Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* thread_info.h: low-level thread information
  2 *
  3 * Copyright (C) 2002  David Howells (dhowells@redhat.com)
  4 * - Incorporating suggestions made by Linus Torvalds and Dave Miller
  5 */
  6
  7#ifndef _ASM_X86_THREAD_INFO_H
  8#define _ASM_X86_THREAD_INFO_H
  9
 10#include <linux/compiler.h>
 11#include <asm/page.h>
 12#include <asm/percpu.h>
 13#include <asm/types.h>
 14
 15/*
 16 * TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we
 17 * reserve at the top of the kernel stack.  We do it because of a nasty
 18 * 32-bit corner case.  On x86_32, the hardware stack frame is
 19 * variable-length.  Except for vm86 mode, struct pt_regs assumes a
 20 * maximum-length frame.  If we enter from CPL 0, the top 8 bytes of
 21 * pt_regs don't actually exist.  Ordinarily this doesn't matter, but it
 22 * does in at least one case:
 23 *
 24 * If we take an NMI early enough in SYSENTER, then we can end up with
 25 * pt_regs that extends above sp0.  On the way out, in the espfix code,
 26 * we can read the saved SS value, but that value will be above sp0.
 27 * Without this offset, that can result in a page fault.  (We are
 28 * careful that, in this case, the value we read doesn't matter.)
 29 *
 30 * In vm86 mode, the hardware frame is much longer still, so add 16
 31 * bytes to make room for the real-mode segments.
 32 *
 33 * x86_64 has a fixed-length stack frame.
 34 */
 35#ifdef CONFIG_X86_32
 36# ifdef CONFIG_VM86
 37#  define TOP_OF_KERNEL_STACK_PADDING 16
 38# else
 39#  define TOP_OF_KERNEL_STACK_PADDING 8
 40# endif
 41#else
 42# define TOP_OF_KERNEL_STACK_PADDING 0
 43#endif
 44
 45/*
 46 * low level task data that entry.S needs immediate access to
 47 * - this struct should fit entirely inside of one cache line
 48 * - this struct shares the supervisor stack pages
 49 */
 50#ifndef __ASSEMBLY__
 51struct task_struct;
 52#include <asm/cpufeature.h>
 53#include <linux/atomic.h>
 54
 55struct thread_info {
 56	struct task_struct	*task;		/* main task structure */
 57	__u32			flags;		/* low level flags */
 58	__u32			status;		/* thread synchronous flags */
 59	__u32			cpu;		/* current CPU */
 60	mm_segment_t		addr_limit;
 61	unsigned int		sig_on_uaccess_error:1;
 62	unsigned int		uaccess_err:1;	/* uaccess failed */
 63};
 64
 65#define INIT_THREAD_INFO(tsk)			\
 66{						\
 67	.task		= &tsk,			\
 68	.flags		= 0,			\
 69	.cpu		= 0,			\
 70	.addr_limit	= KERNEL_DS,		\
 71}
 72
 73#define init_thread_info	(init_thread_union.thread_info)
 74#define init_stack		(init_thread_union.stack)
 75
 76#else /* !__ASSEMBLY__ */
 77
 78#include <asm/asm-offsets.h>
 79
 80#endif
 81
 82/*
 83 * thread information flags
 84 * - these are process state flags that various assembly files
 85 *   may need to access
 86 * - pending work-to-be-done flags are in LSW
 87 * - other flags in MSW
 88 * Warning: layout of LSW is hardcoded in entry.S
 89 */
 90#define TIF_SYSCALL_TRACE	0	/* syscall trace active */
 91#define TIF_NOTIFY_RESUME	1	/* callback before returning to user */
 92#define TIF_SIGPENDING		2	/* signal pending */
 93#define TIF_NEED_RESCHED	3	/* rescheduling necessary */
 94#define TIF_SINGLESTEP		4	/* reenable singlestep on user return*/
 95#define TIF_SYSCALL_EMU		6	/* syscall emulation active */
 96#define TIF_SYSCALL_AUDIT	7	/* syscall auditing active */
 97#define TIF_SECCOMP		8	/* secure computing */
 98#define TIF_USER_RETURN_NOTIFY	11	/* notify kernel of userspace return */
 99#define TIF_UPROBE		12	/* breakpointed or singlestepping */
 
 
 
100#define TIF_NOTSC		16	/* TSC is not accessible in userland */
101#define TIF_IA32		17	/* IA32 compatibility process */
102#define TIF_FORK		18	/* ret_from_fork */
103#define TIF_NOHZ		19	/* in adaptive nohz mode */
104#define TIF_MEMDIE		20	/* is terminating due to OOM killer */
105#define TIF_POLLING_NRFLAG	21	/* idle is polling for TIF_NEED_RESCHED */
106#define TIF_IO_BITMAP		22	/* uses I/O bitmap */
 
107#define TIF_FORCED_TF		24	/* true if TF in eflags artificially */
108#define TIF_BLOCKSTEP		25	/* set when we want DEBUGCTLMSR_BTF */
109#define TIF_LAZY_MMU_UPDATES	27	/* task is updating the mmu lazily */
110#define TIF_SYSCALL_TRACEPOINT	28	/* syscall tracepoint instrumentation */
111#define TIF_ADDR32		29	/* 32-bit address space on 64 bits */
112#define TIF_X32			30	/* 32-bit native x86-64 binary */
113
114#define _TIF_SYSCALL_TRACE	(1 << TIF_SYSCALL_TRACE)
115#define _TIF_NOTIFY_RESUME	(1 << TIF_NOTIFY_RESUME)
116#define _TIF_SIGPENDING		(1 << TIF_SIGPENDING)
117#define _TIF_SINGLESTEP		(1 << TIF_SINGLESTEP)
118#define _TIF_NEED_RESCHED	(1 << TIF_NEED_RESCHED)
119#define _TIF_SYSCALL_EMU	(1 << TIF_SYSCALL_EMU)
120#define _TIF_SYSCALL_AUDIT	(1 << TIF_SYSCALL_AUDIT)
121#define _TIF_SECCOMP		(1 << TIF_SECCOMP)
 
122#define _TIF_USER_RETURN_NOTIFY	(1 << TIF_USER_RETURN_NOTIFY)
123#define _TIF_UPROBE		(1 << TIF_UPROBE)
 
 
 
124#define _TIF_NOTSC		(1 << TIF_NOTSC)
125#define _TIF_IA32		(1 << TIF_IA32)
126#define _TIF_FORK		(1 << TIF_FORK)
127#define _TIF_NOHZ		(1 << TIF_NOHZ)
128#define _TIF_POLLING_NRFLAG	(1 << TIF_POLLING_NRFLAG)
129#define _TIF_IO_BITMAP		(1 << TIF_IO_BITMAP)
 
130#define _TIF_FORCED_TF		(1 << TIF_FORCED_TF)
131#define _TIF_BLOCKSTEP		(1 << TIF_BLOCKSTEP)
132#define _TIF_LAZY_MMU_UPDATES	(1 << TIF_LAZY_MMU_UPDATES)
133#define _TIF_SYSCALL_TRACEPOINT	(1 << TIF_SYSCALL_TRACEPOINT)
134#define _TIF_ADDR32		(1 << TIF_ADDR32)
135#define _TIF_X32		(1 << TIF_X32)
 
 
 
 
136
137/*
138 * work to do in syscall_trace_enter().  Also includes TIF_NOHZ for
139 * enter_from_user_mode()
140 */
141#define _TIF_WORK_SYSCALL_ENTRY	\
142	(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU | _TIF_SYSCALL_AUDIT |	\
143	 _TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT |	\
144	 _TIF_NOHZ)
145
146/* work to do on any return to user space */
147#define _TIF_ALLWORK_MASK						\
148	((0x0000FFFF & ~_TIF_SECCOMP) | _TIF_SYSCALL_TRACEPOINT |	\
149	_TIF_NOHZ)
150
151/* flags to check in __switch_to() */
152#define _TIF_WORK_CTXSW							\
153	(_TIF_IO_BITMAP|_TIF_NOTSC|_TIF_BLOCKSTEP)
 
 
 
154
155#define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY)
156#define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW)
157
158#define STACK_WARN		(THREAD_SIZE/8)
159
160/*
161 * macros/functions for gaining access to the thread information structure
162 *
163 * preempt_count needs to be 1 initially, until the scheduler is functional.
164 */
165#ifndef __ASSEMBLY__
166
167static inline struct thread_info *current_thread_info(void)
168{
169	return (struct thread_info *)(current_top_of_stack() - THREAD_SIZE);
170}
171
172static inline unsigned long current_stack_pointer(void)
173{
174	unsigned long sp;
175#ifdef CONFIG_X86_64
176	asm("mov %%rsp,%0" : "=g" (sp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177#else
178	asm("mov %%esp,%0" : "=g" (sp));
179#endif
180	return sp;
181}
182
183#else /* !__ASSEMBLY__ */
184
185#ifdef CONFIG_X86_64
186# define cpu_current_top_of_stack (cpu_tss + TSS_sp0)
187#endif
188
189/* Load thread_info address into "reg" */
190#define GET_THREAD_INFO(reg) \
191	_ASM_MOV PER_CPU_VAR(cpu_current_top_of_stack),reg ; \
192	_ASM_SUB $(THREAD_SIZE),reg ;
193
194/*
195 * ASM operand which evaluates to a 'thread_info' address of
196 * the current task, if it is known that "reg" is exactly "off"
197 * bytes below the top of the stack currently.
198 *
199 * ( The kernel stack's size is known at build time, it is usually
200 *   2 or 4 pages, and the bottom  of the kernel stack contains
201 *   the thread_info structure. So to access the thread_info very
202 *   quickly from assembly code we can calculate down from the
203 *   top of the kernel stack to the bottom, using constant,
204 *   build-time calculations only. )
205 *
206 * For example, to fetch the current thread_info->flags value into %eax
207 * on x86-64 defconfig kernels, in syscall entry code where RSP is
208 * currently at exactly SIZEOF_PTREGS bytes away from the top of the
209 * stack:
210 *
211 *      mov ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS), %eax
212 *
213 * will translate to:
214 *
215 *      8b 84 24 b8 c0 ff ff      mov    -0x3f48(%rsp), %eax
216 *
217 * which is below the current RSP by almost 16K.
218 */
219#define ASM_THREAD_INFO(field, reg, off) ((field)+(off)-THREAD_SIZE)(reg)
220
221#endif
222
223/*
224 * Thread-synchronous status.
225 *
226 * This is different from the flags in that nobody else
227 * ever touches our thread-synchronous status, so we don't
228 * have to worry about atomic accesses.
229 */
230#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
231#define TS_RESTORE_SIGMASK	0x0008	/* restore signal mask in do_signal() */
232
233#ifndef __ASSEMBLY__
234#define HAVE_SET_RESTORE_SIGMASK	1
235static inline void set_restore_sigmask(void)
236{
237	struct thread_info *ti = current_thread_info();
238	ti->status |= TS_RESTORE_SIGMASK;
239	WARN_ON(!test_bit(TIF_SIGPENDING, (unsigned long *)&ti->flags));
240}
241static inline void clear_restore_sigmask(void)
242{
243	current_thread_info()->status &= ~TS_RESTORE_SIGMASK;
244}
245static inline bool test_restore_sigmask(void)
246{
247	return current_thread_info()->status & TS_RESTORE_SIGMASK;
248}
249static inline bool test_and_clear_restore_sigmask(void)
250{
251	struct thread_info *ti = current_thread_info();
252	if (!(ti->status & TS_RESTORE_SIGMASK))
253		return false;
254	ti->status &= ~TS_RESTORE_SIGMASK;
255	return true;
256}
257
258static inline bool is_ia32_task(void)
259{
260#ifdef CONFIG_X86_32
261	return true;
262#endif
263#ifdef CONFIG_IA32_EMULATION
264	if (current_thread_info()->status & TS_COMPAT)
265		return true;
266#endif
267	return false;
268}
269
270/*
271 * Force syscall return via IRET by making it look as if there was
272 * some work pending. IRET is our most capable (but slowest) syscall
273 * return path, which is able to restore modified SS, CS and certain
274 * EFLAGS values that other (fast) syscall return instructions
275 * are not able to restore properly.
276 */
277#define force_iret() set_thread_flag(TIF_NOTIFY_RESUME)
278
279extern void arch_task_cache_init(void);
280extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
281extern void arch_release_task_struct(struct task_struct *tsk);
282#endif	/* !__ASSEMBLY__ */
283
284#endif /* _ASM_X86_THREAD_INFO_H */
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* thread_info.h: low-level thread information
  3 *
  4 * Copyright (C) 2002  David Howells (dhowells@redhat.com)
  5 * - Incorporating suggestions made by Linus Torvalds and Dave Miller
  6 */
  7
  8#ifndef _ASM_X86_THREAD_INFO_H
  9#define _ASM_X86_THREAD_INFO_H
 10
 11#include <linux/compiler.h>
 12#include <asm/page.h>
 13#include <asm/percpu.h>
 14#include <asm/types.h>
 15
 16/*
 17 * TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we
 18 * reserve at the top of the kernel stack.  We do it because of a nasty
 19 * 32-bit corner case.  On x86_32, the hardware stack frame is
 20 * variable-length.  Except for vm86 mode, struct pt_regs assumes a
 21 * maximum-length frame.  If we enter from CPL 0, the top 8 bytes of
 22 * pt_regs don't actually exist.  Ordinarily this doesn't matter, but it
 23 * does in at least one case:
 24 *
 25 * If we take an NMI early enough in SYSENTER, then we can end up with
 26 * pt_regs that extends above sp0.  On the way out, in the espfix code,
 27 * we can read the saved SS value, but that value will be above sp0.
 28 * Without this offset, that can result in a page fault.  (We are
 29 * careful that, in this case, the value we read doesn't matter.)
 30 *
 31 * In vm86 mode, the hardware frame is much longer still, so add 16
 32 * bytes to make room for the real-mode segments.
 33 *
 34 * x86_64 has a fixed-length stack frame.
 35 */
 36#ifdef CONFIG_X86_32
 37# ifdef CONFIG_VM86
 38#  define TOP_OF_KERNEL_STACK_PADDING 16
 39# else
 40#  define TOP_OF_KERNEL_STACK_PADDING 8
 41# endif
 42#else
 43# define TOP_OF_KERNEL_STACK_PADDING 0
 44#endif
 45
 46/*
 47 * low level task data that entry.S needs immediate access to
 48 * - this struct should fit entirely inside of one cache line
 49 * - this struct shares the supervisor stack pages
 50 */
 51#ifndef __ASSEMBLY__
 52struct task_struct;
 53#include <asm/cpufeature.h>
 54#include <linux/atomic.h>
 55
 56struct thread_info {
 57	unsigned long		flags;		/* low level flags */
 58	unsigned long		syscall_work;	/* SYSCALL_WORK_ flags */
 59	u32			status;		/* thread synchronous flags */
 60#ifdef CONFIG_SMP
 61	u32			cpu;		/* current CPU */
 62#endif
 
 63};
 64
 65#define INIT_THREAD_INFO(tsk)			\
 66{						\
 
 67	.flags		= 0,			\
 
 
 68}
 69
 
 
 
 70#else /* !__ASSEMBLY__ */
 71
 72#include <asm/asm-offsets.h>
 73
 74#endif
 75
 76/*
 77 * thread information flags
 78 * - these are process state flags that various assembly files
 79 *   may need to access
 
 
 
 80 */
 
 81#define TIF_NOTIFY_RESUME	1	/* callback before returning to user */
 82#define TIF_SIGPENDING		2	/* signal pending */
 83#define TIF_NEED_RESCHED	3	/* rescheduling necessary */
 84#define TIF_SINGLESTEP		4	/* reenable singlestep on user return*/
 85#define TIF_SSBD		5	/* Speculative store bypass disable */
 86#define TIF_SPEC_IB		9	/* Indirect branch speculation mitigation */
 87#define TIF_SPEC_L1D_FLUSH	10	/* Flush L1D on mm switches (processes) */
 88#define TIF_USER_RETURN_NOTIFY	11	/* notify kernel of userspace return */
 89#define TIF_UPROBE		12	/* breakpointed or singlestepping */
 90#define TIF_PATCH_PENDING	13	/* pending live patching update */
 91#define TIF_NEED_FPU_LOAD	14	/* load FPU on return to userspace */
 92#define TIF_NOCPUID		15	/* CPUID is not accessible in userland */
 93#define TIF_NOTSC		16	/* TSC is not accessible in userland */
 94#define TIF_NOTIFY_SIGNAL	17	/* signal notifications exist */
 
 
 95#define TIF_MEMDIE		20	/* is terminating due to OOM killer */
 96#define TIF_POLLING_NRFLAG	21	/* idle is polling for TIF_NEED_RESCHED */
 97#define TIF_IO_BITMAP		22	/* uses I/O bitmap */
 98#define TIF_SPEC_FORCE_UPDATE	23	/* Force speculation MSR update in context switch */
 99#define TIF_FORCED_TF		24	/* true if TF in eflags artificially */
100#define TIF_BLOCKSTEP		25	/* set when we want DEBUGCTLMSR_BTF */
101#define TIF_LAZY_MMU_UPDATES	27	/* task is updating the mmu lazily */
 
102#define TIF_ADDR32		29	/* 32-bit address space on 64 bits */
 
103
 
104#define _TIF_NOTIFY_RESUME	(1 << TIF_NOTIFY_RESUME)
105#define _TIF_SIGPENDING		(1 << TIF_SIGPENDING)
 
106#define _TIF_NEED_RESCHED	(1 << TIF_NEED_RESCHED)
107#define _TIF_SINGLESTEP		(1 << TIF_SINGLESTEP)
108#define _TIF_SSBD		(1 << TIF_SSBD)
109#define _TIF_SPEC_IB		(1 << TIF_SPEC_IB)
110#define _TIF_SPEC_L1D_FLUSH	(1 << TIF_SPEC_L1D_FLUSH)
111#define _TIF_USER_RETURN_NOTIFY	(1 << TIF_USER_RETURN_NOTIFY)
112#define _TIF_UPROBE		(1 << TIF_UPROBE)
113#define _TIF_PATCH_PENDING	(1 << TIF_PATCH_PENDING)
114#define _TIF_NEED_FPU_LOAD	(1 << TIF_NEED_FPU_LOAD)
115#define _TIF_NOCPUID		(1 << TIF_NOCPUID)
116#define _TIF_NOTSC		(1 << TIF_NOTSC)
117#define _TIF_NOTIFY_SIGNAL	(1 << TIF_NOTIFY_SIGNAL)
 
 
118#define _TIF_POLLING_NRFLAG	(1 << TIF_POLLING_NRFLAG)
119#define _TIF_IO_BITMAP		(1 << TIF_IO_BITMAP)
120#define _TIF_SPEC_FORCE_UPDATE	(1 << TIF_SPEC_FORCE_UPDATE)
121#define _TIF_FORCED_TF		(1 << TIF_FORCED_TF)
122#define _TIF_BLOCKSTEP		(1 << TIF_BLOCKSTEP)
123#define _TIF_LAZY_MMU_UPDATES	(1 << TIF_LAZY_MMU_UPDATES)
 
124#define _TIF_ADDR32		(1 << TIF_ADDR32)
125
126/* flags to check in __switch_to() */
127#define _TIF_WORK_CTXSW_BASE					\
128	(_TIF_NOCPUID | _TIF_NOTSC | _TIF_BLOCKSTEP |		\
129	 _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE)
130
131/*
132 * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated.
 
133 */
134#ifdef CONFIG_SMP
135# define _TIF_WORK_CTXSW	(_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB)
136#else
137# define _TIF_WORK_CTXSW	(_TIF_WORK_CTXSW_BASE)
138#endif
 
 
 
 
139
140#ifdef CONFIG_X86_IOPL_IOPERM
141# define _TIF_WORK_CTXSW_PREV	(_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY | \
142				 _TIF_IO_BITMAP)
143#else
144# define _TIF_WORK_CTXSW_PREV	(_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY)
145#endif
146
147#define _TIF_WORK_CTXSW_NEXT	(_TIF_WORK_CTXSW)
 
148
149#define STACK_WARN		(THREAD_SIZE/8)
150
151/*
152 * macros/functions for gaining access to the thread information structure
153 *
154 * preempt_count needs to be 1 initially, until the scheduler is functional.
155 */
156#ifndef __ASSEMBLY__
157
158/*
159 * Walks up the stack frames to make sure that the specified object is
160 * entirely contained by a single stack frame.
161 *
162 * Returns:
163 *	GOOD_FRAME	if within a frame
164 *	BAD_STACK	if placed across a frame boundary (or outside stack)
165 *	NOT_STACK	unable to determine (no frame pointers, etc)
166 *
167 * This function reads pointers from the stack and dereferences them. The
168 * pointers may not have their KMSAN shadow set up properly, which may result
169 * in false positive reports. Disable instrumentation to avoid those.
170 */
171__no_kmsan_checks
172static inline int arch_within_stack_frames(const void * const stack,
173					   const void * const stackend,
174					   const void *obj, unsigned long len)
175{
176#if defined(CONFIG_FRAME_POINTER)
177	const void *frame = NULL;
178	const void *oldframe;
179
180	oldframe = __builtin_frame_address(1);
181	if (oldframe)
182		frame = __builtin_frame_address(2);
183	/*
184	 * low ----------------------------------------------> high
185	 * [saved bp][saved ip][args][local vars][saved bp][saved ip]
186	 *                     ^----------------^
187	 *               allow copies only within here
188	 */
189	while (stack <= frame && frame < stackend) {
190		/*
191		 * If obj + len extends past the last frame, this
192		 * check won't pass and the next frame will be 0,
193		 * causing us to bail out and correctly report
194		 * the copy as invalid.
195		 */
196		if (obj + len <= frame)
197			return obj >= oldframe + 2 * sizeof(void *) ?
198				GOOD_FRAME : BAD_STACK;
199		oldframe = frame;
200		frame = *(const void * const *)frame;
201	}
202	return BAD_STACK;
203#else
204	return NOT_STACK;
205#endif
 
206}
207
208#endif  /* !__ASSEMBLY__ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
210/*
211 * Thread-synchronous status.
212 *
213 * This is different from the flags in that nobody else
214 * ever touches our thread-synchronous status, so we don't
215 * have to worry about atomic accesses.
216 */
217#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
 
218
219#ifndef __ASSEMBLY__
220#ifdef CONFIG_COMPAT
221#define TS_I386_REGS_POKED	0x0004	/* regs poked by 32-bit ptracer */
222
223#define arch_set_restart_data(restart)	\
224	do { restart->arch_data = current_thread_info()->status; } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
 
 
 
 
 
 
 
 
226#endif
 
 
227
228#ifdef CONFIG_X86_32
229#define in_ia32_syscall() true
230#else
231#define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \
232			   current_thread_info()->status & TS_COMPAT)
233#endif
 
 
234
235extern void arch_setup_new_exec(void);
236#define arch_setup_new_exec arch_setup_new_exec
 
237#endif	/* !__ASSEMBLY__ */
238
239#endif /* _ASM_X86_THREAD_INFO_H */