Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
   1/*P:100
   2 * This is the Launcher code, a simple program which lays out the "physical"
   3 * memory for the new Guest by mapping the kernel image and the virtual
   4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
   5 * control it.
   6:*/
   7#define _LARGEFILE64_SOURCE
   8#define _GNU_SOURCE
   9#include <stdio.h>
  10#include <string.h>
  11#include <unistd.h>
  12#include <err.h>
  13#include <stdint.h>
  14#include <stdlib.h>
  15#include <elf.h>
  16#include <sys/mman.h>
  17#include <sys/param.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <sys/wait.h>
  21#include <sys/eventfd.h>
  22#include <fcntl.h>
  23#include <stdbool.h>
  24#include <errno.h>
  25#include <ctype.h>
  26#include <sys/socket.h>
  27#include <sys/ioctl.h>
  28#include <sys/time.h>
  29#include <time.h>
  30#include <netinet/in.h>
  31#include <net/if.h>
  32#include <linux/sockios.h>
  33#include <linux/if_tun.h>
  34#include <sys/uio.h>
  35#include <termios.h>
  36#include <getopt.h>
  37#include <assert.h>
  38#include <sched.h>
  39#include <limits.h>
  40#include <stddef.h>
  41#include <signal.h>
  42#include <pwd.h>
  43#include <grp.h>
  44#include <sys/user.h>
  45#include <linux/pci_regs.h>
  46
  47#ifndef VIRTIO_F_ANY_LAYOUT
  48#define VIRTIO_F_ANY_LAYOUT		27
  49#endif
  50
  51/*L:110
  52 * We can ignore the 43 include files we need for this program, but I do want
  53 * to draw attention to the use of kernel-style types.
  54 *
  55 * As Linus said, "C is a Spartan language, and so should your naming be."  I
  56 * like these abbreviations, so we define them here.  Note that u64 is always
  57 * unsigned long long, which works on all Linux systems: this means that we can
  58 * use %llu in printf for any u64.
  59 */
  60typedef unsigned long long u64;
  61typedef uint32_t u32;
  62typedef uint16_t u16;
  63typedef uint8_t u8;
  64/*:*/
  65
  66#define VIRTIO_CONFIG_NO_LEGACY
  67#define VIRTIO_PCI_NO_LEGACY
  68#define VIRTIO_BLK_NO_LEGACY
  69#define VIRTIO_NET_NO_LEGACY
  70
  71/* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
  72#include "../../include/uapi/linux/virtio_config.h"
  73#include "../../include/uapi/linux/virtio_net.h"
  74#include "../../include/uapi/linux/virtio_blk.h"
  75#include "../../include/uapi/linux/virtio_console.h"
  76#include "../../include/uapi/linux/virtio_rng.h"
  77#include <linux/virtio_ring.h>
  78#include "../../include/uapi/linux/virtio_pci.h"
  79#include <asm/bootparam.h>
  80#include "../../include/linux/lguest_launcher.h"
  81
  82#define BRIDGE_PFX "bridge:"
  83#ifndef SIOCBRADDIF
  84#define SIOCBRADDIF	0x89a2		/* add interface to bridge      */
  85#endif
  86/* We can have up to 256 pages for devices. */
  87#define DEVICE_PAGES 256
  88/* This will occupy 3 pages: it must be a power of 2. */
  89#define VIRTQUEUE_NUM 256
  90
  91/*L:120
  92 * verbose is both a global flag and a macro.  The C preprocessor allows
  93 * this, and although I wouldn't recommend it, it works quite nicely here.
  94 */
  95static bool verbose;
  96#define verbose(args...) \
  97	do { if (verbose) printf(args); } while(0)
  98/*:*/
  99
 100/* The pointer to the start of guest memory. */
 101static void *guest_base;
 102/* The maximum guest physical address allowed, and maximum possible. */
 103static unsigned long guest_limit, guest_max, guest_mmio;
 104/* The /dev/lguest file descriptor. */
 105static int lguest_fd;
 106
 107/* a per-cpu variable indicating whose vcpu is currently running */
 108static unsigned int __thread cpu_id;
 109
 110/* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
 111#define MAX_PCI_DEVICES 32
 112
 113/* This is our list of devices. */
 114struct device_list {
 115	/* Counter to assign interrupt numbers. */
 116	unsigned int next_irq;
 117
 118	/* Counter to print out convenient device numbers. */
 119	unsigned int device_num;
 120
 121	/* PCI devices. */
 122	struct device *pci[MAX_PCI_DEVICES];
 123};
 124
 125/* The list of Guest devices, based on command line arguments. */
 126static struct device_list devices;
 127
 128/*
 129 * Just like struct virtio_pci_cfg_cap in uapi/linux/virtio_pci.h,
 130 * but uses a u32 explicitly for the data.
 131 */
 132struct virtio_pci_cfg_cap_u32 {
 133	struct virtio_pci_cap cap;
 134	u32 pci_cfg_data; /* Data for BAR access. */
 135};
 136
 137struct virtio_pci_mmio {
 138	struct virtio_pci_common_cfg cfg;
 139	u16 notify;
 140	u8 isr;
 141	u8 padding;
 142	/* Device-specific configuration follows this. */
 143};
 144
 145/* This is the layout (little-endian) of the PCI config space. */
 146struct pci_config {
 147	u16 vendor_id, device_id;
 148	u16 command, status;
 149	u8 revid, prog_if, subclass, class;
 150	u8 cacheline_size, lat_timer, header_type, bist;
 151	u32 bar[6];
 152	u32 cardbus_cis_ptr;
 153	u16 subsystem_vendor_id, subsystem_device_id;
 154	u32 expansion_rom_addr;
 155	u8 capabilities, reserved1[3];
 156	u32 reserved2;
 157	u8 irq_line, irq_pin, min_grant, max_latency;
 158
 159	/* Now, this is the linked capability list. */
 160	struct virtio_pci_cap common;
 161	struct virtio_pci_notify_cap notify;
 162	struct virtio_pci_cap isr;
 163	struct virtio_pci_cap device;
 164	struct virtio_pci_cfg_cap_u32 cfg_access;
 165};
 166
 167/* The device structure describes a single device. */
 168struct device {
 169	/* The name of this device, for --verbose. */
 170	const char *name;
 171
 172	/* Any queues attached to this device */
 173	struct virtqueue *vq;
 174
 175	/* Is it operational */
 176	bool running;
 177
 178	/* Has it written FEATURES_OK but not re-checked it? */
 179	bool wrote_features_ok;
 180
 181	/* PCI configuration */
 182	union {
 183		struct pci_config config;
 184		u32 config_words[sizeof(struct pci_config) / sizeof(u32)];
 185	};
 186
 187	/* Features we offer, and those accepted. */
 188	u64 features, features_accepted;
 189
 190	/* Device-specific config hangs off the end of this. */
 191	struct virtio_pci_mmio *mmio;
 192
 193	/* PCI MMIO resources (all in BAR0) */
 194	size_t mmio_size;
 195	u32 mmio_addr;
 196
 197	/* Device-specific data. */
 198	void *priv;
 199};
 200
 201/* The virtqueue structure describes a queue attached to a device. */
 202struct virtqueue {
 203	struct virtqueue *next;
 204
 205	/* Which device owns me. */
 206	struct device *dev;
 207
 208	/* Name for printing errors. */
 209	const char *name;
 210
 211	/* The actual ring of buffers. */
 212	struct vring vring;
 213
 214	/* The information about this virtqueue (we only use queue_size on) */
 215	struct virtio_pci_common_cfg pci_config;
 216
 217	/* Last available index we saw. */
 218	u16 last_avail_idx;
 219
 220	/* How many are used since we sent last irq? */
 221	unsigned int pending_used;
 222
 223	/* Eventfd where Guest notifications arrive. */
 224	int eventfd;
 225
 226	/* Function for the thread which is servicing this virtqueue. */
 227	void (*service)(struct virtqueue *vq);
 228	pid_t thread;
 229};
 230
 231/* Remember the arguments to the program so we can "reboot" */
 232static char **main_args;
 233
 234/* The original tty settings to restore on exit. */
 235static struct termios orig_term;
 236
 237/*
 238 * We have to be careful with barriers: our devices are all run in separate
 239 * threads and so we need to make sure that changes visible to the Guest happen
 240 * in precise order.
 241 */
 242#define wmb() __asm__ __volatile__("" : : : "memory")
 243#define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
 244#define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
 245
 246/* Wrapper for the last available index.  Makes it easier to change. */
 247#define lg_last_avail(vq)	((vq)->last_avail_idx)
 248
 249/*
 250 * The virtio configuration space is defined to be little-endian.  x86 is
 251 * little-endian too, but it's nice to be explicit so we have these helpers.
 252 */
 253#define cpu_to_le16(v16) (v16)
 254#define cpu_to_le32(v32) (v32)
 255#define cpu_to_le64(v64) (v64)
 256#define le16_to_cpu(v16) (v16)
 257#define le32_to_cpu(v32) (v32)
 258#define le64_to_cpu(v64) (v64)
 259
 260/*
 261 * A real device would ignore weird/non-compliant driver behaviour.  We
 262 * stop and flag it, to help debugging Linux problems.
 263 */
 264#define bad_driver(d, fmt, ...) \
 265	errx(1, "%s: bad driver: " fmt, (d)->name, ## __VA_ARGS__)
 266#define bad_driver_vq(vq, fmt, ...)			       \
 267	errx(1, "%s vq %s: bad driver: " fmt, (vq)->dev->name, \
 268	     vq->name, ## __VA_ARGS__)
 269
 270/* Is this iovec empty? */
 271static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
 272{
 273	unsigned int i;
 274
 275	for (i = 0; i < num_iov; i++)
 276		if (iov[i].iov_len)
 277			return false;
 278	return true;
 279}
 280
 281/* Take len bytes from the front of this iovec. */
 282static void iov_consume(struct device *d,
 283			struct iovec iov[], unsigned num_iov,
 284			void *dest, unsigned len)
 285{
 286	unsigned int i;
 287
 288	for (i = 0; i < num_iov; i++) {
 289		unsigned int used;
 290
 291		used = iov[i].iov_len < len ? iov[i].iov_len : len;
 292		if (dest) {
 293			memcpy(dest, iov[i].iov_base, used);
 294			dest += used;
 295		}
 296		iov[i].iov_base += used;
 297		iov[i].iov_len -= used;
 298		len -= used;
 299	}
 300	if (len != 0)
 301		bad_driver(d, "iovec too short!");
 302}
 303
 304/*L:100
 305 * The Launcher code itself takes us out into userspace, that scary place where
 306 * pointers run wild and free!  Unfortunately, like most userspace programs,
 307 * it's quite boring (which is why everyone likes to hack on the kernel!).
 308 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
 309 * you through this section.  Or, maybe not.
 310 *
 311 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
 312 * memory and stores it in "guest_base".  In other words, Guest physical ==
 313 * Launcher virtual with an offset.
 314 *
 315 * This can be tough to get your head around, but usually it just means that we
 316 * use these trivial conversion functions when the Guest gives us its
 317 * "physical" addresses:
 318 */
 319static void *from_guest_phys(unsigned long addr)
 320{
 321	return guest_base + addr;
 322}
 323
 324static unsigned long to_guest_phys(const void *addr)
 325{
 326	return (addr - guest_base);
 327}
 328
 329/*L:130
 330 * Loading the Kernel.
 331 *
 332 * We start with couple of simple helper routines.  open_or_die() avoids
 333 * error-checking code cluttering the callers:
 334 */
 335static int open_or_die(const char *name, int flags)
 336{
 337	int fd = open(name, flags);
 338	if (fd < 0)
 339		err(1, "Failed to open %s", name);
 340	return fd;
 341}
 342
 343/* map_zeroed_pages() takes a number of pages. */
 344static void *map_zeroed_pages(unsigned int num)
 345{
 346	int fd = open_or_die("/dev/zero", O_RDONLY);
 347	void *addr;
 348
 349	/*
 350	 * We use a private mapping (ie. if we write to the page, it will be
 351	 * copied). We allocate an extra two pages PROT_NONE to act as guard
 352	 * pages against read/write attempts that exceed allocated space.
 353	 */
 354	addr = mmap(NULL, getpagesize() * (num+2),
 355		    PROT_NONE, MAP_PRIVATE, fd, 0);
 356
 357	if (addr == MAP_FAILED)
 358		err(1, "Mmapping %u pages of /dev/zero", num);
 359
 360	if (mprotect(addr + getpagesize(), getpagesize() * num,
 361		     PROT_READ|PROT_WRITE) == -1)
 362		err(1, "mprotect rw %u pages failed", num);
 363
 364	/*
 365	 * One neat mmap feature is that you can close the fd, and it
 366	 * stays mapped.
 367	 */
 368	close(fd);
 369
 370	/* Return address after PROT_NONE page */
 371	return addr + getpagesize();
 372}
 373
 374/* Get some bytes which won't be mapped into the guest. */
 375static unsigned long get_mmio_region(size_t size)
 376{
 377	unsigned long addr = guest_mmio;
 378	size_t i;
 379
 380	if (!size)
 381		return addr;
 382
 383	/* Size has to be a power of 2 (and multiple of 16) */
 384	for (i = 1; i < size; i <<= 1);
 385
 386	guest_mmio += i;
 387
 388	return addr;
 389}
 390
 391/*
 392 * This routine is used to load the kernel or initrd.  It tries mmap, but if
 393 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
 394 * it falls back to reading the memory in.
 395 */
 396static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
 397{
 398	ssize_t r;
 399
 400	/*
 401	 * We map writable even though for some segments are marked read-only.
 402	 * The kernel really wants to be writable: it patches its own
 403	 * instructions.
 404	 *
 405	 * MAP_PRIVATE means that the page won't be copied until a write is
 406	 * done to it.  This allows us to share untouched memory between
 407	 * Guests.
 408	 */
 409	if (mmap(addr, len, PROT_READ|PROT_WRITE,
 410		 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
 411		return;
 412
 413	/* pread does a seek and a read in one shot: saves a few lines. */
 414	r = pread(fd, addr, len, offset);
 415	if (r != len)
 416		err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
 417}
 418
 419/*
 420 * This routine takes an open vmlinux image, which is in ELF, and maps it into
 421 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
 422 * by all modern binaries on Linux including the kernel.
 423 *
 424 * The ELF headers give *two* addresses: a physical address, and a virtual
 425 * address.  We use the physical address; the Guest will map itself to the
 426 * virtual address.
 427 *
 428 * We return the starting address.
 429 */
 430static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 431{
 432	Elf32_Phdr phdr[ehdr->e_phnum];
 433	unsigned int i;
 434
 435	/*
 436	 * Sanity checks on the main ELF header: an x86 executable with a
 437	 * reasonable number of correctly-sized program headers.
 438	 */
 439	if (ehdr->e_type != ET_EXEC
 440	    || ehdr->e_machine != EM_386
 441	    || ehdr->e_phentsize != sizeof(Elf32_Phdr)
 442	    || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
 443		errx(1, "Malformed elf header");
 444
 445	/*
 446	 * An ELF executable contains an ELF header and a number of "program"
 447	 * headers which indicate which parts ("segments") of the program to
 448	 * load where.
 449	 */
 450
 451	/* We read in all the program headers at once: */
 452	if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
 453		err(1, "Seeking to program headers");
 454	if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
 455		err(1, "Reading program headers");
 456
 457	/*
 458	 * Try all the headers: there are usually only three.  A read-only one,
 459	 * a read-write one, and a "note" section which we don't load.
 460	 */
 461	for (i = 0; i < ehdr->e_phnum; i++) {
 462		/* If this isn't a loadable segment, we ignore it */
 463		if (phdr[i].p_type != PT_LOAD)
 464			continue;
 465
 466		verbose("Section %i: size %i addr %p\n",
 467			i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 468
 469		/* We map this section of the file at its physical address. */
 470		map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
 471		       phdr[i].p_offset, phdr[i].p_filesz);
 472	}
 473
 474	/* The entry point is given in the ELF header. */
 475	return ehdr->e_entry;
 476}
 477
 478/*L:150
 479 * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
 480 * to jump into it and it will unpack itself.  We used to have to perform some
 481 * hairy magic because the unpacking code scared me.
 482 *
 483 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
 484 * a small patch to jump over the tricky bits in the Guest, so now we just read
 485 * the funky header so we know where in the file to load, and away we go!
 486 */
 487static unsigned long load_bzimage(int fd)
 488{
 489	struct boot_params boot;
 490	int r;
 491	/* Modern bzImages get loaded at 1M. */
 492	void *p = from_guest_phys(0x100000);
 493
 494	/*
 495	 * Go back to the start of the file and read the header.  It should be
 496	 * a Linux boot header (see Documentation/x86/boot.txt)
 497	 */
 498	lseek(fd, 0, SEEK_SET);
 499	read(fd, &boot, sizeof(boot));
 500
 501	/* Inside the setup_hdr, we expect the magic "HdrS" */
 502	if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
 503		errx(1, "This doesn't look like a bzImage to me");
 504
 505	/* Skip over the extra sectors of the header. */
 506	lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
 507
 508	/* Now read everything into memory. in nice big chunks. */
 509	while ((r = read(fd, p, 65536)) > 0)
 510		p += r;
 511
 512	/* Finally, code32_start tells us where to enter the kernel. */
 513	return boot.hdr.code32_start;
 514}
 515
 516/*L:140
 517 * Loading the kernel is easy when it's a "vmlinux", but most kernels
 518 * come wrapped up in the self-decompressing "bzImage" format.  With a little
 519 * work, we can load those, too.
 520 */
 521static unsigned long load_kernel(int fd)
 522{
 523	Elf32_Ehdr hdr;
 524
 525	/* Read in the first few bytes. */
 526	if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
 527		err(1, "Reading kernel");
 528
 529	/* If it's an ELF file, it starts with "\177ELF" */
 530	if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
 531		return map_elf(fd, &hdr);
 532
 533	/* Otherwise we assume it's a bzImage, and try to load it. */
 534	return load_bzimage(fd);
 535}
 536
 537/*
 538 * This is a trivial little helper to align pages.  Andi Kleen hated it because
 539 * it calls getpagesize() twice: "it's dumb code."
 540 *
 541 * Kernel guys get really het up about optimization, even when it's not
 542 * necessary.  I leave this code as a reaction against that.
 543 */
 544static inline unsigned long page_align(unsigned long addr)
 545{
 546	/* Add upwards and truncate downwards. */
 547	return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 548}
 549
 550/*L:180
 551 * An "initial ram disk" is a disk image loaded into memory along with the
 552 * kernel which the kernel can use to boot from without needing any drivers.
 553 * Most distributions now use this as standard: the initrd contains the code to
 554 * load the appropriate driver modules for the current machine.
 555 *
 556 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
 557 * kernels.  He sent me this (and tells me when I break it).
 558 */
 559static unsigned long load_initrd(const char *name, unsigned long mem)
 560{
 561	int ifd;
 562	struct stat st;
 563	unsigned long len;
 564
 565	ifd = open_or_die(name, O_RDONLY);
 566	/* fstat() is needed to get the file size. */
 567	if (fstat(ifd, &st) < 0)
 568		err(1, "fstat() on initrd '%s'", name);
 569
 570	/*
 571	 * We map the initrd at the top of memory, but mmap wants it to be
 572	 * page-aligned, so we round the size up for that.
 573	 */
 574	len = page_align(st.st_size);
 575	map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
 576	/*
 577	 * Once a file is mapped, you can close the file descriptor.  It's a
 578	 * little odd, but quite useful.
 579	 */
 580	close(ifd);
 581	verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
 582
 583	/* We return the initrd size. */
 584	return len;
 585}
 586/*:*/
 587
 588/*
 589 * Simple routine to roll all the commandline arguments together with spaces
 590 * between them.
 591 */
 592static void concat(char *dst, char *args[])
 593{
 594	unsigned int i, len = 0;
 595
 596	for (i = 0; args[i]; i++) {
 597		if (i) {
 598			strcat(dst+len, " ");
 599			len++;
 600		}
 601		strcpy(dst+len, args[i]);
 602		len += strlen(args[i]);
 603	}
 604	/* In case it's empty. */
 605	dst[len] = '\0';
 606}
 607
 608/*L:185
 609 * This is where we actually tell the kernel to initialize the Guest.  We
 610 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
 611 * the base of Guest "physical" memory, the top physical page to allow and the
 612 * entry point for the Guest.
 613 */
 614static void tell_kernel(unsigned long start)
 615{
 616	unsigned long args[] = { LHREQ_INITIALIZE,
 617				 (unsigned long)guest_base,
 618				 guest_limit / getpagesize(), start,
 619				 (guest_mmio+getpagesize()-1) / getpagesize() };
 620	verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
 621		guest_base, guest_base + guest_limit,
 622		guest_limit, guest_mmio);
 623	lguest_fd = open_or_die("/dev/lguest", O_RDWR);
 624	if (write(lguest_fd, args, sizeof(args)) < 0)
 625		err(1, "Writing to /dev/lguest");
 626}
 627/*:*/
 628
 629/*L:200
 630 * Device Handling.
 631 *
 632 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
 633 * We need to make sure it's not trying to reach into the Launcher itself, so
 634 * we have a convenient routine which checks it and exits with an error message
 635 * if something funny is going on:
 636 */
 637static void *_check_pointer(struct device *d,
 638			    unsigned long addr, unsigned int size,
 639			    unsigned int line)
 640{
 641	/*
 642	 * Check if the requested address and size exceeds the allocated memory,
 643	 * or addr + size wraps around.
 644	 */
 645	if ((addr + size) > guest_limit || (addr + size) < addr)
 646		bad_driver(d, "%s:%i: Invalid address %#lx",
 647			   __FILE__, line, addr);
 648	/*
 649	 * We return a pointer for the caller's convenience, now we know it's
 650	 * safe to use.
 651	 */
 652	return from_guest_phys(addr);
 653}
 654/* A macro which transparently hands the line number to the real function. */
 655#define check_pointer(d,addr,size) _check_pointer(d, addr, size, __LINE__)
 656
 657/*
 658 * Each buffer in the virtqueues is actually a chain of descriptors.  This
 659 * function returns the next descriptor in the chain, or vq->vring.num if we're
 660 * at the end.
 661 */
 662static unsigned next_desc(struct device *d, struct vring_desc *desc,
 663			  unsigned int i, unsigned int max)
 664{
 665	unsigned int next;
 666
 667	/* If this descriptor says it doesn't chain, we're done. */
 668	if (!(desc[i].flags & VRING_DESC_F_NEXT))
 669		return max;
 670
 671	/* Check they're not leading us off end of descriptors. */
 672	next = desc[i].next;
 673	/* Make sure compiler knows to grab that: we don't want it changing! */
 674	wmb();
 675
 676	if (next >= max)
 677		bad_driver(d, "Desc next is %u", next);
 678
 679	return next;
 680}
 681
 682/*
 683 * This actually sends the interrupt for this virtqueue, if we've used a
 684 * buffer.
 685 */
 686static void trigger_irq(struct virtqueue *vq)
 687{
 688	unsigned long buf[] = { LHREQ_IRQ, vq->dev->config.irq_line };
 689
 690	/* Don't inform them if nothing used. */
 691	if (!vq->pending_used)
 692		return;
 693	vq->pending_used = 0;
 694
 695	/*
 696	 * 2.4.7.1:
 697	 *
 698	 *  If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
 699	 *    The driver MUST set flags to 0 or 1. 
 700	 */
 701	if (vq->vring.avail->flags > 1)
 702		bad_driver_vq(vq, "avail->flags = %u\n", vq->vring.avail->flags);
 703
 704	/*
 705	 * 2.4.7.2:
 706	 *
 707	 *  If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
 708	 *
 709	 *     - The device MUST ignore the used_event value.
 710	 *     - After the device writes a descriptor index into the used ring:
 711	 *         - If flags is 1, the device SHOULD NOT send an interrupt.
 712	 *         - If flags is 0, the device MUST send an interrupt.
 713	 */
 714	if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
 715		return;
 716	}
 717
 718	/*
 719	 * 4.1.4.5.1:
 720	 *
 721	 *  If MSI-X capability is disabled, the device MUST set the Queue
 722	 *  Interrupt bit in ISR status before sending a virtqueue notification
 723	 *  to the driver.
 724	 */
 725	vq->dev->mmio->isr = 0x1;
 726
 727	/* Send the Guest an interrupt tell them we used something up. */
 728	if (write(lguest_fd, buf, sizeof(buf)) != 0)
 729		err(1, "Triggering irq %i", vq->dev->config.irq_line);
 730}
 731
 732/*
 733 * This looks in the virtqueue for the first available buffer, and converts
 734 * it to an iovec for convenient access.  Since descriptors consist of some
 735 * number of output then some number of input descriptors, it's actually two
 736 * iovecs, but we pack them into one and note how many of each there were.
 737 *
 738 * This function waits if necessary, and returns the descriptor number found.
 739 */
 740static unsigned wait_for_vq_desc(struct virtqueue *vq,
 741				 struct iovec iov[],
 742				 unsigned int *out_num, unsigned int *in_num)
 743{
 744	unsigned int i, head, max;
 745	struct vring_desc *desc;
 746	u16 last_avail = lg_last_avail(vq);
 747
 748	/*
 749	 * 2.4.7.1:
 750	 *
 751	 *   The driver MUST handle spurious interrupts from the device.
 752	 *
 753	 * That's why this is a while loop.
 754	 */
 755
 756	/* There's nothing available? */
 757	while (last_avail == vq->vring.avail->idx) {
 758		u64 event;
 759
 760		/*
 761		 * Since we're about to sleep, now is a good time to tell the
 762		 * Guest about what we've used up to now.
 763		 */
 764		trigger_irq(vq);
 765
 766		/* OK, now we need to know about added descriptors. */
 767		vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
 768
 769		/*
 770		 * They could have slipped one in as we were doing that: make
 771		 * sure it's written, then check again.
 772		 */
 773		mb();
 774		if (last_avail != vq->vring.avail->idx) {
 775			vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 776			break;
 777		}
 778
 779		/* Nothing new?  Wait for eventfd to tell us they refilled. */
 780		if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
 781			errx(1, "Event read failed?");
 782
 783		/* We don't need to be notified again. */
 784		vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 785	}
 786
 787	/* Check it isn't doing very strange things with descriptor numbers. */
 788	if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
 789		bad_driver_vq(vq, "Guest moved used index from %u to %u",
 790			      last_avail, vq->vring.avail->idx);
 791
 792	/* 
 793	 * Make sure we read the descriptor number *after* we read the ring
 794	 * update; don't let the cpu or compiler change the order.
 795	 */
 796	rmb();
 797
 798	/*
 799	 * Grab the next descriptor number they're advertising, and increment
 800	 * the index we've seen.
 801	 */
 802	head = vq->vring.avail->ring[last_avail % vq->vring.num];
 803	lg_last_avail(vq)++;
 804
 805	/* If their number is silly, that's a fatal mistake. */
 806	if (head >= vq->vring.num)
 807		bad_driver_vq(vq, "Guest says index %u is available", head);
 808
 809	/* When we start there are none of either input nor output. */
 810	*out_num = *in_num = 0;
 811
 812	max = vq->vring.num;
 813	desc = vq->vring.desc;
 814	i = head;
 815
 816	/*
 817	 * We have to read the descriptor after we read the descriptor number,
 818	 * but there's a data dependency there so the CPU shouldn't reorder
 819	 * that: no rmb() required.
 820	 */
 821
 822	do {
 823		/*
 824		 * If this is an indirect entry, then this buffer contains a
 825		 * descriptor table which we handle as if it's any normal
 826		 * descriptor chain.
 827		 */
 828		if (desc[i].flags & VRING_DESC_F_INDIRECT) {
 829			/* 2.4.5.3.1:
 830			 *
 831			 *  The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
 832			 *  flag unless the VIRTIO_F_INDIRECT_DESC feature was
 833			 *  negotiated.
 834			 */
 835			if (!(vq->dev->features_accepted &
 836			      (1<<VIRTIO_RING_F_INDIRECT_DESC)))
 837				bad_driver_vq(vq, "vq indirect not negotiated");
 838
 839			/*
 840			 * 2.4.5.3.1:
 841			 *
 842			 *   The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
 843			 *   flag within an indirect descriptor (ie. only one
 844			 *   table per descriptor).
 845			 */
 846			if (desc != vq->vring.desc)
 847				bad_driver_vq(vq, "Indirect within indirect");
 848
 849			/*
 850			 * Proposed update VIRTIO-134 spells this out:
 851			 *
 852			 *   A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT
 853			 *   and VIRTQ_DESC_F_NEXT in flags.
 854			 */
 855			if (desc[i].flags & VRING_DESC_F_NEXT)
 856				bad_driver_vq(vq, "indirect and next together");
 857
 858			if (desc[i].len % sizeof(struct vring_desc))
 859				bad_driver_vq(vq,
 860					      "Invalid size for indirect table");
 861			/*
 862			 * 2.4.5.3.2:
 863			 *
 864			 *  The device MUST ignore the write-only flag
 865			 *  (flags&VIRTQ_DESC_F_WRITE) in the descriptor that
 866			 *  refers to an indirect table.
 867			 *
 868			 * We ignore it here: :)
 869			 */
 870
 871			max = desc[i].len / sizeof(struct vring_desc);
 872			desc = check_pointer(vq->dev, desc[i].addr, desc[i].len);
 873			i = 0;
 874
 875			/* 2.4.5.3.1:
 876			 *
 877			 *  A driver MUST NOT create a descriptor chain longer
 878			 *  than the Queue Size of the device.
 879			 */
 880			if (max > vq->pci_config.queue_size)
 881				bad_driver_vq(vq,
 882					      "indirect has too many entries");
 883		}
 884
 885		/* Grab the first descriptor, and check it's OK. */
 886		iov[*out_num + *in_num].iov_len = desc[i].len;
 887		iov[*out_num + *in_num].iov_base
 888			= check_pointer(vq->dev, desc[i].addr, desc[i].len);
 889		/* If this is an input descriptor, increment that count. */
 890		if (desc[i].flags & VRING_DESC_F_WRITE)
 891			(*in_num)++;
 892		else {
 893			/*
 894			 * If it's an output descriptor, they're all supposed
 895			 * to come before any input descriptors.
 896			 */
 897			if (*in_num)
 898				bad_driver_vq(vq,
 899					      "Descriptor has out after in");
 900			(*out_num)++;
 901		}
 902
 903		/* If we've got too many, that implies a descriptor loop. */
 904		if (*out_num + *in_num > max)
 905			bad_driver_vq(vq, "Looped descriptor");
 906	} while ((i = next_desc(vq->dev, desc, i, max)) != max);
 907
 908	return head;
 909}
 910
 911/*
 912 * After we've used one of their buffers, we tell the Guest about it.  Sometime
 913 * later we'll want to send them an interrupt using trigger_irq(); note that
 914 * wait_for_vq_desc() does that for us if it has to wait.
 915 */
 916static void add_used(struct virtqueue *vq, unsigned int head, int len)
 917{
 918	struct vring_used_elem *used;
 919
 920	/*
 921	 * The virtqueue contains a ring of used buffers.  Get a pointer to the
 922	 * next entry in that used ring.
 923	 */
 924	used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
 925	used->id = head;
 926	used->len = len;
 927	/* Make sure buffer is written before we update index. */
 928	wmb();
 929	vq->vring.used->idx++;
 930	vq->pending_used++;
 931}
 932
 933/* And here's the combo meal deal.  Supersize me! */
 934static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
 935{
 936	add_used(vq, head, len);
 937	trigger_irq(vq);
 938}
 939
 940/*
 941 * The Console
 942 *
 943 * We associate some data with the console for our exit hack.
 944 */
 945struct console_abort {
 946	/* How many times have they hit ^C? */
 947	int count;
 948	/* When did they start? */
 949	struct timeval start;
 950};
 951
 952/* This is the routine which handles console input (ie. stdin). */
 953static void console_input(struct virtqueue *vq)
 954{
 955	int len;
 956	unsigned int head, in_num, out_num;
 957	struct console_abort *abort = vq->dev->priv;
 958	struct iovec iov[vq->vring.num];
 959
 960	/* Make sure there's a descriptor available. */
 961	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
 962	if (out_num)
 963		bad_driver_vq(vq, "Output buffers in console in queue?");
 964
 965	/* Read into it.  This is where we usually wait. */
 966	len = readv(STDIN_FILENO, iov, in_num);
 967	if (len <= 0) {
 968		/* Ran out of input? */
 969		warnx("Failed to get console input, ignoring console.");
 970		/*
 971		 * For simplicity, dying threads kill the whole Launcher.  So
 972		 * just nap here.
 973		 */
 974		for (;;)
 975			pause();
 976	}
 977
 978	/* Tell the Guest we used a buffer. */
 979	add_used_and_trigger(vq, head, len);
 980
 981	/*
 982	 * Three ^C within one second?  Exit.
 983	 *
 984	 * This is such a hack, but works surprisingly well.  Each ^C has to
 985	 * be in a buffer by itself, so they can't be too fast.  But we check
 986	 * that we get three within about a second, so they can't be too
 987	 * slow.
 988	 */
 989	if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
 990		abort->count = 0;
 991		return;
 992	}
 993
 994	abort->count++;
 995	if (abort->count == 1)
 996		gettimeofday(&abort->start, NULL);
 997	else if (abort->count == 3) {
 998		struct timeval now;
 999		gettimeofday(&now, NULL);
1000		/* Kill all Launcher processes with SIGINT, like normal ^C */
1001		if (now.tv_sec <= abort->start.tv_sec+1)
1002			kill(0, SIGINT);
1003		abort->count = 0;
1004	}
1005}
1006
1007/* This is the routine which handles console output (ie. stdout). */
1008static void console_output(struct virtqueue *vq)
1009{
1010	unsigned int head, out, in;
1011	struct iovec iov[vq->vring.num];
1012
1013	/* We usually wait in here, for the Guest to give us something. */
1014	head = wait_for_vq_desc(vq, iov, &out, &in);
1015	if (in)
1016		bad_driver_vq(vq, "Input buffers in console output queue?");
1017
1018	/* writev can return a partial write, so we loop here. */
1019	while (!iov_empty(iov, out)) {
1020		int len = writev(STDOUT_FILENO, iov, out);
1021		if (len <= 0) {
1022			warn("Write to stdout gave %i (%d)", len, errno);
1023			break;
1024		}
1025		iov_consume(vq->dev, iov, out, NULL, len);
1026	}
1027
1028	/*
1029	 * We're finished with that buffer: if we're going to sleep,
1030	 * wait_for_vq_desc() will prod the Guest with an interrupt.
1031	 */
1032	add_used(vq, head, 0);
1033}
1034
1035/*
1036 * The Network
1037 *
1038 * Handling output for network is also simple: we get all the output buffers
1039 * and write them to /dev/net/tun.
1040 */
1041struct net_info {
1042	int tunfd;
1043};
1044
1045static void net_output(struct virtqueue *vq)
1046{
1047	struct net_info *net_info = vq->dev->priv;
1048	unsigned int head, out, in;
1049	struct iovec iov[vq->vring.num];
1050
1051	/* We usually wait in here for the Guest to give us a packet. */
1052	head = wait_for_vq_desc(vq, iov, &out, &in);
1053	if (in)
1054		bad_driver_vq(vq, "Input buffers in net output queue?");
1055	/*
1056	 * Send the whole thing through to /dev/net/tun.  It expects the exact
1057	 * same format: what a coincidence!
1058	 */
1059	if (writev(net_info->tunfd, iov, out) < 0)
1060		warnx("Write to tun failed (%d)?", errno);
1061
1062	/*
1063	 * Done with that one; wait_for_vq_desc() will send the interrupt if
1064	 * all packets are processed.
1065	 */
1066	add_used(vq, head, 0);
1067}
1068
1069/*
1070 * Handling network input is a bit trickier, because I've tried to optimize it.
1071 *
1072 * First we have a helper routine which tells is if from this file descriptor
1073 * (ie. the /dev/net/tun device) will block:
1074 */
1075static bool will_block(int fd)
1076{
1077	fd_set fdset;
1078	struct timeval zero = { 0, 0 };
1079	FD_ZERO(&fdset);
1080	FD_SET(fd, &fdset);
1081	return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
1082}
1083
1084/*
1085 * This handles packets coming in from the tun device to our Guest.  Like all
1086 * service routines, it gets called again as soon as it returns, so you don't
1087 * see a while(1) loop here.
1088 */
1089static void net_input(struct virtqueue *vq)
1090{
1091	int len;
1092	unsigned int head, out, in;
1093	struct iovec iov[vq->vring.num];
1094	struct net_info *net_info = vq->dev->priv;
1095
1096	/*
1097	 * Get a descriptor to write an incoming packet into.  This will also
1098	 * send an interrupt if they're out of descriptors.
1099	 */
1100	head = wait_for_vq_desc(vq, iov, &out, &in);
1101	if (out)
1102		bad_driver_vq(vq, "Output buffers in net input queue?");
1103
1104	/*
1105	 * If it looks like we'll block reading from the tun device, send them
1106	 * an interrupt.
1107	 */
1108	if (vq->pending_used && will_block(net_info->tunfd))
1109		trigger_irq(vq);
1110
1111	/*
1112	 * Read in the packet.  This is where we normally wait (when there's no
1113	 * incoming network traffic).
1114	 */
1115	len = readv(net_info->tunfd, iov, in);
1116	if (len <= 0)
1117		warn("Failed to read from tun (%d).", errno);
1118
1119	/*
1120	 * Mark that packet buffer as used, but don't interrupt here.  We want
1121	 * to wait until we've done as much work as we can.
1122	 */
1123	add_used(vq, head, len);
1124}
1125/*:*/
1126
1127/* This is the helper to create threads: run the service routine in a loop. */
1128static int do_thread(void *_vq)
1129{
1130	struct virtqueue *vq = _vq;
1131
1132	for (;;)
1133		vq->service(vq);
1134	return 0;
1135}
1136
1137/*
1138 * When a child dies, we kill our entire process group with SIGTERM.  This
1139 * also has the side effect that the shell restores the console for us!
1140 */
1141static void kill_launcher(int signal)
1142{
1143	kill(0, SIGTERM);
1144}
1145
1146static void reset_vq_pci_config(struct virtqueue *vq)
1147{
1148	vq->pci_config.queue_size = VIRTQUEUE_NUM;
1149	vq->pci_config.queue_enable = 0;
1150}
1151
1152static void reset_device(struct device *dev)
1153{
1154	struct virtqueue *vq;
1155
1156	verbose("Resetting device %s\n", dev->name);
1157
1158	/* Clear any features they've acked. */
1159	dev->features_accepted = 0;
1160
1161	/* We're going to be explicitly killing threads, so ignore them. */
1162	signal(SIGCHLD, SIG_IGN);
1163
1164	/*
1165	 * 4.1.4.3.1:
1166	 *
1167	 *   The device MUST present a 0 in queue_enable on reset. 
1168	 *
1169	 * This means we set it here, and reset the saved ones in every vq.
1170	 */
1171	dev->mmio->cfg.queue_enable = 0;
1172
1173	/* Get rid of the virtqueue threads */
1174	for (vq = dev->vq; vq; vq = vq->next) {
1175		vq->last_avail_idx = 0;
1176		reset_vq_pci_config(vq);
1177		if (vq->thread != (pid_t)-1) {
1178			kill(vq->thread, SIGTERM);
1179			waitpid(vq->thread, NULL, 0);
1180			vq->thread = (pid_t)-1;
1181		}
1182	}
1183	dev->running = false;
1184	dev->wrote_features_ok = false;
1185
1186	/* Now we care if threads die. */
1187	signal(SIGCHLD, (void *)kill_launcher);
1188}
1189
1190static void cleanup_devices(void)
1191{
1192	unsigned int i;
1193
1194	for (i = 1; i < MAX_PCI_DEVICES; i++) {
1195		struct device *d = devices.pci[i];
1196		if (!d)
1197			continue;
1198		reset_device(d);
1199	}
1200
1201	/* If we saved off the original terminal settings, restore them now. */
1202	if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1203		tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1204}
1205
1206/*L:217
1207 * We do PCI.  This is mainly done to let us test the kernel virtio PCI
1208 * code.
1209 */
1210
1211/* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1212static struct device pci_host_bridge;
1213
1214static void init_pci_host_bridge(void)
1215{
1216	pci_host_bridge.name = "PCI Host Bridge";
1217	pci_host_bridge.config.class = 0x06; /* bridge */
1218	pci_host_bridge.config.subclass = 0; /* host bridge */
1219	devices.pci[0] = &pci_host_bridge;
1220}
1221
1222/* The IO ports used to read the PCI config space. */
1223#define PCI_CONFIG_ADDR 0xCF8
1224#define PCI_CONFIG_DATA 0xCFC
1225
1226/*
1227 * Not really portable, but does help readability: this is what the Guest
1228 * writes to the PCI_CONFIG_ADDR IO port.
1229 */
1230union pci_config_addr {
1231	struct {
1232		unsigned mbz: 2;
1233		unsigned offset: 6;
1234		unsigned funcnum: 3;
1235		unsigned devnum: 5;
1236		unsigned busnum: 8;
1237		unsigned reserved: 7;
1238		unsigned enabled : 1;
1239	} bits;
1240	u32 val;
1241};
1242
1243/*
1244 * We cache what they wrote to the address port, so we know what they're
1245 * talking about when they access the data port.
1246 */
1247static union pci_config_addr pci_config_addr;
1248
1249static struct device *find_pci_device(unsigned int index)
1250{
1251	return devices.pci[index];
1252}
1253
1254/* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1255static void ioread(u16 off, u32 v, u32 mask, u32 *val)
1256{
1257	assert(off < 4);
1258	assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1259	*val = (v >> (off * 8)) & mask;
1260}
1261
1262/* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1263static void iowrite(u16 off, u32 v, u32 mask, u32 *dst)
1264{
1265	assert(off < 4);
1266	assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1267	*dst &= ~(mask << (off * 8));
1268	*dst |= (v & mask) << (off * 8);
1269}
1270
1271/*
1272 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1273 * PCI_CONFIG_ADDR.
1274 */
1275static struct device *dev_and_reg(u32 *reg)
1276{
1277	if (!pci_config_addr.bits.enabled)
1278		return NULL;
1279
1280	if (pci_config_addr.bits.funcnum != 0)
1281		return NULL;
1282
1283	if (pci_config_addr.bits.busnum != 0)
1284		return NULL;
1285
1286	if (pci_config_addr.bits.offset * 4 >= sizeof(struct pci_config))
1287		return NULL;
1288
1289	*reg = pci_config_addr.bits.offset;
1290	return find_pci_device(pci_config_addr.bits.devnum);
1291}
1292
1293/*
1294 * We can get invalid combinations of values while they're writing, so we
1295 * only fault if they try to write with some invalid bar/offset/length.
1296 */
1297static bool valid_bar_access(struct device *d,
1298			     struct virtio_pci_cfg_cap_u32 *cfg_access)
1299{
1300	/* We only have 1 bar (BAR0) */
1301	if (cfg_access->cap.bar != 0)
1302		return false;
1303
1304	/* Check it's within BAR0. */
1305	if (cfg_access->cap.offset >= d->mmio_size
1306	    || cfg_access->cap.offset + cfg_access->cap.length > d->mmio_size)
1307		return false;
1308
1309	/* Check length is 1, 2 or 4. */
1310	if (cfg_access->cap.length != 1
1311	    && cfg_access->cap.length != 2
1312	    && cfg_access->cap.length != 4)
1313		return false;
1314
1315	/*
1316	 * 4.1.4.7.2:
1317	 *
1318	 *  The driver MUST NOT write a cap.offset which is not a multiple of
1319	 *  cap.length (ie. all accesses MUST be aligned).
1320	 */
1321	if (cfg_access->cap.offset % cfg_access->cap.length != 0)
1322		return false;
1323
1324	/* Return pointer into word in BAR0. */
1325	return true;
1326}
1327
1328/* Is this accessing the PCI config address port?. */
1329static bool is_pci_addr_port(u16 port)
1330{
1331	return port >= PCI_CONFIG_ADDR && port < PCI_CONFIG_ADDR + 4;
1332}
1333
1334static bool pci_addr_iowrite(u16 port, u32 mask, u32 val)
1335{
1336	iowrite(port - PCI_CONFIG_ADDR, val, mask,
1337		&pci_config_addr.val);
1338	verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1339		pci_config_addr.bits.enabled ? "" : " DISABLED",
1340		val, mask,
1341		pci_config_addr.bits.busnum,
1342		pci_config_addr.bits.devnum,
1343		pci_config_addr.bits.funcnum,
1344		pci_config_addr.bits.offset);
1345	return true;
1346}
1347
1348static void pci_addr_ioread(u16 port, u32 mask, u32 *val)
1349{
1350	ioread(port - PCI_CONFIG_ADDR, pci_config_addr.val, mask, val);
1351}
1352
1353/* Is this accessing the PCI config data port?. */
1354static bool is_pci_data_port(u16 port)
1355{
1356	return port >= PCI_CONFIG_DATA && port < PCI_CONFIG_DATA + 4;
1357}
1358
1359static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask);
1360
1361static bool pci_data_iowrite(u16 port, u32 mask, u32 val)
1362{
1363	u32 reg, portoff;
1364	struct device *d = dev_and_reg(&reg);
1365
1366	/* Complain if they don't belong to a device. */
1367	if (!d)
1368		return false;
1369
1370	/* They can do 1 byte writes, etc. */
1371	portoff = port - PCI_CONFIG_DATA;
1372
1373	/*
1374	 * PCI uses a weird way to determine the BAR size: the OS
1375	 * writes all 1's, and sees which ones stick.
1376	 */
1377	if (&d->config_words[reg] == &d->config.bar[0]) {
1378		int i;
1379
1380		iowrite(portoff, val, mask, &d->config.bar[0]);
1381		for (i = 0; (1 << i) < d->mmio_size; i++)
1382			d->config.bar[0] &= ~(1 << i);
1383		return true;
1384	} else if ((&d->config_words[reg] > &d->config.bar[0]
1385		    && &d->config_words[reg] <= &d->config.bar[6])
1386		   || &d->config_words[reg] == &d->config.expansion_rom_addr) {
1387		/* Allow writing to any other BAR, or expansion ROM */
1388		iowrite(portoff, val, mask, &d->config_words[reg]);
1389		return true;
1390		/* We let them overide latency timer and cacheline size */
1391	} else if (&d->config_words[reg] == (void *)&d->config.cacheline_size) {
1392		/* Only let them change the first two fields. */
1393		if (mask == 0xFFFFFFFF)
1394			mask = 0xFFFF;
1395		iowrite(portoff, val, mask, &d->config_words[reg]);
1396		return true;
1397	} else if (&d->config_words[reg] == (void *)&d->config.command
1398		   && mask == 0xFFFF) {
1399		/* Ignore command writes. */
1400		return true;
1401	} else if (&d->config_words[reg]
1402		   == (void *)&d->config.cfg_access.cap.bar
1403		   || &d->config_words[reg]
1404		   == &d->config.cfg_access.cap.length
1405		   || &d->config_words[reg]
1406		   == &d->config.cfg_access.cap.offset) {
1407
1408		/*
1409		 * The VIRTIO_PCI_CAP_PCI_CFG capability
1410		 * provides a backdoor to access the MMIO
1411		 * regions without mapping them.  Weird, but
1412		 * useful.
1413		 */
1414		iowrite(portoff, val, mask, &d->config_words[reg]);
1415		return true;
1416	} else if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) {
1417		u32 write_mask;
1418
1419		/*
1420		 * 4.1.4.7.1:
1421		 *
1422		 *  Upon detecting driver write access to pci_cfg_data, the
1423		 *  device MUST execute a write access at offset cap.offset at
1424		 *  BAR selected by cap.bar using the first cap.length bytes
1425		 *  from pci_cfg_data.
1426		 */
1427
1428		/* Must be bar 0 */
1429		if (!valid_bar_access(d, &d->config.cfg_access))
1430			return false;
1431
1432		iowrite(portoff, val, mask, &d->config.cfg_access.pci_cfg_data);
1433
1434		/*
1435		 * Now emulate a write.  The mask we use is set by
1436		 * len, *not* this write!
1437		 */
1438		write_mask = (1ULL<<(8*d->config.cfg_access.cap.length)) - 1;
1439		verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1440			d->config.cfg_access.pci_cfg_data, write_mask,
1441			d->config.cfg_access.cap.bar,
1442			d->config.cfg_access.cap.offset,
1443			d->config.cfg_access.cap.length);
1444
1445		emulate_mmio_write(d, d->config.cfg_access.cap.offset,
1446				   d->config.cfg_access.pci_cfg_data,
1447				   write_mask);
1448		return true;
1449	}
1450
1451	/*
1452	 * 4.1.4.1:
1453	 *
1454	 *  The driver MUST NOT write into any field of the capability
1455	 *  structure, with the exception of those with cap_type
1456	 *  VIRTIO_PCI_CAP_PCI_CFG...
1457	 */
1458	return false;
1459}
1460
1461static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask);
1462
1463static void pci_data_ioread(u16 port, u32 mask, u32 *val)
1464{
1465	u32 reg;
1466	struct device *d = dev_and_reg(&reg);
1467
1468	if (!d)
1469		return;
1470
1471	/* Read through the PCI MMIO access window is special */
1472	if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) {
1473		u32 read_mask;
1474
1475		/*
1476		 * 4.1.4.7.1:
1477		 *
1478		 *  Upon detecting driver read access to pci_cfg_data, the
1479		 *  device MUST execute a read access of length cap.length at
1480		 *  offset cap.offset at BAR selected by cap.bar and store the
1481		 *  first cap.length bytes in pci_cfg_data.
1482		 */
1483		/* Must be bar 0 */
1484		if (!valid_bar_access(d, &d->config.cfg_access))
1485			bad_driver(d,
1486			     "Invalid cfg_access to bar%u, offset %u len %u",
1487			     d->config.cfg_access.cap.bar,
1488			     d->config.cfg_access.cap.offset,
1489			     d->config.cfg_access.cap.length);
1490
1491		/*
1492		 * Read into the window.  The mask we use is set by
1493		 * len, *not* this read!
1494		 */
1495		read_mask = (1ULL<<(8*d->config.cfg_access.cap.length))-1;
1496		d->config.cfg_access.pci_cfg_data
1497			= emulate_mmio_read(d,
1498					    d->config.cfg_access.cap.offset,
1499					    read_mask);
1500		verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1501			d->config.cfg_access.pci_cfg_data, read_mask,
1502			d->config.cfg_access.cap.bar,
1503			d->config.cfg_access.cap.offset,
1504			d->config.cfg_access.cap.length);
1505	}
1506	ioread(port - PCI_CONFIG_DATA, d->config_words[reg], mask, val);
1507}
1508
1509/*L:216
1510 * This is where we emulate a handful of Guest instructions.  It's ugly
1511 * and we used to do it in the kernel but it grew over time.
1512 */
1513
1514/*
1515 * We use the ptrace syscall's pt_regs struct to talk about registers
1516 * to lguest: these macros convert the names to the offsets.
1517 */
1518#define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1519#define setreg(name, val) \
1520	setreg_off(offsetof(struct user_regs_struct, name), (val))
1521
1522static u32 getreg_off(size_t offset)
1523{
1524	u32 r;
1525	unsigned long args[] = { LHREQ_GETREG, offset };
1526
1527	if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1528		err(1, "Getting register %u", offset);
1529	if (pread(lguest_fd, &r, sizeof(r), cpu_id) != sizeof(r))
1530		err(1, "Reading register %u", offset);
1531
1532	return r;
1533}
1534
1535static void setreg_off(size_t offset, u32 val)
1536{
1537	unsigned long args[] = { LHREQ_SETREG, offset, val };
1538
1539	if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1540		err(1, "Setting register %u", offset);
1541}
1542
1543/* Get register by instruction encoding */
1544static u32 getreg_num(unsigned regnum, u32 mask)
1545{
1546	/* 8 bit ops use regnums 4-7 for high parts of word */
1547	if (mask == 0xFF && (regnum & 0x4))
1548		return getreg_num(regnum & 0x3, 0xFFFF) >> 8;
1549
1550	switch (regnum) {
1551	case 0: return getreg(eax) & mask;
1552	case 1: return getreg(ecx) & mask;
1553	case 2: return getreg(edx) & mask;
1554	case 3: return getreg(ebx) & mask;
1555	case 4: return getreg(esp) & mask;
1556	case 5: return getreg(ebp) & mask;
1557	case 6: return getreg(esi) & mask;
1558	case 7: return getreg(edi) & mask;
1559	}
1560	abort();
1561}
1562
1563/* Set register by instruction encoding */
1564static void setreg_num(unsigned regnum, u32 val, u32 mask)
1565{
1566	/* Don't try to set bits out of range */
1567	assert(~(val & ~mask));
1568
1569	/* 8 bit ops use regnums 4-7 for high parts of word */
1570	if (mask == 0xFF && (regnum & 0x4)) {
1571		/* Construct the 16 bits we want. */
1572		val = (val << 8) | getreg_num(regnum & 0x3, 0xFF);
1573		setreg_num(regnum & 0x3, val, 0xFFFF);
1574		return;
1575	}
1576
1577	switch (regnum) {
1578	case 0: setreg(eax, val | (getreg(eax) & ~mask)); return;
1579	case 1: setreg(ecx, val | (getreg(ecx) & ~mask)); return;
1580	case 2: setreg(edx, val | (getreg(edx) & ~mask)); return;
1581	case 3: setreg(ebx, val | (getreg(ebx) & ~mask)); return;
1582	case 4: setreg(esp, val | (getreg(esp) & ~mask)); return;
1583	case 5: setreg(ebp, val | (getreg(ebp) & ~mask)); return;
1584	case 6: setreg(esi, val | (getreg(esi) & ~mask)); return;
1585	case 7: setreg(edi, val | (getreg(edi) & ~mask)); return;
1586	}
1587	abort();
1588}
1589
1590/* Get bytes of displacement appended to instruction, from r/m encoding */
1591static u32 insn_displacement_len(u8 mod_reg_rm)
1592{
1593	/* Switch on the mod bits */
1594	switch (mod_reg_rm >> 6) {
1595	case 0:
1596		/* If mod == 0, and r/m == 101, 16-bit displacement follows */
1597		if ((mod_reg_rm & 0x7) == 0x5)
1598			return 2;
1599		/* Normally, mod == 0 means no literal displacement */
1600		return 0;
1601	case 1:
1602		/* One byte displacement */
1603		return 1;
1604	case 2:
1605		/* Four byte displacement */
1606		return 4;
1607	case 3:
1608		/* Register mode */
1609		return 0;
1610	}
1611	abort();
1612}
1613
1614static void emulate_insn(const u8 insn[])
1615{
1616	unsigned long args[] = { LHREQ_TRAP, 13 };
1617	unsigned int insnlen = 0, in = 0, small_operand = 0, byte_access;
1618	unsigned int eax, port, mask;
1619	/*
1620	 * Default is to return all-ones on IO port reads, which traditionally
1621	 * means "there's nothing there".
1622	 */
1623	u32 val = 0xFFFFFFFF;
1624
1625	/*
1626	 * This must be the Guest kernel trying to do something, not userspace!
1627	 * The bottom two bits of the CS segment register are the privilege
1628	 * level.
1629	 */
1630	if ((getreg(xcs) & 3) != 0x1)
1631		goto no_emulate;
1632
1633	/* Decoding x86 instructions is icky. */
1634
1635	/*
1636	 * Around 2.6.33, the kernel started using an emulation for the
1637	 * cmpxchg8b instruction in early boot on many configurations.  This
1638	 * code isn't paravirtualized, and it tries to disable interrupts.
1639	 * Ignore it, which will Mostly Work.
1640	 */
1641	if (insn[insnlen] == 0xfa) {
1642		/* "cli", or Clear Interrupt Enable instruction.  Skip it. */
1643		insnlen = 1;
1644		goto skip_insn;
1645	}
1646
1647	/*
1648	 * 0x66 is an "operand prefix".  It means a 16, not 32 bit in/out.
1649	 */
1650	if (insn[insnlen] == 0x66) {
1651		small_operand = 1;
1652		/* The instruction is 1 byte so far, read the next byte. */
1653		insnlen = 1;
1654	}
1655
1656	/* If the lower bit isn't set, it's a single byte access */
1657	byte_access = !(insn[insnlen] & 1);
1658
1659	/*
1660	 * Now we can ignore the lower bit and decode the 4 opcodes
1661	 * we need to emulate.
1662	 */
1663	switch (insn[insnlen] & 0xFE) {
1664	case 0xE4: /* in     <next byte>,%al */
1665		port = insn[insnlen+1];
1666		insnlen += 2;
1667		in = 1;
1668		break;
1669	case 0xEC: /* in     (%dx),%al */
1670		port = getreg(edx) & 0xFFFF;
1671		insnlen += 1;
1672		in = 1;
1673		break;
1674	case 0xE6: /* out    %al,<next byte> */
1675		port = insn[insnlen+1];
1676		insnlen += 2;
1677		break;
1678	case 0xEE: /* out    %al,(%dx) */
1679		port = getreg(edx) & 0xFFFF;
1680		insnlen += 1;
1681		break;
1682	default:
1683		/* OK, we don't know what this is, can't emulate. */
1684		goto no_emulate;
1685	}
1686
1687	/* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1688	if (byte_access)
1689		mask = 0xFF;
1690	else if (small_operand)
1691		mask = 0xFFFF;
1692	else
1693		mask = 0xFFFFFFFF;
1694
1695	/*
1696	 * If it was an "IN" instruction, they expect the result to be read
1697	 * into %eax, so we change %eax.
1698	 */
1699	eax = getreg(eax);
1700
1701	if (in) {
1702		/* This is the PS/2 keyboard status; 1 means ready for output */
1703		if (port == 0x64)
1704			val = 1;
1705		else if (is_pci_addr_port(port))
1706			pci_addr_ioread(port, mask, &val);
1707		else if (is_pci_data_port(port))
1708			pci_data_ioread(port, mask, &val);
1709
1710		/* Clear the bits we're about to read */
1711		eax &= ~mask;
1712		/* Copy bits in from val. */
1713		eax |= val & mask;
1714		/* Now update the register. */
1715		setreg(eax, eax);
1716	} else {
1717		if (is_pci_addr_port(port)) {
1718			if (!pci_addr_iowrite(port, mask, eax))
1719				goto bad_io;
1720		} else if (is_pci_data_port(port)) {
1721			if (!pci_data_iowrite(port, mask, eax))
1722				goto bad_io;
1723		}
1724		/* There are many other ports, eg. CMOS clock, serial
1725		 * and parallel ports, so we ignore them all. */
1726	}
1727
1728	verbose("IO %s of %x to %u: %#08x\n",
1729		in ? "IN" : "OUT", mask, port, eax);
1730skip_insn:
1731	/* Finally, we've "done" the instruction, so move past it. */
1732	setreg(eip, getreg(eip) + insnlen);
1733	return;
1734
1735bad_io:
1736	warnx("Attempt to %s port %u (%#x mask)",
1737	      in ? "read from" : "write to", port, mask);
1738
1739no_emulate:
1740	/* Inject trap into Guest. */
1741	if (write(lguest_fd, args, sizeof(args)) < 0)
1742		err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip));
1743}
1744
1745static struct device *find_mmio_region(unsigned long paddr, u32 *off)
1746{
1747	unsigned int i;
1748
1749	for (i = 1; i < MAX_PCI_DEVICES; i++) {
1750		struct device *d = devices.pci[i];
1751
1752		if (!d)
1753			continue;
1754		if (paddr < d->mmio_addr)
1755			continue;
1756		if (paddr >= d->mmio_addr + d->mmio_size)
1757			continue;
1758		*off = paddr - d->mmio_addr;
1759		return d;
1760	}
1761	return NULL;
1762}
1763
1764/* FIXME: Use vq array. */
1765static struct virtqueue *vq_by_num(struct device *d, u32 num)
1766{
1767	struct virtqueue *vq = d->vq;
1768
1769	while (num-- && vq)
1770		vq = vq->next;
1771
1772	return vq;
1773}
1774
1775static void save_vq_config(const struct virtio_pci_common_cfg *cfg,
1776			   struct virtqueue *vq)
1777{
1778	vq->pci_config = *cfg;
1779}
1780
1781static void restore_vq_config(struct virtio_pci_common_cfg *cfg,
1782			      struct virtqueue *vq)
1783{
1784	/* Only restore the per-vq part */
1785	size_t off = offsetof(struct virtio_pci_common_cfg, queue_size);
1786
1787	memcpy((void *)cfg + off, (void *)&vq->pci_config + off,
1788	       sizeof(*cfg) - off);
1789}
1790
1791/*
1792 * 4.1.4.3.2:
1793 *
1794 *  The driver MUST configure the other virtqueue fields before
1795 *  enabling the virtqueue with queue_enable.
1796 *
1797 * When they enable the virtqueue, we check that their setup is valid.
1798 */
1799static void check_virtqueue(struct device *d, struct virtqueue *vq)
1800{
1801	/* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1802	if (vq->pci_config.queue_desc_hi
1803	    || vq->pci_config.queue_avail_hi
1804	    || vq->pci_config.queue_used_hi)
1805		bad_driver_vq(vq, "invalid 64-bit queue address");
1806
1807	/*
1808	 * 2.4.1:
1809	 *
1810	 *  The driver MUST ensure that the physical address of the first byte
1811	 *  of each virtqueue part is a multiple of the specified alignment
1812	 *  value in the above table.
1813	 */
1814	if (vq->pci_config.queue_desc_lo % 16
1815	    || vq->pci_config.queue_avail_lo % 2
1816	    || vq->pci_config.queue_used_lo % 4)
1817		bad_driver_vq(vq, "invalid alignment in queue addresses");
1818
1819	/* Initialize the virtqueue and check they're all in range. */
1820	vq->vring.num = vq->pci_config.queue_size;
1821	vq->vring.desc = check_pointer(vq->dev,
1822				       vq->pci_config.queue_desc_lo,
1823				       sizeof(*vq->vring.desc) * vq->vring.num);
1824	vq->vring.avail = check_pointer(vq->dev,
1825					vq->pci_config.queue_avail_lo,
1826					sizeof(*vq->vring.avail)
1827					+ (sizeof(vq->vring.avail->ring[0])
1828					   * vq->vring.num));
1829	vq->vring.used = check_pointer(vq->dev,
1830				       vq->pci_config.queue_used_lo,
1831				       sizeof(*vq->vring.used)
1832				       + (sizeof(vq->vring.used->ring[0])
1833					  * vq->vring.num));
1834
1835	/*
1836	 * 2.4.9.1:
1837	 *
1838	 *   The driver MUST initialize flags in the used ring to 0
1839	 *   when allocating the used ring.
1840	 */
1841	if (vq->vring.used->flags != 0)
1842		bad_driver_vq(vq, "invalid initial used.flags %#x",
1843			      vq->vring.used->flags);
1844}
1845
1846static void start_virtqueue(struct virtqueue *vq)
1847{
1848	/*
1849	 * Create stack for thread.  Since the stack grows upwards, we point
1850	 * the stack pointer to the end of this region.
1851	 */
1852	char *stack = malloc(32768);
1853
1854	/* Create a zero-initialized eventfd. */
1855	vq->eventfd = eventfd(0, 0);
1856	if (vq->eventfd < 0)
1857		err(1, "Creating eventfd");
1858
1859	/*
1860	 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1861	 * we get a signal if it dies.
1862	 */
1863	vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1864	if (vq->thread == (pid_t)-1)
1865		err(1, "Creating clone");
1866}
1867
1868static void start_virtqueues(struct device *d)
1869{
1870	struct virtqueue *vq;
1871
1872	for (vq = d->vq; vq; vq = vq->next) {
1873		if (vq->pci_config.queue_enable)
1874			start_virtqueue(vq);
1875	}
1876}
1877
1878static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask)
1879{
1880	struct virtqueue *vq;
1881
1882	switch (off) {
1883	case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1884		/*
1885		 * 4.1.4.3.1:
1886		 *
1887		 * The device MUST present the feature bits it is offering in
1888		 * device_feature, starting at bit device_feature_select ∗ 32
1889		 * for any device_feature_select written by the driver
1890		 */
1891		if (val == 0)
1892			d->mmio->cfg.device_feature = d->features;
1893		else if (val == 1)
1894			d->mmio->cfg.device_feature = (d->features >> 32);
1895		else
1896			d->mmio->cfg.device_feature = 0;
1897		goto feature_write_through32;
1898	case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1899		if (val > 1)
1900			bad_driver(d, "Unexpected driver select %u", val);
1901		goto feature_write_through32;
1902	case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1903		if (d->mmio->cfg.guest_feature_select == 0) {
1904			d->features_accepted &= ~((u64)0xFFFFFFFF);
1905			d->features_accepted |= val;
1906		} else {
1907			assert(d->mmio->cfg.guest_feature_select == 1);
1908			d->features_accepted &= 0xFFFFFFFF;
1909			d->features_accepted |= ((u64)val) << 32;
1910		}
1911		/*
1912		 * 2.2.1:
1913		 *
1914		 *   The driver MUST NOT accept a feature which the device did
1915		 *   not offer
1916		 */
1917		if (d->features_accepted & ~d->features)
1918			bad_driver(d, "over-accepted features %#llx of %#llx",
1919				   d->features_accepted, d->features);
1920		goto feature_write_through32;
1921	case offsetof(struct virtio_pci_mmio, cfg.device_status): {
1922		u8 prev;
1923
1924		verbose("%s: device status -> %#x\n", d->name, val);
1925		/*
1926		 * 4.1.4.3.1:
1927		 * 
1928		 *  The device MUST reset when 0 is written to device_status,
1929		 *  and present a 0 in device_status once that is done.
1930		 */
1931		if (val == 0) {
1932			reset_device(d);
1933			goto write_through8;
1934		}
1935
1936		/* 2.1.1: The driver MUST NOT clear a device status bit. */
1937		if (d->mmio->cfg.device_status & ~val)
1938			bad_driver(d, "unset of device status bit %#x -> %#x",
1939				   d->mmio->cfg.device_status, val);
1940
1941		/*
1942		 * 2.1.2:
1943		 *
1944		 *  The device MUST NOT consume buffers or notify the driver
1945		 *  before DRIVER_OK.
1946		 */
1947		if (val & VIRTIO_CONFIG_S_DRIVER_OK
1948		    && !(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK))
1949			start_virtqueues(d);
1950
1951		/*
1952		 * 3.1.1:
1953		 *
1954		 *   The driver MUST follow this sequence to initialize a device:
1955		 *   - Reset the device.
1956		 *   - Set the ACKNOWLEDGE status bit: the guest OS has
1957                 *     notice the device.
1958		 *   - Set the DRIVER status bit: the guest OS knows how
1959                 *     to drive the device.
1960		 *   - Read device feature bits, and write the subset
1961		 *     of feature bits understood by the OS and driver
1962		 *     to the device. During this step the driver MAY
1963		 *     read (but MUST NOT write) the device-specific
1964		 *     configuration fields to check that it can
1965		 *     support the device before accepting it.
1966		 *   - Set the FEATURES_OK status bit.  The driver
1967		 *     MUST not accept new feature bits after this
1968		 *     step.
1969		 *   - Re-read device status to ensure the FEATURES_OK
1970		 *     bit is still set: otherwise, the device does
1971		 *     not support our subset of features and the
1972		 *     device is unusable.
1973		 *   - Perform device-specific setup, including
1974		 *     discovery of virtqueues for the device,
1975		 *     optional per-bus setup, reading and possibly
1976		 *     writing the device’s virtio configuration
1977		 *     space, and population of virtqueues.
1978		 *   - Set the DRIVER_OK status bit. At this point the
1979                 *     device is “live”.
1980		 */
1981		prev = 0;
1982		switch (val & ~d->mmio->cfg.device_status) {
1983		case VIRTIO_CONFIG_S_DRIVER_OK:
1984			prev |= VIRTIO_CONFIG_S_FEATURES_OK; /* fall thru */
1985		case VIRTIO_CONFIG_S_FEATURES_OK:
1986			prev |= VIRTIO_CONFIG_S_DRIVER; /* fall thru */
1987		case VIRTIO_CONFIG_S_DRIVER:
1988			prev |= VIRTIO_CONFIG_S_ACKNOWLEDGE; /* fall thru */
1989		case VIRTIO_CONFIG_S_ACKNOWLEDGE:
1990			break;
1991		default:
1992			bad_driver(d, "unknown device status bit %#x -> %#x",
1993				   d->mmio->cfg.device_status, val);
1994		}
1995		if (d->mmio->cfg.device_status != prev)
1996			bad_driver(d, "unexpected status transition %#x -> %#x",
1997				   d->mmio->cfg.device_status, val);
1998
1999		/* If they just wrote FEATURES_OK, we make sure they read */
2000		switch (val & ~d->mmio->cfg.device_status) {
2001		case VIRTIO_CONFIG_S_FEATURES_OK:
2002			d->wrote_features_ok = true;
2003			break;
2004		case VIRTIO_CONFIG_S_DRIVER_OK:
2005			if (d->wrote_features_ok)
2006				bad_driver(d, "did not re-read FEATURES_OK");
2007			break;
2008		}
2009		goto write_through8;
2010	}
2011	case offsetof(struct virtio_pci_mmio, cfg.queue_select):
2012		vq = vq_by_num(d, val);
2013		/*
2014		 * 4.1.4.3.1:
2015		 *
2016		 *  The device MUST present a 0 in queue_size if the virtqueue
2017		 *  corresponding to the current queue_select is unavailable.
2018		 */
2019		if (!vq) {
2020			d->mmio->cfg.queue_size = 0;
2021			goto write_through16;
2022		}
2023		/* Save registers for old vq, if it was a valid vq */
2024		if (d->mmio->cfg.queue_size)
2025			save_vq_config(&d->mmio->cfg,
2026				       vq_by_num(d, d->mmio->cfg.queue_select));
2027		/* Restore the registers for the queue they asked for */
2028		restore_vq_config(&d->mmio->cfg, vq);
2029		goto write_through16;
2030	case offsetof(struct virtio_pci_mmio, cfg.queue_size):
2031		/*
2032		 * 4.1.4.3.2:
2033		 *
2034		 *  The driver MUST NOT write a value which is not a power of 2
2035		 *  to queue_size.
2036		 */
2037		if (val & (val-1))
2038			bad_driver(d, "invalid queue size %u", val);
2039		if (d->mmio->cfg.queue_enable)
2040			bad_driver(d, "changing queue size on live device");
2041		goto write_through16;
2042	case offsetof(struct virtio_pci_mmio, cfg.queue_msix_vector):
2043		bad_driver(d, "attempt to set MSIX vector to %u", val);
2044	case offsetof(struct virtio_pci_mmio, cfg.queue_enable): {
2045		struct virtqueue *vq = vq_by_num(d, d->mmio->cfg.queue_select);
2046
2047		/*
2048		 * 4.1.4.3.2:
2049		 *
2050		 *  The driver MUST NOT write a 0 to queue_enable.
2051		 */
2052		if (val != 1)
2053			bad_driver(d, "setting queue_enable to %u", val);
2054
2055		/*
2056		 * 3.1.1:
2057		 *
2058		 *  7. Perform device-specific setup, including discovery of
2059		 *     virtqueues for the device, optional per-bus setup,
2060		 *     reading and possibly writing the device’s virtio
2061		 *     configuration space, and population of virtqueues.
2062		 *  8. Set the DRIVER_OK status bit.
2063		 *
2064		 * All our devices require all virtqueues to be enabled, so
2065		 * they should have done that before setting DRIVER_OK.
2066		 */
2067		if (d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK)
2068			bad_driver(d, "enabling vq after DRIVER_OK");
2069
2070		d->mmio->cfg.queue_enable = val;
2071		save_vq_config(&d->mmio->cfg, vq);
2072		check_virtqueue(d, vq);
2073		goto write_through16;
2074	}
2075	case offsetof(struct virtio_pci_mmio, cfg.queue_notify_off):
2076		bad_driver(d, "attempt to write to queue_notify_off");
2077	case offsetof(struct virtio_pci_mmio, cfg.queue_desc_lo):
2078	case offsetof(struct virtio_pci_mmio, cfg.queue_desc_hi):
2079	case offsetof(struct virtio_pci_mmio, cfg.queue_avail_lo):
2080	case offsetof(struct virtio_pci_mmio, cfg.queue_avail_hi):
2081	case offsetof(struct virtio_pci_mmio, cfg.queue_used_lo):
2082	case offsetof(struct virtio_pci_mmio, cfg.queue_used_hi):
2083		/*
2084		 * 4.1.4.3.2:
2085		 *
2086		 *  The driver MUST configure the other virtqueue fields before
2087		 *  enabling the virtqueue with queue_enable.
2088		 */
2089		if (d->mmio->cfg.queue_enable)
2090			bad_driver(d, "changing queue on live device");
2091
2092		/*
2093		 * 3.1.1:
2094		 *
2095		 *  The driver MUST follow this sequence to initialize a device:
2096		 *...
2097		 *  5. Set the FEATURES_OK status bit. The driver MUST not
2098		 *  accept new feature bits after this step.
2099		 */
2100		if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_FEATURES_OK))
2101			bad_driver(d, "setting up vq before FEATURES_OK");
2102
2103		/*
2104		 *  6. Re-read device status to ensure the FEATURES_OK bit is
2105		 *     still set...
2106		 */
2107		if (d->wrote_features_ok)
2108			bad_driver(d, "didn't re-read FEATURES_OK before setup");
2109
2110		goto write_through32;
2111	case offsetof(struct virtio_pci_mmio, notify):
2112		vq = vq_by_num(d, val);
2113		if (!vq)
2114			bad_driver(d, "Invalid vq notification on %u", val);
2115		/* Notify the process handling this vq by adding 1 to eventfd */
2116		write(vq->eventfd, "\1\0\0\0\0\0\0\0", 8);
2117		goto write_through16;
2118	case offsetof(struct virtio_pci_mmio, isr):
2119		bad_driver(d, "Unexpected write to isr");
2120	/* Weird corner case: write to emerg_wr of console */
2121	case sizeof(struct virtio_pci_mmio)
2122		+ offsetof(struct virtio_console_config, emerg_wr):
2123		if (strcmp(d->name, "console") == 0) {
2124			char c = val;
2125			write(STDOUT_FILENO, &c, 1);
2126			goto write_through32;
2127		}
2128		/* Fall through... */
2129	default:
2130		/*
2131		 * 4.1.4.3.2:
2132		 *
2133		 *   The driver MUST NOT write to device_feature, num_queues,
2134		 *   config_generation or queue_notify_off.
2135		 */
2136		bad_driver(d, "Unexpected write to offset %u", off);
2137	}
2138
2139feature_write_through32:
2140	/*
2141	 * 3.1.1:
2142	 *
2143	 *   The driver MUST follow this sequence to initialize a device:
2144	 *...
2145	 *   - Set the DRIVER status bit: the guest OS knows how
2146	 *     to drive the device.
2147	 *   - Read device feature bits, and write the subset
2148	 *     of feature bits understood by the OS and driver
2149	 *     to the device.
2150	 *...
2151	 *   - Set the FEATURES_OK status bit. The driver MUST not
2152	 *     accept new feature bits after this step.
2153	 */
2154	if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER))
2155		bad_driver(d, "feature write before VIRTIO_CONFIG_S_DRIVER");
2156	if (d->mmio->cfg.device_status & VIRTIO_CONFIG_S_FEATURES_OK)
2157		bad_driver(d, "feature write after VIRTIO_CONFIG_S_FEATURES_OK");
2158
2159	/*
2160	 * 4.1.3.1:
2161	 *
2162	 *  The driver MUST access each field using the “natural” access
2163	 *  method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2164	 *  16-bit fields and 8-bit accesses for 8-bit fields.
2165	 */
2166write_through32:
2167	if (mask != 0xFFFFFFFF) {
2168		bad_driver(d, "non-32-bit write to offset %u (%#x)",
2169			   off, getreg(eip));
2170		return;
2171	}
2172	memcpy((char *)d->mmio + off, &val, 4);
2173	return;
2174
2175write_through16:
2176	if (mask != 0xFFFF)
2177		bad_driver(d, "non-16-bit write to offset %u (%#x)",
2178			   off, getreg(eip));
2179	memcpy((char *)d->mmio + off, &val, 2);
2180	return;
2181
2182write_through8:
2183	if (mask != 0xFF)
2184		bad_driver(d, "non-8-bit write to offset %u (%#x)",
2185			   off, getreg(eip));
2186	memcpy((char *)d->mmio + off, &val, 1);
2187	return;
2188}
2189
2190static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask)
2191{
2192	u8 isr;
2193	u32 val = 0;
2194
2195	switch (off) {
2196	case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
2197	case offsetof(struct virtio_pci_mmio, cfg.device_feature):
2198	case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
2199	case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
2200		/*
2201		 * 3.1.1:
2202		 *
2203		 *   The driver MUST follow this sequence to initialize a device:
2204		 *...
2205		 *   - Set the DRIVER status bit: the guest OS knows how
2206		 *     to drive the device.
2207		 *   - Read device feature bits, and write the subset
2208		 *     of feature bits understood by the OS and driver
2209		 *     to the device.
2210		 */
2211		if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER))
2212			bad_driver(d,
2213				   "feature read before VIRTIO_CONFIG_S_DRIVER");
2214		goto read_through32;
2215	case offsetof(struct virtio_pci_mmio, cfg.msix_config):
2216		bad_driver(d, "read of msix_config");
2217	case offsetof(struct virtio_pci_mmio, cfg.num_queues):
2218		goto read_through16;
2219	case offsetof(struct virtio_pci_mmio, cfg.device_status):
2220		/* As they did read, any write of FEATURES_OK is now fine. */
2221		d->wrote_features_ok = false;
2222		goto read_through8;
2223	case offsetof(struct virtio_pci_mmio, cfg.config_generation):
2224		/*
2225		 * 4.1.4.3.1:
2226		 *
2227		 *  The device MUST present a changed config_generation after
2228		 *  the driver has read a device-specific configuration value
2229		 *  which has changed since any part of the device-specific
2230		 *  configuration was last read.
2231		 *
2232		 * This is simple: none of our devices change config, so this
2233		 * is always 0.
2234		 */
2235		goto read_through8;
2236	case offsetof(struct virtio_pci_mmio, notify):
2237		/*
2238		 * 3.1.1:
2239		 *
2240		 *   The driver MUST NOT notify the device before setting
2241		 *   DRIVER_OK.
2242		 */
2243		if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK))
2244			bad_driver(d, "notify before VIRTIO_CONFIG_S_DRIVER_OK");
2245		goto read_through16;
2246	case offsetof(struct virtio_pci_mmio, isr):
2247		if (mask != 0xFF)
2248			bad_driver(d, "non-8-bit read from offset %u (%#x)",
2249				   off, getreg(eip));
2250		isr = d->mmio->isr;
2251		/*
2252		 * 4.1.4.5.1:
2253		 *
2254		 *  The device MUST reset ISR status to 0 on driver read. 
2255		 */
2256		d->mmio->isr = 0;
2257		return isr;
2258	case offsetof(struct virtio_pci_mmio, padding):
2259		bad_driver(d, "read from padding (%#x)", getreg(eip));
2260	default:
2261		/* Read from device config space, beware unaligned overflow */
2262		if (off > d->mmio_size - 4)
2263			bad_driver(d, "read past end (%#x)", getreg(eip));
2264
2265		/*
2266		 * 3.1.1:
2267		 *  The driver MUST follow this sequence to initialize a device:
2268		 *...
2269		 *  3. Set the DRIVER status bit: the guest OS knows how to
2270		 *  drive the device.
2271		 *  4. Read device feature bits, and write the subset of
2272		 *  feature bits understood by the OS and driver to the
2273		 *  device. During this step the driver MAY read (but MUST NOT
2274		 *  write) the device-specific configuration fields to check
2275		 *  that it can support the device before accepting it.
2276		 */
2277		if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER))
2278			bad_driver(d,
2279				   "config read before VIRTIO_CONFIG_S_DRIVER");
2280
2281		if (mask == 0xFFFFFFFF)
2282			goto read_through32;
2283		else if (mask == 0xFFFF)
2284			goto read_through16;
2285		else
2286			goto read_through8;
2287	}
2288
2289	/*
2290	 * 4.1.3.1:
2291	 *
2292	 *  The driver MUST access each field using the “natural” access
2293	 *  method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2294	 *  16-bit fields and 8-bit accesses for 8-bit fields.
2295	 */
2296read_through32:
2297	if (mask != 0xFFFFFFFF)
2298		bad_driver(d, "non-32-bit read to offset %u (%#x)",
2299			   off, getreg(eip));
2300	memcpy(&val, (char *)d->mmio + off, 4);
2301	return val;
2302
2303read_through16:
2304	if (mask != 0xFFFF)
2305		bad_driver(d, "non-16-bit read to offset %u (%#x)",
2306			   off, getreg(eip));
2307	memcpy(&val, (char *)d->mmio + off, 2);
2308	return val;
2309
2310read_through8:
2311	if (mask != 0xFF)
2312		bad_driver(d, "non-8-bit read to offset %u (%#x)",
2313			   off, getreg(eip));
2314	memcpy(&val, (char *)d->mmio + off, 1);
2315	return val;
2316}
2317
2318static void emulate_mmio(unsigned long paddr, const u8 *insn)
2319{
2320	u32 val, off, mask = 0xFFFFFFFF, insnlen = 0;
2321	struct device *d = find_mmio_region(paddr, &off);
2322	unsigned long args[] = { LHREQ_TRAP, 14 };
2323
2324	if (!d) {
2325		warnx("MMIO touching %#08lx (not a device)", paddr);
2326		goto reinject;
2327	}
2328
2329	/* Prefix makes it a 16 bit op */
2330	if (insn[0] == 0x66) {
2331		mask = 0xFFFF;
2332		insnlen++;
2333	}
2334
2335	/* iowrite */
2336	if (insn[insnlen] == 0x89) {
2337		/* Next byte is r/m byte: bits 3-5 are register. */
2338		val = getreg_num((insn[insnlen+1] >> 3) & 0x7, mask);
2339		emulate_mmio_write(d, off, val, mask);
2340		insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
2341	} else if (insn[insnlen] == 0x8b) { /* ioread */
2342		/* Next byte is r/m byte: bits 3-5 are register. */
2343		val = emulate_mmio_read(d, off, mask);
2344		setreg_num((insn[insnlen+1] >> 3) & 0x7, val, mask);
2345		insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
2346	} else if (insn[0] == 0x88) { /* 8-bit iowrite */
2347		mask = 0xff;
2348		/* Next byte is r/m byte: bits 3-5 are register. */
2349		val = getreg_num((insn[1] >> 3) & 0x7, mask);
2350		emulate_mmio_write(d, off, val, mask);
2351		insnlen = 2 + insn_displacement_len(insn[1]);
2352	} else if (insn[0] == 0x8a) { /* 8-bit ioread */
2353		mask = 0xff;
2354		val = emulate_mmio_read(d, off, mask);
2355		setreg_num((insn[1] >> 3) & 0x7, val, mask);
2356		insnlen = 2 + insn_displacement_len(insn[1]);
2357	} else {
2358		warnx("Unknown MMIO instruction touching %#08lx:"
2359		     " %02x %02x %02x %02x at %u",
2360		     paddr, insn[0], insn[1], insn[2], insn[3], getreg(eip));
2361	reinject:
2362		/* Inject trap into Guest. */
2363		if (write(lguest_fd, args, sizeof(args)) < 0)
2364			err(1, "Reinjecting trap 14 for fault at %#x",
2365			    getreg(eip));
2366		return;
2367	}
2368
2369	/* Finally, we've "done" the instruction, so move past it. */
2370	setreg(eip, getreg(eip) + insnlen);
2371}
2372
2373/*L:190
2374 * Device Setup
2375 *
2376 * All devices need a descriptor so the Guest knows it exists, and a "struct
2377 * device" so the Launcher can keep track of it.  We have common helper
2378 * routines to allocate and manage them.
2379 */
2380static void add_pci_virtqueue(struct device *dev,
2381			      void (*service)(struct virtqueue *),
2382			      const char *name)
2383{
2384	struct virtqueue **i, *vq = malloc(sizeof(*vq));
2385
2386	/* Initialize the virtqueue */
2387	vq->next = NULL;
2388	vq->last_avail_idx = 0;
2389	vq->dev = dev;
2390	vq->name = name;
2391
2392	/*
2393	 * This is the routine the service thread will run, and its Process ID
2394	 * once it's running.
2395	 */
2396	vq->service = service;
2397	vq->thread = (pid_t)-1;
2398
2399	/* Initialize the configuration. */
2400	reset_vq_pci_config(vq);
2401	vq->pci_config.queue_notify_off = 0;
2402
2403	/* Add one to the number of queues */
2404	vq->dev->mmio->cfg.num_queues++;
2405
2406	/*
2407	 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
2408	 * second.
2409	 */
2410	for (i = &dev->vq; *i; i = &(*i)->next);
2411	*i = vq;
2412}
2413
2414/* The Guest accesses the feature bits via the PCI common config MMIO region */
2415static void add_pci_feature(struct device *dev, unsigned bit)
2416{
2417	dev->features |= (1ULL << bit);
2418}
2419
2420/* For devices with no config. */
2421static void no_device_config(struct device *dev)
2422{
2423	dev->mmio_addr = get_mmio_region(dev->mmio_size);
2424
2425	dev->config.bar[0] = dev->mmio_addr;
2426	/* Bottom 4 bits must be zero */
2427	assert(~(dev->config.bar[0] & 0xF));
2428}
2429
2430/* This puts the device config into BAR0 */
2431static void set_device_config(struct device *dev, const void *conf, size_t len)
2432{
2433	/* Set up BAR 0 */
2434	dev->mmio_size += len;
2435	dev->mmio = realloc(dev->mmio, dev->mmio_size);
2436	memcpy(dev->mmio + 1, conf, len);
2437
2438	/*
2439	 * 4.1.4.6:
2440	 *
2441	 *  The device MUST present at least one VIRTIO_PCI_CAP_DEVICE_CFG
2442	 *  capability for any device type which has a device-specific
2443	 *  configuration.
2444	 */
2445	/* Hook up device cfg */
2446	dev->config.cfg_access.cap.cap_next
2447		= offsetof(struct pci_config, device);
2448
2449	/*
2450	 * 4.1.4.6.1:
2451	 *
2452	 *  The offset for the device-specific configuration MUST be 4-byte
2453	 *  aligned.
2454	 */
2455	assert(dev->config.cfg_access.cap.cap_next % 4 == 0);
2456
2457	/* Fix up device cfg field length. */
2458	dev->config.device.length = len;
2459
2460	/* The rest is the same as the no-config case */
2461	no_device_config(dev);
2462}
2463
2464static void init_cap(struct virtio_pci_cap *cap, size_t caplen, int type,
2465		     size_t bar_offset, size_t bar_bytes, u8 next)
2466{
2467	cap->cap_vndr = PCI_CAP_ID_VNDR;
2468	cap->cap_next = next;
2469	cap->cap_len = caplen;
2470	cap->cfg_type = type;
2471	cap->bar = 0;
2472	memset(cap->padding, 0, sizeof(cap->padding));
2473	cap->offset = bar_offset;
2474	cap->length = bar_bytes;
2475}
2476
2477/*
2478 * This sets up the pci_config structure, as defined in the virtio 1.0
2479 * standard (and PCI standard).
2480 */
2481static void init_pci_config(struct pci_config *pci, u16 type,
2482			    u8 class, u8 subclass)
2483{
2484	size_t bar_offset, bar_len;
2485
2486	/*
2487	 * 4.1.4.4.1:
2488	 *
2489	 *  The device MUST either present notify_off_multiplier as an even
2490	 *  power of 2, or present notify_off_multiplier as 0.
2491	 *
2492	 * 2.1.2:
2493	 *
2494	 *   The device MUST initialize device status to 0 upon reset. 
2495	 */
2496	memset(pci, 0, sizeof(*pci));
2497
2498	/* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2499	pci->vendor_id = 0x1AF4;
2500	/* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2501	pci->device_id = 0x1040 + type;
2502
2503	/*
2504	 * PCI have specific codes for different types of devices.
2505	 * Linux doesn't care, but it's a good clue for people looking
2506	 * at the device.
2507	 */
2508	pci->class = class;
2509	pci->subclass = subclass;
2510
2511	/*
2512	 * 4.1.2.1:
2513	 *
2514	 *  Non-transitional devices SHOULD have a PCI Revision ID of 1 or
2515	 *  higher
2516	 */
2517	pci->revid = 1;
2518
2519	/*
2520	 * 4.1.2.1:
2521	 *
2522	 *  Non-transitional devices SHOULD have a PCI Subsystem Device ID of
2523	 *  0x40 or higher.
2524	 */
2525	pci->subsystem_device_id = 0x40;
2526
2527	/* We use our dummy interrupt controller, and irq_line is the irq */
2528	pci->irq_line = devices.next_irq++;
2529	pci->irq_pin = 0;
2530
2531	/* Support for extended capabilities. */
2532	pci->status = (1 << 4);
2533
2534	/* Link them in. */
2535	/*
2536	 * 4.1.4.3.1:
2537	 *
2538	 *  The device MUST present at least one common configuration
2539	 *  capability.
2540	 */
2541	pci->capabilities = offsetof(struct pci_config, common);
2542
2543	/* 4.1.4.3.1 ... offset MUST be 4-byte aligned. */
2544	assert(pci->capabilities % 4 == 0);
2545
2546	bar_offset = offsetof(struct virtio_pci_mmio, cfg);
2547	bar_len = sizeof(((struct virtio_pci_mmio *)0)->cfg);
2548	init_cap(&pci->common, sizeof(pci->common), VIRTIO_PCI_CAP_COMMON_CFG,
2549		 bar_offset, bar_len,
2550		 offsetof(struct pci_config, notify));
2551
2552	/*
2553	 * 4.1.4.4.1:
2554	 *
2555	 *  The device MUST present at least one notification capability.
2556	 */
2557	bar_offset += bar_len;
2558	bar_len = sizeof(((struct virtio_pci_mmio *)0)->notify);
2559
2560	/*
2561	 * 4.1.4.4.1:
2562	 *
2563	 *  The cap.offset MUST be 2-byte aligned.
2564	 */
2565	assert(pci->common.cap_next % 2 == 0);
2566
2567	/* FIXME: Use a non-zero notify_off, for per-queue notification? */
2568	/*
2569	 * 4.1.4.4.1:
2570	 *
2571	 *  The value cap.length presented by the device MUST be at least 2 and
2572	 *  MUST be large enough to support queue notification offsets for all
2573	 *  supported queues in all possible configurations.
2574	 */
2575	assert(bar_len >= 2);
2576
2577	init_cap(&pci->notify.cap, sizeof(pci->notify),
2578		 VIRTIO_PCI_CAP_NOTIFY_CFG,
2579		 bar_offset, bar_len,
2580		 offsetof(struct pci_config, isr));
2581
2582	bar_offset += bar_len;
2583	bar_len = sizeof(((struct virtio_pci_mmio *)0)->isr);
2584	/*
2585	 * 4.1.4.5.1:
2586	 *
2587	 *  The device MUST present at least one VIRTIO_PCI_CAP_ISR_CFG
2588	 *  capability.
2589	 */
2590	init_cap(&pci->isr, sizeof(pci->isr),
2591		 VIRTIO_PCI_CAP_ISR_CFG,
2592		 bar_offset, bar_len,
2593		 offsetof(struct pci_config, cfg_access));
2594
2595	/*
2596	 * 4.1.4.7.1:
2597	 *
2598	 * The device MUST present at least one VIRTIO_PCI_CAP_PCI_CFG
2599	 * capability.
2600	 */
2601	/* This doesn't have any presence in the BAR */
2602	init_cap(&pci->cfg_access.cap, sizeof(pci->cfg_access),
2603		 VIRTIO_PCI_CAP_PCI_CFG,
2604		 0, 0, 0);
2605
2606	bar_offset += bar_len + sizeof(((struct virtio_pci_mmio *)0)->padding);
2607	assert(bar_offset == sizeof(struct virtio_pci_mmio));
2608
2609	/*
2610	 * This gets sewn in and length set in set_device_config().
2611	 * Some devices don't have a device configuration interface, so
2612	 * we never expose this if we don't call set_device_config().
2613	 */
2614	init_cap(&pci->device, sizeof(pci->device), VIRTIO_PCI_CAP_DEVICE_CFG,
2615		 bar_offset, 0, 0);
2616}
2617
2618/*
2619 * This routine does all the creation and setup of a new device, but we don't
2620 * actually place the MMIO region until we know the size (if any) of the
2621 * device-specific config.  And we don't actually start the service threads
2622 * until later.
2623 *
2624 * See what I mean about userspace being boring?
2625 */
2626static struct device *new_pci_device(const char *name, u16 type,
2627				     u8 class, u8 subclass)
2628{
2629	struct device *dev = malloc(sizeof(*dev));
2630
2631	/* Now we populate the fields one at a time. */
2632	dev->name = name;
2633	dev->vq = NULL;
2634	dev->running = false;
2635	dev->wrote_features_ok = false;
2636	dev->mmio_size = sizeof(struct virtio_pci_mmio);
2637	dev->mmio = calloc(1, dev->mmio_size);
2638	dev->features = (u64)1 << VIRTIO_F_VERSION_1;
2639	dev->features_accepted = 0;
2640
2641	if (devices.device_num + 1 >= MAX_PCI_DEVICES)
2642		errx(1, "Can only handle 31 PCI devices");
2643
2644	init_pci_config(&dev->config, type, class, subclass);
2645	assert(!devices.pci[devices.device_num+1]);
2646	devices.pci[++devices.device_num] = dev;
2647
2648	return dev;
2649}
2650
2651/*
2652 * Our first setup routine is the console.  It's a fairly simple device, but
2653 * UNIX tty handling makes it uglier than it could be.
2654 */
2655static void setup_console(void)
2656{
2657	struct device *dev;
2658	struct virtio_console_config conf;
2659
2660	/* If we can save the initial standard input settings... */
2661	if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
2662		struct termios term = orig_term;
2663		/*
2664		 * Then we turn off echo, line buffering and ^C etc: We want a
2665		 * raw input stream to the Guest.
2666		 */
2667		term.c_lflag &= ~(ISIG|ICANON|ECHO);
2668		tcsetattr(STDIN_FILENO, TCSANOW, &term);
2669	}
2670
2671	dev = new_pci_device("console", VIRTIO_ID_CONSOLE, 0x07, 0x00);
2672
2673	/* We store the console state in dev->priv, and initialize it. */
2674	dev->priv = malloc(sizeof(struct console_abort));
2675	((struct console_abort *)dev->priv)->count = 0;
2676
2677	/*
2678	 * The console needs two virtqueues: the input then the output.  When
2679	 * they put something the input queue, we make sure we're listening to
2680	 * stdin.  When they put something in the output queue, we write it to
2681	 * stdout.
2682	 */
2683	add_pci_virtqueue(dev, console_input, "input");
2684	add_pci_virtqueue(dev, console_output, "output");
2685
2686	/* We need a configuration area for the emerg_wr early writes. */
2687	add_pci_feature(dev, VIRTIO_CONSOLE_F_EMERG_WRITE);
2688	set_device_config(dev, &conf, sizeof(conf));
2689
2690	verbose("device %u: console\n", devices.device_num);
2691}
2692/*:*/
2693
2694/*M:010
2695 * Inter-guest networking is an interesting area.  Simplest is to have a
2696 * --sharenet=<name> option which opens or creates a named pipe.  This can be
2697 * used to send packets to another guest in a 1:1 manner.
2698 *
2699 * More sophisticated is to use one of the tools developed for project like UML
2700 * to do networking.
2701 *
2702 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
2703 * completely generic ("here's my vring, attach to your vring") and would work
2704 * for any traffic.  Of course, namespace and permissions issues need to be
2705 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
2706 * multiple inter-guest channels behind one interface, although it would
2707 * require some manner of hotplugging new virtio channels.
2708 *
2709 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2710:*/
2711
2712static u32 str2ip(const char *ipaddr)
2713{
2714	unsigned int b[4];
2715
2716	if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
2717		errx(1, "Failed to parse IP address '%s'", ipaddr);
2718	return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
2719}
2720
2721static void str2mac(const char *macaddr, unsigned char mac[6])
2722{
2723	unsigned int m[6];
2724	if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
2725		   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
2726		errx(1, "Failed to parse mac address '%s'", macaddr);
2727	mac[0] = m[0];
2728	mac[1] = m[1];
2729	mac[2] = m[2];
2730	mac[3] = m[3];
2731	mac[4] = m[4];
2732	mac[5] = m[5];
2733}
2734
2735/*
2736 * This code is "adapted" from libbridge: it attaches the Host end of the
2737 * network device to the bridge device specified by the command line.
2738 *
2739 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2740 * dislike bridging), and I just try not to break it.
2741 */
2742static void add_to_bridge(int fd, const char *if_name, const char *br_name)
2743{
2744	int ifidx;
2745	struct ifreq ifr;
2746
2747	if (!*br_name)
2748		errx(1, "must specify bridge name");
2749
2750	ifidx = if_nametoindex(if_name);
2751	if (!ifidx)
2752		errx(1, "interface %s does not exist!", if_name);
2753
2754	strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
2755	ifr.ifr_name[IFNAMSIZ-1] = '\0';
2756	ifr.ifr_ifindex = ifidx;
2757	if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
2758		err(1, "can't add %s to bridge %s", if_name, br_name);
2759}
2760
2761/*
2762 * This sets up the Host end of the network device with an IP address, brings
2763 * it up so packets will flow, the copies the MAC address into the hwaddr
2764 * pointer.
2765 */
2766static void configure_device(int fd, const char *tapif, u32 ipaddr)
2767{
2768	struct ifreq ifr;
2769	struct sockaddr_in sin;
2770
2771	memset(&ifr, 0, sizeof(ifr));
2772	strcpy(ifr.ifr_name, tapif);
2773
2774	/* Don't read these incantations.  Just cut & paste them like I did! */
2775	sin.sin_family = AF_INET;
2776	sin.sin_addr.s_addr = htonl(ipaddr);
2777	memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
2778	if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
2779		err(1, "Setting %s interface address", tapif);
2780	ifr.ifr_flags = IFF_UP;
2781	if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
2782		err(1, "Bringing interface %s up", tapif);
2783}
2784
2785static int get_tun_device(char tapif[IFNAMSIZ])
2786{
2787	struct ifreq ifr;
2788	int vnet_hdr_sz;
2789	int netfd;
2790
2791	/* Start with this zeroed.  Messy but sure. */
2792	memset(&ifr, 0, sizeof(ifr));
2793
2794	/*
2795	 * We open the /dev/net/tun device and tell it we want a tap device.  A
2796	 * tap device is like a tun device, only somehow different.  To tell
2797	 * the truth, I completely blundered my way through this code, but it
2798	 * works now!
2799	 */
2800	netfd = open_or_die("/dev/net/tun", O_RDWR);
2801	ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
2802	strcpy(ifr.ifr_name, "tap%d");
2803	if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
2804		err(1, "configuring /dev/net/tun");
2805
2806	if (ioctl(netfd, TUNSETOFFLOAD,
2807		  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
2808		err(1, "Could not set features for tun device");
2809
2810	/*
2811	 * We don't need checksums calculated for packets coming in this
2812	 * device: trust us!
2813	 */
2814	ioctl(netfd, TUNSETNOCSUM, 1);
2815
2816	/*
2817	 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2818	 * field at the end of the network header iff
2819	 * VIRTIO_NET_F_MRG_RXBUF was negotiated.  For virtio 1.0,
2820	 * that became the norm, but we need to tell the tun device
2821	 * about our expanded header (which is called
2822	 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2823	 */
2824	vnet_hdr_sz = sizeof(struct virtio_net_hdr_v1);
2825	if (ioctl(netfd, TUNSETVNETHDRSZ, &vnet_hdr_sz) != 0)
2826		err(1, "Setting tun header size to %u", vnet_hdr_sz);
2827
2828	memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
2829	return netfd;
2830}
2831
2832/*L:195
2833 * Our network is a Host<->Guest network.  This can either use bridging or
2834 * routing, but the principle is the same: it uses the "tun" device to inject
2835 * packets into the Host as if they came in from a normal network card.  We
2836 * just shunt packets between the Guest and the tun device.
2837 */
2838static void setup_tun_net(char *arg)
2839{
2840	struct device *dev;
2841	struct net_info *net_info = malloc(sizeof(*net_info));
2842	int ipfd;
2843	u32 ip = INADDR_ANY;
2844	bool bridging = false;
2845	char tapif[IFNAMSIZ], *p;
2846	struct virtio_net_config conf;
2847
2848	net_info->tunfd = get_tun_device(tapif);
2849
2850	/* First we create a new network device. */
2851	dev = new_pci_device("net", VIRTIO_ID_NET, 0x02, 0x00);
2852	dev->priv = net_info;
2853
2854	/* Network devices need a recv and a send queue, just like console. */
2855	add_pci_virtqueue(dev, net_input, "rx");
2856	add_pci_virtqueue(dev, net_output, "tx");
2857
2858	/*
2859	 * We need a socket to perform the magic network ioctls to bring up the
2860	 * tap interface, connect to the bridge etc.  Any socket will do!
2861	 */
2862	ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
2863	if (ipfd < 0)
2864		err(1, "opening IP socket");
2865
2866	/* If the command line was --tunnet=bridge:<name> do bridging. */
2867	if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
2868		arg += strlen(BRIDGE_PFX);
2869		bridging = true;
2870	}
2871
2872	/* A mac address may follow the bridge name or IP address */
2873	p = strchr(arg, ':');
2874	if (p) {
2875		str2mac(p+1, conf.mac);
2876		add_pci_feature(dev, VIRTIO_NET_F_MAC);
2877		*p = '\0';
2878	}
2879
2880	/* arg is now either an IP address or a bridge name */
2881	if (bridging)
2882		add_to_bridge(ipfd, tapif, arg);
2883	else
2884		ip = str2ip(arg);
2885
2886	/* Set up the tun device. */
2887	configure_device(ipfd, tapif, ip);
2888
2889	/* Expect Guest to handle everything except UFO */
2890	add_pci_feature(dev, VIRTIO_NET_F_CSUM);
2891	add_pci_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
2892	add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
2893	add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
2894	add_pci_feature(dev, VIRTIO_NET_F_GUEST_ECN);
2895	add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO4);
2896	add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO6);
2897	add_pci_feature(dev, VIRTIO_NET_F_HOST_ECN);
2898	/* We handle indirect ring entries */
2899	add_pci_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
2900	set_device_config(dev, &conf, sizeof(conf));
2901
2902	/* We don't need the socket any more; setup is done. */
2903	close(ipfd);
2904
2905	if (bridging)
2906		verbose("device %u: tun %s attached to bridge: %s\n",
2907			devices.device_num, tapif, arg);
2908	else
2909		verbose("device %u: tun %s: %s\n",
2910			devices.device_num, tapif, arg);
2911}
2912/*:*/
2913
2914/* This hangs off device->priv. */
2915struct vblk_info {
2916	/* The size of the file. */
2917	off64_t len;
2918
2919	/* The file descriptor for the file. */
2920	int fd;
2921
2922};
2923
2924/*L:210
2925 * The Disk
2926 *
2927 * The disk only has one virtqueue, so it only has one thread.  It is really
2928 * simple: the Guest asks for a block number and we read or write that position
2929 * in the file.
2930 *
2931 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2932 * slow: the Guest waits until the read is finished before running anything
2933 * else, even if it could have been doing useful work.
2934 *
2935 * We could have used async I/O, except it's reputed to suck so hard that
2936 * characters actually go missing from your code when you try to use it.
2937 */
2938static void blk_request(struct virtqueue *vq)
2939{
2940	struct vblk_info *vblk = vq->dev->priv;
2941	unsigned int head, out_num, in_num, wlen;
2942	int ret, i;
2943	u8 *in;
2944	struct virtio_blk_outhdr out;
2945	struct iovec iov[vq->vring.num];
2946	off64_t off;
2947
2948	/*
2949	 * Get the next request, where we normally wait.  It triggers the
2950	 * interrupt to acknowledge previously serviced requests (if any).
2951	 */
2952	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
2953
2954	/* Copy the output header from the front of the iov (adjusts iov) */
2955	iov_consume(vq->dev, iov, out_num, &out, sizeof(out));
2956
2957	/* Find and trim end of iov input array, for our status byte. */
2958	in = NULL;
2959	for (i = out_num + in_num - 1; i >= out_num; i--) {
2960		if (iov[i].iov_len > 0) {
2961			in = iov[i].iov_base + iov[i].iov_len - 1;
2962			iov[i].iov_len--;
2963			break;
2964		}
2965	}
2966	if (!in)
2967		bad_driver_vq(vq, "Bad virtblk cmd with no room for status");
2968
2969	/*
2970	 * For historical reasons, block operations are expressed in 512 byte
2971	 * "sectors".
2972	 */
2973	off = out.sector * 512;
2974
2975	if (out.type & VIRTIO_BLK_T_OUT) {
2976		/*
2977		 * Write
2978		 *
2979		 * Move to the right location in the block file.  This can fail
2980		 * if they try to write past end.
2981		 */
2982		if (lseek64(vblk->fd, off, SEEK_SET) != off)
2983			err(1, "Bad seek to sector %llu", out.sector);
2984
2985		ret = writev(vblk->fd, iov, out_num);
2986		verbose("WRITE to sector %llu: %i\n", out.sector, ret);
2987
2988		/*
2989		 * Grr... Now we know how long the descriptor they sent was, we
2990		 * make sure they didn't try to write over the end of the block
2991		 * file (possibly extending it).
2992		 */
2993		if (ret > 0 && off + ret > vblk->len) {
2994			/* Trim it back to the correct length */
2995			ftruncate64(vblk->fd, vblk->len);
2996			/* Die, bad Guest, die. */
2997			bad_driver_vq(vq, "Write past end %llu+%u", off, ret);
2998		}
2999
3000		wlen = sizeof(*in);
3001		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
3002	} else if (out.type & VIRTIO_BLK_T_FLUSH) {
3003		/* Flush */
3004		ret = fdatasync(vblk->fd);
3005		verbose("FLUSH fdatasync: %i\n", ret);
3006		wlen = sizeof(*in);
3007		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
3008	} else {
3009		/*
3010		 * Read
3011		 *
3012		 * Move to the right location in the block file.  This can fail
3013		 * if they try to read past end.
3014		 */
3015		if (lseek64(vblk->fd, off, SEEK_SET) != off)
3016			err(1, "Bad seek to sector %llu", out.sector);
3017
3018		ret = readv(vblk->fd, iov + out_num, in_num);
3019		if (ret >= 0) {
3020			wlen = sizeof(*in) + ret;
3021			*in = VIRTIO_BLK_S_OK;
3022		} else {
3023			wlen = sizeof(*in);
3024			*in = VIRTIO_BLK_S_IOERR;
3025		}
3026	}
3027
3028	/* Finished that request. */
3029	add_used(vq, head, wlen);
3030}
3031
3032/*L:198 This actually sets up a virtual block device. */
3033static void setup_block_file(const char *filename)
3034{
3035	struct device *dev;
3036	struct vblk_info *vblk;
3037	struct virtio_blk_config conf;
3038
3039	/* Create the device. */
3040	dev = new_pci_device("block", VIRTIO_ID_BLOCK, 0x01, 0x80);
3041
3042	/* The device has one virtqueue, where the Guest places requests. */
3043	add_pci_virtqueue(dev, blk_request, "request");
3044
3045	/* Allocate the room for our own bookkeeping */
3046	vblk = dev->priv = malloc(sizeof(*vblk));
3047
3048	/* First we open the file and store the length. */
3049	vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
3050	vblk->len = lseek64(vblk->fd, 0, SEEK_END);
3051
3052	/* Tell Guest how many sectors this device has. */
3053	conf.capacity = cpu_to_le64(vblk->len / 512);
3054
3055	/*
3056	 * Tell Guest not to put in too many descriptors at once: two are used
3057	 * for the in and out elements.
3058	 */
3059	add_pci_feature(dev, VIRTIO_BLK_F_SEG_MAX);
3060	conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
3061
3062	set_device_config(dev, &conf, sizeof(struct virtio_blk_config));
3063
3064	verbose("device %u: virtblock %llu sectors\n",
3065		devices.device_num, le64_to_cpu(conf.capacity));
3066}
3067
3068/*L:211
3069 * Our random number generator device reads from /dev/urandom into the Guest's
3070 * input buffers.  The usual case is that the Guest doesn't want random numbers
3071 * and so has no buffers although /dev/urandom is still readable, whereas
3072 * console is the reverse.
3073 *
3074 * The same logic applies, however.
3075 */
3076struct rng_info {
3077	int rfd;
3078};
3079
3080static void rng_input(struct virtqueue *vq)
3081{
3082	int len;
3083	unsigned int head, in_num, out_num, totlen = 0;
3084	struct rng_info *rng_info = vq->dev->priv;
3085	struct iovec iov[vq->vring.num];
3086
3087	/* First we need a buffer from the Guests's virtqueue. */
3088	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
3089	if (out_num)
3090		bad_driver_vq(vq, "Output buffers in rng?");
3091
3092	/*
3093	 * Just like the console write, we loop to cover the whole iovec.
3094	 * In this case, short reads actually happen quite a bit.
3095	 */
3096	while (!iov_empty(iov, in_num)) {
3097		len = readv(rng_info->rfd, iov, in_num);
3098		if (len <= 0)
3099			err(1, "Read from /dev/urandom gave %i", len);
3100		iov_consume(vq->dev, iov, in_num, NULL, len);
3101		totlen += len;
3102	}
3103
3104	/* Tell the Guest about the new input. */
3105	add_used(vq, head, totlen);
3106}
3107
3108/*L:199
3109 * This creates a "hardware" random number device for the Guest.
3110 */
3111static void setup_rng(void)
3112{
3113	struct device *dev;
3114	struct rng_info *rng_info = malloc(sizeof(*rng_info));
3115
3116	/* Our device's private info simply contains the /dev/urandom fd. */
3117	rng_info->rfd = open_or_die("/dev/urandom", O_RDONLY);
3118
3119	/* Create the new device. */
3120	dev = new_pci_device("rng", VIRTIO_ID_RNG, 0xff, 0);
3121	dev->priv = rng_info;
3122
3123	/* The device has one virtqueue, where the Guest places inbufs. */
3124	add_pci_virtqueue(dev, rng_input, "input");
3125
3126	/* We don't have any configuration space */
3127	no_device_config(dev);
3128
3129	verbose("device %u: rng\n", devices.device_num);
3130}
3131/* That's the end of device setup. */
3132
3133/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
3134static void __attribute__((noreturn)) restart_guest(void)
3135{
3136	unsigned int i;
3137
3138	/*
3139	 * Since we don't track all open fds, we simply close everything beyond
3140	 * stderr.
3141	 */
3142	for (i = 3; i < FD_SETSIZE; i++)
3143		close(i);
3144
3145	/* Reset all the devices (kills all threads). */
3146	cleanup_devices();
3147
3148	execv(main_args[0], main_args);
3149	err(1, "Could not exec %s", main_args[0]);
3150}
3151
3152/*L:220
3153 * Finally we reach the core of the Launcher which runs the Guest, serves
3154 * its input and output, and finally, lays it to rest.
3155 */
3156static void __attribute__((noreturn)) run_guest(void)
3157{
3158	for (;;) {
3159		struct lguest_pending notify;
3160		int readval;
3161
3162		/* We read from the /dev/lguest device to run the Guest. */
3163		readval = pread(lguest_fd, &notify, sizeof(notify), cpu_id);
3164		if (readval == sizeof(notify)) {
3165			if (notify.trap == 13) {
3166				verbose("Emulating instruction at %#x\n",
3167					getreg(eip));
3168				emulate_insn(notify.insn);
3169			} else if (notify.trap == 14) {
3170				verbose("Emulating MMIO at %#x\n",
3171					getreg(eip));
3172				emulate_mmio(notify.addr, notify.insn);
3173			} else
3174				errx(1, "Unknown trap %i addr %#08x\n",
3175				     notify.trap, notify.addr);
3176		/* ENOENT means the Guest died.  Reading tells us why. */
3177		} else if (errno == ENOENT) {
3178			char reason[1024] = { 0 };
3179			pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
3180			errx(1, "%s", reason);
3181		/* ERESTART means that we need to reboot the guest */
3182		} else if (errno == ERESTART) {
3183			restart_guest();
3184		/* Anything else means a bug or incompatible change. */
3185		} else
3186			err(1, "Running guest failed");
3187	}
3188}
3189/*L:240
3190 * This is the end of the Launcher.  The good news: we are over halfway
3191 * through!  The bad news: the most fiendish part of the code still lies ahead
3192 * of us.
3193 *
3194 * Are you ready?  Take a deep breath and join me in the core of the Host, in
3195 * "make Host".
3196:*/
3197
3198static struct option opts[] = {
3199	{ "verbose", 0, NULL, 'v' },
3200	{ "tunnet", 1, NULL, 't' },
3201	{ "block", 1, NULL, 'b' },
3202	{ "rng", 0, NULL, 'r' },
3203	{ "initrd", 1, NULL, 'i' },
3204	{ "username", 1, NULL, 'u' },
3205	{ "chroot", 1, NULL, 'c' },
3206	{ NULL },
3207};
3208static void usage(void)
3209{
3210	errx(1, "Usage: lguest [--verbose] "
3211	     "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
3212	     "|--block=<filename>|--initrd=<filename>]...\n"
3213	     "<mem-in-mb> vmlinux [args...]");
3214}
3215
3216/*L:105 The main routine is where the real work begins: */
3217int main(int argc, char *argv[])
3218{
3219	/* Memory, code startpoint and size of the (optional) initrd. */
3220	unsigned long mem = 0, start, initrd_size = 0;
3221	/* Two temporaries. */
3222	int i, c;
3223	/* The boot information for the Guest. */
3224	struct boot_params *boot;
3225	/* If they specify an initrd file to load. */
3226	const char *initrd_name = NULL;
3227
3228	/* Password structure for initgroups/setres[gu]id */
3229	struct passwd *user_details = NULL;
3230
3231	/* Directory to chroot to */
3232	char *chroot_path = NULL;
3233
3234	/* Save the args: we "reboot" by execing ourselves again. */
3235	main_args = argv;
3236
3237	/*
3238	 * First we initialize the device list.  We remember next interrupt
3239	 * number to use for devices (1: remember that 0 is used by the timer).
3240	 */
3241	devices.next_irq = 1;
3242
3243	/* We're CPU 0.  In fact, that's the only CPU possible right now. */
3244	cpu_id = 0;
3245
3246	/*
3247	 * We need to know how much memory so we can set up the device
3248	 * descriptor and memory pages for the devices as we parse the command
3249	 * line.  So we quickly look through the arguments to find the amount
3250	 * of memory now.
3251	 */
3252	for (i = 1; i < argc; i++) {
3253		if (argv[i][0] != '-') {
3254			mem = atoi(argv[i]) * 1024 * 1024;
3255			/*
3256			 * We start by mapping anonymous pages over all of
3257			 * guest-physical memory range.  This fills it with 0,
3258			 * and ensures that the Guest won't be killed when it
3259			 * tries to access it.
3260			 */
3261			guest_base = map_zeroed_pages(mem / getpagesize()
3262						      + DEVICE_PAGES);
3263			guest_limit = mem;
3264			guest_max = guest_mmio = mem + DEVICE_PAGES*getpagesize();
3265			break;
3266		}
3267	}
3268
3269	/* We always have a console device, and it's always device 1. */
3270	setup_console();
3271
3272	/* The options are fairly straight-forward */
3273	while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
3274		switch (c) {
3275		case 'v':
3276			verbose = true;
3277			break;
3278		case 't':
3279			setup_tun_net(optarg);
3280			break;
3281		case 'b':
3282			setup_block_file(optarg);
3283			break;
3284		case 'r':
3285			setup_rng();
3286			break;
3287		case 'i':
3288			initrd_name = optarg;
3289			break;
3290		case 'u':
3291			user_details = getpwnam(optarg);
3292			if (!user_details)
3293				err(1, "getpwnam failed, incorrect username?");
3294			break;
3295		case 'c':
3296			chroot_path = optarg;
3297			break;
3298		default:
3299			warnx("Unknown argument %s", argv[optind]);
3300			usage();
3301		}
3302	}
3303	/*
3304	 * After the other arguments we expect memory and kernel image name,
3305	 * followed by command line arguments for the kernel.
3306	 */
3307	if (optind + 2 > argc)
3308		usage();
3309
3310	verbose("Guest base is at %p\n", guest_base);
3311
3312	/* Initialize the (fake) PCI host bridge device. */
3313	init_pci_host_bridge();
3314
3315	/* Now we load the kernel */
3316	start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
3317
3318	/* Boot information is stashed at physical address 0 */
3319	boot = from_guest_phys(0);
3320
3321	/* Map the initrd image if requested (at top of physical memory) */
3322	if (initrd_name) {
3323		initrd_size = load_initrd(initrd_name, mem);
3324		/*
3325		 * These are the location in the Linux boot header where the
3326		 * start and size of the initrd are expected to be found.
3327		 */
3328		boot->hdr.ramdisk_image = mem - initrd_size;
3329		boot->hdr.ramdisk_size = initrd_size;
3330		/* The bootloader type 0xFF means "unknown"; that's OK. */
3331		boot->hdr.type_of_loader = 0xFF;
3332	}
3333
3334	/*
3335	 * The Linux boot header contains an "E820" memory map: ours is a
3336	 * simple, single region.
3337	 */
3338	boot->e820_entries = 1;
3339	boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
3340	/*
3341	 * The boot header contains a command line pointer: we put the command
3342	 * line after the boot header.
3343	 */
3344	boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
3345	/* We use a simple helper to copy the arguments separated by spaces. */
3346	concat((char *)(boot + 1), argv+optind+2);
3347
3348	/* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
3349	boot->hdr.kernel_alignment = 0x1000000;
3350
3351	/* Boot protocol version: 2.07 supports the fields for lguest. */
3352	boot->hdr.version = 0x207;
3353
3354	/* The hardware_subarch value of "1" tells the Guest it's an lguest. */
3355	boot->hdr.hardware_subarch = 1;
3356
3357	/* Tell the entry path not to try to reload segment registers. */
3358	boot->hdr.loadflags |= KEEP_SEGMENTS;
3359
3360	/* We tell the kernel to initialize the Guest. */
3361	tell_kernel(start);
3362
3363	/* Ensure that we terminate if a device-servicing child dies. */
3364	signal(SIGCHLD, kill_launcher);
3365
3366	/* If we exit via err(), this kills all the threads, restores tty. */
3367	atexit(cleanup_devices);
3368
3369	/* If requested, chroot to a directory */
3370	if (chroot_path) {
3371		if (chroot(chroot_path) != 0)
3372			err(1, "chroot(\"%s\") failed", chroot_path);
3373
3374		if (chdir("/") != 0)
3375			err(1, "chdir(\"/\") failed");
3376
3377		verbose("chroot done\n");
3378	}
3379
3380	/* If requested, drop privileges */
3381	if (user_details) {
3382		uid_t u;
3383		gid_t g;
3384
3385		u = user_details->pw_uid;
3386		g = user_details->pw_gid;
3387
3388		if (initgroups(user_details->pw_name, g) != 0)
3389			err(1, "initgroups failed");
3390
3391		if (setresgid(g, g, g) != 0)
3392			err(1, "setresgid failed");
3393
3394		if (setresuid(u, u, u) != 0)
3395			err(1, "setresuid failed");
3396
3397		verbose("Dropping privileges completed\n");
3398	}
3399
3400	/* Finally, run the Guest.  This doesn't return. */
3401	run_guest();
3402}
3403/*:*/
3404
3405/*M:999
3406 * Mastery is done: you now know everything I do.
3407 *
3408 * But surely you have seen code, features and bugs in your wanderings which
3409 * you now yearn to attack?  That is the real game, and I look forward to you
3410 * patching and forking lguest into the Your-Name-Here-visor.
3411 *
3412 * Farewell, and good coding!
3413 * Rusty Russell.
3414 */
1