Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
 
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
 
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69#include <net/nexthop.h>
 
 
  70
  71struct ipmr_rule {
  72	struct fib_rule		common;
  73};
  74
  75struct ipmr_result {
  76	struct mr_table		*mrt;
  77};
  78
  79/* Big lock, protecting vif table, mrt cache and mroute socket state.
  80 * Note that the changes are semaphored via rtnl_lock.
  81 */
  82
  83static DEFINE_RWLOCK(mrt_lock);
 
 
 
 
 
  84
  85/* Multicast router control variables */
  86
  87/* Special spinlock for queue of unresolved entries */
  88static DEFINE_SPINLOCK(mfc_unres_lock);
  89
  90/* We return to original Alan's scheme. Hash table of resolved
  91 * entries is changed only in process context and protected
  92 * with weak lock mrt_lock. Queue of unresolved entries is protected
  93 * with strong spinlock mfc_unres_lock.
  94 *
  95 * In this case data path is free of exclusive locks at all.
  96 */
  97
  98static struct kmem_cache *mrt_cachep __read_mostly;
  99
 100static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 101static void ipmr_free_table(struct mr_table *mrt);
 102
 103static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 104			  struct sk_buff *skb, struct mfc_cache *cache,
 105			  int local);
 106static int ipmr_cache_report(struct mr_table *mrt,
 107			     struct sk_buff *pkt, vifi_t vifi, int assert);
 108static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 109			      struct mfc_cache *c, struct rtmsg *rtm);
 110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 111				 int cmd);
 112static void mroute_clean_tables(struct mr_table *mrt, bool all);
 113static void ipmr_expire_process(unsigned long arg);
 
 114
 115#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 116#define ipmr_for_each_table(mrt, net) \
 117	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118
 119static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 120{
 121	struct mr_table *mrt;
 122
 123	ipmr_for_each_table(mrt, net) {
 124		if (mrt->id == id)
 125			return mrt;
 126	}
 127	return NULL;
 128}
 129
 130static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 131			   struct mr_table **mrt)
 132{
 133	int err;
 134	struct ipmr_result res;
 135	struct fib_lookup_arg arg = {
 136		.result = &res,
 137		.flags = FIB_LOOKUP_NOREF,
 138	};
 139
 
 
 
 140	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 141			       flowi4_to_flowi(flp4), 0, &arg);
 142	if (err < 0)
 143		return err;
 144	*mrt = res.mrt;
 145	return 0;
 146}
 147
 148static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 149			    int flags, struct fib_lookup_arg *arg)
 150{
 151	struct ipmr_result *res = arg->result;
 152	struct mr_table *mrt;
 153
 154	switch (rule->action) {
 155	case FR_ACT_TO_TBL:
 156		break;
 157	case FR_ACT_UNREACHABLE:
 158		return -ENETUNREACH;
 159	case FR_ACT_PROHIBIT:
 160		return -EACCES;
 161	case FR_ACT_BLACKHOLE:
 162	default:
 163		return -EINVAL;
 164	}
 165
 166	mrt = ipmr_get_table(rule->fr_net, rule->table);
 
 
 167	if (!mrt)
 168		return -EAGAIN;
 169	res->mrt = mrt;
 170	return 0;
 171}
 172
 173static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 174{
 175	return 1;
 176}
 177
 178static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 179	FRA_GENERIC_POLICY,
 180};
 181
 182static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 183			       struct fib_rule_hdr *frh, struct nlattr **tb)
 
 184{
 185	return 0;
 186}
 187
 188static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 189			     struct nlattr **tb)
 190{
 191	return 1;
 192}
 193
 194static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 195			  struct fib_rule_hdr *frh)
 196{
 197	frh->dst_len = 0;
 198	frh->src_len = 0;
 199	frh->tos     = 0;
 200	return 0;
 201}
 202
 203static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 204	.family		= RTNL_FAMILY_IPMR,
 205	.rule_size	= sizeof(struct ipmr_rule),
 206	.addr_size	= sizeof(u32),
 207	.action		= ipmr_rule_action,
 208	.match		= ipmr_rule_match,
 209	.configure	= ipmr_rule_configure,
 210	.compare	= ipmr_rule_compare,
 211	.fill		= ipmr_rule_fill,
 212	.nlgroup	= RTNLGRP_IPV4_RULE,
 213	.policy		= ipmr_rule_policy,
 214	.owner		= THIS_MODULE,
 215};
 216
 217static int __net_init ipmr_rules_init(struct net *net)
 218{
 219	struct fib_rules_ops *ops;
 220	struct mr_table *mrt;
 221	int err;
 222
 223	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 224	if (IS_ERR(ops))
 225		return PTR_ERR(ops);
 226
 227	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 228
 229	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 230	if (IS_ERR(mrt)) {
 231		err = PTR_ERR(mrt);
 232		goto err1;
 233	}
 234
 235	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 236	if (err < 0)
 237		goto err2;
 238
 239	net->ipv4.mr_rules_ops = ops;
 240	return 0;
 241
 242err2:
 
 243	ipmr_free_table(mrt);
 
 244err1:
 245	fib_rules_unregister(ops);
 246	return err;
 247}
 248
 249static void __net_exit ipmr_rules_exit(struct net *net)
 250{
 251	struct mr_table *mrt, *next;
 252
 253	rtnl_lock();
 254	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 255		list_del(&mrt->list);
 256		ipmr_free_table(mrt);
 257	}
 258	fib_rules_unregister(net->ipv4.mr_rules_ops);
 259	rtnl_unlock();
 260}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261#else
 262#define ipmr_for_each_table(mrt, net) \
 263	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 264
 
 
 
 
 
 
 
 
 265static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 266{
 267	return net->ipv4.mrt;
 268}
 269
 270static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 271			   struct mr_table **mrt)
 272{
 273	*mrt = net->ipv4.mrt;
 274	return 0;
 275}
 276
 277static int __net_init ipmr_rules_init(struct net *net)
 278{
 279	struct mr_table *mrt;
 280
 281	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 282	if (IS_ERR(mrt))
 283		return PTR_ERR(mrt);
 284	net->ipv4.mrt = mrt;
 285	return 0;
 286}
 287
 288static void __net_exit ipmr_rules_exit(struct net *net)
 289{
 290	rtnl_lock();
 291	ipmr_free_table(net->ipv4.mrt);
 292	net->ipv4.mrt = NULL;
 293	rtnl_unlock();
 294}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295#endif
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 298{
 299	struct mr_table *mrt;
 300	unsigned int i;
 301
 302	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 303	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 304		return ERR_PTR(-EINVAL);
 305
 306	mrt = ipmr_get_table(net, id);
 307	if (mrt)
 308		return mrt;
 309
 310	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 311	if (!mrt)
 312		return ERR_PTR(-ENOMEM);
 313	write_pnet(&mrt->net, net);
 314	mrt->id = id;
 315
 316	/* Forwarding cache */
 317	for (i = 0; i < MFC_LINES; i++)
 318		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 319
 320	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 321
 322	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 323		    (unsigned long)mrt);
 324
 325	mrt->mroute_reg_vif_num = -1;
 326#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 327	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 328#endif
 329	return mrt;
 330}
 331
 332static void ipmr_free_table(struct mr_table *mrt)
 333{
 334	del_timer_sync(&mrt->ipmr_expire_timer);
 335	mroute_clean_tables(mrt, true);
 
 
 336	kfree(mrt);
 337}
 338
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343	struct net *net = dev_net(dev);
 344
 345	dev_close(dev);
 346
 347	dev = __dev_get_by_name(net, "tunl0");
 348	if (dev) {
 349		const struct net_device_ops *ops = dev->netdev_ops;
 350		struct ifreq ifr;
 351		struct ip_tunnel_parm p;
 352
 353		memset(&p, 0, sizeof(p));
 354		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356		p.iph.version = 4;
 357		p.iph.ihl = 5;
 358		p.iph.protocol = IPPROTO_IPIP;
 359		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362		if (ops->ndo_do_ioctl) {
 363			mm_segment_t oldfs = get_fs();
 364
 365			set_fs(KERNEL_DS);
 366			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367			set_fs(oldfs);
 368		}
 369	}
 370}
 371
 372/* Initialize ipmr pimreg/tunnel in_device */
 373static bool ipmr_init_vif_indev(const struct net_device *dev)
 374{
 375	struct in_device *in_dev;
 376
 377	ASSERT_RTNL();
 378
 379	in_dev = __in_dev_get_rtnl(dev);
 380	if (!in_dev)
 381		return false;
 382	ipv4_devconf_setall(in_dev);
 383	neigh_parms_data_state_setall(in_dev->arp_parms);
 384	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 385
 386	return true;
 387}
 388
 389static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 390{
 391	struct net_device  *dev;
 
 
 392
 393	dev = __dev_get_by_name(net, "tunl0");
 
 
 394
 395	if (dev) {
 396		const struct net_device_ops *ops = dev->netdev_ops;
 397		int err;
 398		struct ifreq ifr;
 399		struct ip_tunnel_parm p;
 400
 401		memset(&p, 0, sizeof(p));
 402		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 403		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 404		p.iph.version = 4;
 405		p.iph.ihl = 5;
 406		p.iph.protocol = IPPROTO_IPIP;
 407		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 408		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 409
 410		if (ops->ndo_do_ioctl) {
 411			mm_segment_t oldfs = get_fs();
 412
 413			set_fs(KERNEL_DS);
 414			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 415			set_fs(oldfs);
 416		} else {
 417			err = -EOPNOTSUPP;
 418		}
 419		dev = NULL;
 420
 421		if (err == 0 &&
 422		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 423			dev->flags |= IFF_MULTICAST;
 424			if (!ipmr_init_vif_indev(dev))
 425				goto failure;
 426			if (dev_open(dev))
 427				goto failure;
 428			dev_hold(dev);
 429		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430	}
 431	return dev;
 432
 433failure:
 434	unregister_netdevice(dev);
 435	return NULL;
 
 436}
 437
 438#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 439static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 440{
 441	struct net *net = dev_net(dev);
 442	struct mr_table *mrt;
 443	struct flowi4 fl4 = {
 444		.flowi4_oif	= dev->ifindex,
 445		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 446		.flowi4_mark	= skb->mark,
 447	};
 448	int err;
 449
 450	err = ipmr_fib_lookup(net, &fl4, &mrt);
 451	if (err < 0) {
 452		kfree_skb(skb);
 453		return err;
 454	}
 455
 456	read_lock(&mrt_lock);
 457	dev->stats.tx_bytes += skb->len;
 458	dev->stats.tx_packets++;
 459	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 460	read_unlock(&mrt_lock);
 
 
 
 
 461	kfree_skb(skb);
 462	return NETDEV_TX_OK;
 463}
 464
 465static int reg_vif_get_iflink(const struct net_device *dev)
 466{
 467	return 0;
 468}
 469
 470static const struct net_device_ops reg_vif_netdev_ops = {
 471	.ndo_start_xmit	= reg_vif_xmit,
 472	.ndo_get_iflink = reg_vif_get_iflink,
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477	dev->type		= ARPHRD_PIMREG;
 478	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479	dev->flags		= IFF_NOARP;
 480	dev->netdev_ops		= &reg_vif_netdev_ops;
 481	dev->destructor		= free_netdev;
 482	dev->features		|= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487	struct net_device *dev;
 488	char name[IFNAMSIZ];
 489
 490	if (mrt->id == RT_TABLE_DEFAULT)
 491		sprintf(name, "pimreg");
 492	else
 493		sprintf(name, "pimreg%u", mrt->id);
 494
 495	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 496
 497	if (!dev)
 498		return NULL;
 499
 500	dev_net_set(dev, net);
 501
 502	if (register_netdevice(dev)) {
 503		free_netdev(dev);
 504		return NULL;
 505	}
 506
 507	if (!ipmr_init_vif_indev(dev))
 508		goto failure;
 509	if (dev_open(dev))
 510		goto failure;
 511
 512	dev_hold(dev);
 513
 514	return dev;
 515
 516failure:
 517	unregister_netdevice(dev);
 518	return NULL;
 519}
 520
 521/* called with rcu_read_lock() */
 522static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 523		     unsigned int pimlen)
 524{
 525	struct net_device *reg_dev = NULL;
 526	struct iphdr *encap;
 
 527
 528	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 529	/* Check that:
 530	 * a. packet is really sent to a multicast group
 531	 * b. packet is not a NULL-REGISTER
 532	 * c. packet is not truncated
 533	 */
 534	if (!ipv4_is_multicast(encap->daddr) ||
 535	    encap->tot_len == 0 ||
 536	    ntohs(encap->tot_len) + pimlen > skb->len)
 537		return 1;
 538
 539	read_lock(&mrt_lock);
 540	if (mrt->mroute_reg_vif_num >= 0)
 541		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
 542	read_unlock(&mrt_lock);
 543
 544	if (!reg_dev)
 545		return 1;
 546
 547	skb->mac_header = skb->network_header;
 548	skb_pull(skb, (u8 *)encap - skb->data);
 549	skb_reset_network_header(skb);
 550	skb->protocol = htons(ETH_P_IP);
 551	skb->ip_summed = CHECKSUM_NONE;
 552
 553	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 554
 555	netif_rx(skb);
 556
 557	return NET_RX_SUCCESS;
 558}
 559#else
 560static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 561{
 562	return NULL;
 563}
 564#endif
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566/**
 567 *	vif_delete - Delete a VIF entry
 
 
 568 *	@notify: Set to 1, if the caller is a notifier_call
 
 569 */
 570static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 571		      struct list_head *head)
 572{
 
 573	struct vif_device *v;
 574	struct net_device *dev;
 575	struct in_device *in_dev;
 576
 577	if (vifi < 0 || vifi >= mrt->maxvif)
 578		return -EADDRNOTAVAIL;
 579
 580	v = &mrt->vif_table[vifi];
 581
 582	write_lock_bh(&mrt_lock);
 583	dev = v->dev;
 584	v->dev = NULL;
 585
 586	if (!dev) {
 587		write_unlock_bh(&mrt_lock);
 588		return -EADDRNOTAVAIL;
 589	}
 590
 591	if (vifi == mrt->mroute_reg_vif_num)
 592		mrt->mroute_reg_vif_num = -1;
 593
 
 
 
 
 
 
 
 
 
 594	if (vifi + 1 == mrt->maxvif) {
 595		int tmp;
 596
 597		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 598			if (VIF_EXISTS(mrt, tmp))
 599				break;
 600		}
 601		mrt->maxvif = tmp+1;
 602	}
 603
 604	write_unlock_bh(&mrt_lock);
 605
 606	dev_set_allmulti(dev, -1);
 607
 608	in_dev = __in_dev_get_rtnl(dev);
 609	if (in_dev) {
 610		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 611		inet_netconf_notify_devconf(dev_net(dev),
 612					    NETCONFA_MC_FORWARDING,
 613					    dev->ifindex, &in_dev->cnf);
 614		ip_rt_multicast_event(in_dev);
 615	}
 616
 617	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 618		unregister_netdevice_queue(dev, head);
 619
 620	dev_put(dev);
 621	return 0;
 622}
 623
 624static void ipmr_cache_free_rcu(struct rcu_head *head)
 625{
 626	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 627
 628	kmem_cache_free(mrt_cachep, c);
 629}
 630
 631static inline void ipmr_cache_free(struct mfc_cache *c)
 632{
 633	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 634}
 635
 636/* Destroy an unresolved cache entry, killing queued skbs
 637 * and reporting error to netlink readers.
 638 */
 639static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 640{
 641	struct net *net = read_pnet(&mrt->net);
 642	struct sk_buff *skb;
 643	struct nlmsgerr *e;
 644
 645	atomic_dec(&mrt->cache_resolve_queue_len);
 646
 647	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 648		if (ip_hdr(skb)->version == 0) {
 649			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 650			nlh->nlmsg_type = NLMSG_ERROR;
 651			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 652			skb_trim(skb, nlh->nlmsg_len);
 653			e = nlmsg_data(nlh);
 654			e->error = -ETIMEDOUT;
 655			memset(&e->msg, 0, sizeof(e->msg));
 656
 657			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 658		} else {
 659			kfree_skb(skb);
 660		}
 661	}
 662
 663	ipmr_cache_free(c);
 664}
 665
 666/* Timer process for the unresolved queue. */
 667static void ipmr_expire_process(unsigned long arg)
 668{
 669	struct mr_table *mrt = (struct mr_table *)arg;
 670	unsigned long now;
 671	unsigned long expires;
 672	struct mfc_cache *c, *next;
 673
 674	if (!spin_trylock(&mfc_unres_lock)) {
 675		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 676		return;
 677	}
 678
 679	if (list_empty(&mrt->mfc_unres_queue))
 680		goto out;
 681
 682	now = jiffies;
 683	expires = 10*HZ;
 684
 685	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 686		if (time_after(c->mfc_un.unres.expires, now)) {
 687			unsigned long interval = c->mfc_un.unres.expires - now;
 688			if (interval < expires)
 689				expires = interval;
 690			continue;
 691		}
 692
 693		list_del(&c->list);
 694		mroute_netlink_event(mrt, c, RTM_DELROUTE);
 695		ipmr_destroy_unres(mrt, c);
 696	}
 697
 698	if (!list_empty(&mrt->mfc_unres_queue))
 699		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 700
 701out:
 702	spin_unlock(&mfc_unres_lock);
 703}
 704
 705/* Fill oifs list. It is called under write locked mrt_lock. */
 706static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 707				   unsigned char *ttls)
 708{
 709	int vifi;
 710
 711	cache->mfc_un.res.minvif = MAXVIFS;
 712	cache->mfc_un.res.maxvif = 0;
 713	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 714
 715	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 716		if (VIF_EXISTS(mrt, vifi) &&
 717		    ttls[vifi] && ttls[vifi] < 255) {
 718			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 719			if (cache->mfc_un.res.minvif > vifi)
 720				cache->mfc_un.res.minvif = vifi;
 721			if (cache->mfc_un.res.maxvif <= vifi)
 722				cache->mfc_un.res.maxvif = vifi + 1;
 723		}
 724	}
 
 725}
 726
 727static int vif_add(struct net *net, struct mr_table *mrt,
 728		   struct vifctl *vifc, int mrtsock)
 729{
 
 730	int vifi = vifc->vifc_vifi;
 731	struct vif_device *v = &mrt->vif_table[vifi];
 732	struct net_device *dev;
 733	struct in_device *in_dev;
 734	int err;
 735
 736	/* Is vif busy ? */
 737	if (VIF_EXISTS(mrt, vifi))
 738		return -EADDRINUSE;
 739
 740	switch (vifc->vifc_flags) {
 741	case VIFF_REGISTER:
 742		if (!ipmr_pimsm_enabled())
 743			return -EINVAL;
 744		/* Special Purpose VIF in PIM
 745		 * All the packets will be sent to the daemon
 746		 */
 747		if (mrt->mroute_reg_vif_num >= 0)
 748			return -EADDRINUSE;
 749		dev = ipmr_reg_vif(net, mrt);
 750		if (!dev)
 751			return -ENOBUFS;
 752		err = dev_set_allmulti(dev, 1);
 753		if (err) {
 754			unregister_netdevice(dev);
 755			dev_put(dev);
 756			return err;
 757		}
 758		break;
 759	case VIFF_TUNNEL:
 760		dev = ipmr_new_tunnel(net, vifc);
 761		if (!dev)
 762			return -ENOBUFS;
 763		err = dev_set_allmulti(dev, 1);
 764		if (err) {
 765			ipmr_del_tunnel(dev, vifc);
 766			dev_put(dev);
 767			return err;
 768		}
 769		break;
 770	case VIFF_USE_IFINDEX:
 771	case 0:
 772		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 773			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 774			if (dev && !__in_dev_get_rtnl(dev)) {
 775				dev_put(dev);
 776				return -EADDRNOTAVAIL;
 777			}
 778		} else {
 779			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 780		}
 781		if (!dev)
 782			return -EADDRNOTAVAIL;
 783		err = dev_set_allmulti(dev, 1);
 784		if (err) {
 785			dev_put(dev);
 786			return err;
 787		}
 788		break;
 789	default:
 790		return -EINVAL;
 791	}
 792
 793	in_dev = __in_dev_get_rtnl(dev);
 794	if (!in_dev) {
 795		dev_put(dev);
 796		return -EADDRNOTAVAIL;
 797	}
 798	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 799	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 800				    &in_dev->cnf);
 801	ip_rt_multicast_event(in_dev);
 802
 803	/* Fill in the VIF structures */
 
 
 
 
 
 
 
 
 
 
 
 
 804
 805	v->rate_limit = vifc->vifc_rate_limit;
 806	v->local = vifc->vifc_lcl_addr.s_addr;
 807	v->remote = vifc->vifc_rmt_addr.s_addr;
 808	v->flags = vifc->vifc_flags;
 809	if (!mrtsock)
 810		v->flags |= VIFF_STATIC;
 811	v->threshold = vifc->vifc_threshold;
 812	v->bytes_in = 0;
 813	v->bytes_out = 0;
 814	v->pkt_in = 0;
 815	v->pkt_out = 0;
 816	v->link = dev->ifindex;
 817	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 818		v->link = dev_get_iflink(dev);
 819
 820	/* And finish update writing critical data */
 821	write_lock_bh(&mrt_lock);
 822	v->dev = dev;
 823	if (v->flags & VIFF_REGISTER)
 824		mrt->mroute_reg_vif_num = vifi;
 
 
 
 825	if (vifi+1 > mrt->maxvif)
 826		mrt->maxvif = vifi+1;
 827	write_unlock_bh(&mrt_lock);
 
 
 828	return 0;
 829}
 830
 831/* called with rcu_read_lock() */
 832static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 833					 __be32 origin,
 834					 __be32 mcastgrp)
 835{
 836	int line = MFC_HASH(mcastgrp, origin);
 837	struct mfc_cache *c;
 838
 839	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 840		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 841			return c;
 842	}
 843	return NULL;
 844}
 845
 846/* Look for a (*,*,oif) entry */
 847static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 848						    int vifi)
 849{
 850	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 851	struct mfc_cache *c;
 852
 853	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 854		if (c->mfc_origin == htonl(INADDR_ANY) &&
 855		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 856		    c->mfc_un.res.ttls[vifi] < 255)
 857			return c;
 858
 859	return NULL;
 860}
 861
 862/* Look for a (*,G) entry */
 863static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 864					     __be32 mcastgrp, int vifi)
 865{
 866	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 867	struct mfc_cache *c, *proxy;
 
 
 868
 869	if (mcastgrp == htonl(INADDR_ANY))
 870		goto skip;
 
 
 871
 872	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 873		if (c->mfc_origin == htonl(INADDR_ANY) &&
 874		    c->mfc_mcastgrp == mcastgrp) {
 875			if (c->mfc_un.res.ttls[vifi] < 255)
 876				return c;
 877
 878			/* It's ok if the vifi is part of the static tree */
 879			proxy = ipmr_cache_find_any_parent(mrt,
 880							   c->mfc_parent);
 881			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 882				return c;
 883		}
 884
 885skip:
 886	return ipmr_cache_find_any_parent(mrt, vifi);
 887}
 888
 889/* Allocate a multicast cache entry */
 890static struct mfc_cache *ipmr_cache_alloc(void)
 891{
 892	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 893
 894	if (c)
 895		c->mfc_un.res.minvif = MAXVIFS;
 
 
 
 
 896	return c;
 897}
 898
 899static struct mfc_cache *ipmr_cache_alloc_unres(void)
 900{
 901	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 902
 903	if (c) {
 904		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 905		c->mfc_un.unres.expires = jiffies + 10*HZ;
 906	}
 907	return c;
 908}
 909
 910/* A cache entry has gone into a resolved state from queued */
 911static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 912			       struct mfc_cache *uc, struct mfc_cache *c)
 913{
 914	struct sk_buff *skb;
 915	struct nlmsgerr *e;
 916
 917	/* Play the pending entries through our router */
 918	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 919		if (ip_hdr(skb)->version == 0) {
 920			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 
 921
 922			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 
 923				nlh->nlmsg_len = skb_tail_pointer(skb) -
 924						 (u8 *)nlh;
 925			} else {
 926				nlh->nlmsg_type = NLMSG_ERROR;
 927				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 928				skb_trim(skb, nlh->nlmsg_len);
 929				e = nlmsg_data(nlh);
 930				e->error = -EMSGSIZE;
 931				memset(&e->msg, 0, sizeof(e->msg));
 932			}
 933
 934			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 935		} else {
 936			ip_mr_forward(net, mrt, skb, c, 0);
 
 
 937		}
 938	}
 939}
 940
 941/* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 942 * expects the following bizarre scheme.
 943 *
 944 * Called under mrt_lock.
 945 */
 946static int ipmr_cache_report(struct mr_table *mrt,
 947			     struct sk_buff *pkt, vifi_t vifi, int assert)
 948{
 949	const int ihl = ip_hdrlen(pkt);
 950	struct sock *mroute_sk;
 951	struct igmphdr *igmp;
 952	struct igmpmsg *msg;
 953	struct sk_buff *skb;
 954	int ret;
 955
 956	if (assert == IGMPMSG_WHOLEPKT)
 
 
 
 
 957		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 958	else
 959		skb = alloc_skb(128, GFP_ATOMIC);
 960
 961	if (!skb)
 962		return -ENOBUFS;
 963
 964	if (assert == IGMPMSG_WHOLEPKT) {
 965		/* Ugly, but we have no choice with this interface.
 966		 * Duplicate old header, fix ihl, length etc.
 967		 * And all this only to mangle msg->im_msgtype and
 968		 * to set msg->im_mbz to "mbz" :-)
 969		 */
 970		skb_push(skb, sizeof(struct iphdr));
 971		skb_reset_network_header(skb);
 972		skb_reset_transport_header(skb);
 973		msg = (struct igmpmsg *)skb_network_header(skb);
 974		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 975		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 976		msg->im_mbz = 0;
 977		msg->im_vif = mrt->mroute_reg_vif_num;
 
 
 
 
 
 
 
 
 
 978		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 979		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 980					     sizeof(struct iphdr));
 981	} else {
 982		/* Copy the IP header */
 983		skb_set_network_header(skb, skb->len);
 984		skb_put(skb, ihl);
 985		skb_copy_to_linear_data(skb, pkt->data, ihl);
 986		/* Flag to the kernel this is a route add */
 987		ip_hdr(skb)->protocol = 0;
 988		msg = (struct igmpmsg *)skb_network_header(skb);
 989		msg->im_vif = vifi;
 990		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 
 
 991		/* Add our header */
 992		igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 993		igmp->type = assert;
 994		msg->im_msgtype = assert;
 995		igmp->code = 0;
 996		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
 997		skb->transport_header = skb->network_header;
 998	}
 999
1000	rcu_read_lock();
1001	mroute_sk = rcu_dereference(mrt->mroute_sk);
1002	if (!mroute_sk) {
1003		rcu_read_unlock();
1004		kfree_skb(skb);
1005		return -EINVAL;
1006	}
1007
1008	/* Deliver to mrouted */
1009	ret = sock_queue_rcv_skb(mroute_sk, skb);
1010	rcu_read_unlock();
1011	if (ret < 0) {
1012		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1013		kfree_skb(skb);
1014	}
1015
1016	return ret;
1017}
1018
1019/* Queue a packet for resolution. It gets locked cache entry! */
 
1020static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1021				 struct sk_buff *skb)
1022{
 
 
1023	bool found = false;
1024	int err;
1025	struct mfc_cache *c;
1026	const struct iphdr *iph = ip_hdr(skb);
1027
1028	spin_lock_bh(&mfc_unres_lock);
1029	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1030		if (c->mfc_mcastgrp == iph->daddr &&
1031		    c->mfc_origin == iph->saddr) {
1032			found = true;
1033			break;
1034		}
1035	}
1036
1037	if (!found) {
1038		/* Create a new entry if allowable */
1039		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1040		    (c = ipmr_cache_alloc_unres()) == NULL) {
1041			spin_unlock_bh(&mfc_unres_lock);
1042
1043			kfree_skb(skb);
1044			return -ENOBUFS;
1045		}
1046
1047		/* Fill in the new cache entry */
1048		c->mfc_parent	= -1;
1049		c->mfc_origin	= iph->saddr;
1050		c->mfc_mcastgrp	= iph->daddr;
1051
1052		/* Reflect first query at mrouted. */
1053		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
 
1054		if (err < 0) {
1055			/* If the report failed throw the cache entry
1056			   out - Brad Parker
1057			 */
1058			spin_unlock_bh(&mfc_unres_lock);
1059
1060			ipmr_cache_free(c);
1061			kfree_skb(skb);
1062			return err;
1063		}
1064
1065		atomic_inc(&mrt->cache_resolve_queue_len);
1066		list_add(&c->list, &mrt->mfc_unres_queue);
1067		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1068
1069		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1070			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
 
1071	}
1072
1073	/* See if we can append the packet */
1074	if (c->mfc_un.unres.unresolved.qlen > 3) {
1075		kfree_skb(skb);
1076		err = -ENOBUFS;
1077	} else {
1078		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
 
 
 
 
1079		err = 0;
1080	}
1081
1082	spin_unlock_bh(&mfc_unres_lock);
1083	return err;
1084}
1085
1086/* MFC cache manipulation by user space mroute daemon */
1087
1088static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1089{
1090	int line;
1091	struct mfc_cache *c, *next;
1092
1093	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
 
 
 
 
 
 
 
 
 
 
 
1094
1095	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1096		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1097		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1098		    (parent == -1 || parent == c->mfc_parent)) {
1099			list_del_rcu(&c->list);
1100			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1101			ipmr_cache_free(c);
1102			return 0;
1103		}
1104	}
1105	return -ENOENT;
1106}
1107
1108static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1109			struct mfcctl *mfc, int mrtsock, int parent)
1110{
1111	bool found = false;
1112	int line;
1113	struct mfc_cache *uc, *c;
 
 
 
1114
1115	if (mfc->mfcc_parent >= MAXVIFS)
1116		return -ENFILE;
1117
1118	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1119
1120	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1121		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1122		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1123		    (parent == -1 || parent == c->mfc_parent)) {
1124			found = true;
1125			break;
1126		}
1127	}
1128
1129	if (found) {
1130		write_lock_bh(&mrt_lock);
1131		c->mfc_parent = mfc->mfcc_parent;
1132		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1133		if (!mrtsock)
1134			c->mfc_flags |= MFC_STATIC;
1135		write_unlock_bh(&mrt_lock);
 
 
1136		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1137		return 0;
1138	}
1139
1140	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1141	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1142		return -EINVAL;
1143
1144	c = ipmr_cache_alloc();
1145	if (!c)
1146		return -ENOMEM;
1147
1148	c->mfc_origin = mfc->mfcc_origin.s_addr;
1149	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1150	c->mfc_parent = mfc->mfcc_parent;
1151	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1152	if (!mrtsock)
1153		c->mfc_flags |= MFC_STATIC;
1154
1155	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1156
 
 
 
 
 
 
 
 
1157	/* Check to see if we resolved a queued list. If so we
1158	 * need to send on the frames and tidy up.
1159	 */
1160	found = false;
1161	spin_lock_bh(&mfc_unres_lock);
1162	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
 
1163		if (uc->mfc_origin == c->mfc_origin &&
1164		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1165			list_del(&uc->list);
1166			atomic_dec(&mrt->cache_resolve_queue_len);
1167			found = true;
1168			break;
1169		}
1170	}
1171	if (list_empty(&mrt->mfc_unres_queue))
1172		del_timer(&mrt->ipmr_expire_timer);
1173	spin_unlock_bh(&mfc_unres_lock);
1174
1175	if (found) {
1176		ipmr_cache_resolve(net, mrt, uc, c);
1177		ipmr_cache_free(uc);
1178	}
 
1179	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1180	return 0;
1181}
1182
1183/* Close the multicast socket, and clear the vif tables etc */
1184static void mroute_clean_tables(struct mr_table *mrt, bool all)
1185{
1186	int i;
 
 
1187	LIST_HEAD(list);
1188	struct mfc_cache *c, *next;
1189
1190	/* Shut down all active vif entries */
1191	for (i = 0; i < mrt->maxvif; i++) {
1192		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1193			continue;
1194		vif_delete(mrt, i, 0, &list);
 
 
 
 
 
1195	}
1196	unregister_netdevice_many(&list);
1197
1198	/* Wipe the cache */
1199	for (i = 0; i < MFC_LINES; i++) {
1200		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1201			if (!all && (c->mfc_flags & MFC_STATIC))
 
1202				continue;
 
1203			list_del_rcu(&c->list);
1204			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1205			ipmr_cache_free(c);
 
 
 
1206		}
1207	}
1208
1209	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1210		spin_lock_bh(&mfc_unres_lock);
1211		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1212			list_del(&c->list);
1213			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1214			ipmr_destroy_unres(mrt, c);
 
 
 
 
1215		}
1216		spin_unlock_bh(&mfc_unres_lock);
1217	}
1218}
1219
1220/* called from ip_ra_control(), before an RCU grace period,
1221 * we dont need to call synchronize_rcu() here
1222 */
1223static void mrtsock_destruct(struct sock *sk)
1224{
1225	struct net *net = sock_net(sk);
1226	struct mr_table *mrt;
1227
1228	rtnl_lock();
1229	ipmr_for_each_table(mrt, net) {
1230		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1231			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1232			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
 
1233						    NETCONFA_IFINDEX_ALL,
1234						    net->ipv4.devconf_all);
1235			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1236			mroute_clean_tables(mrt, false);
1237		}
1238	}
1239	rtnl_unlock();
1240}
1241
1242/* Socket options and virtual interface manipulation. The whole
1243 * virtual interface system is a complete heap, but unfortunately
1244 * that's how BSD mrouted happens to think. Maybe one day with a proper
1245 * MOSPF/PIM router set up we can clean this up.
1246 */
1247
1248int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1249			 unsigned int optlen)
1250{
1251	struct net *net = sock_net(sk);
1252	int val, ret = 0, parent = 0;
1253	struct mr_table *mrt;
1254	struct vifctl vif;
1255	struct mfcctl mfc;
 
1256	u32 uval;
1257
1258	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1259	rtnl_lock();
1260	if (sk->sk_type != SOCK_RAW ||
1261	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1262		ret = -EOPNOTSUPP;
1263		goto out_unlock;
1264	}
1265
1266	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1267	if (!mrt) {
1268		ret = -ENOENT;
1269		goto out_unlock;
1270	}
1271	if (optname != MRT_INIT) {
1272		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1273		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1274			ret = -EACCES;
1275			goto out_unlock;
1276		}
1277	}
1278
1279	switch (optname) {
1280	case MRT_INIT:
1281		if (optlen != sizeof(int)) {
1282			ret = -EINVAL;
1283			break;
1284		}
1285		if (rtnl_dereference(mrt->mroute_sk)) {
1286			ret = -EADDRINUSE;
1287			break;
1288		}
1289
1290		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1291		if (ret == 0) {
1292			rcu_assign_pointer(mrt->mroute_sk, sk);
1293			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1294			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
 
1295						    NETCONFA_IFINDEX_ALL,
1296						    net->ipv4.devconf_all);
1297		}
1298		break;
1299	case MRT_DONE:
1300		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1301			ret = -EACCES;
1302		} else {
1303			/* We need to unlock here because mrtsock_destruct takes
1304			 * care of rtnl itself and we can't change that due to
1305			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1306			 */
1307			rtnl_unlock();
1308			ret = ip_ra_control(sk, 0, NULL);
1309			goto out;
1310		}
1311		break;
1312	case MRT_ADD_VIF:
1313	case MRT_DEL_VIF:
1314		if (optlen != sizeof(vif)) {
1315			ret = -EINVAL;
1316			break;
1317		}
1318		if (copy_from_user(&vif, optval, sizeof(vif))) {
1319			ret = -EFAULT;
1320			break;
1321		}
1322		if (vif.vifc_vifi >= MAXVIFS) {
1323			ret = -ENFILE;
1324			break;
1325		}
1326		if (optname == MRT_ADD_VIF) {
1327			ret = vif_add(net, mrt, &vif,
1328				      sk == rtnl_dereference(mrt->mroute_sk));
1329		} else {
1330			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331		}
1332		break;
1333	/* Manipulate the forwarding caches. These live
1334	 * in a sort of kernel/user symbiosis.
1335	 */
1336	case MRT_ADD_MFC:
1337	case MRT_DEL_MFC:
1338		parent = -1;
 
1339	case MRT_ADD_MFC_PROXY:
1340	case MRT_DEL_MFC_PROXY:
1341		if (optlen != sizeof(mfc)) {
1342			ret = -EINVAL;
1343			break;
1344		}
1345		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1346			ret = -EFAULT;
1347			break;
1348		}
1349		if (parent == 0)
1350			parent = mfc.mfcc_parent;
1351		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353		else
1354			ret = ipmr_mfc_add(net, mrt, &mfc,
1355					   sk == rtnl_dereference(mrt->mroute_sk),
1356					   parent);
1357		break;
 
 
 
 
 
 
 
 
 
 
 
1358	/* Control PIM assert. */
1359	case MRT_ASSERT:
1360		if (optlen != sizeof(val)) {
1361			ret = -EINVAL;
1362			break;
1363		}
1364		if (get_user(val, (int __user *)optval)) {
1365			ret = -EFAULT;
1366			break;
1367		}
1368		mrt->mroute_do_assert = val;
1369		break;
1370	case MRT_PIM:
1371		if (!ipmr_pimsm_enabled()) {
1372			ret = -ENOPROTOOPT;
1373			break;
1374		}
1375		if (optlen != sizeof(val)) {
1376			ret = -EINVAL;
1377			break;
1378		}
1379		if (get_user(val, (int __user *)optval)) {
1380			ret = -EFAULT;
1381			break;
1382		}
1383
 
1384		val = !!val;
1385		if (val != mrt->mroute_do_pim) {
1386			mrt->mroute_do_pim = val;
1387			mrt->mroute_do_assert = val;
 
1388		}
1389		break;
1390	case MRT_TABLE:
1391		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1392			ret = -ENOPROTOOPT;
1393			break;
1394		}
1395		if (optlen != sizeof(uval)) {
1396			ret = -EINVAL;
1397			break;
1398		}
1399		if (get_user(uval, (u32 __user *)optval)) {
1400			ret = -EFAULT;
1401			break;
1402		}
1403
1404		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1405			ret = -EBUSY;
1406		} else {
1407			mrt = ipmr_new_table(net, uval);
1408			if (IS_ERR(mrt))
1409				ret = PTR_ERR(mrt);
1410			else
1411				raw_sk(sk)->ipmr_table = uval;
1412		}
1413		break;
1414	/* Spurious command, or MRT_VERSION which you cannot set. */
1415	default:
1416		ret = -ENOPROTOOPT;
1417	}
1418out_unlock:
1419	rtnl_unlock();
1420out:
1421	return ret;
1422}
1423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424/* Getsock opt support for the multicast routing system. */
1425int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
 
1426{
1427	int olr;
1428	int val;
1429	struct net *net = sock_net(sk);
1430	struct mr_table *mrt;
1431
1432	if (sk->sk_type != SOCK_RAW ||
1433	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1434		return -EOPNOTSUPP;
1435
1436	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1437	if (!mrt)
1438		return -ENOENT;
1439
1440	switch (optname) {
1441	case MRT_VERSION:
1442		val = 0x0305;
1443		break;
1444	case MRT_PIM:
1445		if (!ipmr_pimsm_enabled())
1446			return -ENOPROTOOPT;
1447		val = mrt->mroute_do_pim;
1448		break;
1449	case MRT_ASSERT:
1450		val = mrt->mroute_do_assert;
1451		break;
1452	default:
1453		return -ENOPROTOOPT;
1454	}
1455
1456	if (get_user(olr, optlen))
1457		return -EFAULT;
1458	olr = min_t(unsigned int, olr, sizeof(int));
1459	if (olr < 0)
1460		return -EINVAL;
1461	if (put_user(olr, optlen))
1462		return -EFAULT;
1463	if (copy_to_user(optval, &val, olr))
1464		return -EFAULT;
1465	return 0;
1466}
1467
1468/* The IP multicast ioctl support routines. */
1469int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1470{
1471	struct sioc_sg_req sr;
1472	struct sioc_vif_req vr;
1473	struct vif_device *vif;
1474	struct mfc_cache *c;
1475	struct net *net = sock_net(sk);
 
 
1476	struct mr_table *mrt;
1477
1478	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1479	if (!mrt)
1480		return -ENOENT;
1481
1482	switch (cmd) {
1483	case SIOCGETVIFCNT:
1484		if (copy_from_user(&vr, arg, sizeof(vr)))
1485			return -EFAULT;
1486		if (vr.vifi >= mrt->maxvif)
1487			return -EINVAL;
1488		read_lock(&mrt_lock);
1489		vif = &mrt->vif_table[vr.vifi];
1490		if (VIF_EXISTS(mrt, vr.vifi)) {
1491			vr.icount = vif->pkt_in;
1492			vr.ocount = vif->pkt_out;
1493			vr.ibytes = vif->bytes_in;
1494			vr.obytes = vif->bytes_out;
1495			read_unlock(&mrt_lock);
 
1496
1497			if (copy_to_user(arg, &vr, sizeof(vr)))
1498				return -EFAULT;
1499			return 0;
1500		}
1501		read_unlock(&mrt_lock);
1502		return -EADDRNOTAVAIL;
1503	case SIOCGETSGCNT:
1504		if (copy_from_user(&sr, arg, sizeof(sr)))
1505			return -EFAULT;
1506
1507		rcu_read_lock();
1508		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1509		if (c) {
1510			sr.pktcnt = c->mfc_un.res.pkt;
1511			sr.bytecnt = c->mfc_un.res.bytes;
1512			sr.wrong_if = c->mfc_un.res.wrong_if;
1513			rcu_read_unlock();
1514
1515			if (copy_to_user(arg, &sr, sizeof(sr)))
1516				return -EFAULT;
1517			return 0;
1518		}
1519		rcu_read_unlock();
1520		return -EADDRNOTAVAIL;
1521	default:
1522		return -ENOIOCTLCMD;
1523	}
1524}
1525
1526#ifdef CONFIG_COMPAT
1527struct compat_sioc_sg_req {
1528	struct in_addr src;
1529	struct in_addr grp;
1530	compat_ulong_t pktcnt;
1531	compat_ulong_t bytecnt;
1532	compat_ulong_t wrong_if;
1533};
1534
1535struct compat_sioc_vif_req {
1536	vifi_t	vifi;		/* Which iface */
1537	compat_ulong_t icount;
1538	compat_ulong_t ocount;
1539	compat_ulong_t ibytes;
1540	compat_ulong_t obytes;
1541};
1542
1543int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1544{
1545	struct compat_sioc_sg_req sr;
1546	struct compat_sioc_vif_req vr;
1547	struct vif_device *vif;
1548	struct mfc_cache *c;
1549	struct net *net = sock_net(sk);
1550	struct mr_table *mrt;
1551
1552	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1553	if (!mrt)
1554		return -ENOENT;
1555
1556	switch (cmd) {
1557	case SIOCGETVIFCNT:
1558		if (copy_from_user(&vr, arg, sizeof(vr)))
1559			return -EFAULT;
1560		if (vr.vifi >= mrt->maxvif)
1561			return -EINVAL;
1562		read_lock(&mrt_lock);
 
1563		vif = &mrt->vif_table[vr.vifi];
1564		if (VIF_EXISTS(mrt, vr.vifi)) {
1565			vr.icount = vif->pkt_in;
1566			vr.ocount = vif->pkt_out;
1567			vr.ibytes = vif->bytes_in;
1568			vr.obytes = vif->bytes_out;
1569			read_unlock(&mrt_lock);
1570
1571			if (copy_to_user(arg, &vr, sizeof(vr)))
1572				return -EFAULT;
1573			return 0;
1574		}
1575		read_unlock(&mrt_lock);
1576		return -EADDRNOTAVAIL;
1577	case SIOCGETSGCNT:
1578		if (copy_from_user(&sr, arg, sizeof(sr)))
1579			return -EFAULT;
1580
1581		rcu_read_lock();
1582		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1583		if (c) {
1584			sr.pktcnt = c->mfc_un.res.pkt;
1585			sr.bytecnt = c->mfc_un.res.bytes;
1586			sr.wrong_if = c->mfc_un.res.wrong_if;
1587			rcu_read_unlock();
1588
1589			if (copy_to_user(arg, &sr, sizeof(sr)))
1590				return -EFAULT;
1591			return 0;
1592		}
1593		rcu_read_unlock();
1594		return -EADDRNOTAVAIL;
1595	default:
1596		return -ENOIOCTLCMD;
1597	}
1598}
1599#endif
1600
1601static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1602{
1603	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1604	struct net *net = dev_net(dev);
1605	struct mr_table *mrt;
1606	struct vif_device *v;
1607	int ct;
1608
1609	if (event != NETDEV_UNREGISTER)
1610		return NOTIFY_DONE;
1611
1612	ipmr_for_each_table(mrt, net) {
1613		v = &mrt->vif_table[0];
1614		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1615			if (v->dev == dev)
1616				vif_delete(mrt, ct, 1, NULL);
1617		}
1618	}
1619	return NOTIFY_DONE;
1620}
1621
1622static struct notifier_block ip_mr_notifier = {
1623	.notifier_call = ipmr_device_event,
1624};
1625
1626/* Encapsulate a packet by attaching a valid IPIP header to it.
1627 * This avoids tunnel drivers and other mess and gives us the speed so
1628 * important for multicast video.
1629 */
1630static void ip_encap(struct net *net, struct sk_buff *skb,
1631		     __be32 saddr, __be32 daddr)
1632{
1633	struct iphdr *iph;
1634	const struct iphdr *old_iph = ip_hdr(skb);
1635
1636	skb_push(skb, sizeof(struct iphdr));
1637	skb->transport_header = skb->network_header;
1638	skb_reset_network_header(skb);
1639	iph = ip_hdr(skb);
1640
1641	iph->version	=	4;
1642	iph->tos	=	old_iph->tos;
1643	iph->ttl	=	old_iph->ttl;
1644	iph->frag_off	=	0;
1645	iph->daddr	=	daddr;
1646	iph->saddr	=	saddr;
1647	iph->protocol	=	IPPROTO_IPIP;
1648	iph->ihl	=	5;
1649	iph->tot_len	=	htons(skb->len);
1650	ip_select_ident(net, skb, NULL);
1651	ip_send_check(iph);
1652
1653	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1654	nf_reset(skb);
1655}
1656
1657static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1658				      struct sk_buff *skb)
1659{
1660	struct ip_options *opt = &(IPCB(skb)->opt);
1661
1662	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1663	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1664
1665	if (unlikely(opt->optlen))
1666		ip_forward_options(skb);
1667
1668	return dst_output(net, sk, skb);
1669}
1670
1671/* Processing handlers for ipmr_forward */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672
1673static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1674			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1675{
1676	const struct iphdr *iph = ip_hdr(skb);
1677	struct vif_device *vif = &mrt->vif_table[vifi];
 
1678	struct net_device *dev;
1679	struct rtable *rt;
1680	struct flowi4 fl4;
1681	int    encap = 0;
1682
1683	if (!vif->dev)
 
1684		goto out_free;
1685
1686	if (vif->flags & VIFF_REGISTER) {
1687		vif->pkt_out++;
1688		vif->bytes_out += skb->len;
1689		vif->dev->stats.tx_bytes += skb->len;
1690		vif->dev->stats.tx_packets++;
1691		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1692		goto out_free;
1693	}
1694
 
 
 
1695	if (vif->flags & VIFF_TUNNEL) {
1696		rt = ip_route_output_ports(net, &fl4, NULL,
1697					   vif->remote, vif->local,
1698					   0, 0,
1699					   IPPROTO_IPIP,
1700					   RT_TOS(iph->tos), vif->link);
1701		if (IS_ERR(rt))
1702			goto out_free;
1703		encap = sizeof(struct iphdr);
1704	} else {
1705		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1706					   0, 0,
1707					   IPPROTO_IPIP,
1708					   RT_TOS(iph->tos), vif->link);
1709		if (IS_ERR(rt))
1710			goto out_free;
1711	}
1712
1713	dev = rt->dst.dev;
1714
1715	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1716		/* Do not fragment multicasts. Alas, IPv4 does not
1717		 * allow to send ICMP, so that packets will disappear
1718		 * to blackhole.
1719		 */
1720		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1721		ip_rt_put(rt);
1722		goto out_free;
1723	}
1724
1725	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1726
1727	if (skb_cow(skb, encap)) {
1728		ip_rt_put(rt);
1729		goto out_free;
1730	}
1731
1732	vif->pkt_out++;
1733	vif->bytes_out += skb->len;
1734
1735	skb_dst_drop(skb);
1736	skb_dst_set(skb, &rt->dst);
1737	ip_decrease_ttl(ip_hdr(skb));
1738
1739	/* FIXME: forward and output firewalls used to be called here.
1740	 * What do we do with netfilter? -- RR
1741	 */
1742	if (vif->flags & VIFF_TUNNEL) {
1743		ip_encap(net, skb, vif->local, vif->remote);
1744		/* FIXME: extra output firewall step used to be here. --RR */
1745		vif->dev->stats.tx_packets++;
1746		vif->dev->stats.tx_bytes += skb->len;
1747	}
1748
1749	IPCB(skb)->flags |= IPSKB_FORWARDED;
1750
1751	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1752	 * not only before forwarding, but after forwarding on all output
1753	 * interfaces. It is clear, if mrouter runs a multicasting
1754	 * program, it should receive packets not depending to what interface
1755	 * program is joined.
1756	 * If we will not make it, the program will have to join on all
1757	 * interfaces. On the other hand, multihoming host (or router, but
1758	 * not mrouter) cannot join to more than one interface - it will
1759	 * result in receiving multiple packets.
1760	 */
1761	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1762		net, NULL, skb, skb->dev, dev,
1763		ipmr_forward_finish);
1764	return;
1765
1766out_free:
1767	kfree_skb(skb);
1768}
1769
1770static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
 
1771{
1772	int ct;
1773
1774	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1775		if (mrt->vif_table[ct].dev == dev)
1776			break;
1777	}
1778	return ct;
1779}
1780
1781/* "local" means that we should preserve one skb (for local delivery) */
 
1782static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1783			  struct sk_buff *skb, struct mfc_cache *cache,
1784			  int local)
1785{
 
1786	int psend = -1;
1787	int vif, ct;
1788	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1789
1790	vif = cache->mfc_parent;
1791	cache->mfc_un.res.pkt++;
1792	cache->mfc_un.res.bytes += skb->len;
 
1793
1794	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1795		struct mfc_cache *cache_proxy;
1796
1797		/* For an (*,G) entry, we only check that the incomming
1798		 * interface is part of the static tree.
1799		 */
1800		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1801		if (cache_proxy &&
1802		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1803			goto forward;
1804	}
1805
1806	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1807	if (mrt->vif_table[vif].dev != skb->dev) {
1808		if (rt_is_output_route(skb_rtable(skb))) {
1809			/* It is our own packet, looped back.
1810			 * Very complicated situation...
1811			 *
1812			 * The best workaround until routing daemons will be
1813			 * fixed is not to redistribute packet, if it was
1814			 * send through wrong interface. It means, that
1815			 * multicast applications WILL NOT work for
1816			 * (S,G), which have default multicast route pointing
1817			 * to wrong oif. In any case, it is not a good
1818			 * idea to use multicasting applications on router.
1819			 */
1820			goto dont_forward;
1821		}
1822
1823		cache->mfc_un.res.wrong_if++;
1824
1825		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1826		    /* pimsm uses asserts, when switching from RPT to SPT,
1827		     * so that we cannot check that packet arrived on an oif.
1828		     * It is bad, but otherwise we would need to move pretty
1829		     * large chunk of pimd to kernel. Ough... --ANK
1830		     */
1831		    (mrt->mroute_do_pim ||
1832		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1833		    time_after(jiffies,
1834			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1835			cache->mfc_un.res.last_assert = jiffies;
 
1836			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
 
 
 
1837		}
1838		goto dont_forward;
1839	}
1840
1841forward:
1842	mrt->vif_table[vif].pkt_in++;
1843	mrt->vif_table[vif].bytes_in += skb->len;
 
 
1844
1845	/* Forward the frame */
1846	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1847	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1848		if (true_vifi >= 0 &&
1849		    true_vifi != cache->mfc_parent &&
1850		    ip_hdr(skb)->ttl >
1851				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1852			/* It's an (*,*) entry and the packet is not coming from
1853			 * the upstream: forward the packet to the upstream
1854			 * only.
1855			 */
1856			psend = cache->mfc_parent;
1857			goto last_forward;
1858		}
1859		goto dont_forward;
1860	}
1861	for (ct = cache->mfc_un.res.maxvif - 1;
1862	     ct >= cache->mfc_un.res.minvif; ct--) {
1863		/* For (*,G) entry, don't forward to the incoming interface */
1864		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1865		     ct != true_vifi) &&
1866		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1867			if (psend != -1) {
1868				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869
1870				if (skb2)
1871					ipmr_queue_xmit(net, mrt, skb2, cache,
1872							psend);
1873			}
1874			psend = ct;
1875		}
1876	}
1877last_forward:
1878	if (psend != -1) {
1879		if (local) {
1880			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1881
1882			if (skb2)
1883				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
 
1884		} else {
1885			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1886			return;
1887		}
1888	}
1889
1890dont_forward:
1891	if (!local)
1892		kfree_skb(skb);
1893}
1894
1895static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1896{
1897	struct rtable *rt = skb_rtable(skb);
1898	struct iphdr *iph = ip_hdr(skb);
1899	struct flowi4 fl4 = {
1900		.daddr = iph->daddr,
1901		.saddr = iph->saddr,
1902		.flowi4_tos = RT_TOS(iph->tos),
1903		.flowi4_oif = (rt_is_output_route(rt) ?
1904			       skb->dev->ifindex : 0),
1905		.flowi4_iif = (rt_is_output_route(rt) ?
1906			       LOOPBACK_IFINDEX :
1907			       skb->dev->ifindex),
1908		.flowi4_mark = skb->mark,
1909	};
1910	struct mr_table *mrt;
1911	int err;
1912
1913	err = ipmr_fib_lookup(net, &fl4, &mrt);
1914	if (err)
1915		return ERR_PTR(err);
1916	return mrt;
1917}
1918
1919/* Multicast packets for forwarding arrive here
1920 * Called with rcu_read_lock();
1921 */
1922int ip_mr_input(struct sk_buff *skb)
1923{
1924	struct mfc_cache *cache;
1925	struct net *net = dev_net(skb->dev);
1926	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1927	struct mr_table *mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928
1929	/* Packet is looped back after forward, it should not be
1930	 * forwarded second time, but still can be delivered locally.
1931	 */
1932	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1933		goto dont_forward;
1934
1935	mrt = ipmr_rt_fib_lookup(net, skb);
1936	if (IS_ERR(mrt)) {
1937		kfree_skb(skb);
1938		return PTR_ERR(mrt);
1939	}
1940	if (!local) {
1941		if (IPCB(skb)->opt.router_alert) {
1942			if (ip_call_ra_chain(skb))
1943				return 0;
1944		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1945			/* IGMPv1 (and broken IGMPv2 implementations sort of
1946			 * Cisco IOS <= 11.2(8)) do not put router alert
1947			 * option to IGMP packets destined to routable
1948			 * groups. It is very bad, because it means
1949			 * that we can forward NO IGMP messages.
1950			 */
1951			struct sock *mroute_sk;
1952
1953			mroute_sk = rcu_dereference(mrt->mroute_sk);
1954			if (mroute_sk) {
1955				nf_reset(skb);
1956				raw_rcv(mroute_sk, skb);
1957				return 0;
1958			}
1959		    }
1960	}
1961
1962	/* already under rcu_read_lock() */
1963	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1964	if (!cache) {
1965		int vif = ipmr_find_vif(mrt, skb->dev);
1966
1967		if (vif >= 0)
1968			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1969						    vif);
1970	}
1971
1972	/* No usable cache entry */
1973	if (!cache) {
1974		int vif;
1975
1976		if (local) {
1977			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1978			ip_local_deliver(skb);
1979			if (!skb2)
1980				return -ENOBUFS;
1981			skb = skb2;
1982		}
1983
1984		read_lock(&mrt_lock);
1985		vif = ipmr_find_vif(mrt, skb->dev);
1986		if (vif >= 0) {
1987			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1988			read_unlock(&mrt_lock);
1989
1990			return err2;
1991		}
1992		read_unlock(&mrt_lock);
1993		kfree_skb(skb);
1994		return -ENODEV;
1995	}
1996
1997	read_lock(&mrt_lock);
1998	ip_mr_forward(net, mrt, skb, cache, local);
1999	read_unlock(&mrt_lock);
2000
2001	if (local)
2002		return ip_local_deliver(skb);
2003
2004	return 0;
2005
2006dont_forward:
2007	if (local)
2008		return ip_local_deliver(skb);
2009	kfree_skb(skb);
2010	return 0;
2011}
2012
2013#ifdef CONFIG_IP_PIMSM_V1
2014/* Handle IGMP messages of PIMv1 */
2015int pim_rcv_v1(struct sk_buff *skb)
2016{
2017	struct igmphdr *pim;
2018	struct net *net = dev_net(skb->dev);
2019	struct mr_table *mrt;
2020
2021	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2022		goto drop;
2023
2024	pim = igmp_hdr(skb);
2025
2026	mrt = ipmr_rt_fib_lookup(net, skb);
2027	if (IS_ERR(mrt))
2028		goto drop;
2029	if (!mrt->mroute_do_pim ||
2030	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2031		goto drop;
2032
2033	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2034drop:
2035		kfree_skb(skb);
2036	}
2037	return 0;
2038}
2039#endif
2040
2041#ifdef CONFIG_IP_PIMSM_V2
2042static int pim_rcv(struct sk_buff *skb)
2043{
2044	struct pimreghdr *pim;
2045	struct net *net = dev_net(skb->dev);
2046	struct mr_table *mrt;
2047
2048	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2049		goto drop;
2050
2051	pim = (struct pimreghdr *)skb_transport_header(skb);
2052	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2053	    (pim->flags & PIM_NULL_REGISTER) ||
2054	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2055	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2056		goto drop;
2057
2058	mrt = ipmr_rt_fib_lookup(net, skb);
2059	if (IS_ERR(mrt))
2060		goto drop;
2061	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2062drop:
2063		kfree_skb(skb);
2064	}
2065	return 0;
2066}
2067#endif
2068
2069static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2070			      struct mfc_cache *c, struct rtmsg *rtm)
2071{
2072	int ct;
2073	struct rtnexthop *nhp;
2074	struct nlattr *mp_attr;
2075	struct rta_mfc_stats mfcs;
2076
2077	/* If cache is unresolved, don't try to parse IIF and OIF */
2078	if (c->mfc_parent >= MAXVIFS)
2079		return -ENOENT;
2080
2081	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2082	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2083		return -EMSGSIZE;
2084
2085	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2086		return -EMSGSIZE;
2087
2088	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2089		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2090			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2091				nla_nest_cancel(skb, mp_attr);
2092				return -EMSGSIZE;
2093			}
2094
2095			nhp->rtnh_flags = 0;
2096			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2097			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2098			nhp->rtnh_len = sizeof(*nhp);
2099		}
2100	}
2101
2102	nla_nest_end(skb, mp_attr);
2103
2104	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2105	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2106	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2107	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2108		return -EMSGSIZE;
2109
2110	rtm->rtm_type = RTN_MULTICAST;
2111	return 1;
2112}
2113
2114int ipmr_get_route(struct net *net, struct sk_buff *skb,
2115		   __be32 saddr, __be32 daddr,
2116		   struct rtmsg *rtm, int nowait)
2117{
2118	struct mfc_cache *cache;
2119	struct mr_table *mrt;
2120	int err;
2121
2122	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2123	if (!mrt)
2124		return -ENOENT;
2125
2126	rcu_read_lock();
2127	cache = ipmr_cache_find(mrt, saddr, daddr);
2128	if (!cache && skb->dev) {
2129		int vif = ipmr_find_vif(mrt, skb->dev);
2130
2131		if (vif >= 0)
2132			cache = ipmr_cache_find_any(mrt, daddr, vif);
2133	}
2134	if (!cache) {
2135		struct sk_buff *skb2;
2136		struct iphdr *iph;
2137		struct net_device *dev;
2138		int vif = -1;
2139
2140		if (nowait) {
2141			rcu_read_unlock();
2142			return -EAGAIN;
2143		}
2144
2145		dev = skb->dev;
2146		read_lock(&mrt_lock);
2147		if (dev)
2148			vif = ipmr_find_vif(mrt, dev);
2149		if (vif < 0) {
2150			read_unlock(&mrt_lock);
2151			rcu_read_unlock();
2152			return -ENODEV;
2153		}
2154		skb2 = skb_clone(skb, GFP_ATOMIC);
 
2155		if (!skb2) {
2156			read_unlock(&mrt_lock);
2157			rcu_read_unlock();
2158			return -ENOMEM;
2159		}
2160
 
2161		skb_push(skb2, sizeof(struct iphdr));
2162		skb_reset_network_header(skb2);
2163		iph = ip_hdr(skb2);
2164		iph->ihl = sizeof(struct iphdr) >> 2;
2165		iph->saddr = saddr;
2166		iph->daddr = daddr;
2167		iph->version = 0;
2168		err = ipmr_cache_unresolved(mrt, vif, skb2);
2169		read_unlock(&mrt_lock);
2170		rcu_read_unlock();
2171		return err;
2172	}
2173
2174	read_lock(&mrt_lock);
2175	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2176	read_unlock(&mrt_lock);
2177	rcu_read_unlock();
2178	return err;
2179}
2180
2181static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2182			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2183			    int flags)
2184{
2185	struct nlmsghdr *nlh;
2186	struct rtmsg *rtm;
2187	int err;
2188
2189	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2190	if (!nlh)
2191		return -EMSGSIZE;
2192
2193	rtm = nlmsg_data(nlh);
2194	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2195	rtm->rtm_dst_len  = 32;
2196	rtm->rtm_src_len  = 32;
2197	rtm->rtm_tos      = 0;
2198	rtm->rtm_table    = mrt->id;
2199	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2200		goto nla_put_failure;
2201	rtm->rtm_type     = RTN_MULTICAST;
2202	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2203	if (c->mfc_flags & MFC_STATIC)
2204		rtm->rtm_protocol = RTPROT_STATIC;
2205	else
2206		rtm->rtm_protocol = RTPROT_MROUTED;
2207	rtm->rtm_flags    = 0;
2208
2209	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2210	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2211		goto nla_put_failure;
2212	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2213	/* do not break the dump if cache is unresolved */
2214	if (err < 0 && err != -ENOENT)
2215		goto nla_put_failure;
2216
2217	nlmsg_end(skb, nlh);
2218	return 0;
2219
2220nla_put_failure:
2221	nlmsg_cancel(skb, nlh);
2222	return -EMSGSIZE;
2223}
2224
 
 
 
 
 
 
 
 
2225static size_t mroute_msgsize(bool unresolved, int maxvif)
2226{
2227	size_t len =
2228		NLMSG_ALIGN(sizeof(struct rtmsg))
2229		+ nla_total_size(4)	/* RTA_TABLE */
2230		+ nla_total_size(4)	/* RTA_SRC */
2231		+ nla_total_size(4)	/* RTA_DST */
2232		;
2233
2234	if (!unresolved)
2235		len = len
2236		      + nla_total_size(4)	/* RTA_IIF */
2237		      + nla_total_size(0)	/* RTA_MULTIPATH */
2238		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2239						/* RTA_MFC_STATS */
2240		      + nla_total_size(sizeof(struct rta_mfc_stats))
2241		;
2242
2243	return len;
2244}
2245
2246static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2247				 int cmd)
2248{
2249	struct net *net = read_pnet(&mrt->net);
2250	struct sk_buff *skb;
2251	int err = -ENOBUFS;
2252
2253	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
 
2254			GFP_ATOMIC);
2255	if (!skb)
2256		goto errout;
2257
2258	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2259	if (err < 0)
2260		goto errout;
2261
2262	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2263	return;
2264
2265errout:
2266	kfree_skb(skb);
2267	if (err < 0)
2268		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2269}
2270
2271static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2272{
2273	struct net *net = sock_net(skb->sk);
2274	struct mr_table *mrt;
2275	struct mfc_cache *mfc;
2276	unsigned int t = 0, s_t;
2277	unsigned int h = 0, s_h;
2278	unsigned int e = 0, s_e;
 
 
 
 
2279
2280	s_t = cb->args[0];
2281	s_h = cb->args[1];
2282	s_e = cb->args[2];
2283
2284	rcu_read_lock();
2285	ipmr_for_each_table(mrt, net) {
2286		if (t < s_t)
2287			goto next_table;
2288		if (t > s_t)
2289			s_h = 0;
2290		for (h = s_h; h < MFC_LINES; h++) {
2291			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2292				if (e < s_e)
2293					goto next_entry;
2294				if (ipmr_fill_mroute(mrt, skb,
2295						     NETLINK_CB(cb->skb).portid,
2296						     cb->nlh->nlmsg_seq,
2297						     mfc, RTM_NEWROUTE,
2298						     NLM_F_MULTI) < 0)
2299					goto done;
2300next_entry:
2301				e++;
2302			}
2303			e = s_e = 0;
2304		}
2305		spin_lock_bh(&mfc_unres_lock);
2306		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2307			if (e < s_e)
2308				goto next_entry2;
2309			if (ipmr_fill_mroute(mrt, skb,
2310					     NETLINK_CB(cb->skb).portid,
2311					     cb->nlh->nlmsg_seq,
2312					     mfc, RTM_NEWROUTE,
2313					     NLM_F_MULTI) < 0) {
2314				spin_unlock_bh(&mfc_unres_lock);
2315				goto done;
2316			}
2317next_entry2:
2318			e++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319		}
2320		spin_unlock_bh(&mfc_unres_lock);
2321		e = s_e = 0;
2322		s_h = 0;
2323next_table:
2324		t++;
2325	}
2326done:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2327	rcu_read_unlock();
 
 
 
 
2328
2329	cb->args[2] = e;
2330	cb->args[1] = h;
2331	cb->args[0] = t;
 
 
2332
2333	return skb->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334}
2335
2336static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2337	[RTA_SRC]	= { .type = NLA_U32 },
2338	[RTA_DST]	= { .type = NLA_U32 },
2339	[RTA_IIF]	= { .type = NLA_U32 },
2340	[RTA_TABLE]	= { .type = NLA_U32 },
2341	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2342};
2343
2344static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2345{
2346	switch (rtm_protocol) {
2347	case RTPROT_STATIC:
2348	case RTPROT_MROUTED:
2349		return true;
2350	}
2351	return false;
2352}
2353
2354static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2355{
2356	struct rtnexthop *rtnh = nla_data(nla);
2357	int remaining = nla_len(nla), vifi = 0;
2358
2359	while (rtnh_ok(rtnh, remaining)) {
2360		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2361		if (++vifi == MAXVIFS)
2362			break;
2363		rtnh = rtnh_next(rtnh, &remaining);
2364	}
2365
2366	return remaining > 0 ? -EINVAL : vifi;
2367}
2368
2369/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2370static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2371			    struct mfcctl *mfcc, int *mrtsock,
2372			    struct mr_table **mrtret)
 
2373{
2374	struct net_device *dev = NULL;
2375	u32 tblid = RT_TABLE_DEFAULT;
2376	struct mr_table *mrt;
2377	struct nlattr *attr;
2378	struct rtmsg *rtm;
2379	int ret, rem;
2380
2381	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
 
2382	if (ret < 0)
2383		goto out;
2384	rtm = nlmsg_data(nlh);
2385
2386	ret = -EINVAL;
2387	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2388	    rtm->rtm_type != RTN_MULTICAST ||
2389	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2390	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2391		goto out;
2392
2393	memset(mfcc, 0, sizeof(*mfcc));
2394	mfcc->mfcc_parent = -1;
2395	ret = 0;
2396	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2397		switch (nla_type(attr)) {
2398		case RTA_SRC:
2399			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2400			break;
2401		case RTA_DST:
2402			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2403			break;
2404		case RTA_IIF:
2405			dev = __dev_get_by_index(net, nla_get_u32(attr));
2406			if (!dev) {
2407				ret = -ENODEV;
2408				goto out;
2409			}
2410			break;
2411		case RTA_MULTIPATH:
2412			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2413				ret = -EINVAL;
2414				goto out;
2415			}
2416			break;
2417		case RTA_PREFSRC:
2418			ret = 1;
2419			break;
2420		case RTA_TABLE:
2421			tblid = nla_get_u32(attr);
2422			break;
2423		}
2424	}
2425	mrt = ipmr_get_table(net, tblid);
2426	if (!mrt) {
2427		ret = -ENOENT;
2428		goto out;
2429	}
2430	*mrtret = mrt;
2431	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2432	if (dev)
2433		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2434
2435out:
2436	return ret;
2437}
2438
2439/* takes care of both newroute and delroute */
2440static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
 
2441{
2442	struct net *net = sock_net(skb->sk);
2443	int ret, mrtsock, parent;
2444	struct mr_table *tbl;
2445	struct mfcctl mfcc;
2446
2447	mrtsock = 0;
2448	tbl = NULL;
2449	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2450	if (ret < 0)
2451		return ret;
2452
2453	parent = ret ? mfcc.mfcc_parent : -1;
2454	if (nlh->nlmsg_type == RTM_NEWROUTE)
2455		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2456	else
2457		return ipmr_mfc_delete(tbl, &mfcc, parent);
2458}
2459
2460#ifdef CONFIG_PROC_FS
2461/* The /proc interfaces to multicast routing :
2462 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2463 */
2464struct ipmr_vif_iter {
2465	struct seq_net_private p;
2466	struct mr_table *mrt;
2467	int ct;
2468};
2469
2470static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2471					   struct ipmr_vif_iter *iter,
2472					   loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
2473{
2474	struct mr_table *mrt = iter->mrt;
 
 
2475
2476	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2477		if (!VIF_EXISTS(mrt, iter->ct))
2478			continue;
2479		if (pos-- == 0)
2480			return &mrt->vif_table[iter->ct];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2481	}
2482	return NULL;
 
 
2483}
2484
2485static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2486	__acquires(mrt_lock)
2487{
2488	struct ipmr_vif_iter *iter = seq->private;
2489	struct net *net = seq_file_net(seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490	struct mr_table *mrt;
2491
2492	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2493	if (!mrt)
2494		return ERR_PTR(-ENOENT);
2495
2496	iter->mrt = mrt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497
2498	read_lock(&mrt_lock);
2499	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2500		: SEQ_START_TOKEN;
 
 
2501}
2502
2503static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
 
 
 
 
2504{
2505	struct ipmr_vif_iter *iter = seq->private;
2506	struct net *net = seq_file_net(seq);
2507	struct mr_table *mrt = iter->mrt;
2508
2509	++*pos;
2510	if (v == SEQ_START_TOKEN)
2511		return ipmr_vif_seq_idx(net, iter, 0);
2512
2513	while (++iter->ct < mrt->maxvif) {
2514		if (!VIF_EXISTS(mrt, iter->ct))
2515			continue;
2516		return &mrt->vif_table[iter->ct];
2517	}
2518	return NULL;
2519}
2520
2521static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2522	__releases(mrt_lock)
2523{
2524	read_unlock(&mrt_lock);
2525}
2526
2527static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2528{
2529	struct ipmr_vif_iter *iter = seq->private;
2530	struct mr_table *mrt = iter->mrt;
2531
2532	if (v == SEQ_START_TOKEN) {
2533		seq_puts(seq,
2534			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2535	} else {
2536		const struct vif_device *vif = v;
2537		const char *name =  vif->dev ? vif->dev->name : "none";
 
2538
 
 
2539		seq_printf(seq,
2540			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2541			   vif - mrt->vif_table,
2542			   name, vif->bytes_in, vif->pkt_in,
2543			   vif->bytes_out, vif->pkt_out,
2544			   vif->flags, vif->local, vif->remote);
2545	}
2546	return 0;
2547}
2548
2549static const struct seq_operations ipmr_vif_seq_ops = {
2550	.start = ipmr_vif_seq_start,
2551	.next  = ipmr_vif_seq_next,
2552	.stop  = ipmr_vif_seq_stop,
2553	.show  = ipmr_vif_seq_show,
2554};
2555
2556static int ipmr_vif_open(struct inode *inode, struct file *file)
2557{
2558	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2559			    sizeof(struct ipmr_vif_iter));
2560}
2561
2562static const struct file_operations ipmr_vif_fops = {
2563	.owner	 = THIS_MODULE,
2564	.open    = ipmr_vif_open,
2565	.read    = seq_read,
2566	.llseek  = seq_lseek,
2567	.release = seq_release_net,
2568};
2569
2570struct ipmr_mfc_iter {
2571	struct seq_net_private p;
2572	struct mr_table *mrt;
2573	struct list_head *cache;
2574	int ct;
2575};
2576
2577
2578static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2579					  struct ipmr_mfc_iter *it, loff_t pos)
2580{
2581	struct mr_table *mrt = it->mrt;
2582	struct mfc_cache *mfc;
2583
2584	rcu_read_lock();
2585	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2586		it->cache = &mrt->mfc_cache_array[it->ct];
2587		list_for_each_entry_rcu(mfc, it->cache, list)
2588			if (pos-- == 0)
2589				return mfc;
2590	}
2591	rcu_read_unlock();
2592
2593	spin_lock_bh(&mfc_unres_lock);
2594	it->cache = &mrt->mfc_unres_queue;
2595	list_for_each_entry(mfc, it->cache, list)
2596		if (pos-- == 0)
2597			return mfc;
2598	spin_unlock_bh(&mfc_unres_lock);
2599
2600	it->cache = NULL;
2601	return NULL;
2602}
2603
2604
2605static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2606{
2607	struct ipmr_mfc_iter *it = seq->private;
2608	struct net *net = seq_file_net(seq);
2609	struct mr_table *mrt;
2610
2611	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2612	if (!mrt)
2613		return ERR_PTR(-ENOENT);
2614
2615	it->mrt = mrt;
2616	it->cache = NULL;
2617	it->ct = 0;
2618	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2619		: SEQ_START_TOKEN;
2620}
2621
2622static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2623{
2624	struct mfc_cache *mfc = v;
2625	struct ipmr_mfc_iter *it = seq->private;
2626	struct net *net = seq_file_net(seq);
2627	struct mr_table *mrt = it->mrt;
2628
2629	++*pos;
2630
2631	if (v == SEQ_START_TOKEN)
2632		return ipmr_mfc_seq_idx(net, seq->private, 0);
2633
2634	if (mfc->list.next != it->cache)
2635		return list_entry(mfc->list.next, struct mfc_cache, list);
2636
2637	if (it->cache == &mrt->mfc_unres_queue)
2638		goto end_of_list;
2639
2640	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2641
2642	while (++it->ct < MFC_LINES) {
2643		it->cache = &mrt->mfc_cache_array[it->ct];
2644		if (list_empty(it->cache))
2645			continue;
2646		return list_first_entry(it->cache, struct mfc_cache, list);
2647	}
2648
2649	/* exhausted cache_array, show unresolved */
2650	rcu_read_unlock();
2651	it->cache = &mrt->mfc_unres_queue;
2652	it->ct = 0;
2653
2654	spin_lock_bh(&mfc_unres_lock);
2655	if (!list_empty(it->cache))
2656		return list_first_entry(it->cache, struct mfc_cache, list);
2657
2658end_of_list:
2659	spin_unlock_bh(&mfc_unres_lock);
2660	it->cache = NULL;
2661
2662	return NULL;
2663}
2664
2665static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2666{
2667	struct ipmr_mfc_iter *it = seq->private;
2668	struct mr_table *mrt = it->mrt;
2669
2670	if (it->cache == &mrt->mfc_unres_queue)
2671		spin_unlock_bh(&mfc_unres_lock);
2672	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2673		rcu_read_unlock();
2674}
2675
2676static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2677{
2678	int n;
2679
2680	if (v == SEQ_START_TOKEN) {
2681		seq_puts(seq,
2682		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2683	} else {
2684		const struct mfc_cache *mfc = v;
2685		const struct ipmr_mfc_iter *it = seq->private;
2686		const struct mr_table *mrt = it->mrt;
2687
2688		seq_printf(seq, "%08X %08X %-3hd",
2689			   (__force u32) mfc->mfc_mcastgrp,
2690			   (__force u32) mfc->mfc_origin,
2691			   mfc->mfc_parent);
2692
2693		if (it->cache != &mrt->mfc_unres_queue) {
2694			seq_printf(seq, " %8lu %8lu %8lu",
2695				   mfc->mfc_un.res.pkt,
2696				   mfc->mfc_un.res.bytes,
2697				   mfc->mfc_un.res.wrong_if);
2698			for (n = mfc->mfc_un.res.minvif;
2699			     n < mfc->mfc_un.res.maxvif; n++) {
2700				if (VIF_EXISTS(mrt, n) &&
2701				    mfc->mfc_un.res.ttls[n] < 255)
2702					seq_printf(seq,
2703					   " %2d:%-3d",
2704					   n, mfc->mfc_un.res.ttls[n]);
2705			}
2706		} else {
2707			/* unresolved mfc_caches don't contain
2708			 * pkt, bytes and wrong_if values
2709			 */
2710			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2711		}
2712		seq_putc(seq, '\n');
2713	}
2714	return 0;
2715}
2716
2717static const struct seq_operations ipmr_mfc_seq_ops = {
2718	.start = ipmr_mfc_seq_start,
2719	.next  = ipmr_mfc_seq_next,
2720	.stop  = ipmr_mfc_seq_stop,
2721	.show  = ipmr_mfc_seq_show,
2722};
2723
2724static int ipmr_mfc_open(struct inode *inode, struct file *file)
2725{
2726	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2727			    sizeof(struct ipmr_mfc_iter));
2728}
2729
2730static const struct file_operations ipmr_mfc_fops = {
2731	.owner	 = THIS_MODULE,
2732	.open    = ipmr_mfc_open,
2733	.read    = seq_read,
2734	.llseek  = seq_lseek,
2735	.release = seq_release_net,
2736};
2737#endif
2738
2739#ifdef CONFIG_IP_PIMSM_V2
2740static const struct net_protocol pim_protocol = {
2741	.handler	=	pim_rcv,
2742	.netns_ok	=	1,
2743};
2744#endif
2745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2746/* Setup for IP multicast routing */
2747static int __net_init ipmr_net_init(struct net *net)
2748{
2749	int err;
2750
 
 
 
 
2751	err = ipmr_rules_init(net);
2752	if (err < 0)
2753		goto fail;
2754
2755#ifdef CONFIG_PROC_FS
2756	err = -ENOMEM;
2757	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
 
2758		goto proc_vif_fail;
2759	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
 
2760		goto proc_cache_fail;
2761#endif
2762	return 0;
2763
2764#ifdef CONFIG_PROC_FS
2765proc_cache_fail:
2766	remove_proc_entry("ip_mr_vif", net->proc_net);
2767proc_vif_fail:
 
2768	ipmr_rules_exit(net);
 
2769#endif
2770fail:
 
 
2771	return err;
2772}
2773
2774static void __net_exit ipmr_net_exit(struct net *net)
2775{
2776#ifdef CONFIG_PROC_FS
2777	remove_proc_entry("ip_mr_cache", net->proc_net);
2778	remove_proc_entry("ip_mr_vif", net->proc_net);
2779#endif
2780	ipmr_rules_exit(net);
 
 
 
 
 
 
 
 
 
 
2781}
2782
2783static struct pernet_operations ipmr_net_ops = {
2784	.init = ipmr_net_init,
2785	.exit = ipmr_net_exit,
 
2786};
2787
2788int __init ip_mr_init(void)
2789{
2790	int err;
2791
2792	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2793				       sizeof(struct mfc_cache),
2794				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2795				       NULL);
2796
2797	err = register_pernet_subsys(&ipmr_net_ops);
2798	if (err)
2799		goto reg_pernet_fail;
2800
2801	err = register_netdevice_notifier(&ip_mr_notifier);
2802	if (err)
2803		goto reg_notif_fail;
2804#ifdef CONFIG_IP_PIMSM_V2
2805	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2806		pr_err("%s: can't add PIM protocol\n", __func__);
2807		err = -EAGAIN;
2808		goto add_proto_fail;
2809	}
2810#endif
2811	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2812		      NULL, ipmr_rtm_dumproute, NULL);
2813	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2814		      ipmr_rtm_route, NULL, NULL);
2815	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2816		      ipmr_rtm_route, NULL, NULL);
 
 
 
2817	return 0;
2818
2819#ifdef CONFIG_IP_PIMSM_V2
2820add_proto_fail:
2821	unregister_netdevice_notifier(&ip_mr_notifier);
2822#endif
2823reg_notif_fail:
2824	unregister_pernet_subsys(&ipmr_net_ops);
2825reg_pernet_fail:
2826	kmem_cache_destroy(mrt_cachep);
2827	return err;
2828}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	IP multicast routing support for mrouted 3.6/3.8
   4 *
   5 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   6 *	  Linux Consultancy and Custom Driver Development
   7 *
 
 
 
 
 
   8 *	Fixes:
   9 *	Michael Chastain	:	Incorrect size of copying.
  10 *	Alan Cox		:	Added the cache manager code
  11 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  12 *	Mike McLagan		:	Routing by source
  13 *	Malcolm Beattie		:	Buffer handling fixes.
  14 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  15 *	SVR Anand		:	Fixed several multicast bugs and problems.
  16 *	Alexey Kuznetsov	:	Status, optimisations and more.
  17 *	Brad Parker		:	Better behaviour on mrouted upcall
  18 *					overflow.
  19 *      Carlos Picoto           :       PIMv1 Support
  20 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  21 *					Relax this requirement to work with older peers.
 
  22 */
  23
  24#include <linux/uaccess.h>
  25#include <linux/types.h>
  26#include <linux/cache.h>
  27#include <linux/capability.h>
  28#include <linux/errno.h>
 
  29#include <linux/mm.h>
  30#include <linux/kernel.h>
  31#include <linux/fcntl.h>
  32#include <linux/stat.h>
  33#include <linux/socket.h>
  34#include <linux/in.h>
  35#include <linux/inet.h>
  36#include <linux/netdevice.h>
  37#include <linux/inetdevice.h>
  38#include <linux/igmp.h>
  39#include <linux/proc_fs.h>
  40#include <linux/seq_file.h>
  41#include <linux/mroute.h>
  42#include <linux/init.h>
  43#include <linux/if_ether.h>
  44#include <linux/slab.h>
  45#include <net/net_namespace.h>
  46#include <net/ip.h>
  47#include <net/protocol.h>
  48#include <linux/skbuff.h>
  49#include <net/route.h>
 
  50#include <net/icmp.h>
  51#include <net/udp.h>
  52#include <net/raw.h>
  53#include <linux/notifier.h>
  54#include <linux/if_arp.h>
  55#include <linux/netfilter_ipv4.h>
  56#include <linux/compat.h>
  57#include <linux/export.h>
  58#include <linux/rhashtable.h>
  59#include <net/ip_tunnels.h>
  60#include <net/checksum.h>
  61#include <net/netlink.h>
  62#include <net/fib_rules.h>
  63#include <linux/netconf.h>
  64#include <net/rtnh.h>
  65
  66#include <linux/nospec.h>
  67
  68struct ipmr_rule {
  69	struct fib_rule		common;
  70};
  71
  72struct ipmr_result {
  73	struct mr_table		*mrt;
  74};
  75
  76/* Big lock, protecting vif table, mrt cache and mroute socket state.
  77 * Note that the changes are semaphored via rtnl_lock.
  78 */
  79
  80static DEFINE_SPINLOCK(mrt_lock);
  81
  82static struct net_device *vif_dev_read(const struct vif_device *vif)
  83{
  84	return rcu_dereference(vif->dev);
  85}
  86
  87/* Multicast router control variables */
  88
  89/* Special spinlock for queue of unresolved entries */
  90static DEFINE_SPINLOCK(mfc_unres_lock);
  91
  92/* We return to original Alan's scheme. Hash table of resolved
  93 * entries is changed only in process context and protected
  94 * with weak lock mrt_lock. Queue of unresolved entries is protected
  95 * with strong spinlock mfc_unres_lock.
  96 *
  97 * In this case data path is free of exclusive locks at all.
  98 */
  99
 100static struct kmem_cache *mrt_cachep __ro_after_init;
 101
 102static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 103static void ipmr_free_table(struct mr_table *mrt);
 104
 105static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 106			  struct net_device *dev, struct sk_buff *skb,
 107			  struct mfc_cache *cache, int local);
 108static int ipmr_cache_report(const struct mr_table *mrt,
 109			     struct sk_buff *pkt, vifi_t vifi, int assert);
 
 
 110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 111				 int cmd);
 112static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
 113static void mroute_clean_tables(struct mr_table *mrt, int flags);
 114static void ipmr_expire_process(struct timer_list *t);
 115
 116#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 117#define ipmr_for_each_table(mrt, net)					\
 118	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list,	\
 119				lockdep_rtnl_is_held() ||		\
 120				list_empty(&net->ipv4.mr_tables))
 121
 122static struct mr_table *ipmr_mr_table_iter(struct net *net,
 123					   struct mr_table *mrt)
 124{
 125	struct mr_table *ret;
 126
 127	if (!mrt)
 128		ret = list_entry_rcu(net->ipv4.mr_tables.next,
 129				     struct mr_table, list);
 130	else
 131		ret = list_entry_rcu(mrt->list.next,
 132				     struct mr_table, list);
 133
 134	if (&ret->list == &net->ipv4.mr_tables)
 135		return NULL;
 136	return ret;
 137}
 138
 139static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 140{
 141	struct mr_table *mrt;
 142
 143	ipmr_for_each_table(mrt, net) {
 144		if (mrt->id == id)
 145			return mrt;
 146	}
 147	return NULL;
 148}
 149
 150static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 151			   struct mr_table **mrt)
 152{
 153	int err;
 154	struct ipmr_result res;
 155	struct fib_lookup_arg arg = {
 156		.result = &res,
 157		.flags = FIB_LOOKUP_NOREF,
 158	};
 159
 160	/* update flow if oif or iif point to device enslaved to l3mdev */
 161	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
 162
 163	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 164			       flowi4_to_flowi(flp4), 0, &arg);
 165	if (err < 0)
 166		return err;
 167	*mrt = res.mrt;
 168	return 0;
 169}
 170
 171static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 172			    int flags, struct fib_lookup_arg *arg)
 173{
 174	struct ipmr_result *res = arg->result;
 175	struct mr_table *mrt;
 176
 177	switch (rule->action) {
 178	case FR_ACT_TO_TBL:
 179		break;
 180	case FR_ACT_UNREACHABLE:
 181		return -ENETUNREACH;
 182	case FR_ACT_PROHIBIT:
 183		return -EACCES;
 184	case FR_ACT_BLACKHOLE:
 185	default:
 186		return -EINVAL;
 187	}
 188
 189	arg->table = fib_rule_get_table(rule, arg);
 190
 191	mrt = ipmr_get_table(rule->fr_net, arg->table);
 192	if (!mrt)
 193		return -EAGAIN;
 194	res->mrt = mrt;
 195	return 0;
 196}
 197
 198static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 199{
 200	return 1;
 201}
 202
 
 
 
 
 203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 204			       struct fib_rule_hdr *frh, struct nlattr **tb,
 205			       struct netlink_ext_ack *extack)
 206{
 207	return 0;
 208}
 209
 210static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 211			     struct nlattr **tb)
 212{
 213	return 1;
 214}
 215
 216static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 217			  struct fib_rule_hdr *frh)
 218{
 219	frh->dst_len = 0;
 220	frh->src_len = 0;
 221	frh->tos     = 0;
 222	return 0;
 223}
 224
 225static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 226	.family		= RTNL_FAMILY_IPMR,
 227	.rule_size	= sizeof(struct ipmr_rule),
 228	.addr_size	= sizeof(u32),
 229	.action		= ipmr_rule_action,
 230	.match		= ipmr_rule_match,
 231	.configure	= ipmr_rule_configure,
 232	.compare	= ipmr_rule_compare,
 233	.fill		= ipmr_rule_fill,
 234	.nlgroup	= RTNLGRP_IPV4_RULE,
 
 235	.owner		= THIS_MODULE,
 236};
 237
 238static int __net_init ipmr_rules_init(struct net *net)
 239{
 240	struct fib_rules_ops *ops;
 241	struct mr_table *mrt;
 242	int err;
 243
 244	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 245	if (IS_ERR(ops))
 246		return PTR_ERR(ops);
 247
 248	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 249
 250	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 251	if (IS_ERR(mrt)) {
 252		err = PTR_ERR(mrt);
 253		goto err1;
 254	}
 255
 256	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
 257	if (err < 0)
 258		goto err2;
 259
 260	net->ipv4.mr_rules_ops = ops;
 261	return 0;
 262
 263err2:
 264	rtnl_lock();
 265	ipmr_free_table(mrt);
 266	rtnl_unlock();
 267err1:
 268	fib_rules_unregister(ops);
 269	return err;
 270}
 271
 272static void __net_exit ipmr_rules_exit(struct net *net)
 273{
 274	struct mr_table *mrt, *next;
 275
 276	ASSERT_RTNL();
 277	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 278		list_del(&mrt->list);
 279		ipmr_free_table(mrt);
 280	}
 281	fib_rules_unregister(net->ipv4.mr_rules_ops);
 
 282}
 283
 284static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 285			   struct netlink_ext_ack *extack)
 286{
 287	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
 288}
 289
 290static unsigned int ipmr_rules_seq_read(struct net *net)
 291{
 292	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
 293}
 294
 295bool ipmr_rule_default(const struct fib_rule *rule)
 296{
 297	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
 298}
 299EXPORT_SYMBOL(ipmr_rule_default);
 300#else
 301#define ipmr_for_each_table(mrt, net) \
 302	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 303
 304static struct mr_table *ipmr_mr_table_iter(struct net *net,
 305					   struct mr_table *mrt)
 306{
 307	if (!mrt)
 308		return net->ipv4.mrt;
 309	return NULL;
 310}
 311
 312static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 313{
 314	return net->ipv4.mrt;
 315}
 316
 317static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 318			   struct mr_table **mrt)
 319{
 320	*mrt = net->ipv4.mrt;
 321	return 0;
 322}
 323
 324static int __net_init ipmr_rules_init(struct net *net)
 325{
 326	struct mr_table *mrt;
 327
 328	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 329	if (IS_ERR(mrt))
 330		return PTR_ERR(mrt);
 331	net->ipv4.mrt = mrt;
 332	return 0;
 333}
 334
 335static void __net_exit ipmr_rules_exit(struct net *net)
 336{
 337	ASSERT_RTNL();
 338	ipmr_free_table(net->ipv4.mrt);
 339	net->ipv4.mrt = NULL;
 
 340}
 341
 342static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
 343			   struct netlink_ext_ack *extack)
 344{
 345	return 0;
 346}
 347
 348static unsigned int ipmr_rules_seq_read(struct net *net)
 349{
 350	return 0;
 351}
 352
 353bool ipmr_rule_default(const struct fib_rule *rule)
 354{
 355	return true;
 356}
 357EXPORT_SYMBOL(ipmr_rule_default);
 358#endif
 359
 360static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
 361				const void *ptr)
 362{
 363	const struct mfc_cache_cmp_arg *cmparg = arg->key;
 364	const struct mfc_cache *c = ptr;
 365
 366	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
 367	       cmparg->mfc_origin != c->mfc_origin;
 368}
 369
 370static const struct rhashtable_params ipmr_rht_params = {
 371	.head_offset = offsetof(struct mr_mfc, mnode),
 372	.key_offset = offsetof(struct mfc_cache, cmparg),
 373	.key_len = sizeof(struct mfc_cache_cmp_arg),
 374	.nelem_hint = 3,
 375	.obj_cmpfn = ipmr_hash_cmp,
 376	.automatic_shrinking = true,
 377};
 378
 379static void ipmr_new_table_set(struct mr_table *mrt,
 380			       struct net *net)
 381{
 382#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 383	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 384#endif
 385}
 386
 387static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
 388	.mfc_mcastgrp = htonl(INADDR_ANY),
 389	.mfc_origin = htonl(INADDR_ANY),
 390};
 391
 392static struct mr_table_ops ipmr_mr_table_ops = {
 393	.rht_params = &ipmr_rht_params,
 394	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
 395};
 396
 397static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 398{
 399	struct mr_table *mrt;
 
 400
 401	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 402	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 403		return ERR_PTR(-EINVAL);
 404
 405	mrt = ipmr_get_table(net, id);
 406	if (mrt)
 407		return mrt;
 408
 409	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
 410			      ipmr_expire_process, ipmr_new_table_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411}
 412
 413static void ipmr_free_table(struct mr_table *mrt)
 414{
 415	timer_shutdown_sync(&mrt->ipmr_expire_timer);
 416	mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
 417				 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
 418	rhltable_destroy(&mrt->mfc_hash);
 419	kfree(mrt);
 420}
 421
 422/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424/* Initialize ipmr pimreg/tunnel in_device */
 425static bool ipmr_init_vif_indev(const struct net_device *dev)
 426{
 427	struct in_device *in_dev;
 428
 429	ASSERT_RTNL();
 430
 431	in_dev = __in_dev_get_rtnl(dev);
 432	if (!in_dev)
 433		return false;
 434	ipv4_devconf_setall(in_dev);
 435	neigh_parms_data_state_setall(in_dev->arp_parms);
 436	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 437
 438	return true;
 439}
 440
 441static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 442{
 443	struct net_device *tunnel_dev, *new_dev;
 444	struct ip_tunnel_parm p = { };
 445	int err;
 446
 447	tunnel_dev = __dev_get_by_name(net, "tunl0");
 448	if (!tunnel_dev)
 449		goto out;
 450
 451	p.iph.daddr = v->vifc_rmt_addr.s_addr;
 452	p.iph.saddr = v->vifc_lcl_addr.s_addr;
 453	p.iph.version = 4;
 454	p.iph.ihl = 5;
 455	p.iph.protocol = IPPROTO_IPIP;
 456	sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457
 458	if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
 459		goto out;
 460	err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 461			SIOCADDTUNNEL);
 462	if (err)
 463		goto out;
 464
 465	new_dev = __dev_get_by_name(net, p.name);
 466	if (!new_dev)
 467		goto out;
 468
 469	new_dev->flags |= IFF_MULTICAST;
 470	if (!ipmr_init_vif_indev(new_dev))
 471		goto out_unregister;
 472	if (dev_open(new_dev, NULL))
 473		goto out_unregister;
 474	dev_hold(new_dev);
 475	err = dev_set_allmulti(new_dev, 1);
 476	if (err) {
 477		dev_close(new_dev);
 478		tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
 479				SIOCDELTUNNEL);
 480		dev_put(new_dev);
 481		new_dev = ERR_PTR(err);
 482	}
 483	return new_dev;
 484
 485out_unregister:
 486	unregister_netdevice(new_dev);
 487out:
 488	return ERR_PTR(-ENOBUFS);
 489}
 490
 491#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 492static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 493{
 494	struct net *net = dev_net(dev);
 495	struct mr_table *mrt;
 496	struct flowi4 fl4 = {
 497		.flowi4_oif	= dev->ifindex,
 498		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 499		.flowi4_mark	= skb->mark,
 500	};
 501	int err;
 502
 503	err = ipmr_fib_lookup(net, &fl4, &mrt);
 504	if (err < 0) {
 505		kfree_skb(skb);
 506		return err;
 507	}
 508
 509	DEV_STATS_ADD(dev, tx_bytes, skb->len);
 510	DEV_STATS_INC(dev, tx_packets);
 511	rcu_read_lock();
 512
 513	/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
 514	ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
 515			  IGMPMSG_WHOLEPKT);
 516
 517	rcu_read_unlock();
 518	kfree_skb(skb);
 519	return NETDEV_TX_OK;
 520}
 521
 522static int reg_vif_get_iflink(const struct net_device *dev)
 523{
 524	return 0;
 525}
 526
 527static const struct net_device_ops reg_vif_netdev_ops = {
 528	.ndo_start_xmit	= reg_vif_xmit,
 529	.ndo_get_iflink = reg_vif_get_iflink,
 530};
 531
 532static void reg_vif_setup(struct net_device *dev)
 533{
 534	dev->type		= ARPHRD_PIMREG;
 535	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 536	dev->flags		= IFF_NOARP;
 537	dev->netdev_ops		= &reg_vif_netdev_ops;
 538	dev->needs_free_netdev	= true;
 539	dev->features		|= NETIF_F_NETNS_LOCAL;
 540}
 541
 542static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 543{
 544	struct net_device *dev;
 545	char name[IFNAMSIZ];
 546
 547	if (mrt->id == RT_TABLE_DEFAULT)
 548		sprintf(name, "pimreg");
 549	else
 550		sprintf(name, "pimreg%u", mrt->id);
 551
 552	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 553
 554	if (!dev)
 555		return NULL;
 556
 557	dev_net_set(dev, net);
 558
 559	if (register_netdevice(dev)) {
 560		free_netdev(dev);
 561		return NULL;
 562	}
 563
 564	if (!ipmr_init_vif_indev(dev))
 565		goto failure;
 566	if (dev_open(dev, NULL))
 567		goto failure;
 568
 569	dev_hold(dev);
 570
 571	return dev;
 572
 573failure:
 574	unregister_netdevice(dev);
 575	return NULL;
 576}
 577
 578/* called with rcu_read_lock() */
 579static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 580		     unsigned int pimlen)
 581{
 582	struct net_device *reg_dev = NULL;
 583	struct iphdr *encap;
 584	int vif_num;
 585
 586	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 587	/* Check that:
 588	 * a. packet is really sent to a multicast group
 589	 * b. packet is not a NULL-REGISTER
 590	 * c. packet is not truncated
 591	 */
 592	if (!ipv4_is_multicast(encap->daddr) ||
 593	    encap->tot_len == 0 ||
 594	    ntohs(encap->tot_len) + pimlen > skb->len)
 595		return 1;
 596
 597	/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
 598	vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
 599	if (vif_num >= 0)
 600		reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
 
 601	if (!reg_dev)
 602		return 1;
 603
 604	skb->mac_header = skb->network_header;
 605	skb_pull(skb, (u8 *)encap - skb->data);
 606	skb_reset_network_header(skb);
 607	skb->protocol = htons(ETH_P_IP);
 608	skb->ip_summed = CHECKSUM_NONE;
 609
 610	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 611
 612	netif_rx(skb);
 613
 614	return NET_RX_SUCCESS;
 615}
 616#else
 617static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 618{
 619	return NULL;
 620}
 621#endif
 622
 623static int call_ipmr_vif_entry_notifiers(struct net *net,
 624					 enum fib_event_type event_type,
 625					 struct vif_device *vif,
 626					 struct net_device *vif_dev,
 627					 vifi_t vif_index, u32 tb_id)
 628{
 629	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 630				     vif, vif_dev, vif_index, tb_id,
 631				     &net->ipv4.ipmr_seq);
 632}
 633
 634static int call_ipmr_mfc_entry_notifiers(struct net *net,
 635					 enum fib_event_type event_type,
 636					 struct mfc_cache *mfc, u32 tb_id)
 637{
 638	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
 639				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
 640}
 641
 642/**
 643 *	vif_delete - Delete a VIF entry
 644 *	@mrt: Table to delete from
 645 *	@vifi: VIF identifier to delete
 646 *	@notify: Set to 1, if the caller is a notifier_call
 647 *	@head: if unregistering the VIF, place it on this queue
 648 */
 649static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 650		      struct list_head *head)
 651{
 652	struct net *net = read_pnet(&mrt->net);
 653	struct vif_device *v;
 654	struct net_device *dev;
 655	struct in_device *in_dev;
 656
 657	if (vifi < 0 || vifi >= mrt->maxvif)
 658		return -EADDRNOTAVAIL;
 659
 660	v = &mrt->vif_table[vifi];
 661
 662	dev = rtnl_dereference(v->dev);
 663	if (!dev)
 
 
 
 
 664		return -EADDRNOTAVAIL;
 
 
 
 
 665
 666	spin_lock(&mrt_lock);
 667	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
 668				      vifi, mrt->id);
 669	RCU_INIT_POINTER(v->dev, NULL);
 670
 671	if (vifi == mrt->mroute_reg_vif_num) {
 672		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
 673		WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
 674	}
 675	if (vifi + 1 == mrt->maxvif) {
 676		int tmp;
 677
 678		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 679			if (VIF_EXISTS(mrt, tmp))
 680				break;
 681		}
 682		WRITE_ONCE(mrt->maxvif, tmp + 1);
 683	}
 684
 685	spin_unlock(&mrt_lock);
 686
 687	dev_set_allmulti(dev, -1);
 688
 689	in_dev = __in_dev_get_rtnl(dev);
 690	if (in_dev) {
 691		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 692		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
 693					    NETCONFA_MC_FORWARDING,
 694					    dev->ifindex, &in_dev->cnf);
 695		ip_rt_multicast_event(in_dev);
 696	}
 697
 698	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 699		unregister_netdevice_queue(dev, head);
 700
 701	netdev_put(dev, &v->dev_tracker);
 702	return 0;
 703}
 704
 705static void ipmr_cache_free_rcu(struct rcu_head *head)
 706{
 707	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
 708
 709	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
 710}
 711
 712static void ipmr_cache_free(struct mfc_cache *c)
 713{
 714	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
 715}
 716
 717/* Destroy an unresolved cache entry, killing queued skbs
 718 * and reporting error to netlink readers.
 719 */
 720static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 721{
 722	struct net *net = read_pnet(&mrt->net);
 723	struct sk_buff *skb;
 724	struct nlmsgerr *e;
 725
 726	atomic_dec(&mrt->cache_resolve_queue_len);
 727
 728	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
 729		if (ip_hdr(skb)->version == 0) {
 730			struct nlmsghdr *nlh = skb_pull(skb,
 731							sizeof(struct iphdr));
 732			nlh->nlmsg_type = NLMSG_ERROR;
 733			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 734			skb_trim(skb, nlh->nlmsg_len);
 735			e = nlmsg_data(nlh);
 736			e->error = -ETIMEDOUT;
 737			memset(&e->msg, 0, sizeof(e->msg));
 738
 739			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 740		} else {
 741			kfree_skb(skb);
 742		}
 743	}
 744
 745	ipmr_cache_free(c);
 746}
 747
 748/* Timer process for the unresolved queue. */
 749static void ipmr_expire_process(struct timer_list *t)
 750{
 751	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
 752	struct mr_mfc *c, *next;
 753	unsigned long expires;
 754	unsigned long now;
 755
 756	if (!spin_trylock(&mfc_unres_lock)) {
 757		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 758		return;
 759	}
 760
 761	if (list_empty(&mrt->mfc_unres_queue))
 762		goto out;
 763
 764	now = jiffies;
 765	expires = 10*HZ;
 766
 767	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 768		if (time_after(c->mfc_un.unres.expires, now)) {
 769			unsigned long interval = c->mfc_un.unres.expires - now;
 770			if (interval < expires)
 771				expires = interval;
 772			continue;
 773		}
 774
 775		list_del(&c->list);
 776		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
 777		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
 778	}
 779
 780	if (!list_empty(&mrt->mfc_unres_queue))
 781		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 782
 783out:
 784	spin_unlock(&mfc_unres_lock);
 785}
 786
 787/* Fill oifs list. It is called under locked mrt_lock. */
 788static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
 789				   unsigned char *ttls)
 790{
 791	int vifi;
 792
 793	cache->mfc_un.res.minvif = MAXVIFS;
 794	cache->mfc_un.res.maxvif = 0;
 795	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 796
 797	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 798		if (VIF_EXISTS(mrt, vifi) &&
 799		    ttls[vifi] && ttls[vifi] < 255) {
 800			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 801			if (cache->mfc_un.res.minvif > vifi)
 802				cache->mfc_un.res.minvif = vifi;
 803			if (cache->mfc_un.res.maxvif <= vifi)
 804				cache->mfc_un.res.maxvif = vifi + 1;
 805		}
 806	}
 807	cache->mfc_un.res.lastuse = jiffies;
 808}
 809
 810static int vif_add(struct net *net, struct mr_table *mrt,
 811		   struct vifctl *vifc, int mrtsock)
 812{
 813	struct netdev_phys_item_id ppid = { };
 814	int vifi = vifc->vifc_vifi;
 815	struct vif_device *v = &mrt->vif_table[vifi];
 816	struct net_device *dev;
 817	struct in_device *in_dev;
 818	int err;
 819
 820	/* Is vif busy ? */
 821	if (VIF_EXISTS(mrt, vifi))
 822		return -EADDRINUSE;
 823
 824	switch (vifc->vifc_flags) {
 825	case VIFF_REGISTER:
 826		if (!ipmr_pimsm_enabled())
 827			return -EINVAL;
 828		/* Special Purpose VIF in PIM
 829		 * All the packets will be sent to the daemon
 830		 */
 831		if (mrt->mroute_reg_vif_num >= 0)
 832			return -EADDRINUSE;
 833		dev = ipmr_reg_vif(net, mrt);
 834		if (!dev)
 835			return -ENOBUFS;
 836		err = dev_set_allmulti(dev, 1);
 837		if (err) {
 838			unregister_netdevice(dev);
 839			dev_put(dev);
 840			return err;
 841		}
 842		break;
 843	case VIFF_TUNNEL:
 844		dev = ipmr_new_tunnel(net, vifc);
 845		if (IS_ERR(dev))
 846			return PTR_ERR(dev);
 
 
 
 
 
 
 847		break;
 848	case VIFF_USE_IFINDEX:
 849	case 0:
 850		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 851			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 852			if (dev && !__in_dev_get_rtnl(dev)) {
 853				dev_put(dev);
 854				return -EADDRNOTAVAIL;
 855			}
 856		} else {
 857			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 858		}
 859		if (!dev)
 860			return -EADDRNOTAVAIL;
 861		err = dev_set_allmulti(dev, 1);
 862		if (err) {
 863			dev_put(dev);
 864			return err;
 865		}
 866		break;
 867	default:
 868		return -EINVAL;
 869	}
 870
 871	in_dev = __in_dev_get_rtnl(dev);
 872	if (!in_dev) {
 873		dev_put(dev);
 874		return -EADDRNOTAVAIL;
 875	}
 876	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 877	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
 878				    dev->ifindex, &in_dev->cnf);
 879	ip_rt_multicast_event(in_dev);
 880
 881	/* Fill in the VIF structures */
 882	vif_device_init(v, dev, vifc->vifc_rate_limit,
 883			vifc->vifc_threshold,
 884			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
 885			(VIFF_TUNNEL | VIFF_REGISTER));
 886
 887	err = dev_get_port_parent_id(dev, &ppid, true);
 888	if (err == 0) {
 889		memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
 890		v->dev_parent_id.id_len = ppid.id_len;
 891	} else {
 892		v->dev_parent_id.id_len = 0;
 893	}
 894
 
 895	v->local = vifc->vifc_lcl_addr.s_addr;
 896	v->remote = vifc->vifc_rmt_addr.s_addr;
 
 
 
 
 
 
 
 
 
 
 
 897
 898	/* And finish update writing critical data */
 899	spin_lock(&mrt_lock);
 900	rcu_assign_pointer(v->dev, dev);
 901	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
 902	if (v->flags & VIFF_REGISTER) {
 903		/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
 904		WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
 905	}
 906	if (vifi+1 > mrt->maxvif)
 907		WRITE_ONCE(mrt->maxvif, vifi + 1);
 908	spin_unlock(&mrt_lock);
 909	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
 910				      vifi, mrt->id);
 911	return 0;
 912}
 913
 914/* called with rcu_read_lock() */
 915static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 916					 __be32 origin,
 917					 __be32 mcastgrp)
 918{
 919	struct mfc_cache_cmp_arg arg = {
 920			.mfc_mcastgrp = mcastgrp,
 921			.mfc_origin = origin
 922	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924	return mr_mfc_find(mrt, &arg);
 925}
 926
 927/* Look for a (*,G) entry */
 928static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 929					     __be32 mcastgrp, int vifi)
 930{
 931	struct mfc_cache_cmp_arg arg = {
 932			.mfc_mcastgrp = mcastgrp,
 933			.mfc_origin = htonl(INADDR_ANY)
 934	};
 935
 936	if (mcastgrp == htonl(INADDR_ANY))
 937		return mr_mfc_find_any_parent(mrt, vifi);
 938	return mr_mfc_find_any(mrt, vifi, &arg);
 939}
 940
 941/* Look for a (S,G,iif) entry if parent != -1 */
 942static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
 943						__be32 origin, __be32 mcastgrp,
 944						int parent)
 945{
 946	struct mfc_cache_cmp_arg arg = {
 947			.mfc_mcastgrp = mcastgrp,
 948			.mfc_origin = origin,
 949	};
 
 
 
 950
 951	return mr_mfc_find_parent(mrt, &arg, parent);
 
 952}
 953
 954/* Allocate a multicast cache entry */
 955static struct mfc_cache *ipmr_cache_alloc(void)
 956{
 957	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 958
 959	if (c) {
 960		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
 961		c->_c.mfc_un.res.minvif = MAXVIFS;
 962		c->_c.free = ipmr_cache_free_rcu;
 963		refcount_set(&c->_c.mfc_un.res.refcount, 1);
 964	}
 965	return c;
 966}
 967
 968static struct mfc_cache *ipmr_cache_alloc_unres(void)
 969{
 970	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 971
 972	if (c) {
 973		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
 974		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
 975	}
 976	return c;
 977}
 978
 979/* A cache entry has gone into a resolved state from queued */
 980static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 981			       struct mfc_cache *uc, struct mfc_cache *c)
 982{
 983	struct sk_buff *skb;
 984	struct nlmsgerr *e;
 985
 986	/* Play the pending entries through our router */
 987	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
 988		if (ip_hdr(skb)->version == 0) {
 989			struct nlmsghdr *nlh = skb_pull(skb,
 990							sizeof(struct iphdr));
 991
 992			if (mr_fill_mroute(mrt, skb, &c->_c,
 993					   nlmsg_data(nlh)) > 0) {
 994				nlh->nlmsg_len = skb_tail_pointer(skb) -
 995						 (u8 *)nlh;
 996			} else {
 997				nlh->nlmsg_type = NLMSG_ERROR;
 998				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 999				skb_trim(skb, nlh->nlmsg_len);
1000				e = nlmsg_data(nlh);
1001				e->error = -EMSGSIZE;
1002				memset(&e->msg, 0, sizeof(e->msg));
1003			}
1004
1005			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1006		} else {
1007			rcu_read_lock();
1008			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1009			rcu_read_unlock();
1010		}
1011	}
1012}
1013
1014/* Bounce a cache query up to mrouted and netlink.
 
1015 *
1016 * Called under rcu_read_lock().
1017 */
1018static int ipmr_cache_report(const struct mr_table *mrt,
1019			     struct sk_buff *pkt, vifi_t vifi, int assert)
1020{
1021	const int ihl = ip_hdrlen(pkt);
1022	struct sock *mroute_sk;
1023	struct igmphdr *igmp;
1024	struct igmpmsg *msg;
1025	struct sk_buff *skb;
1026	int ret;
1027
1028	mroute_sk = rcu_dereference(mrt->mroute_sk);
1029	if (!mroute_sk)
1030		return -EINVAL;
1031
1032	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1033		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1034	else
1035		skb = alloc_skb(128, GFP_ATOMIC);
1036
1037	if (!skb)
1038		return -ENOBUFS;
1039
1040	if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1041		/* Ugly, but we have no choice with this interface.
1042		 * Duplicate old header, fix ihl, length etc.
1043		 * And all this only to mangle msg->im_msgtype and
1044		 * to set msg->im_mbz to "mbz" :-)
1045		 */
1046		skb_push(skb, sizeof(struct iphdr));
1047		skb_reset_network_header(skb);
1048		skb_reset_transport_header(skb);
1049		msg = (struct igmpmsg *)skb_network_header(skb);
1050		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1051		msg->im_msgtype = assert;
1052		msg->im_mbz = 0;
1053		if (assert == IGMPMSG_WRVIFWHOLE) {
1054			msg->im_vif = vifi;
1055			msg->im_vif_hi = vifi >> 8;
1056		} else {
1057			/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1058			int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1059
1060			msg->im_vif = vif_num;
1061			msg->im_vif_hi = vif_num >> 8;
1062		}
1063		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1064		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1065					     sizeof(struct iphdr));
1066	} else {
1067		/* Copy the IP header */
1068		skb_set_network_header(skb, skb->len);
1069		skb_put(skb, ihl);
1070		skb_copy_to_linear_data(skb, pkt->data, ihl);
1071		/* Flag to the kernel this is a route add */
1072		ip_hdr(skb)->protocol = 0;
1073		msg = (struct igmpmsg *)skb_network_header(skb);
1074		msg->im_vif = vifi;
1075		msg->im_vif_hi = vifi >> 8;
1076		ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1077		memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1078		/* Add our header */
1079		igmp = skb_put(skb, sizeof(struct igmphdr));
1080		igmp->type = assert;
1081		msg->im_msgtype = assert;
1082		igmp->code = 0;
1083		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1084		skb->transport_header = skb->network_header;
1085	}
1086
1087	igmpmsg_netlink_event(mrt, skb);
 
 
 
 
 
 
1088
1089	/* Deliver to mrouted */
1090	ret = sock_queue_rcv_skb(mroute_sk, skb);
1091
1092	if (ret < 0) {
1093		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1094		kfree_skb(skb);
1095	}
1096
1097	return ret;
1098}
1099
1100/* Queue a packet for resolution. It gets locked cache entry! */
1101/* Called under rcu_read_lock() */
1102static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1103				 struct sk_buff *skb, struct net_device *dev)
1104{
1105	const struct iphdr *iph = ip_hdr(skb);
1106	struct mfc_cache *c;
1107	bool found = false;
1108	int err;
 
 
1109
1110	spin_lock_bh(&mfc_unres_lock);
1111	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1112		if (c->mfc_mcastgrp == iph->daddr &&
1113		    c->mfc_origin == iph->saddr) {
1114			found = true;
1115			break;
1116		}
1117	}
1118
1119	if (!found) {
1120		/* Create a new entry if allowable */
1121		c = ipmr_cache_alloc_unres();
1122		if (!c) {
1123			spin_unlock_bh(&mfc_unres_lock);
1124
1125			kfree_skb(skb);
1126			return -ENOBUFS;
1127		}
1128
1129		/* Fill in the new cache entry */
1130		c->_c.mfc_parent = -1;
1131		c->mfc_origin	= iph->saddr;
1132		c->mfc_mcastgrp	= iph->daddr;
1133
1134		/* Reflect first query at mrouted. */
1135		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1136
1137		if (err < 0) {
1138			/* If the report failed throw the cache entry
1139			   out - Brad Parker
1140			 */
1141			spin_unlock_bh(&mfc_unres_lock);
1142
1143			ipmr_cache_free(c);
1144			kfree_skb(skb);
1145			return err;
1146		}
1147
1148		atomic_inc(&mrt->cache_resolve_queue_len);
1149		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1150		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1151
1152		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1153			mod_timer(&mrt->ipmr_expire_timer,
1154				  c->_c.mfc_un.unres.expires);
1155	}
1156
1157	/* See if we can append the packet */
1158	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1159		kfree_skb(skb);
1160		err = -ENOBUFS;
1161	} else {
1162		if (dev) {
1163			skb->dev = dev;
1164			skb->skb_iif = dev->ifindex;
1165		}
1166		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1167		err = 0;
1168	}
1169
1170	spin_unlock_bh(&mfc_unres_lock);
1171	return err;
1172}
1173
1174/* MFC cache manipulation by user space mroute daemon */
1175
1176static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1177{
1178	struct net *net = read_pnet(&mrt->net);
1179	struct mfc_cache *c;
1180
1181	/* The entries are added/deleted only under RTNL */
1182	rcu_read_lock();
1183	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1184				   mfc->mfcc_mcastgrp.s_addr, parent);
1185	rcu_read_unlock();
1186	if (!c)
1187		return -ENOENT;
1188	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1189	list_del_rcu(&c->_c.list);
1190	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1191	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1192	mr_cache_put(&c->_c);
1193
1194	return 0;
 
 
 
 
 
 
 
 
 
 
1195}
1196
1197static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1198			struct mfcctl *mfc, int mrtsock, int parent)
1199{
 
 
1200	struct mfc_cache *uc, *c;
1201	struct mr_mfc *_uc;
1202	bool found;
1203	int ret;
1204
1205	if (mfc->mfcc_parent >= MAXVIFS)
1206		return -ENFILE;
1207
1208	/* The entries are added/deleted only under RTNL */
1209	rcu_read_lock();
1210	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1211				   mfc->mfcc_mcastgrp.s_addr, parent);
1212	rcu_read_unlock();
1213	if (c) {
1214		spin_lock(&mrt_lock);
1215		c->_c.mfc_parent = mfc->mfcc_parent;
1216		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
 
 
 
 
 
 
1217		if (!mrtsock)
1218			c->_c.mfc_flags |= MFC_STATIC;
1219		spin_unlock(&mrt_lock);
1220		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1221					      mrt->id);
1222		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1223		return 0;
1224	}
1225
1226	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1227	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1228		return -EINVAL;
1229
1230	c = ipmr_cache_alloc();
1231	if (!c)
1232		return -ENOMEM;
1233
1234	c->mfc_origin = mfc->mfcc_origin.s_addr;
1235	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1236	c->_c.mfc_parent = mfc->mfcc_parent;
1237	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1238	if (!mrtsock)
1239		c->_c.mfc_flags |= MFC_STATIC;
 
 
1240
1241	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1242				  ipmr_rht_params);
1243	if (ret) {
1244		pr_err("ipmr: rhtable insert error %d\n", ret);
1245		ipmr_cache_free(c);
1246		return ret;
1247	}
1248	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1249	/* Check to see if we resolved a queued list. If so we
1250	 * need to send on the frames and tidy up.
1251	 */
1252	found = false;
1253	spin_lock_bh(&mfc_unres_lock);
1254	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1255		uc = (struct mfc_cache *)_uc;
1256		if (uc->mfc_origin == c->mfc_origin &&
1257		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1258			list_del(&_uc->list);
1259			atomic_dec(&mrt->cache_resolve_queue_len);
1260			found = true;
1261			break;
1262		}
1263	}
1264	if (list_empty(&mrt->mfc_unres_queue))
1265		del_timer(&mrt->ipmr_expire_timer);
1266	spin_unlock_bh(&mfc_unres_lock);
1267
1268	if (found) {
1269		ipmr_cache_resolve(net, mrt, uc, c);
1270		ipmr_cache_free(uc);
1271	}
1272	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1273	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1274	return 0;
1275}
1276
1277/* Close the multicast socket, and clear the vif tables etc */
1278static void mroute_clean_tables(struct mr_table *mrt, int flags)
1279{
1280	struct net *net = read_pnet(&mrt->net);
1281	struct mr_mfc *c, *tmp;
1282	struct mfc_cache *cache;
1283	LIST_HEAD(list);
1284	int i;
1285
1286	/* Shut down all active vif entries */
1287	if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1288		for (i = 0; i < mrt->maxvif; i++) {
1289			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1290			     !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1291			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1292				continue;
1293			vif_delete(mrt, i, 0, &list);
1294		}
1295		unregister_netdevice_many(&list);
1296	}
 
1297
1298	/* Wipe the cache */
1299	if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1300		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1301			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1302			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1303				continue;
1304			rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1305			list_del_rcu(&c->list);
1306			cache = (struct mfc_cache *)c;
1307			call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1308						      mrt->id);
1309			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1310			mr_cache_put(c);
1311		}
1312	}
1313
1314	if (flags & MRT_FLUSH_MFC) {
1315		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1316			spin_lock_bh(&mfc_unres_lock);
1317			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1318				list_del(&c->list);
1319				cache = (struct mfc_cache *)c;
1320				mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1321				ipmr_destroy_unres(mrt, cache);
1322			}
1323			spin_unlock_bh(&mfc_unres_lock);
1324		}
 
1325	}
1326}
1327
1328/* called from ip_ra_control(), before an RCU grace period,
1329 * we don't need to call synchronize_rcu() here
1330 */
1331static void mrtsock_destruct(struct sock *sk)
1332{
1333	struct net *net = sock_net(sk);
1334	struct mr_table *mrt;
1335
1336	rtnl_lock();
1337	ipmr_for_each_table(mrt, net) {
1338		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1339			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1340			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1341						    NETCONFA_MC_FORWARDING,
1342						    NETCONFA_IFINDEX_ALL,
1343						    net->ipv4.devconf_all);
1344			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1345			mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1346		}
1347	}
1348	rtnl_unlock();
1349}
1350
1351/* Socket options and virtual interface manipulation. The whole
1352 * virtual interface system is a complete heap, but unfortunately
1353 * that's how BSD mrouted happens to think. Maybe one day with a proper
1354 * MOSPF/PIM router set up we can clean this up.
1355 */
1356
1357int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1358			 unsigned int optlen)
1359{
1360	struct net *net = sock_net(sk);
1361	int val, ret = 0, parent = 0;
1362	struct mr_table *mrt;
1363	struct vifctl vif;
1364	struct mfcctl mfc;
1365	bool do_wrvifwhole;
1366	u32 uval;
1367
1368	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1369	rtnl_lock();
1370	if (sk->sk_type != SOCK_RAW ||
1371	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1372		ret = -EOPNOTSUPP;
1373		goto out_unlock;
1374	}
1375
1376	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1377	if (!mrt) {
1378		ret = -ENOENT;
1379		goto out_unlock;
1380	}
1381	if (optname != MRT_INIT) {
1382		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1383		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1384			ret = -EACCES;
1385			goto out_unlock;
1386		}
1387	}
1388
1389	switch (optname) {
1390	case MRT_INIT:
1391		if (optlen != sizeof(int)) {
1392			ret = -EINVAL;
1393			break;
1394		}
1395		if (rtnl_dereference(mrt->mroute_sk)) {
1396			ret = -EADDRINUSE;
1397			break;
1398		}
1399
1400		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1401		if (ret == 0) {
1402			rcu_assign_pointer(mrt->mroute_sk, sk);
1403			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1404			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1405						    NETCONFA_MC_FORWARDING,
1406						    NETCONFA_IFINDEX_ALL,
1407						    net->ipv4.devconf_all);
1408		}
1409		break;
1410	case MRT_DONE:
1411		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1412			ret = -EACCES;
1413		} else {
1414			/* We need to unlock here because mrtsock_destruct takes
1415			 * care of rtnl itself and we can't change that due to
1416			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1417			 */
1418			rtnl_unlock();
1419			ret = ip_ra_control(sk, 0, NULL);
1420			goto out;
1421		}
1422		break;
1423	case MRT_ADD_VIF:
1424	case MRT_DEL_VIF:
1425		if (optlen != sizeof(vif)) {
1426			ret = -EINVAL;
1427			break;
1428		}
1429		if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1430			ret = -EFAULT;
1431			break;
1432		}
1433		if (vif.vifc_vifi >= MAXVIFS) {
1434			ret = -ENFILE;
1435			break;
1436		}
1437		if (optname == MRT_ADD_VIF) {
1438			ret = vif_add(net, mrt, &vif,
1439				      sk == rtnl_dereference(mrt->mroute_sk));
1440		} else {
1441			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1442		}
1443		break;
1444	/* Manipulate the forwarding caches. These live
1445	 * in a sort of kernel/user symbiosis.
1446	 */
1447	case MRT_ADD_MFC:
1448	case MRT_DEL_MFC:
1449		parent = -1;
1450		fallthrough;
1451	case MRT_ADD_MFC_PROXY:
1452	case MRT_DEL_MFC_PROXY:
1453		if (optlen != sizeof(mfc)) {
1454			ret = -EINVAL;
1455			break;
1456		}
1457		if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1458			ret = -EFAULT;
1459			break;
1460		}
1461		if (parent == 0)
1462			parent = mfc.mfcc_parent;
1463		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1464			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1465		else
1466			ret = ipmr_mfc_add(net, mrt, &mfc,
1467					   sk == rtnl_dereference(mrt->mroute_sk),
1468					   parent);
1469		break;
1470	case MRT_FLUSH:
1471		if (optlen != sizeof(val)) {
1472			ret = -EINVAL;
1473			break;
1474		}
1475		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1476			ret = -EFAULT;
1477			break;
1478		}
1479		mroute_clean_tables(mrt, val);
1480		break;
1481	/* Control PIM assert. */
1482	case MRT_ASSERT:
1483		if (optlen != sizeof(val)) {
1484			ret = -EINVAL;
1485			break;
1486		}
1487		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1488			ret = -EFAULT;
1489			break;
1490		}
1491		mrt->mroute_do_assert = val;
1492		break;
1493	case MRT_PIM:
1494		if (!ipmr_pimsm_enabled()) {
1495			ret = -ENOPROTOOPT;
1496			break;
1497		}
1498		if (optlen != sizeof(val)) {
1499			ret = -EINVAL;
1500			break;
1501		}
1502		if (copy_from_sockptr(&val, optval, sizeof(val))) {
1503			ret = -EFAULT;
1504			break;
1505		}
1506
1507		do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1508		val = !!val;
1509		if (val != mrt->mroute_do_pim) {
1510			mrt->mroute_do_pim = val;
1511			mrt->mroute_do_assert = val;
1512			mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1513		}
1514		break;
1515	case MRT_TABLE:
1516		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1517			ret = -ENOPROTOOPT;
1518			break;
1519		}
1520		if (optlen != sizeof(uval)) {
1521			ret = -EINVAL;
1522			break;
1523		}
1524		if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1525			ret = -EFAULT;
1526			break;
1527		}
1528
1529		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1530			ret = -EBUSY;
1531		} else {
1532			mrt = ipmr_new_table(net, uval);
1533			if (IS_ERR(mrt))
1534				ret = PTR_ERR(mrt);
1535			else
1536				raw_sk(sk)->ipmr_table = uval;
1537		}
1538		break;
1539	/* Spurious command, or MRT_VERSION which you cannot set. */
1540	default:
1541		ret = -ENOPROTOOPT;
1542	}
1543out_unlock:
1544	rtnl_unlock();
1545out:
1546	return ret;
1547}
1548
1549/* Execute if this ioctl is a special mroute ioctl */
1550int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1551{
1552	switch (cmd) {
1553	/* These userspace buffers will be consumed by ipmr_ioctl() */
1554	case SIOCGETVIFCNT: {
1555		struct sioc_vif_req buffer;
1556
1557		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1558				      sizeof(buffer));
1559		}
1560	case SIOCGETSGCNT: {
1561		struct sioc_sg_req buffer;
1562
1563		return sock_ioctl_inout(sk, cmd, arg, &buffer,
1564				      sizeof(buffer));
1565		}
1566	}
1567	/* return code > 0 means that the ioctl was not executed */
1568	return 1;
1569}
1570
1571/* Getsock opt support for the multicast routing system. */
1572int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1573			 sockptr_t optlen)
1574{
1575	int olr;
1576	int val;
1577	struct net *net = sock_net(sk);
1578	struct mr_table *mrt;
1579
1580	if (sk->sk_type != SOCK_RAW ||
1581	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1582		return -EOPNOTSUPP;
1583
1584	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1585	if (!mrt)
1586		return -ENOENT;
1587
1588	switch (optname) {
1589	case MRT_VERSION:
1590		val = 0x0305;
1591		break;
1592	case MRT_PIM:
1593		if (!ipmr_pimsm_enabled())
1594			return -ENOPROTOOPT;
1595		val = mrt->mroute_do_pim;
1596		break;
1597	case MRT_ASSERT:
1598		val = mrt->mroute_do_assert;
1599		break;
1600	default:
1601		return -ENOPROTOOPT;
1602	}
1603
1604	if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1605		return -EFAULT;
1606	olr = min_t(unsigned int, olr, sizeof(int));
1607	if (olr < 0)
1608		return -EINVAL;
1609	if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1610		return -EFAULT;
1611	if (copy_to_sockptr(optval, &val, olr))
1612		return -EFAULT;
1613	return 0;
1614}
1615
1616/* The IP multicast ioctl support routines. */
1617int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1618{
 
 
1619	struct vif_device *vif;
1620	struct mfc_cache *c;
1621	struct net *net = sock_net(sk);
1622	struct sioc_vif_req *vr;
1623	struct sioc_sg_req *sr;
1624	struct mr_table *mrt;
1625
1626	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1627	if (!mrt)
1628		return -ENOENT;
1629
1630	switch (cmd) {
1631	case SIOCGETVIFCNT:
1632		vr = (struct sioc_vif_req *)arg;
1633		if (vr->vifi >= mrt->maxvif)
 
1634			return -EINVAL;
1635		vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1636		rcu_read_lock();
1637		vif = &mrt->vif_table[vr->vifi];
1638		if (VIF_EXISTS(mrt, vr->vifi)) {
1639			vr->icount = READ_ONCE(vif->pkt_in);
1640			vr->ocount = READ_ONCE(vif->pkt_out);
1641			vr->ibytes = READ_ONCE(vif->bytes_in);
1642			vr->obytes = READ_ONCE(vif->bytes_out);
1643			rcu_read_unlock();
1644
 
 
1645			return 0;
1646		}
1647		rcu_read_unlock();
1648		return -EADDRNOTAVAIL;
1649	case SIOCGETSGCNT:
1650		sr = (struct sioc_sg_req *)arg;
 
1651
1652		rcu_read_lock();
1653		c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1654		if (c) {
1655			sr->pktcnt = c->_c.mfc_un.res.pkt;
1656			sr->bytecnt = c->_c.mfc_un.res.bytes;
1657			sr->wrong_if = c->_c.mfc_un.res.wrong_if;
1658			rcu_read_unlock();
 
 
 
1659			return 0;
1660		}
1661		rcu_read_unlock();
1662		return -EADDRNOTAVAIL;
1663	default:
1664		return -ENOIOCTLCMD;
1665	}
1666}
1667
1668#ifdef CONFIG_COMPAT
1669struct compat_sioc_sg_req {
1670	struct in_addr src;
1671	struct in_addr grp;
1672	compat_ulong_t pktcnt;
1673	compat_ulong_t bytecnt;
1674	compat_ulong_t wrong_if;
1675};
1676
1677struct compat_sioc_vif_req {
1678	vifi_t	vifi;		/* Which iface */
1679	compat_ulong_t icount;
1680	compat_ulong_t ocount;
1681	compat_ulong_t ibytes;
1682	compat_ulong_t obytes;
1683};
1684
1685int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1686{
1687	struct compat_sioc_sg_req sr;
1688	struct compat_sioc_vif_req vr;
1689	struct vif_device *vif;
1690	struct mfc_cache *c;
1691	struct net *net = sock_net(sk);
1692	struct mr_table *mrt;
1693
1694	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1695	if (!mrt)
1696		return -ENOENT;
1697
1698	switch (cmd) {
1699	case SIOCGETVIFCNT:
1700		if (copy_from_user(&vr, arg, sizeof(vr)))
1701			return -EFAULT;
1702		if (vr.vifi >= mrt->maxvif)
1703			return -EINVAL;
1704		vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1705		rcu_read_lock();
1706		vif = &mrt->vif_table[vr.vifi];
1707		if (VIF_EXISTS(mrt, vr.vifi)) {
1708			vr.icount = READ_ONCE(vif->pkt_in);
1709			vr.ocount = READ_ONCE(vif->pkt_out);
1710			vr.ibytes = READ_ONCE(vif->bytes_in);
1711			vr.obytes = READ_ONCE(vif->bytes_out);
1712			rcu_read_unlock();
1713
1714			if (copy_to_user(arg, &vr, sizeof(vr)))
1715				return -EFAULT;
1716			return 0;
1717		}
1718		rcu_read_unlock();
1719		return -EADDRNOTAVAIL;
1720	case SIOCGETSGCNT:
1721		if (copy_from_user(&sr, arg, sizeof(sr)))
1722			return -EFAULT;
1723
1724		rcu_read_lock();
1725		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1726		if (c) {
1727			sr.pktcnt = c->_c.mfc_un.res.pkt;
1728			sr.bytecnt = c->_c.mfc_un.res.bytes;
1729			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1730			rcu_read_unlock();
1731
1732			if (copy_to_user(arg, &sr, sizeof(sr)))
1733				return -EFAULT;
1734			return 0;
1735		}
1736		rcu_read_unlock();
1737		return -EADDRNOTAVAIL;
1738	default:
1739		return -ENOIOCTLCMD;
1740	}
1741}
1742#endif
1743
1744static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1745{
1746	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1747	struct net *net = dev_net(dev);
1748	struct mr_table *mrt;
1749	struct vif_device *v;
1750	int ct;
1751
1752	if (event != NETDEV_UNREGISTER)
1753		return NOTIFY_DONE;
1754
1755	ipmr_for_each_table(mrt, net) {
1756		v = &mrt->vif_table[0];
1757		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1758			if (rcu_access_pointer(v->dev) == dev)
1759				vif_delete(mrt, ct, 1, NULL);
1760		}
1761	}
1762	return NOTIFY_DONE;
1763}
1764
1765static struct notifier_block ip_mr_notifier = {
1766	.notifier_call = ipmr_device_event,
1767};
1768
1769/* Encapsulate a packet by attaching a valid IPIP header to it.
1770 * This avoids tunnel drivers and other mess and gives us the speed so
1771 * important for multicast video.
1772 */
1773static void ip_encap(struct net *net, struct sk_buff *skb,
1774		     __be32 saddr, __be32 daddr)
1775{
1776	struct iphdr *iph;
1777	const struct iphdr *old_iph = ip_hdr(skb);
1778
1779	skb_push(skb, sizeof(struct iphdr));
1780	skb->transport_header = skb->network_header;
1781	skb_reset_network_header(skb);
1782	iph = ip_hdr(skb);
1783
1784	iph->version	=	4;
1785	iph->tos	=	old_iph->tos;
1786	iph->ttl	=	old_iph->ttl;
1787	iph->frag_off	=	0;
1788	iph->daddr	=	daddr;
1789	iph->saddr	=	saddr;
1790	iph->protocol	=	IPPROTO_IPIP;
1791	iph->ihl	=	5;
1792	iph->tot_len	=	htons(skb->len);
1793	ip_select_ident(net, skb, NULL);
1794	ip_send_check(iph);
1795
1796	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1797	nf_reset_ct(skb);
1798}
1799
1800static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1801				      struct sk_buff *skb)
1802{
1803	struct ip_options *opt = &(IPCB(skb)->opt);
1804
1805	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
 
1806
1807	if (unlikely(opt->optlen))
1808		ip_forward_options(skb);
1809
1810	return dst_output(net, sk, skb);
1811}
1812
1813#ifdef CONFIG_NET_SWITCHDEV
1814static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1815				   int in_vifi, int out_vifi)
1816{
1817	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1818	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1819
1820	if (!skb->offload_l3_fwd_mark)
1821		return false;
1822	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1823		return false;
1824	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1825					&in_vif->dev_parent_id);
1826}
1827#else
1828static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1829				   int in_vifi, int out_vifi)
1830{
1831	return false;
1832}
1833#endif
1834
1835/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1836
1837static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1838			    int in_vifi, struct sk_buff *skb, int vifi)
1839{
1840	const struct iphdr *iph = ip_hdr(skb);
1841	struct vif_device *vif = &mrt->vif_table[vifi];
1842	struct net_device *vif_dev;
1843	struct net_device *dev;
1844	struct rtable *rt;
1845	struct flowi4 fl4;
1846	int    encap = 0;
1847
1848	vif_dev = vif_dev_read(vif);
1849	if (!vif_dev)
1850		goto out_free;
1851
1852	if (vif->flags & VIFF_REGISTER) {
1853		WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1854		WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1855		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1856		DEV_STATS_INC(vif_dev, tx_packets);
1857		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1858		goto out_free;
1859	}
1860
1861	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1862		goto out_free;
1863
1864	if (vif->flags & VIFF_TUNNEL) {
1865		rt = ip_route_output_ports(net, &fl4, NULL,
1866					   vif->remote, vif->local,
1867					   0, 0,
1868					   IPPROTO_IPIP,
1869					   RT_TOS(iph->tos), vif->link);
1870		if (IS_ERR(rt))
1871			goto out_free;
1872		encap = sizeof(struct iphdr);
1873	} else {
1874		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1875					   0, 0,
1876					   IPPROTO_IPIP,
1877					   RT_TOS(iph->tos), vif->link);
1878		if (IS_ERR(rt))
1879			goto out_free;
1880	}
1881
1882	dev = rt->dst.dev;
1883
1884	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1885		/* Do not fragment multicasts. Alas, IPv4 does not
1886		 * allow to send ICMP, so that packets will disappear
1887		 * to blackhole.
1888		 */
1889		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1890		ip_rt_put(rt);
1891		goto out_free;
1892	}
1893
1894	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1895
1896	if (skb_cow(skb, encap)) {
1897		ip_rt_put(rt);
1898		goto out_free;
1899	}
1900
1901	WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1902	WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1903
1904	skb_dst_drop(skb);
1905	skb_dst_set(skb, &rt->dst);
1906	ip_decrease_ttl(ip_hdr(skb));
1907
1908	/* FIXME: forward and output firewalls used to be called here.
1909	 * What do we do with netfilter? -- RR
1910	 */
1911	if (vif->flags & VIFF_TUNNEL) {
1912		ip_encap(net, skb, vif->local, vif->remote);
1913		/* FIXME: extra output firewall step used to be here. --RR */
1914		DEV_STATS_INC(vif_dev, tx_packets);
1915		DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1916	}
1917
1918	IPCB(skb)->flags |= IPSKB_FORWARDED;
1919
1920	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1921	 * not only before forwarding, but after forwarding on all output
1922	 * interfaces. It is clear, if mrouter runs a multicasting
1923	 * program, it should receive packets not depending to what interface
1924	 * program is joined.
1925	 * If we will not make it, the program will have to join on all
1926	 * interfaces. On the other hand, multihoming host (or router, but
1927	 * not mrouter) cannot join to more than one interface - it will
1928	 * result in receiving multiple packets.
1929	 */
1930	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1931		net, NULL, skb, skb->dev, dev,
1932		ipmr_forward_finish);
1933	return;
1934
1935out_free:
1936	kfree_skb(skb);
1937}
1938
1939/* Called with mrt_lock or rcu_read_lock() */
1940static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1941{
1942	int ct;
1943	/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1944	for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1945		if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1946			break;
1947	}
1948	return ct;
1949}
1950
1951/* "local" means that we should preserve one skb (for local delivery) */
1952/* Called uner rcu_read_lock() */
1953static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1954			  struct net_device *dev, struct sk_buff *skb,
1955			  struct mfc_cache *c, int local)
1956{
1957	int true_vifi = ipmr_find_vif(mrt, dev);
1958	int psend = -1;
1959	int vif, ct;
 
1960
1961	vif = c->_c.mfc_parent;
1962	c->_c.mfc_un.res.pkt++;
1963	c->_c.mfc_un.res.bytes += skb->len;
1964	c->_c.mfc_un.res.lastuse = jiffies;
1965
1966	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1967		struct mfc_cache *cache_proxy;
1968
1969		/* For an (*,G) entry, we only check that the incoming
1970		 * interface is part of the static tree.
1971		 */
1972		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1973		if (cache_proxy &&
1974		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1975			goto forward;
1976	}
1977
1978	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1979	if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
1980		if (rt_is_output_route(skb_rtable(skb))) {
1981			/* It is our own packet, looped back.
1982			 * Very complicated situation...
1983			 *
1984			 * The best workaround until routing daemons will be
1985			 * fixed is not to redistribute packet, if it was
1986			 * send through wrong interface. It means, that
1987			 * multicast applications WILL NOT work for
1988			 * (S,G), which have default multicast route pointing
1989			 * to wrong oif. In any case, it is not a good
1990			 * idea to use multicasting applications on router.
1991			 */
1992			goto dont_forward;
1993		}
1994
1995		c->_c.mfc_un.res.wrong_if++;
1996
1997		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1998		    /* pimsm uses asserts, when switching from RPT to SPT,
1999		     * so that we cannot check that packet arrived on an oif.
2000		     * It is bad, but otherwise we would need to move pretty
2001		     * large chunk of pimd to kernel. Ough... --ANK
2002		     */
2003		    (mrt->mroute_do_pim ||
2004		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2005		    time_after(jiffies,
2006			       c->_c.mfc_un.res.last_assert +
2007			       MFC_ASSERT_THRESH)) {
2008			c->_c.mfc_un.res.last_assert = jiffies;
2009			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2010			if (mrt->mroute_do_wrvifwhole)
2011				ipmr_cache_report(mrt, skb, true_vifi,
2012						  IGMPMSG_WRVIFWHOLE);
2013		}
2014		goto dont_forward;
2015	}
2016
2017forward:
2018	WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2019		   mrt->vif_table[vif].pkt_in + 1);
2020	WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2021		   mrt->vif_table[vif].bytes_in + skb->len);
2022
2023	/* Forward the frame */
2024	if (c->mfc_origin == htonl(INADDR_ANY) &&
2025	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2026		if (true_vifi >= 0 &&
2027		    true_vifi != c->_c.mfc_parent &&
2028		    ip_hdr(skb)->ttl >
2029				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2030			/* It's an (*,*) entry and the packet is not coming from
2031			 * the upstream: forward the packet to the upstream
2032			 * only.
2033			 */
2034			psend = c->_c.mfc_parent;
2035			goto last_forward;
2036		}
2037		goto dont_forward;
2038	}
2039	for (ct = c->_c.mfc_un.res.maxvif - 1;
2040	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2041		/* For (*,G) entry, don't forward to the incoming interface */
2042		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2043		     ct != true_vifi) &&
2044		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2045			if (psend != -1) {
2046				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2047
2048				if (skb2)
2049					ipmr_queue_xmit(net, mrt, true_vifi,
2050							skb2, psend);
2051			}
2052			psend = ct;
2053		}
2054	}
2055last_forward:
2056	if (psend != -1) {
2057		if (local) {
2058			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2059
2060			if (skb2)
2061				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2062						psend);
2063		} else {
2064			ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2065			return;
2066		}
2067	}
2068
2069dont_forward:
2070	if (!local)
2071		kfree_skb(skb);
2072}
2073
2074static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2075{
2076	struct rtable *rt = skb_rtable(skb);
2077	struct iphdr *iph = ip_hdr(skb);
2078	struct flowi4 fl4 = {
2079		.daddr = iph->daddr,
2080		.saddr = iph->saddr,
2081		.flowi4_tos = RT_TOS(iph->tos),
2082		.flowi4_oif = (rt_is_output_route(rt) ?
2083			       skb->dev->ifindex : 0),
2084		.flowi4_iif = (rt_is_output_route(rt) ?
2085			       LOOPBACK_IFINDEX :
2086			       skb->dev->ifindex),
2087		.flowi4_mark = skb->mark,
2088	};
2089	struct mr_table *mrt;
2090	int err;
2091
2092	err = ipmr_fib_lookup(net, &fl4, &mrt);
2093	if (err)
2094		return ERR_PTR(err);
2095	return mrt;
2096}
2097
2098/* Multicast packets for forwarding arrive here
2099 * Called with rcu_read_lock();
2100 */
2101int ip_mr_input(struct sk_buff *skb)
2102{
2103	struct mfc_cache *cache;
2104	struct net *net = dev_net(skb->dev);
2105	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2106	struct mr_table *mrt;
2107	struct net_device *dev;
2108
2109	/* skb->dev passed in is the loX master dev for vrfs.
2110	 * As there are no vifs associated with loopback devices,
2111	 * get the proper interface that does have a vif associated with it.
2112	 */
2113	dev = skb->dev;
2114	if (netif_is_l3_master(skb->dev)) {
2115		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2116		if (!dev) {
2117			kfree_skb(skb);
2118			return -ENODEV;
2119		}
2120	}
2121
2122	/* Packet is looped back after forward, it should not be
2123	 * forwarded second time, but still can be delivered locally.
2124	 */
2125	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2126		goto dont_forward;
2127
2128	mrt = ipmr_rt_fib_lookup(net, skb);
2129	if (IS_ERR(mrt)) {
2130		kfree_skb(skb);
2131		return PTR_ERR(mrt);
2132	}
2133	if (!local) {
2134		if (IPCB(skb)->opt.router_alert) {
2135			if (ip_call_ra_chain(skb))
2136				return 0;
2137		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2138			/* IGMPv1 (and broken IGMPv2 implementations sort of
2139			 * Cisco IOS <= 11.2(8)) do not put router alert
2140			 * option to IGMP packets destined to routable
2141			 * groups. It is very bad, because it means
2142			 * that we can forward NO IGMP messages.
2143			 */
2144			struct sock *mroute_sk;
2145
2146			mroute_sk = rcu_dereference(mrt->mroute_sk);
2147			if (mroute_sk) {
2148				nf_reset_ct(skb);
2149				raw_rcv(mroute_sk, skb);
2150				return 0;
2151			}
2152		}
2153	}
2154
2155	/* already under rcu_read_lock() */
2156	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2157	if (!cache) {
2158		int vif = ipmr_find_vif(mrt, dev);
2159
2160		if (vif >= 0)
2161			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2162						    vif);
2163	}
2164
2165	/* No usable cache entry */
2166	if (!cache) {
2167		int vif;
2168
2169		if (local) {
2170			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2171			ip_local_deliver(skb);
2172			if (!skb2)
2173				return -ENOBUFS;
2174			skb = skb2;
2175		}
2176
2177		vif = ipmr_find_vif(mrt, dev);
2178		if (vif >= 0)
2179			return ipmr_cache_unresolved(mrt, vif, skb, dev);
 
 
 
 
 
 
2180		kfree_skb(skb);
2181		return -ENODEV;
2182	}
2183
2184	ip_mr_forward(net, mrt, dev, skb, cache, local);
 
 
2185
2186	if (local)
2187		return ip_local_deliver(skb);
2188
2189	return 0;
2190
2191dont_forward:
2192	if (local)
2193		return ip_local_deliver(skb);
2194	kfree_skb(skb);
2195	return 0;
2196}
2197
2198#ifdef CONFIG_IP_PIMSM_V1
2199/* Handle IGMP messages of PIMv1 */
2200int pim_rcv_v1(struct sk_buff *skb)
2201{
2202	struct igmphdr *pim;
2203	struct net *net = dev_net(skb->dev);
2204	struct mr_table *mrt;
2205
2206	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2207		goto drop;
2208
2209	pim = igmp_hdr(skb);
2210
2211	mrt = ipmr_rt_fib_lookup(net, skb);
2212	if (IS_ERR(mrt))
2213		goto drop;
2214	if (!mrt->mroute_do_pim ||
2215	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2216		goto drop;
2217
2218	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2219drop:
2220		kfree_skb(skb);
2221	}
2222	return 0;
2223}
2224#endif
2225
2226#ifdef CONFIG_IP_PIMSM_V2
2227static int pim_rcv(struct sk_buff *skb)
2228{
2229	struct pimreghdr *pim;
2230	struct net *net = dev_net(skb->dev);
2231	struct mr_table *mrt;
2232
2233	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2234		goto drop;
2235
2236	pim = (struct pimreghdr *)skb_transport_header(skb);
2237	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2238	    (pim->flags & PIM_NULL_REGISTER) ||
2239	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2240	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2241		goto drop;
2242
2243	mrt = ipmr_rt_fib_lookup(net, skb);
2244	if (IS_ERR(mrt))
2245		goto drop;
2246	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2247drop:
2248		kfree_skb(skb);
2249	}
2250	return 0;
2251}
2252#endif
2253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254int ipmr_get_route(struct net *net, struct sk_buff *skb,
2255		   __be32 saddr, __be32 daddr,
2256		   struct rtmsg *rtm, u32 portid)
2257{
2258	struct mfc_cache *cache;
2259	struct mr_table *mrt;
2260	int err;
2261
2262	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2263	if (!mrt)
2264		return -ENOENT;
2265
2266	rcu_read_lock();
2267	cache = ipmr_cache_find(mrt, saddr, daddr);
2268	if (!cache && skb->dev) {
2269		int vif = ipmr_find_vif(mrt, skb->dev);
2270
2271		if (vif >= 0)
2272			cache = ipmr_cache_find_any(mrt, daddr, vif);
2273	}
2274	if (!cache) {
2275		struct sk_buff *skb2;
2276		struct iphdr *iph;
2277		struct net_device *dev;
2278		int vif = -1;
2279
 
 
 
 
 
2280		dev = skb->dev;
 
2281		if (dev)
2282			vif = ipmr_find_vif(mrt, dev);
2283		if (vif < 0) {
 
2284			rcu_read_unlock();
2285			return -ENODEV;
2286		}
2287
2288		skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2289		if (!skb2) {
 
2290			rcu_read_unlock();
2291			return -ENOMEM;
2292		}
2293
2294		NETLINK_CB(skb2).portid = portid;
2295		skb_push(skb2, sizeof(struct iphdr));
2296		skb_reset_network_header(skb2);
2297		iph = ip_hdr(skb2);
2298		iph->ihl = sizeof(struct iphdr) >> 2;
2299		iph->saddr = saddr;
2300		iph->daddr = daddr;
2301		iph->version = 0;
2302		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
 
2303		rcu_read_unlock();
2304		return err;
2305	}
2306
2307	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
 
 
2308	rcu_read_unlock();
2309	return err;
2310}
2311
2312static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2313			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2314			    int flags)
2315{
2316	struct nlmsghdr *nlh;
2317	struct rtmsg *rtm;
2318	int err;
2319
2320	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2321	if (!nlh)
2322		return -EMSGSIZE;
2323
2324	rtm = nlmsg_data(nlh);
2325	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2326	rtm->rtm_dst_len  = 32;
2327	rtm->rtm_src_len  = 32;
2328	rtm->rtm_tos      = 0;
2329	rtm->rtm_table    = mrt->id;
2330	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2331		goto nla_put_failure;
2332	rtm->rtm_type     = RTN_MULTICAST;
2333	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2334	if (c->_c.mfc_flags & MFC_STATIC)
2335		rtm->rtm_protocol = RTPROT_STATIC;
2336	else
2337		rtm->rtm_protocol = RTPROT_MROUTED;
2338	rtm->rtm_flags    = 0;
2339
2340	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2341	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2342		goto nla_put_failure;
2343	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2344	/* do not break the dump if cache is unresolved */
2345	if (err < 0 && err != -ENOENT)
2346		goto nla_put_failure;
2347
2348	nlmsg_end(skb, nlh);
2349	return 0;
2350
2351nla_put_failure:
2352	nlmsg_cancel(skb, nlh);
2353	return -EMSGSIZE;
2354}
2355
2356static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2357			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2358			     int flags)
2359{
2360	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2361				cmd, flags);
2362}
2363
2364static size_t mroute_msgsize(bool unresolved, int maxvif)
2365{
2366	size_t len =
2367		NLMSG_ALIGN(sizeof(struct rtmsg))
2368		+ nla_total_size(4)	/* RTA_TABLE */
2369		+ nla_total_size(4)	/* RTA_SRC */
2370		+ nla_total_size(4)	/* RTA_DST */
2371		;
2372
2373	if (!unresolved)
2374		len = len
2375		      + nla_total_size(4)	/* RTA_IIF */
2376		      + nla_total_size(0)	/* RTA_MULTIPATH */
2377		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2378						/* RTA_MFC_STATS */
2379		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2380		;
2381
2382	return len;
2383}
2384
2385static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2386				 int cmd)
2387{
2388	struct net *net = read_pnet(&mrt->net);
2389	struct sk_buff *skb;
2390	int err = -ENOBUFS;
2391
2392	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2393				       mrt->maxvif),
2394			GFP_ATOMIC);
2395	if (!skb)
2396		goto errout;
2397
2398	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2399	if (err < 0)
2400		goto errout;
2401
2402	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2403	return;
2404
2405errout:
2406	kfree_skb(skb);
2407	if (err < 0)
2408		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2409}
2410
2411static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2412{
2413	size_t len =
2414		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2415		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2416		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2417		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2418		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2419		+ nla_total_size(4)	/* IPMRA_CREPORT_TABLE */
2420					/* IPMRA_CREPORT_PKT */
2421		+ nla_total_size(payloadlen)
2422		;
2423
2424	return len;
2425}
 
2426
2427static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2428{
2429	struct net *net = read_pnet(&mrt->net);
2430	struct nlmsghdr *nlh;
2431	struct rtgenmsg *rtgenm;
2432	struct igmpmsg *msg;
2433	struct sk_buff *skb;
2434	struct nlattr *nla;
2435	int payloadlen;
2436
2437	payloadlen = pkt->len - sizeof(struct igmpmsg);
2438	msg = (struct igmpmsg *)skb_network_header(pkt);
2439
2440	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2441	if (!skb)
2442		goto errout;
2443
2444	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2445			sizeof(struct rtgenmsg), 0);
2446	if (!nlh)
2447		goto errout;
2448	rtgenm = nlmsg_data(nlh);
2449	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2450	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2451	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2452	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2453			    msg->im_src.s_addr) ||
2454	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2455			    msg->im_dst.s_addr) ||
2456	    nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2457		goto nla_put_failure;
2458
2459	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2460	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2461				  nla_data(nla), payloadlen))
2462		goto nla_put_failure;
2463
2464	nlmsg_end(skb, nlh);
2465
2466	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2467	return;
2468
2469nla_put_failure:
2470	nlmsg_cancel(skb, nlh);
2471errout:
2472	kfree_skb(skb);
2473	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2474}
2475
2476static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2477				       const struct nlmsghdr *nlh,
2478				       struct nlattr **tb,
2479				       struct netlink_ext_ack *extack)
2480{
2481	struct rtmsg *rtm;
2482	int i, err;
2483
2484	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2485		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2486		return -EINVAL;
2487	}
2488
2489	if (!netlink_strict_get_check(skb))
2490		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2491					      rtm_ipv4_policy, extack);
2492
2493	rtm = nlmsg_data(nlh);
2494	if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2495	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2496	    rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2497	    rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2498		NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2499		return -EINVAL;
2500	}
2501
2502	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2503					    rtm_ipv4_policy, extack);
2504	if (err)
2505		return err;
2506
2507	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2508	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2509		NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2510		return -EINVAL;
2511	}
2512
2513	for (i = 0; i <= RTA_MAX; i++) {
2514		if (!tb[i])
2515			continue;
2516
2517		switch (i) {
2518		case RTA_SRC:
2519		case RTA_DST:
2520		case RTA_TABLE:
2521			break;
2522		default:
2523			NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2524			return -EINVAL;
2525		}
 
 
 
 
 
2526	}
2527
2528	return 0;
2529}
2530
2531static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2532			     struct netlink_ext_ack *extack)
2533{
2534	struct net *net = sock_net(in_skb->sk);
2535	struct nlattr *tb[RTA_MAX + 1];
2536	struct sk_buff *skb = NULL;
2537	struct mfc_cache *cache;
2538	struct mr_table *mrt;
2539	__be32 src, grp;
2540	u32 tableid;
2541	int err;
2542
2543	err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2544	if (err < 0)
2545		goto errout;
2546
2547	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2548	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2549	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2550
2551	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2552	if (!mrt) {
2553		err = -ENOENT;
2554		goto errout_free;
2555	}
2556
2557	/* entries are added/deleted only under RTNL */
2558	rcu_read_lock();
2559	cache = ipmr_cache_find(mrt, src, grp);
2560	rcu_read_unlock();
2561	if (!cache) {
2562		err = -ENOENT;
2563		goto errout_free;
2564	}
2565
2566	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2567	if (!skb) {
2568		err = -ENOBUFS;
2569		goto errout_free;
2570	}
2571
2572	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2573			       nlh->nlmsg_seq, cache,
2574			       RTM_NEWROUTE, 0);
2575	if (err < 0)
2576		goto errout_free;
2577
2578	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2579
2580errout:
2581	return err;
2582
2583errout_free:
2584	kfree_skb(skb);
2585	goto errout;
2586}
2587
2588static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2589{
2590	struct fib_dump_filter filter = {};
2591	int err;
2592
2593	if (cb->strict_check) {
2594		err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2595					    &filter, cb);
2596		if (err < 0)
2597			return err;
2598	}
2599
2600	if (filter.table_id) {
2601		struct mr_table *mrt;
2602
2603		mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2604		if (!mrt) {
2605			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2606				return skb->len;
2607
2608			NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2609			return -ENOENT;
2610		}
2611		err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2612				    &mfc_unres_lock, &filter);
2613		return skb->len ? : err;
2614	}
2615
2616	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2617				_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2618}
2619
2620static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2621	[RTA_SRC]	= { .type = NLA_U32 },
2622	[RTA_DST]	= { .type = NLA_U32 },
2623	[RTA_IIF]	= { .type = NLA_U32 },
2624	[RTA_TABLE]	= { .type = NLA_U32 },
2625	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2626};
2627
2628static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2629{
2630	switch (rtm_protocol) {
2631	case RTPROT_STATIC:
2632	case RTPROT_MROUTED:
2633		return true;
2634	}
2635	return false;
2636}
2637
2638static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2639{
2640	struct rtnexthop *rtnh = nla_data(nla);
2641	int remaining = nla_len(nla), vifi = 0;
2642
2643	while (rtnh_ok(rtnh, remaining)) {
2644		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2645		if (++vifi == MAXVIFS)
2646			break;
2647		rtnh = rtnh_next(rtnh, &remaining);
2648	}
2649
2650	return remaining > 0 ? -EINVAL : vifi;
2651}
2652
2653/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2654static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2655			    struct mfcctl *mfcc, int *mrtsock,
2656			    struct mr_table **mrtret,
2657			    struct netlink_ext_ack *extack)
2658{
2659	struct net_device *dev = NULL;
2660	u32 tblid = RT_TABLE_DEFAULT;
2661	struct mr_table *mrt;
2662	struct nlattr *attr;
2663	struct rtmsg *rtm;
2664	int ret, rem;
2665
2666	ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2667					rtm_ipmr_policy, extack);
2668	if (ret < 0)
2669		goto out;
2670	rtm = nlmsg_data(nlh);
2671
2672	ret = -EINVAL;
2673	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2674	    rtm->rtm_type != RTN_MULTICAST ||
2675	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2676	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2677		goto out;
2678
2679	memset(mfcc, 0, sizeof(*mfcc));
2680	mfcc->mfcc_parent = -1;
2681	ret = 0;
2682	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2683		switch (nla_type(attr)) {
2684		case RTA_SRC:
2685			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2686			break;
2687		case RTA_DST:
2688			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2689			break;
2690		case RTA_IIF:
2691			dev = __dev_get_by_index(net, nla_get_u32(attr));
2692			if (!dev) {
2693				ret = -ENODEV;
2694				goto out;
2695			}
2696			break;
2697		case RTA_MULTIPATH:
2698			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2699				ret = -EINVAL;
2700				goto out;
2701			}
2702			break;
2703		case RTA_PREFSRC:
2704			ret = 1;
2705			break;
2706		case RTA_TABLE:
2707			tblid = nla_get_u32(attr);
2708			break;
2709		}
2710	}
2711	mrt = ipmr_get_table(net, tblid);
2712	if (!mrt) {
2713		ret = -ENOENT;
2714		goto out;
2715	}
2716	*mrtret = mrt;
2717	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2718	if (dev)
2719		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2720
2721out:
2722	return ret;
2723}
2724
2725/* takes care of both newroute and delroute */
2726static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2727			  struct netlink_ext_ack *extack)
2728{
2729	struct net *net = sock_net(skb->sk);
2730	int ret, mrtsock, parent;
2731	struct mr_table *tbl;
2732	struct mfcctl mfcc;
2733
2734	mrtsock = 0;
2735	tbl = NULL;
2736	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2737	if (ret < 0)
2738		return ret;
2739
2740	parent = ret ? mfcc.mfcc_parent : -1;
2741	if (nlh->nlmsg_type == RTM_NEWROUTE)
2742		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2743	else
2744		return ipmr_mfc_delete(tbl, &mfcc, parent);
2745}
2746
2747static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2748{
2749	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
 
 
 
 
 
 
2750
2751	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2752	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2753	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2754			mrt->mroute_reg_vif_num) ||
2755	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2756		       mrt->mroute_do_assert) ||
2757	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2758	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2759		       mrt->mroute_do_wrvifwhole))
2760		return false;
2761
2762	return true;
2763}
2764
2765static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2766{
2767	struct net_device *vif_dev;
2768	struct nlattr *vif_nest;
2769	struct vif_device *vif;
2770
2771	vif = &mrt->vif_table[vifid];
2772	vif_dev = rtnl_dereference(vif->dev);
2773	/* if the VIF doesn't exist just continue */
2774	if (!vif_dev)
2775		return true;
2776
2777	vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2778	if (!vif_nest)
2779		return false;
2780
2781	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2782	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2783	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2784	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2785			      IPMRA_VIFA_PAD) ||
2786	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2787			      IPMRA_VIFA_PAD) ||
2788	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2789			      IPMRA_VIFA_PAD) ||
2790	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2791			      IPMRA_VIFA_PAD) ||
2792	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2793	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2794		nla_nest_cancel(skb, vif_nest);
2795		return false;
2796	}
2797	nla_nest_end(skb, vif_nest);
2798
2799	return true;
2800}
2801
2802static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2803			       struct netlink_ext_ack *extack)
2804{
2805	struct ifinfomsg *ifm;
2806
2807	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2808		NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2809		return -EINVAL;
2810	}
2811
2812	if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2813		NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2814		return -EINVAL;
2815	}
2816
2817	ifm = nlmsg_data(nlh);
2818	if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2819	    ifm->ifi_change || ifm->ifi_index) {
2820		NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2821		return -EINVAL;
2822	}
2823
2824	return 0;
2825}
2826
2827static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2828{
2829	struct net *net = sock_net(skb->sk);
2830	struct nlmsghdr *nlh = NULL;
2831	unsigned int t = 0, s_t;
2832	unsigned int e = 0, s_e;
2833	struct mr_table *mrt;
2834
2835	if (cb->strict_check) {
2836		int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
 
2837
2838		if (err < 0)
2839			return err;
2840	}
2841
2842	s_t = cb->args[0];
2843	s_e = cb->args[1];
2844
2845	ipmr_for_each_table(mrt, net) {
2846		struct nlattr *vifs, *af;
2847		struct ifinfomsg *hdr;
2848		u32 i;
2849
2850		if (t < s_t)
2851			goto skip_table;
2852		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2853				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2854				sizeof(*hdr), NLM_F_MULTI);
2855		if (!nlh)
2856			break;
2857
2858		hdr = nlmsg_data(nlh);
2859		memset(hdr, 0, sizeof(*hdr));
2860		hdr->ifi_family = RTNL_FAMILY_IPMR;
2861
2862		af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2863		if (!af) {
2864			nlmsg_cancel(skb, nlh);
2865			goto out;
2866		}
2867
2868		if (!ipmr_fill_table(mrt, skb)) {
2869			nlmsg_cancel(skb, nlh);
2870			goto out;
2871		}
2872
2873		vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2874		if (!vifs) {
2875			nla_nest_end(skb, af);
2876			nlmsg_end(skb, nlh);
2877			goto out;
2878		}
2879		for (i = 0; i < mrt->maxvif; i++) {
2880			if (e < s_e)
2881				goto skip_entry;
2882			if (!ipmr_fill_vif(mrt, i, skb)) {
2883				nla_nest_end(skb, vifs);
2884				nla_nest_end(skb, af);
2885				nlmsg_end(skb, nlh);
2886				goto out;
2887			}
2888skip_entry:
2889			e++;
2890		}
2891		s_e = 0;
2892		e = 0;
2893		nla_nest_end(skb, vifs);
2894		nla_nest_end(skb, af);
2895		nlmsg_end(skb, nlh);
2896skip_table:
2897		t++;
2898	}
2899
2900out:
2901	cb->args[1] = e;
2902	cb->args[0] = t;
2903
2904	return skb->len;
2905}
2906
2907#ifdef CONFIG_PROC_FS
2908/* The /proc interfaces to multicast routing :
2909 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2910 */
2911
2912static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2913	__acquires(RCU)
2914{
2915	struct mr_vif_iter *iter = seq->private;
2916	struct net *net = seq_file_net(seq);
2917	struct mr_table *mrt;
2918
2919	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2920	if (!mrt)
2921		return ERR_PTR(-ENOENT);
2922
2923	iter->mrt = mrt;
2924
2925	rcu_read_lock();
2926	return mr_vif_seq_start(seq, pos);
 
 
2927}
2928
2929static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2930	__releases(RCU)
2931{
2932	rcu_read_unlock();
2933}
2934
2935static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2936{
2937	struct mr_vif_iter *iter = seq->private;
2938	struct mr_table *mrt = iter->mrt;
2939
2940	if (v == SEQ_START_TOKEN) {
2941		seq_puts(seq,
2942			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2943	} else {
2944		const struct vif_device *vif = v;
2945		const struct net_device *vif_dev;
2946		const char *name;
2947
2948		vif_dev = vif_dev_read(vif);
2949		name = vif_dev ? vif_dev->name : "none";
2950		seq_printf(seq,
2951			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2952			   vif - mrt->vif_table,
2953			   name, vif->bytes_in, vif->pkt_in,
2954			   vif->bytes_out, vif->pkt_out,
2955			   vif->flags, vif->local, vif->remote);
2956	}
2957	return 0;
2958}
2959
2960static const struct seq_operations ipmr_vif_seq_ops = {
2961	.start = ipmr_vif_seq_start,
2962	.next  = mr_vif_seq_next,
2963	.stop  = ipmr_vif_seq_stop,
2964	.show  = ipmr_vif_seq_show,
2965};
2966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2968{
 
2969	struct net *net = seq_file_net(seq);
2970	struct mr_table *mrt;
2971
2972	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2973	if (!mrt)
2974		return ERR_PTR(-ENOENT);
2975
2976	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2977}
2978
2979static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2980{
2981	int n;
2982
2983	if (v == SEQ_START_TOKEN) {
2984		seq_puts(seq,
2985		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2986	} else {
2987		const struct mfc_cache *mfc = v;
2988		const struct mr_mfc_iter *it = seq->private;
2989		const struct mr_table *mrt = it->mrt;
2990
2991		seq_printf(seq, "%08X %08X %-3hd",
2992			   (__force u32) mfc->mfc_mcastgrp,
2993			   (__force u32) mfc->mfc_origin,
2994			   mfc->_c.mfc_parent);
2995
2996		if (it->cache != &mrt->mfc_unres_queue) {
2997			seq_printf(seq, " %8lu %8lu %8lu",
2998				   mfc->_c.mfc_un.res.pkt,
2999				   mfc->_c.mfc_un.res.bytes,
3000				   mfc->_c.mfc_un.res.wrong_if);
3001			for (n = mfc->_c.mfc_un.res.minvif;
3002			     n < mfc->_c.mfc_un.res.maxvif; n++) {
3003				if (VIF_EXISTS(mrt, n) &&
3004				    mfc->_c.mfc_un.res.ttls[n] < 255)
3005					seq_printf(seq,
3006					   " %2d:%-3d",
3007					   n, mfc->_c.mfc_un.res.ttls[n]);
3008			}
3009		} else {
3010			/* unresolved mfc_caches don't contain
3011			 * pkt, bytes and wrong_if values
3012			 */
3013			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3014		}
3015		seq_putc(seq, '\n');
3016	}
3017	return 0;
3018}
3019
3020static const struct seq_operations ipmr_mfc_seq_ops = {
3021	.start = ipmr_mfc_seq_start,
3022	.next  = mr_mfc_seq_next,
3023	.stop  = mr_mfc_seq_stop,
3024	.show  = ipmr_mfc_seq_show,
3025};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3026#endif
3027
3028#ifdef CONFIG_IP_PIMSM_V2
3029static const struct net_protocol pim_protocol = {
3030	.handler	=	pim_rcv,
 
3031};
3032#endif
3033
3034static unsigned int ipmr_seq_read(struct net *net)
3035{
3036	ASSERT_RTNL();
3037
3038	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3039}
3040
3041static int ipmr_dump(struct net *net, struct notifier_block *nb,
3042		     struct netlink_ext_ack *extack)
3043{
3044	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3045		       ipmr_mr_table_iter, extack);
3046}
3047
3048static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3049	.family		= RTNL_FAMILY_IPMR,
3050	.fib_seq_read	= ipmr_seq_read,
3051	.fib_dump	= ipmr_dump,
3052	.owner		= THIS_MODULE,
3053};
3054
3055static int __net_init ipmr_notifier_init(struct net *net)
3056{
3057	struct fib_notifier_ops *ops;
3058
3059	net->ipv4.ipmr_seq = 0;
3060
3061	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3062	if (IS_ERR(ops))
3063		return PTR_ERR(ops);
3064	net->ipv4.ipmr_notifier_ops = ops;
3065
3066	return 0;
3067}
3068
3069static void __net_exit ipmr_notifier_exit(struct net *net)
3070{
3071	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3072	net->ipv4.ipmr_notifier_ops = NULL;
3073}
3074
3075/* Setup for IP multicast routing */
3076static int __net_init ipmr_net_init(struct net *net)
3077{
3078	int err;
3079
3080	err = ipmr_notifier_init(net);
3081	if (err)
3082		goto ipmr_notifier_fail;
3083
3084	err = ipmr_rules_init(net);
3085	if (err < 0)
3086		goto ipmr_rules_fail;
3087
3088#ifdef CONFIG_PROC_FS
3089	err = -ENOMEM;
3090	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3091			sizeof(struct mr_vif_iter)))
3092		goto proc_vif_fail;
3093	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3094			sizeof(struct mr_mfc_iter)))
3095		goto proc_cache_fail;
3096#endif
3097	return 0;
3098
3099#ifdef CONFIG_PROC_FS
3100proc_cache_fail:
3101	remove_proc_entry("ip_mr_vif", net->proc_net);
3102proc_vif_fail:
3103	rtnl_lock();
3104	ipmr_rules_exit(net);
3105	rtnl_unlock();
3106#endif
3107ipmr_rules_fail:
3108	ipmr_notifier_exit(net);
3109ipmr_notifier_fail:
3110	return err;
3111}
3112
3113static void __net_exit ipmr_net_exit(struct net *net)
3114{
3115#ifdef CONFIG_PROC_FS
3116	remove_proc_entry("ip_mr_cache", net->proc_net);
3117	remove_proc_entry("ip_mr_vif", net->proc_net);
3118#endif
3119	ipmr_notifier_exit(net);
3120}
3121
3122static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3123{
3124	struct net *net;
3125
3126	rtnl_lock();
3127	list_for_each_entry(net, net_list, exit_list)
3128		ipmr_rules_exit(net);
3129	rtnl_unlock();
3130}
3131
3132static struct pernet_operations ipmr_net_ops = {
3133	.init = ipmr_net_init,
3134	.exit = ipmr_net_exit,
3135	.exit_batch = ipmr_net_exit_batch,
3136};
3137
3138int __init ip_mr_init(void)
3139{
3140	int err;
3141
3142	mrt_cachep = kmem_cache_create("ip_mrt_cache",
3143				       sizeof(struct mfc_cache),
3144				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3145				       NULL);
3146
3147	err = register_pernet_subsys(&ipmr_net_ops);
3148	if (err)
3149		goto reg_pernet_fail;
3150
3151	err = register_netdevice_notifier(&ip_mr_notifier);
3152	if (err)
3153		goto reg_notif_fail;
3154#ifdef CONFIG_IP_PIMSM_V2
3155	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3156		pr_err("%s: can't add PIM protocol\n", __func__);
3157		err = -EAGAIN;
3158		goto add_proto_fail;
3159	}
3160#endif
3161	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3162		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3163	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3164		      ipmr_rtm_route, NULL, 0);
3165	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3166		      ipmr_rtm_route, NULL, 0);
3167
3168	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3169		      NULL, ipmr_rtm_dumplink, 0);
3170	return 0;
3171
3172#ifdef CONFIG_IP_PIMSM_V2
3173add_proto_fail:
3174	unregister_netdevice_notifier(&ip_mr_notifier);
3175#endif
3176reg_notif_fail:
3177	unregister_pernet_subsys(&ipmr_net_ops);
3178reg_pernet_fail:
3179	kmem_cache_destroy(mrt_cachep);
3180	return err;
3181}