Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/arch/arm/mm/fault.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2004 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/signal.h>
 13#include <linux/mm.h>
 14#include <linux/hardirq.h>
 15#include <linux/init.h>
 16#include <linux/kprobes.h>
 17#include <linux/uaccess.h>
 18#include <linux/page-flags.h>
 19#include <linux/sched.h>
 
 20#include <linux/highmem.h>
 21#include <linux/perf_event.h>
 
 22
 23#include <asm/exception.h>
 24#include <asm/pgtable.h>
 25#include <asm/system_misc.h>
 26#include <asm/system_info.h>
 27#include <asm/tlbflush.h>
 28
 29#include "fault.h"
 30
 31#ifdef CONFIG_MMU
 32
 33#ifdef CONFIG_KPROBES
 34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 35{
 36	int ret = 0;
 37
 38	if (!user_mode(regs)) {
 39		/* kprobe_running() needs smp_processor_id() */
 40		preempt_disable();
 41		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
 42			ret = 1;
 43		preempt_enable();
 44	}
 45
 46	return ret;
 47}
 48#else
 49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 50{
 51	return 0;
 52}
 53#endif
 54
 55/*
 56 * This is useful to dump out the page tables associated with
 57 * 'addr' in mm 'mm'.
 58 */
 59void show_pte(struct mm_struct *mm, unsigned long addr)
 60{
 61	pgd_t *pgd;
 62
 63	if (!mm)
 64		mm = &init_mm;
 65
 66	pr_alert("pgd = %p\n", mm->pgd);
 67	pgd = pgd_offset(mm, addr);
 68	pr_alert("[%08lx] *pgd=%08llx",
 69			addr, (long long)pgd_val(*pgd));
 70
 71	do {
 
 72		pud_t *pud;
 73		pmd_t *pmd;
 74		pte_t *pte;
 75
 76		if (pgd_none(*pgd))
 
 77			break;
 78
 79		if (pgd_bad(*pgd)) {
 80			pr_cont("(bad)");
 81			break;
 82		}
 83
 84		pud = pud_offset(pgd, addr);
 85		if (PTRS_PER_PUD != 1)
 86			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
 87
 88		if (pud_none(*pud))
 89			break;
 90
 91		if (pud_bad(*pud)) {
 92			pr_cont("(bad)");
 93			break;
 94		}
 95
 96		pmd = pmd_offset(pud, addr);
 97		if (PTRS_PER_PMD != 1)
 98			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
 99
100		if (pmd_none(*pmd))
101			break;
102
103		if (pmd_bad(*pmd)) {
104			pr_cont("(bad)");
105			break;
106		}
107
108		/* We must not map this if we have highmem enabled */
109		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110			break;
111
112		pte = pte_offset_map(pmd, addr);
 
 
 
113		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115		pr_cont(", *ppte=%08llx",
116		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118		pte_unmap(pte);
119	} while(0);
120
121	pr_cont("\n");
122}
123#else					/* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif					/* CONFIG_MMU */
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128/*
129 * Oops.  The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133		  struct pt_regs *regs)
134{
 
135	/*
136	 * Are we prepared to handle this kernel fault?
137	 */
138	if (fixup_exception(regs))
139		return;
140
141	/*
142	 * No handler, we'll have to terminate things with extreme prejudice.
143	 */
144	bust_spinlocks(1);
145	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147		 "paging request", addr);
 
 
148
149	show_pte(mm, addr);
150	die("Oops", regs, fsr);
151	bust_spinlocks(0);
152	do_exit(SIGKILL);
153}
154
155/*
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
158 */
159static void
160__do_user_fault(struct task_struct *tsk, unsigned long addr,
161		unsigned int fsr, unsigned int sig, int code,
162		struct pt_regs *regs)
163{
164	struct siginfo si;
 
 
 
165
166#ifdef CONFIG_DEBUG_USER
167	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
168	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
169		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
 
170		       tsk->comm, sig, addr, fsr);
171		show_pte(tsk->mm, addr);
172		show_regs(regs);
173	}
174#endif
 
 
 
 
 
 
175
176	tsk->thread.address = addr;
177	tsk->thread.error_code = fsr;
178	tsk->thread.trap_no = 14;
179	si.si_signo = sig;
180	si.si_errno = 0;
181	si.si_code = code;
182	si.si_addr = (void __user *)addr;
183	force_sig_info(sig, &si, tsk);
184}
185
186void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
187{
188	struct task_struct *tsk = current;
189	struct mm_struct *mm = tsk->active_mm;
190
191	/*
192	 * If we are in kernel mode at this point, we
193	 * have no context to handle this fault with.
194	 */
195	if (user_mode(regs))
196		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
197	else
198		__do_kernel_fault(mm, addr, fsr, regs);
199}
200
201#ifdef CONFIG_MMU
202#define VM_FAULT_BADMAP		0x010000
203#define VM_FAULT_BADACCESS	0x020000
204
205/*
206 * Check that the permissions on the VMA allow for the fault which occurred.
207 * If we encountered a write fault, we must have write permission, otherwise
208 * we allow any permission.
209 */
210static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
211{
212	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
213
214	if (fsr & FSR_WRITE)
215		mask = VM_WRITE;
216	if (fsr & FSR_LNX_PF)
217		mask = VM_EXEC;
218
219	return vma->vm_flags & mask ? false : true;
220}
221
222static int __kprobes
223__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
224		unsigned int flags, struct task_struct *tsk)
225{
226	struct vm_area_struct *vma;
227	int fault;
228
229	vma = find_vma(mm, addr);
230	fault = VM_FAULT_BADMAP;
231	if (unlikely(!vma))
232		goto out;
233	if (unlikely(vma->vm_start > addr))
234		goto check_stack;
235
236	/*
237	 * Ok, we have a good vm_area for this
238	 * memory access, so we can handle it.
239	 */
240good_area:
241	if (access_error(fsr, vma)) {
242		fault = VM_FAULT_BADACCESS;
243		goto out;
244	}
245
246	return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
247
248check_stack:
249	/* Don't allow expansion below FIRST_USER_ADDRESS */
250	if (vma->vm_flags & VM_GROWSDOWN &&
251	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
252		goto good_area;
253out:
254	return fault;
255}
256
257static int __kprobes
258do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
259{
260	struct task_struct *tsk;
261	struct mm_struct *mm;
262	int fault, sig, code;
263	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 
 
264
265	if (notify_page_fault(regs, fsr))
266		return 0;
267
268	tsk = current;
269	mm  = tsk->mm;
270
271	/* Enable interrupts if they were enabled in the parent context. */
272	if (interrupts_enabled(regs))
273		local_irq_enable();
274
275	/*
276	 * If we're in an interrupt or have no user
277	 * context, we must not take the fault..
278	 */
279	if (faulthandler_disabled() || !mm)
280		goto no_context;
281
282	if (user_mode(regs))
283		flags |= FAULT_FLAG_USER;
284	if (fsr & FSR_WRITE)
 
285		flags |= FAULT_FLAG_WRITE;
 
 
286
287	/*
288	 * As per x86, we may deadlock here.  However, since the kernel only
289	 * validly references user space from well defined areas of the code,
290	 * we can bug out early if this is from code which shouldn't.
291	 */
292	if (!down_read_trylock(&mm->mmap_sem)) {
293		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294			goto no_context;
 
 
 
 
295retry:
296		down_read(&mm->mmap_sem);
297	} else {
298		/*
299		 * The above down_read_trylock() might have succeeded in
300		 * which case, we'll have missed the might_sleep() from
301		 * down_read()
302		 */
303		might_sleep();
304#ifdef CONFIG_DEBUG_VM
305		if (!user_mode(regs) &&
306		    !search_exception_tables(regs->ARM_pc))
307			goto no_context;
308#endif
309	}
310
311	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
 
 
 
 
 
 
 
312
313	/* If we need to retry but a fatal signal is pending, handle the
314	 * signal first. We do not need to release the mmap_sem because
315	 * it would already be released in __lock_page_or_retry in
316	 * mm/filemap.c. */
317	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 
 
318		return 0;
 
319
320	/*
321	 * Major/minor page fault accounting is only done on the
322	 * initial attempt. If we go through a retry, it is extremely
323	 * likely that the page will be found in page cache at that point.
324	 */
325
326	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
327	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
328		if (fault & VM_FAULT_MAJOR) {
329			tsk->maj_flt++;
330			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
331					regs, addr);
332		} else {
333			tsk->min_flt++;
334			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
335					regs, addr);
336		}
337		if (fault & VM_FAULT_RETRY) {
338			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
339			* of starvation. */
340			flags &= ~FAULT_FLAG_ALLOW_RETRY;
341			flags |= FAULT_FLAG_TRIED;
342			goto retry;
343		}
344	}
345
346	up_read(&mm->mmap_sem);
 
347
348	/*
349	 * Handle the "normal" case first - VM_FAULT_MAJOR
350	 */
351	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
352		return 0;
353
 
354	/*
355	 * If we are in kernel mode at this point, we
356	 * have no context to handle this fault with.
357	 */
358	if (!user_mode(regs))
359		goto no_context;
360
361	if (fault & VM_FAULT_OOM) {
362		/*
363		 * We ran out of memory, call the OOM killer, and return to
364		 * userspace (which will retry the fault, or kill us if we
365		 * got oom-killed)
366		 */
367		pagefault_out_of_memory();
368		return 0;
369	}
370
371	if (fault & VM_FAULT_SIGBUS) {
372		/*
373		 * We had some memory, but were unable to
374		 * successfully fix up this page fault.
375		 */
376		sig = SIGBUS;
377		code = BUS_ADRERR;
378	} else {
379		/*
380		 * Something tried to access memory that
381		 * isn't in our memory map..
382		 */
383		sig = SIGSEGV;
384		code = fault == VM_FAULT_BADACCESS ?
385			SEGV_ACCERR : SEGV_MAPERR;
386	}
387
388	__do_user_fault(tsk, addr, fsr, sig, code, regs);
389	return 0;
390
391no_context:
392	__do_kernel_fault(mm, addr, fsr, regs);
393	return 0;
394}
395#else					/* CONFIG_MMU */
396static int
397do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
398{
399	return 0;
400}
401#endif					/* CONFIG_MMU */
402
403/*
404 * First Level Translation Fault Handler
405 *
406 * We enter here because the first level page table doesn't contain
407 * a valid entry for the address.
408 *
409 * If the address is in kernel space (>= TASK_SIZE), then we are
410 * probably faulting in the vmalloc() area.
411 *
412 * If the init_task's first level page tables contains the relevant
413 * entry, we copy the it to this task.  If not, we send the process
414 * a signal, fixup the exception, or oops the kernel.
415 *
416 * NOTE! We MUST NOT take any locks for this case. We may be in an
417 * interrupt or a critical region, and should only copy the information
418 * from the master page table, nothing more.
419 */
420#ifdef CONFIG_MMU
421static int __kprobes
422do_translation_fault(unsigned long addr, unsigned int fsr,
423		     struct pt_regs *regs)
424{
425	unsigned int index;
426	pgd_t *pgd, *pgd_k;
 
427	pud_t *pud, *pud_k;
428	pmd_t *pmd, *pmd_k;
429
430	if (addr < TASK_SIZE)
431		return do_page_fault(addr, fsr, regs);
432
433	if (user_mode(regs))
434		goto bad_area;
435
436	index = pgd_index(addr);
437
438	pgd = cpu_get_pgd() + index;
439	pgd_k = init_mm.pgd + index;
440
441	if (pgd_none(*pgd_k))
 
 
 
442		goto bad_area;
443	if (!pgd_present(*pgd))
444		set_pgd(pgd, *pgd_k);
445
446	pud = pud_offset(pgd, addr);
447	pud_k = pud_offset(pgd_k, addr);
448
449	if (pud_none(*pud_k))
450		goto bad_area;
451	if (!pud_present(*pud))
452		set_pud(pud, *pud_k);
453
454	pmd = pmd_offset(pud, addr);
455	pmd_k = pmd_offset(pud_k, addr);
456
457#ifdef CONFIG_ARM_LPAE
458	/*
459	 * Only one hardware entry per PMD with LPAE.
460	 */
461	index = 0;
462#else
463	/*
464	 * On ARM one Linux PGD entry contains two hardware entries (see page
465	 * tables layout in pgtable.h). We normally guarantee that we always
466	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
467	 * It can create inidividual L1 entries, so here we have to call
468	 * pmd_none() check for the entry really corresponded to address, not
469	 * for the first of pair.
470	 */
471	index = (addr >> SECTION_SHIFT) & 1;
472#endif
473	if (pmd_none(pmd_k[index]))
474		goto bad_area;
475
476	copy_pmd(pmd, pmd_k);
477	return 0;
478
479bad_area:
480	do_bad_area(addr, fsr, regs);
481	return 0;
482}
483#else					/* CONFIG_MMU */
484static int
485do_translation_fault(unsigned long addr, unsigned int fsr,
486		     struct pt_regs *regs)
487{
488	return 0;
489}
490#endif					/* CONFIG_MMU */
491
492/*
493 * Some section permission faults need to be handled gracefully.
494 * They can happen due to a __{get,put}_user during an oops.
495 */
496#ifndef CONFIG_ARM_LPAE
497static int
498do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
499{
500	do_bad_area(addr, fsr, regs);
501	return 0;
502}
503#endif /* CONFIG_ARM_LPAE */
504
505/*
506 * This abort handler always returns "fault".
507 */
508static int
509do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
510{
511	return 1;
512}
513
514struct fsr_info {
515	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
516	int	sig;
517	int	code;
518	const char *name;
519};
520
521/* FSR definition */
522#ifdef CONFIG_ARM_LPAE
523#include "fsr-3level.c"
524#else
525#include "fsr-2level.c"
526#endif
527
528void __init
529hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
530		int sig, int code, const char *name)
531{
532	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
533		BUG();
534
535	fsr_info[nr].fn   = fn;
536	fsr_info[nr].sig  = sig;
537	fsr_info[nr].code = code;
538	fsr_info[nr].name = name;
539}
540
541/*
542 * Dispatch a data abort to the relevant handler.
543 */
544asmlinkage void __exception
545do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
546{
547	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
548	struct siginfo info;
549
550	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
551		return;
552
 
553	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
554		inf->name, fsr, addr);
555	show_pte(current->mm, addr);
556
557	info.si_signo = inf->sig;
558	info.si_errno = 0;
559	info.si_code  = inf->code;
560	info.si_addr  = (void __user *)addr;
561	arm_notify_die("", regs, &info, fsr, 0);
562}
563
564void __init
565hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
566		 int sig, int code, const char *name)
567{
568	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
569		BUG();
570
571	ifsr_info[nr].fn   = fn;
572	ifsr_info[nr].sig  = sig;
573	ifsr_info[nr].code = code;
574	ifsr_info[nr].name = name;
575}
576
577asmlinkage void __exception
578do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
579{
580	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
581	struct siginfo info;
582
583	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
584		return;
585
586	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
587		inf->name, ifsr, addr);
588
589	info.si_signo = inf->sig;
590	info.si_errno = 0;
591	info.si_code  = inf->code;
592	info.si_addr  = (void __user *)addr;
593	arm_notify_die("", regs, &info, ifsr, 0);
594}
595
596/*
597 * Abort handler to be used only during first unmasking of asynchronous aborts
598 * on the boot CPU. This makes sure that the machine will not die if the
599 * firmware/bootloader left an imprecise abort pending for us to trip over.
600 */
601static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
602				      struct pt_regs *regs)
603{
604	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
605		"first unmask, this is most likely caused by a "
606		"firmware/bootloader bug.\n", fsr);
607
608	return 0;
609}
610
611void __init early_abt_enable(void)
612{
613	fsr_info[22].fn = early_abort_handler;
614	local_abt_enable();
615	fsr_info[22].fn = do_bad;
616}
617
618#ifndef CONFIG_ARM_LPAE
619static int __init exceptions_init(void)
620{
621	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
622		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
623				"I-cache maintenance fault");
624	}
625
626	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
627		/*
628		 * TODO: Access flag faults introduced in ARMv6K.
629		 * Runtime check for 'K' extension is needed
630		 */
631		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
632				"section access flag fault");
633		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
634				"section access flag fault");
635	}
636
637	return 0;
638}
639
640arch_initcall(exceptions_init);
641#endif
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/fault.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 *  Modifications for ARM processor (c) 1995-2004 Russell King
 
 
 
 
  7 */
  8#include <linux/extable.h>
  9#include <linux/signal.h>
 10#include <linux/mm.h>
 11#include <linux/hardirq.h>
 12#include <linux/init.h>
 13#include <linux/kprobes.h>
 14#include <linux/uaccess.h>
 15#include <linux/page-flags.h>
 16#include <linux/sched/signal.h>
 17#include <linux/sched/debug.h>
 18#include <linux/highmem.h>
 19#include <linux/perf_event.h>
 20#include <linux/kfence.h>
 21
 
 
 22#include <asm/system_misc.h>
 23#include <asm/system_info.h>
 24#include <asm/tlbflush.h>
 25
 26#include "fault.h"
 27
 28#ifdef CONFIG_MMU
 29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30/*
 31 * This is useful to dump out the page tables associated with
 32 * 'addr' in mm 'mm'.
 33 */
 34void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
 35{
 36	pgd_t *pgd;
 37
 38	if (!mm)
 39		mm = &init_mm;
 40
 
 41	pgd = pgd_offset(mm, addr);
 42	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
 
 43
 44	do {
 45		p4d_t *p4d;
 46		pud_t *pud;
 47		pmd_t *pmd;
 48		pte_t *pte;
 49
 50		p4d = p4d_offset(pgd, addr);
 51		if (p4d_none(*p4d))
 52			break;
 53
 54		if (p4d_bad(*p4d)) {
 55			pr_cont("(bad)");
 56			break;
 57		}
 58
 59		pud = pud_offset(p4d, addr);
 60		if (PTRS_PER_PUD != 1)
 61			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
 62
 63		if (pud_none(*pud))
 64			break;
 65
 66		if (pud_bad(*pud)) {
 67			pr_cont("(bad)");
 68			break;
 69		}
 70
 71		pmd = pmd_offset(pud, addr);
 72		if (PTRS_PER_PMD != 1)
 73			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
 74
 75		if (pmd_none(*pmd))
 76			break;
 77
 78		if (pmd_bad(*pmd)) {
 79			pr_cont("(bad)");
 80			break;
 81		}
 82
 83		/* We must not map this if we have highmem enabled */
 84		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
 85			break;
 86
 87		pte = pte_offset_map(pmd, addr);
 88		if (!pte)
 89			break;
 90
 91		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
 92#ifndef CONFIG_ARM_LPAE
 93		pr_cont(", *ppte=%08llx",
 94		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
 95#endif
 96		pte_unmap(pte);
 97	} while(0);
 98
 99	pr_cont("\n");
100}
101#else					/* CONFIG_MMU */
102void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
103{ }
104#endif					/* CONFIG_MMU */
105
106static inline bool is_write_fault(unsigned int fsr)
107{
108	return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
109}
110
111static inline bool is_translation_fault(unsigned int fsr)
112{
113	int fs = fsr_fs(fsr);
114#ifdef CONFIG_ARM_LPAE
115	if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL)
116		return true;
117#else
118	if (fs == FS_L1_TRANS || fs == FS_L2_TRANS)
119		return true;
120#endif
121	return false;
122}
123
124static void die_kernel_fault(const char *msg, struct mm_struct *mm,
125			     unsigned long addr, unsigned int fsr,
126			     struct pt_regs *regs)
127{
128	bust_spinlocks(1);
129	pr_alert("8<--- cut here ---\n");
130	pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n",
131		 msg, addr, fsr & FSR_LNX_PF ? "execute" :
132		 fsr & FSR_WRITE ? "write" : "read");
133
134	show_pte(KERN_ALERT, mm, addr);
135	die("Oops", regs, fsr);
136	bust_spinlocks(0);
137	make_task_dead(SIGKILL);
138}
139
140/*
141 * Oops.  The kernel tried to access some page that wasn't present.
142 */
143static void
144__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
145		  struct pt_regs *regs)
146{
147	const char *msg;
148	/*
149	 * Are we prepared to handle this kernel fault?
150	 */
151	if (fixup_exception(regs))
152		return;
153
154	/*
155	 * No handler, we'll have to terminate things with extreme prejudice.
156	 */
157	if (addr < PAGE_SIZE) {
158		msg = "NULL pointer dereference";
159	} else {
160		if (is_translation_fault(fsr) &&
161		    kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
162			return;
163
164		msg = "paging request";
165	}
166
167	die_kernel_fault(msg, mm, addr, fsr, regs);
168}
169
170/*
171 * Something tried to access memory that isn't in our memory map..
172 * User mode accesses just cause a SIGSEGV
173 */
174static void
175__do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
176		int code, struct pt_regs *regs)
 
177{
178	struct task_struct *tsk = current;
179
180	if (addr > TASK_SIZE)
181		harden_branch_predictor();
182
183#ifdef CONFIG_DEBUG_USER
184	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
185	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
186		pr_err("8<--- cut here ---\n");
187		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
188		       tsk->comm, sig, addr, fsr);
189		show_pte(KERN_ERR, tsk->mm, addr);
190		show_regs(regs);
191	}
192#endif
193#ifndef CONFIG_KUSER_HELPERS
194	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
195		printk_ratelimited(KERN_DEBUG
196				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
197				   tsk->comm, addr);
198#endif
199
200	tsk->thread.address = addr;
201	tsk->thread.error_code = fsr;
202	tsk->thread.trap_no = 14;
203	force_sig_fault(sig, code, (void __user *)addr);
 
 
 
 
204}
205
206void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
207{
208	struct task_struct *tsk = current;
209	struct mm_struct *mm = tsk->active_mm;
210
211	/*
212	 * If we are in kernel mode at this point, we
213	 * have no context to handle this fault with.
214	 */
215	if (user_mode(regs))
216		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
217	else
218		__do_kernel_fault(mm, addr, fsr, regs);
219}
220
221#ifdef CONFIG_MMU
222#define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
223#define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
224
225static inline bool is_permission_fault(unsigned int fsr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226{
227	int fs = fsr_fs(fsr);
228#ifdef CONFIG_ARM_LPAE
229	if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL)
230		return true;
231#else
232	if (fs == FS_L1_PERM || fs == FS_L2_PERM)
233		return true;
234#endif
235	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236}
237
238static int __kprobes
239do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
240{
241	struct mm_struct *mm = current->mm;
242	struct vm_area_struct *vma;
243	int sig, code;
244	vm_fault_t fault;
245	unsigned int flags = FAULT_FLAG_DEFAULT;
246	unsigned long vm_flags = VM_ACCESS_FLAGS;
247
248	if (kprobe_page_fault(regs, fsr))
249		return 0;
250
 
 
251
252	/* Enable interrupts if they were enabled in the parent context. */
253	if (interrupts_enabled(regs))
254		local_irq_enable();
255
256	/*
257	 * If we're in an interrupt or have no user
258	 * context, we must not take the fault..
259	 */
260	if (faulthandler_disabled() || !mm)
261		goto no_context;
262
263	if (user_mode(regs))
264		flags |= FAULT_FLAG_USER;
265
266	if (is_write_fault(fsr)) {
267		flags |= FAULT_FLAG_WRITE;
268		vm_flags = VM_WRITE;
269	}
270
271	if (fsr & FSR_LNX_PF) {
272		vm_flags = VM_EXEC;
273
274		if (is_permission_fault(fsr) && !user_mode(regs))
275			die_kernel_fault("execution of memory",
276					 mm, addr, fsr, regs);
277	}
278
279	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
280
281	if (!(flags & FAULT_FLAG_USER))
282		goto lock_mmap;
283
284	vma = lock_vma_under_rcu(mm, addr);
285	if (!vma)
286		goto lock_mmap;
287
288	if (!(vma->vm_flags & vm_flags)) {
289		vma_end_read(vma);
290		goto lock_mmap;
291	}
292	fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
293	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
294		vma_end_read(vma);
295
296	if (!(fault & VM_FAULT_RETRY)) {
297		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
298		goto done;
299	}
300	count_vm_vma_lock_event(VMA_LOCK_RETRY);
301	if (fault & VM_FAULT_MAJOR)
302		flags |= FAULT_FLAG_TRIED;
303
304	/* Quick path to respond to signals */
305	if (fault_signal_pending(fault, regs)) {
306		if (!user_mode(regs))
307			goto no_context;
308		return 0;
309	}
310lock_mmap:
311
312retry:
313	vma = lock_mm_and_find_vma(mm, addr, regs);
314	if (unlikely(!vma)) {
315		fault = VM_FAULT_BADMAP;
316		goto bad_area;
 
 
 
 
 
 
 
 
 
317	}
318
319	/*
320	 * ok, we have a good vm_area for this memory access, check the
321	 * permissions on the VMA allow for the fault which occurred.
322	 */
323	if (!(vma->vm_flags & vm_flags))
324		fault = VM_FAULT_BADACCESS;
325	else
326		fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
327
328	/* If we need to retry but a fatal signal is pending, handle the
329	 * signal first. We do not need to release the mmap_lock because
330	 * it would already be released in __lock_page_or_retry in
331	 * mm/filemap.c. */
332	if (fault_signal_pending(fault, regs)) {
333		if (!user_mode(regs))
334			goto no_context;
335		return 0;
336	}
337
338	/* The fault is fully completed (including releasing mmap lock) */
339	if (fault & VM_FAULT_COMPLETED)
340		return 0;
 
 
341
342	if (!(fault & VM_FAULT_ERROR)) {
 
 
 
 
 
 
 
 
 
 
343		if (fault & VM_FAULT_RETRY) {
 
 
 
344			flags |= FAULT_FLAG_TRIED;
345			goto retry;
346		}
347	}
348
349	mmap_read_unlock(mm);
350done:
351
352	/*
353	 * Handle the "normal" case first - VM_FAULT_MAJOR
354	 */
355	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
356		return 0;
357
358bad_area:
359	/*
360	 * If we are in kernel mode at this point, we
361	 * have no context to handle this fault with.
362	 */
363	if (!user_mode(regs))
364		goto no_context;
365
366	if (fault & VM_FAULT_OOM) {
367		/*
368		 * We ran out of memory, call the OOM killer, and return to
369		 * userspace (which will retry the fault, or kill us if we
370		 * got oom-killed)
371		 */
372		pagefault_out_of_memory();
373		return 0;
374	}
375
376	if (fault & VM_FAULT_SIGBUS) {
377		/*
378		 * We had some memory, but were unable to
379		 * successfully fix up this page fault.
380		 */
381		sig = SIGBUS;
382		code = BUS_ADRERR;
383	} else {
384		/*
385		 * Something tried to access memory that
386		 * isn't in our memory map..
387		 */
388		sig = SIGSEGV;
389		code = fault == VM_FAULT_BADACCESS ?
390			SEGV_ACCERR : SEGV_MAPERR;
391	}
392
393	__do_user_fault(addr, fsr, sig, code, regs);
394	return 0;
395
396no_context:
397	__do_kernel_fault(mm, addr, fsr, regs);
398	return 0;
399}
400#else					/* CONFIG_MMU */
401static int
402do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
403{
404	return 0;
405}
406#endif					/* CONFIG_MMU */
407
408/*
409 * First Level Translation Fault Handler
410 *
411 * We enter here because the first level page table doesn't contain
412 * a valid entry for the address.
413 *
414 * If the address is in kernel space (>= TASK_SIZE), then we are
415 * probably faulting in the vmalloc() area.
416 *
417 * If the init_task's first level page tables contains the relevant
418 * entry, we copy the it to this task.  If not, we send the process
419 * a signal, fixup the exception, or oops the kernel.
420 *
421 * NOTE! We MUST NOT take any locks for this case. We may be in an
422 * interrupt or a critical region, and should only copy the information
423 * from the master page table, nothing more.
424 */
425#ifdef CONFIG_MMU
426static int __kprobes
427do_translation_fault(unsigned long addr, unsigned int fsr,
428		     struct pt_regs *regs)
429{
430	unsigned int index;
431	pgd_t *pgd, *pgd_k;
432	p4d_t *p4d, *p4d_k;
433	pud_t *pud, *pud_k;
434	pmd_t *pmd, *pmd_k;
435
436	if (addr < TASK_SIZE)
437		return do_page_fault(addr, fsr, regs);
438
439	if (user_mode(regs))
440		goto bad_area;
441
442	index = pgd_index(addr);
443
444	pgd = cpu_get_pgd() + index;
445	pgd_k = init_mm.pgd + index;
446
447	p4d = p4d_offset(pgd, addr);
448	p4d_k = p4d_offset(pgd_k, addr);
449
450	if (p4d_none(*p4d_k))
451		goto bad_area;
452	if (!p4d_present(*p4d))
453		set_p4d(p4d, *p4d_k);
454
455	pud = pud_offset(p4d, addr);
456	pud_k = pud_offset(p4d_k, addr);
457
458	if (pud_none(*pud_k))
459		goto bad_area;
460	if (!pud_present(*pud))
461		set_pud(pud, *pud_k);
462
463	pmd = pmd_offset(pud, addr);
464	pmd_k = pmd_offset(pud_k, addr);
465
466#ifdef CONFIG_ARM_LPAE
467	/*
468	 * Only one hardware entry per PMD with LPAE.
469	 */
470	index = 0;
471#else
472	/*
473	 * On ARM one Linux PGD entry contains two hardware entries (see page
474	 * tables layout in pgtable.h). We normally guarantee that we always
475	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
476	 * It can create inidividual L1 entries, so here we have to call
477	 * pmd_none() check for the entry really corresponded to address, not
478	 * for the first of pair.
479	 */
480	index = (addr >> SECTION_SHIFT) & 1;
481#endif
482	if (pmd_none(pmd_k[index]))
483		goto bad_area;
484
485	copy_pmd(pmd, pmd_k);
486	return 0;
487
488bad_area:
489	do_bad_area(addr, fsr, regs);
490	return 0;
491}
492#else					/* CONFIG_MMU */
493static int
494do_translation_fault(unsigned long addr, unsigned int fsr,
495		     struct pt_regs *regs)
496{
497	return 0;
498}
499#endif					/* CONFIG_MMU */
500
501/*
502 * Some section permission faults need to be handled gracefully.
503 * They can happen due to a __{get,put}_user during an oops.
504 */
505#ifndef CONFIG_ARM_LPAE
506static int
507do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
508{
509	do_bad_area(addr, fsr, regs);
510	return 0;
511}
512#endif /* CONFIG_ARM_LPAE */
513
514/*
515 * This abort handler always returns "fault".
516 */
517static int
518do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
519{
520	return 1;
521}
522
523struct fsr_info {
524	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
525	int	sig;
526	int	code;
527	const char *name;
528};
529
530/* FSR definition */
531#ifdef CONFIG_ARM_LPAE
532#include "fsr-3level.c"
533#else
534#include "fsr-2level.c"
535#endif
536
537void __init
538hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
539		int sig, int code, const char *name)
540{
541	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
542		BUG();
543
544	fsr_info[nr].fn   = fn;
545	fsr_info[nr].sig  = sig;
546	fsr_info[nr].code = code;
547	fsr_info[nr].name = name;
548}
549
550/*
551 * Dispatch a data abort to the relevant handler.
552 */
553asmlinkage void
554do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
555{
556	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 
557
558	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
559		return;
560
561	pr_alert("8<--- cut here ---\n");
562	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
563		inf->name, fsr, addr);
564	show_pte(KERN_ALERT, current->mm, addr);
565
566	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
567		       fsr, 0);
 
 
 
568}
569
570void __init
571hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
572		 int sig, int code, const char *name)
573{
574	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
575		BUG();
576
577	ifsr_info[nr].fn   = fn;
578	ifsr_info[nr].sig  = sig;
579	ifsr_info[nr].code = code;
580	ifsr_info[nr].name = name;
581}
582
583asmlinkage void
584do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
585{
586	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
 
587
588	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
589		return;
590
591	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
592		inf->name, ifsr, addr);
593
594	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
595		       ifsr, 0);
 
 
 
596}
597
598/*
599 * Abort handler to be used only during first unmasking of asynchronous aborts
600 * on the boot CPU. This makes sure that the machine will not die if the
601 * firmware/bootloader left an imprecise abort pending for us to trip over.
602 */
603static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
604				      struct pt_regs *regs)
605{
606	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
607		"first unmask, this is most likely caused by a "
608		"firmware/bootloader bug.\n", fsr);
609
610	return 0;
611}
612
613void __init early_abt_enable(void)
614{
615	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
616	local_abt_enable();
617	fsr_info[FSR_FS_AEA].fn = do_bad;
618}
619
620#ifndef CONFIG_ARM_LPAE
621static int __init exceptions_init(void)
622{
623	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
624		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
625				"I-cache maintenance fault");
626	}
627
628	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
629		/*
630		 * TODO: Access flag faults introduced in ARMv6K.
631		 * Runtime check for 'K' extension is needed
632		 */
633		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
634				"section access flag fault");
635		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
636				"section access flag fault");
637	}
638
639	return 0;
640}
641
642arch_initcall(exceptions_init);
643#endif