Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
   4 *  for the blk-mq scheduling framework
   5 *
   6 *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/fs.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/module.h>
  13#include <linux/slab.h>
  14#include <linux/init.h>
  15#include <linux/compiler.h>
  16#include <linux/rbtree.h>
  17#include <linux/sbitmap.h>
  18
  19#include <trace/events/block.h>
  20
  21#include "elevator.h"
  22#include "blk.h"
  23#include "blk-mq.h"
  24#include "blk-mq-debugfs.h"
  25#include "blk-mq-sched.h"
  26
  27/*
  28 * See Documentation/block/deadline-iosched.rst
  29 */
  30static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
  31static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
  32/*
  33 * Time after which to dispatch lower priority requests even if higher
  34 * priority requests are pending.
  35 */
  36static const int prio_aging_expire = 10 * HZ;
  37static const int writes_starved = 2;    /* max times reads can starve a write */
  38static const int fifo_batch = 16;       /* # of sequential requests treated as one
  39				     by the above parameters. For throughput. */
  40
  41enum dd_data_dir {
  42	DD_READ		= READ,
  43	DD_WRITE	= WRITE,
  44};
  45
  46enum { DD_DIR_COUNT = 2 };
  47
  48enum dd_prio {
  49	DD_RT_PRIO	= 0,
  50	DD_BE_PRIO	= 1,
  51	DD_IDLE_PRIO	= 2,
  52	DD_PRIO_MAX	= 2,
  53};
  54
  55enum { DD_PRIO_COUNT = 3 };
  56
  57/*
  58 * I/O statistics per I/O priority. It is fine if these counters overflow.
  59 * What matters is that these counters are at least as wide as
  60 * log2(max_outstanding_requests).
  61 */
  62struct io_stats_per_prio {
  63	uint32_t inserted;
  64	uint32_t merged;
  65	uint32_t dispatched;
  66	atomic_t completed;
  67};
  68
  69/*
  70 * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
  71 * present on both sort_list[] and fifo_list[].
  72 */
  73struct dd_per_prio {
  74	struct list_head dispatch;
  75	struct rb_root sort_list[DD_DIR_COUNT];
  76	struct list_head fifo_list[DD_DIR_COUNT];
  77	/* Position of the most recently dispatched request. */
  78	sector_t latest_pos[DD_DIR_COUNT];
  79	struct io_stats_per_prio stats;
  80};
  81
  82struct deadline_data {
  83	/*
  84	 * run time data
  85	 */
  86
  87	struct dd_per_prio per_prio[DD_PRIO_COUNT];
  88
  89	/* Data direction of latest dispatched request. */
  90	enum dd_data_dir last_dir;
  91	unsigned int batching;		/* number of sequential requests made */
  92	unsigned int starved;		/* times reads have starved writes */
  93
  94	/*
  95	 * settings that change how the i/o scheduler behaves
  96	 */
  97	int fifo_expire[DD_DIR_COUNT];
  98	int fifo_batch;
  99	int writes_starved;
 100	int front_merges;
 101	u32 async_depth;
 102	int prio_aging_expire;
 103
 104	spinlock_t lock;
 105	spinlock_t zone_lock;
 106};
 107
 108/* Maps an I/O priority class to a deadline scheduler priority. */
 109static const enum dd_prio ioprio_class_to_prio[] = {
 110	[IOPRIO_CLASS_NONE]	= DD_BE_PRIO,
 111	[IOPRIO_CLASS_RT]	= DD_RT_PRIO,
 112	[IOPRIO_CLASS_BE]	= DD_BE_PRIO,
 113	[IOPRIO_CLASS_IDLE]	= DD_IDLE_PRIO,
 114};
 115
 116static inline struct rb_root *
 117deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
 118{
 119	return &per_prio->sort_list[rq_data_dir(rq)];
 120}
 121
 122/*
 123 * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
 124 * request.
 125 */
 126static u8 dd_rq_ioclass(struct request *rq)
 127{
 128	return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
 129}
 130
 131/*
 132 * get the request before `rq' in sector-sorted order
 133 */
 134static inline struct request *
 135deadline_earlier_request(struct request *rq)
 136{
 137	struct rb_node *node = rb_prev(&rq->rb_node);
 138
 139	if (node)
 140		return rb_entry_rq(node);
 141
 142	return NULL;
 143}
 144
 145/*
 146 * get the request after `rq' in sector-sorted order
 147 */
 148static inline struct request *
 149deadline_latter_request(struct request *rq)
 150{
 151	struct rb_node *node = rb_next(&rq->rb_node);
 152
 153	if (node)
 154		return rb_entry_rq(node);
 155
 156	return NULL;
 157}
 158
 159/*
 160 * Return the first request for which blk_rq_pos() >= @pos. For zoned devices,
 161 * return the first request after the start of the zone containing @pos.
 162 */
 163static inline struct request *deadline_from_pos(struct dd_per_prio *per_prio,
 164				enum dd_data_dir data_dir, sector_t pos)
 165{
 166	struct rb_node *node = per_prio->sort_list[data_dir].rb_node;
 167	struct request *rq, *res = NULL;
 168
 169	if (!node)
 170		return NULL;
 171
 172	rq = rb_entry_rq(node);
 173	/*
 174	 * A zoned write may have been requeued with a starting position that
 175	 * is below that of the most recently dispatched request. Hence, for
 176	 * zoned writes, start searching from the start of a zone.
 177	 */
 178	if (blk_rq_is_seq_zoned_write(rq))
 179		pos = round_down(pos, rq->q->limits.chunk_sectors);
 180
 181	while (node) {
 182		rq = rb_entry_rq(node);
 183		if (blk_rq_pos(rq) >= pos) {
 184			res = rq;
 185			node = node->rb_left;
 186		} else {
 187			node = node->rb_right;
 188		}
 189	}
 190	return res;
 191}
 192
 193static void
 194deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
 195{
 196	struct rb_root *root = deadline_rb_root(per_prio, rq);
 197
 198	elv_rb_add(root, rq);
 199}
 200
 201static inline void
 202deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
 203{
 204	elv_rb_del(deadline_rb_root(per_prio, rq), rq);
 205}
 206
 207/*
 208 * remove rq from rbtree and fifo.
 209 */
 210static void deadline_remove_request(struct request_queue *q,
 211				    struct dd_per_prio *per_prio,
 212				    struct request *rq)
 213{
 214	list_del_init(&rq->queuelist);
 215
 216	/*
 217	 * We might not be on the rbtree, if we are doing an insert merge
 218	 */
 219	if (!RB_EMPTY_NODE(&rq->rb_node))
 220		deadline_del_rq_rb(per_prio, rq);
 221
 222	elv_rqhash_del(q, rq);
 223	if (q->last_merge == rq)
 224		q->last_merge = NULL;
 225}
 226
 227static void dd_request_merged(struct request_queue *q, struct request *req,
 228			      enum elv_merge type)
 229{
 230	struct deadline_data *dd = q->elevator->elevator_data;
 231	const u8 ioprio_class = dd_rq_ioclass(req);
 232	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 233	struct dd_per_prio *per_prio = &dd->per_prio[prio];
 234
 235	/*
 236	 * if the merge was a front merge, we need to reposition request
 237	 */
 238	if (type == ELEVATOR_FRONT_MERGE) {
 239		elv_rb_del(deadline_rb_root(per_prio, req), req);
 240		deadline_add_rq_rb(per_prio, req);
 241	}
 242}
 243
 244/*
 245 * Callback function that is invoked after @next has been merged into @req.
 246 */
 247static void dd_merged_requests(struct request_queue *q, struct request *req,
 248			       struct request *next)
 249{
 250	struct deadline_data *dd = q->elevator->elevator_data;
 251	const u8 ioprio_class = dd_rq_ioclass(next);
 252	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 253
 254	lockdep_assert_held(&dd->lock);
 255
 256	dd->per_prio[prio].stats.merged++;
 257
 258	/*
 259	 * if next expires before rq, assign its expire time to rq
 260	 * and move into next position (next will be deleted) in fifo
 261	 */
 262	if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
 263		if (time_before((unsigned long)next->fifo_time,
 264				(unsigned long)req->fifo_time)) {
 265			list_move(&req->queuelist, &next->queuelist);
 266			req->fifo_time = next->fifo_time;
 267		}
 268	}
 269
 270	/*
 271	 * kill knowledge of next, this one is a goner
 272	 */
 273	deadline_remove_request(q, &dd->per_prio[prio], next);
 274}
 275
 276/*
 277 * move an entry to dispatch queue
 278 */
 279static void
 280deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
 281		      struct request *rq)
 282{
 283	/*
 284	 * take it off the sort and fifo list
 285	 */
 286	deadline_remove_request(rq->q, per_prio, rq);
 287}
 288
 289/* Number of requests queued for a given priority level. */
 290static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
 291{
 292	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
 293
 294	lockdep_assert_held(&dd->lock);
 295
 296	return stats->inserted - atomic_read(&stats->completed);
 297}
 298
 299/*
 300 * deadline_check_fifo returns true if and only if there are expired requests
 301 * in the FIFO list. Requires !list_empty(&dd->fifo_list[data_dir]).
 302 */
 303static inline bool deadline_check_fifo(struct dd_per_prio *per_prio,
 304				       enum dd_data_dir data_dir)
 305{
 306	struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
 307
 308	return time_is_before_eq_jiffies((unsigned long)rq->fifo_time);
 309}
 310
 311/*
 312 * Check if rq has a sequential request preceding it.
 313 */
 314static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
 315{
 316	struct request *prev = deadline_earlier_request(rq);
 317
 318	if (!prev)
 319		return false;
 320
 321	return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
 322}
 323
 324/*
 325 * Skip all write requests that are sequential from @rq, even if we cross
 326 * a zone boundary.
 327 */
 328static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
 329						struct request *rq)
 330{
 331	sector_t pos = blk_rq_pos(rq);
 332
 333	do {
 334		pos += blk_rq_sectors(rq);
 335		rq = deadline_latter_request(rq);
 336	} while (rq && blk_rq_pos(rq) == pos);
 337
 338	return rq;
 339}
 340
 341/*
 342 * For the specified data direction, return the next request to
 343 * dispatch using arrival ordered lists.
 344 */
 345static struct request *
 346deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
 347		      enum dd_data_dir data_dir)
 348{
 349	struct request *rq, *rb_rq, *next;
 350	unsigned long flags;
 351
 352	if (list_empty(&per_prio->fifo_list[data_dir]))
 353		return NULL;
 354
 355	rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
 356	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
 357		return rq;
 358
 359	/*
 360	 * Look for a write request that can be dispatched, that is one with
 361	 * an unlocked target zone. For some HDDs, breaking a sequential
 362	 * write stream can lead to lower throughput, so make sure to preserve
 363	 * sequential write streams, even if that stream crosses into the next
 364	 * zones and these zones are unlocked.
 365	 */
 366	spin_lock_irqsave(&dd->zone_lock, flags);
 367	list_for_each_entry_safe(rq, next, &per_prio->fifo_list[DD_WRITE],
 368				 queuelist) {
 369		/* Check whether a prior request exists for the same zone. */
 370		rb_rq = deadline_from_pos(per_prio, data_dir, blk_rq_pos(rq));
 371		if (rb_rq && blk_rq_pos(rb_rq) < blk_rq_pos(rq))
 372			rq = rb_rq;
 373		if (blk_req_can_dispatch_to_zone(rq) &&
 374		    (blk_queue_nonrot(rq->q) ||
 375		     !deadline_is_seq_write(dd, rq)))
 376			goto out;
 377	}
 378	rq = NULL;
 379out:
 380	spin_unlock_irqrestore(&dd->zone_lock, flags);
 381
 382	return rq;
 383}
 384
 385/*
 386 * For the specified data direction, return the next request to
 387 * dispatch using sector position sorted lists.
 388 */
 389static struct request *
 390deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
 391		      enum dd_data_dir data_dir)
 392{
 393	struct request *rq;
 394	unsigned long flags;
 395
 396	rq = deadline_from_pos(per_prio, data_dir,
 397			       per_prio->latest_pos[data_dir]);
 398	if (!rq)
 399		return NULL;
 400
 401	if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
 402		return rq;
 403
 404	/*
 405	 * Look for a write request that can be dispatched, that is one with
 406	 * an unlocked target zone. For some HDDs, breaking a sequential
 407	 * write stream can lead to lower throughput, so make sure to preserve
 408	 * sequential write streams, even if that stream crosses into the next
 409	 * zones and these zones are unlocked.
 410	 */
 411	spin_lock_irqsave(&dd->zone_lock, flags);
 412	while (rq) {
 413		if (blk_req_can_dispatch_to_zone(rq))
 414			break;
 415		if (blk_queue_nonrot(rq->q))
 416			rq = deadline_latter_request(rq);
 417		else
 418			rq = deadline_skip_seq_writes(dd, rq);
 419	}
 420	spin_unlock_irqrestore(&dd->zone_lock, flags);
 421
 422	return rq;
 423}
 424
 425/*
 426 * Returns true if and only if @rq started after @latest_start where
 427 * @latest_start is in jiffies.
 428 */
 429static bool started_after(struct deadline_data *dd, struct request *rq,
 430			  unsigned long latest_start)
 431{
 432	unsigned long start_time = (unsigned long)rq->fifo_time;
 433
 434	start_time -= dd->fifo_expire[rq_data_dir(rq)];
 435
 436	return time_after(start_time, latest_start);
 437}
 438
 439/*
 440 * deadline_dispatch_requests selects the best request according to
 441 * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
 442 */
 443static struct request *__dd_dispatch_request(struct deadline_data *dd,
 444					     struct dd_per_prio *per_prio,
 445					     unsigned long latest_start)
 446{
 447	struct request *rq, *next_rq;
 448	enum dd_data_dir data_dir;
 449	enum dd_prio prio;
 450	u8 ioprio_class;
 451
 452	lockdep_assert_held(&dd->lock);
 453
 454	if (!list_empty(&per_prio->dispatch)) {
 455		rq = list_first_entry(&per_prio->dispatch, struct request,
 456				      queuelist);
 457		if (started_after(dd, rq, latest_start))
 458			return NULL;
 459		list_del_init(&rq->queuelist);
 460		data_dir = rq_data_dir(rq);
 461		goto done;
 462	}
 463
 464	/*
 465	 * batches are currently reads XOR writes
 466	 */
 467	rq = deadline_next_request(dd, per_prio, dd->last_dir);
 468	if (rq && dd->batching < dd->fifo_batch) {
 469		/* we have a next request and are still entitled to batch */
 470		data_dir = rq_data_dir(rq);
 471		goto dispatch_request;
 472	}
 473
 474	/*
 475	 * at this point we are not running a batch. select the appropriate
 476	 * data direction (read / write)
 477	 */
 478
 479	if (!list_empty(&per_prio->fifo_list[DD_READ])) {
 480		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
 481
 482		if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
 483		    (dd->starved++ >= dd->writes_starved))
 484			goto dispatch_writes;
 485
 486		data_dir = DD_READ;
 487
 488		goto dispatch_find_request;
 489	}
 490
 491	/*
 492	 * there are either no reads or writes have been starved
 493	 */
 494
 495	if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
 496dispatch_writes:
 497		BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
 498
 499		dd->starved = 0;
 500
 501		data_dir = DD_WRITE;
 502
 503		goto dispatch_find_request;
 504	}
 505
 506	return NULL;
 507
 508dispatch_find_request:
 509	/*
 510	 * we are not running a batch, find best request for selected data_dir
 511	 */
 512	next_rq = deadline_next_request(dd, per_prio, data_dir);
 513	if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
 514		/*
 515		 * A deadline has expired, the last request was in the other
 516		 * direction, or we have run out of higher-sectored requests.
 517		 * Start again from the request with the earliest expiry time.
 518		 */
 519		rq = deadline_fifo_request(dd, per_prio, data_dir);
 520	} else {
 521		/*
 522		 * The last req was the same dir and we have a next request in
 523		 * sort order. No expired requests so continue on from here.
 524		 */
 525		rq = next_rq;
 526	}
 527
 528	/*
 529	 * For a zoned block device, if we only have writes queued and none of
 530	 * them can be dispatched, rq will be NULL.
 531	 */
 532	if (!rq)
 533		return NULL;
 534
 535	dd->last_dir = data_dir;
 536	dd->batching = 0;
 537
 538dispatch_request:
 539	if (started_after(dd, rq, latest_start))
 540		return NULL;
 541
 542	/*
 543	 * rq is the selected appropriate request.
 544	 */
 545	dd->batching++;
 546	deadline_move_request(dd, per_prio, rq);
 547done:
 548	ioprio_class = dd_rq_ioclass(rq);
 549	prio = ioprio_class_to_prio[ioprio_class];
 550	dd->per_prio[prio].latest_pos[data_dir] = blk_rq_pos(rq);
 551	dd->per_prio[prio].stats.dispatched++;
 552	/*
 553	 * If the request needs its target zone locked, do it.
 554	 */
 555	blk_req_zone_write_lock(rq);
 556	rq->rq_flags |= RQF_STARTED;
 557	return rq;
 558}
 559
 560/*
 561 * Check whether there are any requests with priority other than DD_RT_PRIO
 562 * that were inserted more than prio_aging_expire jiffies ago.
 563 */
 564static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
 565						      unsigned long now)
 566{
 567	struct request *rq;
 568	enum dd_prio prio;
 569	int prio_cnt;
 570
 571	lockdep_assert_held(&dd->lock);
 572
 573	prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
 574		   !!dd_queued(dd, DD_IDLE_PRIO);
 575	if (prio_cnt < 2)
 576		return NULL;
 577
 578	for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
 579		rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
 580					   now - dd->prio_aging_expire);
 581		if (rq)
 582			return rq;
 583	}
 584
 585	return NULL;
 586}
 587
 588/*
 589 * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
 590 *
 591 * One confusing aspect here is that we get called for a specific
 592 * hardware queue, but we may return a request that is for a
 593 * different hardware queue. This is because mq-deadline has shared
 594 * state for all hardware queues, in terms of sorting, FIFOs, etc.
 595 */
 596static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
 597{
 598	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
 599	const unsigned long now = jiffies;
 600	struct request *rq;
 601	enum dd_prio prio;
 602
 603	spin_lock(&dd->lock);
 604	rq = dd_dispatch_prio_aged_requests(dd, now);
 605	if (rq)
 606		goto unlock;
 607
 608	/*
 609	 * Next, dispatch requests in priority order. Ignore lower priority
 610	 * requests if any higher priority requests are pending.
 611	 */
 612	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
 613		rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
 614		if (rq || dd_queued(dd, prio))
 615			break;
 616	}
 617
 618unlock:
 619	spin_unlock(&dd->lock);
 620
 621	return rq;
 622}
 623
 624/*
 625 * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
 626 * function is used by __blk_mq_get_tag().
 627 */
 628static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
 629{
 630	struct deadline_data *dd = data->q->elevator->elevator_data;
 631
 632	/* Do not throttle synchronous reads. */
 633	if (op_is_sync(opf) && !op_is_write(opf))
 634		return;
 635
 636	/*
 637	 * Throttle asynchronous requests and writes such that these requests
 638	 * do not block the allocation of synchronous requests.
 639	 */
 640	data->shallow_depth = dd->async_depth;
 641}
 642
 643/* Called by blk_mq_update_nr_requests(). */
 644static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
 645{
 646	struct request_queue *q = hctx->queue;
 647	struct deadline_data *dd = q->elevator->elevator_data;
 648	struct blk_mq_tags *tags = hctx->sched_tags;
 649	unsigned int shift = tags->bitmap_tags.sb.shift;
 650
 651	dd->async_depth = max(1U, 3 * (1U << shift)  / 4);
 652
 653	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
 654}
 655
 656/* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
 657static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 658{
 659	dd_depth_updated(hctx);
 660	return 0;
 661}
 662
 663static void dd_exit_sched(struct elevator_queue *e)
 664{
 665	struct deadline_data *dd = e->elevator_data;
 666	enum dd_prio prio;
 667
 668	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
 669		struct dd_per_prio *per_prio = &dd->per_prio[prio];
 670		const struct io_stats_per_prio *stats = &per_prio->stats;
 671		uint32_t queued;
 672
 673		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
 674		WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
 675
 676		spin_lock(&dd->lock);
 677		queued = dd_queued(dd, prio);
 678		spin_unlock(&dd->lock);
 679
 680		WARN_ONCE(queued != 0,
 681			  "statistics for priority %d: i %u m %u d %u c %u\n",
 682			  prio, stats->inserted, stats->merged,
 683			  stats->dispatched, atomic_read(&stats->completed));
 684	}
 685
 686	kfree(dd);
 687}
 688
 689/*
 690 * initialize elevator private data (deadline_data).
 691 */
 692static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
 693{
 694	struct deadline_data *dd;
 695	struct elevator_queue *eq;
 696	enum dd_prio prio;
 697	int ret = -ENOMEM;
 698
 699	eq = elevator_alloc(q, e);
 700	if (!eq)
 701		return ret;
 702
 703	dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
 704	if (!dd)
 705		goto put_eq;
 706
 707	eq->elevator_data = dd;
 708
 709	for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
 710		struct dd_per_prio *per_prio = &dd->per_prio[prio];
 711
 712		INIT_LIST_HEAD(&per_prio->dispatch);
 713		INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
 714		INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
 715		per_prio->sort_list[DD_READ] = RB_ROOT;
 716		per_prio->sort_list[DD_WRITE] = RB_ROOT;
 717	}
 718	dd->fifo_expire[DD_READ] = read_expire;
 719	dd->fifo_expire[DD_WRITE] = write_expire;
 720	dd->writes_starved = writes_starved;
 721	dd->front_merges = 1;
 722	dd->last_dir = DD_WRITE;
 723	dd->fifo_batch = fifo_batch;
 724	dd->prio_aging_expire = prio_aging_expire;
 725	spin_lock_init(&dd->lock);
 726	spin_lock_init(&dd->zone_lock);
 727
 728	/* We dispatch from request queue wide instead of hw queue */
 729	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
 730
 731	q->elevator = eq;
 732	return 0;
 733
 734put_eq:
 735	kobject_put(&eq->kobj);
 736	return ret;
 737}
 738
 739/*
 740 * Try to merge @bio into an existing request. If @bio has been merged into
 741 * an existing request, store the pointer to that request into *@rq.
 742 */
 743static int dd_request_merge(struct request_queue *q, struct request **rq,
 744			    struct bio *bio)
 745{
 746	struct deadline_data *dd = q->elevator->elevator_data;
 747	const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
 748	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 749	struct dd_per_prio *per_prio = &dd->per_prio[prio];
 750	sector_t sector = bio_end_sector(bio);
 751	struct request *__rq;
 752
 753	if (!dd->front_merges)
 754		return ELEVATOR_NO_MERGE;
 755
 756	__rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
 757	if (__rq) {
 758		BUG_ON(sector != blk_rq_pos(__rq));
 759
 760		if (elv_bio_merge_ok(__rq, bio)) {
 761			*rq = __rq;
 762			if (blk_discard_mergable(__rq))
 763				return ELEVATOR_DISCARD_MERGE;
 764			return ELEVATOR_FRONT_MERGE;
 765		}
 766	}
 767
 768	return ELEVATOR_NO_MERGE;
 769}
 770
 771/*
 772 * Attempt to merge a bio into an existing request. This function is called
 773 * before @bio is associated with a request.
 774 */
 775static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
 776		unsigned int nr_segs)
 777{
 778	struct deadline_data *dd = q->elevator->elevator_data;
 779	struct request *free = NULL;
 780	bool ret;
 781
 782	spin_lock(&dd->lock);
 783	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
 784	spin_unlock(&dd->lock);
 785
 786	if (free)
 787		blk_mq_free_request(free);
 788
 789	return ret;
 790}
 791
 792/*
 793 * add rq to rbtree and fifo
 794 */
 795static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
 796			      blk_insert_t flags, struct list_head *free)
 797{
 798	struct request_queue *q = hctx->queue;
 799	struct deadline_data *dd = q->elevator->elevator_data;
 800	const enum dd_data_dir data_dir = rq_data_dir(rq);
 801	u16 ioprio = req_get_ioprio(rq);
 802	u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
 803	struct dd_per_prio *per_prio;
 804	enum dd_prio prio;
 805
 806	lockdep_assert_held(&dd->lock);
 807
 808	/*
 809	 * This may be a requeue of a write request that has locked its
 810	 * target zone. If it is the case, this releases the zone lock.
 811	 */
 812	blk_req_zone_write_unlock(rq);
 813
 814	prio = ioprio_class_to_prio[ioprio_class];
 815	per_prio = &dd->per_prio[prio];
 816	if (!rq->elv.priv[0]) {
 817		per_prio->stats.inserted++;
 818		rq->elv.priv[0] = (void *)(uintptr_t)1;
 819	}
 820
 821	if (blk_mq_sched_try_insert_merge(q, rq, free))
 822		return;
 823
 824	trace_block_rq_insert(rq);
 825
 826	if (flags & BLK_MQ_INSERT_AT_HEAD) {
 827		list_add(&rq->queuelist, &per_prio->dispatch);
 828		rq->fifo_time = jiffies;
 829	} else {
 830		struct list_head *insert_before;
 831
 832		deadline_add_rq_rb(per_prio, rq);
 833
 834		if (rq_mergeable(rq)) {
 835			elv_rqhash_add(q, rq);
 836			if (!q->last_merge)
 837				q->last_merge = rq;
 838		}
 839
 840		/*
 841		 * set expire time and add to fifo list
 842		 */
 843		rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
 844		insert_before = &per_prio->fifo_list[data_dir];
 845#ifdef CONFIG_BLK_DEV_ZONED
 846		/*
 847		 * Insert zoned writes such that requests are sorted by
 848		 * position per zone.
 849		 */
 850		if (blk_rq_is_seq_zoned_write(rq)) {
 851			struct request *rq2 = deadline_latter_request(rq);
 852
 853			if (rq2 && blk_rq_zone_no(rq2) == blk_rq_zone_no(rq))
 854				insert_before = &rq2->queuelist;
 855		}
 856#endif
 857		list_add_tail(&rq->queuelist, insert_before);
 858	}
 859}
 860
 861/*
 862 * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
 863 */
 864static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
 865			       struct list_head *list,
 866			       blk_insert_t flags)
 867{
 868	struct request_queue *q = hctx->queue;
 869	struct deadline_data *dd = q->elevator->elevator_data;
 870	LIST_HEAD(free);
 871
 872	spin_lock(&dd->lock);
 873	while (!list_empty(list)) {
 874		struct request *rq;
 875
 876		rq = list_first_entry(list, struct request, queuelist);
 877		list_del_init(&rq->queuelist);
 878		dd_insert_request(hctx, rq, flags, &free);
 879	}
 880	spin_unlock(&dd->lock);
 881
 882	blk_mq_free_requests(&free);
 883}
 884
 885/* Callback from inside blk_mq_rq_ctx_init(). */
 886static void dd_prepare_request(struct request *rq)
 887{
 888	rq->elv.priv[0] = NULL;
 889}
 890
 891static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
 892{
 893	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
 894	enum dd_prio p;
 895
 896	for (p = 0; p <= DD_PRIO_MAX; p++)
 897		if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
 898			return true;
 899
 900	return false;
 901}
 902
 903/*
 904 * Callback from inside blk_mq_free_request().
 905 *
 906 * For zoned block devices, write unlock the target zone of
 907 * completed write requests. Do this while holding the zone lock
 908 * spinlock so that the zone is never unlocked while deadline_fifo_request()
 909 * or deadline_next_request() are executing. This function is called for
 910 * all requests, whether or not these requests complete successfully.
 911 *
 912 * For a zoned block device, __dd_dispatch_request() may have stopped
 913 * dispatching requests if all the queued requests are write requests directed
 914 * at zones that are already locked due to on-going write requests. To ensure
 915 * write request dispatch progress in this case, mark the queue as needing a
 916 * restart to ensure that the queue is run again after completion of the
 917 * request and zones being unlocked.
 918 */
 919static void dd_finish_request(struct request *rq)
 920{
 921	struct request_queue *q = rq->q;
 922	struct deadline_data *dd = q->elevator->elevator_data;
 923	const u8 ioprio_class = dd_rq_ioclass(rq);
 924	const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 925	struct dd_per_prio *per_prio = &dd->per_prio[prio];
 926
 927	/*
 928	 * The block layer core may call dd_finish_request() without having
 929	 * called dd_insert_requests(). Skip requests that bypassed I/O
 930	 * scheduling. See also blk_mq_request_bypass_insert().
 931	 */
 932	if (!rq->elv.priv[0])
 933		return;
 934
 935	atomic_inc(&per_prio->stats.completed);
 936
 937	if (blk_queue_is_zoned(q)) {
 938		unsigned long flags;
 939
 940		spin_lock_irqsave(&dd->zone_lock, flags);
 941		blk_req_zone_write_unlock(rq);
 942		spin_unlock_irqrestore(&dd->zone_lock, flags);
 943
 944		if (dd_has_write_work(rq->mq_hctx))
 945			blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
 946	}
 947}
 948
 949static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
 950{
 951	return !list_empty_careful(&per_prio->dispatch) ||
 952		!list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
 953		!list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
 954}
 955
 956static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
 957{
 958	struct deadline_data *dd = hctx->queue->elevator->elevator_data;
 959	enum dd_prio prio;
 960
 961	for (prio = 0; prio <= DD_PRIO_MAX; prio++)
 962		if (dd_has_work_for_prio(&dd->per_prio[prio]))
 963			return true;
 964
 965	return false;
 966}
 967
 968/*
 969 * sysfs parts below
 970 */
 971#define SHOW_INT(__FUNC, __VAR)						\
 972static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
 973{									\
 974	struct deadline_data *dd = e->elevator_data;			\
 975									\
 976	return sysfs_emit(page, "%d\n", __VAR);				\
 977}
 978#define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
 979SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
 980SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
 981SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
 982SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
 983SHOW_INT(deadline_front_merges_show, dd->front_merges);
 984SHOW_INT(deadline_async_depth_show, dd->async_depth);
 985SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
 986#undef SHOW_INT
 987#undef SHOW_JIFFIES
 988
 989#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
 990static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
 991{									\
 992	struct deadline_data *dd = e->elevator_data;			\
 993	int __data, __ret;						\
 994									\
 995	__ret = kstrtoint(page, 0, &__data);				\
 996	if (__ret < 0)							\
 997		return __ret;						\
 998	if (__data < (MIN))						\
 999		__data = (MIN);						\
1000	else if (__data > (MAX))					\
1001		__data = (MAX);						\
1002	*(__PTR) = __CONV(__data);					\
1003	return count;							\
1004}
1005#define STORE_INT(__FUNC, __PTR, MIN, MAX)				\
1006	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
1007#define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)				\
1008	STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
1009STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
1010STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
1011STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
1012STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
1013STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
1014STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
1015STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
1016#undef STORE_FUNCTION
1017#undef STORE_INT
1018#undef STORE_JIFFIES
1019
1020#define DD_ATTR(name) \
1021	__ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
1022
1023static struct elv_fs_entry deadline_attrs[] = {
1024	DD_ATTR(read_expire),
1025	DD_ATTR(write_expire),
1026	DD_ATTR(writes_starved),
1027	DD_ATTR(front_merges),
1028	DD_ATTR(async_depth),
1029	DD_ATTR(fifo_batch),
1030	DD_ATTR(prio_aging_expire),
1031	__ATTR_NULL
1032};
1033
1034#ifdef CONFIG_BLK_DEBUG_FS
1035#define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)		\
1036static void *deadline_##name##_fifo_start(struct seq_file *m,		\
1037					  loff_t *pos)			\
1038	__acquires(&dd->lock)						\
1039{									\
1040	struct request_queue *q = m->private;				\
1041	struct deadline_data *dd = q->elevator->elevator_data;		\
1042	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1043									\
1044	spin_lock(&dd->lock);						\
1045	return seq_list_start(&per_prio->fifo_list[data_dir], *pos);	\
1046}									\
1047									\
1048static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,	\
1049					 loff_t *pos)			\
1050{									\
1051	struct request_queue *q = m->private;				\
1052	struct deadline_data *dd = q->elevator->elevator_data;		\
1053	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1054									\
1055	return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);	\
1056}									\
1057									\
1058static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)	\
1059	__releases(&dd->lock)						\
1060{									\
1061	struct request_queue *q = m->private;				\
1062	struct deadline_data *dd = q->elevator->elevator_data;		\
1063									\
1064	spin_unlock(&dd->lock);						\
1065}									\
1066									\
1067static const struct seq_operations deadline_##name##_fifo_seq_ops = {	\
1068	.start	= deadline_##name##_fifo_start,				\
1069	.next	= deadline_##name##_fifo_next,				\
1070	.stop	= deadline_##name##_fifo_stop,				\
1071	.show	= blk_mq_debugfs_rq_show,				\
1072};									\
1073									\
1074static int deadline_##name##_next_rq_show(void *data,			\
1075					  struct seq_file *m)		\
1076{									\
1077	struct request_queue *q = data;					\
1078	struct deadline_data *dd = q->elevator->elevator_data;		\
1079	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1080	struct request *rq;						\
1081									\
1082	rq = deadline_from_pos(per_prio, data_dir,			\
1083			       per_prio->latest_pos[data_dir]);		\
1084	if (rq)								\
1085		__blk_mq_debugfs_rq_show(m, rq);			\
1086	return 0;							\
1087}
1088
1089DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
1090DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
1091DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
1092DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
1093DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
1094DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
1095#undef DEADLINE_DEBUGFS_DDIR_ATTRS
1096
1097static int deadline_batching_show(void *data, struct seq_file *m)
1098{
1099	struct request_queue *q = data;
1100	struct deadline_data *dd = q->elevator->elevator_data;
1101
1102	seq_printf(m, "%u\n", dd->batching);
1103	return 0;
1104}
1105
1106static int deadline_starved_show(void *data, struct seq_file *m)
1107{
1108	struct request_queue *q = data;
1109	struct deadline_data *dd = q->elevator->elevator_data;
1110
1111	seq_printf(m, "%u\n", dd->starved);
1112	return 0;
1113}
1114
1115static int dd_async_depth_show(void *data, struct seq_file *m)
1116{
1117	struct request_queue *q = data;
1118	struct deadline_data *dd = q->elevator->elevator_data;
1119
1120	seq_printf(m, "%u\n", dd->async_depth);
1121	return 0;
1122}
1123
1124static int dd_queued_show(void *data, struct seq_file *m)
1125{
1126	struct request_queue *q = data;
1127	struct deadline_data *dd = q->elevator->elevator_data;
1128	u32 rt, be, idle;
1129
1130	spin_lock(&dd->lock);
1131	rt = dd_queued(dd, DD_RT_PRIO);
1132	be = dd_queued(dd, DD_BE_PRIO);
1133	idle = dd_queued(dd, DD_IDLE_PRIO);
1134	spin_unlock(&dd->lock);
1135
1136	seq_printf(m, "%u %u %u\n", rt, be, idle);
1137
1138	return 0;
1139}
1140
1141/* Number of requests owned by the block driver for a given priority. */
1142static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1143{
1144	const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
1145
1146	lockdep_assert_held(&dd->lock);
1147
1148	return stats->dispatched + stats->merged -
1149		atomic_read(&stats->completed);
1150}
1151
1152static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1153{
1154	struct request_queue *q = data;
1155	struct deadline_data *dd = q->elevator->elevator_data;
1156	u32 rt, be, idle;
1157
1158	spin_lock(&dd->lock);
1159	rt = dd_owned_by_driver(dd, DD_RT_PRIO);
1160	be = dd_owned_by_driver(dd, DD_BE_PRIO);
1161	idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
1162	spin_unlock(&dd->lock);
1163
1164	seq_printf(m, "%u %u %u\n", rt, be, idle);
1165
1166	return 0;
1167}
1168
1169#define DEADLINE_DISPATCH_ATTR(prio)					\
1170static void *deadline_dispatch##prio##_start(struct seq_file *m,	\
1171					     loff_t *pos)		\
1172	__acquires(&dd->lock)						\
1173{									\
1174	struct request_queue *q = m->private;				\
1175	struct deadline_data *dd = q->elevator->elevator_data;		\
1176	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1177									\
1178	spin_lock(&dd->lock);						\
1179	return seq_list_start(&per_prio->dispatch, *pos);		\
1180}									\
1181									\
1182static void *deadline_dispatch##prio##_next(struct seq_file *m,		\
1183					    void *v, loff_t *pos)	\
1184{									\
1185	struct request_queue *q = m->private;				\
1186	struct deadline_data *dd = q->elevator->elevator_data;		\
1187	struct dd_per_prio *per_prio = &dd->per_prio[prio];		\
1188									\
1189	return seq_list_next(v, &per_prio->dispatch, pos);		\
1190}									\
1191									\
1192static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v)	\
1193	__releases(&dd->lock)						\
1194{									\
1195	struct request_queue *q = m->private;				\
1196	struct deadline_data *dd = q->elevator->elevator_data;		\
1197									\
1198	spin_unlock(&dd->lock);						\
1199}									\
1200									\
1201static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1202	.start	= deadline_dispatch##prio##_start,			\
1203	.next	= deadline_dispatch##prio##_next,			\
1204	.stop	= deadline_dispatch##prio##_stop,			\
1205	.show	= blk_mq_debugfs_rq_show,				\
1206}
1207
1208DEADLINE_DISPATCH_ATTR(0);
1209DEADLINE_DISPATCH_ATTR(1);
1210DEADLINE_DISPATCH_ATTR(2);
1211#undef DEADLINE_DISPATCH_ATTR
1212
1213#define DEADLINE_QUEUE_DDIR_ATTRS(name)					\
1214	{#name "_fifo_list", 0400,					\
1215			.seq_ops = &deadline_##name##_fifo_seq_ops}
1216#define DEADLINE_NEXT_RQ_ATTR(name)					\
1217	{#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1218static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1219	DEADLINE_QUEUE_DDIR_ATTRS(read0),
1220	DEADLINE_QUEUE_DDIR_ATTRS(write0),
1221	DEADLINE_QUEUE_DDIR_ATTRS(read1),
1222	DEADLINE_QUEUE_DDIR_ATTRS(write1),
1223	DEADLINE_QUEUE_DDIR_ATTRS(read2),
1224	DEADLINE_QUEUE_DDIR_ATTRS(write2),
1225	DEADLINE_NEXT_RQ_ATTR(read0),
1226	DEADLINE_NEXT_RQ_ATTR(write0),
1227	DEADLINE_NEXT_RQ_ATTR(read1),
1228	DEADLINE_NEXT_RQ_ATTR(write1),
1229	DEADLINE_NEXT_RQ_ATTR(read2),
1230	DEADLINE_NEXT_RQ_ATTR(write2),
1231	{"batching", 0400, deadline_batching_show},
1232	{"starved", 0400, deadline_starved_show},
1233	{"async_depth", 0400, dd_async_depth_show},
1234	{"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1235	{"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1236	{"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1237	{"owned_by_driver", 0400, dd_owned_by_driver_show},
1238	{"queued", 0400, dd_queued_show},
1239	{},
1240};
1241#undef DEADLINE_QUEUE_DDIR_ATTRS
1242#endif
1243
1244static struct elevator_type mq_deadline = {
1245	.ops = {
1246		.depth_updated		= dd_depth_updated,
1247		.limit_depth		= dd_limit_depth,
1248		.insert_requests	= dd_insert_requests,
1249		.dispatch_request	= dd_dispatch_request,
1250		.prepare_request	= dd_prepare_request,
1251		.finish_request		= dd_finish_request,
1252		.next_request		= elv_rb_latter_request,
1253		.former_request		= elv_rb_former_request,
1254		.bio_merge		= dd_bio_merge,
1255		.request_merge		= dd_request_merge,
1256		.requests_merged	= dd_merged_requests,
1257		.request_merged		= dd_request_merged,
1258		.has_work		= dd_has_work,
1259		.init_sched		= dd_init_sched,
1260		.exit_sched		= dd_exit_sched,
1261		.init_hctx		= dd_init_hctx,
1262	},
1263
1264#ifdef CONFIG_BLK_DEBUG_FS
1265	.queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1266#endif
1267	.elevator_attrs = deadline_attrs,
1268	.elevator_name = "mq-deadline",
1269	.elevator_alias = "deadline",
1270	.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1271	.elevator_owner = THIS_MODULE,
1272};
1273MODULE_ALIAS("mq-deadline-iosched");
1274
1275static int __init deadline_init(void)
1276{
1277	return elv_register(&mq_deadline);
1278}
1279
1280static void __exit deadline_exit(void)
1281{
1282	elv_unregister(&mq_deadline);
1283}
1284
1285module_init(deadline_init);
1286module_exit(deadline_exit);
1287
1288MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1289MODULE_LICENSE("GPL");
1290MODULE_DESCRIPTION("MQ deadline IO scheduler");