Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Non-physical true random number generator based on timing jitter --
  3 * Jitter RNG standalone code.
  4 *
  5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015
  6 *
  7 * Design
  8 * ======
  9 *
 10 * See http://www.chronox.de/jent.html
 11 *
 12 * License
 13 * =======
 14 *
 15 * Redistribution and use in source and binary forms, with or without
 16 * modification, are permitted provided that the following conditions
 17 * are met:
 18 * 1. Redistributions of source code must retain the above copyright
 19 *    notice, and the entire permission notice in its entirety,
 20 *    including the disclaimer of warranties.
 21 * 2. Redistributions in binary form must reproduce the above copyright
 22 *    notice, this list of conditions and the following disclaimer in the
 23 *    documentation and/or other materials provided with the distribution.
 24 * 3. The name of the author may not be used to endorse or promote
 25 *    products derived from this software without specific prior
 26 *    written permission.
 27 *
 28 * ALTERNATIVELY, this product may be distributed under the terms of
 29 * the GNU General Public License, in which case the provisions of the GPL2 are
 30 * required INSTEAD OF the above restrictions.  (This clause is
 31 * necessary due to a potential bad interaction between the GPL and
 32 * the restrictions contained in a BSD-style copyright.)
 33 *
 34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 37 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 45 * DAMAGE.
 46 */
 47
 48/*
 49 * This Jitterentropy RNG is based on the jitterentropy library
 50 * version 1.1.0 provided at http://www.chronox.de/jent.html
 51 */
 52
 53#ifdef __OPTIMIZE__
 54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
 55#endif
 56
 57typedef	unsigned long long	__u64;
 58typedef	long long		__s64;
 59typedef	unsigned int		__u32;
 
 60#define NULL    ((void *) 0)
 61
 62/* The entropy pool */
 63struct rand_data {
 
 
 64	/* all data values that are vital to maintain the security
 65	 * of the RNG are marked as SENSITIVE. A user must not
 66	 * access that information while the RNG executes its loops to
 67	 * calculate the next random value. */
 68	__u64 data;		/* SENSITIVE Actual random number */
 69	__u64 old_data;		/* SENSITIVE Previous random number */
 70	__u64 prev_time;	/* SENSITIVE Previous time stamp */
 71#define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
 72	__u64 last_delta;	/* SENSITIVE stuck test */
 73	__s64 last_delta2;	/* SENSITIVE stuck test */
 74	unsigned int stuck:1;	/* Time measurement stuck */
 75	unsigned int osr;	/* Oversample rate */
 76	unsigned int stir:1;		/* Post-processing stirring */
 77	unsigned int disable_unbias:1;	/* Deactivate Von-Neuman unbias */
 78#define JENT_MEMORY_BLOCKS 64
 79#define JENT_MEMORY_BLOCKSIZE 32
 80#define JENT_MEMORY_ACCESSLOOPS 128
 81#define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
 
 
 82	unsigned char *mem;	/* Memory access location with size of
 83				 * memblocks * memblocksize */
 84	unsigned int memlocation; /* Pointer to byte in *mem */
 85	unsigned int memblocks;	/* Number of memory blocks in *mem */
 86	unsigned int memblocksize; /* Size of one memory block in bytes */
 87	unsigned int memaccessloops; /* Number of memory accesses per random
 88				      * bit generation */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89};
 90
 91/* Flags that can be used to initialize the RNG */
 92#define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */
 93#define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */
 94#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
 95					   * entropy, saves MEMORY_SIZE RAM for
 96					   * entropy collector */
 97
 98/* -- error codes for init function -- */
 99#define JENT_ENOTIME		1 /* Timer service not available */
100#define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
101#define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
102#define JENT_EMINVARIATION	4 /* Timer variations too small for RNG */
103#define JENT_EVARVAR		5 /* Timer does not produce variations of
104				   * variations (2nd derivation of time is
105				   * zero). */
106#define JENT_EMINVARVAR		6 /* Timer variations of variations is tooi
107				   * small. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
109/***************************************************************************
110 * Helper functions
 
 
111 ***************************************************************************/
112
113void jent_get_nstime(__u64 *out);
114__u64 jent_rol64(__u64 word, unsigned int shift);
115void *jent_zalloc(unsigned int len);
116void jent_zfree(void *ptr);
117int jent_fips_enabled(void);
118void jent_panic(char *s);
119void jent_memcpy(void *dest, const void *src, unsigned int n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122 * Update of the loop count used for the next round of
123 * an entropy collection.
124 *
125 * Input:
126 * @ec entropy collector struct -- may be NULL
127 * @bits is the number of low bits of the timer to consider
128 * @min is the number of bits we shift the timer value to the right at
129 *	the end to make sure we have a guaranteed minimum value
130 *
131 * @return Newly calculated loop counter
132 */
133static __u64 jent_loop_shuffle(struct rand_data *ec,
134			       unsigned int bits, unsigned int min)
135{
136	__u64 time = 0;
137	__u64 shuffle = 0;
138	unsigned int i = 0;
139	unsigned int mask = (1<<bits) - 1;
140
141	jent_get_nstime(&time);
 
142	/*
143	 * mix the current state of the random number into the shuffle
144	 * calculation to balance that shuffle a bit more
145	 */
146	if (ec)
147		time ^= ec->data;
148	/*
149	 * we fold the time value as much as possible to ensure that as many
150	 * bits of the time stamp are included as possible
151	 */
152	for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) {
153		shuffle ^= time & mask;
154		time = time >> bits;
155	}
156
157	/*
158	 * We add a lower boundary value to ensure we have a minimum
159	 * RNG loop count.
160	 */
161	return (shuffle + (1<<min));
162}
163
164/***************************************************************************
165 * Noise sources
166 ***************************************************************************/
167
168/**
169 * CPU Jitter noise source -- this is the noise source based on the CPU
170 *			      execution time jitter
171 *
172 * This function folds the time into one bit units by iterating
173 * through the DATA_SIZE_BITS bit time value as follows: assume our time value
174 * is 0xabcd
175 * 1st loop, 1st shift generates 0xd000
176 * 1st loop, 2nd shift generates 0x000d
177 * 2nd loop, 1st shift generates 0xcd00
178 * 2nd loop, 2nd shift generates 0x000c
179 * 3rd loop, 1st shift generates 0xbcd0
180 * 3rd loop, 2nd shift generates 0x000b
181 * 4th loop, 1st shift generates 0xabcd
182 * 4th loop, 2nd shift generates 0x000a
183 * Now, the values at the end of the 2nd shifts are XORed together.
184 *
185 * The code is deliberately inefficient and shall stay that way. This function
186 * is the root cause why the code shall be compiled without optimization. This
187 * function not only acts as folding operation, but this function's execution
188 * is used to measure the CPU execution time jitter. Any change to the loop in
189 * this function implies that careful retesting must be done.
190 *
191 * Input:
192 * @ec entropy collector struct -- may be NULL
193 * @time time stamp to be folded
194 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
195 *	     loops to perform the folding
196 *
197 * Output:
198 * @folded result of folding operation
199 *
200 * @return Number of loops the folding operation is performed
201 */
202static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
203			    __u64 *folded, __u64 loop_cnt)
204{
205	unsigned int i;
206	__u64 j = 0;
207	__u64 new = 0;
208#define MAX_FOLD_LOOP_BIT 4
209#define MIN_FOLD_LOOP_BIT 0
210	__u64 fold_loop_cnt =
211		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
212
213	/*
214	 * testing purposes -- allow test app to set the counter, not
215	 * needed during runtime
216	 */
217	if (loop_cnt)
218		fold_loop_cnt = loop_cnt;
219	for (j = 0; j < fold_loop_cnt; j++) {
220		new = 0;
221		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
222			__u64 tmp = time << (DATA_SIZE_BITS - i);
223
224			tmp = tmp >> (DATA_SIZE_BITS - 1);
225			new ^= tmp;
226		}
227	}
228	*folded = new;
229	return fold_loop_cnt;
230}
231
232/**
233 * Memory Access noise source -- this is a noise source based on variations in
234 *				 memory access times
235 *
236 * This function performs memory accesses which will add to the timing
237 * variations due to an unknown amount of CPU wait states that need to be
238 * added when accessing memory. The memory size should be larger than the L1
239 * caches as outlined in the documentation and the associated testing.
240 *
241 * The L1 cache has a very high bandwidth, albeit its access rate is  usually
242 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
243 * variations as the CPU has hardly to wait. Starting with L2, significant
244 * variations are added because L2 typically does not belong to the CPU any more
245 * and therefore a wider range of CPU wait states is necessary for accesses.
246 * L3 and real memory accesses have even a wider range of wait states. However,
247 * to reliably access either L3 or memory, the ec->mem memory must be quite
248 * large which is usually not desirable.
249 *
250 * Input:
251 * @ec Reference to the entropy collector with the memory access data -- if
252 *     the reference to the memory block to be accessed is NULL, this noise
253 *     source is disabled
254 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
255 *	     loops to perform the folding
256 *
257 * @return Number of memory access operations
258 */
259static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
260{
261	unsigned char *tmpval = NULL;
262	unsigned int wrap = 0;
263	__u64 i = 0;
264#define MAX_ACC_LOOP_BIT 7
265#define MIN_ACC_LOOP_BIT 0
266	__u64 acc_loop_cnt =
267		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
268
269	if (NULL == ec || NULL == ec->mem)
270		return 0;
271	wrap = ec->memblocksize * ec->memblocks;
272
273	/*
274	 * testing purposes -- allow test app to set the counter, not
275	 * needed during runtime
276	 */
277	if (loop_cnt)
278		acc_loop_cnt = loop_cnt;
279
280	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
281		tmpval = ec->mem + ec->memlocation;
282		/*
283		 * memory access: just add 1 to one byte,
284		 * wrap at 255 -- memory access implies read
285		 * from and write to memory location
286		 */
287		*tmpval = (*tmpval + 1) & 0xff;
288		/*
289		 * Addition of memblocksize - 1 to pointer
290		 * with wrap around logic to ensure that every
291		 * memory location is hit evenly
292		 */
293		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
294		ec->memlocation = ec->memlocation % wrap;
295	}
296	return i;
297}
298
299/***************************************************************************
300 * Start of entropy processing logic
301 ***************************************************************************/
302
303/**
304 * Stuck test by checking the:
305 *	1st derivation of the jitter measurement (time delta)
306 *	2nd derivation of the jitter measurement (delta of time deltas)
307 *	3rd derivation of the jitter measurement (delta of delta of time deltas)
308 *
309 * All values must always be non-zero.
310 *
311 * Input:
312 * @ec Reference to entropy collector
313 * @current_delta Jitter time delta
314 *
315 * @return
316 *	0 jitter measurement not stuck (good bit)
317 *	1 jitter measurement stuck (reject bit)
318 */
319static void jent_stuck(struct rand_data *ec, __u64 current_delta)
320{
321	__s64 delta2 = ec->last_delta - current_delta;
322	__s64 delta3 = delta2 - ec->last_delta2;
323
324	ec->last_delta = current_delta;
325	ec->last_delta2 = delta2;
326
327	if (!current_delta || !delta2 || !delta3)
328		ec->stuck = 1;
329}
330
331/**
332 * This is the heart of the entropy generation: calculate time deltas and
333 * use the CPU jitter in the time deltas. The jitter is folded into one
334 * bit. You can call this function the "random bit generator" as it
335 * produces one random bit per invocation.
336 *
337 * WARNING: ensure that ->prev_time is primed before using the output
338 *	    of this function! This can be done by calling this function
339 *	    and not using its result.
340 *
341 * Input:
342 * @entropy_collector Reference to entropy collector
343 *
344 * @return One random bit
345 */
346static __u64 jent_measure_jitter(struct rand_data *ec)
347{
348	__u64 time = 0;
349	__u64 data = 0;
350	__u64 current_delta = 0;
 
351
352	/* Invoke one noise source before time measurement to add variations */
353	jent_memaccess(ec, 0);
354
355	/*
356	 * Get time stamp and calculate time delta to previous
357	 * invocation to measure the timing variations
358	 */
359	jent_get_nstime(&time);
360	current_delta = time - ec->prev_time;
361	ec->prev_time = time;
362
363	/* Now call the next noise sources which also folds the data */
364	jent_fold_time(ec, current_delta, &data, 0);
365
366	/*
367	 * Check whether we have a stuck measurement. The enforcement
368	 * is performed after the stuck value has been mixed into the
369	 * entropy pool.
370	 */
371	jent_stuck(ec, current_delta);
372
373	return data;
374}
375
376/**
377 * Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the
378 * documentation of that RNG, the bits from jent_measure_jitter are considered
379 * independent which implies that the Von Neuman unbias operation is applicable.
380 * A proof of the Von-Neumann unbias operation to remove skews is given in the
381 * document "A proposal for: Functionality classes for random number
382 * generators", version 2.0 by Werner Schindler, section 5.4.1.
383 *
384 * Input:
385 * @entropy_collector Reference to entropy collector
386 *
387 * @return One random bit
388 */
389static __u64 jent_unbiased_bit(struct rand_data *entropy_collector)
390{
391	do {
392		__u64 a = jent_measure_jitter(entropy_collector);
393		__u64 b = jent_measure_jitter(entropy_collector);
394
395		if (a == b)
396			continue;
397		if (1 == a)
398			return 1;
399		else
400			return 0;
401	} while (1);
402}
403
404/**
405 * Shuffle the pool a bit by mixing some value with a bijective function (XOR)
406 * into the pool.
407 *
408 * The function generates a mixer value that depends on the bits set and the
409 * location of the set bits in the random number generated by the entropy
410 * source. Therefore, based on the generated random number, this mixer value
411 * can have 2**64 different values. That mixer value is initialized with the
412 * first two SHA-1 constants. After obtaining the mixer value, it is XORed into
413 * the random number.
414 *
415 * The mixer value is not assumed to contain any entropy. But due to the XOR
416 * operation, it can also not destroy any entropy present in the entropy pool.
417 *
418 * Input:
419 * @entropy_collector Reference to entropy collector
420 */
421static void jent_stir_pool(struct rand_data *entropy_collector)
422{
423	/*
424	 * to shut up GCC on 32 bit, we have to initialize the 64 variable
425	 * with two 32 bit variables
426	 */
427	union c {
428		__u64 u64;
429		__u32 u32[2];
430	};
431	/*
432	 * This constant is derived from the first two 32 bit initialization
433	 * vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
434	 */
435	union c constant;
436	/*
437	 * The start value of the mixer variable is derived from the third
438	 * and fourth 32 bit initialization vector of SHA-1 as defined in
439	 * FIPS 180-4 section 5.3.1
440	 */
441	union c mixer;
442	unsigned int i = 0;
443
444	/*
445	 * Store the SHA-1 constants in reverse order to make up the 64 bit
446	 * value -- this applies to a little endian system, on a big endian
447	 * system, it reverses as expected. But this really does not matter
448	 * as we do not rely on the specific numbers. We just pick the SHA-1
449	 * constants as they have a good mix of bit set and unset.
450	 */
451	constant.u32[1] = 0x67452301;
452	constant.u32[0] = 0xefcdab89;
453	mixer.u32[1] = 0x98badcfe;
454	mixer.u32[0] = 0x10325476;
455
456	for (i = 0; i < DATA_SIZE_BITS; i++) {
457		/*
458		 * get the i-th bit of the input random number and only XOR
459		 * the constant into the mixer value when that bit is set
460		 */
461		if ((entropy_collector->data >> i) & 1)
462			mixer.u64 ^= constant.u64;
463		mixer.u64 = jent_rol64(mixer.u64, 1);
464	}
465	entropy_collector->data ^= mixer.u64;
466}
467
468/**
469 * Generator of one 64 bit random number
470 * Function fills rand_data->data
471 *
472 * Input:
473 * @ec Reference to entropy collector
474 */
475static void jent_gen_entropy(struct rand_data *ec)
476{
477	unsigned int k = 0;
478
479	/* priming of the ->prev_time value */
480	jent_measure_jitter(ec);
481
482	while (1) {
483		__u64 data = 0;
484
485		if (ec->disable_unbias == 1)
486			data = jent_measure_jitter(ec);
487		else
488			data = jent_unbiased_bit(ec);
489
490		/* enforcement of the jent_stuck test */
491		if (ec->stuck) {
492			/*
493			 * We only mix in the bit considered not appropriate
494			 * without the LSFR. The reason is that if we apply
495			 * the LSFR and we do not rotate, the 2nd bit with LSFR
496			 * will cancel out the first LSFR application on the
497			 * bad bit.
498			 *
499			 * And we do not rotate as we apply the next bit to the
500			 * current bit location again.
501			 */
502			ec->data ^= data;
503			ec->stuck = 0;
504			continue;
505		}
506
507		/*
508		 * Fibonacci LSFR with polynom of
509		 *  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
510		 *  primitive according to
511		 *   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
512		 * (the shift values are the polynom values minus one
513		 * due to counting bits from 0 to 63). As the current
514		 * position is always the LSB, the polynom only needs
515		 * to shift data in from the left without wrap.
516		 */
517		ec->data ^= data;
518		ec->data ^= ((ec->data >> 63) & 1);
519		ec->data ^= ((ec->data >> 60) & 1);
520		ec->data ^= ((ec->data >> 55) & 1);
521		ec->data ^= ((ec->data >> 30) & 1);
522		ec->data ^= ((ec->data >> 27) & 1);
523		ec->data ^= ((ec->data >> 22) & 1);
524		ec->data = jent_rol64(ec->data, 1);
525
526		/*
527		 * We multiply the loop value with ->osr to obtain the
528		 * oversampling rate requested by the caller
529		 */
530		if (++k >= (DATA_SIZE_BITS * ec->osr))
531			break;
532	}
533	if (ec->stir)
534		jent_stir_pool(ec);
535}
536
537/**
538 * The continuous test required by FIPS 140-2 -- the function automatically
539 * primes the test if needed.
540 *
541 * Return:
542 * 0 if FIPS test passed
543 * < 0 if FIPS test failed
544 */
545static void jent_fips_test(struct rand_data *ec)
546{
547	if (!jent_fips_enabled())
548		return;
549
550	/* prime the FIPS test */
551	if (!ec->old_data) {
552		ec->old_data = ec->data;
553		jent_gen_entropy(ec);
554	}
555
556	if (ec->data == ec->old_data)
557		jent_panic("jitterentropy: Duplicate output detected\n");
558
559	ec->old_data = ec->data;
560}
561
562/**
563 * Entry function: Obtain entropy for the caller.
564 *
565 * This function invokes the entropy gathering logic as often to generate
566 * as many bytes as requested by the caller. The entropy gathering logic
567 * creates 64 bit per invocation.
568 *
569 * This function truncates the last 64 bit entropy value output to the exact
570 * size specified by the caller.
571 *
572 * Input:
573 * @ec Reference to entropy collector
574 * @data pointer to buffer for storing random data -- buffer must already
575 *	 exist
576 * @len size of the buffer, specifying also the requested number of random
577 *	in bytes
578 *
579 * @return 0 when request is fulfilled or an error
580 *
581 * The following error codes can occur:
582 *	-1	entropy_collector is NULL
 
 
583 */
584int jent_read_entropy(struct rand_data *ec, unsigned char *data,
585		      unsigned int len)
586{
587	unsigned char *p = data;
588
589	if (!ec)
590		return -1;
591
592	while (0 < len) {
593		unsigned int tocopy;
594
595		jent_gen_entropy(ec);
596		jent_fips_test(ec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597		if ((DATA_SIZE_BITS / 8) < len)
598			tocopy = (DATA_SIZE_BITS / 8);
599		else
600			tocopy = len;
601		jent_memcpy(p, &ec->data, tocopy);
 
602
603		len -= tocopy;
604		p += tocopy;
605	}
606
607	return 0;
608}
609
610/***************************************************************************
611 * Initialization logic
612 ***************************************************************************/
613
614struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
615					       unsigned int flags)
 
616{
617	struct rand_data *entropy_collector;
618
619	entropy_collector = jent_zalloc(sizeof(struct rand_data));
620	if (!entropy_collector)
621		return NULL;
622
623	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
624		/* Allocate memory for adding variations based on memory
625		 * access
626		 */
627		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
628		if (!entropy_collector->mem) {
629			jent_zfree(entropy_collector);
630			return NULL;
631		}
632		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
633		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
 
 
634		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
635	}
636
637	/* verify and set the oversampling rate */
638	if (0 == osr)
639		osr = 1; /* minimum sampling rate is 1 */
640	entropy_collector->osr = osr;
 
 
 
641
642	entropy_collector->stir = 1;
643	if (flags & JENT_DISABLE_STIR)
644		entropy_collector->stir = 0;
645	if (flags & JENT_DISABLE_UNBIAS)
646		entropy_collector->disable_unbias = 1;
647
648	/* fill the data pad with non-zero values */
649	jent_gen_entropy(entropy_collector);
650
651	return entropy_collector;
652}
653
654void jent_entropy_collector_free(struct rand_data *entropy_collector)
655{
656	jent_zfree(entropy_collector->mem);
657	entropy_collector->mem = NULL;
658	jent_zfree(entropy_collector);
659	entropy_collector = NULL;
660}
661
662int jent_entropy_init(void)
 
663{
664	int i;
665	__u64 delta_sum = 0;
666	__u64 old_delta = 0;
667	int time_backwards = 0;
668	int count_var = 0;
669	int count_mod = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670
671	/* We could perform statistical tests here, but the problem is
672	 * that we only have a few loop counts to do testing. These
673	 * loop counts may show some slight skew and we produce
674	 * false positives.
675	 *
676	 * Moreover, only old systems show potentially problematic
677	 * jitter entropy that could potentially be caught here. But
678	 * the RNG is intended for hardware that is available or widely
679	 * used, but not old systems that are long out of favor. Thus,
680	 * no statistical tests.
681	 */
682
683	/*
684	 * We could add a check for system capabilities such as clock_getres or
685	 * check for CONFIG_X86_TSC, but it does not make much sense as the
686	 * following sanity checks verify that we have a high-resolution
687	 * timer.
688	 */
689	/*
690	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
691	 * definitely too little.
 
 
692	 */
693#define TESTLOOPCOUNT 300
694#define CLEARCACHE 100
695	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
696		__u64 time = 0;
697		__u64 time2 = 0;
698		__u64 folded = 0;
699		__u64 delta = 0;
700		unsigned int lowdelta = 0;
701
702		jent_get_nstime(&time);
703		jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT);
704		jent_get_nstime(&time2);
705
706		/* test whether timer works */
707		if (!time || !time2)
708			return JENT_ENOTIME;
709		delta = time2 - time;
 
 
710		/*
711		 * test whether timer is fine grained enough to provide
712		 * delta even when called shortly after each other -- this
713		 * implies that we also have a high resolution timer
714		 */
715		if (!delta)
716			return JENT_ECOARSETIME;
 
 
717
718		/*
719		 * up to here we did not modify any variable that will be
720		 * evaluated later, but we already performed some work. Thus we
721		 * already have had an impact on the caches, branch prediction,
722		 * etc. with the goal to clear it to get the worst case
723		 * measurements.
724		 */
725		if (CLEARCACHE > i)
726			continue;
727
728		/* test whether we have an increasing timer */
729		if (!(time2 > time))
730			time_backwards++;
731
732		/*
733		 * Avoid modulo of 64 bit integer to allow code to compile
734		 * on 32 bit architectures.
735		 */
736		lowdelta = time2 - time;
737		if (!(lowdelta % 100))
738			count_mod++;
739
740		/*
741		 * ensure that we have a varying delta timer which is necessary
742		 * for the calculation of entropy -- perform this check
743		 * only after the first loop is executed as we need to prime
744		 * the old_data value
745		 */
746		if (i) {
747			if (delta != old_delta)
748				count_var++;
749			if (delta > old_delta)
750				delta_sum += (delta - old_delta);
751			else
752				delta_sum += (old_delta - delta);
753		}
754		old_delta = delta;
755	}
756
757	/*
758	 * we allow up to three times the time running backwards.
759	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
760	 * if such an operation just happens to interfere with our test, it
761	 * should not fail. The value of 3 should cover the NTP case being
762	 * performed during our test run.
763	 */
764	if (3 < time_backwards)
765		return JENT_ENOMONOTONIC;
766	/* Error if the time variances are always identical */
767	if (!delta_sum)
768		return JENT_EVARVAR;
769
770	/*
771	 * Variations of deltas of time must on average be larger
772	 * than 1 to ensure the entropy estimation
773	 * implied with 1 is preserved
774	 */
775	if (delta_sum <= 1)
776		return JENT_EMINVARVAR;
777
778	/*
779	 * Ensure that we have variations in the time stamp below 10 for at
780	 * least 10% of all checks -- on some platforms, the counter
781	 * increments in multiples of 100, but not always
782	 */
783	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
784		return JENT_ECOARSETIME;
785
786	return 0;
787}
v6.8
  1/*
  2 * Non-physical true random number generator based on timing jitter --
  3 * Jitter RNG standalone code.
  4 *
  5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
  6 *
  7 * Design
  8 * ======
  9 *
 10 * See https://www.chronox.de/jent.html
 11 *
 12 * License
 13 * =======
 14 *
 15 * Redistribution and use in source and binary forms, with or without
 16 * modification, are permitted provided that the following conditions
 17 * are met:
 18 * 1. Redistributions of source code must retain the above copyright
 19 *    notice, and the entire permission notice in its entirety,
 20 *    including the disclaimer of warranties.
 21 * 2. Redistributions in binary form must reproduce the above copyright
 22 *    notice, this list of conditions and the following disclaimer in the
 23 *    documentation and/or other materials provided with the distribution.
 24 * 3. The name of the author may not be used to endorse or promote
 25 *    products derived from this software without specific prior
 26 *    written permission.
 27 *
 28 * ALTERNATIVELY, this product may be distributed under the terms of
 29 * the GNU General Public License, in which case the provisions of the GPL2 are
 30 * required INSTEAD OF the above restrictions.  (This clause is
 31 * necessary due to a potential bad interaction between the GPL and
 32 * the restrictions contained in a BSD-style copyright.)
 33 *
 34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 37 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 45 * DAMAGE.
 46 */
 47
 48/*
 49 * This Jitterentropy RNG is based on the jitterentropy library
 50 * version 3.4.0 provided at https://www.chronox.de/jent.html
 51 */
 52
 53#ifdef __OPTIMIZE__
 54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
 55#endif
 56
 57typedef	unsigned long long	__u64;
 58typedef	long long		__s64;
 59typedef	unsigned int		__u32;
 60typedef unsigned char		u8;
 61#define NULL    ((void *) 0)
 62
 63/* The entropy pool */
 64struct rand_data {
 65	/* SHA3-256 is used as conditioner */
 66#define DATA_SIZE_BITS 256
 67	/* all data values that are vital to maintain the security
 68	 * of the RNG are marked as SENSITIVE. A user must not
 69	 * access that information while the RNG executes its loops to
 70	 * calculate the next random value. */
 71	void *hash_state;		/* SENSITIVE hash state entropy pool */
 72	__u64 prev_time;		/* SENSITIVE Previous time stamp */
 73	__u64 last_delta;		/* SENSITIVE stuck test */
 74	__s64 last_delta2;		/* SENSITIVE stuck test */
 75
 76	unsigned int flags;		/* Flags used to initialize */
 77	unsigned int osr;		/* Oversample rate */
 
 
 
 
 
 78#define JENT_MEMORY_ACCESSLOOPS 128
 79#define JENT_MEMORY_SIZE						\
 80	(CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *			\
 81	 CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
 82	unsigned char *mem;	/* Memory access location with size of
 83				 * memblocks * memblocksize */
 84	unsigned int memlocation; /* Pointer to byte in *mem */
 85	unsigned int memblocks;	/* Number of memory blocks in *mem */
 86	unsigned int memblocksize; /* Size of one memory block in bytes */
 87	unsigned int memaccessloops; /* Number of memory accesses per random
 88				      * bit generation */
 89
 90	/* Repetition Count Test */
 91	unsigned int rct_count;			/* Number of stuck values */
 92
 93	/* Adaptive Proportion Test cutoff values */
 94	unsigned int apt_cutoff; /* Intermittent health test failure */
 95	unsigned int apt_cutoff_permanent; /* Permanent health test failure */
 96#define JENT_APT_WINDOW_SIZE	512	/* Data window size */
 97	/* LSB of time stamp to process */
 98#define JENT_APT_LSB		16
 99#define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
100	unsigned int apt_observations;	/* Number of collected observations */
101	unsigned int apt_count;		/* APT counter */
102	unsigned int apt_base;		/* APT base reference */
103	unsigned int health_failure;	/* Record health failure */
104
105	unsigned int apt_base_set:1;	/* APT base reference set? */
106};
107
108/* Flags that can be used to initialize the RNG */
 
 
109#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
110					   * entropy, saves MEMORY_SIZE RAM for
111					   * entropy collector */
112
113/* -- error codes for init function -- */
114#define JENT_ENOTIME		1 /* Timer service not available */
115#define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
116#define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
 
117#define JENT_EVARVAR		5 /* Timer does not produce variations of
118				   * variations (2nd derivation of time is
119				   * zero). */
120#define JENT_ESTUCK		8 /* Too many stuck results during init. */
121#define JENT_EHEALTH		9 /* Health test failed during initialization */
122#define JENT_ERCT	       10 /* RCT failed during initialization */
123#define JENT_EHASH	       11 /* Hash self test failed */
124#define JENT_EMEM	       12 /* Can't allocate memory for initialization */
125
126#define JENT_RCT_FAILURE	1 /* Failure in RCT health test. */
127#define JENT_APT_FAILURE	2 /* Failure in APT health test. */
128#define JENT_PERMANENT_FAILURE_SHIFT	16
129#define JENT_PERMANENT_FAILURE(x)	(x << JENT_PERMANENT_FAILURE_SHIFT)
130#define JENT_RCT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
131#define JENT_APT_FAILURE_PERMANENT	JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
132
133/*
134 * The output n bits can receive more than n bits of min entropy, of course,
135 * but the fixed output of the conditioning function can only asymptotically
136 * approach the output size bits of min entropy, not attain that bound. Random
137 * maps will tend to have output collisions, which reduces the creditable
138 * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
139 *
140 * The value "64" is justified in Appendix A.4 of the current 90C draft,
141 * and aligns with NIST's in "epsilon" definition in this document, which is
142 * that a string can be considered "full entropy" if you can bound the min
143 * entropy in each bit of output to at least 1-epsilon, where epsilon is
144 * required to be <= 2^(-32).
145 */
146#define JENT_ENTROPY_SAFETY_FACTOR	64
147
148#include <linux/fips.h>
149#include "jitterentropy.h"
150
151/***************************************************************************
152 * Adaptive Proportion Test
153 *
154 * This test complies with SP800-90B section 4.4.2.
155 ***************************************************************************/
156
157/*
158 * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
159 * APT.
160 * http://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
161 * In in the syntax of R, this is C = 2 + qbinom(1 − 2^(−30), 511, 2^(-1/osr)).
162 * (The original formula wasn't correct because the first symbol must
163 * necessarily have been observed, so there is no chance of observing 0 of these
164 * symbols.)
165 *
166 * For the alpha < 2^-53, R cannot be used as it uses a float data type without
167 * arbitrary precision. A SageMath script is used to calculate those cutoff
168 * values.
169 *
170 * For any value above 14, this yields the maximal allowable value of 512
171 * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
172 * renders the test unable to fail).
173 */
174static const unsigned int jent_apt_cutoff_lookup[15] = {
175	325, 422, 459, 477, 488, 494, 499, 502,
176	505, 507, 508, 509, 510, 511, 512 };
177static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
178	355, 447, 479, 494, 502, 507, 510, 512,
179	512, 512, 512, 512, 512, 512, 512 };
180#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
181
182static void jent_apt_init(struct rand_data *ec, unsigned int osr)
183{
184	/*
185	 * Establish the apt_cutoff based on the presumed entropy rate of
186	 * 1/osr.
187	 */
188	if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
189		ec->apt_cutoff = jent_apt_cutoff_lookup[
190			ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
191		ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
192			ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
193	} else {
194		ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
195		ec->apt_cutoff_permanent =
196				jent_apt_cutoff_permanent_lookup[osr - 1];
197	}
198}
199/*
200 * Reset the APT counter
201 *
202 * @ec [in] Reference to entropy collector
203 */
204static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
205{
206	/* Reset APT counter */
207	ec->apt_count = 0;
208	ec->apt_base = delta_masked;
209	ec->apt_observations = 0;
210}
211
212/*
213 * Insert a new entropy event into APT
214 *
215 * @ec [in] Reference to entropy collector
216 * @delta_masked [in] Masked time delta to process
217 */
218static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
219{
220	/* Initialize the base reference */
221	if (!ec->apt_base_set) {
222		ec->apt_base = delta_masked;
223		ec->apt_base_set = 1;
224		return;
225	}
226
227	if (delta_masked == ec->apt_base) {
228		ec->apt_count++;
229
230		/* Note, ec->apt_count starts with one. */
231		if (ec->apt_count >= ec->apt_cutoff_permanent)
232			ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
233		else if (ec->apt_count >= ec->apt_cutoff)
234			ec->health_failure |= JENT_APT_FAILURE;
235	}
236
237	ec->apt_observations++;
238
239	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
240		jent_apt_reset(ec, delta_masked);
241}
242
243/***************************************************************************
244 * Stuck Test and its use as Repetition Count Test
245 *
246 * The Jitter RNG uses an enhanced version of the Repetition Count Test
247 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
248 * back-to-back values, the input to the RCT is the counting of the stuck
249 * values during the generation of one Jitter RNG output block.
250 *
251 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
252 *
253 * During the counting operation, the Jitter RNG always calculates the RCT
254 * cut-off value of C. If that value exceeds the allowed cut-off value,
255 * the Jitter RNG output block will be calculated completely but discarded at
256 * the end. The caller of the Jitter RNG is informed with an error code.
257 ***************************************************************************/
258
259/*
260 * Repetition Count Test as defined in SP800-90B section 4.4.1
261 *
262 * @ec [in] Reference to entropy collector
263 * @stuck [in] Indicator whether the value is stuck
264 */
265static void jent_rct_insert(struct rand_data *ec, int stuck)
266{
267	if (stuck) {
268		ec->rct_count++;
269
270		/*
271		 * The cutoff value is based on the following consideration:
272		 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
273		 * In addition, we require an entropy value H of 1/osr as this
274		 * is the minimum entropy required to provide full entropy.
275		 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
276		 * deltas for inserting them into the entropy pool which should
277		 * then have (close to) DATA_SIZE_BITS bits of entropy in the
278		 * conditioned output.
279		 *
280		 * Note, ec->rct_count (which equals to value B in the pseudo
281		 * code of SP800-90B section 4.4.1) starts with zero. Hence
282		 * we need to subtract one from the cutoff value as calculated
283		 * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
284		 * or 60*osr.
285		 */
286		if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
287			ec->rct_count = -1;
288			ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
289		} else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
290			ec->rct_count = -1;
291			ec->health_failure |= JENT_RCT_FAILURE;
292		}
293	} else {
294		/* Reset RCT */
295		ec->rct_count = 0;
296	}
297}
298
299static inline __u64 jent_delta(__u64 prev, __u64 next)
300{
301#define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
302	return (prev < next) ? (next - prev) :
303			       (JENT_UINT64_MAX - prev + 1 + next);
304}
305
306/*
307 * Stuck test by checking the:
308 * 	1st derivative of the jitter measurement (time delta)
309 * 	2nd derivative of the jitter measurement (delta of time deltas)
310 * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
311 *
312 * All values must always be non-zero.
313 *
314 * @ec [in] Reference to entropy collector
315 * @current_delta [in] Jitter time delta
316 *
317 * @return
318 * 	0 jitter measurement not stuck (good bit)
319 * 	1 jitter measurement stuck (reject bit)
320 */
321static int jent_stuck(struct rand_data *ec, __u64 current_delta)
322{
323	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
324	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
325
326	ec->last_delta = current_delta;
327	ec->last_delta2 = delta2;
328
329	/*
330	 * Insert the result of the comparison of two back-to-back time
331	 * deltas.
332	 */
333	jent_apt_insert(ec, current_delta);
334
335	if (!current_delta || !delta2 || !delta3) {
336		/* RCT with a stuck bit */
337		jent_rct_insert(ec, 1);
338		return 1;
339	}
340
341	/* RCT with a non-stuck bit */
342	jent_rct_insert(ec, 0);
343
344	return 0;
345}
346
347/*
348 * Report any health test failures
349 *
350 * @ec [in] Reference to entropy collector
351 *
352 * @return a bitmask indicating which tests failed
353 *	0 No health test failure
354 *	1 RCT failure
355 *	2 APT failure
356 *	1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
357 *	2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
358 */
359static unsigned int jent_health_failure(struct rand_data *ec)
360{
361	/* Test is only enabled in FIPS mode */
362	if (!fips_enabled)
363		return 0;
364
365	return ec->health_failure;
366}
367
368/***************************************************************************
369 * Noise sources
370 ***************************************************************************/
371
372/*
373 * Update of the loop count used for the next round of
374 * an entropy collection.
375 *
376 * Input:
 
377 * @bits is the number of low bits of the timer to consider
378 * @min is the number of bits we shift the timer value to the right at
379 *	the end to make sure we have a guaranteed minimum value
380 *
381 * @return Newly calculated loop counter
382 */
383static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
 
384{
385	__u64 time = 0;
386	__u64 shuffle = 0;
387	unsigned int i = 0;
388	unsigned int mask = (1<<bits) - 1;
389
390	jent_get_nstime(&time);
391
392	/*
393	 * We fold the time value as much as possible to ensure that as many
394	 * bits of the time stamp are included as possible.
 
 
 
 
 
 
395	 */
396	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
397		shuffle ^= time & mask;
398		time = time >> bits;
399	}
400
401	/*
402	 * We add a lower boundary value to ensure we have a minimum
403	 * RNG loop count.
404	 */
405	return (shuffle + (1<<min));
406}
407
408/*
 
 
 
 
409 * CPU Jitter noise source -- this is the noise source based on the CPU
410 *			      execution time jitter
411 *
412 * This function injects the individual bits of the time value into the
413 * entropy pool using a hash.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414 *
415 * ec [in] entropy collector
416 * time [in] time stamp to be injected
417 * stuck [in] Is the time stamp identified as stuck?
 
 
418 *
419 * Output:
420 * updated hash context in the entropy collector or error code
 
 
421 */
422static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
 
423{
424#define SHA3_HASH_LOOP (1<<3)
425	struct {
426		int rct_count;
427		unsigned int apt_observations;
428		unsigned int apt_count;
429		unsigned int apt_base;
430	} addtl = {
431		ec->rct_count,
432		ec->apt_observations,
433		ec->apt_count,
434		ec->apt_base
435	};
 
 
 
 
 
 
436
437	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
438			      SHA3_HASH_LOOP, stuck);
 
 
 
 
439}
440
441/*
442 * Memory Access noise source -- this is a noise source based on variations in
443 *				 memory access times
444 *
445 * This function performs memory accesses which will add to the timing
446 * variations due to an unknown amount of CPU wait states that need to be
447 * added when accessing memory. The memory size should be larger than the L1
448 * caches as outlined in the documentation and the associated testing.
449 *
450 * The L1 cache has a very high bandwidth, albeit its access rate is  usually
451 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
452 * variations as the CPU has hardly to wait. Starting with L2, significant
453 * variations are added because L2 typically does not belong to the CPU any more
454 * and therefore a wider range of CPU wait states is necessary for accesses.
455 * L3 and real memory accesses have even a wider range of wait states. However,
456 * to reliably access either L3 or memory, the ec->mem memory must be quite
457 * large which is usually not desirable.
458 *
459 * @ec [in] Reference to the entropy collector with the memory access data -- if
460 *	    the reference to the memory block to be accessed is NULL, this noise
461 *	    source is disabled
462 * @loop_cnt [in] if a value not equal to 0 is set, use the given value
463 *		  number of loops to perform the LFSR
 
 
 
464 */
465static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
466{
 
467	unsigned int wrap = 0;
468	__u64 i = 0;
469#define MAX_ACC_LOOP_BIT 7
470#define MIN_ACC_LOOP_BIT 0
471	__u64 acc_loop_cnt =
472		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
473
474	if (NULL == ec || NULL == ec->mem)
475		return;
476	wrap = ec->memblocksize * ec->memblocks;
477
478	/*
479	 * testing purposes -- allow test app to set the counter, not
480	 * needed during runtime
481	 */
482	if (loop_cnt)
483		acc_loop_cnt = loop_cnt;
484
485	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
486		unsigned char *tmpval = ec->mem + ec->memlocation;
487		/*
488		 * memory access: just add 1 to one byte,
489		 * wrap at 255 -- memory access implies read
490		 * from and write to memory location
491		 */
492		*tmpval = (*tmpval + 1) & 0xff;
493		/*
494		 * Addition of memblocksize - 1 to pointer
495		 * with wrap around logic to ensure that every
496		 * memory location is hit evenly
497		 */
498		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
499		ec->memlocation = ec->memlocation % wrap;
500	}
 
501}
502
503/***************************************************************************
504 * Start of entropy processing logic
505 ***************************************************************************/
506/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507 * This is the heart of the entropy generation: calculate time deltas and
508 * use the CPU jitter in the time deltas. The jitter is injected into the
509 * entropy pool.
 
510 *
511 * WARNING: ensure that ->prev_time is primed before using the output
512 *	    of this function! This can be done by calling this function
513 *	    and not using its result.
514 *
515 * @ec [in] Reference to entropy collector
 
516 *
517 * @return result of stuck test
518 */
519static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
520{
521	__u64 time = 0;
 
522	__u64 current_delta = 0;
523	int stuck;
524
525	/* Invoke one noise source before time measurement to add variations */
526	jent_memaccess(ec, 0);
527
528	/*
529	 * Get time stamp and calculate time delta to previous
530	 * invocation to measure the timing variations
531	 */
532	jent_get_nstime(&time);
533	current_delta = jent_delta(ec->prev_time, time);
534	ec->prev_time = time;
535
536	/* Check whether we have a stuck measurement. */
537	stuck = jent_stuck(ec, current_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
538
539	/* Now call the next noise sources which also injects the data */
540	if (jent_condition_data(ec, current_delta, stuck))
541		stuck = 1;
542
543	/* return the raw entropy value */
544	if (ret_current_delta)
545		*ret_current_delta = current_delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546
547	return stuck;
 
 
 
 
 
 
 
 
 
548}
549
550/*
551 * Generator of one 64 bit random number
552 * Function fills rand_data->hash_state
553 *
554 * @ec [in] Reference to entropy collector
 
555 */
556static void jent_gen_entropy(struct rand_data *ec)
557{
558	unsigned int k = 0, safety_factor = 0;
 
 
 
559
560	if (fips_enabled)
561		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
562
563	/* priming of the ->prev_time value */
564	jent_measure_jitter(ec, NULL);
 
 
565
566	while (!jent_health_failure(ec)) {
567		/* If a stuck measurement is received, repeat measurement */
568		if (jent_measure_jitter(ec, NULL))
 
 
 
 
 
 
 
 
 
 
 
569			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570
571		/*
572		 * We multiply the loop value with ->osr to obtain the
573		 * oversampling rate requested by the caller
574		 */
575		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
576			break;
577	}
 
 
578}
579
580/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581 * Entry function: Obtain entropy for the caller.
582 *
583 * This function invokes the entropy gathering logic as often to generate
584 * as many bytes as requested by the caller. The entropy gathering logic
585 * creates 64 bit per invocation.
586 *
587 * This function truncates the last 64 bit entropy value output to the exact
588 * size specified by the caller.
589 *
590 * @ec [in] Reference to entropy collector
591 * @data [in] pointer to buffer for storing random data -- buffer must already
592 *	      exist
593 * @len [in] size of the buffer, specifying also the requested number of random
594 *	     in bytes
 
595 *
596 * @return 0 when request is fulfilled or an error
597 *
598 * The following error codes can occur:
599 *	-1	entropy_collector is NULL or the generation failed
600 *	-2	Intermittent health failure
601 *	-3	Permanent health failure
602 */
603int jent_read_entropy(struct rand_data *ec, unsigned char *data,
604		      unsigned int len)
605{
606	unsigned char *p = data;
607
608	if (!ec)
609		return -1;
610
611	while (len > 0) {
612		unsigned int tocopy, health_test_result;
613
614		jent_gen_entropy(ec);
615
616		health_test_result = jent_health_failure(ec);
617		if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
618			/*
619			 * At this point, the Jitter RNG instance is considered
620			 * as a failed instance. There is no rerun of the
621			 * startup test any more, because the caller
622			 * is assumed to not further use this instance.
623			 */
624			return -3;
625		} else if (health_test_result) {
626			/*
627			 * Perform startup health tests and return permanent
628			 * error if it fails.
629			 */
630			if (jent_entropy_init(0, 0, NULL, ec)) {
631				/* Mark the permanent error */
632				ec->health_failure &=
633					JENT_RCT_FAILURE_PERMANENT |
634					JENT_APT_FAILURE_PERMANENT;
635				return -3;
636			}
637
638			return -2;
639		}
640
641		if ((DATA_SIZE_BITS / 8) < len)
642			tocopy = (DATA_SIZE_BITS / 8);
643		else
644			tocopy = len;
645		if (jent_read_random_block(ec->hash_state, p, tocopy))
646			return -1;
647
648		len -= tocopy;
649		p += tocopy;
650	}
651
652	return 0;
653}
654
655/***************************************************************************
656 * Initialization logic
657 ***************************************************************************/
658
659struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
660					       unsigned int flags,
661					       void *hash_state)
662{
663	struct rand_data *entropy_collector;
664
665	entropy_collector = jent_zalloc(sizeof(struct rand_data));
666	if (!entropy_collector)
667		return NULL;
668
669	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
670		/* Allocate memory for adding variations based on memory
671		 * access
672		 */
673		entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
674		if (!entropy_collector->mem) {
675			jent_zfree(entropy_collector);
676			return NULL;
677		}
678		entropy_collector->memblocksize =
679			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
680		entropy_collector->memblocks =
681			CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
682		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
683	}
684
685	/* verify and set the oversampling rate */
686	if (osr == 0)
687		osr = 1; /* H_submitter = 1 / osr */
688	entropy_collector->osr = osr;
689	entropy_collector->flags = flags;
690
691	entropy_collector->hash_state = hash_state;
692
693	/* Initialize the APT */
694	jent_apt_init(entropy_collector, osr);
 
 
 
695
696	/* fill the data pad with non-zero values */
697	jent_gen_entropy(entropy_collector);
698
699	return entropy_collector;
700}
701
702void jent_entropy_collector_free(struct rand_data *entropy_collector)
703{
704	jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
705	entropy_collector->mem = NULL;
706	jent_zfree(entropy_collector);
 
707}
708
709int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
710		      struct rand_data *p_ec)
711{
712	/*
713	 * If caller provides an allocated ec, reuse it which implies that the
714	 * health test entropy data is used to further still the available
715	 * entropy pool.
716	 */
717	struct rand_data *ec = p_ec;
718	int i, time_backwards = 0, ret = 0, ec_free = 0;
719	unsigned int health_test_result;
720
721	if (!ec) {
722		ec = jent_entropy_collector_alloc(osr, flags, hash_state);
723		if (!ec)
724			return JENT_EMEM;
725		ec_free = 1;
726	} else {
727		/* Reset the APT */
728		jent_apt_reset(ec, 0);
729		/* Ensure that a new APT base is obtained */
730		ec->apt_base_set = 0;
731		/* Reset the RCT */
732		ec->rct_count = 0;
733		/* Reset intermittent, leave permanent health test result */
734		ec->health_failure &= (~JENT_RCT_FAILURE);
735		ec->health_failure &= (~JENT_APT_FAILURE);
736	}
737
738	/* We could perform statistical tests here, but the problem is
739	 * that we only have a few loop counts to do testing. These
740	 * loop counts may show some slight skew and we produce
741	 * false positives.
742	 *
743	 * Moreover, only old systems show potentially problematic
744	 * jitter entropy that could potentially be caught here. But
745	 * the RNG is intended for hardware that is available or widely
746	 * used, but not old systems that are long out of favor. Thus,
747	 * no statistical tests.
748	 */
749
750	/*
751	 * We could add a check for system capabilities such as clock_getres or
752	 * check for CONFIG_X86_TSC, but it does not make much sense as the
753	 * following sanity checks verify that we have a high-resolution
754	 * timer.
755	 */
756	/*
757	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
758	 * definitely too little.
759	 *
760	 * SP800-90B requires at least 1024 initial test cycles.
761	 */
762#define TESTLOOPCOUNT 1024
763#define CLEARCACHE 100
764	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
765		__u64 start_time = 0, end_time = 0, delta = 0;
766
767		/* Invoke core entropy collection logic */
768		jent_measure_jitter(ec, &delta);
769		end_time = ec->prev_time;
770		start_time = ec->prev_time - delta;
 
 
 
771
772		/* test whether timer works */
773		if (!start_time || !end_time) {
774			ret = JENT_ENOTIME;
775			goto out;
776		}
777
778		/*
779		 * test whether timer is fine grained enough to provide
780		 * delta even when called shortly after each other -- this
781		 * implies that we also have a high resolution timer
782		 */
783		if (!delta || (end_time == start_time)) {
784			ret = JENT_ECOARSETIME;
785			goto out;
786		}
787
788		/*
789		 * up to here we did not modify any variable that will be
790		 * evaluated later, but we already performed some work. Thus we
791		 * already have had an impact on the caches, branch prediction,
792		 * etc. with the goal to clear it to get the worst case
793		 * measurements.
794		 */
795		if (i < CLEARCACHE)
796			continue;
797
798		/* test whether we have an increasing timer */
799		if (!(end_time > start_time))
800			time_backwards++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801	}
802
803	/*
804	 * we allow up to three times the time running backwards.
805	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
806	 * if such an operation just happens to interfere with our test, it
807	 * should not fail. The value of 3 should cover the NTP case being
808	 * performed during our test run.
809	 */
810	if (time_backwards > 3) {
811		ret = JENT_ENOMONOTONIC;
812		goto out;
813	}
 
814
815	/* Did we encounter a health test failure? */
816	health_test_result = jent_health_failure(ec);
817	if (health_test_result) {
818		ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
819								JENT_EHEALTH;
820		goto out;
821	}
822
823out:
824	if (ec_free)
825		jent_entropy_collector_free(ec);
 
 
 
 
826
827	return ret;
828}