1741}
1742static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1743{
1744	return -EPERM;
1745}
1746#endif
1747
1748static int criu_checkpoint_process(struct kfd_process *p,
1749			     uint8_t __user *user_priv_data,
1750			     uint64_t *priv_offset)
1751{
1752	struct kfd_criu_process_priv_data process_priv;
1753	int ret;
1754
1755	memset(&process_priv, 0, sizeof(process_priv));
 
1756
1757	process_priv.version = KFD_CRIU_PRIV_VERSION;
1758	/* For CR, we don't consider negative xnack mode which is used for
1759	 * querying without changing it, here 0 simply means disabled and 1
1760	 * means enabled so retry for finding a valid PTE.
1761	 */
1762	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1763
1764	ret = copy_to_user(user_priv_data + *priv_offset,
1765				&process_priv, sizeof(process_priv));
1766
1767	if (ret) {
1768		pr_err("Failed to copy process information to user\n");
1769		ret = -EFAULT;
1770	}
1771
1772	*priv_offset += sizeof(process_priv);
1773	return ret;
1774}
1775
1776static int criu_checkpoint_devices(struct kfd_process *p,
1777			     uint32_t num_devices,
1778			     uint8_t __user *user_addr,
1779			     uint8_t __user *user_priv_data,
1780			     uint64_t *priv_offset)
1781{
1782	struct kfd_criu_device_priv_data *device_priv = NULL;
1783	struct kfd_criu_device_bucket *device_buckets = NULL;
1784	int ret = 0, i;
1785
1786	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1787	if (!device_buckets) {
1788		ret = -ENOMEM;
1789		goto exit;
1790	}
1791
1792	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1793	if (!device_priv) {
1794		ret = -ENOMEM;
1795		goto exit;
1796	}
1797
1798	for (i = 0; i < num_devices; i++) {
1799		struct kfd_process_device *pdd = p->pdds[i];
1800
1801		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1802		device_buckets[i].actual_gpu_id = pdd->dev->id;
1803
 
1804		/*
1805		 * priv_data does not contain useful information for now and is reserved for
1806		 * future use, so we do not set its contents.
 
1807		 */
1808	}
1809
1810	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1811	if (ret) {
1812		pr_err("Failed to copy device information to user\n");
1813		ret = -EFAULT;
1814		goto exit;
 
 
1815	}
1816
1817	ret = copy_to_user(user_priv_data + *priv_offset,
1818			   device_priv,
1819			   num_devices * sizeof(*device_priv));
1820	if (ret) {
1821		pr_err("Failed to copy device information to user\n");
1822		ret = -EFAULT;
1823	}
1824	*priv_offset += num_devices * sizeof(*device_priv);
1825
1826exit:
1827	kvfree(device_buckets);
1828	kvfree(device_priv);
1829	return ret;
1830}
1831
1832static uint32_t get_process_num_bos(struct kfd_process *p)
1833{
1834	uint32_t num_of_bos = 0;
1835	int i;
1836
1837	/* Run over all PDDs of the process */
1838	for (i = 0; i < p->n_pdds; i++) {
1839		struct kfd_process_device *pdd = p->pdds[i];
1840		void *mem;
1841		int id;
1842
1843		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1844			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1845
1846			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1847				num_of_bos++;
1848		}
1849	}
1850	return num_of_bos;
1851}
1852
1853static int criu_get_prime_handle(struct kgd_mem *mem,
1854				 int flags, u32 *shared_fd)
1855{
1856	struct dma_buf *dmabuf;
1857	int ret;
1858
1859	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1860	if (ret) {
1861		pr_err("dmabuf export failed for the BO\n");
1862		return ret;
1863	}
1864
1865	ret = dma_buf_fd(dmabuf, flags);
1866	if (ret < 0) {
1867		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1868		goto out_free_dmabuf;
1869	}
1870
1871	*shared_fd = ret;
1872	return 0;
1873
1874out_free_dmabuf:
1875	dma_buf_put(dmabuf);
1876	return ret;
1877}
1878
1879static int criu_checkpoint_bos(struct kfd_process *p,
1880			       uint32_t num_bos,
1881			       uint8_t __user *user_bos,
1882			       uint8_t __user *user_priv_data,
1883			       uint64_t *priv_offset)
1884{
1885	struct kfd_criu_bo_bucket *bo_buckets;
1886	struct kfd_criu_bo_priv_data *bo_privs;
1887	int ret = 0, pdd_index, bo_index = 0, id;
1888	void *mem;
1889
1890	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1891	if (!bo_buckets)
1892		return -ENOMEM;
1893
1894	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1895	if (!bo_privs) {
1896		ret = -ENOMEM;
1897		goto exit;
1898	}
1899
1900	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1901		struct kfd_process_device *pdd = p->pdds[pdd_index];
1902		struct amdgpu_bo *dumper_bo;
1903		struct kgd_mem *kgd_mem;
1904
1905		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1906			struct kfd_criu_bo_bucket *bo_bucket;
1907			struct kfd_criu_bo_priv_data *bo_priv;
1908			int i, dev_idx = 0;
1909
1910			if (!mem) {
1911				ret = -ENOMEM;
1912				goto exit;
1913			}
1914
1915			kgd_mem = (struct kgd_mem *)mem;
1916			dumper_bo = kgd_mem->bo;
1917
1918			/* Skip checkpointing BOs that are used for Trap handler
1919			 * code and state. Currently, these BOs have a VA that
1920			 * is less GPUVM Base
1921			 */
1922			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1923				continue;
1924
1925			bo_bucket = &bo_buckets[bo_index];
1926			bo_priv = &bo_privs[bo_index];
1927
1928			bo_bucket->gpu_id = pdd->user_gpu_id;
1929			bo_bucket->addr = (uint64_t)kgd_mem->va;
1930			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1931			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1932			bo_priv->idr_handle = id;
1933
1934			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1935				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1936								&bo_priv->user_addr);
1937				if (ret) {
1938					pr_err("Failed to obtain user address for user-pointer bo\n");
1939					goto exit;
1940				}
1941			}
1942			if (bo_bucket->alloc_flags
1943			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1944				ret = criu_get_prime_handle(kgd_mem,
1945						bo_bucket->alloc_flags &
1946						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1947						&bo_bucket->dmabuf_fd);
1948				if (ret)
1949					goto exit;
1950			} else {
1951				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1952			}
1953
1954			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1955				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1956					KFD_MMAP_GPU_ID(pdd->dev->id);
1957			else if (bo_bucket->alloc_flags &
1958				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1959				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1960					KFD_MMAP_GPU_ID(pdd->dev->id);
1961			else
1962				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1963
1964			for (i = 0; i < p->n_pdds; i++) {
1965				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1966					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1967			}
1968
1969			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1970					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1971					bo_bucket->size,
1972					bo_bucket->addr,
1973					bo_bucket->offset,
1974					bo_bucket->gpu_id,
1975					bo_bucket->alloc_flags,
1976					bo_priv->idr_handle);
1977			bo_index++;
1978		}
1979	}
1980
1981	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1982	if (ret) {
1983		pr_err("Failed to copy BO information to user\n");
1984		ret = -EFAULT;
1985		goto exit;
1986	}
1987
1988	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1989	if (ret) {
1990		pr_err("Failed to copy BO priv information to user\n");
1991		ret = -EFAULT;
1992		goto exit;
1993	}
1994
1995	*priv_offset += num_bos * sizeof(*bo_privs);
1996
1997exit:
1998	while (ret && bo_index--) {
1999		if (bo_buckets[bo_index].alloc_flags
2000		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2001			close_fd(bo_buckets[bo_index].dmabuf_fd);
2002	}
2003
2004	kvfree(bo_buckets);
2005	kvfree(bo_privs);
2006	return ret;
2007}
2008
2009static int criu_get_process_object_info(struct kfd_process *p,
2010					uint32_t *num_devices,
2011					uint32_t *num_bos,
2012					uint32_t *num_objects,
2013					uint64_t *objs_priv_size)
2014{
2015	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2016	uint32_t num_queues, num_events, num_svm_ranges;
2017	int ret;
2018
2019	*num_devices = p->n_pdds;
2020	*num_bos = get_process_num_bos(p);
2021
2022	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2023	if (ret)
2024		return ret;
2025
2026	num_events = kfd_get_num_events(p);
2027
2028	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2029	if (ret)
2030		return ret;
 
 
 
 
2031
2032	*num_objects = num_queues + num_events + num_svm_ranges;
2033
2034	if (objs_priv_size) {
2035		priv_size = sizeof(struct kfd_criu_process_priv_data);
2036		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2037		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2038		priv_size += queues_priv_data_size;
2039		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2040		priv_size += svm_priv_data_size;
2041		*objs_priv_size = priv_size;
2042	}
2043	return 0;
2044}
2045
2046static int criu_checkpoint(struct file *filep,
2047			   struct kfd_process *p,
2048			   struct kfd_ioctl_criu_args *args)
2049{
2050	int ret;
2051	uint32_t num_devices, num_bos, num_objects;
2052	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2053
2054	if (!args->devices || !args->bos || !args->priv_data)
2055		return -EINVAL;
2056
2057	mutex_lock(&p->mutex);
2058
2059	if (!p->n_pdds) {
2060		pr_err("No pdd for given process\n");
2061		ret = -ENODEV;
2062		goto exit_unlock;
2063	}
2064
2065	/* Confirm all process queues are evicted */
2066	if (!p->queues_paused) {
2067		pr_err("Cannot dump process when queues are not in evicted state\n");
2068		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2069		ret = -EINVAL;
2070		goto exit_unlock;
2071	}
2072
2073	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2074	if (ret)
2075		goto exit_unlock;
2076
2077	if (num_devices != args->num_devices ||
2078	    num_bos != args->num_bos ||
2079	    num_objects != args->num_objects ||
2080	    priv_size != args->priv_data_size) {
2081
2082		ret = -EINVAL;
2083		goto exit_unlock;
2084	}
2085
2086	/* each function will store private data inside priv_data and adjust priv_offset */
2087	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2088	if (ret)
2089		goto exit_unlock;
2090
2091	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2092				(uint8_t __user *)args->priv_data, &priv_offset);
2093	if (ret)
2094		goto exit_unlock;
2095
2096	/* Leave room for BOs in the private data. They need to be restored
2097	 * before events, but we checkpoint them last to simplify the error
2098	 * handling.
2099	 */
2100	bo_priv_offset = priv_offset;
2101	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2102
2103	if (num_objects) {
2104		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2105						 &priv_offset);
2106		if (ret)
2107			goto exit_unlock;
2108
2109		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2110						 &priv_offset);
2111		if (ret)
2112			goto exit_unlock;
2113
2114		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2115		if (ret)
2116			goto exit_unlock;
2117	}
2118
2119	/* This must be the last thing in this function that can fail.
2120	 * Otherwise we leak dmabuf file descriptors.
2121	 */
2122	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2123			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2124
2125exit_unlock:
2126	mutex_unlock(&p->mutex);
2127	if (ret)
2128		pr_err("Failed to dump CRIU ret:%d\n", ret);
2129	else
2130		pr_debug("CRIU dump ret:%d\n", ret);
2131
2132	return ret;
2133}
2134
2135static int criu_restore_process(struct kfd_process *p,
2136				struct kfd_ioctl_criu_args *args,
2137				uint64_t *priv_offset,
2138				uint64_t max_priv_data_size)
2139{
2140	int ret = 0;
2141	struct kfd_criu_process_priv_data process_priv;
2142
2143	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2144		return -EINVAL;
2145
2146	ret = copy_from_user(&process_priv,
2147				(void __user *)(args->priv_data + *priv_offset),
2148				sizeof(process_priv));
2149	if (ret) {
2150		pr_err("Failed to copy process private information from user\n");
2151		ret = -EFAULT;
2152		goto exit;
2153	}
2154	*priv_offset += sizeof(process_priv);
2155
2156	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2157		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2158			process_priv.version, KFD_CRIU_PRIV_VERSION);
 
2159		return -EINVAL;
2160	}
2161
2162	pr_debug("Setting XNACK mode\n");
2163	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2164		pr_err("xnack mode cannot be set\n");
2165		ret = -EPERM;
2166		goto exit;
2167	} else {
2168		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2169		p->xnack_enabled = process_priv.xnack_mode;
2170	}
2171
2172exit:
2173	return ret;
2174}
2175
2176static int criu_restore_devices(struct kfd_process *p,
2177				struct kfd_ioctl_criu_args *args,
2178				uint64_t *priv_offset,
2179				uint64_t max_priv_data_size)
2180{
2181	struct kfd_criu_device_bucket *device_buckets;
2182	struct kfd_criu_device_priv_data *device_privs;
2183	int ret = 0;
2184	uint32_t i;
2185
2186	if (args->num_devices != p->n_pdds)
2187		return -EINVAL;
2188
2189	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2190		return -EINVAL;
2191
2192	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2193	if (!device_buckets)
2194		return -ENOMEM;
 
2195
2196	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2197				args->num_devices * sizeof(*device_buckets));
2198	if (ret) {
2199		pr_err("Failed to copy devices buckets from user\n");
2200		ret = -EFAULT;
2201		goto exit;
2202	}
2203
2204	for (i = 0; i < args->num_devices; i++) {
2205		struct kfd_node *dev;
2206		struct kfd_process_device *pdd;
2207		struct file *drm_file;
2208
2209		/* device private data is not currently used */
 
2210
2211		if (!device_buckets[i].user_gpu_id) {
2212			pr_err("Invalid user gpu_id\n");
2213			ret = -EINVAL;
2214			goto exit;
2215		}
2216
2217		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2218		if (!dev) {
2219			pr_err("Failed to find device with gpu_id = %x\n",
2220				device_buckets[i].actual_gpu_id);
2221			ret = -EINVAL;
2222			goto exit;
2223		}
2224
2225		pdd = kfd_get_process_device_data(dev, p);
2226		if (!pdd) {
2227			pr_err("Failed to get pdd for gpu_id = %x\n",
2228					device_buckets[i].actual_gpu_id);
2229			ret = -EINVAL;
2230			goto exit;
2231		}
2232		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2233
2234		drm_file = fget(device_buckets[i].drm_fd);
2235		if (!drm_file) {
2236			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2237				device_buckets[i].drm_fd);
2238			ret = -EINVAL;
2239			goto exit;
2240		}
2241
2242		if (pdd->drm_file) {
2243			ret = -EINVAL;
2244			goto exit;
2245		}
2246
2247		/* create the vm using render nodes for kfd pdd */
2248		if (kfd_process_device_init_vm(pdd, drm_file)) {
2249			pr_err("could not init vm for given pdd\n");
2250			/* On success, the PDD keeps the drm_file reference */
2251			fput(drm_file);
2252			ret = -EINVAL;
2253			goto exit;
2254		}
2255		/*
2256		 * pdd now already has the vm bound to render node so below api won't create a new
2257		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2258		 * for iommu v2 binding  and runtime pm.
2259		 */
2260		pdd = kfd_bind_process_to_device(dev, p);
2261		if (IS_ERR(pdd)) {
2262			ret = PTR_ERR(pdd);
2263			goto exit;
2264		}
2265
2266		if (!pdd->qpd.proc_doorbells) {
2267			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2268			if (ret)
2269				goto exit;
2270		}
2271	}
2272
2273	/*
2274	 * We are not copying device private data from user as we are not using the data for now,
2275	 * but we still adjust for its private data.
2276	 */
2277	*priv_offset += args->num_devices * sizeof(*device_privs);
2278
2279exit:
2280	kfree(device_buckets);
2281	return ret;
2282}
2283
2284static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2285				      struct kfd_criu_bo_bucket *bo_bucket,
2286				      struct kfd_criu_bo_priv_data *bo_priv,
2287				      struct kgd_mem **kgd_mem)
2288{
2289	int idr_handle;
2290	int ret;
2291	const bool criu_resume = true;
2292	u64 offset;
2293
2294	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2295		if (bo_bucket->size !=
2296				kfd_doorbell_process_slice(pdd->dev->kfd))
2297			return -EINVAL;
2298
2299		offset = kfd_get_process_doorbells(pdd);
2300		if (!offset)
2301			return -ENOMEM;
2302	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2303		/* MMIO BOs need remapped bus address */
2304		if (bo_bucket->size != PAGE_SIZE) {
2305			pr_err("Invalid page size\n");
2306			return -EINVAL;
2307		}
2308		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2309		if (!offset) {
2310			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2311			return -ENOMEM;
2312		}
2313	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2314		offset = bo_priv->user_addr;
2315	}
2316	/* Create the BO */
2317	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2318						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2319						      &offset, bo_bucket->alloc_flags, criu_resume);
2320	if (ret) {
2321		pr_err("Could not create the BO\n");
2322		return ret;
2323	}
2324	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2325		 bo_bucket->size, bo_bucket->addr, offset);
2326
2327	/* Restore previous IDR handle */
2328	pr_debug("Restoring old IDR handle for the BO");
2329	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2330			       bo_priv->idr_handle + 1, GFP_KERNEL);
2331
2332	if (idr_handle < 0) {
2333		pr_err("Could not allocate idr\n");
2334		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2335						       NULL);
2336		return -ENOMEM;
2337	}
2338
2339	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2340		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2341	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2342		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2343	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2344		bo_bucket->restored_offset = offset;
2345	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2346		bo_bucket->restored_offset = offset;
2347		/* Update the VRAM usage count */
2348		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2349	}
2350	return 0;
2351}
2352
2353static int criu_restore_bo(struct kfd_process *p,
2354			   struct kfd_criu_bo_bucket *bo_bucket,
2355			   struct kfd_criu_bo_priv_data *bo_priv)
2356{
2357	struct kfd_process_device *pdd;
2358	struct kgd_mem *kgd_mem;
2359	int ret;
2360	int j;
2361
2362	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2363		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2364		 bo_priv->idr_handle);
2365
2366	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2367	if (!pdd) {
2368		pr_err("Failed to get pdd\n");
2369		return -ENODEV;
2370	}
2371
2372	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2373	if (ret)
2374		return ret;
2375
2376	/* now map these BOs to GPU/s */
2377	for (j = 0; j < p->n_pdds; j++) {
2378		struct kfd_node *peer;
2379		struct kfd_process_device *peer_pdd;
2380
2381		if (!bo_priv->mapped_gpuids[j])
2382			break;
2383
2384		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2385		if (!peer_pdd)
2386			return -EINVAL;
2387
2388		peer = peer_pdd->dev;
2389
2390		peer_pdd = kfd_bind_process_to_device(peer, p);
2391		if (IS_ERR(peer_pdd))
2392			return PTR_ERR(peer_pdd);
2393
2394		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2395							    peer_pdd->drm_priv);
2396		if (ret) {
2397			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2398			return ret;
2399		}
2400	}
2401
2402	pr_debug("map memory was successful for the BO\n");
2403	/* create the dmabuf object and export the bo */
2404	if (bo_bucket->alloc_flags
2405	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2406		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2407					    &bo_bucket->dmabuf_fd);
2408		if (ret)
2409			return ret;
2410	} else {
2411		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2412	}
2413
2414	return 0;
2415}
 
2416
2417static int criu_restore_bos(struct kfd_process *p,
2418			    struct kfd_ioctl_criu_args *args,
2419			    uint64_t *priv_offset,
2420			    uint64_t max_priv_data_size)
2421{
2422	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2423	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2424	int ret = 0;
2425	uint32_t i = 0;
2426
2427	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2428		return -EINVAL;
2429
2430	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2431	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2432
2433	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2434	if (!bo_buckets)
2435		return -ENOMEM;
2436
2437	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2438			     args->num_bos * sizeof(*bo_buckets));
2439	if (ret) {
2440		pr_err("Failed to copy BOs information from user\n");
2441		ret = -EFAULT;
2442		goto exit;
2443	}
2444
2445	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2446	if (!bo_privs) {
2447		ret = -ENOMEM;
2448		goto exit;
2449	}
2450
2451	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2452			     args->num_bos * sizeof(*bo_privs));
2453	if (ret) {
2454		pr_err("Failed to copy BOs information from user\n");
2455		ret = -EFAULT;
2456		goto exit;
2457	}
2458	*priv_offset += args->num_bos * sizeof(*bo_privs);
2459
2460	/* Create and map new BOs */
2461	for (; i < args->num_bos; i++) {
2462		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2463		if (ret) {
2464			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2465			goto exit;
2466		}
2467	} /* done */
2468
2469	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2470	ret = copy_to_user((void __user *)args->bos,
2471				bo_buckets,
2472				(args->num_bos * sizeof(*bo_buckets)));
2473	if (ret)
2474		ret = -EFAULT;
2475
2476exit:
2477	while (ret && i--) {
2478		if (bo_buckets[i].alloc_flags
2479		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2480			close_fd(bo_buckets[i].dmabuf_fd);
2481	}
2482	kvfree(bo_buckets);
2483	kvfree(bo_privs);
2484	return ret;
2485}
2486
2487static int criu_restore_objects(struct file *filep,
2488				struct kfd_process *p,
2489				struct kfd_ioctl_criu_args *args,
2490				uint64_t *priv_offset,
2491				uint64_t max_priv_data_size)
2492{
2493	int ret = 0;
2494	uint32_t i;
2495
2496	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2497	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2498	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2499
2500	for (i = 0; i < args->num_objects; i++) {
2501		uint32_t object_type;
2502
2503		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2504			pr_err("Invalid private data size\n");
2505			return -EINVAL;
2506		}
2507
2508		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2509		if (ret) {
2510			pr_err("Failed to copy private information from user\n");
2511			goto exit;
2512		}
2513
2514		switch (object_type) {
2515		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2516			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2517						     priv_offset, max_priv_data_size);
2518			if (ret)
2519				goto exit;
2520			break;
2521		case KFD_CRIU_OBJECT_TYPE_EVENT:
2522			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2523						     priv_offset, max_priv_data_size);
2524			if (ret)
2525				goto exit;
2526			break;
2527		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2528			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2529						     priv_offset, max_priv_data_size);
2530			if (ret)
2531				goto exit;
2532			break;
2533		default:
2534			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2535			ret = -EINVAL;
2536			goto exit;
2537		}
2538	}
2539exit:
2540	return ret;
2541}
2542
2543static int criu_restore(struct file *filep,
2544			struct kfd_process *p,
2545			struct kfd_ioctl_criu_args *args)
2546{
2547	uint64_t priv_offset = 0;
2548	int ret = 0;
 
2549
2550	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2551		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2552
2553	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2554	    !args->num_devices || !args->num_bos)
2555		return -EINVAL;
2556
2557	mutex_lock(&p->mutex);
2558
2559	/*
2560	 * Set the process to evicted state to avoid running any new queues before all the memory
2561	 * mappings are ready.
2562	 */
2563	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2564	if (ret)
2565		goto exit_unlock;
2566
2567	/* Each function will adjust priv_offset based on how many bytes they consumed */
2568	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2569	if (ret)
2570		goto exit_unlock;
2571
2572	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2573	if (ret)
2574		goto exit_unlock;
2575
2576	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2577	if (ret)
2578		goto exit_unlock;
2579
2580	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2581	if (ret)
2582		goto exit_unlock;
2583
2584	if (priv_offset != args->priv_data_size) {
2585		pr_err("Invalid private data size\n");
2586		ret = -EINVAL;
 
 
 
 
 
 
 
2587	}
2588
2589exit_unlock:
2590	mutex_unlock(&p->mutex);
2591	if (ret)
2592		pr_err("Failed to restore CRIU ret:%d\n", ret);
2593	else
2594		pr_debug("CRIU restore successful\n");
2595
2596	return ret;
2597}
2598
2599static int criu_unpause(struct file *filep,
2600			struct kfd_process *p,
2601			struct kfd_ioctl_criu_args *args)
2602{
2603	int ret;
 
2604
2605	mutex_lock(&p->mutex);
 
 
 
 
2606
2607	if (!p->queues_paused) {
2608		mutex_unlock(&p->mutex);
2609		return -EINVAL;
2610	}
2611
2612	ret = kfd_process_restore_queues(p);
2613	if (ret)
2614		pr_err("Failed to unpause queues ret:%d\n", ret);
2615	else
2616		p->queues_paused = false;
2617
2618	mutex_unlock(&p->mutex);
2619
2620	return ret;
2621}
2622
2623static int criu_resume(struct file *filep,
2624			struct kfd_process *p,
2625			struct kfd_ioctl_criu_args *args)
2626{
2627	struct kfd_process *target = NULL;
2628	struct pid *pid = NULL;
2629	int ret = 0;
2630
2631	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2632		 args->pid);
2633
2634	pid = find_get_pid(args->pid);
2635	if (!pid) {
2636		pr_err("Cannot find pid info for %i\n", args->pid);
2637		return -ESRCH;
2638	}
2639
2640	pr_debug("calling kfd_lookup_process_by_pid\n");
2641	target = kfd_lookup_process_by_pid(pid);
2642
2643	put_pid(pid);
2644
2645	if (!target) {
2646		pr_debug("Cannot find process info for %i\n", args->pid);
2647		return -ESRCH;
2648	}
2649
2650	mutex_lock(&target->mutex);
2651	ret = kfd_criu_resume_svm(target);
2652	if (ret) {
2653		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2654		goto exit;
2655	}
2656
2657	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2658	if (ret)
2659		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2660
2661exit:
2662	mutex_unlock(&target->mutex);
2663
2664	kfd_unref_process(target);
2665	return ret;
2666}
2667
2668static int criu_process_info(struct file *filep,
2669				struct kfd_process *p,
2670				struct kfd_ioctl_criu_args *args)
2671{
2672	int ret = 0;
2673
2674	mutex_lock(&p->mutex);
2675
2676	if (!p->n_pdds) {
2677		pr_err("No pdd for given process\n");
2678		ret = -ENODEV;
2679		goto err_unlock;
2680	}
2681
2682	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2683	if (ret)
2684		goto err_unlock;
2685
2686	p->queues_paused = true;
2687
2688	args->pid = task_pid_nr_ns(p->lead_thread,
2689					task_active_pid_ns(p->lead_thread));
2690
2691	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2692					   &args->num_objects, &args->priv_data_size);
2693	if (ret)
2694		goto err_unlock;
2695
2696	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2697				args->num_devices, args->num_bos, args->num_objects,
2698				args->priv_data_size);
2699
2700err_unlock:
2701	if (ret) {
2702		kfd_process_restore_queues(p);
2703		p->queues_paused = false;
2704	}
2705	mutex_unlock(&p->mutex);
2706	return ret;
2707}
2708
2709static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
 
2710{
2711	struct kfd_ioctl_criu_args *args = data;
2712	int ret;
2713
2714	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2715	switch (args->op) {
2716	case KFD_CRIU_OP_PROCESS_INFO:
2717		ret = criu_process_info(filep, p, args);
2718		break;
2719	case KFD_CRIU_OP_CHECKPOINT:
2720		ret = criu_checkpoint(filep, p, args);
2721		break;
2722	case KFD_CRIU_OP_UNPAUSE:
2723		ret = criu_unpause(filep, p, args);
2724		break;
2725	case KFD_CRIU_OP_RESTORE:
2726		ret = criu_restore(filep, p, args);
2727		break;
2728	case KFD_CRIU_OP_RESUME:
2729		ret = criu_resume(filep, p, args);
2730		break;
2731	default:
2732		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2733		ret = -EINVAL;
2734		break;
2735	}
2736
2737	if (ret)
2738		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2739
2740	return ret;
2741}
2742
2743static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2744			bool enable_ttmp_setup)
2745{
2746	int i = 0, ret = 0;
 
 
2747
2748	if (p->is_runtime_retry)
2749		goto retry;
 
 
2750
2751	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2752		return -EBUSY;
2753
2754	for (i = 0; i < p->n_pdds; i++) {
2755		struct kfd_process_device *pdd = p->pdds[i];
2756
2757		if (pdd->qpd.queue_count)
2758			return -EEXIST;
2759
2760		/*
2761		 * Setup TTMPs by default.
2762		 * Note that this call must remain here for MES ADD QUEUE to
2763		 * skip_process_ctx_clear unconditionally as the first call to
2764		 * SET_SHADER_DEBUGGER clears any stale process context data
2765		 * saved in MES.
2766		 */
2767		if (pdd->dev->kfd->shared_resources.enable_mes)
2768			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2769	}
2770
2771	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2772	p->runtime_info.r_debug = r_debug;
2773	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2774
2775	if (p->runtime_info.ttmp_setup) {
2776		for (i = 0; i < p->n_pdds; i++) {
2777			struct kfd_process_device *pdd = p->pdds[i];
2778
2779			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2780				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2781				pdd->dev->kfd2kgd->enable_debug_trap(
2782						pdd->dev->adev,
2783						true,
2784						pdd->dev->vm_info.last_vmid_kfd);
2785			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2786				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2787						pdd->dev->adev,
2788						false,
2789						0);
2790			}
2791		}
2792	}
2793
2794retry:
2795	if (p->debug_trap_enabled) {
2796		if (!p->is_runtime_retry) {
2797			kfd_dbg_trap_activate(p);
2798			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2799					p, NULL, 0, false, NULL, 0);
2800		}
2801
2802		mutex_unlock(&p->mutex);
2803		ret = down_interruptible(&p->runtime_enable_sema);
2804		mutex_lock(&p->mutex);
2805
2806		p->is_runtime_retry = !!ret;
2807	}
2808
2809	return ret;
2810}
2811
2812static int runtime_disable(struct kfd_process *p)
2813{
2814	int i = 0, ret;
2815	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2816
2817	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2818	p->runtime_info.r_debug = 0;
2819
2820	if (p->debug_trap_enabled) {
2821		if (was_enabled)
2822			kfd_dbg_trap_deactivate(p, false, 0);
2823
2824		if (!p->is_runtime_retry)
2825			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2826					p, NULL, 0, false, NULL, 0);
2827
2828		mutex_unlock(&p->mutex);
2829		ret = down_interruptible(&p->runtime_enable_sema);
2830		mutex_lock(&p->mutex);
2831
2832		p->is_runtime_retry = !!ret;
2833		if (ret)
2834			return ret;
2835	}
2836
2837	if (was_enabled && p->runtime_info.ttmp_setup) {
2838		for (i = 0; i < p->n_pdds; i++) {
2839			struct kfd_process_device *pdd = p->pdds[i];
2840
2841			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2842				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2843		}
2844	}
2845
2846	p->runtime_info.ttmp_setup = false;
2847
2848	/* disable ttmp setup */
2849	for (i = 0; i < p->n_pdds; i++) {
2850		struct kfd_process_device *pdd = p->pdds[i];
2851
2852		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2853			pdd->spi_dbg_override =
2854					pdd->dev->kfd2kgd->disable_debug_trap(
2855					pdd->dev->adev,
2856					false,
2857					pdd->dev->vm_info.last_vmid_kfd);
2858
2859			if (!pdd->dev->kfd->shared_resources.enable_mes)
2860				debug_refresh_runlist(pdd->dev->dqm);
2861			else
2862				kfd_dbg_set_mes_debug_mode(pdd,
2863							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2864		}
2865	}
2866
2867	return 0;
2868}
2869
2870static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2871{
2872	struct kfd_ioctl_runtime_enable_args *args = data;
2873	int r;
2874
2875	mutex_lock(&p->mutex);
2876
2877	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2878		r = runtime_enable(p, args->r_debug,
2879				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2880	else
2881		r = runtime_disable(p);
2882
2883	mutex_unlock(&p->mutex);
2884
2885	return r;
2886}
2887
2888static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2889{
2890	struct kfd_ioctl_dbg_trap_args *args = data;
2891	struct task_struct *thread = NULL;
2892	struct mm_struct *mm = NULL;
2893	struct pid *pid = NULL;
2894	struct kfd_process *target = NULL;
2895	struct kfd_process_device *pdd = NULL;
2896	int r = 0;
2897
2898	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2899		pr_err("Debugging does not support sched_policy %i", sched_policy);
2900		return -EINVAL;
2901	}
2902
2903	pid = find_get_pid(args->pid);
2904	if (!pid) {
2905		pr_debug("Cannot find pid info for %i\n", args->pid);
2906		r = -ESRCH;
2907		goto out;
2908	}
2909
2910	thread = get_pid_task(pid, PIDTYPE_PID);
2911	if (!thread) {
2912		r = -ESRCH;
2913		goto out;
2914	}
2915
2916	mm = get_task_mm(thread);
2917	if (!mm) {
2918		r = -ESRCH;
2919		goto out;
2920	}
2921
2922	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2923		bool create_process;
2924
2925		rcu_read_lock();
2926		create_process = thread && thread != current && ptrace_parent(thread) == current;
2927		rcu_read_unlock();
2928
2929		target = create_process ? kfd_create_process(thread) :
2930					kfd_lookup_process_by_pid(pid);
2931	} else {
2932		target = kfd_lookup_process_by_pid(pid);
2933	}
2934
2935	if (IS_ERR_OR_NULL(target)) {
2936		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2937		r = target ? PTR_ERR(target) : -ESRCH;
2938		goto out;
2939	}
2940
2941	/* Check if target is still PTRACED. */
2942	rcu_read_lock();
2943	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2944				&& ptrace_parent(target->lead_thread) != current) {
2945		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2946		r = -EPERM;
2947	}
2948	rcu_read_unlock();
2949
2950	if (r)
2951		goto out;
2952
2953	mutex_lock(&target->mutex);
2954
2955	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2956		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2957		r = -EINVAL;
2958		goto unlock_out;
2959	}
2960
2961	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2962			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2963			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2964			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2965			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2966			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2967			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2968			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2969		r = -EPERM;
2970		goto unlock_out;
2971	}
2972
2973	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2974	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2975		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2976				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2977					args->set_node_address_watch.gpu_id :
2978					args->clear_node_address_watch.gpu_id);
2979
2980		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2981		if (user_gpu_id == -EINVAL || !pdd) {
2982			r = -ENODEV;
2983			goto unlock_out;
2984		}
2985	}
2986
2987	switch (args->op) {
2988	case KFD_IOC_DBG_TRAP_ENABLE:
2989		if (target != p)
2990			target->debugger_process = p;
2991
2992		r = kfd_dbg_trap_enable(target,
2993					args->enable.dbg_fd,
2994					(void __user *)args->enable.rinfo_ptr,
2995					&args->enable.rinfo_size);
2996		if (!r)
2997			target->exception_enable_mask = args->enable.exception_mask;
2998
2999		break;
3000	case KFD_IOC_DBG_TRAP_DISABLE:
3001		r = kfd_dbg_trap_disable(target);
3002		break;
3003	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3004		r = kfd_dbg_send_exception_to_runtime(target,
3005				args->send_runtime_event.gpu_id,
3006				args->send_runtime_event.queue_id,
3007				args->send_runtime_event.exception_mask);
3008		break;
3009	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3010		kfd_dbg_set_enabled_debug_exception_mask(target,
3011				args->set_exceptions_enabled.exception_mask);
3012		break;
3013	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3014		r = kfd_dbg_trap_set_wave_launch_override(target,
3015				args->launch_override.override_mode,
3016				args->launch_override.enable_mask,
3017				args->launch_override.support_request_mask,
3018				&args->launch_override.enable_mask,
3019				&args->launch_override.support_request_mask);
3020		break;
3021	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3022		r = kfd_dbg_trap_set_wave_launch_mode(target,
3023				args->launch_mode.launch_mode);
3024		break;
3025	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3026		r = suspend_queues(target,
3027				args->suspend_queues.num_queues,
3028				args->suspend_queues.grace_period,
3029				args->suspend_queues.exception_mask,
3030				(uint32_t *)args->suspend_queues.queue_array_ptr);
3031
3032		break;
3033	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3034		r = resume_queues(target, args->resume_queues.num_queues,
3035				(uint32_t *)args->resume_queues.queue_array_ptr);
3036		break;
3037	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3038		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3039				args->set_node_address_watch.address,
3040				args->set_node_address_watch.mask,
3041				&args->set_node_address_watch.id,
3042				args->set_node_address_watch.mode);
3043		break;
3044	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3045		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3046				args->clear_node_address_watch.id);
3047		break;
3048	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3049		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3050		break;
3051	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3052		r = kfd_dbg_ev_query_debug_event(target,
3053				&args->query_debug_event.queue_id,
3054				&args->query_debug_event.gpu_id,
3055				args->query_debug_event.exception_mask,
3056				&args->query_debug_event.exception_mask);
3057		break;
3058	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3059		r = kfd_dbg_trap_query_exception_info(target,
3060				args->query_exception_info.source_id,
3061				args->query_exception_info.exception_code,
3062				args->query_exception_info.clear_exception,
3063				(void __user *)args->query_exception_info.info_ptr,
3064				&args->query_exception_info.info_size);
3065		break;
3066	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3067		r = pqm_get_queue_snapshot(&target->pqm,
3068				args->queue_snapshot.exception_mask,
3069				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3070				&args->queue_snapshot.num_queues,
3071				&args->queue_snapshot.entry_size);
3072		break;
3073	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3074		r = kfd_dbg_trap_device_snapshot(target,
3075				args->device_snapshot.exception_mask,
3076				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3077				&args->device_snapshot.num_devices,
3078				&args->device_snapshot.entry_size);
3079		break;
3080	default:
3081		pr_err("Invalid option: %i\n", args->op);
3082		r = -EINVAL;
3083	}
3084
3085unlock_out:
3086	mutex_unlock(&target->mutex);
3087
3088out:
3089	if (thread)
3090		put_task_struct(thread);
3091
3092	if (mm)
3093		mmput(mm);
3094
3095	if (pid)
3096		put_pid(pid);
3097
3098	if (target)
3099		kfd_unref_process(target);
3100
3101	return r;
3102}
3103
3104#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3105	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3106			    .cmd_drv = 0, .name = #ioctl}
3107
3108/** Ioctl table */
3109static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3110	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3111			kfd_ioctl_get_version, 0),
3112
3113	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3114			kfd_ioctl_create_queue, 0),
3115
3116	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3117			kfd_ioctl_destroy_queue, 0),
3118
3119	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3120			kfd_ioctl_set_memory_policy, 0),
3121
3122	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3123			kfd_ioctl_get_clock_counters, 0),
3124
3125	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3126			kfd_ioctl_get_process_apertures, 0),
3127
3128	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3129			kfd_ioctl_update_queue, 0),
3130
3131	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3132			kfd_ioctl_create_event, 0),
3133
3134	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3135			kfd_ioctl_destroy_event, 0),
3136
3137	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3138			kfd_ioctl_set_event, 0),
3139
3140	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3141			kfd_ioctl_reset_event, 0),
3142
3143	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3144			kfd_ioctl_wait_events, 0),
3145
3146	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3147			kfd_ioctl_dbg_register, 0),
3148
3149	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3150			kfd_ioctl_dbg_unregister, 0),
3151
3152	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3153			kfd_ioctl_dbg_address_watch, 0),
3154
3155	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3156			kfd_ioctl_dbg_wave_control, 0),
3157
3158	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3159			kfd_ioctl_set_scratch_backing_va, 0),
3160
3161	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3162			kfd_ioctl_get_tile_config, 0),
3163
3164	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3165			kfd_ioctl_set_trap_handler, 0),
3166
3167	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3168			kfd_ioctl_get_process_apertures_new, 0),
3169
3170	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3171			kfd_ioctl_acquire_vm, 0),
3172
3173	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3174			kfd_ioctl_alloc_memory_of_gpu, 0),
3175
3176	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3177			kfd_ioctl_free_memory_of_gpu, 0),
3178
3179	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3180			kfd_ioctl_map_memory_to_gpu, 0),
3181
3182	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3183			kfd_ioctl_unmap_memory_from_gpu, 0),
3184
3185	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3186			kfd_ioctl_set_cu_mask, 0),
3187
3188	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3189			kfd_ioctl_get_queue_wave_state, 0),
3190
3191	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3192				kfd_ioctl_get_dmabuf_info, 0),
3193
3194	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3195				kfd_ioctl_import_dmabuf, 0),
3196
3197	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3198			kfd_ioctl_alloc_queue_gws, 0),
3199
3200	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3201			kfd_ioctl_smi_events, 0),
3202
3203	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3204
3205	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3206			kfd_ioctl_set_xnack_mode, 0),
3207
3208	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3209			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3210
3211	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3212			kfd_ioctl_get_available_memory, 0),
3213
3214	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3215				kfd_ioctl_export_dmabuf, 0),
3216
3217	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3218			kfd_ioctl_runtime_enable, 0),
3219
3220	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3221			kfd_ioctl_set_debug_trap, 0),
3222};
3223
3224#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3225
3226static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3227{
3228	struct kfd_process *process;
3229	amdkfd_ioctl_t *func;
3230	const struct amdkfd_ioctl_desc *ioctl = NULL;
3231	unsigned int nr = _IOC_NR(cmd);
3232	char stack_kdata[128];
3233	char *kdata = NULL;
3234	unsigned int usize, asize;
3235	int retcode = -EINVAL;
3236	bool ptrace_attached = false;
3237
3238	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3239		goto err_i1;
3240
3241	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3242		u32 amdkfd_size;
3243
3244		ioctl = &amdkfd_ioctls[nr];
3245
3246		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3247		usize = asize = _IOC_SIZE(cmd);
3248		if (amdkfd_size > asize)
3249			asize = amdkfd_size;
3250
3251		cmd = ioctl->cmd;
3252	} else
3253		goto err_i1;
3254
3255	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3256
3257	/* Get the process struct from the filep. Only the process
3258	 * that opened /dev/kfd can use the file descriptor. Child
3259	 * processes need to create their own KFD device context.
3260	 */
3261	process = filep->private_data;
3262
3263	rcu_read_lock();
3264	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3265	    ptrace_parent(process->lead_thread) == current)
3266		ptrace_attached = true;
3267	rcu_read_unlock();
3268
3269	if (process->lead_thread != current->group_leader
3270	    && !ptrace_attached) {
3271		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3272		retcode = -EBADF;
3273		goto err_i1;
3274	}
3275
3276	/* Do not trust userspace, use our own definition */
3277	func = ioctl->func;
3278
3279	if (unlikely(!func)) {
3280		dev_dbg(kfd_device, "no function\n");
3281		retcode = -EINVAL;
3282		goto err_i1;
3283	}
3284
3285	/*
3286	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3287	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3288	 * more priviledged access.
3289	 */
3290	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3291		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3292						!capable(CAP_SYS_ADMIN)) {
3293			retcode = -EACCES;
3294			goto err_i1;
3295		}
3296	}
3297
3298	if (cmd & (IOC_IN | IOC_OUT)) {
3299		if (asize <= sizeof(stack_kdata)) {
3300			kdata = stack_kdata;
3301		} else {
3302			kdata = kmalloc(asize, GFP_KERNEL);
3303			if (!kdata) {
3304				retcode = -ENOMEM;
3305				goto err_i1;
3306			}
3307		}
3308		if (asize > usize)
3309			memset(kdata + usize, 0, asize - usize);
3310	}
3311
3312	if (cmd & IOC_IN) {
3313		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3314			retcode = -EFAULT;
3315			goto err_i1;
3316		}
3317	} else if (cmd & IOC_OUT) {
3318		memset(kdata, 0, usize);
3319	}
3320
3321	retcode = func(filep, process, kdata);
3322
3323	if (cmd & IOC_OUT)
3324		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3325			retcode = -EFAULT;
3326
3327err_i1:
3328	if (!ioctl)
3329		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3330			  task_pid_nr(current), cmd, nr);
3331
3332	if (kdata != stack_kdata)
3333		kfree(kdata);
3334
3335	if (retcode)
3336		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3337				nr, arg, retcode);
3338
3339	return retcode;
3340}
3341
3342static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3343		      struct vm_area_struct *vma)
3344{
3345	phys_addr_t address;
3346
3347	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3348		return -EINVAL;
3349
3350	address = dev->adev->rmmio_remap.bus_addr;
3351
3352	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3353				VM_DONTDUMP | VM_PFNMAP);
3354
3355	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3356
3357	pr_debug("pasid 0x%x mapping mmio page\n"
3358		 "     target user address == 0x%08llX\n"
3359		 "     physical address    == 0x%08llX\n"
3360		 "     vm_flags            == 0x%04lX\n"
3361		 "     size                == 0x%04lX\n",
3362		 process->pasid, (unsigned long long) vma->vm_start,
3363		 address, vma->vm_flags, PAGE_SIZE);
3364
3365	return io_remap_pfn_range(vma,
3366				vma->vm_start,
3367				address >> PAGE_SHIFT,
3368				PAGE_SIZE,
3369				vma->vm_page_prot);
3370}
3371
3372
3373static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3374{
3375	struct kfd_process *process;
3376	struct kfd_node *dev = NULL;
3377	unsigned long mmap_offset;
3378	unsigned int gpu_id;
3379
3380	process = kfd_get_process(current);
3381	if (IS_ERR(process))
3382		return PTR_ERR(process);
3383
3384	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3385	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3386	if (gpu_id)
3387		dev = kfd_device_by_id(gpu_id);
3388
3389	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3390	case KFD_MMAP_TYPE_DOORBELL:
3391		if (!dev)
3392			return -ENODEV;
3393		return kfd_doorbell_mmap(dev, process, vma);
3394
3395	case KFD_MMAP_TYPE_EVENTS:
3396		return kfd_event_mmap(process, vma);
3397
3398	case KFD_MMAP_TYPE_RESERVED_MEM:
3399		if (!dev)
3400			return -ENODEV;
3401		return kfd_reserved_mem_mmap(dev, process, vma);
3402	case KFD_MMAP_TYPE_MMIO:
3403		if (!dev)
3404			return -ENODEV;
3405		return kfd_mmio_mmap(dev, process, vma);
3406	}
3407
3408	return -EFAULT;
3409}