Loading...
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/lsm_hooks.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <net/flow.h>
29
30#define MAX_LSM_EVM_XATTR 2
31
32/* Maximum number of letters for an LSM name string */
33#define SECURITY_NAME_MAX 10
34
35/* Boot-time LSM user choice */
36static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
37 CONFIG_DEFAULT_SECURITY;
38
39static void __init do_security_initcalls(void)
40{
41 initcall_t *call;
42 call = __security_initcall_start;
43 while (call < __security_initcall_end) {
44 (*call) ();
45 call++;
46 }
47}
48
49/**
50 * security_init - initializes the security framework
51 *
52 * This should be called early in the kernel initialization sequence.
53 */
54int __init security_init(void)
55{
56 pr_info("Security Framework initialized\n");
57
58 /*
59 * Load minor LSMs, with the capability module always first.
60 */
61 capability_add_hooks();
62 yama_add_hooks();
63
64 /*
65 * Load all the remaining security modules.
66 */
67 do_security_initcalls();
68
69 return 0;
70}
71
72/* Save user chosen LSM */
73static int __init choose_lsm(char *str)
74{
75 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76 return 1;
77}
78__setup("security=", choose_lsm);
79
80/**
81 * security_module_enable - Load given security module on boot ?
82 * @module: the name of the module
83 *
84 * Each LSM must pass this method before registering its own operations
85 * to avoid security registration races. This method may also be used
86 * to check if your LSM is currently loaded during kernel initialization.
87 *
88 * Return true if:
89 * -The passed LSM is the one chosen by user at boot time,
90 * -or the passed LSM is configured as the default and the user did not
91 * choose an alternate LSM at boot time.
92 * Otherwise, return false.
93 */
94int __init security_module_enable(const char *module)
95{
96 return !strcmp(module, chosen_lsm);
97}
98
99/*
100 * Hook list operation macros.
101 *
102 * call_void_hook:
103 * This is a hook that does not return a value.
104 *
105 * call_int_hook:
106 * This is a hook that returns a value.
107 */
108
109#define call_void_hook(FUNC, ...) \
110 do { \
111 struct security_hook_list *P; \
112 \
113 list_for_each_entry(P, &security_hook_heads.FUNC, list) \
114 P->hook.FUNC(__VA_ARGS__); \
115 } while (0)
116
117#define call_int_hook(FUNC, IRC, ...) ({ \
118 int RC = IRC; \
119 do { \
120 struct security_hook_list *P; \
121 \
122 list_for_each_entry(P, &security_hook_heads.FUNC, list) { \
123 RC = P->hook.FUNC(__VA_ARGS__); \
124 if (RC != 0) \
125 break; \
126 } \
127 } while (0); \
128 RC; \
129})
130
131/* Security operations */
132
133int security_binder_set_context_mgr(struct task_struct *mgr)
134{
135 return call_int_hook(binder_set_context_mgr, 0, mgr);
136}
137
138int security_binder_transaction(struct task_struct *from,
139 struct task_struct *to)
140{
141 return call_int_hook(binder_transaction, 0, from, to);
142}
143
144int security_binder_transfer_binder(struct task_struct *from,
145 struct task_struct *to)
146{
147 return call_int_hook(binder_transfer_binder, 0, from, to);
148}
149
150int security_binder_transfer_file(struct task_struct *from,
151 struct task_struct *to, struct file *file)
152{
153 return call_int_hook(binder_transfer_file, 0, from, to, file);
154}
155
156int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
157{
158 return call_int_hook(ptrace_access_check, 0, child, mode);
159}
160
161int security_ptrace_traceme(struct task_struct *parent)
162{
163 return call_int_hook(ptrace_traceme, 0, parent);
164}
165
166int security_capget(struct task_struct *target,
167 kernel_cap_t *effective,
168 kernel_cap_t *inheritable,
169 kernel_cap_t *permitted)
170{
171 return call_int_hook(capget, 0, target,
172 effective, inheritable, permitted);
173}
174
175int security_capset(struct cred *new, const struct cred *old,
176 const kernel_cap_t *effective,
177 const kernel_cap_t *inheritable,
178 const kernel_cap_t *permitted)
179{
180 return call_int_hook(capset, 0, new, old,
181 effective, inheritable, permitted);
182}
183
184int security_capable(const struct cred *cred, struct user_namespace *ns,
185 int cap)
186{
187 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
188}
189
190int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
191 int cap)
192{
193 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
194}
195
196int security_quotactl(int cmds, int type, int id, struct super_block *sb)
197{
198 return call_int_hook(quotactl, 0, cmds, type, id, sb);
199}
200
201int security_quota_on(struct dentry *dentry)
202{
203 return call_int_hook(quota_on, 0, dentry);
204}
205
206int security_syslog(int type)
207{
208 return call_int_hook(syslog, 0, type);
209}
210
211int security_settime(const struct timespec *ts, const struct timezone *tz)
212{
213 return call_int_hook(settime, 0, ts, tz);
214}
215
216int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
217{
218 struct security_hook_list *hp;
219 int cap_sys_admin = 1;
220 int rc;
221
222 /*
223 * The module will respond with a positive value if
224 * it thinks the __vm_enough_memory() call should be
225 * made with the cap_sys_admin set. If all of the modules
226 * agree that it should be set it will. If any module
227 * thinks it should not be set it won't.
228 */
229 list_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
230 rc = hp->hook.vm_enough_memory(mm, pages);
231 if (rc <= 0) {
232 cap_sys_admin = 0;
233 break;
234 }
235 }
236 return __vm_enough_memory(mm, pages, cap_sys_admin);
237}
238
239int security_bprm_set_creds(struct linux_binprm *bprm)
240{
241 return call_int_hook(bprm_set_creds, 0, bprm);
242}
243
244int security_bprm_check(struct linux_binprm *bprm)
245{
246 int ret;
247
248 ret = call_int_hook(bprm_check_security, 0, bprm);
249 if (ret)
250 return ret;
251 return ima_bprm_check(bprm);
252}
253
254void security_bprm_committing_creds(struct linux_binprm *bprm)
255{
256 call_void_hook(bprm_committing_creds, bprm);
257}
258
259void security_bprm_committed_creds(struct linux_binprm *bprm)
260{
261 call_void_hook(bprm_committed_creds, bprm);
262}
263
264int security_bprm_secureexec(struct linux_binprm *bprm)
265{
266 return call_int_hook(bprm_secureexec, 0, bprm);
267}
268
269int security_sb_alloc(struct super_block *sb)
270{
271 return call_int_hook(sb_alloc_security, 0, sb);
272}
273
274void security_sb_free(struct super_block *sb)
275{
276 call_void_hook(sb_free_security, sb);
277}
278
279int security_sb_copy_data(char *orig, char *copy)
280{
281 return call_int_hook(sb_copy_data, 0, orig, copy);
282}
283EXPORT_SYMBOL(security_sb_copy_data);
284
285int security_sb_remount(struct super_block *sb, void *data)
286{
287 return call_int_hook(sb_remount, 0, sb, data);
288}
289
290int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
291{
292 return call_int_hook(sb_kern_mount, 0, sb, flags, data);
293}
294
295int security_sb_show_options(struct seq_file *m, struct super_block *sb)
296{
297 return call_int_hook(sb_show_options, 0, m, sb);
298}
299
300int security_sb_statfs(struct dentry *dentry)
301{
302 return call_int_hook(sb_statfs, 0, dentry);
303}
304
305int security_sb_mount(const char *dev_name, struct path *path,
306 const char *type, unsigned long flags, void *data)
307{
308 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
309}
310
311int security_sb_umount(struct vfsmount *mnt, int flags)
312{
313 return call_int_hook(sb_umount, 0, mnt, flags);
314}
315
316int security_sb_pivotroot(struct path *old_path, struct path *new_path)
317{
318 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
319}
320
321int security_sb_set_mnt_opts(struct super_block *sb,
322 struct security_mnt_opts *opts,
323 unsigned long kern_flags,
324 unsigned long *set_kern_flags)
325{
326 return call_int_hook(sb_set_mnt_opts,
327 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
328 opts, kern_flags, set_kern_flags);
329}
330EXPORT_SYMBOL(security_sb_set_mnt_opts);
331
332int security_sb_clone_mnt_opts(const struct super_block *oldsb,
333 struct super_block *newsb)
334{
335 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb);
336}
337EXPORT_SYMBOL(security_sb_clone_mnt_opts);
338
339int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
340{
341 return call_int_hook(sb_parse_opts_str, 0, options, opts);
342}
343EXPORT_SYMBOL(security_sb_parse_opts_str);
344
345int security_inode_alloc(struct inode *inode)
346{
347 inode->i_security = NULL;
348 return call_int_hook(inode_alloc_security, 0, inode);
349}
350
351void security_inode_free(struct inode *inode)
352{
353 integrity_inode_free(inode);
354 call_void_hook(inode_free_security, inode);
355}
356
357int security_dentry_init_security(struct dentry *dentry, int mode,
358 struct qstr *name, void **ctx,
359 u32 *ctxlen)
360{
361 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
362 name, ctx, ctxlen);
363}
364EXPORT_SYMBOL(security_dentry_init_security);
365
366int security_inode_init_security(struct inode *inode, struct inode *dir,
367 const struct qstr *qstr,
368 const initxattrs initxattrs, void *fs_data)
369{
370 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
371 struct xattr *lsm_xattr, *evm_xattr, *xattr;
372 int ret;
373
374 if (unlikely(IS_PRIVATE(inode)))
375 return 0;
376
377 if (!initxattrs)
378 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
379 dir, qstr, NULL, NULL, NULL);
380 memset(new_xattrs, 0, sizeof(new_xattrs));
381 lsm_xattr = new_xattrs;
382 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
383 &lsm_xattr->name,
384 &lsm_xattr->value,
385 &lsm_xattr->value_len);
386 if (ret)
387 goto out;
388
389 evm_xattr = lsm_xattr + 1;
390 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
391 if (ret)
392 goto out;
393 ret = initxattrs(inode, new_xattrs, fs_data);
394out:
395 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
396 kfree(xattr->value);
397 return (ret == -EOPNOTSUPP) ? 0 : ret;
398}
399EXPORT_SYMBOL(security_inode_init_security);
400
401int security_old_inode_init_security(struct inode *inode, struct inode *dir,
402 const struct qstr *qstr, const char **name,
403 void **value, size_t *len)
404{
405 if (unlikely(IS_PRIVATE(inode)))
406 return -EOPNOTSUPP;
407 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
408 qstr, name, value, len);
409}
410EXPORT_SYMBOL(security_old_inode_init_security);
411
412#ifdef CONFIG_SECURITY_PATH
413int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
414 unsigned int dev)
415{
416 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
417 return 0;
418 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
419}
420EXPORT_SYMBOL(security_path_mknod);
421
422int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
423{
424 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
425 return 0;
426 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
427}
428EXPORT_SYMBOL(security_path_mkdir);
429
430int security_path_rmdir(struct path *dir, struct dentry *dentry)
431{
432 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
433 return 0;
434 return call_int_hook(path_rmdir, 0, dir, dentry);
435}
436
437int security_path_unlink(struct path *dir, struct dentry *dentry)
438{
439 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
440 return 0;
441 return call_int_hook(path_unlink, 0, dir, dentry);
442}
443EXPORT_SYMBOL(security_path_unlink);
444
445int security_path_symlink(struct path *dir, struct dentry *dentry,
446 const char *old_name)
447{
448 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
449 return 0;
450 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
451}
452
453int security_path_link(struct dentry *old_dentry, struct path *new_dir,
454 struct dentry *new_dentry)
455{
456 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
457 return 0;
458 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
459}
460
461int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
462 struct path *new_dir, struct dentry *new_dentry,
463 unsigned int flags)
464{
465 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
466 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
467 return 0;
468
469 if (flags & RENAME_EXCHANGE) {
470 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
471 old_dir, old_dentry);
472 if (err)
473 return err;
474 }
475
476 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
477 new_dentry);
478}
479EXPORT_SYMBOL(security_path_rename);
480
481int security_path_truncate(struct path *path)
482{
483 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
484 return 0;
485 return call_int_hook(path_truncate, 0, path);
486}
487
488int security_path_chmod(struct path *path, umode_t mode)
489{
490 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
491 return 0;
492 return call_int_hook(path_chmod, 0, path, mode);
493}
494
495int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
496{
497 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
498 return 0;
499 return call_int_hook(path_chown, 0, path, uid, gid);
500}
501
502int security_path_chroot(struct path *path)
503{
504 return call_int_hook(path_chroot, 0, path);
505}
506#endif
507
508int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
509{
510 if (unlikely(IS_PRIVATE(dir)))
511 return 0;
512 return call_int_hook(inode_create, 0, dir, dentry, mode);
513}
514EXPORT_SYMBOL_GPL(security_inode_create);
515
516int security_inode_link(struct dentry *old_dentry, struct inode *dir,
517 struct dentry *new_dentry)
518{
519 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
520 return 0;
521 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
522}
523
524int security_inode_unlink(struct inode *dir, struct dentry *dentry)
525{
526 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
527 return 0;
528 return call_int_hook(inode_unlink, 0, dir, dentry);
529}
530
531int security_inode_symlink(struct inode *dir, struct dentry *dentry,
532 const char *old_name)
533{
534 if (unlikely(IS_PRIVATE(dir)))
535 return 0;
536 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
537}
538
539int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
540{
541 if (unlikely(IS_PRIVATE(dir)))
542 return 0;
543 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
544}
545EXPORT_SYMBOL_GPL(security_inode_mkdir);
546
547int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
548{
549 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
550 return 0;
551 return call_int_hook(inode_rmdir, 0, dir, dentry);
552}
553
554int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
555{
556 if (unlikely(IS_PRIVATE(dir)))
557 return 0;
558 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
559}
560
561int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
562 struct inode *new_dir, struct dentry *new_dentry,
563 unsigned int flags)
564{
565 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
566 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
567 return 0;
568
569 if (flags & RENAME_EXCHANGE) {
570 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
571 old_dir, old_dentry);
572 if (err)
573 return err;
574 }
575
576 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
577 new_dir, new_dentry);
578}
579
580int security_inode_readlink(struct dentry *dentry)
581{
582 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
583 return 0;
584 return call_int_hook(inode_readlink, 0, dentry);
585}
586
587int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
588 bool rcu)
589{
590 if (unlikely(IS_PRIVATE(inode)))
591 return 0;
592 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
593}
594
595int security_inode_permission(struct inode *inode, int mask)
596{
597 if (unlikely(IS_PRIVATE(inode)))
598 return 0;
599 return call_int_hook(inode_permission, 0, inode, mask);
600}
601
602int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
603{
604 int ret;
605
606 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
607 return 0;
608 ret = call_int_hook(inode_setattr, 0, dentry, attr);
609 if (ret)
610 return ret;
611 return evm_inode_setattr(dentry, attr);
612}
613EXPORT_SYMBOL_GPL(security_inode_setattr);
614
615int security_inode_getattr(const struct path *path)
616{
617 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
618 return 0;
619 return call_int_hook(inode_getattr, 0, path);
620}
621
622int security_inode_setxattr(struct dentry *dentry, const char *name,
623 const void *value, size_t size, int flags)
624{
625 int ret;
626
627 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
628 return 0;
629 /*
630 * SELinux and Smack integrate the cap call,
631 * so assume that all LSMs supplying this call do so.
632 */
633 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
634 flags);
635
636 if (ret == 1)
637 ret = cap_inode_setxattr(dentry, name, value, size, flags);
638 if (ret)
639 return ret;
640 ret = ima_inode_setxattr(dentry, name, value, size);
641 if (ret)
642 return ret;
643 return evm_inode_setxattr(dentry, name, value, size);
644}
645
646void security_inode_post_setxattr(struct dentry *dentry, const char *name,
647 const void *value, size_t size, int flags)
648{
649 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
650 return;
651 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
652 evm_inode_post_setxattr(dentry, name, value, size);
653}
654
655int security_inode_getxattr(struct dentry *dentry, const char *name)
656{
657 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
658 return 0;
659 return call_int_hook(inode_getxattr, 0, dentry, name);
660}
661
662int security_inode_listxattr(struct dentry *dentry)
663{
664 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
665 return 0;
666 return call_int_hook(inode_listxattr, 0, dentry);
667}
668
669int security_inode_removexattr(struct dentry *dentry, const char *name)
670{
671 int ret;
672
673 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
674 return 0;
675 /*
676 * SELinux and Smack integrate the cap call,
677 * so assume that all LSMs supplying this call do so.
678 */
679 ret = call_int_hook(inode_removexattr, 1, dentry, name);
680 if (ret == 1)
681 ret = cap_inode_removexattr(dentry, name);
682 if (ret)
683 return ret;
684 ret = ima_inode_removexattr(dentry, name);
685 if (ret)
686 return ret;
687 return evm_inode_removexattr(dentry, name);
688}
689
690int security_inode_need_killpriv(struct dentry *dentry)
691{
692 return call_int_hook(inode_need_killpriv, 0, dentry);
693}
694
695int security_inode_killpriv(struct dentry *dentry)
696{
697 return call_int_hook(inode_killpriv, 0, dentry);
698}
699
700int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
701{
702 if (unlikely(IS_PRIVATE(inode)))
703 return -EOPNOTSUPP;
704 return call_int_hook(inode_getsecurity, -EOPNOTSUPP, inode, name,
705 buffer, alloc);
706}
707
708int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
709{
710 if (unlikely(IS_PRIVATE(inode)))
711 return -EOPNOTSUPP;
712 return call_int_hook(inode_setsecurity, -EOPNOTSUPP, inode, name,
713 value, size, flags);
714}
715
716int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
717{
718 if (unlikely(IS_PRIVATE(inode)))
719 return 0;
720 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
721}
722EXPORT_SYMBOL(security_inode_listsecurity);
723
724void security_inode_getsecid(struct inode *inode, u32 *secid)
725{
726 call_void_hook(inode_getsecid, inode, secid);
727}
728
729int security_file_permission(struct file *file, int mask)
730{
731 int ret;
732
733 ret = call_int_hook(file_permission, 0, file, mask);
734 if (ret)
735 return ret;
736
737 return fsnotify_perm(file, mask);
738}
739
740int security_file_alloc(struct file *file)
741{
742 return call_int_hook(file_alloc_security, 0, file);
743}
744
745void security_file_free(struct file *file)
746{
747 call_void_hook(file_free_security, file);
748}
749
750int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
751{
752 return call_int_hook(file_ioctl, 0, file, cmd, arg);
753}
754
755static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
756{
757 /*
758 * Does we have PROT_READ and does the application expect
759 * it to imply PROT_EXEC? If not, nothing to talk about...
760 */
761 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
762 return prot;
763 if (!(current->personality & READ_IMPLIES_EXEC))
764 return prot;
765 /*
766 * if that's an anonymous mapping, let it.
767 */
768 if (!file)
769 return prot | PROT_EXEC;
770 /*
771 * ditto if it's not on noexec mount, except that on !MMU we need
772 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
773 */
774 if (!path_noexec(&file->f_path)) {
775#ifndef CONFIG_MMU
776 if (file->f_op->mmap_capabilities) {
777 unsigned caps = file->f_op->mmap_capabilities(file);
778 if (!(caps & NOMMU_MAP_EXEC))
779 return prot;
780 }
781#endif
782 return prot | PROT_EXEC;
783 }
784 /* anything on noexec mount won't get PROT_EXEC */
785 return prot;
786}
787
788int security_mmap_file(struct file *file, unsigned long prot,
789 unsigned long flags)
790{
791 int ret;
792 ret = call_int_hook(mmap_file, 0, file, prot,
793 mmap_prot(file, prot), flags);
794 if (ret)
795 return ret;
796 return ima_file_mmap(file, prot);
797}
798
799int security_mmap_addr(unsigned long addr)
800{
801 return call_int_hook(mmap_addr, 0, addr);
802}
803
804int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
805 unsigned long prot)
806{
807 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
808}
809
810int security_file_lock(struct file *file, unsigned int cmd)
811{
812 return call_int_hook(file_lock, 0, file, cmd);
813}
814
815int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
816{
817 return call_int_hook(file_fcntl, 0, file, cmd, arg);
818}
819
820void security_file_set_fowner(struct file *file)
821{
822 call_void_hook(file_set_fowner, file);
823}
824
825int security_file_send_sigiotask(struct task_struct *tsk,
826 struct fown_struct *fown, int sig)
827{
828 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
829}
830
831int security_file_receive(struct file *file)
832{
833 return call_int_hook(file_receive, 0, file);
834}
835
836int security_file_open(struct file *file, const struct cred *cred)
837{
838 int ret;
839
840 ret = call_int_hook(file_open, 0, file, cred);
841 if (ret)
842 return ret;
843
844 return fsnotify_perm(file, MAY_OPEN);
845}
846
847int security_task_create(unsigned long clone_flags)
848{
849 return call_int_hook(task_create, 0, clone_flags);
850}
851
852void security_task_free(struct task_struct *task)
853{
854 call_void_hook(task_free, task);
855}
856
857int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
858{
859 return call_int_hook(cred_alloc_blank, 0, cred, gfp);
860}
861
862void security_cred_free(struct cred *cred)
863{
864 call_void_hook(cred_free, cred);
865}
866
867int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
868{
869 return call_int_hook(cred_prepare, 0, new, old, gfp);
870}
871
872void security_transfer_creds(struct cred *new, const struct cred *old)
873{
874 call_void_hook(cred_transfer, new, old);
875}
876
877int security_kernel_act_as(struct cred *new, u32 secid)
878{
879 return call_int_hook(kernel_act_as, 0, new, secid);
880}
881
882int security_kernel_create_files_as(struct cred *new, struct inode *inode)
883{
884 return call_int_hook(kernel_create_files_as, 0, new, inode);
885}
886
887int security_kernel_module_request(char *kmod_name)
888{
889 return call_int_hook(kernel_module_request, 0, kmod_name);
890}
891
892int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
893{
894 int ret;
895
896 ret = call_int_hook(kernel_read_file, 0, file, id);
897 if (ret)
898 return ret;
899 return ima_read_file(file, id);
900}
901EXPORT_SYMBOL_GPL(security_kernel_read_file);
902
903int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
904 enum kernel_read_file_id id)
905{
906 int ret;
907
908 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
909 if (ret)
910 return ret;
911 return ima_post_read_file(file, buf, size, id);
912}
913EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
914
915int security_task_fix_setuid(struct cred *new, const struct cred *old,
916 int flags)
917{
918 return call_int_hook(task_fix_setuid, 0, new, old, flags);
919}
920
921int security_task_setpgid(struct task_struct *p, pid_t pgid)
922{
923 return call_int_hook(task_setpgid, 0, p, pgid);
924}
925
926int security_task_getpgid(struct task_struct *p)
927{
928 return call_int_hook(task_getpgid, 0, p);
929}
930
931int security_task_getsid(struct task_struct *p)
932{
933 return call_int_hook(task_getsid, 0, p);
934}
935
936void security_task_getsecid(struct task_struct *p, u32 *secid)
937{
938 *secid = 0;
939 call_void_hook(task_getsecid, p, secid);
940}
941EXPORT_SYMBOL(security_task_getsecid);
942
943int security_task_setnice(struct task_struct *p, int nice)
944{
945 return call_int_hook(task_setnice, 0, p, nice);
946}
947
948int security_task_setioprio(struct task_struct *p, int ioprio)
949{
950 return call_int_hook(task_setioprio, 0, p, ioprio);
951}
952
953int security_task_getioprio(struct task_struct *p)
954{
955 return call_int_hook(task_getioprio, 0, p);
956}
957
958int security_task_setrlimit(struct task_struct *p, unsigned int resource,
959 struct rlimit *new_rlim)
960{
961 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
962}
963
964int security_task_setscheduler(struct task_struct *p)
965{
966 return call_int_hook(task_setscheduler, 0, p);
967}
968
969int security_task_getscheduler(struct task_struct *p)
970{
971 return call_int_hook(task_getscheduler, 0, p);
972}
973
974int security_task_movememory(struct task_struct *p)
975{
976 return call_int_hook(task_movememory, 0, p);
977}
978
979int security_task_kill(struct task_struct *p, struct siginfo *info,
980 int sig, u32 secid)
981{
982 return call_int_hook(task_kill, 0, p, info, sig, secid);
983}
984
985int security_task_wait(struct task_struct *p)
986{
987 return call_int_hook(task_wait, 0, p);
988}
989
990int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
991 unsigned long arg4, unsigned long arg5)
992{
993 int thisrc;
994 int rc = -ENOSYS;
995 struct security_hook_list *hp;
996
997 list_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
998 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
999 if (thisrc != -ENOSYS) {
1000 rc = thisrc;
1001 if (thisrc != 0)
1002 break;
1003 }
1004 }
1005 return rc;
1006}
1007
1008void security_task_to_inode(struct task_struct *p, struct inode *inode)
1009{
1010 call_void_hook(task_to_inode, p, inode);
1011}
1012
1013int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1014{
1015 return call_int_hook(ipc_permission, 0, ipcp, flag);
1016}
1017
1018void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1019{
1020 *secid = 0;
1021 call_void_hook(ipc_getsecid, ipcp, secid);
1022}
1023
1024int security_msg_msg_alloc(struct msg_msg *msg)
1025{
1026 return call_int_hook(msg_msg_alloc_security, 0, msg);
1027}
1028
1029void security_msg_msg_free(struct msg_msg *msg)
1030{
1031 call_void_hook(msg_msg_free_security, msg);
1032}
1033
1034int security_msg_queue_alloc(struct msg_queue *msq)
1035{
1036 return call_int_hook(msg_queue_alloc_security, 0, msq);
1037}
1038
1039void security_msg_queue_free(struct msg_queue *msq)
1040{
1041 call_void_hook(msg_queue_free_security, msq);
1042}
1043
1044int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1045{
1046 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1047}
1048
1049int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1050{
1051 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1052}
1053
1054int security_msg_queue_msgsnd(struct msg_queue *msq,
1055 struct msg_msg *msg, int msqflg)
1056{
1057 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1058}
1059
1060int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1061 struct task_struct *target, long type, int mode)
1062{
1063 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1064}
1065
1066int security_shm_alloc(struct shmid_kernel *shp)
1067{
1068 return call_int_hook(shm_alloc_security, 0, shp);
1069}
1070
1071void security_shm_free(struct shmid_kernel *shp)
1072{
1073 call_void_hook(shm_free_security, shp);
1074}
1075
1076int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1077{
1078 return call_int_hook(shm_associate, 0, shp, shmflg);
1079}
1080
1081int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1082{
1083 return call_int_hook(shm_shmctl, 0, shp, cmd);
1084}
1085
1086int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1087{
1088 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1089}
1090
1091int security_sem_alloc(struct sem_array *sma)
1092{
1093 return call_int_hook(sem_alloc_security, 0, sma);
1094}
1095
1096void security_sem_free(struct sem_array *sma)
1097{
1098 call_void_hook(sem_free_security, sma);
1099}
1100
1101int security_sem_associate(struct sem_array *sma, int semflg)
1102{
1103 return call_int_hook(sem_associate, 0, sma, semflg);
1104}
1105
1106int security_sem_semctl(struct sem_array *sma, int cmd)
1107{
1108 return call_int_hook(sem_semctl, 0, sma, cmd);
1109}
1110
1111int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1112 unsigned nsops, int alter)
1113{
1114 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1115}
1116
1117void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1118{
1119 if (unlikely(inode && IS_PRIVATE(inode)))
1120 return;
1121 call_void_hook(d_instantiate, dentry, inode);
1122}
1123EXPORT_SYMBOL(security_d_instantiate);
1124
1125int security_getprocattr(struct task_struct *p, char *name, char **value)
1126{
1127 return call_int_hook(getprocattr, -EINVAL, p, name, value);
1128}
1129
1130int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1131{
1132 return call_int_hook(setprocattr, -EINVAL, p, name, value, size);
1133}
1134
1135int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1136{
1137 return call_int_hook(netlink_send, 0, sk, skb);
1138}
1139
1140int security_ismaclabel(const char *name)
1141{
1142 return call_int_hook(ismaclabel, 0, name);
1143}
1144EXPORT_SYMBOL(security_ismaclabel);
1145
1146int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1147{
1148 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1149 seclen);
1150}
1151EXPORT_SYMBOL(security_secid_to_secctx);
1152
1153int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1154{
1155 *secid = 0;
1156 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1157}
1158EXPORT_SYMBOL(security_secctx_to_secid);
1159
1160void security_release_secctx(char *secdata, u32 seclen)
1161{
1162 call_void_hook(release_secctx, secdata, seclen);
1163}
1164EXPORT_SYMBOL(security_release_secctx);
1165
1166void security_inode_invalidate_secctx(struct inode *inode)
1167{
1168 call_void_hook(inode_invalidate_secctx, inode);
1169}
1170EXPORT_SYMBOL(security_inode_invalidate_secctx);
1171
1172int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1173{
1174 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1175}
1176EXPORT_SYMBOL(security_inode_notifysecctx);
1177
1178int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1179{
1180 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1181}
1182EXPORT_SYMBOL(security_inode_setsecctx);
1183
1184int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1185{
1186 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1187}
1188EXPORT_SYMBOL(security_inode_getsecctx);
1189
1190#ifdef CONFIG_SECURITY_NETWORK
1191
1192int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1193{
1194 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1195}
1196EXPORT_SYMBOL(security_unix_stream_connect);
1197
1198int security_unix_may_send(struct socket *sock, struct socket *other)
1199{
1200 return call_int_hook(unix_may_send, 0, sock, other);
1201}
1202EXPORT_SYMBOL(security_unix_may_send);
1203
1204int security_socket_create(int family, int type, int protocol, int kern)
1205{
1206 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1207}
1208
1209int security_socket_post_create(struct socket *sock, int family,
1210 int type, int protocol, int kern)
1211{
1212 return call_int_hook(socket_post_create, 0, sock, family, type,
1213 protocol, kern);
1214}
1215
1216int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1217{
1218 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1219}
1220
1221int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1222{
1223 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1224}
1225
1226int security_socket_listen(struct socket *sock, int backlog)
1227{
1228 return call_int_hook(socket_listen, 0, sock, backlog);
1229}
1230
1231int security_socket_accept(struct socket *sock, struct socket *newsock)
1232{
1233 return call_int_hook(socket_accept, 0, sock, newsock);
1234}
1235
1236int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1237{
1238 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1239}
1240
1241int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1242 int size, int flags)
1243{
1244 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1245}
1246
1247int security_socket_getsockname(struct socket *sock)
1248{
1249 return call_int_hook(socket_getsockname, 0, sock);
1250}
1251
1252int security_socket_getpeername(struct socket *sock)
1253{
1254 return call_int_hook(socket_getpeername, 0, sock);
1255}
1256
1257int security_socket_getsockopt(struct socket *sock, int level, int optname)
1258{
1259 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1260}
1261
1262int security_socket_setsockopt(struct socket *sock, int level, int optname)
1263{
1264 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1265}
1266
1267int security_socket_shutdown(struct socket *sock, int how)
1268{
1269 return call_int_hook(socket_shutdown, 0, sock, how);
1270}
1271
1272int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1273{
1274 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1275}
1276EXPORT_SYMBOL(security_sock_rcv_skb);
1277
1278int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1279 int __user *optlen, unsigned len)
1280{
1281 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1282 optval, optlen, len);
1283}
1284
1285int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1286{
1287 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1288 skb, secid);
1289}
1290EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1291
1292int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1293{
1294 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1295}
1296
1297void security_sk_free(struct sock *sk)
1298{
1299 call_void_hook(sk_free_security, sk);
1300}
1301
1302void security_sk_clone(const struct sock *sk, struct sock *newsk)
1303{
1304 call_void_hook(sk_clone_security, sk, newsk);
1305}
1306EXPORT_SYMBOL(security_sk_clone);
1307
1308void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1309{
1310 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1311}
1312EXPORT_SYMBOL(security_sk_classify_flow);
1313
1314void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1315{
1316 call_void_hook(req_classify_flow, req, fl);
1317}
1318EXPORT_SYMBOL(security_req_classify_flow);
1319
1320void security_sock_graft(struct sock *sk, struct socket *parent)
1321{
1322 call_void_hook(sock_graft, sk, parent);
1323}
1324EXPORT_SYMBOL(security_sock_graft);
1325
1326int security_inet_conn_request(struct sock *sk,
1327 struct sk_buff *skb, struct request_sock *req)
1328{
1329 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1330}
1331EXPORT_SYMBOL(security_inet_conn_request);
1332
1333void security_inet_csk_clone(struct sock *newsk,
1334 const struct request_sock *req)
1335{
1336 call_void_hook(inet_csk_clone, newsk, req);
1337}
1338
1339void security_inet_conn_established(struct sock *sk,
1340 struct sk_buff *skb)
1341{
1342 call_void_hook(inet_conn_established, sk, skb);
1343}
1344
1345int security_secmark_relabel_packet(u32 secid)
1346{
1347 return call_int_hook(secmark_relabel_packet, 0, secid);
1348}
1349EXPORT_SYMBOL(security_secmark_relabel_packet);
1350
1351void security_secmark_refcount_inc(void)
1352{
1353 call_void_hook(secmark_refcount_inc);
1354}
1355EXPORT_SYMBOL(security_secmark_refcount_inc);
1356
1357void security_secmark_refcount_dec(void)
1358{
1359 call_void_hook(secmark_refcount_dec);
1360}
1361EXPORT_SYMBOL(security_secmark_refcount_dec);
1362
1363int security_tun_dev_alloc_security(void **security)
1364{
1365 return call_int_hook(tun_dev_alloc_security, 0, security);
1366}
1367EXPORT_SYMBOL(security_tun_dev_alloc_security);
1368
1369void security_tun_dev_free_security(void *security)
1370{
1371 call_void_hook(tun_dev_free_security, security);
1372}
1373EXPORT_SYMBOL(security_tun_dev_free_security);
1374
1375int security_tun_dev_create(void)
1376{
1377 return call_int_hook(tun_dev_create, 0);
1378}
1379EXPORT_SYMBOL(security_tun_dev_create);
1380
1381int security_tun_dev_attach_queue(void *security)
1382{
1383 return call_int_hook(tun_dev_attach_queue, 0, security);
1384}
1385EXPORT_SYMBOL(security_tun_dev_attach_queue);
1386
1387int security_tun_dev_attach(struct sock *sk, void *security)
1388{
1389 return call_int_hook(tun_dev_attach, 0, sk, security);
1390}
1391EXPORT_SYMBOL(security_tun_dev_attach);
1392
1393int security_tun_dev_open(void *security)
1394{
1395 return call_int_hook(tun_dev_open, 0, security);
1396}
1397EXPORT_SYMBOL(security_tun_dev_open);
1398
1399#endif /* CONFIG_SECURITY_NETWORK */
1400
1401#ifdef CONFIG_SECURITY_NETWORK_XFRM
1402
1403int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1404 struct xfrm_user_sec_ctx *sec_ctx,
1405 gfp_t gfp)
1406{
1407 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1408}
1409EXPORT_SYMBOL(security_xfrm_policy_alloc);
1410
1411int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1412 struct xfrm_sec_ctx **new_ctxp)
1413{
1414 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1415}
1416
1417void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1418{
1419 call_void_hook(xfrm_policy_free_security, ctx);
1420}
1421EXPORT_SYMBOL(security_xfrm_policy_free);
1422
1423int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1424{
1425 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1426}
1427
1428int security_xfrm_state_alloc(struct xfrm_state *x,
1429 struct xfrm_user_sec_ctx *sec_ctx)
1430{
1431 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1432}
1433EXPORT_SYMBOL(security_xfrm_state_alloc);
1434
1435int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1436 struct xfrm_sec_ctx *polsec, u32 secid)
1437{
1438 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1439}
1440
1441int security_xfrm_state_delete(struct xfrm_state *x)
1442{
1443 return call_int_hook(xfrm_state_delete_security, 0, x);
1444}
1445EXPORT_SYMBOL(security_xfrm_state_delete);
1446
1447void security_xfrm_state_free(struct xfrm_state *x)
1448{
1449 call_void_hook(xfrm_state_free_security, x);
1450}
1451
1452int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1453{
1454 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1455}
1456
1457int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1458 struct xfrm_policy *xp,
1459 const struct flowi *fl)
1460{
1461 struct security_hook_list *hp;
1462 int rc = 1;
1463
1464 /*
1465 * Since this function is expected to return 0 or 1, the judgment
1466 * becomes difficult if multiple LSMs supply this call. Fortunately,
1467 * we can use the first LSM's judgment because currently only SELinux
1468 * supplies this call.
1469 *
1470 * For speed optimization, we explicitly break the loop rather than
1471 * using the macro
1472 */
1473 list_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1474 list) {
1475 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1476 break;
1477 }
1478 return rc;
1479}
1480
1481int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1482{
1483 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1484}
1485
1486void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1487{
1488 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1489 0);
1490
1491 BUG_ON(rc);
1492}
1493EXPORT_SYMBOL(security_skb_classify_flow);
1494
1495#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1496
1497#ifdef CONFIG_KEYS
1498
1499int security_key_alloc(struct key *key, const struct cred *cred,
1500 unsigned long flags)
1501{
1502 return call_int_hook(key_alloc, 0, key, cred, flags);
1503}
1504
1505void security_key_free(struct key *key)
1506{
1507 call_void_hook(key_free, key);
1508}
1509
1510int security_key_permission(key_ref_t key_ref,
1511 const struct cred *cred, unsigned perm)
1512{
1513 return call_int_hook(key_permission, 0, key_ref, cred, perm);
1514}
1515
1516int security_key_getsecurity(struct key *key, char **_buffer)
1517{
1518 *_buffer = NULL;
1519 return call_int_hook(key_getsecurity, 0, key, _buffer);
1520}
1521
1522#endif /* CONFIG_KEYS */
1523
1524#ifdef CONFIG_AUDIT
1525
1526int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1527{
1528 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1529}
1530
1531int security_audit_rule_known(struct audit_krule *krule)
1532{
1533 return call_int_hook(audit_rule_known, 0, krule);
1534}
1535
1536void security_audit_rule_free(void *lsmrule)
1537{
1538 call_void_hook(audit_rule_free, lsmrule);
1539}
1540
1541int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1542 struct audit_context *actx)
1543{
1544 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1545 actx);
1546}
1547#endif /* CONFIG_AUDIT */
1548
1549struct security_hook_heads security_hook_heads = {
1550 .binder_set_context_mgr =
1551 LIST_HEAD_INIT(security_hook_heads.binder_set_context_mgr),
1552 .binder_transaction =
1553 LIST_HEAD_INIT(security_hook_heads.binder_transaction),
1554 .binder_transfer_binder =
1555 LIST_HEAD_INIT(security_hook_heads.binder_transfer_binder),
1556 .binder_transfer_file =
1557 LIST_HEAD_INIT(security_hook_heads.binder_transfer_file),
1558
1559 .ptrace_access_check =
1560 LIST_HEAD_INIT(security_hook_heads.ptrace_access_check),
1561 .ptrace_traceme =
1562 LIST_HEAD_INIT(security_hook_heads.ptrace_traceme),
1563 .capget = LIST_HEAD_INIT(security_hook_heads.capget),
1564 .capset = LIST_HEAD_INIT(security_hook_heads.capset),
1565 .capable = LIST_HEAD_INIT(security_hook_heads.capable),
1566 .quotactl = LIST_HEAD_INIT(security_hook_heads.quotactl),
1567 .quota_on = LIST_HEAD_INIT(security_hook_heads.quota_on),
1568 .syslog = LIST_HEAD_INIT(security_hook_heads.syslog),
1569 .settime = LIST_HEAD_INIT(security_hook_heads.settime),
1570 .vm_enough_memory =
1571 LIST_HEAD_INIT(security_hook_heads.vm_enough_memory),
1572 .bprm_set_creds =
1573 LIST_HEAD_INIT(security_hook_heads.bprm_set_creds),
1574 .bprm_check_security =
1575 LIST_HEAD_INIT(security_hook_heads.bprm_check_security),
1576 .bprm_secureexec =
1577 LIST_HEAD_INIT(security_hook_heads.bprm_secureexec),
1578 .bprm_committing_creds =
1579 LIST_HEAD_INIT(security_hook_heads.bprm_committing_creds),
1580 .bprm_committed_creds =
1581 LIST_HEAD_INIT(security_hook_heads.bprm_committed_creds),
1582 .sb_alloc_security =
1583 LIST_HEAD_INIT(security_hook_heads.sb_alloc_security),
1584 .sb_free_security =
1585 LIST_HEAD_INIT(security_hook_heads.sb_free_security),
1586 .sb_copy_data = LIST_HEAD_INIT(security_hook_heads.sb_copy_data),
1587 .sb_remount = LIST_HEAD_INIT(security_hook_heads.sb_remount),
1588 .sb_kern_mount =
1589 LIST_HEAD_INIT(security_hook_heads.sb_kern_mount),
1590 .sb_show_options =
1591 LIST_HEAD_INIT(security_hook_heads.sb_show_options),
1592 .sb_statfs = LIST_HEAD_INIT(security_hook_heads.sb_statfs),
1593 .sb_mount = LIST_HEAD_INIT(security_hook_heads.sb_mount),
1594 .sb_umount = LIST_HEAD_INIT(security_hook_heads.sb_umount),
1595 .sb_pivotroot = LIST_HEAD_INIT(security_hook_heads.sb_pivotroot),
1596 .sb_set_mnt_opts =
1597 LIST_HEAD_INIT(security_hook_heads.sb_set_mnt_opts),
1598 .sb_clone_mnt_opts =
1599 LIST_HEAD_INIT(security_hook_heads.sb_clone_mnt_opts),
1600 .sb_parse_opts_str =
1601 LIST_HEAD_INIT(security_hook_heads.sb_parse_opts_str),
1602 .dentry_init_security =
1603 LIST_HEAD_INIT(security_hook_heads.dentry_init_security),
1604#ifdef CONFIG_SECURITY_PATH
1605 .path_unlink = LIST_HEAD_INIT(security_hook_heads.path_unlink),
1606 .path_mkdir = LIST_HEAD_INIT(security_hook_heads.path_mkdir),
1607 .path_rmdir = LIST_HEAD_INIT(security_hook_heads.path_rmdir),
1608 .path_mknod = LIST_HEAD_INIT(security_hook_heads.path_mknod),
1609 .path_truncate =
1610 LIST_HEAD_INIT(security_hook_heads.path_truncate),
1611 .path_symlink = LIST_HEAD_INIT(security_hook_heads.path_symlink),
1612 .path_link = LIST_HEAD_INIT(security_hook_heads.path_link),
1613 .path_rename = LIST_HEAD_INIT(security_hook_heads.path_rename),
1614 .path_chmod = LIST_HEAD_INIT(security_hook_heads.path_chmod),
1615 .path_chown = LIST_HEAD_INIT(security_hook_heads.path_chown),
1616 .path_chroot = LIST_HEAD_INIT(security_hook_heads.path_chroot),
1617#endif
1618 .inode_alloc_security =
1619 LIST_HEAD_INIT(security_hook_heads.inode_alloc_security),
1620 .inode_free_security =
1621 LIST_HEAD_INIT(security_hook_heads.inode_free_security),
1622 .inode_init_security =
1623 LIST_HEAD_INIT(security_hook_heads.inode_init_security),
1624 .inode_create = LIST_HEAD_INIT(security_hook_heads.inode_create),
1625 .inode_link = LIST_HEAD_INIT(security_hook_heads.inode_link),
1626 .inode_unlink = LIST_HEAD_INIT(security_hook_heads.inode_unlink),
1627 .inode_symlink =
1628 LIST_HEAD_INIT(security_hook_heads.inode_symlink),
1629 .inode_mkdir = LIST_HEAD_INIT(security_hook_heads.inode_mkdir),
1630 .inode_rmdir = LIST_HEAD_INIT(security_hook_heads.inode_rmdir),
1631 .inode_mknod = LIST_HEAD_INIT(security_hook_heads.inode_mknod),
1632 .inode_rename = LIST_HEAD_INIT(security_hook_heads.inode_rename),
1633 .inode_readlink =
1634 LIST_HEAD_INIT(security_hook_heads.inode_readlink),
1635 .inode_follow_link =
1636 LIST_HEAD_INIT(security_hook_heads.inode_follow_link),
1637 .inode_permission =
1638 LIST_HEAD_INIT(security_hook_heads.inode_permission),
1639 .inode_setattr =
1640 LIST_HEAD_INIT(security_hook_heads.inode_setattr),
1641 .inode_getattr =
1642 LIST_HEAD_INIT(security_hook_heads.inode_getattr),
1643 .inode_setxattr =
1644 LIST_HEAD_INIT(security_hook_heads.inode_setxattr),
1645 .inode_post_setxattr =
1646 LIST_HEAD_INIT(security_hook_heads.inode_post_setxattr),
1647 .inode_getxattr =
1648 LIST_HEAD_INIT(security_hook_heads.inode_getxattr),
1649 .inode_listxattr =
1650 LIST_HEAD_INIT(security_hook_heads.inode_listxattr),
1651 .inode_removexattr =
1652 LIST_HEAD_INIT(security_hook_heads.inode_removexattr),
1653 .inode_need_killpriv =
1654 LIST_HEAD_INIT(security_hook_heads.inode_need_killpriv),
1655 .inode_killpriv =
1656 LIST_HEAD_INIT(security_hook_heads.inode_killpriv),
1657 .inode_getsecurity =
1658 LIST_HEAD_INIT(security_hook_heads.inode_getsecurity),
1659 .inode_setsecurity =
1660 LIST_HEAD_INIT(security_hook_heads.inode_setsecurity),
1661 .inode_listsecurity =
1662 LIST_HEAD_INIT(security_hook_heads.inode_listsecurity),
1663 .inode_getsecid =
1664 LIST_HEAD_INIT(security_hook_heads.inode_getsecid),
1665 .file_permission =
1666 LIST_HEAD_INIT(security_hook_heads.file_permission),
1667 .file_alloc_security =
1668 LIST_HEAD_INIT(security_hook_heads.file_alloc_security),
1669 .file_free_security =
1670 LIST_HEAD_INIT(security_hook_heads.file_free_security),
1671 .file_ioctl = LIST_HEAD_INIT(security_hook_heads.file_ioctl),
1672 .mmap_addr = LIST_HEAD_INIT(security_hook_heads.mmap_addr),
1673 .mmap_file = LIST_HEAD_INIT(security_hook_heads.mmap_file),
1674 .file_mprotect =
1675 LIST_HEAD_INIT(security_hook_heads.file_mprotect),
1676 .file_lock = LIST_HEAD_INIT(security_hook_heads.file_lock),
1677 .file_fcntl = LIST_HEAD_INIT(security_hook_heads.file_fcntl),
1678 .file_set_fowner =
1679 LIST_HEAD_INIT(security_hook_heads.file_set_fowner),
1680 .file_send_sigiotask =
1681 LIST_HEAD_INIT(security_hook_heads.file_send_sigiotask),
1682 .file_receive = LIST_HEAD_INIT(security_hook_heads.file_receive),
1683 .file_open = LIST_HEAD_INIT(security_hook_heads.file_open),
1684 .task_create = LIST_HEAD_INIT(security_hook_heads.task_create),
1685 .task_free = LIST_HEAD_INIT(security_hook_heads.task_free),
1686 .cred_alloc_blank =
1687 LIST_HEAD_INIT(security_hook_heads.cred_alloc_blank),
1688 .cred_free = LIST_HEAD_INIT(security_hook_heads.cred_free),
1689 .cred_prepare = LIST_HEAD_INIT(security_hook_heads.cred_prepare),
1690 .cred_transfer =
1691 LIST_HEAD_INIT(security_hook_heads.cred_transfer),
1692 .kernel_act_as =
1693 LIST_HEAD_INIT(security_hook_heads.kernel_act_as),
1694 .kernel_create_files_as =
1695 LIST_HEAD_INIT(security_hook_heads.kernel_create_files_as),
1696 .kernel_module_request =
1697 LIST_HEAD_INIT(security_hook_heads.kernel_module_request),
1698 .kernel_read_file =
1699 LIST_HEAD_INIT(security_hook_heads.kernel_read_file),
1700 .kernel_post_read_file =
1701 LIST_HEAD_INIT(security_hook_heads.kernel_post_read_file),
1702 .task_fix_setuid =
1703 LIST_HEAD_INIT(security_hook_heads.task_fix_setuid),
1704 .task_setpgid = LIST_HEAD_INIT(security_hook_heads.task_setpgid),
1705 .task_getpgid = LIST_HEAD_INIT(security_hook_heads.task_getpgid),
1706 .task_getsid = LIST_HEAD_INIT(security_hook_heads.task_getsid),
1707 .task_getsecid =
1708 LIST_HEAD_INIT(security_hook_heads.task_getsecid),
1709 .task_setnice = LIST_HEAD_INIT(security_hook_heads.task_setnice),
1710 .task_setioprio =
1711 LIST_HEAD_INIT(security_hook_heads.task_setioprio),
1712 .task_getioprio =
1713 LIST_HEAD_INIT(security_hook_heads.task_getioprio),
1714 .task_setrlimit =
1715 LIST_HEAD_INIT(security_hook_heads.task_setrlimit),
1716 .task_setscheduler =
1717 LIST_HEAD_INIT(security_hook_heads.task_setscheduler),
1718 .task_getscheduler =
1719 LIST_HEAD_INIT(security_hook_heads.task_getscheduler),
1720 .task_movememory =
1721 LIST_HEAD_INIT(security_hook_heads.task_movememory),
1722 .task_kill = LIST_HEAD_INIT(security_hook_heads.task_kill),
1723 .task_wait = LIST_HEAD_INIT(security_hook_heads.task_wait),
1724 .task_prctl = LIST_HEAD_INIT(security_hook_heads.task_prctl),
1725 .task_to_inode =
1726 LIST_HEAD_INIT(security_hook_heads.task_to_inode),
1727 .ipc_permission =
1728 LIST_HEAD_INIT(security_hook_heads.ipc_permission),
1729 .ipc_getsecid = LIST_HEAD_INIT(security_hook_heads.ipc_getsecid),
1730 .msg_msg_alloc_security =
1731 LIST_HEAD_INIT(security_hook_heads.msg_msg_alloc_security),
1732 .msg_msg_free_security =
1733 LIST_HEAD_INIT(security_hook_heads.msg_msg_free_security),
1734 .msg_queue_alloc_security =
1735 LIST_HEAD_INIT(security_hook_heads.msg_queue_alloc_security),
1736 .msg_queue_free_security =
1737 LIST_HEAD_INIT(security_hook_heads.msg_queue_free_security),
1738 .msg_queue_associate =
1739 LIST_HEAD_INIT(security_hook_heads.msg_queue_associate),
1740 .msg_queue_msgctl =
1741 LIST_HEAD_INIT(security_hook_heads.msg_queue_msgctl),
1742 .msg_queue_msgsnd =
1743 LIST_HEAD_INIT(security_hook_heads.msg_queue_msgsnd),
1744 .msg_queue_msgrcv =
1745 LIST_HEAD_INIT(security_hook_heads.msg_queue_msgrcv),
1746 .shm_alloc_security =
1747 LIST_HEAD_INIT(security_hook_heads.shm_alloc_security),
1748 .shm_free_security =
1749 LIST_HEAD_INIT(security_hook_heads.shm_free_security),
1750 .shm_associate =
1751 LIST_HEAD_INIT(security_hook_heads.shm_associate),
1752 .shm_shmctl = LIST_HEAD_INIT(security_hook_heads.shm_shmctl),
1753 .shm_shmat = LIST_HEAD_INIT(security_hook_heads.shm_shmat),
1754 .sem_alloc_security =
1755 LIST_HEAD_INIT(security_hook_heads.sem_alloc_security),
1756 .sem_free_security =
1757 LIST_HEAD_INIT(security_hook_heads.sem_free_security),
1758 .sem_associate =
1759 LIST_HEAD_INIT(security_hook_heads.sem_associate),
1760 .sem_semctl = LIST_HEAD_INIT(security_hook_heads.sem_semctl),
1761 .sem_semop = LIST_HEAD_INIT(security_hook_heads.sem_semop),
1762 .netlink_send = LIST_HEAD_INIT(security_hook_heads.netlink_send),
1763 .d_instantiate =
1764 LIST_HEAD_INIT(security_hook_heads.d_instantiate),
1765 .getprocattr = LIST_HEAD_INIT(security_hook_heads.getprocattr),
1766 .setprocattr = LIST_HEAD_INIT(security_hook_heads.setprocattr),
1767 .ismaclabel = LIST_HEAD_INIT(security_hook_heads.ismaclabel),
1768 .secid_to_secctx =
1769 LIST_HEAD_INIT(security_hook_heads.secid_to_secctx),
1770 .secctx_to_secid =
1771 LIST_HEAD_INIT(security_hook_heads.secctx_to_secid),
1772 .release_secctx =
1773 LIST_HEAD_INIT(security_hook_heads.release_secctx),
1774 .inode_invalidate_secctx =
1775 LIST_HEAD_INIT(security_hook_heads.inode_invalidate_secctx),
1776 .inode_notifysecctx =
1777 LIST_HEAD_INIT(security_hook_heads.inode_notifysecctx),
1778 .inode_setsecctx =
1779 LIST_HEAD_INIT(security_hook_heads.inode_setsecctx),
1780 .inode_getsecctx =
1781 LIST_HEAD_INIT(security_hook_heads.inode_getsecctx),
1782#ifdef CONFIG_SECURITY_NETWORK
1783 .unix_stream_connect =
1784 LIST_HEAD_INIT(security_hook_heads.unix_stream_connect),
1785 .unix_may_send =
1786 LIST_HEAD_INIT(security_hook_heads.unix_may_send),
1787 .socket_create =
1788 LIST_HEAD_INIT(security_hook_heads.socket_create),
1789 .socket_post_create =
1790 LIST_HEAD_INIT(security_hook_heads.socket_post_create),
1791 .socket_bind = LIST_HEAD_INIT(security_hook_heads.socket_bind),
1792 .socket_connect =
1793 LIST_HEAD_INIT(security_hook_heads.socket_connect),
1794 .socket_listen =
1795 LIST_HEAD_INIT(security_hook_heads.socket_listen),
1796 .socket_accept =
1797 LIST_HEAD_INIT(security_hook_heads.socket_accept),
1798 .socket_sendmsg =
1799 LIST_HEAD_INIT(security_hook_heads.socket_sendmsg),
1800 .socket_recvmsg =
1801 LIST_HEAD_INIT(security_hook_heads.socket_recvmsg),
1802 .socket_getsockname =
1803 LIST_HEAD_INIT(security_hook_heads.socket_getsockname),
1804 .socket_getpeername =
1805 LIST_HEAD_INIT(security_hook_heads.socket_getpeername),
1806 .socket_getsockopt =
1807 LIST_HEAD_INIT(security_hook_heads.socket_getsockopt),
1808 .socket_setsockopt =
1809 LIST_HEAD_INIT(security_hook_heads.socket_setsockopt),
1810 .socket_shutdown =
1811 LIST_HEAD_INIT(security_hook_heads.socket_shutdown),
1812 .socket_sock_rcv_skb =
1813 LIST_HEAD_INIT(security_hook_heads.socket_sock_rcv_skb),
1814 .socket_getpeersec_stream =
1815 LIST_HEAD_INIT(security_hook_heads.socket_getpeersec_stream),
1816 .socket_getpeersec_dgram =
1817 LIST_HEAD_INIT(security_hook_heads.socket_getpeersec_dgram),
1818 .sk_alloc_security =
1819 LIST_HEAD_INIT(security_hook_heads.sk_alloc_security),
1820 .sk_free_security =
1821 LIST_HEAD_INIT(security_hook_heads.sk_free_security),
1822 .sk_clone_security =
1823 LIST_HEAD_INIT(security_hook_heads.sk_clone_security),
1824 .sk_getsecid = LIST_HEAD_INIT(security_hook_heads.sk_getsecid),
1825 .sock_graft = LIST_HEAD_INIT(security_hook_heads.sock_graft),
1826 .inet_conn_request =
1827 LIST_HEAD_INIT(security_hook_heads.inet_conn_request),
1828 .inet_csk_clone =
1829 LIST_HEAD_INIT(security_hook_heads.inet_csk_clone),
1830 .inet_conn_established =
1831 LIST_HEAD_INIT(security_hook_heads.inet_conn_established),
1832 .secmark_relabel_packet =
1833 LIST_HEAD_INIT(security_hook_heads.secmark_relabel_packet),
1834 .secmark_refcount_inc =
1835 LIST_HEAD_INIT(security_hook_heads.secmark_refcount_inc),
1836 .secmark_refcount_dec =
1837 LIST_HEAD_INIT(security_hook_heads.secmark_refcount_dec),
1838 .req_classify_flow =
1839 LIST_HEAD_INIT(security_hook_heads.req_classify_flow),
1840 .tun_dev_alloc_security =
1841 LIST_HEAD_INIT(security_hook_heads.tun_dev_alloc_security),
1842 .tun_dev_free_security =
1843 LIST_HEAD_INIT(security_hook_heads.tun_dev_free_security),
1844 .tun_dev_create =
1845 LIST_HEAD_INIT(security_hook_heads.tun_dev_create),
1846 .tun_dev_attach_queue =
1847 LIST_HEAD_INIT(security_hook_heads.tun_dev_attach_queue),
1848 .tun_dev_attach =
1849 LIST_HEAD_INIT(security_hook_heads.tun_dev_attach),
1850 .tun_dev_open = LIST_HEAD_INIT(security_hook_heads.tun_dev_open),
1851 .skb_owned_by = LIST_HEAD_INIT(security_hook_heads.skb_owned_by),
1852#endif /* CONFIG_SECURITY_NETWORK */
1853#ifdef CONFIG_SECURITY_NETWORK_XFRM
1854 .xfrm_policy_alloc_security =
1855 LIST_HEAD_INIT(security_hook_heads.xfrm_policy_alloc_security),
1856 .xfrm_policy_clone_security =
1857 LIST_HEAD_INIT(security_hook_heads.xfrm_policy_clone_security),
1858 .xfrm_policy_free_security =
1859 LIST_HEAD_INIT(security_hook_heads.xfrm_policy_free_security),
1860 .xfrm_policy_delete_security =
1861 LIST_HEAD_INIT(security_hook_heads.xfrm_policy_delete_security),
1862 .xfrm_state_alloc =
1863 LIST_HEAD_INIT(security_hook_heads.xfrm_state_alloc),
1864 .xfrm_state_alloc_acquire =
1865 LIST_HEAD_INIT(security_hook_heads.xfrm_state_alloc_acquire),
1866 .xfrm_state_free_security =
1867 LIST_HEAD_INIT(security_hook_heads.xfrm_state_free_security),
1868 .xfrm_state_delete_security =
1869 LIST_HEAD_INIT(security_hook_heads.xfrm_state_delete_security),
1870 .xfrm_policy_lookup =
1871 LIST_HEAD_INIT(security_hook_heads.xfrm_policy_lookup),
1872 .xfrm_state_pol_flow_match =
1873 LIST_HEAD_INIT(security_hook_heads.xfrm_state_pol_flow_match),
1874 .xfrm_decode_session =
1875 LIST_HEAD_INIT(security_hook_heads.xfrm_decode_session),
1876#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1877#ifdef CONFIG_KEYS
1878 .key_alloc = LIST_HEAD_INIT(security_hook_heads.key_alloc),
1879 .key_free = LIST_HEAD_INIT(security_hook_heads.key_free),
1880 .key_permission =
1881 LIST_HEAD_INIT(security_hook_heads.key_permission),
1882 .key_getsecurity =
1883 LIST_HEAD_INIT(security_hook_heads.key_getsecurity),
1884#endif /* CONFIG_KEYS */
1885#ifdef CONFIG_AUDIT
1886 .audit_rule_init =
1887 LIST_HEAD_INIT(security_hook_heads.audit_rule_init),
1888 .audit_rule_known =
1889 LIST_HEAD_INIT(security_hook_heads.audit_rule_known),
1890 .audit_rule_match =
1891 LIST_HEAD_INIT(security_hook_heads.audit_rule_match),
1892 .audit_rule_free =
1893 LIST_HEAD_INIT(security_hook_heads.audit_rule_free),
1894#endif /* CONFIG_AUDIT */
1895};
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12#define pr_fmt(fmt) "LSM: " fmt
13
14#include <linux/bpf.h>
15#include <linux/capability.h>
16#include <linux/dcache.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/kernel_read_file.h>
21#include <linux/lsm_hooks.h>
22#include <linux/integrity.h>
23#include <linux/ima.h>
24#include <linux/evm.h>
25#include <linux/fsnotify.h>
26#include <linux/mman.h>
27#include <linux/mount.h>
28#include <linux/personality.h>
29#include <linux/backing-dev.h>
30#include <linux/string.h>
31#include <linux/msg.h>
32#include <linux/overflow.h>
33#include <net/flow.h>
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * How many LSMs are built into the kernel as determined at
40 * build time. Used to determine fixed array sizes.
41 * The capability module is accounted for by CONFIG_SECURITY
42 */
43#define LSM_CONFIG_COUNT ( \
44 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
45 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
46 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
47 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
48 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
49 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
50 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
51 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
52 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
53 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
54 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0))
55
56/*
57 * These are descriptions of the reasons that can be passed to the
58 * security_locked_down() LSM hook. Placing this array here allows
59 * all security modules to use the same descriptions for auditing
60 * purposes.
61 */
62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
63 [LOCKDOWN_NONE] = "none",
64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
67 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
68 [LOCKDOWN_HIBERNATION] = "hibernation",
69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
70 [LOCKDOWN_IOPORT] = "raw io port access",
71 [LOCKDOWN_MSR] = "raw MSR access",
72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
78 [LOCKDOWN_DEBUGFS] = "debugfs access",
79 [LOCKDOWN_XMON_WR] = "xmon write access",
80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
83 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
84 [LOCKDOWN_KCORE] = "/proc/kcore access",
85 [LOCKDOWN_KPROBES] = "use of kprobes",
86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
88 [LOCKDOWN_PERF] = "unsafe use of perf",
89 [LOCKDOWN_TRACEFS] = "use of tracefs",
90 [LOCKDOWN_XMON_RW] = "xmon read and write access",
91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
93};
94
95struct security_hook_heads security_hook_heads __ro_after_init;
96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
97
98static struct kmem_cache *lsm_file_cache;
99static struct kmem_cache *lsm_inode_cache;
100
101char *lsm_names;
102static struct lsm_blob_sizes blob_sizes __ro_after_init;
103
104/* Boot-time LSM user choice */
105static __initdata const char *chosen_lsm_order;
106static __initdata const char *chosen_major_lsm;
107
108static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
109
110/* Ordered list of LSMs to initialize. */
111static __initdata struct lsm_info **ordered_lsms;
112static __initdata struct lsm_info *exclusive;
113
114static __initdata bool debug;
115#define init_debug(...) \
116 do { \
117 if (debug) \
118 pr_info(__VA_ARGS__); \
119 } while (0)
120
121static bool __init is_enabled(struct lsm_info *lsm)
122{
123 if (!lsm->enabled)
124 return false;
125
126 return *lsm->enabled;
127}
128
129/* Mark an LSM's enabled flag. */
130static int lsm_enabled_true __initdata = 1;
131static int lsm_enabled_false __initdata = 0;
132static void __init set_enabled(struct lsm_info *lsm, bool enabled)
133{
134 /*
135 * When an LSM hasn't configured an enable variable, we can use
136 * a hard-coded location for storing the default enabled state.
137 */
138 if (!lsm->enabled) {
139 if (enabled)
140 lsm->enabled = &lsm_enabled_true;
141 else
142 lsm->enabled = &lsm_enabled_false;
143 } else if (lsm->enabled == &lsm_enabled_true) {
144 if (!enabled)
145 lsm->enabled = &lsm_enabled_false;
146 } else if (lsm->enabled == &lsm_enabled_false) {
147 if (enabled)
148 lsm->enabled = &lsm_enabled_true;
149 } else {
150 *lsm->enabled = enabled;
151 }
152}
153
154/* Is an LSM already listed in the ordered LSMs list? */
155static bool __init exists_ordered_lsm(struct lsm_info *lsm)
156{
157 struct lsm_info **check;
158
159 for (check = ordered_lsms; *check; check++)
160 if (*check == lsm)
161 return true;
162
163 return false;
164}
165
166/* Append an LSM to the list of ordered LSMs to initialize. */
167static int last_lsm __initdata;
168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
169{
170 /* Ignore duplicate selections. */
171 if (exists_ordered_lsm(lsm))
172 return;
173
174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
175 return;
176
177 /* Enable this LSM, if it is not already set. */
178 if (!lsm->enabled)
179 lsm->enabled = &lsm_enabled_true;
180 ordered_lsms[last_lsm++] = lsm;
181
182 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
183 is_enabled(lsm) ? "enabled" : "disabled");
184}
185
186/* Is an LSM allowed to be initialized? */
187static bool __init lsm_allowed(struct lsm_info *lsm)
188{
189 /* Skip if the LSM is disabled. */
190 if (!is_enabled(lsm))
191 return false;
192
193 /* Not allowed if another exclusive LSM already initialized. */
194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
195 init_debug("exclusive disabled: %s\n", lsm->name);
196 return false;
197 }
198
199 return true;
200}
201
202static void __init lsm_set_blob_size(int *need, int *lbs)
203{
204 int offset;
205
206 if (*need <= 0)
207 return;
208
209 offset = ALIGN(*lbs, sizeof(void *));
210 *lbs = offset + *need;
211 *need = offset;
212}
213
214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
215{
216 if (!needed)
217 return;
218
219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
221 /*
222 * The inode blob gets an rcu_head in addition to
223 * what the modules might need.
224 */
225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
226 blob_sizes.lbs_inode = sizeof(struct rcu_head);
227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
232 lsm_set_blob_size(&needed->lbs_xattr_count,
233 &blob_sizes.lbs_xattr_count);
234}
235
236/* Prepare LSM for initialization. */
237static void __init prepare_lsm(struct lsm_info *lsm)
238{
239 int enabled = lsm_allowed(lsm);
240
241 /* Record enablement (to handle any following exclusive LSMs). */
242 set_enabled(lsm, enabled);
243
244 /* If enabled, do pre-initialization work. */
245 if (enabled) {
246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
247 exclusive = lsm;
248 init_debug("exclusive chosen: %s\n", lsm->name);
249 }
250
251 lsm_set_blob_sizes(lsm->blobs);
252 }
253}
254
255/* Initialize a given LSM, if it is enabled. */
256static void __init initialize_lsm(struct lsm_info *lsm)
257{
258 if (is_enabled(lsm)) {
259 int ret;
260
261 init_debug("initializing %s\n", lsm->name);
262 ret = lsm->init();
263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
264 }
265}
266
267/*
268 * Current index to use while initializing the lsm id list.
269 */
270u32 lsm_active_cnt __ro_after_init;
271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
272
273/* Populate ordered LSMs list from comma-separated LSM name list. */
274static void __init ordered_lsm_parse(const char *order, const char *origin)
275{
276 struct lsm_info *lsm;
277 char *sep, *name, *next;
278
279 /* LSM_ORDER_FIRST is always first. */
280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281 if (lsm->order == LSM_ORDER_FIRST)
282 append_ordered_lsm(lsm, " first");
283 }
284
285 /* Process "security=", if given. */
286 if (chosen_major_lsm) {
287 struct lsm_info *major;
288
289 /*
290 * To match the original "security=" behavior, this
291 * explicitly does NOT fallback to another Legacy Major
292 * if the selected one was separately disabled: disable
293 * all non-matching Legacy Major LSMs.
294 */
295 for (major = __start_lsm_info; major < __end_lsm_info;
296 major++) {
297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
298 strcmp(major->name, chosen_major_lsm) != 0) {
299 set_enabled(major, false);
300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
301 chosen_major_lsm, major->name);
302 }
303 }
304 }
305
306 sep = kstrdup(order, GFP_KERNEL);
307 next = sep;
308 /* Walk the list, looking for matching LSMs. */
309 while ((name = strsep(&next, ",")) != NULL) {
310 bool found = false;
311
312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
313 if (strcmp(lsm->name, name) == 0) {
314 if (lsm->order == LSM_ORDER_MUTABLE)
315 append_ordered_lsm(lsm, origin);
316 found = true;
317 }
318 }
319
320 if (!found)
321 init_debug("%s ignored: %s (not built into kernel)\n",
322 origin, name);
323 }
324
325 /* Process "security=", if given. */
326 if (chosen_major_lsm) {
327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
328 if (exists_ordered_lsm(lsm))
329 continue;
330 if (strcmp(lsm->name, chosen_major_lsm) == 0)
331 append_ordered_lsm(lsm, "security=");
332 }
333 }
334
335 /* LSM_ORDER_LAST is always last. */
336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
337 if (lsm->order == LSM_ORDER_LAST)
338 append_ordered_lsm(lsm, " last");
339 }
340
341 /* Disable all LSMs not in the ordered list. */
342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
343 if (exists_ordered_lsm(lsm))
344 continue;
345 set_enabled(lsm, false);
346 init_debug("%s skipped: %s (not in requested order)\n",
347 origin, lsm->name);
348 }
349
350 kfree(sep);
351}
352
353static void __init lsm_early_cred(struct cred *cred);
354static void __init lsm_early_task(struct task_struct *task);
355
356static int lsm_append(const char *new, char **result);
357
358static void __init report_lsm_order(void)
359{
360 struct lsm_info **lsm, *early;
361 int first = 0;
362
363 pr_info("initializing lsm=");
364
365 /* Report each enabled LSM name, comma separated. */
366 for (early = __start_early_lsm_info;
367 early < __end_early_lsm_info; early++)
368 if (is_enabled(early))
369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
370 for (lsm = ordered_lsms; *lsm; lsm++)
371 if (is_enabled(*lsm))
372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
373
374 pr_cont("\n");
375}
376
377static void __init ordered_lsm_init(void)
378{
379 struct lsm_info **lsm;
380
381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
382 GFP_KERNEL);
383
384 if (chosen_lsm_order) {
385 if (chosen_major_lsm) {
386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
387 chosen_major_lsm, chosen_lsm_order);
388 chosen_major_lsm = NULL;
389 }
390 ordered_lsm_parse(chosen_lsm_order, "cmdline");
391 } else
392 ordered_lsm_parse(builtin_lsm_order, "builtin");
393
394 for (lsm = ordered_lsms; *lsm; lsm++)
395 prepare_lsm(*lsm);
396
397 report_lsm_order();
398
399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
400 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
405 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
407
408 /*
409 * Create any kmem_caches needed for blobs
410 */
411 if (blob_sizes.lbs_file)
412 lsm_file_cache = kmem_cache_create("lsm_file_cache",
413 blob_sizes.lbs_file, 0,
414 SLAB_PANIC, NULL);
415 if (blob_sizes.lbs_inode)
416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
417 blob_sizes.lbs_inode, 0,
418 SLAB_PANIC, NULL);
419
420 lsm_early_cred((struct cred *) current->cred);
421 lsm_early_task(current);
422 for (lsm = ordered_lsms; *lsm; lsm++)
423 initialize_lsm(*lsm);
424
425 kfree(ordered_lsms);
426}
427
428int __init early_security_init(void)
429{
430 struct lsm_info *lsm;
431
432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
433 INIT_HLIST_HEAD(&security_hook_heads.NAME);
434#include "linux/lsm_hook_defs.h"
435#undef LSM_HOOK
436
437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
438 if (!lsm->enabled)
439 lsm->enabled = &lsm_enabled_true;
440 prepare_lsm(lsm);
441 initialize_lsm(lsm);
442 }
443
444 return 0;
445}
446
447/**
448 * security_init - initializes the security framework
449 *
450 * This should be called early in the kernel initialization sequence.
451 */
452int __init security_init(void)
453{
454 struct lsm_info *lsm;
455
456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
459
460 /*
461 * Append the names of the early LSM modules now that kmalloc() is
462 * available
463 */
464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
465 init_debug(" early started: %s (%s)\n", lsm->name,
466 is_enabled(lsm) ? "enabled" : "disabled");
467 if (lsm->enabled)
468 lsm_append(lsm->name, &lsm_names);
469 }
470
471 /* Load LSMs in specified order. */
472 ordered_lsm_init();
473
474 return 0;
475}
476
477/* Save user chosen LSM */
478static int __init choose_major_lsm(char *str)
479{
480 chosen_major_lsm = str;
481 return 1;
482}
483__setup("security=", choose_major_lsm);
484
485/* Explicitly choose LSM initialization order. */
486static int __init choose_lsm_order(char *str)
487{
488 chosen_lsm_order = str;
489 return 1;
490}
491__setup("lsm=", choose_lsm_order);
492
493/* Enable LSM order debugging. */
494static int __init enable_debug(char *str)
495{
496 debug = true;
497 return 1;
498}
499__setup("lsm.debug", enable_debug);
500
501static bool match_last_lsm(const char *list, const char *lsm)
502{
503 const char *last;
504
505 if (WARN_ON(!list || !lsm))
506 return false;
507 last = strrchr(list, ',');
508 if (last)
509 /* Pass the comma, strcmp() will check for '\0' */
510 last++;
511 else
512 last = list;
513 return !strcmp(last, lsm);
514}
515
516static int lsm_append(const char *new, char **result)
517{
518 char *cp;
519
520 if (*result == NULL) {
521 *result = kstrdup(new, GFP_KERNEL);
522 if (*result == NULL)
523 return -ENOMEM;
524 } else {
525 /* Check if it is the last registered name */
526 if (match_last_lsm(*result, new))
527 return 0;
528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
529 if (cp == NULL)
530 return -ENOMEM;
531 kfree(*result);
532 *result = cp;
533 }
534 return 0;
535}
536
537/**
538 * security_add_hooks - Add a modules hooks to the hook lists.
539 * @hooks: the hooks to add
540 * @count: the number of hooks to add
541 * @lsmid: the identification information for the security module
542 *
543 * Each LSM has to register its hooks with the infrastructure.
544 */
545void __init security_add_hooks(struct security_hook_list *hooks, int count,
546 const struct lsm_id *lsmid)
547{
548 int i;
549
550 /*
551 * A security module may call security_add_hooks() more
552 * than once during initialization, and LSM initialization
553 * is serialized. Landlock is one such case.
554 * Look at the previous entry, if there is one, for duplication.
555 */
556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
557 if (lsm_active_cnt >= LSM_CONFIG_COUNT)
558 panic("%s Too many LSMs registered.\n", __func__);
559 lsm_idlist[lsm_active_cnt++] = lsmid;
560 }
561
562 for (i = 0; i < count; i++) {
563 hooks[i].lsmid = lsmid;
564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
565 }
566
567 /*
568 * Don't try to append during early_security_init(), we'll come back
569 * and fix this up afterwards.
570 */
571 if (slab_is_available()) {
572 if (lsm_append(lsmid->name, &lsm_names) < 0)
573 panic("%s - Cannot get early memory.\n", __func__);
574 }
575}
576
577int call_blocking_lsm_notifier(enum lsm_event event, void *data)
578{
579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
580 event, data);
581}
582EXPORT_SYMBOL(call_blocking_lsm_notifier);
583
584int register_blocking_lsm_notifier(struct notifier_block *nb)
585{
586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
587 nb);
588}
589EXPORT_SYMBOL(register_blocking_lsm_notifier);
590
591int unregister_blocking_lsm_notifier(struct notifier_block *nb)
592{
593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
594 nb);
595}
596EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
597
598/**
599 * lsm_cred_alloc - allocate a composite cred blob
600 * @cred: the cred that needs a blob
601 * @gfp: allocation type
602 *
603 * Allocate the cred blob for all the modules
604 *
605 * Returns 0, or -ENOMEM if memory can't be allocated.
606 */
607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
608{
609 if (blob_sizes.lbs_cred == 0) {
610 cred->security = NULL;
611 return 0;
612 }
613
614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
615 if (cred->security == NULL)
616 return -ENOMEM;
617 return 0;
618}
619
620/**
621 * lsm_early_cred - during initialization allocate a composite cred blob
622 * @cred: the cred that needs a blob
623 *
624 * Allocate the cred blob for all the modules
625 */
626static void __init lsm_early_cred(struct cred *cred)
627{
628 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
629
630 if (rc)
631 panic("%s: Early cred alloc failed.\n", __func__);
632}
633
634/**
635 * lsm_file_alloc - allocate a composite file blob
636 * @file: the file that needs a blob
637 *
638 * Allocate the file blob for all the modules
639 *
640 * Returns 0, or -ENOMEM if memory can't be allocated.
641 */
642static int lsm_file_alloc(struct file *file)
643{
644 if (!lsm_file_cache) {
645 file->f_security = NULL;
646 return 0;
647 }
648
649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
650 if (file->f_security == NULL)
651 return -ENOMEM;
652 return 0;
653}
654
655/**
656 * lsm_inode_alloc - allocate a composite inode blob
657 * @inode: the inode that needs a blob
658 *
659 * Allocate the inode blob for all the modules
660 *
661 * Returns 0, or -ENOMEM if memory can't be allocated.
662 */
663int lsm_inode_alloc(struct inode *inode)
664{
665 if (!lsm_inode_cache) {
666 inode->i_security = NULL;
667 return 0;
668 }
669
670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
671 if (inode->i_security == NULL)
672 return -ENOMEM;
673 return 0;
674}
675
676/**
677 * lsm_task_alloc - allocate a composite task blob
678 * @task: the task that needs a blob
679 *
680 * Allocate the task blob for all the modules
681 *
682 * Returns 0, or -ENOMEM if memory can't be allocated.
683 */
684static int lsm_task_alloc(struct task_struct *task)
685{
686 if (blob_sizes.lbs_task == 0) {
687 task->security = NULL;
688 return 0;
689 }
690
691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
692 if (task->security == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/**
698 * lsm_ipc_alloc - allocate a composite ipc blob
699 * @kip: the ipc that needs a blob
700 *
701 * Allocate the ipc blob for all the modules
702 *
703 * Returns 0, or -ENOMEM if memory can't be allocated.
704 */
705static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
706{
707 if (blob_sizes.lbs_ipc == 0) {
708 kip->security = NULL;
709 return 0;
710 }
711
712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
713 if (kip->security == NULL)
714 return -ENOMEM;
715 return 0;
716}
717
718/**
719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
720 * @mp: the msg_msg that needs a blob
721 *
722 * Allocate the ipc blob for all the modules
723 *
724 * Returns 0, or -ENOMEM if memory can't be allocated.
725 */
726static int lsm_msg_msg_alloc(struct msg_msg *mp)
727{
728 if (blob_sizes.lbs_msg_msg == 0) {
729 mp->security = NULL;
730 return 0;
731 }
732
733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
734 if (mp->security == NULL)
735 return -ENOMEM;
736 return 0;
737}
738
739/**
740 * lsm_early_task - during initialization allocate a composite task blob
741 * @task: the task that needs a blob
742 *
743 * Allocate the task blob for all the modules
744 */
745static void __init lsm_early_task(struct task_struct *task)
746{
747 int rc = lsm_task_alloc(task);
748
749 if (rc)
750 panic("%s: Early task alloc failed.\n", __func__);
751}
752
753/**
754 * lsm_superblock_alloc - allocate a composite superblock blob
755 * @sb: the superblock that needs a blob
756 *
757 * Allocate the superblock blob for all the modules
758 *
759 * Returns 0, or -ENOMEM if memory can't be allocated.
760 */
761static int lsm_superblock_alloc(struct super_block *sb)
762{
763 if (blob_sizes.lbs_superblock == 0) {
764 sb->s_security = NULL;
765 return 0;
766 }
767
768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
769 if (sb->s_security == NULL)
770 return -ENOMEM;
771 return 0;
772}
773
774/**
775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
776 * @uctx: a userspace LSM context to be filled
777 * @uctx_len: available uctx size (input), used uctx size (output)
778 * @val: the new LSM context value
779 * @val_len: the size of the new LSM context value
780 * @id: LSM id
781 * @flags: LSM defined flags
782 *
783 * Fill all of the fields in a userspace lsm_ctx structure.
784 *
785 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
786 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
787 */
788int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, size_t *uctx_len,
789 void *val, size_t val_len,
790 u64 id, u64 flags)
791{
792 struct lsm_ctx *nctx = NULL;
793 size_t nctx_len;
794 int rc = 0;
795
796 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
797 if (nctx_len > *uctx_len) {
798 rc = -E2BIG;
799 goto out;
800 }
801
802 nctx = kzalloc(nctx_len, GFP_KERNEL);
803 if (nctx == NULL) {
804 rc = -ENOMEM;
805 goto out;
806 }
807 nctx->id = id;
808 nctx->flags = flags;
809 nctx->len = nctx_len;
810 nctx->ctx_len = val_len;
811 memcpy(nctx->ctx, val, val_len);
812
813 if (copy_to_user(uctx, nctx, nctx_len))
814 rc = -EFAULT;
815
816out:
817 kfree(nctx);
818 *uctx_len = nctx_len;
819 return rc;
820}
821
822/*
823 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
824 * can be accessed with:
825 *
826 * LSM_RET_DEFAULT(<hook_name>)
827 *
828 * The macros below define static constants for the default value of each
829 * LSM hook.
830 */
831#define LSM_RET_DEFAULT(NAME) (NAME##_default)
832#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
833#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
834 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
835#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
836 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
837
838#include <linux/lsm_hook_defs.h>
839#undef LSM_HOOK
840
841/*
842 * Hook list operation macros.
843 *
844 * call_void_hook:
845 * This is a hook that does not return a value.
846 *
847 * call_int_hook:
848 * This is a hook that returns a value.
849 */
850
851#define call_void_hook(FUNC, ...) \
852 do { \
853 struct security_hook_list *P; \
854 \
855 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
856 P->hook.FUNC(__VA_ARGS__); \
857 } while (0)
858
859#define call_int_hook(FUNC, IRC, ...) ({ \
860 int RC = IRC; \
861 do { \
862 struct security_hook_list *P; \
863 \
864 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
865 RC = P->hook.FUNC(__VA_ARGS__); \
866 if (RC != 0) \
867 break; \
868 } \
869 } while (0); \
870 RC; \
871})
872
873/* Security operations */
874
875/**
876 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
877 * @mgr: task credentials of current binder process
878 *
879 * Check whether @mgr is allowed to be the binder context manager.
880 *
881 * Return: Return 0 if permission is granted.
882 */
883int security_binder_set_context_mgr(const struct cred *mgr)
884{
885 return call_int_hook(binder_set_context_mgr, 0, mgr);
886}
887
888/**
889 * security_binder_transaction() - Check if a binder transaction is allowed
890 * @from: sending process
891 * @to: receiving process
892 *
893 * Check whether @from is allowed to invoke a binder transaction call to @to.
894 *
895 * Return: Returns 0 if permission is granted.
896 */
897int security_binder_transaction(const struct cred *from,
898 const struct cred *to)
899{
900 return call_int_hook(binder_transaction, 0, from, to);
901}
902
903/**
904 * security_binder_transfer_binder() - Check if a binder transfer is allowed
905 * @from: sending process
906 * @to: receiving process
907 *
908 * Check whether @from is allowed to transfer a binder reference to @to.
909 *
910 * Return: Returns 0 if permission is granted.
911 */
912int security_binder_transfer_binder(const struct cred *from,
913 const struct cred *to)
914{
915 return call_int_hook(binder_transfer_binder, 0, from, to);
916}
917
918/**
919 * security_binder_transfer_file() - Check if a binder file xfer is allowed
920 * @from: sending process
921 * @to: receiving process
922 * @file: file being transferred
923 *
924 * Check whether @from is allowed to transfer @file to @to.
925 *
926 * Return: Returns 0 if permission is granted.
927 */
928int security_binder_transfer_file(const struct cred *from,
929 const struct cred *to, const struct file *file)
930{
931 return call_int_hook(binder_transfer_file, 0, from, to, file);
932}
933
934/**
935 * security_ptrace_access_check() - Check if tracing is allowed
936 * @child: target process
937 * @mode: PTRACE_MODE flags
938 *
939 * Check permission before allowing the current process to trace the @child
940 * process. Security modules may also want to perform a process tracing check
941 * during an execve in the set_security or apply_creds hooks of tracing check
942 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
943 * process is being traced and its security attributes would be changed by the
944 * execve.
945 *
946 * Return: Returns 0 if permission is granted.
947 */
948int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
949{
950 return call_int_hook(ptrace_access_check, 0, child, mode);
951}
952
953/**
954 * security_ptrace_traceme() - Check if tracing is allowed
955 * @parent: tracing process
956 *
957 * Check that the @parent process has sufficient permission to trace the
958 * current process before allowing the current process to present itself to the
959 * @parent process for tracing.
960 *
961 * Return: Returns 0 if permission is granted.
962 */
963int security_ptrace_traceme(struct task_struct *parent)
964{
965 return call_int_hook(ptrace_traceme, 0, parent);
966}
967
968/**
969 * security_capget() - Get the capability sets for a process
970 * @target: target process
971 * @effective: effective capability set
972 * @inheritable: inheritable capability set
973 * @permitted: permitted capability set
974 *
975 * Get the @effective, @inheritable, and @permitted capability sets for the
976 * @target process. The hook may also perform permission checking to determine
977 * if the current process is allowed to see the capability sets of the @target
978 * process.
979 *
980 * Return: Returns 0 if the capability sets were successfully obtained.
981 */
982int security_capget(const struct task_struct *target,
983 kernel_cap_t *effective,
984 kernel_cap_t *inheritable,
985 kernel_cap_t *permitted)
986{
987 return call_int_hook(capget, 0, target,
988 effective, inheritable, permitted);
989}
990
991/**
992 * security_capset() - Set the capability sets for a process
993 * @new: new credentials for the target process
994 * @old: current credentials of the target process
995 * @effective: effective capability set
996 * @inheritable: inheritable capability set
997 * @permitted: permitted capability set
998 *
999 * Set the @effective, @inheritable, and @permitted capability sets for the
1000 * current process.
1001 *
1002 * Return: Returns 0 and update @new if permission is granted.
1003 */
1004int security_capset(struct cred *new, const struct cred *old,
1005 const kernel_cap_t *effective,
1006 const kernel_cap_t *inheritable,
1007 const kernel_cap_t *permitted)
1008{
1009 return call_int_hook(capset, 0, new, old,
1010 effective, inheritable, permitted);
1011}
1012
1013/**
1014 * security_capable() - Check if a process has the necessary capability
1015 * @cred: credentials to examine
1016 * @ns: user namespace
1017 * @cap: capability requested
1018 * @opts: capability check options
1019 *
1020 * Check whether the @tsk process has the @cap capability in the indicated
1021 * credentials. @cap contains the capability <include/linux/capability.h>.
1022 * @opts contains options for the capable check <include/linux/security.h>.
1023 *
1024 * Return: Returns 0 if the capability is granted.
1025 */
1026int security_capable(const struct cred *cred,
1027 struct user_namespace *ns,
1028 int cap,
1029 unsigned int opts)
1030{
1031 return call_int_hook(capable, 0, cred, ns, cap, opts);
1032}
1033
1034/**
1035 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1036 * @cmds: commands
1037 * @type: type
1038 * @id: id
1039 * @sb: filesystem
1040 *
1041 * Check whether the quotactl syscall is allowed for this @sb.
1042 *
1043 * Return: Returns 0 if permission is granted.
1044 */
1045int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1046{
1047 return call_int_hook(quotactl, 0, cmds, type, id, sb);
1048}
1049
1050/**
1051 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1052 * @dentry: dentry
1053 *
1054 * Check whether QUOTAON is allowed for @dentry.
1055 *
1056 * Return: Returns 0 if permission is granted.
1057 */
1058int security_quota_on(struct dentry *dentry)
1059{
1060 return call_int_hook(quota_on, 0, dentry);
1061}
1062
1063/**
1064 * security_syslog() - Check if accessing the kernel message ring is allowed
1065 * @type: SYSLOG_ACTION_* type
1066 *
1067 * Check permission before accessing the kernel message ring or changing
1068 * logging to the console. See the syslog(2) manual page for an explanation of
1069 * the @type values.
1070 *
1071 * Return: Return 0 if permission is granted.
1072 */
1073int security_syslog(int type)
1074{
1075 return call_int_hook(syslog, 0, type);
1076}
1077
1078/**
1079 * security_settime64() - Check if changing the system time is allowed
1080 * @ts: new time
1081 * @tz: timezone
1082 *
1083 * Check permission to change the system time, struct timespec64 is defined in
1084 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1085 *
1086 * Return: Returns 0 if permission is granted.
1087 */
1088int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1089{
1090 return call_int_hook(settime, 0, ts, tz);
1091}
1092
1093/**
1094 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1095 * @mm: mm struct
1096 * @pages: number of pages
1097 *
1098 * Check permissions for allocating a new virtual mapping. If all LSMs return
1099 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1100 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1101 * called with cap_sys_admin cleared.
1102 *
1103 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1104 * caller.
1105 */
1106int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1107{
1108 struct security_hook_list *hp;
1109 int cap_sys_admin = 1;
1110 int rc;
1111
1112 /*
1113 * The module will respond with a positive value if
1114 * it thinks the __vm_enough_memory() call should be
1115 * made with the cap_sys_admin set. If all of the modules
1116 * agree that it should be set it will. If any module
1117 * thinks it should not be set it won't.
1118 */
1119 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1120 rc = hp->hook.vm_enough_memory(mm, pages);
1121 if (rc <= 0) {
1122 cap_sys_admin = 0;
1123 break;
1124 }
1125 }
1126 return __vm_enough_memory(mm, pages, cap_sys_admin);
1127}
1128
1129/**
1130 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1131 * @bprm: binary program information
1132 *
1133 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1134 * properly for executing @bprm->file, update the LSM's portion of
1135 * @bprm->cred->security to be what commit_creds needs to install for the new
1136 * program. This hook may also optionally check permissions (e.g. for
1137 * transitions between security domains). The hook must set @bprm->secureexec
1138 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1139 * contains the linux_binprm structure.
1140 *
1141 * Return: Returns 0 if the hook is successful and permission is granted.
1142 */
1143int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1144{
1145 return call_int_hook(bprm_creds_for_exec, 0, bprm);
1146}
1147
1148/**
1149 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1150 * @bprm: binary program information
1151 * @file: associated file
1152 *
1153 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1154 * exec, update @bprm->cred to reflect that change. This is called after
1155 * finding the binary that will be executed without an interpreter. This
1156 * ensures that the credentials will not be derived from a script that the
1157 * binary will need to reopen, which when reopend may end up being a completely
1158 * different file. This hook may also optionally check permissions (e.g. for
1159 * transitions between security domains). The hook must set @bprm->secureexec
1160 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
1161 * hook must add to @bprm->per_clear any personality flags that should be
1162 * cleared from current->personality. @bprm contains the linux_binprm
1163 * structure.
1164 *
1165 * Return: Returns 0 if the hook is successful and permission is granted.
1166 */
1167int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1168{
1169 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
1170}
1171
1172/**
1173 * security_bprm_check() - Mediate binary handler search
1174 * @bprm: binary program information
1175 *
1176 * This hook mediates the point when a search for a binary handler will begin.
1177 * It allows a check against the @bprm->cred->security value which was set in
1178 * the preceding creds_for_exec call. The argv list and envp list are reliably
1179 * available in @bprm. This hook may be called multiple times during a single
1180 * execve. @bprm contains the linux_binprm structure.
1181 *
1182 * Return: Returns 0 if the hook is successful and permission is granted.
1183 */
1184int security_bprm_check(struct linux_binprm *bprm)
1185{
1186 int ret;
1187
1188 ret = call_int_hook(bprm_check_security, 0, bprm);
1189 if (ret)
1190 return ret;
1191 return ima_bprm_check(bprm);
1192}
1193
1194/**
1195 * security_bprm_committing_creds() - Install creds for a process during exec()
1196 * @bprm: binary program information
1197 *
1198 * Prepare to install the new security attributes of a process being
1199 * transformed by an execve operation, based on the old credentials pointed to
1200 * by @current->cred and the information set in @bprm->cred by the
1201 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1202 * hook is a good place to perform state changes on the process such as closing
1203 * open file descriptors to which access will no longer be granted when the
1204 * attributes are changed. This is called immediately before commit_creds().
1205 */
1206void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207{
1208 call_void_hook(bprm_committing_creds, bprm);
1209}
1210
1211/**
1212 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213 * @bprm: binary program information
1214 *
1215 * Tidy up after the installation of the new security attributes of a process
1216 * being transformed by an execve operation. The new credentials have, by this
1217 * point, been set to @current->cred. @bprm points to the linux_binprm
1218 * structure. This hook is a good place to perform state changes on the
1219 * process such as clearing out non-inheritable signal state. This is called
1220 * immediately after commit_creds().
1221 */
1222void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223{
1224 call_void_hook(bprm_committed_creds, bprm);
1225}
1226
1227/**
1228 * security_fs_context_submount() - Initialise fc->security
1229 * @fc: new filesystem context
1230 * @reference: dentry reference for submount/remount
1231 *
1232 * Fill out the ->security field for a new fs_context.
1233 *
1234 * Return: Returns 0 on success or negative error code on failure.
1235 */
1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237{
1238 return call_int_hook(fs_context_submount, 0, fc, reference);
1239}
1240
1241/**
1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243 * @fc: destination filesystem context
1244 * @src_fc: source filesystem context
1245 *
1246 * Allocate and attach a security structure to sc->security. This pointer is
1247 * initialised to NULL by the caller. @fc indicates the new filesystem context.
1248 * @src_fc indicates the original filesystem context.
1249 *
1250 * Return: Returns 0 on success or a negative error code on failure.
1251 */
1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253{
1254 return call_int_hook(fs_context_dup, 0, fc, src_fc);
1255}
1256
1257/**
1258 * security_fs_context_parse_param() - Configure a filesystem context
1259 * @fc: filesystem context
1260 * @param: filesystem parameter
1261 *
1262 * Userspace provided a parameter to configure a superblock. The LSM can
1263 * consume the parameter or return it to the caller for use elsewhere.
1264 *
1265 * Return: If the parameter is used by the LSM it should return 0, if it is
1266 * returned to the caller -ENOPARAM is returned, otherwise a negative
1267 * error code is returned.
1268 */
1269int security_fs_context_parse_param(struct fs_context *fc,
1270 struct fs_parameter *param)
1271{
1272 struct security_hook_list *hp;
1273 int trc;
1274 int rc = -ENOPARAM;
1275
1276 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277 list) {
1278 trc = hp->hook.fs_context_parse_param(fc, param);
1279 if (trc == 0)
1280 rc = 0;
1281 else if (trc != -ENOPARAM)
1282 return trc;
1283 }
1284 return rc;
1285}
1286
1287/**
1288 * security_sb_alloc() - Allocate a super_block LSM blob
1289 * @sb: filesystem superblock
1290 *
1291 * Allocate and attach a security structure to the sb->s_security field. The
1292 * s_security field is initialized to NULL when the structure is allocated.
1293 * @sb contains the super_block structure to be modified.
1294 *
1295 * Return: Returns 0 if operation was successful.
1296 */
1297int security_sb_alloc(struct super_block *sb)
1298{
1299 int rc = lsm_superblock_alloc(sb);
1300
1301 if (unlikely(rc))
1302 return rc;
1303 rc = call_int_hook(sb_alloc_security, 0, sb);
1304 if (unlikely(rc))
1305 security_sb_free(sb);
1306 return rc;
1307}
1308
1309/**
1310 * security_sb_delete() - Release super_block LSM associated objects
1311 * @sb: filesystem superblock
1312 *
1313 * Release objects tied to a superblock (e.g. inodes). @sb contains the
1314 * super_block structure being released.
1315 */
1316void security_sb_delete(struct super_block *sb)
1317{
1318 call_void_hook(sb_delete, sb);
1319}
1320
1321/**
1322 * security_sb_free() - Free a super_block LSM blob
1323 * @sb: filesystem superblock
1324 *
1325 * Deallocate and clear the sb->s_security field. @sb contains the super_block
1326 * structure to be modified.
1327 */
1328void security_sb_free(struct super_block *sb)
1329{
1330 call_void_hook(sb_free_security, sb);
1331 kfree(sb->s_security);
1332 sb->s_security = NULL;
1333}
1334
1335/**
1336 * security_free_mnt_opts() - Free memory associated with mount options
1337 * @mnt_opts: LSM processed mount options
1338 *
1339 * Free memory associated with @mnt_ops.
1340 */
1341void security_free_mnt_opts(void **mnt_opts)
1342{
1343 if (!*mnt_opts)
1344 return;
1345 call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346 *mnt_opts = NULL;
1347}
1348EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350/**
1351 * security_sb_eat_lsm_opts() - Consume LSM mount options
1352 * @options: mount options
1353 * @mnt_opts: LSM processed mount options
1354 *
1355 * Eat (scan @options) and save them in @mnt_opts.
1356 *
1357 * Return: Returns 0 on success, negative values on failure.
1358 */
1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360{
1361 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
1362}
1363EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365/**
1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367 * @sb: filesystem superblock
1368 * @mnt_opts: new mount options
1369 *
1370 * Determine if the new mount options in @mnt_opts are allowed given the
1371 * existing mounted filesystem at @sb. @sb superblock being compared.
1372 *
1373 * Return: Returns 0 if options are compatible.
1374 */
1375int security_sb_mnt_opts_compat(struct super_block *sb,
1376 void *mnt_opts)
1377{
1378 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
1379}
1380EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382/**
1383 * security_sb_remount() - Verify no incompatible mount changes during remount
1384 * @sb: filesystem superblock
1385 * @mnt_opts: (re)mount options
1386 *
1387 * Extracts security system specific mount options and verifies no changes are
1388 * being made to those options.
1389 *
1390 * Return: Returns 0 if permission is granted.
1391 */
1392int security_sb_remount(struct super_block *sb,
1393 void *mnt_opts)
1394{
1395 return call_int_hook(sb_remount, 0, sb, mnt_opts);
1396}
1397EXPORT_SYMBOL(security_sb_remount);
1398
1399/**
1400 * security_sb_kern_mount() - Check if a kernel mount is allowed
1401 * @sb: filesystem superblock
1402 *
1403 * Mount this @sb if allowed by permissions.
1404 *
1405 * Return: Returns 0 if permission is granted.
1406 */
1407int security_sb_kern_mount(const struct super_block *sb)
1408{
1409 return call_int_hook(sb_kern_mount, 0, sb);
1410}
1411
1412/**
1413 * security_sb_show_options() - Output the mount options for a superblock
1414 * @m: output file
1415 * @sb: filesystem superblock
1416 *
1417 * Show (print on @m) mount options for this @sb.
1418 *
1419 * Return: Returns 0 on success, negative values on failure.
1420 */
1421int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422{
1423 return call_int_hook(sb_show_options, 0, m, sb);
1424}
1425
1426/**
1427 * security_sb_statfs() - Check if accessing fs stats is allowed
1428 * @dentry: superblock handle
1429 *
1430 * Check permission before obtaining filesystem statistics for the @mnt
1431 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1432 *
1433 * Return: Returns 0 if permission is granted.
1434 */
1435int security_sb_statfs(struct dentry *dentry)
1436{
1437 return call_int_hook(sb_statfs, 0, dentry);
1438}
1439
1440/**
1441 * security_sb_mount() - Check permission for mounting a filesystem
1442 * @dev_name: filesystem backing device
1443 * @path: mount point
1444 * @type: filesystem type
1445 * @flags: mount flags
1446 * @data: filesystem specific data
1447 *
1448 * Check permission before an object specified by @dev_name is mounted on the
1449 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1450 * device if the file system type requires a device. For a remount
1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1452 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1453 * mounted.
1454 *
1455 * Return: Returns 0 if permission is granted.
1456 */
1457int security_sb_mount(const char *dev_name, const struct path *path,
1458 const char *type, unsigned long flags, void *data)
1459{
1460 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1461}
1462
1463/**
1464 * security_sb_umount() - Check permission for unmounting a filesystem
1465 * @mnt: mounted filesystem
1466 * @flags: unmount flags
1467 *
1468 * Check permission before the @mnt file system is unmounted.
1469 *
1470 * Return: Returns 0 if permission is granted.
1471 */
1472int security_sb_umount(struct vfsmount *mnt, int flags)
1473{
1474 return call_int_hook(sb_umount, 0, mnt, flags);
1475}
1476
1477/**
1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479 * @old_path: new location for current rootfs
1480 * @new_path: location of the new rootfs
1481 *
1482 * Check permission before pivoting the root filesystem.
1483 *
1484 * Return: Returns 0 if permission is granted.
1485 */
1486int security_sb_pivotroot(const struct path *old_path,
1487 const struct path *new_path)
1488{
1489 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1490}
1491
1492/**
1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494 * @sb: filesystem superblock
1495 * @mnt_opts: binary mount options
1496 * @kern_flags: kernel flags (in)
1497 * @set_kern_flags: kernel flags (out)
1498 *
1499 * Set the security relevant mount options used for a superblock.
1500 *
1501 * Return: Returns 0 on success, error on failure.
1502 */
1503int security_sb_set_mnt_opts(struct super_block *sb,
1504 void *mnt_opts,
1505 unsigned long kern_flags,
1506 unsigned long *set_kern_flags)
1507{
1508 return call_int_hook(sb_set_mnt_opts,
1509 mnt_opts ? -EOPNOTSUPP : 0, sb,
1510 mnt_opts, kern_flags, set_kern_flags);
1511}
1512EXPORT_SYMBOL(security_sb_set_mnt_opts);
1513
1514/**
1515 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1516 * @oldsb: source superblock
1517 * @newsb: destination superblock
1518 * @kern_flags: kernel flags (in)
1519 * @set_kern_flags: kernel flags (out)
1520 *
1521 * Copy all security options from a given superblock to another.
1522 *
1523 * Return: Returns 0 on success, error on failure.
1524 */
1525int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1526 struct super_block *newsb,
1527 unsigned long kern_flags,
1528 unsigned long *set_kern_flags)
1529{
1530 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1531 kern_flags, set_kern_flags);
1532}
1533EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1534
1535/**
1536 * security_move_mount() - Check permissions for moving a mount
1537 * @from_path: source mount point
1538 * @to_path: destination mount point
1539 *
1540 * Check permission before a mount is moved.
1541 *
1542 * Return: Returns 0 if permission is granted.
1543 */
1544int security_move_mount(const struct path *from_path,
1545 const struct path *to_path)
1546{
1547 return call_int_hook(move_mount, 0, from_path, to_path);
1548}
1549
1550/**
1551 * security_path_notify() - Check if setting a watch is allowed
1552 * @path: file path
1553 * @mask: event mask
1554 * @obj_type: file path type
1555 *
1556 * Check permissions before setting a watch on events as defined by @mask, on
1557 * an object at @path, whose type is defined by @obj_type.
1558 *
1559 * Return: Returns 0 if permission is granted.
1560 */
1561int security_path_notify(const struct path *path, u64 mask,
1562 unsigned int obj_type)
1563{
1564 return call_int_hook(path_notify, 0, path, mask, obj_type);
1565}
1566
1567/**
1568 * security_inode_alloc() - Allocate an inode LSM blob
1569 * @inode: the inode
1570 *
1571 * Allocate and attach a security structure to @inode->i_security. The
1572 * i_security field is initialized to NULL when the inode structure is
1573 * allocated.
1574 *
1575 * Return: Return 0 if operation was successful.
1576 */
1577int security_inode_alloc(struct inode *inode)
1578{
1579 int rc = lsm_inode_alloc(inode);
1580
1581 if (unlikely(rc))
1582 return rc;
1583 rc = call_int_hook(inode_alloc_security, 0, inode);
1584 if (unlikely(rc))
1585 security_inode_free(inode);
1586 return rc;
1587}
1588
1589static void inode_free_by_rcu(struct rcu_head *head)
1590{
1591 /*
1592 * The rcu head is at the start of the inode blob
1593 */
1594 kmem_cache_free(lsm_inode_cache, head);
1595}
1596
1597/**
1598 * security_inode_free() - Free an inode's LSM blob
1599 * @inode: the inode
1600 *
1601 * Deallocate the inode security structure and set @inode->i_security to NULL.
1602 */
1603void security_inode_free(struct inode *inode)
1604{
1605 integrity_inode_free(inode);
1606 call_void_hook(inode_free_security, inode);
1607 /*
1608 * The inode may still be referenced in a path walk and
1609 * a call to security_inode_permission() can be made
1610 * after inode_free_security() is called. Ideally, the VFS
1611 * wouldn't do this, but fixing that is a much harder
1612 * job. For now, simply free the i_security via RCU, and
1613 * leave the current inode->i_security pointer intact.
1614 * The inode will be freed after the RCU grace period too.
1615 */
1616 if (inode->i_security)
1617 call_rcu((struct rcu_head *)inode->i_security,
1618 inode_free_by_rcu);
1619}
1620
1621/**
1622 * security_dentry_init_security() - Perform dentry initialization
1623 * @dentry: the dentry to initialize
1624 * @mode: mode used to determine resource type
1625 * @name: name of the last path component
1626 * @xattr_name: name of the security/LSM xattr
1627 * @ctx: pointer to the resulting LSM context
1628 * @ctxlen: length of @ctx
1629 *
1630 * Compute a context for a dentry as the inode is not yet available since NFSv4
1631 * has no label backed by an EA anyway. It is important to note that
1632 * @xattr_name does not need to be free'd by the caller, it is a static string.
1633 *
1634 * Return: Returns 0 on success, negative values on failure.
1635 */
1636int security_dentry_init_security(struct dentry *dentry, int mode,
1637 const struct qstr *name,
1638 const char **xattr_name, void **ctx,
1639 u32 *ctxlen)
1640{
1641 struct security_hook_list *hp;
1642 int rc;
1643
1644 /*
1645 * Only one module will provide a security context.
1646 */
1647 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security,
1648 list) {
1649 rc = hp->hook.dentry_init_security(dentry, mode, name,
1650 xattr_name, ctx, ctxlen);
1651 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1652 return rc;
1653 }
1654 return LSM_RET_DEFAULT(dentry_init_security);
1655}
1656EXPORT_SYMBOL(security_dentry_init_security);
1657
1658/**
1659 * security_dentry_create_files_as() - Perform dentry initialization
1660 * @dentry: the dentry to initialize
1661 * @mode: mode used to determine resource type
1662 * @name: name of the last path component
1663 * @old: creds to use for LSM context calculations
1664 * @new: creds to modify
1665 *
1666 * Compute a context for a dentry as the inode is not yet available and set
1667 * that context in passed in creds so that new files are created using that
1668 * context. Context is calculated using the passed in creds and not the creds
1669 * of the caller.
1670 *
1671 * Return: Returns 0 on success, error on failure.
1672 */
1673int security_dentry_create_files_as(struct dentry *dentry, int mode,
1674 struct qstr *name,
1675 const struct cred *old, struct cred *new)
1676{
1677 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1678 name, old, new);
1679}
1680EXPORT_SYMBOL(security_dentry_create_files_as);
1681
1682/**
1683 * security_inode_init_security() - Initialize an inode's LSM context
1684 * @inode: the inode
1685 * @dir: parent directory
1686 * @qstr: last component of the pathname
1687 * @initxattrs: callback function to write xattrs
1688 * @fs_data: filesystem specific data
1689 *
1690 * Obtain the security attribute name suffix and value to set on a newly
1691 * created inode and set up the incore security field for the new inode. This
1692 * hook is called by the fs code as part of the inode creation transaction and
1693 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1694 * hooks called by the VFS.
1695 *
1696 * The hook function is expected to populate the xattrs array, by calling
1697 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1698 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1699 * slot, the hook function should set ->name to the attribute name suffix
1700 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1701 * to the attribute value, to set ->value_len to the length of the value. If
1702 * the security module does not use security attributes or does not wish to put
1703 * a security attribute on this particular inode, then it should return
1704 * -EOPNOTSUPP to skip this processing.
1705 *
1706 * Return: Returns 0 if the LSM successfully initialized all of the inode
1707 * security attributes that are required, negative values otherwise.
1708 */
1709int security_inode_init_security(struct inode *inode, struct inode *dir,
1710 const struct qstr *qstr,
1711 const initxattrs initxattrs, void *fs_data)
1712{
1713 struct security_hook_list *hp;
1714 struct xattr *new_xattrs = NULL;
1715 int ret = -EOPNOTSUPP, xattr_count = 0;
1716
1717 if (unlikely(IS_PRIVATE(inode)))
1718 return 0;
1719
1720 if (!blob_sizes.lbs_xattr_count)
1721 return 0;
1722
1723 if (initxattrs) {
1724 /* Allocate +1 for EVM and +1 as terminator. */
1725 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2,
1726 sizeof(*new_xattrs), GFP_NOFS);
1727 if (!new_xattrs)
1728 return -ENOMEM;
1729 }
1730
1731 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1732 list) {
1733 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1734 &xattr_count);
1735 if (ret && ret != -EOPNOTSUPP)
1736 goto out;
1737 /*
1738 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1739 * means that the LSM is not willing to provide an xattr, not
1740 * that it wants to signal an error. Thus, continue to invoke
1741 * the remaining LSMs.
1742 */
1743 }
1744
1745 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1746 if (!xattr_count)
1747 goto out;
1748
1749 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs,
1750 &xattr_count);
1751 if (ret)
1752 goto out;
1753 ret = initxattrs(inode, new_xattrs, fs_data);
1754out:
1755 for (; xattr_count > 0; xattr_count--)
1756 kfree(new_xattrs[xattr_count - 1].value);
1757 kfree(new_xattrs);
1758 return (ret == -EOPNOTSUPP) ? 0 : ret;
1759}
1760EXPORT_SYMBOL(security_inode_init_security);
1761
1762/**
1763 * security_inode_init_security_anon() - Initialize an anonymous inode
1764 * @inode: the inode
1765 * @name: the anonymous inode class
1766 * @context_inode: an optional related inode
1767 *
1768 * Set up the incore security field for the new anonymous inode and return
1769 * whether the inode creation is permitted by the security module or not.
1770 *
1771 * Return: Returns 0 on success, -EACCES if the security module denies the
1772 * creation of this inode, or another -errno upon other errors.
1773 */
1774int security_inode_init_security_anon(struct inode *inode,
1775 const struct qstr *name,
1776 const struct inode *context_inode)
1777{
1778 return call_int_hook(inode_init_security_anon, 0, inode, name,
1779 context_inode);
1780}
1781
1782#ifdef CONFIG_SECURITY_PATH
1783/**
1784 * security_path_mknod() - Check if creating a special file is allowed
1785 * @dir: parent directory
1786 * @dentry: new file
1787 * @mode: new file mode
1788 * @dev: device number
1789 *
1790 * Check permissions when creating a file. Note that this hook is called even
1791 * if mknod operation is being done for a regular file.
1792 *
1793 * Return: Returns 0 if permission is granted.
1794 */
1795int security_path_mknod(const struct path *dir, struct dentry *dentry,
1796 umode_t mode, unsigned int dev)
1797{
1798 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1799 return 0;
1800 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1801}
1802EXPORT_SYMBOL(security_path_mknod);
1803
1804/**
1805 * security_path_mkdir() - Check if creating a new directory is allowed
1806 * @dir: parent directory
1807 * @dentry: new directory
1808 * @mode: new directory mode
1809 *
1810 * Check permissions to create a new directory in the existing directory.
1811 *
1812 * Return: Returns 0 if permission is granted.
1813 */
1814int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1815 umode_t mode)
1816{
1817 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1818 return 0;
1819 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1820}
1821EXPORT_SYMBOL(security_path_mkdir);
1822
1823/**
1824 * security_path_rmdir() - Check if removing a directory is allowed
1825 * @dir: parent directory
1826 * @dentry: directory to remove
1827 *
1828 * Check the permission to remove a directory.
1829 *
1830 * Return: Returns 0 if permission is granted.
1831 */
1832int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1833{
1834 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1835 return 0;
1836 return call_int_hook(path_rmdir, 0, dir, dentry);
1837}
1838
1839/**
1840 * security_path_unlink() - Check if removing a hard link is allowed
1841 * @dir: parent directory
1842 * @dentry: file
1843 *
1844 * Check the permission to remove a hard link to a file.
1845 *
1846 * Return: Returns 0 if permission is granted.
1847 */
1848int security_path_unlink(const struct path *dir, struct dentry *dentry)
1849{
1850 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1851 return 0;
1852 return call_int_hook(path_unlink, 0, dir, dentry);
1853}
1854EXPORT_SYMBOL(security_path_unlink);
1855
1856/**
1857 * security_path_symlink() - Check if creating a symbolic link is allowed
1858 * @dir: parent directory
1859 * @dentry: symbolic link
1860 * @old_name: file pathname
1861 *
1862 * Check the permission to create a symbolic link to a file.
1863 *
1864 * Return: Returns 0 if permission is granted.
1865 */
1866int security_path_symlink(const struct path *dir, struct dentry *dentry,
1867 const char *old_name)
1868{
1869 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1870 return 0;
1871 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1872}
1873
1874/**
1875 * security_path_link - Check if creating a hard link is allowed
1876 * @old_dentry: existing file
1877 * @new_dir: new parent directory
1878 * @new_dentry: new link
1879 *
1880 * Check permission before creating a new hard link to a file.
1881 *
1882 * Return: Returns 0 if permission is granted.
1883 */
1884int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1885 struct dentry *new_dentry)
1886{
1887 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1888 return 0;
1889 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1890}
1891
1892/**
1893 * security_path_rename() - Check if renaming a file is allowed
1894 * @old_dir: parent directory of the old file
1895 * @old_dentry: the old file
1896 * @new_dir: parent directory of the new file
1897 * @new_dentry: the new file
1898 * @flags: flags
1899 *
1900 * Check for permission to rename a file or directory.
1901 *
1902 * Return: Returns 0 if permission is granted.
1903 */
1904int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1905 const struct path *new_dir, struct dentry *new_dentry,
1906 unsigned int flags)
1907{
1908 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1909 (d_is_positive(new_dentry) &&
1910 IS_PRIVATE(d_backing_inode(new_dentry)))))
1911 return 0;
1912
1913 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1914 new_dentry, flags);
1915}
1916EXPORT_SYMBOL(security_path_rename);
1917
1918/**
1919 * security_path_truncate() - Check if truncating a file is allowed
1920 * @path: file
1921 *
1922 * Check permission before truncating the file indicated by path. Note that
1923 * truncation permissions may also be checked based on already opened files,
1924 * using the security_file_truncate() hook.
1925 *
1926 * Return: Returns 0 if permission is granted.
1927 */
1928int security_path_truncate(const struct path *path)
1929{
1930 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1931 return 0;
1932 return call_int_hook(path_truncate, 0, path);
1933}
1934
1935/**
1936 * security_path_chmod() - Check if changing the file's mode is allowed
1937 * @path: file
1938 * @mode: new mode
1939 *
1940 * Check for permission to change a mode of the file @path. The new mode is
1941 * specified in @mode which is a bitmask of constants from
1942 * <include/uapi/linux/stat.h>.
1943 *
1944 * Return: Returns 0 if permission is granted.
1945 */
1946int security_path_chmod(const struct path *path, umode_t mode)
1947{
1948 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1949 return 0;
1950 return call_int_hook(path_chmod, 0, path, mode);
1951}
1952
1953/**
1954 * security_path_chown() - Check if changing the file's owner/group is allowed
1955 * @path: file
1956 * @uid: file owner
1957 * @gid: file group
1958 *
1959 * Check for permission to change owner/group of a file or directory.
1960 *
1961 * Return: Returns 0 if permission is granted.
1962 */
1963int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1964{
1965 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1966 return 0;
1967 return call_int_hook(path_chown, 0, path, uid, gid);
1968}
1969
1970/**
1971 * security_path_chroot() - Check if changing the root directory is allowed
1972 * @path: directory
1973 *
1974 * Check for permission to change root directory.
1975 *
1976 * Return: Returns 0 if permission is granted.
1977 */
1978int security_path_chroot(const struct path *path)
1979{
1980 return call_int_hook(path_chroot, 0, path);
1981}
1982#endif /* CONFIG_SECURITY_PATH */
1983
1984/**
1985 * security_inode_create() - Check if creating a file is allowed
1986 * @dir: the parent directory
1987 * @dentry: the file being created
1988 * @mode: requested file mode
1989 *
1990 * Check permission to create a regular file.
1991 *
1992 * Return: Returns 0 if permission is granted.
1993 */
1994int security_inode_create(struct inode *dir, struct dentry *dentry,
1995 umode_t mode)
1996{
1997 if (unlikely(IS_PRIVATE(dir)))
1998 return 0;
1999 return call_int_hook(inode_create, 0, dir, dentry, mode);
2000}
2001EXPORT_SYMBOL_GPL(security_inode_create);
2002
2003/**
2004 * security_inode_link() - Check if creating a hard link is allowed
2005 * @old_dentry: existing file
2006 * @dir: new parent directory
2007 * @new_dentry: new link
2008 *
2009 * Check permission before creating a new hard link to a file.
2010 *
2011 * Return: Returns 0 if permission is granted.
2012 */
2013int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2014 struct dentry *new_dentry)
2015{
2016 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2017 return 0;
2018 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
2019}
2020
2021/**
2022 * security_inode_unlink() - Check if removing a hard link is allowed
2023 * @dir: parent directory
2024 * @dentry: file
2025 *
2026 * Check the permission to remove a hard link to a file.
2027 *
2028 * Return: Returns 0 if permission is granted.
2029 */
2030int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2031{
2032 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2033 return 0;
2034 return call_int_hook(inode_unlink, 0, dir, dentry);
2035}
2036
2037/**
2038 * security_inode_symlink() - Check if creating a symbolic link is allowed
2039 * @dir: parent directory
2040 * @dentry: symbolic link
2041 * @old_name: existing filename
2042 *
2043 * Check the permission to create a symbolic link to a file.
2044 *
2045 * Return: Returns 0 if permission is granted.
2046 */
2047int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2048 const char *old_name)
2049{
2050 if (unlikely(IS_PRIVATE(dir)))
2051 return 0;
2052 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
2053}
2054
2055/**
2056 * security_inode_mkdir() - Check if creation a new director is allowed
2057 * @dir: parent directory
2058 * @dentry: new directory
2059 * @mode: new directory mode
2060 *
2061 * Check permissions to create a new directory in the existing directory
2062 * associated with inode structure @dir.
2063 *
2064 * Return: Returns 0 if permission is granted.
2065 */
2066int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2067{
2068 if (unlikely(IS_PRIVATE(dir)))
2069 return 0;
2070 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
2071}
2072EXPORT_SYMBOL_GPL(security_inode_mkdir);
2073
2074/**
2075 * security_inode_rmdir() - Check if removing a directory is allowed
2076 * @dir: parent directory
2077 * @dentry: directory to be removed
2078 *
2079 * Check the permission to remove a directory.
2080 *
2081 * Return: Returns 0 if permission is granted.
2082 */
2083int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2084{
2085 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2086 return 0;
2087 return call_int_hook(inode_rmdir, 0, dir, dentry);
2088}
2089
2090/**
2091 * security_inode_mknod() - Check if creating a special file is allowed
2092 * @dir: parent directory
2093 * @dentry: new file
2094 * @mode: new file mode
2095 * @dev: device number
2096 *
2097 * Check permissions when creating a special file (or a socket or a fifo file
2098 * created via the mknod system call). Note that if mknod operation is being
2099 * done for a regular file, then the create hook will be called and not this
2100 * hook.
2101 *
2102 * Return: Returns 0 if permission is granted.
2103 */
2104int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2105 umode_t mode, dev_t dev)
2106{
2107 if (unlikely(IS_PRIVATE(dir)))
2108 return 0;
2109 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
2110}
2111
2112/**
2113 * security_inode_rename() - Check if renaming a file is allowed
2114 * @old_dir: parent directory of the old file
2115 * @old_dentry: the old file
2116 * @new_dir: parent directory of the new file
2117 * @new_dentry: the new file
2118 * @flags: flags
2119 *
2120 * Check for permission to rename a file or directory.
2121 *
2122 * Return: Returns 0 if permission is granted.
2123 */
2124int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2125 struct inode *new_dir, struct dentry *new_dentry,
2126 unsigned int flags)
2127{
2128 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2129 (d_is_positive(new_dentry) &&
2130 IS_PRIVATE(d_backing_inode(new_dentry)))))
2131 return 0;
2132
2133 if (flags & RENAME_EXCHANGE) {
2134 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
2135 old_dir, old_dentry);
2136 if (err)
2137 return err;
2138 }
2139
2140 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
2141 new_dir, new_dentry);
2142}
2143
2144/**
2145 * security_inode_readlink() - Check if reading a symbolic link is allowed
2146 * @dentry: link
2147 *
2148 * Check the permission to read the symbolic link.
2149 *
2150 * Return: Returns 0 if permission is granted.
2151 */
2152int security_inode_readlink(struct dentry *dentry)
2153{
2154 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2155 return 0;
2156 return call_int_hook(inode_readlink, 0, dentry);
2157}
2158
2159/**
2160 * security_inode_follow_link() - Check if following a symbolic link is allowed
2161 * @dentry: link dentry
2162 * @inode: link inode
2163 * @rcu: true if in RCU-walk mode
2164 *
2165 * Check permission to follow a symbolic link when looking up a pathname. If
2166 * @rcu is true, @inode is not stable.
2167 *
2168 * Return: Returns 0 if permission is granted.
2169 */
2170int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2171 bool rcu)
2172{
2173 if (unlikely(IS_PRIVATE(inode)))
2174 return 0;
2175 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
2176}
2177
2178/**
2179 * security_inode_permission() - Check if accessing an inode is allowed
2180 * @inode: inode
2181 * @mask: access mask
2182 *
2183 * Check permission before accessing an inode. This hook is called by the
2184 * existing Linux permission function, so a security module can use it to
2185 * provide additional checking for existing Linux permission checks. Notice
2186 * that this hook is called when a file is opened (as well as many other
2187 * operations), whereas the file_security_ops permission hook is called when
2188 * the actual read/write operations are performed.
2189 *
2190 * Return: Returns 0 if permission is granted.
2191 */
2192int security_inode_permission(struct inode *inode, int mask)
2193{
2194 if (unlikely(IS_PRIVATE(inode)))
2195 return 0;
2196 return call_int_hook(inode_permission, 0, inode, mask);
2197}
2198
2199/**
2200 * security_inode_setattr() - Check if setting file attributes is allowed
2201 * @idmap: idmap of the mount
2202 * @dentry: file
2203 * @attr: new attributes
2204 *
2205 * Check permission before setting file attributes. Note that the kernel call
2206 * to notify_change is performed from several locations, whenever file
2207 * attributes change (such as when a file is truncated, chown/chmod operations,
2208 * transferring disk quotas, etc).
2209 *
2210 * Return: Returns 0 if permission is granted.
2211 */
2212int security_inode_setattr(struct mnt_idmap *idmap,
2213 struct dentry *dentry, struct iattr *attr)
2214{
2215 int ret;
2216
2217 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2218 return 0;
2219 ret = call_int_hook(inode_setattr, 0, dentry, attr);
2220 if (ret)
2221 return ret;
2222 return evm_inode_setattr(idmap, dentry, attr);
2223}
2224EXPORT_SYMBOL_GPL(security_inode_setattr);
2225
2226/**
2227 * security_inode_getattr() - Check if getting file attributes is allowed
2228 * @path: file
2229 *
2230 * Check permission before obtaining file attributes.
2231 *
2232 * Return: Returns 0 if permission is granted.
2233 */
2234int security_inode_getattr(const struct path *path)
2235{
2236 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2237 return 0;
2238 return call_int_hook(inode_getattr, 0, path);
2239}
2240
2241/**
2242 * security_inode_setxattr() - Check if setting file xattrs is allowed
2243 * @idmap: idmap of the mount
2244 * @dentry: file
2245 * @name: xattr name
2246 * @value: xattr value
2247 * @size: size of xattr value
2248 * @flags: flags
2249 *
2250 * Check permission before setting the extended attributes.
2251 *
2252 * Return: Returns 0 if permission is granted.
2253 */
2254int security_inode_setxattr(struct mnt_idmap *idmap,
2255 struct dentry *dentry, const char *name,
2256 const void *value, size_t size, int flags)
2257{
2258 int ret;
2259
2260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2261 return 0;
2262 /*
2263 * SELinux and Smack integrate the cap call,
2264 * so assume that all LSMs supplying this call do so.
2265 */
2266 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value,
2267 size, flags);
2268
2269 if (ret == 1)
2270 ret = cap_inode_setxattr(dentry, name, value, size, flags);
2271 if (ret)
2272 return ret;
2273 ret = ima_inode_setxattr(dentry, name, value, size);
2274 if (ret)
2275 return ret;
2276 return evm_inode_setxattr(idmap, dentry, name, value, size);
2277}
2278
2279/**
2280 * security_inode_set_acl() - Check if setting posix acls is allowed
2281 * @idmap: idmap of the mount
2282 * @dentry: file
2283 * @acl_name: acl name
2284 * @kacl: acl struct
2285 *
2286 * Check permission before setting posix acls, the posix acls in @kacl are
2287 * identified by @acl_name.
2288 *
2289 * Return: Returns 0 if permission is granted.
2290 */
2291int security_inode_set_acl(struct mnt_idmap *idmap,
2292 struct dentry *dentry, const char *acl_name,
2293 struct posix_acl *kacl)
2294{
2295 int ret;
2296
2297 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2298 return 0;
2299 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name,
2300 kacl);
2301 if (ret)
2302 return ret;
2303 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl);
2304 if (ret)
2305 return ret;
2306 return evm_inode_set_acl(idmap, dentry, acl_name, kacl);
2307}
2308
2309/**
2310 * security_inode_get_acl() - Check if reading posix acls is allowed
2311 * @idmap: idmap of the mount
2312 * @dentry: file
2313 * @acl_name: acl name
2314 *
2315 * Check permission before getting osix acls, the posix acls are identified by
2316 * @acl_name.
2317 *
2318 * Return: Returns 0 if permission is granted.
2319 */
2320int security_inode_get_acl(struct mnt_idmap *idmap,
2321 struct dentry *dentry, const char *acl_name)
2322{
2323 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2324 return 0;
2325 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name);
2326}
2327
2328/**
2329 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2330 * @idmap: idmap of the mount
2331 * @dentry: file
2332 * @acl_name: acl name
2333 *
2334 * Check permission before removing posix acls, the posix acls are identified
2335 * by @acl_name.
2336 *
2337 * Return: Returns 0 if permission is granted.
2338 */
2339int security_inode_remove_acl(struct mnt_idmap *idmap,
2340 struct dentry *dentry, const char *acl_name)
2341{
2342 int ret;
2343
2344 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2345 return 0;
2346 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name);
2347 if (ret)
2348 return ret;
2349 ret = ima_inode_remove_acl(idmap, dentry, acl_name);
2350 if (ret)
2351 return ret;
2352 return evm_inode_remove_acl(idmap, dentry, acl_name);
2353}
2354
2355/**
2356 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2357 * @dentry: file
2358 * @name: xattr name
2359 * @value: xattr value
2360 * @size: xattr value size
2361 * @flags: flags
2362 *
2363 * Update inode security field after successful setxattr operation.
2364 */
2365void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2366 const void *value, size_t size, int flags)
2367{
2368 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2369 return;
2370 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2371 evm_inode_post_setxattr(dentry, name, value, size);
2372}
2373
2374/**
2375 * security_inode_getxattr() - Check if xattr access is allowed
2376 * @dentry: file
2377 * @name: xattr name
2378 *
2379 * Check permission before obtaining the extended attributes identified by
2380 * @name for @dentry.
2381 *
2382 * Return: Returns 0 if permission is granted.
2383 */
2384int security_inode_getxattr(struct dentry *dentry, const char *name)
2385{
2386 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2387 return 0;
2388 return call_int_hook(inode_getxattr, 0, dentry, name);
2389}
2390
2391/**
2392 * security_inode_listxattr() - Check if listing xattrs is allowed
2393 * @dentry: file
2394 *
2395 * Check permission before obtaining the list of extended attribute names for
2396 * @dentry.
2397 *
2398 * Return: Returns 0 if permission is granted.
2399 */
2400int security_inode_listxattr(struct dentry *dentry)
2401{
2402 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2403 return 0;
2404 return call_int_hook(inode_listxattr, 0, dentry);
2405}
2406
2407/**
2408 * security_inode_removexattr() - Check if removing an xattr is allowed
2409 * @idmap: idmap of the mount
2410 * @dentry: file
2411 * @name: xattr name
2412 *
2413 * Check permission before removing the extended attribute identified by @name
2414 * for @dentry.
2415 *
2416 * Return: Returns 0 if permission is granted.
2417 */
2418int security_inode_removexattr(struct mnt_idmap *idmap,
2419 struct dentry *dentry, const char *name)
2420{
2421 int ret;
2422
2423 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2424 return 0;
2425 /*
2426 * SELinux and Smack integrate the cap call,
2427 * so assume that all LSMs supplying this call do so.
2428 */
2429 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name);
2430 if (ret == 1)
2431 ret = cap_inode_removexattr(idmap, dentry, name);
2432 if (ret)
2433 return ret;
2434 ret = ima_inode_removexattr(dentry, name);
2435 if (ret)
2436 return ret;
2437 return evm_inode_removexattr(idmap, dentry, name);
2438}
2439
2440/**
2441 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2442 * @dentry: associated dentry
2443 *
2444 * Called when an inode has been changed to determine if
2445 * security_inode_killpriv() should be called.
2446 *
2447 * Return: Return <0 on error to abort the inode change operation, return 0 if
2448 * security_inode_killpriv() does not need to be called, return >0 if
2449 * security_inode_killpriv() does need to be called.
2450 */
2451int security_inode_need_killpriv(struct dentry *dentry)
2452{
2453 return call_int_hook(inode_need_killpriv, 0, dentry);
2454}
2455
2456/**
2457 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2458 * @idmap: idmap of the mount
2459 * @dentry: associated dentry
2460 *
2461 * The @dentry's setuid bit is being removed. Remove similar security labels.
2462 * Called with the dentry->d_inode->i_mutex held.
2463 *
2464 * Return: Return 0 on success. If error is returned, then the operation
2465 * causing setuid bit removal is failed.
2466 */
2467int security_inode_killpriv(struct mnt_idmap *idmap,
2468 struct dentry *dentry)
2469{
2470 return call_int_hook(inode_killpriv, 0, idmap, dentry);
2471}
2472
2473/**
2474 * security_inode_getsecurity() - Get the xattr security label of an inode
2475 * @idmap: idmap of the mount
2476 * @inode: inode
2477 * @name: xattr name
2478 * @buffer: security label buffer
2479 * @alloc: allocation flag
2480 *
2481 * Retrieve a copy of the extended attribute representation of the security
2482 * label associated with @name for @inode via @buffer. Note that @name is the
2483 * remainder of the attribute name after the security prefix has been removed.
2484 * @alloc is used to specify if the call should return a value via the buffer
2485 * or just the value length.
2486 *
2487 * Return: Returns size of buffer on success.
2488 */
2489int security_inode_getsecurity(struct mnt_idmap *idmap,
2490 struct inode *inode, const char *name,
2491 void **buffer, bool alloc)
2492{
2493 struct security_hook_list *hp;
2494 int rc;
2495
2496 if (unlikely(IS_PRIVATE(inode)))
2497 return LSM_RET_DEFAULT(inode_getsecurity);
2498 /*
2499 * Only one module will provide an attribute with a given name.
2500 */
2501 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
2502 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer,
2503 alloc);
2504 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
2505 return rc;
2506 }
2507 return LSM_RET_DEFAULT(inode_getsecurity);
2508}
2509
2510/**
2511 * security_inode_setsecurity() - Set the xattr security label of an inode
2512 * @inode: inode
2513 * @name: xattr name
2514 * @value: security label
2515 * @size: length of security label
2516 * @flags: flags
2517 *
2518 * Set the security label associated with @name for @inode from the extended
2519 * attribute value @value. @size indicates the size of the @value in bytes.
2520 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2521 * remainder of the attribute name after the security. prefix has been removed.
2522 *
2523 * Return: Returns 0 on success.
2524 */
2525int security_inode_setsecurity(struct inode *inode, const char *name,
2526 const void *value, size_t size, int flags)
2527{
2528 struct security_hook_list *hp;
2529 int rc;
2530
2531 if (unlikely(IS_PRIVATE(inode)))
2532 return LSM_RET_DEFAULT(inode_setsecurity);
2533 /*
2534 * Only one module will provide an attribute with a given name.
2535 */
2536 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
2537 rc = hp->hook.inode_setsecurity(inode, name, value, size,
2538 flags);
2539 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
2540 return rc;
2541 }
2542 return LSM_RET_DEFAULT(inode_setsecurity);
2543}
2544
2545/**
2546 * security_inode_listsecurity() - List the xattr security label names
2547 * @inode: inode
2548 * @buffer: buffer
2549 * @buffer_size: size of buffer
2550 *
2551 * Copy the extended attribute names for the security labels associated with
2552 * @inode into @buffer. The maximum size of @buffer is specified by
2553 * @buffer_size. @buffer may be NULL to request the size of the buffer
2554 * required.
2555 *
2556 * Return: Returns number of bytes used/required on success.
2557 */
2558int security_inode_listsecurity(struct inode *inode,
2559 char *buffer, size_t buffer_size)
2560{
2561 if (unlikely(IS_PRIVATE(inode)))
2562 return 0;
2563 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
2564}
2565EXPORT_SYMBOL(security_inode_listsecurity);
2566
2567/**
2568 * security_inode_getsecid() - Get an inode's secid
2569 * @inode: inode
2570 * @secid: secid to return
2571 *
2572 * Get the secid associated with the node. In case of failure, @secid will be
2573 * set to zero.
2574 */
2575void security_inode_getsecid(struct inode *inode, u32 *secid)
2576{
2577 call_void_hook(inode_getsecid, inode, secid);
2578}
2579
2580/**
2581 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2582 * @src: union dentry of copy-up file
2583 * @new: newly created creds
2584 *
2585 * A file is about to be copied up from lower layer to upper layer of overlay
2586 * filesystem. Security module can prepare a set of new creds and modify as
2587 * need be and return new creds. Caller will switch to new creds temporarily to
2588 * create new file and release newly allocated creds.
2589 *
2590 * Return: Returns 0 on success or a negative error code on error.
2591 */
2592int security_inode_copy_up(struct dentry *src, struct cred **new)
2593{
2594 return call_int_hook(inode_copy_up, 0, src, new);
2595}
2596EXPORT_SYMBOL(security_inode_copy_up);
2597
2598/**
2599 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2600 * @name: xattr name
2601 *
2602 * Filter the xattrs being copied up when a unioned file is copied up from a
2603 * lower layer to the union/overlay layer. The caller is responsible for
2604 * reading and writing the xattrs, this hook is merely a filter.
2605 *
2606 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2607 * if the security module does not know about attribute, or a negative
2608 * error code to abort the copy up.
2609 */
2610int security_inode_copy_up_xattr(const char *name)
2611{
2612 struct security_hook_list *hp;
2613 int rc;
2614
2615 /*
2616 * The implementation can return 0 (accept the xattr), 1 (discard the
2617 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2618 * any other error code in case of an error.
2619 */
2620 hlist_for_each_entry(hp,
2621 &security_hook_heads.inode_copy_up_xattr, list) {
2622 rc = hp->hook.inode_copy_up_xattr(name);
2623 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2624 return rc;
2625 }
2626
2627 return evm_inode_copy_up_xattr(name);
2628}
2629EXPORT_SYMBOL(security_inode_copy_up_xattr);
2630
2631/**
2632 * security_kernfs_init_security() - Init LSM context for a kernfs node
2633 * @kn_dir: parent kernfs node
2634 * @kn: the kernfs node to initialize
2635 *
2636 * Initialize the security context of a newly created kernfs node based on its
2637 * own and its parent's attributes.
2638 *
2639 * Return: Returns 0 if permission is granted.
2640 */
2641int security_kernfs_init_security(struct kernfs_node *kn_dir,
2642 struct kernfs_node *kn)
2643{
2644 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
2645}
2646
2647/**
2648 * security_file_permission() - Check file permissions
2649 * @file: file
2650 * @mask: requested permissions
2651 *
2652 * Check file permissions before accessing an open file. This hook is called
2653 * by various operations that read or write files. A security module can use
2654 * this hook to perform additional checking on these operations, e.g. to
2655 * revalidate permissions on use to support privilege bracketing or policy
2656 * changes. Notice that this hook is used when the actual read/write
2657 * operations are performed, whereas the inode_security_ops hook is called when
2658 * a file is opened (as well as many other operations). Although this hook can
2659 * be used to revalidate permissions for various system call operations that
2660 * read or write files, it does not address the revalidation of permissions for
2661 * memory-mapped files. Security modules must handle this separately if they
2662 * need such revalidation.
2663 *
2664 * Return: Returns 0 if permission is granted.
2665 */
2666int security_file_permission(struct file *file, int mask)
2667{
2668 return call_int_hook(file_permission, 0, file, mask);
2669}
2670
2671/**
2672 * security_file_alloc() - Allocate and init a file's LSM blob
2673 * @file: the file
2674 *
2675 * Allocate and attach a security structure to the file->f_security field. The
2676 * security field is initialized to NULL when the structure is first created.
2677 *
2678 * Return: Return 0 if the hook is successful and permission is granted.
2679 */
2680int security_file_alloc(struct file *file)
2681{
2682 int rc = lsm_file_alloc(file);
2683
2684 if (rc)
2685 return rc;
2686 rc = call_int_hook(file_alloc_security, 0, file);
2687 if (unlikely(rc))
2688 security_file_free(file);
2689 return rc;
2690}
2691
2692/**
2693 * security_file_free() - Free a file's LSM blob
2694 * @file: the file
2695 *
2696 * Deallocate and free any security structures stored in file->f_security.
2697 */
2698void security_file_free(struct file *file)
2699{
2700 void *blob;
2701
2702 call_void_hook(file_free_security, file);
2703
2704 blob = file->f_security;
2705 if (blob) {
2706 file->f_security = NULL;
2707 kmem_cache_free(lsm_file_cache, blob);
2708 }
2709}
2710
2711/**
2712 * security_file_ioctl() - Check if an ioctl is allowed
2713 * @file: associated file
2714 * @cmd: ioctl cmd
2715 * @arg: ioctl arguments
2716 *
2717 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2718 * represents a user space pointer; in other cases, it may be a simple integer
2719 * value. When @arg represents a user space pointer, it should never be used
2720 * by the security module.
2721 *
2722 * Return: Returns 0 if permission is granted.
2723 */
2724int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2725{
2726 return call_int_hook(file_ioctl, 0, file, cmd, arg);
2727}
2728EXPORT_SYMBOL_GPL(security_file_ioctl);
2729
2730/**
2731 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2732 * @file: associated file
2733 * @cmd: ioctl cmd
2734 * @arg: ioctl arguments
2735 *
2736 * Compat version of security_file_ioctl() that correctly handles 32-bit
2737 * processes running on 64-bit kernels.
2738 *
2739 * Return: Returns 0 if permission is granted.
2740 */
2741int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2742 unsigned long arg)
2743{
2744 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
2745}
2746EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2747
2748static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2749{
2750 /*
2751 * Does we have PROT_READ and does the application expect
2752 * it to imply PROT_EXEC? If not, nothing to talk about...
2753 */
2754 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2755 return prot;
2756 if (!(current->personality & READ_IMPLIES_EXEC))
2757 return prot;
2758 /*
2759 * if that's an anonymous mapping, let it.
2760 */
2761 if (!file)
2762 return prot | PROT_EXEC;
2763 /*
2764 * ditto if it's not on noexec mount, except that on !MMU we need
2765 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2766 */
2767 if (!path_noexec(&file->f_path)) {
2768#ifndef CONFIG_MMU
2769 if (file->f_op->mmap_capabilities) {
2770 unsigned caps = file->f_op->mmap_capabilities(file);
2771 if (!(caps & NOMMU_MAP_EXEC))
2772 return prot;
2773 }
2774#endif
2775 return prot | PROT_EXEC;
2776 }
2777 /* anything on noexec mount won't get PROT_EXEC */
2778 return prot;
2779}
2780
2781/**
2782 * security_mmap_file() - Check if mmap'ing a file is allowed
2783 * @file: file
2784 * @prot: protection applied by the kernel
2785 * @flags: flags
2786 *
2787 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2788 * mapping anonymous memory.
2789 *
2790 * Return: Returns 0 if permission is granted.
2791 */
2792int security_mmap_file(struct file *file, unsigned long prot,
2793 unsigned long flags)
2794{
2795 unsigned long prot_adj = mmap_prot(file, prot);
2796 int ret;
2797
2798 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
2799 if (ret)
2800 return ret;
2801 return ima_file_mmap(file, prot, prot_adj, flags);
2802}
2803
2804/**
2805 * security_mmap_addr() - Check if mmap'ing an address is allowed
2806 * @addr: address
2807 *
2808 * Check permissions for a mmap operation at @addr.
2809 *
2810 * Return: Returns 0 if permission is granted.
2811 */
2812int security_mmap_addr(unsigned long addr)
2813{
2814 return call_int_hook(mmap_addr, 0, addr);
2815}
2816
2817/**
2818 * security_file_mprotect() - Check if changing memory protections is allowed
2819 * @vma: memory region
2820 * @reqprot: application requested protection
2821 * @prot: protection applied by the kernel
2822 *
2823 * Check permissions before changing memory access permissions.
2824 *
2825 * Return: Returns 0 if permission is granted.
2826 */
2827int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2828 unsigned long prot)
2829{
2830 int ret;
2831
2832 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
2833 if (ret)
2834 return ret;
2835 return ima_file_mprotect(vma, prot);
2836}
2837
2838/**
2839 * security_file_lock() - Check if a file lock is allowed
2840 * @file: file
2841 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2842 *
2843 * Check permission before performing file locking operations. Note the hook
2844 * mediates both flock and fcntl style locks.
2845 *
2846 * Return: Returns 0 if permission is granted.
2847 */
2848int security_file_lock(struct file *file, unsigned int cmd)
2849{
2850 return call_int_hook(file_lock, 0, file, cmd);
2851}
2852
2853/**
2854 * security_file_fcntl() - Check if fcntl() op is allowed
2855 * @file: file
2856 * @cmd: fcntl command
2857 * @arg: command argument
2858 *
2859 * Check permission before allowing the file operation specified by @cmd from
2860 * being performed on the file @file. Note that @arg sometimes represents a
2861 * user space pointer; in other cases, it may be a simple integer value. When
2862 * @arg represents a user space pointer, it should never be used by the
2863 * security module.
2864 *
2865 * Return: Returns 0 if permission is granted.
2866 */
2867int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2868{
2869 return call_int_hook(file_fcntl, 0, file, cmd, arg);
2870}
2871
2872/**
2873 * security_file_set_fowner() - Set the file owner info in the LSM blob
2874 * @file: the file
2875 *
2876 * Save owner security information (typically from current->security) in
2877 * file->f_security for later use by the send_sigiotask hook.
2878 *
2879 * Return: Returns 0 on success.
2880 */
2881void security_file_set_fowner(struct file *file)
2882{
2883 call_void_hook(file_set_fowner, file);
2884}
2885
2886/**
2887 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2888 * @tsk: target task
2889 * @fown: signal sender
2890 * @sig: signal to be sent, SIGIO is sent if 0
2891 *
2892 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2893 * process @tsk. Note that this hook is sometimes called from interrupt. Note
2894 * that the fown_struct, @fown, is never outside the context of a struct file,
2895 * so the file structure (and associated security information) can always be
2896 * obtained: container_of(fown, struct file, f_owner).
2897 *
2898 * Return: Returns 0 if permission is granted.
2899 */
2900int security_file_send_sigiotask(struct task_struct *tsk,
2901 struct fown_struct *fown, int sig)
2902{
2903 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
2904}
2905
2906/**
2907 * security_file_receive() - Check is receiving a file via IPC is allowed
2908 * @file: file being received
2909 *
2910 * This hook allows security modules to control the ability of a process to
2911 * receive an open file descriptor via socket IPC.
2912 *
2913 * Return: Returns 0 if permission is granted.
2914 */
2915int security_file_receive(struct file *file)
2916{
2917 return call_int_hook(file_receive, 0, file);
2918}
2919
2920/**
2921 * security_file_open() - Save open() time state for late use by the LSM
2922 * @file:
2923 *
2924 * Save open-time permission checking state for later use upon file_permission,
2925 * and recheck access if anything has changed since inode_permission.
2926 *
2927 * Return: Returns 0 if permission is granted.
2928 */
2929int security_file_open(struct file *file)
2930{
2931 int ret;
2932
2933 ret = call_int_hook(file_open, 0, file);
2934 if (ret)
2935 return ret;
2936
2937 return fsnotify_open_perm(file);
2938}
2939
2940/**
2941 * security_file_truncate() - Check if truncating a file is allowed
2942 * @file: file
2943 *
2944 * Check permission before truncating a file, i.e. using ftruncate. Note that
2945 * truncation permission may also be checked based on the path, using the
2946 * @path_truncate hook.
2947 *
2948 * Return: Returns 0 if permission is granted.
2949 */
2950int security_file_truncate(struct file *file)
2951{
2952 return call_int_hook(file_truncate, 0, file);
2953}
2954
2955/**
2956 * security_task_alloc() - Allocate a task's LSM blob
2957 * @task: the task
2958 * @clone_flags: flags indicating what is being shared
2959 *
2960 * Handle allocation of task-related resources.
2961 *
2962 * Return: Returns a zero on success, negative values on failure.
2963 */
2964int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
2965{
2966 int rc = lsm_task_alloc(task);
2967
2968 if (rc)
2969 return rc;
2970 rc = call_int_hook(task_alloc, 0, task, clone_flags);
2971 if (unlikely(rc))
2972 security_task_free(task);
2973 return rc;
2974}
2975
2976/**
2977 * security_task_free() - Free a task's LSM blob and related resources
2978 * @task: task
2979 *
2980 * Handle release of task-related resources. Note that this can be called from
2981 * interrupt context.
2982 */
2983void security_task_free(struct task_struct *task)
2984{
2985 call_void_hook(task_free, task);
2986
2987 kfree(task->security);
2988 task->security = NULL;
2989}
2990
2991/**
2992 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
2993 * @cred: credentials
2994 * @gfp: gfp flags
2995 *
2996 * Only allocate sufficient memory and attach to @cred such that
2997 * cred_transfer() will not get ENOMEM.
2998 *
2999 * Return: Returns 0 on success, negative values on failure.
3000 */
3001int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3002{
3003 int rc = lsm_cred_alloc(cred, gfp);
3004
3005 if (rc)
3006 return rc;
3007
3008 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
3009 if (unlikely(rc))
3010 security_cred_free(cred);
3011 return rc;
3012}
3013
3014/**
3015 * security_cred_free() - Free the cred's LSM blob and associated resources
3016 * @cred: credentials
3017 *
3018 * Deallocate and clear the cred->security field in a set of credentials.
3019 */
3020void security_cred_free(struct cred *cred)
3021{
3022 /*
3023 * There is a failure case in prepare_creds() that
3024 * may result in a call here with ->security being NULL.
3025 */
3026 if (unlikely(cred->security == NULL))
3027 return;
3028
3029 call_void_hook(cred_free, cred);
3030
3031 kfree(cred->security);
3032 cred->security = NULL;
3033}
3034
3035/**
3036 * security_prepare_creds() - Prepare a new set of credentials
3037 * @new: new credentials
3038 * @old: original credentials
3039 * @gfp: gfp flags
3040 *
3041 * Prepare a new set of credentials by copying the data from the old set.
3042 *
3043 * Return: Returns 0 on success, negative values on failure.
3044 */
3045int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3046{
3047 int rc = lsm_cred_alloc(new, gfp);
3048
3049 if (rc)
3050 return rc;
3051
3052 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
3053 if (unlikely(rc))
3054 security_cred_free(new);
3055 return rc;
3056}
3057
3058/**
3059 * security_transfer_creds() - Transfer creds
3060 * @new: target credentials
3061 * @old: original credentials
3062 *
3063 * Transfer data from original creds to new creds.
3064 */
3065void security_transfer_creds(struct cred *new, const struct cred *old)
3066{
3067 call_void_hook(cred_transfer, new, old);
3068}
3069
3070/**
3071 * security_cred_getsecid() - Get the secid from a set of credentials
3072 * @c: credentials
3073 * @secid: secid value
3074 *
3075 * Retrieve the security identifier of the cred structure @c. In case of
3076 * failure, @secid will be set to zero.
3077 */
3078void security_cred_getsecid(const struct cred *c, u32 *secid)
3079{
3080 *secid = 0;
3081 call_void_hook(cred_getsecid, c, secid);
3082}
3083EXPORT_SYMBOL(security_cred_getsecid);
3084
3085/**
3086 * security_kernel_act_as() - Set the kernel credentials to act as secid
3087 * @new: credentials
3088 * @secid: secid
3089 *
3090 * Set the credentials for a kernel service to act as (subjective context).
3091 * The current task must be the one that nominated @secid.
3092 *
3093 * Return: Returns 0 if successful.
3094 */
3095int security_kernel_act_as(struct cred *new, u32 secid)
3096{
3097 return call_int_hook(kernel_act_as, 0, new, secid);
3098}
3099
3100/**
3101 * security_kernel_create_files_as() - Set file creation context using an inode
3102 * @new: target credentials
3103 * @inode: reference inode
3104 *
3105 * Set the file creation context in a set of credentials to be the same as the
3106 * objective context of the specified inode. The current task must be the one
3107 * that nominated @inode.
3108 *
3109 * Return: Returns 0 if successful.
3110 */
3111int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3112{
3113 return call_int_hook(kernel_create_files_as, 0, new, inode);
3114}
3115
3116/**
3117 * security_kernel_module_request() - Check is loading a module is allowed
3118 * @kmod_name: module name
3119 *
3120 * Ability to trigger the kernel to automatically upcall to userspace for
3121 * userspace to load a kernel module with the given name.
3122 *
3123 * Return: Returns 0 if successful.
3124 */
3125int security_kernel_module_request(char *kmod_name)
3126{
3127 int ret;
3128
3129 ret = call_int_hook(kernel_module_request, 0, kmod_name);
3130 if (ret)
3131 return ret;
3132 return integrity_kernel_module_request(kmod_name);
3133}
3134
3135/**
3136 * security_kernel_read_file() - Read a file specified by userspace
3137 * @file: file
3138 * @id: file identifier
3139 * @contents: trust if security_kernel_post_read_file() will be called
3140 *
3141 * Read a file specified by userspace.
3142 *
3143 * Return: Returns 0 if permission is granted.
3144 */
3145int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3146 bool contents)
3147{
3148 int ret;
3149
3150 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
3151 if (ret)
3152 return ret;
3153 return ima_read_file(file, id, contents);
3154}
3155EXPORT_SYMBOL_GPL(security_kernel_read_file);
3156
3157/**
3158 * security_kernel_post_read_file() - Read a file specified by userspace
3159 * @file: file
3160 * @buf: file contents
3161 * @size: size of file contents
3162 * @id: file identifier
3163 *
3164 * Read a file specified by userspace. This must be paired with a prior call
3165 * to security_kernel_read_file() call that indicated this hook would also be
3166 * called, see security_kernel_read_file() for more information.
3167 *
3168 * Return: Returns 0 if permission is granted.
3169 */
3170int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3171 enum kernel_read_file_id id)
3172{
3173 int ret;
3174
3175 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
3176 if (ret)
3177 return ret;
3178 return ima_post_read_file(file, buf, size, id);
3179}
3180EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3181
3182/**
3183 * security_kernel_load_data() - Load data provided by userspace
3184 * @id: data identifier
3185 * @contents: true if security_kernel_post_load_data() will be called
3186 *
3187 * Load data provided by userspace.
3188 *
3189 * Return: Returns 0 if permission is granted.
3190 */
3191int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3192{
3193 int ret;
3194
3195 ret = call_int_hook(kernel_load_data, 0, id, contents);
3196 if (ret)
3197 return ret;
3198 return ima_load_data(id, contents);
3199}
3200EXPORT_SYMBOL_GPL(security_kernel_load_data);
3201
3202/**
3203 * security_kernel_post_load_data() - Load userspace data from a non-file source
3204 * @buf: data
3205 * @size: size of data
3206 * @id: data identifier
3207 * @description: text description of data, specific to the id value
3208 *
3209 * Load data provided by a non-file source (usually userspace buffer). This
3210 * must be paired with a prior security_kernel_load_data() call that indicated
3211 * this hook would also be called, see security_kernel_load_data() for more
3212 * information.
3213 *
3214 * Return: Returns 0 if permission is granted.
3215 */
3216int security_kernel_post_load_data(char *buf, loff_t size,
3217 enum kernel_load_data_id id,
3218 char *description)
3219{
3220 int ret;
3221
3222 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
3223 description);
3224 if (ret)
3225 return ret;
3226 return ima_post_load_data(buf, size, id, description);
3227}
3228EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3229
3230/**
3231 * security_task_fix_setuid() - Update LSM with new user id attributes
3232 * @new: updated credentials
3233 * @old: credentials being replaced
3234 * @flags: LSM_SETID_* flag values
3235 *
3236 * Update the module's state after setting one or more of the user identity
3237 * attributes of the current process. The @flags parameter indicates which of
3238 * the set*uid system calls invoked this hook. If @new is the set of
3239 * credentials that will be installed. Modifications should be made to this
3240 * rather than to @current->cred.
3241 *
3242 * Return: Returns 0 on success.
3243 */
3244int security_task_fix_setuid(struct cred *new, const struct cred *old,
3245 int flags)
3246{
3247 return call_int_hook(task_fix_setuid, 0, new, old, flags);
3248}
3249
3250/**
3251 * security_task_fix_setgid() - Update LSM with new group id attributes
3252 * @new: updated credentials
3253 * @old: credentials being replaced
3254 * @flags: LSM_SETID_* flag value
3255 *
3256 * Update the module's state after setting one or more of the group identity
3257 * attributes of the current process. The @flags parameter indicates which of
3258 * the set*gid system calls invoked this hook. @new is the set of credentials
3259 * that will be installed. Modifications should be made to this rather than to
3260 * @current->cred.
3261 *
3262 * Return: Returns 0 on success.
3263 */
3264int security_task_fix_setgid(struct cred *new, const struct cred *old,
3265 int flags)
3266{
3267 return call_int_hook(task_fix_setgid, 0, new, old, flags);
3268}
3269
3270/**
3271 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3272 * @new: updated credentials
3273 * @old: credentials being replaced
3274 *
3275 * Update the module's state after setting the supplementary group identity
3276 * attributes of the current process. @new is the set of credentials that will
3277 * be installed. Modifications should be made to this rather than to
3278 * @current->cred.
3279 *
3280 * Return: Returns 0 on success.
3281 */
3282int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3283{
3284 return call_int_hook(task_fix_setgroups, 0, new, old);
3285}
3286
3287/**
3288 * security_task_setpgid() - Check if setting the pgid is allowed
3289 * @p: task being modified
3290 * @pgid: new pgid
3291 *
3292 * Check permission before setting the process group identifier of the process
3293 * @p to @pgid.
3294 *
3295 * Return: Returns 0 if permission is granted.
3296 */
3297int security_task_setpgid(struct task_struct *p, pid_t pgid)
3298{
3299 return call_int_hook(task_setpgid, 0, p, pgid);
3300}
3301
3302/**
3303 * security_task_getpgid() - Check if getting the pgid is allowed
3304 * @p: task
3305 *
3306 * Check permission before getting the process group identifier of the process
3307 * @p.
3308 *
3309 * Return: Returns 0 if permission is granted.
3310 */
3311int security_task_getpgid(struct task_struct *p)
3312{
3313 return call_int_hook(task_getpgid, 0, p);
3314}
3315
3316/**
3317 * security_task_getsid() - Check if getting the session id is allowed
3318 * @p: task
3319 *
3320 * Check permission before getting the session identifier of the process @p.
3321 *
3322 * Return: Returns 0 if permission is granted.
3323 */
3324int security_task_getsid(struct task_struct *p)
3325{
3326 return call_int_hook(task_getsid, 0, p);
3327}
3328
3329/**
3330 * security_current_getsecid_subj() - Get the current task's subjective secid
3331 * @secid: secid value
3332 *
3333 * Retrieve the subjective security identifier of the current task and return
3334 * it in @secid. In case of failure, @secid will be set to zero.
3335 */
3336void security_current_getsecid_subj(u32 *secid)
3337{
3338 *secid = 0;
3339 call_void_hook(current_getsecid_subj, secid);
3340}
3341EXPORT_SYMBOL(security_current_getsecid_subj);
3342
3343/**
3344 * security_task_getsecid_obj() - Get a task's objective secid
3345 * @p: target task
3346 * @secid: secid value
3347 *
3348 * Retrieve the objective security identifier of the task_struct in @p and
3349 * return it in @secid. In case of failure, @secid will be set to zero.
3350 */
3351void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3352{
3353 *secid = 0;
3354 call_void_hook(task_getsecid_obj, p, secid);
3355}
3356EXPORT_SYMBOL(security_task_getsecid_obj);
3357
3358/**
3359 * security_task_setnice() - Check if setting a task's nice value is allowed
3360 * @p: target task
3361 * @nice: nice value
3362 *
3363 * Check permission before setting the nice value of @p to @nice.
3364 *
3365 * Return: Returns 0 if permission is granted.
3366 */
3367int security_task_setnice(struct task_struct *p, int nice)
3368{
3369 return call_int_hook(task_setnice, 0, p, nice);
3370}
3371
3372/**
3373 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3374 * @p: target task
3375 * @ioprio: ioprio value
3376 *
3377 * Check permission before setting the ioprio value of @p to @ioprio.
3378 *
3379 * Return: Returns 0 if permission is granted.
3380 */
3381int security_task_setioprio(struct task_struct *p, int ioprio)
3382{
3383 return call_int_hook(task_setioprio, 0, p, ioprio);
3384}
3385
3386/**
3387 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3388 * @p: task
3389 *
3390 * Check permission before getting the ioprio value of @p.
3391 *
3392 * Return: Returns 0 if permission is granted.
3393 */
3394int security_task_getioprio(struct task_struct *p)
3395{
3396 return call_int_hook(task_getioprio, 0, p);
3397}
3398
3399/**
3400 * security_task_prlimit() - Check if get/setting resources limits is allowed
3401 * @cred: current task credentials
3402 * @tcred: target task credentials
3403 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3404 *
3405 * Check permission before getting and/or setting the resource limits of
3406 * another task.
3407 *
3408 * Return: Returns 0 if permission is granted.
3409 */
3410int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3411 unsigned int flags)
3412{
3413 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
3414}
3415
3416/**
3417 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3418 * @p: target task's group leader
3419 * @resource: resource whose limit is being set
3420 * @new_rlim: new resource limit
3421 *
3422 * Check permission before setting the resource limits of process @p for
3423 * @resource to @new_rlim. The old resource limit values can be examined by
3424 * dereferencing (p->signal->rlim + resource).
3425 *
3426 * Return: Returns 0 if permission is granted.
3427 */
3428int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3429 struct rlimit *new_rlim)
3430{
3431 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
3432}
3433
3434/**
3435 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3436 * @p: target task
3437 *
3438 * Check permission before setting scheduling policy and/or parameters of
3439 * process @p.
3440 *
3441 * Return: Returns 0 if permission is granted.
3442 */
3443int security_task_setscheduler(struct task_struct *p)
3444{
3445 return call_int_hook(task_setscheduler, 0, p);
3446}
3447
3448/**
3449 * security_task_getscheduler() - Check if getting scheduling info is allowed
3450 * @p: target task
3451 *
3452 * Check permission before obtaining scheduling information for process @p.
3453 *
3454 * Return: Returns 0 if permission is granted.
3455 */
3456int security_task_getscheduler(struct task_struct *p)
3457{
3458 return call_int_hook(task_getscheduler, 0, p);
3459}
3460
3461/**
3462 * security_task_movememory() - Check if moving memory is allowed
3463 * @p: task
3464 *
3465 * Check permission before moving memory owned by process @p.
3466 *
3467 * Return: Returns 0 if permission is granted.
3468 */
3469int security_task_movememory(struct task_struct *p)
3470{
3471 return call_int_hook(task_movememory, 0, p);
3472}
3473
3474/**
3475 * security_task_kill() - Check if sending a signal is allowed
3476 * @p: target process
3477 * @info: signal information
3478 * @sig: signal value
3479 * @cred: credentials of the signal sender, NULL if @current
3480 *
3481 * Check permission before sending signal @sig to @p. @info can be NULL, the
3482 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3483 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3484 * the kernel and should typically be permitted. SIGIO signals are handled
3485 * separately by the send_sigiotask hook in file_security_ops.
3486 *
3487 * Return: Returns 0 if permission is granted.
3488 */
3489int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3490 int sig, const struct cred *cred)
3491{
3492 return call_int_hook(task_kill, 0, p, info, sig, cred);
3493}
3494
3495/**
3496 * security_task_prctl() - Check if a prctl op is allowed
3497 * @option: operation
3498 * @arg2: argument
3499 * @arg3: argument
3500 * @arg4: argument
3501 * @arg5: argument
3502 *
3503 * Check permission before performing a process control operation on the
3504 * current process.
3505 *
3506 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3507 * to cause prctl() to return immediately with that value.
3508 */
3509int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3510 unsigned long arg4, unsigned long arg5)
3511{
3512 int thisrc;
3513 int rc = LSM_RET_DEFAULT(task_prctl);
3514 struct security_hook_list *hp;
3515
3516 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3517 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3518 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3519 rc = thisrc;
3520 if (thisrc != 0)
3521 break;
3522 }
3523 }
3524 return rc;
3525}
3526
3527/**
3528 * security_task_to_inode() - Set the security attributes of a task's inode
3529 * @p: task
3530 * @inode: inode
3531 *
3532 * Set the security attributes for an inode based on an associated task's
3533 * security attributes, e.g. for /proc/pid inodes.
3534 */
3535void security_task_to_inode(struct task_struct *p, struct inode *inode)
3536{
3537 call_void_hook(task_to_inode, p, inode);
3538}
3539
3540/**
3541 * security_create_user_ns() - Check if creating a new userns is allowed
3542 * @cred: prepared creds
3543 *
3544 * Check permission prior to creating a new user namespace.
3545 *
3546 * Return: Returns 0 if successful, otherwise < 0 error code.
3547 */
3548int security_create_user_ns(const struct cred *cred)
3549{
3550 return call_int_hook(userns_create, 0, cred);
3551}
3552
3553/**
3554 * security_ipc_permission() - Check if sysv ipc access is allowed
3555 * @ipcp: ipc permission structure
3556 * @flag: requested permissions
3557 *
3558 * Check permissions for access to IPC.
3559 *
3560 * Return: Returns 0 if permission is granted.
3561 */
3562int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3563{
3564 return call_int_hook(ipc_permission, 0, ipcp, flag);
3565}
3566
3567/**
3568 * security_ipc_getsecid() - Get the sysv ipc object's secid
3569 * @ipcp: ipc permission structure
3570 * @secid: secid pointer
3571 *
3572 * Get the secid associated with the ipc object. In case of failure, @secid
3573 * will be set to zero.
3574 */
3575void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3576{
3577 *secid = 0;
3578 call_void_hook(ipc_getsecid, ipcp, secid);
3579}
3580
3581/**
3582 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3583 * @msg: message structure
3584 *
3585 * Allocate and attach a security structure to the msg->security field. The
3586 * security field is initialized to NULL when the structure is first created.
3587 *
3588 * Return: Return 0 if operation was successful and permission is granted.
3589 */
3590int security_msg_msg_alloc(struct msg_msg *msg)
3591{
3592 int rc = lsm_msg_msg_alloc(msg);
3593
3594 if (unlikely(rc))
3595 return rc;
3596 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
3597 if (unlikely(rc))
3598 security_msg_msg_free(msg);
3599 return rc;
3600}
3601
3602/**
3603 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3604 * @msg: message structure
3605 *
3606 * Deallocate the security structure for this message.
3607 */
3608void security_msg_msg_free(struct msg_msg *msg)
3609{
3610 call_void_hook(msg_msg_free_security, msg);
3611 kfree(msg->security);
3612 msg->security = NULL;
3613}
3614
3615/**
3616 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3617 * @msq: sysv ipc permission structure
3618 *
3619 * Allocate and attach a security structure to @msg. The security field is
3620 * initialized to NULL when the structure is first created.
3621 *
3622 * Return: Returns 0 if operation was successful and permission is granted.
3623 */
3624int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3625{
3626 int rc = lsm_ipc_alloc(msq);
3627
3628 if (unlikely(rc))
3629 return rc;
3630 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
3631 if (unlikely(rc))
3632 security_msg_queue_free(msq);
3633 return rc;
3634}
3635
3636/**
3637 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3638 * @msq: sysv ipc permission structure
3639 *
3640 * Deallocate security field @perm->security for the message queue.
3641 */
3642void security_msg_queue_free(struct kern_ipc_perm *msq)
3643{
3644 call_void_hook(msg_queue_free_security, msq);
3645 kfree(msq->security);
3646 msq->security = NULL;
3647}
3648
3649/**
3650 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3651 * @msq: sysv ipc permission structure
3652 * @msqflg: operation flags
3653 *
3654 * Check permission when a message queue is requested through the msgget system
3655 * call. This hook is only called when returning the message queue identifier
3656 * for an existing message queue, not when a new message queue is created.
3657 *
3658 * Return: Return 0 if permission is granted.
3659 */
3660int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3661{
3662 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
3663}
3664
3665/**
3666 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3667 * @msq: sysv ipc permission structure
3668 * @cmd: operation
3669 *
3670 * Check permission when a message control operation specified by @cmd is to be
3671 * performed on the message queue with permissions.
3672 *
3673 * Return: Returns 0 if permission is granted.
3674 */
3675int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3676{
3677 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
3678}
3679
3680/**
3681 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3682 * @msq: sysv ipc permission structure
3683 * @msg: message
3684 * @msqflg: operation flags
3685 *
3686 * Check permission before a message, @msg, is enqueued on the message queue
3687 * with permissions specified in @msq.
3688 *
3689 * Return: Returns 0 if permission is granted.
3690 */
3691int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3692 struct msg_msg *msg, int msqflg)
3693{
3694 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
3695}
3696
3697/**
3698 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3699 * @msq: sysv ipc permission structure
3700 * @msg: message
3701 * @target: target task
3702 * @type: type of message requested
3703 * @mode: operation flags
3704 *
3705 * Check permission before a message, @msg, is removed from the message queue.
3706 * The @target task structure contains a pointer to the process that will be
3707 * receiving the message (not equal to the current process when inline receives
3708 * are being performed).
3709 *
3710 * Return: Returns 0 if permission is granted.
3711 */
3712int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3713 struct task_struct *target, long type, int mode)
3714{
3715 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
3716}
3717
3718/**
3719 * security_shm_alloc() - Allocate a sysv shm LSM blob
3720 * @shp: sysv ipc permission structure
3721 *
3722 * Allocate and attach a security structure to the @shp security field. The
3723 * security field is initialized to NULL when the structure is first created.
3724 *
3725 * Return: Returns 0 if operation was successful and permission is granted.
3726 */
3727int security_shm_alloc(struct kern_ipc_perm *shp)
3728{
3729 int rc = lsm_ipc_alloc(shp);
3730
3731 if (unlikely(rc))
3732 return rc;
3733 rc = call_int_hook(shm_alloc_security, 0, shp);
3734 if (unlikely(rc))
3735 security_shm_free(shp);
3736 return rc;
3737}
3738
3739/**
3740 * security_shm_free() - Free a sysv shm LSM blob
3741 * @shp: sysv ipc permission structure
3742 *
3743 * Deallocate the security structure @perm->security for the memory segment.
3744 */
3745void security_shm_free(struct kern_ipc_perm *shp)
3746{
3747 call_void_hook(shm_free_security, shp);
3748 kfree(shp->security);
3749 shp->security = NULL;
3750}
3751
3752/**
3753 * security_shm_associate() - Check if a sysv shm operation is allowed
3754 * @shp: sysv ipc permission structure
3755 * @shmflg: operation flags
3756 *
3757 * Check permission when a shared memory region is requested through the shmget
3758 * system call. This hook is only called when returning the shared memory
3759 * region identifier for an existing region, not when a new shared memory
3760 * region is created.
3761 *
3762 * Return: Returns 0 if permission is granted.
3763 */
3764int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3765{
3766 return call_int_hook(shm_associate, 0, shp, shmflg);
3767}
3768
3769/**
3770 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3771 * @shp: sysv ipc permission structure
3772 * @cmd: operation
3773 *
3774 * Check permission when a shared memory control operation specified by @cmd is
3775 * to be performed on the shared memory region with permissions in @shp.
3776 *
3777 * Return: Return 0 if permission is granted.
3778 */
3779int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3780{
3781 return call_int_hook(shm_shmctl, 0, shp, cmd);
3782}
3783
3784/**
3785 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3786 * @shp: sysv ipc permission structure
3787 * @shmaddr: address of memory region to attach
3788 * @shmflg: operation flags
3789 *
3790 * Check permissions prior to allowing the shmat system call to attach the
3791 * shared memory segment with permissions @shp to the data segment of the
3792 * calling process. The attaching address is specified by @shmaddr.
3793 *
3794 * Return: Returns 0 if permission is granted.
3795 */
3796int security_shm_shmat(struct kern_ipc_perm *shp,
3797 char __user *shmaddr, int shmflg)
3798{
3799 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
3800}
3801
3802/**
3803 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3804 * @sma: sysv ipc permission structure
3805 *
3806 * Allocate and attach a security structure to the @sma security field. The
3807 * security field is initialized to NULL when the structure is first created.
3808 *
3809 * Return: Returns 0 if operation was successful and permission is granted.
3810 */
3811int security_sem_alloc(struct kern_ipc_perm *sma)
3812{
3813 int rc = lsm_ipc_alloc(sma);
3814
3815 if (unlikely(rc))
3816 return rc;
3817 rc = call_int_hook(sem_alloc_security, 0, sma);
3818 if (unlikely(rc))
3819 security_sem_free(sma);
3820 return rc;
3821}
3822
3823/**
3824 * security_sem_free() - Free a sysv semaphore LSM blob
3825 * @sma: sysv ipc permission structure
3826 *
3827 * Deallocate security structure @sma->security for the semaphore.
3828 */
3829void security_sem_free(struct kern_ipc_perm *sma)
3830{
3831 call_void_hook(sem_free_security, sma);
3832 kfree(sma->security);
3833 sma->security = NULL;
3834}
3835
3836/**
3837 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3838 * @sma: sysv ipc permission structure
3839 * @semflg: operation flags
3840 *
3841 * Check permission when a semaphore is requested through the semget system
3842 * call. This hook is only called when returning the semaphore identifier for
3843 * an existing semaphore, not when a new one must be created.
3844 *
3845 * Return: Returns 0 if permission is granted.
3846 */
3847int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3848{
3849 return call_int_hook(sem_associate, 0, sma, semflg);
3850}
3851
3852/**
3853 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3854 * @sma: sysv ipc permission structure
3855 * @cmd: operation
3856 *
3857 * Check permission when a semaphore operation specified by @cmd is to be
3858 * performed on the semaphore.
3859 *
3860 * Return: Returns 0 if permission is granted.
3861 */
3862int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3863{
3864 return call_int_hook(sem_semctl, 0, sma, cmd);
3865}
3866
3867/**
3868 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3869 * @sma: sysv ipc permission structure
3870 * @sops: operations to perform
3871 * @nsops: number of operations
3872 * @alter: flag indicating changes will be made
3873 *
3874 * Check permissions before performing operations on members of the semaphore
3875 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3876 *
3877 * Return: Returns 0 if permission is granted.
3878 */
3879int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3880 unsigned nsops, int alter)
3881{
3882 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
3883}
3884
3885/**
3886 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3887 * @dentry: dentry
3888 * @inode: inode
3889 *
3890 * Fill in @inode security information for a @dentry if allowed.
3891 */
3892void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3893{
3894 if (unlikely(inode && IS_PRIVATE(inode)))
3895 return;
3896 call_void_hook(d_instantiate, dentry, inode);
3897}
3898EXPORT_SYMBOL(security_d_instantiate);
3899
3900/*
3901 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3902 */
3903
3904/**
3905 * security_getselfattr - Read an LSM attribute of the current process.
3906 * @attr: which attribute to return
3907 * @uctx: the user-space destination for the information, or NULL
3908 * @size: pointer to the size of space available to receive the data
3909 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3910 * attributes associated with the LSM identified in the passed @ctx be
3911 * reported.
3912 *
3913 * A NULL value for @uctx can be used to get both the number of attributes
3914 * and the size of the data.
3915 *
3916 * Returns the number of attributes found on success, negative value
3917 * on error. @size is reset to the total size of the data.
3918 * If @size is insufficient to contain the data -E2BIG is returned.
3919 */
3920int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3921 size_t __user *size, u32 flags)
3922{
3923 struct security_hook_list *hp;
3924 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3925 u8 __user *base = (u8 __user *)uctx;
3926 size_t total = 0;
3927 size_t entrysize;
3928 size_t left;
3929 bool toobig = false;
3930 bool single = false;
3931 int count = 0;
3932 int rc;
3933
3934 if (attr == LSM_ATTR_UNDEF)
3935 return -EINVAL;
3936 if (size == NULL)
3937 return -EINVAL;
3938 if (get_user(left, size))
3939 return -EFAULT;
3940
3941 if (flags) {
3942 /*
3943 * Only flag supported is LSM_FLAG_SINGLE
3944 */
3945 if (flags != LSM_FLAG_SINGLE || !uctx)
3946 return -EINVAL;
3947 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3948 return -EFAULT;
3949 /*
3950 * If the LSM ID isn't specified it is an error.
3951 */
3952 if (lctx.id == LSM_ID_UNDEF)
3953 return -EINVAL;
3954 single = true;
3955 }
3956
3957 /*
3958 * In the usual case gather all the data from the LSMs.
3959 * In the single case only get the data from the LSM specified.
3960 */
3961 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3962 if (single && lctx.id != hp->lsmid->id)
3963 continue;
3964 entrysize = left;
3965 if (base)
3966 uctx = (struct lsm_ctx __user *)(base + total);
3967 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3968 if (rc == -EOPNOTSUPP) {
3969 rc = 0;
3970 continue;
3971 }
3972 if (rc == -E2BIG) {
3973 rc = 0;
3974 left = 0;
3975 toobig = true;
3976 } else if (rc < 0)
3977 return rc;
3978 else
3979 left -= entrysize;
3980
3981 total += entrysize;
3982 count += rc;
3983 if (single)
3984 break;
3985 }
3986 if (put_user(total, size))
3987 return -EFAULT;
3988 if (toobig)
3989 return -E2BIG;
3990 if (count == 0)
3991 return LSM_RET_DEFAULT(getselfattr);
3992 return count;
3993}
3994
3995/*
3996 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3997 */
3998
3999/**
4000 * security_setselfattr - Set an LSM attribute on the current process.
4001 * @attr: which attribute to set
4002 * @uctx: the user-space source for the information
4003 * @size: the size of the data
4004 * @flags: reserved for future use, must be 0
4005 *
4006 * Set an LSM attribute for the current process. The LSM, attribute
4007 * and new value are included in @uctx.
4008 *
4009 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4010 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4011 * LSM specific failure.
4012 */
4013int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4014 size_t size, u32 flags)
4015{
4016 struct security_hook_list *hp;
4017 struct lsm_ctx *lctx;
4018 int rc = LSM_RET_DEFAULT(setselfattr);
4019 u64 required_len;
4020
4021 if (flags)
4022 return -EINVAL;
4023 if (size < sizeof(*lctx))
4024 return -EINVAL;
4025 if (size > PAGE_SIZE)
4026 return -E2BIG;
4027
4028 lctx = memdup_user(uctx, size);
4029 if (IS_ERR(lctx))
4030 return PTR_ERR(lctx);
4031
4032 if (size < lctx->len ||
4033 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4034 lctx->len < required_len) {
4035 rc = -EINVAL;
4036 goto free_out;
4037 }
4038
4039 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4040 if ((hp->lsmid->id) == lctx->id) {
4041 rc = hp->hook.setselfattr(attr, lctx, size, flags);
4042 break;
4043 }
4044
4045free_out:
4046 kfree(lctx);
4047 return rc;
4048}
4049
4050/**
4051 * security_getprocattr() - Read an attribute for a task
4052 * @p: the task
4053 * @lsmid: LSM identification
4054 * @name: attribute name
4055 * @value: attribute value
4056 *
4057 * Read attribute @name for task @p and store it into @value if allowed.
4058 *
4059 * Return: Returns the length of @value on success, a negative value otherwise.
4060 */
4061int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4062 char **value)
4063{
4064 struct security_hook_list *hp;
4065
4066 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4067 if (lsmid != 0 && lsmid != hp->lsmid->id)
4068 continue;
4069 return hp->hook.getprocattr(p, name, value);
4070 }
4071 return LSM_RET_DEFAULT(getprocattr);
4072}
4073
4074/**
4075 * security_setprocattr() - Set an attribute for a task
4076 * @lsmid: LSM identification
4077 * @name: attribute name
4078 * @value: attribute value
4079 * @size: attribute value size
4080 *
4081 * Write (set) the current task's attribute @name to @value, size @size if
4082 * allowed.
4083 *
4084 * Return: Returns bytes written on success, a negative value otherwise.
4085 */
4086int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4087{
4088 struct security_hook_list *hp;
4089
4090 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4091 if (lsmid != 0 && lsmid != hp->lsmid->id)
4092 continue;
4093 return hp->hook.setprocattr(name, value, size);
4094 }
4095 return LSM_RET_DEFAULT(setprocattr);
4096}
4097
4098/**
4099 * security_netlink_send() - Save info and check if netlink sending is allowed
4100 * @sk: sending socket
4101 * @skb: netlink message
4102 *
4103 * Save security information for a netlink message so that permission checking
4104 * can be performed when the message is processed. The security information
4105 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4106 * Also may be used to provide fine grained control over message transmission.
4107 *
4108 * Return: Returns 0 if the information was successfully saved and message is
4109 * allowed to be transmitted.
4110 */
4111int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4112{
4113 return call_int_hook(netlink_send, 0, sk, skb);
4114}
4115
4116/**
4117 * security_ismaclabel() - Check is the named attribute is a MAC label
4118 * @name: full extended attribute name
4119 *
4120 * Check if the extended attribute specified by @name represents a MAC label.
4121 *
4122 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4123 */
4124int security_ismaclabel(const char *name)
4125{
4126 return call_int_hook(ismaclabel, 0, name);
4127}
4128EXPORT_SYMBOL(security_ismaclabel);
4129
4130/**
4131 * security_secid_to_secctx() - Convert a secid to a secctx
4132 * @secid: secid
4133 * @secdata: secctx
4134 * @seclen: secctx length
4135 *
4136 * Convert secid to security context. If @secdata is NULL the length of the
4137 * result will be returned in @seclen, but no @secdata will be returned. This
4138 * does mean that the length could change between calls to check the length and
4139 * the next call which actually allocates and returns the @secdata.
4140 *
4141 * Return: Return 0 on success, error on failure.
4142 */
4143int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4144{
4145 struct security_hook_list *hp;
4146 int rc;
4147
4148 /*
4149 * Currently, only one LSM can implement secid_to_secctx (i.e this
4150 * LSM hook is not "stackable").
4151 */
4152 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
4153 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
4154 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
4155 return rc;
4156 }
4157
4158 return LSM_RET_DEFAULT(secid_to_secctx);
4159}
4160EXPORT_SYMBOL(security_secid_to_secctx);
4161
4162/**
4163 * security_secctx_to_secid() - Convert a secctx to a secid
4164 * @secdata: secctx
4165 * @seclen: length of secctx
4166 * @secid: secid
4167 *
4168 * Convert security context to secid.
4169 *
4170 * Return: Returns 0 on success, error on failure.
4171 */
4172int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4173{
4174 *secid = 0;
4175 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
4176}
4177EXPORT_SYMBOL(security_secctx_to_secid);
4178
4179/**
4180 * security_release_secctx() - Free a secctx buffer
4181 * @secdata: secctx
4182 * @seclen: length of secctx
4183 *
4184 * Release the security context.
4185 */
4186void security_release_secctx(char *secdata, u32 seclen)
4187{
4188 call_void_hook(release_secctx, secdata, seclen);
4189}
4190EXPORT_SYMBOL(security_release_secctx);
4191
4192/**
4193 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4194 * @inode: inode
4195 *
4196 * Notify the security module that it must revalidate the security context of
4197 * an inode.
4198 */
4199void security_inode_invalidate_secctx(struct inode *inode)
4200{
4201 call_void_hook(inode_invalidate_secctx, inode);
4202}
4203EXPORT_SYMBOL(security_inode_invalidate_secctx);
4204
4205/**
4206 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4207 * @inode: inode
4208 * @ctx: secctx
4209 * @ctxlen: length of secctx
4210 *
4211 * Notify the security module of what the security context of an inode should
4212 * be. Initializes the incore security context managed by the security module
4213 * for this inode. Example usage: NFS client invokes this hook to initialize
4214 * the security context in its incore inode to the value provided by the server
4215 * for the file when the server returned the file's attributes to the client.
4216 * Must be called with inode->i_mutex locked.
4217 *
4218 * Return: Returns 0 on success, error on failure.
4219 */
4220int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4221{
4222 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
4223}
4224EXPORT_SYMBOL(security_inode_notifysecctx);
4225
4226/**
4227 * security_inode_setsecctx() - Change the security label of an inode
4228 * @dentry: inode
4229 * @ctx: secctx
4230 * @ctxlen: length of secctx
4231 *
4232 * Change the security context of an inode. Updates the incore security
4233 * context managed by the security module and invokes the fs code as needed
4234 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4235 * context. Example usage: NFS server invokes this hook to change the security
4236 * context in its incore inode and on the backing filesystem to a value
4237 * provided by the client on a SETATTR operation. Must be called with
4238 * inode->i_mutex locked.
4239 *
4240 * Return: Returns 0 on success, error on failure.
4241 */
4242int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4243{
4244 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
4245}
4246EXPORT_SYMBOL(security_inode_setsecctx);
4247
4248/**
4249 * security_inode_getsecctx() - Get the security label of an inode
4250 * @inode: inode
4251 * @ctx: secctx
4252 * @ctxlen: length of secctx
4253 *
4254 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4255 * context for the given @inode.
4256 *
4257 * Return: Returns 0 on success, error on failure.
4258 */
4259int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4260{
4261 struct security_hook_list *hp;
4262 int rc;
4263
4264 /*
4265 * Only one module will provide a security context.
4266 */
4267 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
4268 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
4269 if (rc != LSM_RET_DEFAULT(inode_getsecctx))
4270 return rc;
4271 }
4272
4273 return LSM_RET_DEFAULT(inode_getsecctx);
4274}
4275EXPORT_SYMBOL(security_inode_getsecctx);
4276
4277#ifdef CONFIG_WATCH_QUEUE
4278/**
4279 * security_post_notification() - Check if a watch notification can be posted
4280 * @w_cred: credentials of the task that set the watch
4281 * @cred: credentials of the task which triggered the watch
4282 * @n: the notification
4283 *
4284 * Check to see if a watch notification can be posted to a particular queue.
4285 *
4286 * Return: Returns 0 if permission is granted.
4287 */
4288int security_post_notification(const struct cred *w_cred,
4289 const struct cred *cred,
4290 struct watch_notification *n)
4291{
4292 return call_int_hook(post_notification, 0, w_cred, cred, n);
4293}
4294#endif /* CONFIG_WATCH_QUEUE */
4295
4296#ifdef CONFIG_KEY_NOTIFICATIONS
4297/**
4298 * security_watch_key() - Check if a task is allowed to watch for key events
4299 * @key: the key to watch
4300 *
4301 * Check to see if a process is allowed to watch for event notifications from
4302 * a key or keyring.
4303 *
4304 * Return: Returns 0 if permission is granted.
4305 */
4306int security_watch_key(struct key *key)
4307{
4308 return call_int_hook(watch_key, 0, key);
4309}
4310#endif /* CONFIG_KEY_NOTIFICATIONS */
4311
4312#ifdef CONFIG_SECURITY_NETWORK
4313/**
4314 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4315 * @sock: originating sock
4316 * @other: peer sock
4317 * @newsk: new sock
4318 *
4319 * Check permissions before establishing a Unix domain stream connection
4320 * between @sock and @other.
4321 *
4322 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4323 * Linux provides an alternative to the conventional file name space for Unix
4324 * domain sockets. Whereas binding and connecting to sockets in the file name
4325 * space is mediated by the typical file permissions (and caught by the mknod
4326 * and permission hooks in inode_security_ops), binding and connecting to
4327 * sockets in the abstract name space is completely unmediated. Sufficient
4328 * control of Unix domain sockets in the abstract name space isn't possible
4329 * using only the socket layer hooks, since we need to know the actual target
4330 * socket, which is not looked up until we are inside the af_unix code.
4331 *
4332 * Return: Returns 0 if permission is granted.
4333 */
4334int security_unix_stream_connect(struct sock *sock, struct sock *other,
4335 struct sock *newsk)
4336{
4337 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
4338}
4339EXPORT_SYMBOL(security_unix_stream_connect);
4340
4341/**
4342 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4343 * @sock: originating sock
4344 * @other: peer sock
4345 *
4346 * Check permissions before connecting or sending datagrams from @sock to
4347 * @other.
4348 *
4349 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4350 * Linux provides an alternative to the conventional file name space for Unix
4351 * domain sockets. Whereas binding and connecting to sockets in the file name
4352 * space is mediated by the typical file permissions (and caught by the mknod
4353 * and permission hooks in inode_security_ops), binding and connecting to
4354 * sockets in the abstract name space is completely unmediated. Sufficient
4355 * control of Unix domain sockets in the abstract name space isn't possible
4356 * using only the socket layer hooks, since we need to know the actual target
4357 * socket, which is not looked up until we are inside the af_unix code.
4358 *
4359 * Return: Returns 0 if permission is granted.
4360 */
4361int security_unix_may_send(struct socket *sock, struct socket *other)
4362{
4363 return call_int_hook(unix_may_send, 0, sock, other);
4364}
4365EXPORT_SYMBOL(security_unix_may_send);
4366
4367/**
4368 * security_socket_create() - Check if creating a new socket is allowed
4369 * @family: protocol family
4370 * @type: communications type
4371 * @protocol: requested protocol
4372 * @kern: set to 1 if a kernel socket is requested
4373 *
4374 * Check permissions prior to creating a new socket.
4375 *
4376 * Return: Returns 0 if permission is granted.
4377 */
4378int security_socket_create(int family, int type, int protocol, int kern)
4379{
4380 return call_int_hook(socket_create, 0, family, type, protocol, kern);
4381}
4382
4383/**
4384 * security_socket_post_create() - Initialize a newly created socket
4385 * @sock: socket
4386 * @family: protocol family
4387 * @type: communications type
4388 * @protocol: requested protocol
4389 * @kern: set to 1 if a kernel socket is requested
4390 *
4391 * This hook allows a module to update or allocate a per-socket security
4392 * structure. Note that the security field was not added directly to the socket
4393 * structure, but rather, the socket security information is stored in the
4394 * associated inode. Typically, the inode alloc_security hook will allocate
4395 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4396 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4397 * information that wasn't available when the inode was allocated.
4398 *
4399 * Return: Returns 0 if permission is granted.
4400 */
4401int security_socket_post_create(struct socket *sock, int family,
4402 int type, int protocol, int kern)
4403{
4404 return call_int_hook(socket_post_create, 0, sock, family, type,
4405 protocol, kern);
4406}
4407
4408/**
4409 * security_socket_socketpair() - Check if creating a socketpair is allowed
4410 * @socka: first socket
4411 * @sockb: second socket
4412 *
4413 * Check permissions before creating a fresh pair of sockets.
4414 *
4415 * Return: Returns 0 if permission is granted and the connection was
4416 * established.
4417 */
4418int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4419{
4420 return call_int_hook(socket_socketpair, 0, socka, sockb);
4421}
4422EXPORT_SYMBOL(security_socket_socketpair);
4423
4424/**
4425 * security_socket_bind() - Check if a socket bind operation is allowed
4426 * @sock: socket
4427 * @address: requested bind address
4428 * @addrlen: length of address
4429 *
4430 * Check permission before socket protocol layer bind operation is performed
4431 * and the socket @sock is bound to the address specified in the @address
4432 * parameter.
4433 *
4434 * Return: Returns 0 if permission is granted.
4435 */
4436int security_socket_bind(struct socket *sock,
4437 struct sockaddr *address, int addrlen)
4438{
4439 return call_int_hook(socket_bind, 0, sock, address, addrlen);
4440}
4441
4442/**
4443 * security_socket_connect() - Check if a socket connect operation is allowed
4444 * @sock: socket
4445 * @address: address of remote connection point
4446 * @addrlen: length of address
4447 *
4448 * Check permission before socket protocol layer connect operation attempts to
4449 * connect socket @sock to a remote address, @address.
4450 *
4451 * Return: Returns 0 if permission is granted.
4452 */
4453int security_socket_connect(struct socket *sock,
4454 struct sockaddr *address, int addrlen)
4455{
4456 return call_int_hook(socket_connect, 0, sock, address, addrlen);
4457}
4458
4459/**
4460 * security_socket_listen() - Check if a socket is allowed to listen
4461 * @sock: socket
4462 * @backlog: connection queue size
4463 *
4464 * Check permission before socket protocol layer listen operation.
4465 *
4466 * Return: Returns 0 if permission is granted.
4467 */
4468int security_socket_listen(struct socket *sock, int backlog)
4469{
4470 return call_int_hook(socket_listen, 0, sock, backlog);
4471}
4472
4473/**
4474 * security_socket_accept() - Check if a socket is allowed to accept connections
4475 * @sock: listening socket
4476 * @newsock: newly creation connection socket
4477 *
4478 * Check permission before accepting a new connection. Note that the new
4479 * socket, @newsock, has been created and some information copied to it, but
4480 * the accept operation has not actually been performed.
4481 *
4482 * Return: Returns 0 if permission is granted.
4483 */
4484int security_socket_accept(struct socket *sock, struct socket *newsock)
4485{
4486 return call_int_hook(socket_accept, 0, sock, newsock);
4487}
4488
4489/**
4490 * security_socket_sendmsg() - Check is sending a message is allowed
4491 * @sock: sending socket
4492 * @msg: message to send
4493 * @size: size of message
4494 *
4495 * Check permission before transmitting a message to another socket.
4496 *
4497 * Return: Returns 0 if permission is granted.
4498 */
4499int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4500{
4501 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
4502}
4503
4504/**
4505 * security_socket_recvmsg() - Check if receiving a message is allowed
4506 * @sock: receiving socket
4507 * @msg: message to receive
4508 * @size: size of message
4509 * @flags: operational flags
4510 *
4511 * Check permission before receiving a message from a socket.
4512 *
4513 * Return: Returns 0 if permission is granted.
4514 */
4515int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4516 int size, int flags)
4517{
4518 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
4519}
4520
4521/**
4522 * security_socket_getsockname() - Check if reading the socket addr is allowed
4523 * @sock: socket
4524 *
4525 * Check permission before reading the local address (name) of the socket
4526 * object.
4527 *
4528 * Return: Returns 0 if permission is granted.
4529 */
4530int security_socket_getsockname(struct socket *sock)
4531{
4532 return call_int_hook(socket_getsockname, 0, sock);
4533}
4534
4535/**
4536 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4537 * @sock: socket
4538 *
4539 * Check permission before the remote address (name) of a socket object.
4540 *
4541 * Return: Returns 0 if permission is granted.
4542 */
4543int security_socket_getpeername(struct socket *sock)
4544{
4545 return call_int_hook(socket_getpeername, 0, sock);
4546}
4547
4548/**
4549 * security_socket_getsockopt() - Check if reading a socket option is allowed
4550 * @sock: socket
4551 * @level: option's protocol level
4552 * @optname: option name
4553 *
4554 * Check permissions before retrieving the options associated with socket
4555 * @sock.
4556 *
4557 * Return: Returns 0 if permission is granted.
4558 */
4559int security_socket_getsockopt(struct socket *sock, int level, int optname)
4560{
4561 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
4562}
4563
4564/**
4565 * security_socket_setsockopt() - Check if setting a socket option is allowed
4566 * @sock: socket
4567 * @level: option's protocol level
4568 * @optname: option name
4569 *
4570 * Check permissions before setting the options associated with socket @sock.
4571 *
4572 * Return: Returns 0 if permission is granted.
4573 */
4574int security_socket_setsockopt(struct socket *sock, int level, int optname)
4575{
4576 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
4577}
4578
4579/**
4580 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4581 * @sock: socket
4582 * @how: flag indicating how sends and receives are handled
4583 *
4584 * Checks permission before all or part of a connection on the socket @sock is
4585 * shut down.
4586 *
4587 * Return: Returns 0 if permission is granted.
4588 */
4589int security_socket_shutdown(struct socket *sock, int how)
4590{
4591 return call_int_hook(socket_shutdown, 0, sock, how);
4592}
4593
4594/**
4595 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4596 * @sk: destination sock
4597 * @skb: incoming packet
4598 *
4599 * Check permissions on incoming network packets. This hook is distinct from
4600 * Netfilter's IP input hooks since it is the first time that the incoming
4601 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4602 * sleep inside this hook because some callers hold spinlocks.
4603 *
4604 * Return: Returns 0 if permission is granted.
4605 */
4606int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4607{
4608 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
4609}
4610EXPORT_SYMBOL(security_sock_rcv_skb);
4611
4612/**
4613 * security_socket_getpeersec_stream() - Get the remote peer label
4614 * @sock: socket
4615 * @optval: destination buffer
4616 * @optlen: size of peer label copied into the buffer
4617 * @len: maximum size of the destination buffer
4618 *
4619 * This hook allows the security module to provide peer socket security state
4620 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4621 * For tcp sockets this can be meaningful if the socket is associated with an
4622 * ipsec SA.
4623 *
4624 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4625 * values.
4626 */
4627int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4628 sockptr_t optlen, unsigned int len)
4629{
4630 struct security_hook_list *hp;
4631 int rc;
4632
4633 /*
4634 * Only one module will provide a security context.
4635 */
4636 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
4637 list) {
4638 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen,
4639 len);
4640 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream))
4641 return rc;
4642 }
4643 return LSM_RET_DEFAULT(socket_getpeersec_stream);
4644}
4645
4646/**
4647 * security_socket_getpeersec_dgram() - Get the remote peer label
4648 * @sock: socket
4649 * @skb: datagram packet
4650 * @secid: remote peer label secid
4651 *
4652 * This hook allows the security module to provide peer socket security state
4653 * for udp sockets on a per-packet basis to userspace via getsockopt
4654 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4655 * option via getsockopt. It can then retrieve the security state returned by
4656 * this hook for a packet via the SCM_SECURITY ancillary message type.
4657 *
4658 * Return: Returns 0 on success, error on failure.
4659 */
4660int security_socket_getpeersec_dgram(struct socket *sock,
4661 struct sk_buff *skb, u32 *secid)
4662{
4663 struct security_hook_list *hp;
4664 int rc;
4665
4666 /*
4667 * Only one module will provide a security context.
4668 */
4669 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram,
4670 list) {
4671 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid);
4672 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram))
4673 return rc;
4674 }
4675 return LSM_RET_DEFAULT(socket_getpeersec_dgram);
4676}
4677EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4678
4679/**
4680 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4681 * @sk: sock
4682 * @family: protocol family
4683 * @priority: gfp flags
4684 *
4685 * Allocate and attach a security structure to the sk->sk_security field, which
4686 * is used to copy security attributes between local stream sockets.
4687 *
4688 * Return: Returns 0 on success, error on failure.
4689 */
4690int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4691{
4692 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
4693}
4694
4695/**
4696 * security_sk_free() - Free the sock's LSM blob
4697 * @sk: sock
4698 *
4699 * Deallocate security structure.
4700 */
4701void security_sk_free(struct sock *sk)
4702{
4703 call_void_hook(sk_free_security, sk);
4704}
4705
4706/**
4707 * security_sk_clone() - Clone a sock's LSM state
4708 * @sk: original sock
4709 * @newsk: target sock
4710 *
4711 * Clone/copy security structure.
4712 */
4713void security_sk_clone(const struct sock *sk, struct sock *newsk)
4714{
4715 call_void_hook(sk_clone_security, sk, newsk);
4716}
4717EXPORT_SYMBOL(security_sk_clone);
4718
4719/**
4720 * security_sk_classify_flow() - Set a flow's secid based on socket
4721 * @sk: original socket
4722 * @flic: target flow
4723 *
4724 * Set the target flow's secid to socket's secid.
4725 */
4726void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4727{
4728 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4729}
4730EXPORT_SYMBOL(security_sk_classify_flow);
4731
4732/**
4733 * security_req_classify_flow() - Set a flow's secid based on request_sock
4734 * @req: request_sock
4735 * @flic: target flow
4736 *
4737 * Sets @flic's secid to @req's secid.
4738 */
4739void security_req_classify_flow(const struct request_sock *req,
4740 struct flowi_common *flic)
4741{
4742 call_void_hook(req_classify_flow, req, flic);
4743}
4744EXPORT_SYMBOL(security_req_classify_flow);
4745
4746/**
4747 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4748 * @sk: sock being grafted
4749 * @parent: target parent socket
4750 *
4751 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4752 * LSM state from @parent.
4753 */
4754void security_sock_graft(struct sock *sk, struct socket *parent)
4755{
4756 call_void_hook(sock_graft, sk, parent);
4757}
4758EXPORT_SYMBOL(security_sock_graft);
4759
4760/**
4761 * security_inet_conn_request() - Set request_sock state using incoming connect
4762 * @sk: parent listening sock
4763 * @skb: incoming connection
4764 * @req: new request_sock
4765 *
4766 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4767 *
4768 * Return: Returns 0 if permission is granted.
4769 */
4770int security_inet_conn_request(const struct sock *sk,
4771 struct sk_buff *skb, struct request_sock *req)
4772{
4773 return call_int_hook(inet_conn_request, 0, sk, skb, req);
4774}
4775EXPORT_SYMBOL(security_inet_conn_request);
4776
4777/**
4778 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4779 * @newsk: new sock
4780 * @req: connection request_sock
4781 *
4782 * Set that LSM state of @sock using the LSM state from @req.
4783 */
4784void security_inet_csk_clone(struct sock *newsk,
4785 const struct request_sock *req)
4786{
4787 call_void_hook(inet_csk_clone, newsk, req);
4788}
4789
4790/**
4791 * security_inet_conn_established() - Update sock's LSM state with connection
4792 * @sk: sock
4793 * @skb: connection packet
4794 *
4795 * Update @sock's LSM state to represent a new connection from @skb.
4796 */
4797void security_inet_conn_established(struct sock *sk,
4798 struct sk_buff *skb)
4799{
4800 call_void_hook(inet_conn_established, sk, skb);
4801}
4802EXPORT_SYMBOL(security_inet_conn_established);
4803
4804/**
4805 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4806 * @secid: new secmark value
4807 *
4808 * Check if the process should be allowed to relabel packets to @secid.
4809 *
4810 * Return: Returns 0 if permission is granted.
4811 */
4812int security_secmark_relabel_packet(u32 secid)
4813{
4814 return call_int_hook(secmark_relabel_packet, 0, secid);
4815}
4816EXPORT_SYMBOL(security_secmark_relabel_packet);
4817
4818/**
4819 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4820 *
4821 * Tells the LSM to increment the number of secmark labeling rules loaded.
4822 */
4823void security_secmark_refcount_inc(void)
4824{
4825 call_void_hook(secmark_refcount_inc);
4826}
4827EXPORT_SYMBOL(security_secmark_refcount_inc);
4828
4829/**
4830 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4831 *
4832 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4833 */
4834void security_secmark_refcount_dec(void)
4835{
4836 call_void_hook(secmark_refcount_dec);
4837}
4838EXPORT_SYMBOL(security_secmark_refcount_dec);
4839
4840/**
4841 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4842 * @security: pointer to the LSM blob
4843 *
4844 * This hook allows a module to allocate a security structure for a TUN device,
4845 * returning the pointer in @security.
4846 *
4847 * Return: Returns a zero on success, negative values on failure.
4848 */
4849int security_tun_dev_alloc_security(void **security)
4850{
4851 return call_int_hook(tun_dev_alloc_security, 0, security);
4852}
4853EXPORT_SYMBOL(security_tun_dev_alloc_security);
4854
4855/**
4856 * security_tun_dev_free_security() - Free a TUN device LSM blob
4857 * @security: LSM blob
4858 *
4859 * This hook allows a module to free the security structure for a TUN device.
4860 */
4861void security_tun_dev_free_security(void *security)
4862{
4863 call_void_hook(tun_dev_free_security, security);
4864}
4865EXPORT_SYMBOL(security_tun_dev_free_security);
4866
4867/**
4868 * security_tun_dev_create() - Check if creating a TUN device is allowed
4869 *
4870 * Check permissions prior to creating a new TUN device.
4871 *
4872 * Return: Returns 0 if permission is granted.
4873 */
4874int security_tun_dev_create(void)
4875{
4876 return call_int_hook(tun_dev_create, 0);
4877}
4878EXPORT_SYMBOL(security_tun_dev_create);
4879
4880/**
4881 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4882 * @security: TUN device LSM blob
4883 *
4884 * Check permissions prior to attaching to a TUN device queue.
4885 *
4886 * Return: Returns 0 if permission is granted.
4887 */
4888int security_tun_dev_attach_queue(void *security)
4889{
4890 return call_int_hook(tun_dev_attach_queue, 0, security);
4891}
4892EXPORT_SYMBOL(security_tun_dev_attach_queue);
4893
4894/**
4895 * security_tun_dev_attach() - Update TUN device LSM state on attach
4896 * @sk: associated sock
4897 * @security: TUN device LSM blob
4898 *
4899 * This hook can be used by the module to update any security state associated
4900 * with the TUN device's sock structure.
4901 *
4902 * Return: Returns 0 if permission is granted.
4903 */
4904int security_tun_dev_attach(struct sock *sk, void *security)
4905{
4906 return call_int_hook(tun_dev_attach, 0, sk, security);
4907}
4908EXPORT_SYMBOL(security_tun_dev_attach);
4909
4910/**
4911 * security_tun_dev_open() - Update TUN device LSM state on open
4912 * @security: TUN device LSM blob
4913 *
4914 * This hook can be used by the module to update any security state associated
4915 * with the TUN device's security structure.
4916 *
4917 * Return: Returns 0 if permission is granted.
4918 */
4919int security_tun_dev_open(void *security)
4920{
4921 return call_int_hook(tun_dev_open, 0, security);
4922}
4923EXPORT_SYMBOL(security_tun_dev_open);
4924
4925/**
4926 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4927 * @asoc: SCTP association
4928 * @skb: packet requesting the association
4929 *
4930 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4931 *
4932 * Return: Returns 0 on success, error on failure.
4933 */
4934int security_sctp_assoc_request(struct sctp_association *asoc,
4935 struct sk_buff *skb)
4936{
4937 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
4938}
4939EXPORT_SYMBOL(security_sctp_assoc_request);
4940
4941/**
4942 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4943 * @sk: socket
4944 * @optname: SCTP option to validate
4945 * @address: list of IP addresses to validate
4946 * @addrlen: length of the address list
4947 *
4948 * Validiate permissions required for each address associated with sock @sk.
4949 * Depending on @optname, the addresses will be treated as either a connect or
4950 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4951 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4952 *
4953 * Return: Returns 0 on success, error on failure.
4954 */
4955int security_sctp_bind_connect(struct sock *sk, int optname,
4956 struct sockaddr *address, int addrlen)
4957{
4958 return call_int_hook(sctp_bind_connect, 0, sk, optname,
4959 address, addrlen);
4960}
4961EXPORT_SYMBOL(security_sctp_bind_connect);
4962
4963/**
4964 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4965 * @asoc: SCTP association
4966 * @sk: original sock
4967 * @newsk: target sock
4968 *
4969 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4970 * socket) or when a socket is 'peeled off' e.g userspace calls
4971 * sctp_peeloff(3).
4972 */
4973void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4974 struct sock *newsk)
4975{
4976 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4977}
4978EXPORT_SYMBOL(security_sctp_sk_clone);
4979
4980/**
4981 * security_sctp_assoc_established() - Update LSM state when assoc established
4982 * @asoc: SCTP association
4983 * @skb: packet establishing the association
4984 *
4985 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4986 * security module.
4987 *
4988 * Return: Returns 0 if permission is granted.
4989 */
4990int security_sctp_assoc_established(struct sctp_association *asoc,
4991 struct sk_buff *skb)
4992{
4993 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
4994}
4995EXPORT_SYMBOL(security_sctp_assoc_established);
4996
4997/**
4998 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4999 * @sk: the owning MPTCP socket
5000 * @ssk: the new subflow
5001 *
5002 * Update the labeling for the given MPTCP subflow, to match the one of the
5003 * owning MPTCP socket. This hook has to be called after the socket creation and
5004 * initialization via the security_socket_create() and
5005 * security_socket_post_create() LSM hooks.
5006 *
5007 * Return: Returns 0 on success or a negative error code on failure.
5008 */
5009int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5010{
5011 return call_int_hook(mptcp_add_subflow, 0, sk, ssk);
5012}
5013
5014#endif /* CONFIG_SECURITY_NETWORK */
5015
5016#ifdef CONFIG_SECURITY_INFINIBAND
5017/**
5018 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5019 * @sec: LSM blob
5020 * @subnet_prefix: subnet prefix of the port
5021 * @pkey: IB pkey
5022 *
5023 * Check permission to access a pkey when modifying a QP.
5024 *
5025 * Return: Returns 0 if permission is granted.
5026 */
5027int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5028{
5029 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
5030}
5031EXPORT_SYMBOL(security_ib_pkey_access);
5032
5033/**
5034 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5035 * @sec: LSM blob
5036 * @dev_name: IB device name
5037 * @port_num: port number
5038 *
5039 * Check permissions to send and receive SMPs on a end port.
5040 *
5041 * Return: Returns 0 if permission is granted.
5042 */
5043int security_ib_endport_manage_subnet(void *sec,
5044 const char *dev_name, u8 port_num)
5045{
5046 return call_int_hook(ib_endport_manage_subnet, 0, sec,
5047 dev_name, port_num);
5048}
5049EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5050
5051/**
5052 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5053 * @sec: LSM blob
5054 *
5055 * Allocate a security structure for Infiniband objects.
5056 *
5057 * Return: Returns 0 on success, non-zero on failure.
5058 */
5059int security_ib_alloc_security(void **sec)
5060{
5061 return call_int_hook(ib_alloc_security, 0, sec);
5062}
5063EXPORT_SYMBOL(security_ib_alloc_security);
5064
5065/**
5066 * security_ib_free_security() - Free an Infiniband LSM blob
5067 * @sec: LSM blob
5068 *
5069 * Deallocate an Infiniband security structure.
5070 */
5071void security_ib_free_security(void *sec)
5072{
5073 call_void_hook(ib_free_security, sec);
5074}
5075EXPORT_SYMBOL(security_ib_free_security);
5076#endif /* CONFIG_SECURITY_INFINIBAND */
5077
5078#ifdef CONFIG_SECURITY_NETWORK_XFRM
5079/**
5080 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5081 * @ctxp: xfrm security context being added to the SPD
5082 * @sec_ctx: security label provided by userspace
5083 * @gfp: gfp flags
5084 *
5085 * Allocate a security structure to the xp->security field; the security field
5086 * is initialized to NULL when the xfrm_policy is allocated.
5087 *
5088 * Return: Return 0 if operation was successful.
5089 */
5090int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5091 struct xfrm_user_sec_ctx *sec_ctx,
5092 gfp_t gfp)
5093{
5094 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
5095}
5096EXPORT_SYMBOL(security_xfrm_policy_alloc);
5097
5098/**
5099 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5100 * @old_ctx: xfrm security context
5101 * @new_ctxp: target xfrm security context
5102 *
5103 * Allocate a security structure in new_ctxp that contains the information from
5104 * the old_ctx structure.
5105 *
5106 * Return: Return 0 if operation was successful.
5107 */
5108int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5109 struct xfrm_sec_ctx **new_ctxp)
5110{
5111 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
5112}
5113
5114/**
5115 * security_xfrm_policy_free() - Free a xfrm security context
5116 * @ctx: xfrm security context
5117 *
5118 * Free LSM resources associated with @ctx.
5119 */
5120void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5121{
5122 call_void_hook(xfrm_policy_free_security, ctx);
5123}
5124EXPORT_SYMBOL(security_xfrm_policy_free);
5125
5126/**
5127 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5128 * @ctx: xfrm security context
5129 *
5130 * Authorize deletion of a SPD entry.
5131 *
5132 * Return: Returns 0 if permission is granted.
5133 */
5134int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5135{
5136 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
5137}
5138
5139/**
5140 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5141 * @x: xfrm state being added to the SAD
5142 * @sec_ctx: security label provided by userspace
5143 *
5144 * Allocate a security structure to the @x->security field; the security field
5145 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5146 * correspond to @sec_ctx.
5147 *
5148 * Return: Return 0 if operation was successful.
5149 */
5150int security_xfrm_state_alloc(struct xfrm_state *x,
5151 struct xfrm_user_sec_ctx *sec_ctx)
5152{
5153 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
5154}
5155EXPORT_SYMBOL(security_xfrm_state_alloc);
5156
5157/**
5158 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5159 * @x: xfrm state being added to the SAD
5160 * @polsec: associated policy's security context
5161 * @secid: secid from the flow
5162 *
5163 * Allocate a security structure to the x->security field; the security field
5164 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5165 * correspond to secid.
5166 *
5167 * Return: Returns 0 if operation was successful.
5168 */
5169int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5170 struct xfrm_sec_ctx *polsec, u32 secid)
5171{
5172 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
5173}
5174
5175/**
5176 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5177 * @x: xfrm state
5178 *
5179 * Authorize deletion of x->security.
5180 *
5181 * Return: Returns 0 if permission is granted.
5182 */
5183int security_xfrm_state_delete(struct xfrm_state *x)
5184{
5185 return call_int_hook(xfrm_state_delete_security, 0, x);
5186}
5187EXPORT_SYMBOL(security_xfrm_state_delete);
5188
5189/**
5190 * security_xfrm_state_free() - Free a xfrm state
5191 * @x: xfrm state
5192 *
5193 * Deallocate x->security.
5194 */
5195void security_xfrm_state_free(struct xfrm_state *x)
5196{
5197 call_void_hook(xfrm_state_free_security, x);
5198}
5199
5200/**
5201 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5202 * @ctx: target xfrm security context
5203 * @fl_secid: flow secid used to authorize access
5204 *
5205 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5206 * packet. The hook is called when selecting either a per-socket policy or a
5207 * generic xfrm policy.
5208 *
5209 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5210 * other errors.
5211 */
5212int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5213{
5214 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
5215}
5216
5217/**
5218 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5219 * @x: xfrm state to match
5220 * @xp: xfrm policy to check for a match
5221 * @flic: flow to check for a match.
5222 *
5223 * Check @xp and @flic for a match with @x.
5224 *
5225 * Return: Returns 1 if there is a match.
5226 */
5227int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5228 struct xfrm_policy *xp,
5229 const struct flowi_common *flic)
5230{
5231 struct security_hook_list *hp;
5232 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5233
5234 /*
5235 * Since this function is expected to return 0 or 1, the judgment
5236 * becomes difficult if multiple LSMs supply this call. Fortunately,
5237 * we can use the first LSM's judgment because currently only SELinux
5238 * supplies this call.
5239 *
5240 * For speed optimization, we explicitly break the loop rather than
5241 * using the macro
5242 */
5243 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5244 list) {
5245 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5246 break;
5247 }
5248 return rc;
5249}
5250
5251/**
5252 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5253 * @skb: xfrm packet
5254 * @secid: secid
5255 *
5256 * Decode the packet in @skb and return the security label in @secid.
5257 *
5258 * Return: Return 0 if all xfrms used have the same secid.
5259 */
5260int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5261{
5262 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
5263}
5264
5265void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5266{
5267 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
5268 0);
5269
5270 BUG_ON(rc);
5271}
5272EXPORT_SYMBOL(security_skb_classify_flow);
5273#endif /* CONFIG_SECURITY_NETWORK_XFRM */
5274
5275#ifdef CONFIG_KEYS
5276/**
5277 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5278 * @key: key
5279 * @cred: credentials
5280 * @flags: allocation flags
5281 *
5282 * Permit allocation of a key and assign security data. Note that key does not
5283 * have a serial number assigned at this point.
5284 *
5285 * Return: Return 0 if permission is granted, -ve error otherwise.
5286 */
5287int security_key_alloc(struct key *key, const struct cred *cred,
5288 unsigned long flags)
5289{
5290 return call_int_hook(key_alloc, 0, key, cred, flags);
5291}
5292
5293/**
5294 * security_key_free() - Free a kernel key LSM blob
5295 * @key: key
5296 *
5297 * Notification of destruction; free security data.
5298 */
5299void security_key_free(struct key *key)
5300{
5301 call_void_hook(key_free, key);
5302}
5303
5304/**
5305 * security_key_permission() - Check if a kernel key operation is allowed
5306 * @key_ref: key reference
5307 * @cred: credentials of actor requesting access
5308 * @need_perm: requested permissions
5309 *
5310 * See whether a specific operational right is granted to a process on a key.
5311 *
5312 * Return: Return 0 if permission is granted, -ve error otherwise.
5313 */
5314int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5315 enum key_need_perm need_perm)
5316{
5317 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
5318}
5319
5320/**
5321 * security_key_getsecurity() - Get the key's security label
5322 * @key: key
5323 * @buffer: security label buffer
5324 *
5325 * Get a textual representation of the security context attached to a key for
5326 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5327 * storage for the NUL-terminated string and the caller should free it.
5328 *
5329 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5330 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5331 * there is no security label assigned to the key.
5332 */
5333int security_key_getsecurity(struct key *key, char **buffer)
5334{
5335 *buffer = NULL;
5336 return call_int_hook(key_getsecurity, 0, key, buffer);
5337}
5338#endif /* CONFIG_KEYS */
5339
5340#ifdef CONFIG_AUDIT
5341/**
5342 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5343 * @field: audit action
5344 * @op: rule operator
5345 * @rulestr: rule context
5346 * @lsmrule: receive buffer for audit rule struct
5347 *
5348 * Allocate and initialize an LSM audit rule structure.
5349 *
5350 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5351 * an invalid rule.
5352 */
5353int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
5354{
5355 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
5356}
5357
5358/**
5359 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5360 * @krule: audit rule
5361 *
5362 * Specifies whether given @krule contains any fields related to the current
5363 * LSM.
5364 *
5365 * Return: Returns 1 in case of relation found, 0 otherwise.
5366 */
5367int security_audit_rule_known(struct audit_krule *krule)
5368{
5369 return call_int_hook(audit_rule_known, 0, krule);
5370}
5371
5372/**
5373 * security_audit_rule_free() - Free an LSM audit rule struct
5374 * @lsmrule: audit rule struct
5375 *
5376 * Deallocate the LSM audit rule structure previously allocated by
5377 * audit_rule_init().
5378 */
5379void security_audit_rule_free(void *lsmrule)
5380{
5381 call_void_hook(audit_rule_free, lsmrule);
5382}
5383
5384/**
5385 * security_audit_rule_match() - Check if a label matches an audit rule
5386 * @secid: security label
5387 * @field: LSM audit field
5388 * @op: matching operator
5389 * @lsmrule: audit rule
5390 *
5391 * Determine if given @secid matches a rule previously approved by
5392 * security_audit_rule_known().
5393 *
5394 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5395 * failure.
5396 */
5397int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5398{
5399 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
5400}
5401#endif /* CONFIG_AUDIT */
5402
5403#ifdef CONFIG_BPF_SYSCALL
5404/**
5405 * security_bpf() - Check if the bpf syscall operation is allowed
5406 * @cmd: command
5407 * @attr: bpf attribute
5408 * @size: size
5409 *
5410 * Do a initial check for all bpf syscalls after the attribute is copied into
5411 * the kernel. The actual security module can implement their own rules to
5412 * check the specific cmd they need.
5413 *
5414 * Return: Returns 0 if permission is granted.
5415 */
5416int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5417{
5418 return call_int_hook(bpf, 0, cmd, attr, size);
5419}
5420
5421/**
5422 * security_bpf_map() - Check if access to a bpf map is allowed
5423 * @map: bpf map
5424 * @fmode: mode
5425 *
5426 * Do a check when the kernel generates and returns a file descriptor for eBPF
5427 * maps.
5428 *
5429 * Return: Returns 0 if permission is granted.
5430 */
5431int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5432{
5433 return call_int_hook(bpf_map, 0, map, fmode);
5434}
5435
5436/**
5437 * security_bpf_prog() - Check if access to a bpf program is allowed
5438 * @prog: bpf program
5439 *
5440 * Do a check when the kernel generates and returns a file descriptor for eBPF
5441 * programs.
5442 *
5443 * Return: Returns 0 if permission is granted.
5444 */
5445int security_bpf_prog(struct bpf_prog *prog)
5446{
5447 return call_int_hook(bpf_prog, 0, prog);
5448}
5449
5450/**
5451 * security_bpf_map_alloc() - Allocate a bpf map LSM blob
5452 * @map: bpf map
5453 *
5454 * Initialize the security field inside bpf map.
5455 *
5456 * Return: Returns 0 on success, error on failure.
5457 */
5458int security_bpf_map_alloc(struct bpf_map *map)
5459{
5460 return call_int_hook(bpf_map_alloc_security, 0, map);
5461}
5462
5463/**
5464 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob
5465 * @aux: bpf program aux info struct
5466 *
5467 * Initialize the security field inside bpf program.
5468 *
5469 * Return: Returns 0 on success, error on failure.
5470 */
5471int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
5472{
5473 return call_int_hook(bpf_prog_alloc_security, 0, aux);
5474}
5475
5476/**
5477 * security_bpf_map_free() - Free a bpf map's LSM blob
5478 * @map: bpf map
5479 *
5480 * Clean up the security information stored inside bpf map.
5481 */
5482void security_bpf_map_free(struct bpf_map *map)
5483{
5484 call_void_hook(bpf_map_free_security, map);
5485}
5486
5487/**
5488 * security_bpf_prog_free() - Free a bpf program's LSM blob
5489 * @aux: bpf program aux info struct
5490 *
5491 * Clean up the security information stored inside bpf prog.
5492 */
5493void security_bpf_prog_free(struct bpf_prog_aux *aux)
5494{
5495 call_void_hook(bpf_prog_free_security, aux);
5496}
5497#endif /* CONFIG_BPF_SYSCALL */
5498
5499/**
5500 * security_locked_down() - Check if a kernel feature is allowed
5501 * @what: requested kernel feature
5502 *
5503 * Determine whether a kernel feature that potentially enables arbitrary code
5504 * execution in kernel space should be permitted.
5505 *
5506 * Return: Returns 0 if permission is granted.
5507 */
5508int security_locked_down(enum lockdown_reason what)
5509{
5510 return call_int_hook(locked_down, 0, what);
5511}
5512EXPORT_SYMBOL(security_locked_down);
5513
5514#ifdef CONFIG_PERF_EVENTS
5515/**
5516 * security_perf_event_open() - Check if a perf event open is allowed
5517 * @attr: perf event attribute
5518 * @type: type of event
5519 *
5520 * Check whether the @type of perf_event_open syscall is allowed.
5521 *
5522 * Return: Returns 0 if permission is granted.
5523 */
5524int security_perf_event_open(struct perf_event_attr *attr, int type)
5525{
5526 return call_int_hook(perf_event_open, 0, attr, type);
5527}
5528
5529/**
5530 * security_perf_event_alloc() - Allocate a perf event LSM blob
5531 * @event: perf event
5532 *
5533 * Allocate and save perf_event security info.
5534 *
5535 * Return: Returns 0 on success, error on failure.
5536 */
5537int security_perf_event_alloc(struct perf_event *event)
5538{
5539 return call_int_hook(perf_event_alloc, 0, event);
5540}
5541
5542/**
5543 * security_perf_event_free() - Free a perf event LSM blob
5544 * @event: perf event
5545 *
5546 * Release (free) perf_event security info.
5547 */
5548void security_perf_event_free(struct perf_event *event)
5549{
5550 call_void_hook(perf_event_free, event);
5551}
5552
5553/**
5554 * security_perf_event_read() - Check if reading a perf event label is allowed
5555 * @event: perf event
5556 *
5557 * Read perf_event security info if allowed.
5558 *
5559 * Return: Returns 0 if permission is granted.
5560 */
5561int security_perf_event_read(struct perf_event *event)
5562{
5563 return call_int_hook(perf_event_read, 0, event);
5564}
5565
5566/**
5567 * security_perf_event_write() - Check if writing a perf event label is allowed
5568 * @event: perf event
5569 *
5570 * Write perf_event security info if allowed.
5571 *
5572 * Return: Returns 0 if permission is granted.
5573 */
5574int security_perf_event_write(struct perf_event *event)
5575{
5576 return call_int_hook(perf_event_write, 0, event);
5577}
5578#endif /* CONFIG_PERF_EVENTS */
5579
5580#ifdef CONFIG_IO_URING
5581/**
5582 * security_uring_override_creds() - Check if overriding creds is allowed
5583 * @new: new credentials
5584 *
5585 * Check if the current task, executing an io_uring operation, is allowed to
5586 * override it's credentials with @new.
5587 *
5588 * Return: Returns 0 if permission is granted.
5589 */
5590int security_uring_override_creds(const struct cred *new)
5591{
5592 return call_int_hook(uring_override_creds, 0, new);
5593}
5594
5595/**
5596 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5597 *
5598 * Check whether the current task is allowed to spawn a io_uring polling thread
5599 * (IORING_SETUP_SQPOLL).
5600 *
5601 * Return: Returns 0 if permission is granted.
5602 */
5603int security_uring_sqpoll(void)
5604{
5605 return call_int_hook(uring_sqpoll, 0);
5606}
5607
5608/**
5609 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5610 * @ioucmd: command
5611 *
5612 * Check whether the file_operations uring_cmd is allowed to run.
5613 *
5614 * Return: Returns 0 if permission is granted.
5615 */
5616int security_uring_cmd(struct io_uring_cmd *ioucmd)
5617{
5618 return call_int_hook(uring_cmd, 0, ioucmd);
5619}
5620#endif /* CONFIG_IO_URING */