Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* X.509 certificate parser
  2 *
  3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public Licence
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the Licence, or (at your option) any later version.
 10 */
 11
 12#define pr_fmt(fmt) "X.509: "fmt
 13#include <linux/kernel.h>
 14#include <linux/export.h>
 15#include <linux/slab.h>
 16#include <linux/err.h>
 17#include <linux/oid_registry.h>
 18#include <crypto/public_key.h>
 19#include "x509_parser.h"
 20#include "x509-asn1.h"
 21#include "x509_akid-asn1.h"
 22
 23struct x509_parse_context {
 24	struct x509_certificate	*cert;		/* Certificate being constructed */
 25	unsigned long	data;			/* Start of data */
 26	const void	*cert_start;		/* Start of cert content */
 27	const void	*key;			/* Key data */
 28	size_t		key_size;		/* Size of key data */
 
 
 
 29	enum OID	last_oid;		/* Last OID encountered */
 30	enum OID	algo_oid;		/* Algorithm OID */
 31	unsigned char	nr_mpi;			/* Number of MPIs stored */
 32	u8		o_size;			/* Size of organizationName (O) */
 33	u8		cn_size;		/* Size of commonName (CN) */
 34	u8		email_size;		/* Size of emailAddress */
 35	u16		o_offset;		/* Offset of organizationName (O) */
 36	u16		cn_offset;		/* Offset of commonName (CN) */
 37	u16		email_offset;		/* Offset of emailAddress */
 38	unsigned	raw_akid_size;
 39	const void	*raw_akid;		/* Raw authorityKeyId in ASN.1 */
 40	const void	*akid_raw_issuer;	/* Raw directoryName in authorityKeyId */
 41	unsigned	akid_raw_issuer_size;
 42};
 43
 44/*
 45 * Free an X.509 certificate
 46 */
 47void x509_free_certificate(struct x509_certificate *cert)
 48{
 49	if (cert) {
 50		public_key_destroy(cert->pub);
 
 51		kfree(cert->issuer);
 52		kfree(cert->subject);
 53		kfree(cert->id);
 54		kfree(cert->skid);
 55		kfree(cert->akid_id);
 56		kfree(cert->akid_skid);
 57		kfree(cert->sig.digest);
 58		kfree(cert->sig.s);
 59		kfree(cert);
 60	}
 61}
 62EXPORT_SYMBOL_GPL(x509_free_certificate);
 63
 64/*
 65 * Parse an X.509 certificate
 66 */
 67struct x509_certificate *x509_cert_parse(const void *data, size_t datalen)
 68{
 69	struct x509_certificate *cert;
 70	struct x509_parse_context *ctx;
 71	struct asymmetric_key_id *kid;
 72	long ret;
 73
 74	ret = -ENOMEM;
 75	cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
 76	if (!cert)
 77		goto error_no_cert;
 78	cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
 79	if (!cert->pub)
 80		goto error_no_ctx;
 
 
 
 81	ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
 82	if (!ctx)
 83		goto error_no_ctx;
 84
 85	ctx->cert = cert;
 86	ctx->data = (unsigned long)data;
 87
 88	/* Attempt to decode the certificate */
 89	ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
 90	if (ret < 0)
 91		goto error_decode;
 92
 93	/* Decode the AuthorityKeyIdentifier */
 94	if (ctx->raw_akid) {
 95		pr_devel("AKID: %u %*phN\n",
 96			 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid);
 97		ret = asn1_ber_decoder(&x509_akid_decoder, ctx,
 98				       ctx->raw_akid, ctx->raw_akid_size);
 99		if (ret < 0) {
100			pr_warn("Couldn't decode AuthKeyIdentifier\n");
101			goto error_decode;
102		}
103	}
104
 
105	cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
106	if (!cert->pub->key)
107		goto error_decode;
108
109	cert->pub->keylen = ctx->key_size;
110
 
 
 
 
 
 
 
 
 
 
 
 
111	/* Generate cert issuer + serial number key ID */
112	kid = asymmetric_key_generate_id(cert->raw_serial,
113					 cert->raw_serial_size,
114					 cert->raw_issuer,
115					 cert->raw_issuer_size);
116	if (IS_ERR(kid)) {
117		ret = PTR_ERR(kid);
118		goto error_decode;
119	}
120	cert->id = kid;
121
 
 
 
 
 
122	kfree(ctx);
123	return cert;
124
125error_decode:
126	kfree(cert->pub->key);
127	kfree(ctx);
128error_no_ctx:
129	x509_free_certificate(cert);
130error_no_cert:
131	return ERR_PTR(ret);
132}
133EXPORT_SYMBOL_GPL(x509_cert_parse);
134
135/*
136 * Note an OID when we find one for later processing when we know how
137 * to interpret it.
138 */
139int x509_note_OID(void *context, size_t hdrlen,
140	     unsigned char tag,
141	     const void *value, size_t vlen)
142{
143	struct x509_parse_context *ctx = context;
144
145	ctx->last_oid = look_up_OID(value, vlen);
146	if (ctx->last_oid == OID__NR) {
147		char buffer[50];
148		sprint_oid(value, vlen, buffer, sizeof(buffer));
149		pr_debug("Unknown OID: [%lu] %s\n",
150			 (unsigned long)value - ctx->data, buffer);
151	}
152	return 0;
153}
154
155/*
156 * Save the position of the TBS data so that we can check the signature over it
157 * later.
158 */
159int x509_note_tbs_certificate(void *context, size_t hdrlen,
160			      unsigned char tag,
161			      const void *value, size_t vlen)
162{
163	struct x509_parse_context *ctx = context;
164
165	pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n",
166		 hdrlen, tag, (unsigned long)value - ctx->data, vlen);
167
168	ctx->cert->tbs = value - hdrlen;
169	ctx->cert->tbs_size = vlen + hdrlen;
170	return 0;
171}
172
173/*
174 * Record the public key algorithm
175 */
176int x509_note_pkey_algo(void *context, size_t hdrlen,
177			unsigned char tag,
178			const void *value, size_t vlen)
179{
180	struct x509_parse_context *ctx = context;
181
182	pr_debug("PubKey Algo: %u\n", ctx->last_oid);
183
184	switch (ctx->last_oid) {
185	case OID_md2WithRSAEncryption:
186	case OID_md3WithRSAEncryption:
187	default:
188		return -ENOPKG; /* Unsupported combination */
189
190	case OID_md4WithRSAEncryption:
191		ctx->cert->sig.hash_algo = "md4";
192		ctx->cert->sig.pkey_algo = "rsa";
193		break;
194
195	case OID_sha1WithRSAEncryption:
196		ctx->cert->sig.hash_algo = "sha1";
197		ctx->cert->sig.pkey_algo = "rsa";
198		break;
199
200	case OID_sha256WithRSAEncryption:
201		ctx->cert->sig.hash_algo = "sha256";
202		ctx->cert->sig.pkey_algo = "rsa";
203		break;
204
205	case OID_sha384WithRSAEncryption:
206		ctx->cert->sig.hash_algo = "sha384";
207		ctx->cert->sig.pkey_algo = "rsa";
208		break;
209
210	case OID_sha512WithRSAEncryption:
211		ctx->cert->sig.hash_algo = "sha512";
212		ctx->cert->sig.pkey_algo = "rsa";
213		break;
214
215	case OID_sha224WithRSAEncryption:
216		ctx->cert->sig.hash_algo = "sha224";
217		ctx->cert->sig.pkey_algo = "rsa";
218		break;
219	}
220
221	ctx->algo_oid = ctx->last_oid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222	return 0;
223}
224
225/*
226 * Note the whereabouts and type of the signature.
227 */
228int x509_note_signature(void *context, size_t hdrlen,
229			unsigned char tag,
230			const void *value, size_t vlen)
231{
232	struct x509_parse_context *ctx = context;
233
234	pr_debug("Signature type: %u size %zu\n", ctx->last_oid, vlen);
235
236	if (ctx->last_oid != ctx->algo_oid) {
237		pr_warn("Got cert with pkey (%u) and sig (%u) algorithm OIDs\n",
238			ctx->algo_oid, ctx->last_oid);
 
 
 
 
 
239		return -EINVAL;
240	}
241
 
 
 
 
 
 
 
 
 
 
 
 
242	ctx->cert->raw_sig = value;
243	ctx->cert->raw_sig_size = vlen;
244	return 0;
245}
246
247/*
248 * Note the certificate serial number
249 */
250int x509_note_serial(void *context, size_t hdrlen,
251		     unsigned char tag,
252		     const void *value, size_t vlen)
253{
254	struct x509_parse_context *ctx = context;
255	ctx->cert->raw_serial = value;
256	ctx->cert->raw_serial_size = vlen;
257	return 0;
258}
259
260/*
261 * Note some of the name segments from which we'll fabricate a name.
262 */
263int x509_extract_name_segment(void *context, size_t hdrlen,
264			      unsigned char tag,
265			      const void *value, size_t vlen)
266{
267	struct x509_parse_context *ctx = context;
268
269	switch (ctx->last_oid) {
270	case OID_commonName:
271		ctx->cn_size = vlen;
272		ctx->cn_offset = (unsigned long)value - ctx->data;
273		break;
274	case OID_organizationName:
275		ctx->o_size = vlen;
276		ctx->o_offset = (unsigned long)value - ctx->data;
277		break;
278	case OID_email_address:
279		ctx->email_size = vlen;
280		ctx->email_offset = (unsigned long)value - ctx->data;
281		break;
282	default:
283		break;
284	}
285
286	return 0;
287}
288
289/*
290 * Fabricate and save the issuer and subject names
291 */
292static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen,
293			       unsigned char tag,
294			       char **_name, size_t vlen)
295{
296	const void *name, *data = (const void *)ctx->data;
297	size_t namesize;
298	char *buffer;
299
300	if (*_name)
301		return -EINVAL;
302
303	/* Empty name string if no material */
304	if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) {
305		buffer = kmalloc(1, GFP_KERNEL);
306		if (!buffer)
307			return -ENOMEM;
308		buffer[0] = 0;
309		goto done;
310	}
311
312	if (ctx->cn_size && ctx->o_size) {
313		/* Consider combining O and CN, but use only the CN if it is
314		 * prefixed by the O, or a significant portion thereof.
315		 */
316		namesize = ctx->cn_size;
317		name = data + ctx->cn_offset;
318		if (ctx->cn_size >= ctx->o_size &&
319		    memcmp(data + ctx->cn_offset, data + ctx->o_offset,
320			   ctx->o_size) == 0)
321			goto single_component;
322		if (ctx->cn_size >= 7 &&
323		    ctx->o_size >= 7 &&
324		    memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0)
325			goto single_component;
326
327		buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1,
328				 GFP_KERNEL);
329		if (!buffer)
330			return -ENOMEM;
331
332		memcpy(buffer,
333		       data + ctx->o_offset, ctx->o_size);
334		buffer[ctx->o_size + 0] = ':';
335		buffer[ctx->o_size + 1] = ' ';
336		memcpy(buffer + ctx->o_size + 2,
337		       data + ctx->cn_offset, ctx->cn_size);
338		buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
339		goto done;
340
341	} else if (ctx->cn_size) {
342		namesize = ctx->cn_size;
343		name = data + ctx->cn_offset;
344	} else if (ctx->o_size) {
345		namesize = ctx->o_size;
346		name = data + ctx->o_offset;
347	} else {
348		namesize = ctx->email_size;
349		name = data + ctx->email_offset;
350	}
351
352single_component:
353	buffer = kmalloc(namesize + 1, GFP_KERNEL);
354	if (!buffer)
355		return -ENOMEM;
356	memcpy(buffer, name, namesize);
357	buffer[namesize] = 0;
358
359done:
360	*_name = buffer;
361	ctx->cn_size = 0;
362	ctx->o_size = 0;
363	ctx->email_size = 0;
364	return 0;
365}
366
367int x509_note_issuer(void *context, size_t hdrlen,
368		     unsigned char tag,
369		     const void *value, size_t vlen)
370{
371	struct x509_parse_context *ctx = context;
 
 
372	ctx->cert->raw_issuer = value;
373	ctx->cert->raw_issuer_size = vlen;
 
 
 
 
 
 
 
 
374	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
375}
376
377int x509_note_subject(void *context, size_t hdrlen,
378		      unsigned char tag,
379		      const void *value, size_t vlen)
380{
381	struct x509_parse_context *ctx = context;
382	ctx->cert->raw_subject = value;
383	ctx->cert->raw_subject_size = vlen;
384	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
385}
386
387/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388 * Extract the data for the public key algorithm
389 */
390int x509_extract_key_data(void *context, size_t hdrlen,
391			  unsigned char tag,
392			  const void *value, size_t vlen)
393{
394	struct x509_parse_context *ctx = context;
 
395
396	if (ctx->last_oid != OID_rsaEncryption)
397		return -ENOPKG;
 
 
 
 
 
 
 
 
 
 
 
 
 
398
399	ctx->cert->pub->pkey_algo = "rsa";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400
401	/* Discard the BIT STRING metadata */
 
 
402	ctx->key = value + 1;
403	ctx->key_size = vlen - 1;
404	return 0;
405}
406
407/* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
408#define SEQ_TAG_KEYID (ASN1_CONT << 6)
409
410/*
411 * Process certificate extensions that are used to qualify the certificate.
412 */
413int x509_process_extension(void *context, size_t hdrlen,
414			   unsigned char tag,
415			   const void *value, size_t vlen)
416{
417	struct x509_parse_context *ctx = context;
418	struct asymmetric_key_id *kid;
419	const unsigned char *v = value;
420
421	pr_debug("Extension: %u\n", ctx->last_oid);
422
423	if (ctx->last_oid == OID_subjectKeyIdentifier) {
424		/* Get hold of the key fingerprint */
425		if (ctx->cert->skid || vlen < 3)
426			return -EBADMSG;
427		if (v[0] != ASN1_OTS || v[1] != vlen - 2)
428			return -EBADMSG;
429		v += 2;
430		vlen -= 2;
431
432		ctx->cert->raw_skid_size = vlen;
433		ctx->cert->raw_skid = v;
434		kid = asymmetric_key_generate_id(v, vlen, "", 0);
435		if (IS_ERR(kid))
436			return PTR_ERR(kid);
437		ctx->cert->skid = kid;
438		pr_debug("subjkeyid %*phN\n", kid->len, kid->data);
439		return 0;
440	}
441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442	if (ctx->last_oid == OID_authorityKeyIdentifier) {
443		/* Get hold of the CA key fingerprint */
444		ctx->raw_akid = v;
445		ctx->raw_akid_size = vlen;
446		return 0;
447	}
448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449	return 0;
450}
451
452/**
453 * x509_decode_time - Decode an X.509 time ASN.1 object
454 * @_t: The time to fill in
455 * @hdrlen: The length of the object header
456 * @tag: The object tag
457 * @value: The object value
458 * @vlen: The size of the object value
459 *
460 * Decode an ASN.1 universal time or generalised time field into a struct the
461 * kernel can handle and check it for validity.  The time is decoded thus:
462 *
463 *	[RFC5280 ยง4.1.2.5]
464 *	CAs conforming to this profile MUST always encode certificate validity
465 *	dates through the year 2049 as UTCTime; certificate validity dates in
466 *	2050 or later MUST be encoded as GeneralizedTime.  Conforming
467 *	applications MUST be able to process validity dates that are encoded in
468 *	either UTCTime or GeneralizedTime.
469 */
470int x509_decode_time(time64_t *_t,  size_t hdrlen,
471		     unsigned char tag,
472		     const unsigned char *value, size_t vlen)
473{
474	static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30,
475						       31, 31, 30, 31, 30, 31 };
476	const unsigned char *p = value;
477	unsigned year, mon, day, hour, min, sec, mon_len;
478
479#define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; })
480#define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; })
481
482	if (tag == ASN1_UNITIM) {
483		/* UTCTime: YYMMDDHHMMSSZ */
484		if (vlen != 13)
485			goto unsupported_time;
486		year = DD2bin(p);
487		if (year >= 50)
488			year += 1900;
489		else
490			year += 2000;
491	} else if (tag == ASN1_GENTIM) {
492		/* GenTime: YYYYMMDDHHMMSSZ */
493		if (vlen != 15)
494			goto unsupported_time;
495		year = DD2bin(p) * 100 + DD2bin(p);
496		if (year >= 1950 && year <= 2049)
497			goto invalid_time;
498	} else {
499		goto unsupported_time;
500	}
501
502	mon  = DD2bin(p);
503	day = DD2bin(p);
504	hour = DD2bin(p);
505	min  = DD2bin(p);
506	sec  = DD2bin(p);
507
508	if (*p != 'Z')
509		goto unsupported_time;
510
511	if (year < 1970 ||
512	    mon < 1 || mon > 12)
513		goto invalid_time;
514
515	mon_len = month_lengths[mon - 1];
516	if (mon == 2) {
517		if (year % 4 == 0) {
518			mon_len = 29;
519			if (year % 100 == 0) {
520				mon_len = 28;
521				if (year % 400 == 0)
522					mon_len = 29;
523			}
524		}
525	}
526
527	if (day < 1 || day > mon_len ||
528	    hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
529	    min > 59 ||
530	    sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
531		goto invalid_time;
532
533	*_t = mktime64(year, mon, day, hour, min, sec);
534	return 0;
535
536unsupported_time:
537	pr_debug("Got unsupported time [tag %02x]: '%*phN'\n",
538		 tag, (int)vlen, value);
539	return -EBADMSG;
540invalid_time:
541	pr_debug("Got invalid time [tag %02x]: '%*phN'\n",
542		 tag, (int)vlen, value);
543	return -EBADMSG;
544}
545EXPORT_SYMBOL_GPL(x509_decode_time);
546
547int x509_note_not_before(void *context, size_t hdrlen,
548			 unsigned char tag,
549			 const void *value, size_t vlen)
550{
551	struct x509_parse_context *ctx = context;
552	return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen);
553}
554
555int x509_note_not_after(void *context, size_t hdrlen,
556			unsigned char tag,
557			const void *value, size_t vlen)
558{
559	struct x509_parse_context *ctx = context;
560	return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen);
561}
562
563/*
564 * Note a key identifier-based AuthorityKeyIdentifier
565 */
566int x509_akid_note_kid(void *context, size_t hdrlen,
567		       unsigned char tag,
568		       const void *value, size_t vlen)
569{
570	struct x509_parse_context *ctx = context;
571	struct asymmetric_key_id *kid;
572
573	pr_debug("AKID: keyid: %*phN\n", (int)vlen, value);
574
575	if (ctx->cert->akid_skid)
576		return 0;
577
578	kid = asymmetric_key_generate_id(value, vlen, "", 0);
579	if (IS_ERR(kid))
580		return PTR_ERR(kid);
581	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
582	ctx->cert->akid_skid = kid;
583	return 0;
584}
585
586/*
587 * Note a directoryName in an AuthorityKeyIdentifier
588 */
589int x509_akid_note_name(void *context, size_t hdrlen,
590			unsigned char tag,
591			const void *value, size_t vlen)
592{
593	struct x509_parse_context *ctx = context;
594
595	pr_debug("AKID: name: %*phN\n", (int)vlen, value);
596
597	ctx->akid_raw_issuer = value;
598	ctx->akid_raw_issuer_size = vlen;
599	return 0;
600}
601
602/*
603 * Note a serial number in an AuthorityKeyIdentifier
604 */
605int x509_akid_note_serial(void *context, size_t hdrlen,
606			  unsigned char tag,
607			  const void *value, size_t vlen)
608{
609	struct x509_parse_context *ctx = context;
610	struct asymmetric_key_id *kid;
611
612	pr_debug("AKID: serial: %*phN\n", (int)vlen, value);
613
614	if (!ctx->akid_raw_issuer || ctx->cert->akid_id)
615		return 0;
616
617	kid = asymmetric_key_generate_id(value,
618					 vlen,
619					 ctx->akid_raw_issuer,
620					 ctx->akid_raw_issuer_size);
621	if (IS_ERR(kid))
622		return PTR_ERR(kid);
623
624	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
625	ctx->cert->akid_id = kid;
626	return 0;
627}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* X.509 certificate parser
  3 *
  4 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7
  8#define pr_fmt(fmt) "X.509: "fmt
  9#include <linux/kernel.h>
 10#include <linux/export.h>
 11#include <linux/slab.h>
 12#include <linux/err.h>
 13#include <linux/oid_registry.h>
 14#include <crypto/public_key.h>
 15#include "x509_parser.h"
 16#include "x509.asn1.h"
 17#include "x509_akid.asn1.h"
 18
 19struct x509_parse_context {
 20	struct x509_certificate	*cert;		/* Certificate being constructed */
 21	unsigned long	data;			/* Start of data */
 
 22	const void	*key;			/* Key data */
 23	size_t		key_size;		/* Size of key data */
 24	const void	*params;		/* Key parameters */
 25	size_t		params_size;		/* Size of key parameters */
 26	enum OID	key_algo;		/* Algorithm used by the cert's key */
 27	enum OID	last_oid;		/* Last OID encountered */
 28	enum OID	sig_algo;		/* Algorithm used to sign the cert */
 
 29	u8		o_size;			/* Size of organizationName (O) */
 30	u8		cn_size;		/* Size of commonName (CN) */
 31	u8		email_size;		/* Size of emailAddress */
 32	u16		o_offset;		/* Offset of organizationName (O) */
 33	u16		cn_offset;		/* Offset of commonName (CN) */
 34	u16		email_offset;		/* Offset of emailAddress */
 35	unsigned	raw_akid_size;
 36	const void	*raw_akid;		/* Raw authorityKeyId in ASN.1 */
 37	const void	*akid_raw_issuer;	/* Raw directoryName in authorityKeyId */
 38	unsigned	akid_raw_issuer_size;
 39};
 40
 41/*
 42 * Free an X.509 certificate
 43 */
 44void x509_free_certificate(struct x509_certificate *cert)
 45{
 46	if (cert) {
 47		public_key_free(cert->pub);
 48		public_key_signature_free(cert->sig);
 49		kfree(cert->issuer);
 50		kfree(cert->subject);
 51		kfree(cert->id);
 52		kfree(cert->skid);
 
 
 
 
 53		kfree(cert);
 54	}
 55}
 56EXPORT_SYMBOL_GPL(x509_free_certificate);
 57
 58/*
 59 * Parse an X.509 certificate
 60 */
 61struct x509_certificate *x509_cert_parse(const void *data, size_t datalen)
 62{
 63	struct x509_certificate *cert;
 64	struct x509_parse_context *ctx;
 65	struct asymmetric_key_id *kid;
 66	long ret;
 67
 68	ret = -ENOMEM;
 69	cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
 70	if (!cert)
 71		goto error_no_cert;
 72	cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
 73	if (!cert->pub)
 74		goto error_no_ctx;
 75	cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL);
 76	if (!cert->sig)
 77		goto error_no_ctx;
 78	ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
 79	if (!ctx)
 80		goto error_no_ctx;
 81
 82	ctx->cert = cert;
 83	ctx->data = (unsigned long)data;
 84
 85	/* Attempt to decode the certificate */
 86	ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
 87	if (ret < 0)
 88		goto error_decode;
 89
 90	/* Decode the AuthorityKeyIdentifier */
 91	if (ctx->raw_akid) {
 92		pr_devel("AKID: %u %*phN\n",
 93			 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid);
 94		ret = asn1_ber_decoder(&x509_akid_decoder, ctx,
 95				       ctx->raw_akid, ctx->raw_akid_size);
 96		if (ret < 0) {
 97			pr_warn("Couldn't decode AuthKeyIdentifier\n");
 98			goto error_decode;
 99		}
100	}
101
102	ret = -ENOMEM;
103	cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
104	if (!cert->pub->key)
105		goto error_decode;
106
107	cert->pub->keylen = ctx->key_size;
108
109	cert->pub->params = kmemdup(ctx->params, ctx->params_size, GFP_KERNEL);
110	if (!cert->pub->params)
111		goto error_decode;
112
113	cert->pub->paramlen = ctx->params_size;
114	cert->pub->algo = ctx->key_algo;
115
116	/* Grab the signature bits */
117	ret = x509_get_sig_params(cert);
118	if (ret < 0)
119		goto error_decode;
120
121	/* Generate cert issuer + serial number key ID */
122	kid = asymmetric_key_generate_id(cert->raw_serial,
123					 cert->raw_serial_size,
124					 cert->raw_issuer,
125					 cert->raw_issuer_size);
126	if (IS_ERR(kid)) {
127		ret = PTR_ERR(kid);
128		goto error_decode;
129	}
130	cert->id = kid;
131
132	/* Detect self-signed certificates */
133	ret = x509_check_for_self_signed(cert);
134	if (ret < 0)
135		goto error_decode;
136
137	kfree(ctx);
138	return cert;
139
140error_decode:
 
141	kfree(ctx);
142error_no_ctx:
143	x509_free_certificate(cert);
144error_no_cert:
145	return ERR_PTR(ret);
146}
147EXPORT_SYMBOL_GPL(x509_cert_parse);
148
149/*
150 * Note an OID when we find one for later processing when we know how
151 * to interpret it.
152 */
153int x509_note_OID(void *context, size_t hdrlen,
154	     unsigned char tag,
155	     const void *value, size_t vlen)
156{
157	struct x509_parse_context *ctx = context;
158
159	ctx->last_oid = look_up_OID(value, vlen);
160	if (ctx->last_oid == OID__NR) {
161		char buffer[50];
162		sprint_oid(value, vlen, buffer, sizeof(buffer));
163		pr_debug("Unknown OID: [%lu] %s\n",
164			 (unsigned long)value - ctx->data, buffer);
165	}
166	return 0;
167}
168
169/*
170 * Save the position of the TBS data so that we can check the signature over it
171 * later.
172 */
173int x509_note_tbs_certificate(void *context, size_t hdrlen,
174			      unsigned char tag,
175			      const void *value, size_t vlen)
176{
177	struct x509_parse_context *ctx = context;
178
179	pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n",
180		 hdrlen, tag, (unsigned long)value - ctx->data, vlen);
181
182	ctx->cert->tbs = value - hdrlen;
183	ctx->cert->tbs_size = vlen + hdrlen;
184	return 0;
185}
186
187/*
188 * Record the algorithm that was used to sign this certificate.
189 */
190int x509_note_sig_algo(void *context, size_t hdrlen, unsigned char tag,
191		       const void *value, size_t vlen)
 
192{
193	struct x509_parse_context *ctx = context;
194
195	pr_debug("PubKey Algo: %u\n", ctx->last_oid);
196
197	switch (ctx->last_oid) {
 
 
198	default:
199		return -ENOPKG; /* Unsupported combination */
200
 
 
 
 
 
 
 
 
 
 
201	case OID_sha256WithRSAEncryption:
202		ctx->cert->sig->hash_algo = "sha256";
203		goto rsa_pkcs1;
 
204
205	case OID_sha384WithRSAEncryption:
206		ctx->cert->sig->hash_algo = "sha384";
207		goto rsa_pkcs1;
 
208
209	case OID_sha512WithRSAEncryption:
210		ctx->cert->sig->hash_algo = "sha512";
211		goto rsa_pkcs1;
 
212
213	case OID_sha224WithRSAEncryption:
214		ctx->cert->sig->hash_algo = "sha224";
215		goto rsa_pkcs1;
 
 
216
217	case OID_id_rsassa_pkcs1_v1_5_with_sha3_256:
218		ctx->cert->sig->hash_algo = "sha3-256";
219		goto rsa_pkcs1;
220
221	case OID_id_rsassa_pkcs1_v1_5_with_sha3_384:
222		ctx->cert->sig->hash_algo = "sha3-384";
223		goto rsa_pkcs1;
224
225	case OID_id_rsassa_pkcs1_v1_5_with_sha3_512:
226		ctx->cert->sig->hash_algo = "sha3-512";
227		goto rsa_pkcs1;
228
229	case OID_id_ecdsa_with_sha224:
230		ctx->cert->sig->hash_algo = "sha224";
231		goto ecdsa;
232
233	case OID_id_ecdsa_with_sha256:
234		ctx->cert->sig->hash_algo = "sha256";
235		goto ecdsa;
236
237	case OID_id_ecdsa_with_sha384:
238		ctx->cert->sig->hash_algo = "sha384";
239		goto ecdsa;
240
241	case OID_id_ecdsa_with_sha512:
242		ctx->cert->sig->hash_algo = "sha512";
243		goto ecdsa;
244
245	case OID_id_ecdsa_with_sha3_256:
246		ctx->cert->sig->hash_algo = "sha3-256";
247		goto ecdsa;
248
249	case OID_id_ecdsa_with_sha3_384:
250		ctx->cert->sig->hash_algo = "sha3-384";
251		goto ecdsa;
252
253	case OID_id_ecdsa_with_sha3_512:
254		ctx->cert->sig->hash_algo = "sha3-512";
255		goto ecdsa;
256
257	case OID_gost2012Signature256:
258		ctx->cert->sig->hash_algo = "streebog256";
259		goto ecrdsa;
260
261	case OID_gost2012Signature512:
262		ctx->cert->sig->hash_algo = "streebog512";
263		goto ecrdsa;
264
265	case OID_SM2_with_SM3:
266		ctx->cert->sig->hash_algo = "sm3";
267		goto sm2;
268	}
269
270rsa_pkcs1:
271	ctx->cert->sig->pkey_algo = "rsa";
272	ctx->cert->sig->encoding = "pkcs1";
273	ctx->sig_algo = ctx->last_oid;
274	return 0;
275ecrdsa:
276	ctx->cert->sig->pkey_algo = "ecrdsa";
277	ctx->cert->sig->encoding = "raw";
278	ctx->sig_algo = ctx->last_oid;
279	return 0;
280sm2:
281	ctx->cert->sig->pkey_algo = "sm2";
282	ctx->cert->sig->encoding = "raw";
283	ctx->sig_algo = ctx->last_oid;
284	return 0;
285ecdsa:
286	ctx->cert->sig->pkey_algo = "ecdsa";
287	ctx->cert->sig->encoding = "x962";
288	ctx->sig_algo = ctx->last_oid;
289	return 0;
290}
291
292/*
293 * Note the whereabouts and type of the signature.
294 */
295int x509_note_signature(void *context, size_t hdrlen,
296			unsigned char tag,
297			const void *value, size_t vlen)
298{
299	struct x509_parse_context *ctx = context;
300
301	pr_debug("Signature: alg=%u, size=%zu\n", ctx->last_oid, vlen);
302
303	/*
304	 * In X.509 certificates, the signature's algorithm is stored in two
305	 * places: inside the TBSCertificate (the data that is signed), and
306	 * alongside the signature.  These *must* match.
307	 */
308	if (ctx->last_oid != ctx->sig_algo) {
309		pr_warn("signatureAlgorithm (%u) differs from tbsCertificate.signature (%u)\n",
310			ctx->last_oid, ctx->sig_algo);
311		return -EINVAL;
312	}
313
314	if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 ||
315	    strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0 ||
316	    strcmp(ctx->cert->sig->pkey_algo, "sm2") == 0 ||
317	    strcmp(ctx->cert->sig->pkey_algo, "ecdsa") == 0) {
318		/* Discard the BIT STRING metadata */
319		if (vlen < 1 || *(const u8 *)value != 0)
320			return -EBADMSG;
321
322		value++;
323		vlen--;
324	}
325
326	ctx->cert->raw_sig = value;
327	ctx->cert->raw_sig_size = vlen;
328	return 0;
329}
330
331/*
332 * Note the certificate serial number
333 */
334int x509_note_serial(void *context, size_t hdrlen,
335		     unsigned char tag,
336		     const void *value, size_t vlen)
337{
338	struct x509_parse_context *ctx = context;
339	ctx->cert->raw_serial = value;
340	ctx->cert->raw_serial_size = vlen;
341	return 0;
342}
343
344/*
345 * Note some of the name segments from which we'll fabricate a name.
346 */
347int x509_extract_name_segment(void *context, size_t hdrlen,
348			      unsigned char tag,
349			      const void *value, size_t vlen)
350{
351	struct x509_parse_context *ctx = context;
352
353	switch (ctx->last_oid) {
354	case OID_commonName:
355		ctx->cn_size = vlen;
356		ctx->cn_offset = (unsigned long)value - ctx->data;
357		break;
358	case OID_organizationName:
359		ctx->o_size = vlen;
360		ctx->o_offset = (unsigned long)value - ctx->data;
361		break;
362	case OID_email_address:
363		ctx->email_size = vlen;
364		ctx->email_offset = (unsigned long)value - ctx->data;
365		break;
366	default:
367		break;
368	}
369
370	return 0;
371}
372
373/*
374 * Fabricate and save the issuer and subject names
375 */
376static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen,
377			       unsigned char tag,
378			       char **_name, size_t vlen)
379{
380	const void *name, *data = (const void *)ctx->data;
381	size_t namesize;
382	char *buffer;
383
384	if (*_name)
385		return -EINVAL;
386
387	/* Empty name string if no material */
388	if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) {
389		buffer = kmalloc(1, GFP_KERNEL);
390		if (!buffer)
391			return -ENOMEM;
392		buffer[0] = 0;
393		goto done;
394	}
395
396	if (ctx->cn_size && ctx->o_size) {
397		/* Consider combining O and CN, but use only the CN if it is
398		 * prefixed by the O, or a significant portion thereof.
399		 */
400		namesize = ctx->cn_size;
401		name = data + ctx->cn_offset;
402		if (ctx->cn_size >= ctx->o_size &&
403		    memcmp(data + ctx->cn_offset, data + ctx->o_offset,
404			   ctx->o_size) == 0)
405			goto single_component;
406		if (ctx->cn_size >= 7 &&
407		    ctx->o_size >= 7 &&
408		    memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0)
409			goto single_component;
410
411		buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1,
412				 GFP_KERNEL);
413		if (!buffer)
414			return -ENOMEM;
415
416		memcpy(buffer,
417		       data + ctx->o_offset, ctx->o_size);
418		buffer[ctx->o_size + 0] = ':';
419		buffer[ctx->o_size + 1] = ' ';
420		memcpy(buffer + ctx->o_size + 2,
421		       data + ctx->cn_offset, ctx->cn_size);
422		buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
423		goto done;
424
425	} else if (ctx->cn_size) {
426		namesize = ctx->cn_size;
427		name = data + ctx->cn_offset;
428	} else if (ctx->o_size) {
429		namesize = ctx->o_size;
430		name = data + ctx->o_offset;
431	} else {
432		namesize = ctx->email_size;
433		name = data + ctx->email_offset;
434	}
435
436single_component:
437	buffer = kmalloc(namesize + 1, GFP_KERNEL);
438	if (!buffer)
439		return -ENOMEM;
440	memcpy(buffer, name, namesize);
441	buffer[namesize] = 0;
442
443done:
444	*_name = buffer;
445	ctx->cn_size = 0;
446	ctx->o_size = 0;
447	ctx->email_size = 0;
448	return 0;
449}
450
451int x509_note_issuer(void *context, size_t hdrlen,
452		     unsigned char tag,
453		     const void *value, size_t vlen)
454{
455	struct x509_parse_context *ctx = context;
456	struct asymmetric_key_id *kid;
457
458	ctx->cert->raw_issuer = value;
459	ctx->cert->raw_issuer_size = vlen;
460
461	if (!ctx->cert->sig->auth_ids[2]) {
462		kid = asymmetric_key_generate_id(value, vlen, "", 0);
463		if (IS_ERR(kid))
464			return PTR_ERR(kid);
465		ctx->cert->sig->auth_ids[2] = kid;
466	}
467
468	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
469}
470
471int x509_note_subject(void *context, size_t hdrlen,
472		      unsigned char tag,
473		      const void *value, size_t vlen)
474{
475	struct x509_parse_context *ctx = context;
476	ctx->cert->raw_subject = value;
477	ctx->cert->raw_subject_size = vlen;
478	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
479}
480
481/*
482 * Extract the parameters for the public key
483 */
484int x509_note_params(void *context, size_t hdrlen,
485		     unsigned char tag,
486		     const void *value, size_t vlen)
487{
488	struct x509_parse_context *ctx = context;
489
490	/*
491	 * AlgorithmIdentifier is used three times in the x509, we should skip
492	 * first and ignore third, using second one which is after subject and
493	 * before subjectPublicKey.
494	 */
495	if (!ctx->cert->raw_subject || ctx->key)
496		return 0;
497	ctx->params = value - hdrlen;
498	ctx->params_size = vlen + hdrlen;
499	return 0;
500}
501
502/*
503 * Extract the data for the public key algorithm
504 */
505int x509_extract_key_data(void *context, size_t hdrlen,
506			  unsigned char tag,
507			  const void *value, size_t vlen)
508{
509	struct x509_parse_context *ctx = context;
510	enum OID oid;
511
512	ctx->key_algo = ctx->last_oid;
513	switch (ctx->last_oid) {
514	case OID_rsaEncryption:
515		ctx->cert->pub->pkey_algo = "rsa";
516		break;
517	case OID_gost2012PKey256:
518	case OID_gost2012PKey512:
519		ctx->cert->pub->pkey_algo = "ecrdsa";
520		break;
521	case OID_sm2:
522		ctx->cert->pub->pkey_algo = "sm2";
523		break;
524	case OID_id_ecPublicKey:
525		if (parse_OID(ctx->params, ctx->params_size, &oid) != 0)
526			return -EBADMSG;
527
528		switch (oid) {
529		case OID_sm2:
530			ctx->cert->pub->pkey_algo = "sm2";
531			break;
532		case OID_id_prime192v1:
533			ctx->cert->pub->pkey_algo = "ecdsa-nist-p192";
534			break;
535		case OID_id_prime256v1:
536			ctx->cert->pub->pkey_algo = "ecdsa-nist-p256";
537			break;
538		case OID_id_ansip384r1:
539			ctx->cert->pub->pkey_algo = "ecdsa-nist-p384";
540			break;
541		default:
542			return -ENOPKG;
543		}
544		break;
545	default:
546		return -ENOPKG;
547	}
548
549	/* Discard the BIT STRING metadata */
550	if (vlen < 1 || *(const u8 *)value != 0)
551		return -EBADMSG;
552	ctx->key = value + 1;
553	ctx->key_size = vlen - 1;
554	return 0;
555}
556
557/* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
558#define SEQ_TAG_KEYID (ASN1_CONT << 6)
559
560/*
561 * Process certificate extensions that are used to qualify the certificate.
562 */
563int x509_process_extension(void *context, size_t hdrlen,
564			   unsigned char tag,
565			   const void *value, size_t vlen)
566{
567	struct x509_parse_context *ctx = context;
568	struct asymmetric_key_id *kid;
569	const unsigned char *v = value;
570
571	pr_debug("Extension: %u\n", ctx->last_oid);
572
573	if (ctx->last_oid == OID_subjectKeyIdentifier) {
574		/* Get hold of the key fingerprint */
575		if (ctx->cert->skid || vlen < 3)
576			return -EBADMSG;
577		if (v[0] != ASN1_OTS || v[1] != vlen - 2)
578			return -EBADMSG;
579		v += 2;
580		vlen -= 2;
581
582		ctx->cert->raw_skid_size = vlen;
583		ctx->cert->raw_skid = v;
584		kid = asymmetric_key_generate_id(v, vlen, "", 0);
585		if (IS_ERR(kid))
586			return PTR_ERR(kid);
587		ctx->cert->skid = kid;
588		pr_debug("subjkeyid %*phN\n", kid->len, kid->data);
589		return 0;
590	}
591
592	if (ctx->last_oid == OID_keyUsage) {
593		/*
594		 * Get hold of the keyUsage bit string
595		 * v[1] is the encoding size
596		 *       (Expect either 0x02 or 0x03, making it 1 or 2 bytes)
597		 * v[2] is the number of unused bits in the bit string
598		 *       (If >= 3 keyCertSign is missing when v[1] = 0x02)
599		 * v[3] and possibly v[4] contain the bit string
600		 *
601		 * From RFC 5280 4.2.1.3:
602		 *   0x04 is where keyCertSign lands in this bit string
603		 *   0x80 is where digitalSignature lands in this bit string
604		 */
605		if (v[0] != ASN1_BTS)
606			return -EBADMSG;
607		if (vlen < 4)
608			return -EBADMSG;
609		if (v[2] >= 8)
610			return -EBADMSG;
611		if (v[3] & 0x80)
612			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_DIGITALSIG;
613		if (v[1] == 0x02 && v[2] <= 2 && (v[3] & 0x04))
614			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN;
615		else if (vlen > 4 && v[1] == 0x03 && (v[3] & 0x04))
616			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN;
617		return 0;
618	}
619
620	if (ctx->last_oid == OID_authorityKeyIdentifier) {
621		/* Get hold of the CA key fingerprint */
622		ctx->raw_akid = v;
623		ctx->raw_akid_size = vlen;
624		return 0;
625	}
626
627	if (ctx->last_oid == OID_basicConstraints) {
628		/*
629		 * Get hold of the basicConstraints
630		 * v[1] is the encoding size
631		 *	(Expect 0x2 or greater, making it 1 or more bytes)
632		 * v[2] is the encoding type
633		 *	(Expect an ASN1_BOOL for the CA)
634		 * v[3] is the contents of the ASN1_BOOL
635		 *      (Expect 1 if the CA is TRUE)
636		 * vlen should match the entire extension size
637		 */
638		if (v[0] != (ASN1_CONS_BIT | ASN1_SEQ))
639			return -EBADMSG;
640		if (vlen < 2)
641			return -EBADMSG;
642		if (v[1] != vlen - 2)
643			return -EBADMSG;
644		if (vlen >= 4 && v[1] != 0 && v[2] == ASN1_BOOL && v[3] == 1)
645			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_CA;
646		return 0;
647	}
648
649	return 0;
650}
651
652/**
653 * x509_decode_time - Decode an X.509 time ASN.1 object
654 * @_t: The time to fill in
655 * @hdrlen: The length of the object header
656 * @tag: The object tag
657 * @value: The object value
658 * @vlen: The size of the object value
659 *
660 * Decode an ASN.1 universal time or generalised time field into a struct the
661 * kernel can handle and check it for validity.  The time is decoded thus:
662 *
663 *	[RFC5280 ยง4.1.2.5]
664 *	CAs conforming to this profile MUST always encode certificate validity
665 *	dates through the year 2049 as UTCTime; certificate validity dates in
666 *	2050 or later MUST be encoded as GeneralizedTime.  Conforming
667 *	applications MUST be able to process validity dates that are encoded in
668 *	either UTCTime or GeneralizedTime.
669 */
670int x509_decode_time(time64_t *_t,  size_t hdrlen,
671		     unsigned char tag,
672		     const unsigned char *value, size_t vlen)
673{
674	static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30,
675						       31, 31, 30, 31, 30, 31 };
676	const unsigned char *p = value;
677	unsigned year, mon, day, hour, min, sec, mon_len;
678
679#define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; })
680#define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; })
681
682	if (tag == ASN1_UNITIM) {
683		/* UTCTime: YYMMDDHHMMSSZ */
684		if (vlen != 13)
685			goto unsupported_time;
686		year = DD2bin(p);
687		if (year >= 50)
688			year += 1900;
689		else
690			year += 2000;
691	} else if (tag == ASN1_GENTIM) {
692		/* GenTime: YYYYMMDDHHMMSSZ */
693		if (vlen != 15)
694			goto unsupported_time;
695		year = DD2bin(p) * 100 + DD2bin(p);
696		if (year >= 1950 && year <= 2049)
697			goto invalid_time;
698	} else {
699		goto unsupported_time;
700	}
701
702	mon  = DD2bin(p);
703	day = DD2bin(p);
704	hour = DD2bin(p);
705	min  = DD2bin(p);
706	sec  = DD2bin(p);
707
708	if (*p != 'Z')
709		goto unsupported_time;
710
711	if (year < 1970 ||
712	    mon < 1 || mon > 12)
713		goto invalid_time;
714
715	mon_len = month_lengths[mon - 1];
716	if (mon == 2) {
717		if (year % 4 == 0) {
718			mon_len = 29;
719			if (year % 100 == 0) {
720				mon_len = 28;
721				if (year % 400 == 0)
722					mon_len = 29;
723			}
724		}
725	}
726
727	if (day < 1 || day > mon_len ||
728	    hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
729	    min > 59 ||
730	    sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
731		goto invalid_time;
732
733	*_t = mktime64(year, mon, day, hour, min, sec);
734	return 0;
735
736unsupported_time:
737	pr_debug("Got unsupported time [tag %02x]: '%*phN'\n",
738		 tag, (int)vlen, value);
739	return -EBADMSG;
740invalid_time:
741	pr_debug("Got invalid time [tag %02x]: '%*phN'\n",
742		 tag, (int)vlen, value);
743	return -EBADMSG;
744}
745EXPORT_SYMBOL_GPL(x509_decode_time);
746
747int x509_note_not_before(void *context, size_t hdrlen,
748			 unsigned char tag,
749			 const void *value, size_t vlen)
750{
751	struct x509_parse_context *ctx = context;
752	return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen);
753}
754
755int x509_note_not_after(void *context, size_t hdrlen,
756			unsigned char tag,
757			const void *value, size_t vlen)
758{
759	struct x509_parse_context *ctx = context;
760	return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen);
761}
762
763/*
764 * Note a key identifier-based AuthorityKeyIdentifier
765 */
766int x509_akid_note_kid(void *context, size_t hdrlen,
767		       unsigned char tag,
768		       const void *value, size_t vlen)
769{
770	struct x509_parse_context *ctx = context;
771	struct asymmetric_key_id *kid;
772
773	pr_debug("AKID: keyid: %*phN\n", (int)vlen, value);
774
775	if (ctx->cert->sig->auth_ids[1])
776		return 0;
777
778	kid = asymmetric_key_generate_id(value, vlen, "", 0);
779	if (IS_ERR(kid))
780		return PTR_ERR(kid);
781	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
782	ctx->cert->sig->auth_ids[1] = kid;
783	return 0;
784}
785
786/*
787 * Note a directoryName in an AuthorityKeyIdentifier
788 */
789int x509_akid_note_name(void *context, size_t hdrlen,
790			unsigned char tag,
791			const void *value, size_t vlen)
792{
793	struct x509_parse_context *ctx = context;
794
795	pr_debug("AKID: name: %*phN\n", (int)vlen, value);
796
797	ctx->akid_raw_issuer = value;
798	ctx->akid_raw_issuer_size = vlen;
799	return 0;
800}
801
802/*
803 * Note a serial number in an AuthorityKeyIdentifier
804 */
805int x509_akid_note_serial(void *context, size_t hdrlen,
806			  unsigned char tag,
807			  const void *value, size_t vlen)
808{
809	struct x509_parse_context *ctx = context;
810	struct asymmetric_key_id *kid;
811
812	pr_debug("AKID: serial: %*phN\n", (int)vlen, value);
813
814	if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0])
815		return 0;
816
817	kid = asymmetric_key_generate_id(value,
818					 vlen,
819					 ctx->akid_raw_issuer,
820					 ctx->akid_raw_issuer_size);
821	if (IS_ERR(kid))
822		return PTR_ERR(kid);
823
824	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
825	ctx->cert->sig->auth_ids[0] = kid;
826	return 0;
827}