Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
 
 
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
 
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
  31#include <linux/ktime.h>
 
  32
  33#include <asm/uaccess.h>
  34#include <asm/mmu_context.h>
  35#include <asm/pgtable.h>
  36#include <asm/tlbflush.h>
  37#include <asm/io.h>
  38
  39#include "power.h"
  40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41static int swsusp_page_is_free(struct page *);
  42static void swsusp_set_page_forbidden(struct page *);
  43static void swsusp_unset_page_forbidden(struct page *);
  44
  45/*
  46 * Number of bytes to reserve for memory allocations made by device drivers
  47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  48 * cause image creation to fail (tunable via /sys/power/reserved_size).
  49 */
  50unsigned long reserved_size;
  51
  52void __init hibernate_reserved_size_init(void)
  53{
  54	reserved_size = SPARE_PAGES * PAGE_SIZE;
  55}
  56
  57/*
  58 * Preferred image size in bytes (tunable via /sys/power/image_size).
  59 * When it is set to N, swsusp will do its best to ensure the image
  60 * size will not exceed N bytes, but if that is impossible, it will
  61 * try to create the smallest image possible.
  62 */
  63unsigned long image_size;
  64
  65void __init hibernate_image_size_init(void)
  66{
  67	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  68}
  69
  70/* List of PBEs needed for restoring the pages that were allocated before
 
  71 * the suspend and included in the suspend image, but have also been
  72 * allocated by the "resume" kernel, so their contents cannot be written
  73 * directly to their "original" page frames.
  74 */
  75struct pbe *restore_pblist;
  76
  77/* Pointer to an auxiliary buffer (1 page) */
  78static void *buffer;
  79
  80/**
  81 *	@safe_needed - on resume, for storing the PBE list and the image,
  82 *	we can only use memory pages that do not conflict with the pages
  83 *	used before suspend.  The unsafe pages have PageNosaveFree set
  84 *	and we count them using unsafe_pages.
  85 *
  86 *	Each allocated image page is marked as PageNosave and PageNosaveFree
  87 *	so that swsusp_free() can release it.
 
 
 
  88 */
 
 
 
 
  89
  90#define PG_ANY		0
  91#define PG_SAFE		1
  92#define PG_UNSAFE_CLEAR	1
  93#define PG_UNSAFE_KEEP	0
  94
  95static unsigned int allocated_unsafe_pages;
  96
 
 
 
 
 
 
 
 
 
 
 
 
 
  97static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  98{
  99	void *res;
 100
 101	res = (void *)get_zeroed_page(gfp_mask);
 102	if (safe_needed)
 103		while (res && swsusp_page_is_free(virt_to_page(res))) {
 104			/* The page is unsafe, mark it for swsusp_free() */
 105			swsusp_set_page_forbidden(virt_to_page(res));
 106			allocated_unsafe_pages++;
 107			res = (void *)get_zeroed_page(gfp_mask);
 108		}
 109	if (res) {
 110		swsusp_set_page_forbidden(virt_to_page(res));
 111		swsusp_set_page_free(virt_to_page(res));
 112	}
 113	return res;
 114}
 115
 
 
 
 
 
 
 
 
 
 
 
 
 116unsigned long get_safe_page(gfp_t gfp_mask)
 117{
 118	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 119}
 120
 121static struct page *alloc_image_page(gfp_t gfp_mask)
 122{
 123	struct page *page;
 124
 125	page = alloc_page(gfp_mask);
 126	if (page) {
 127		swsusp_set_page_forbidden(page);
 128		swsusp_set_page_free(page);
 129	}
 130	return page;
 131}
 132
 
 
 
 
 
 
 
 
 133/**
 134 *	free_image_page - free page represented by @addr, allocated with
 135 *	get_image_page (page flags set by it must be cleared)
 
 
 
 
 136 */
 137
 138static inline void free_image_page(void *addr, int clear_nosave_free)
 139{
 140	struct page *page;
 141
 142	BUG_ON(!virt_addr_valid(addr));
 143
 144	page = virt_to_page(addr);
 145
 146	swsusp_unset_page_forbidden(page);
 147	if (clear_nosave_free)
 148		swsusp_unset_page_free(page);
 149
 150	__free_page(page);
 151}
 152
 153/* struct linked_page is used to build chains of pages */
 154
 155#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 156
 157struct linked_page {
 158	struct linked_page *next;
 159	char data[LINKED_PAGE_DATA_SIZE];
 160} __packed;
 161
 162static inline void
 163free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 164{
 165	while (list) {
 166		struct linked_page *lp = list->next;
 167
 168		free_image_page(list, clear_page_nosave);
 169		list = lp;
 170	}
 171}
 172
 173/**
 174  *	struct chain_allocator is used for allocating small objects out of
 175  *	a linked list of pages called 'the chain'.
 176  *
 177  *	The chain grows each time when there is no room for a new object in
 178  *	the current page.  The allocated objects cannot be freed individually.
 179  *	It is only possible to free them all at once, by freeing the entire
 180  *	chain.
 181  *
 182  *	NOTE: The chain allocator may be inefficient if the allocated objects
 183  *	are not much smaller than PAGE_SIZE.
 184  */
 185
 186struct chain_allocator {
 187	struct linked_page *chain;	/* the chain */
 188	unsigned int used_space;	/* total size of objects allocated out
 189					 * of the current page
 190					 */
 191	gfp_t gfp_mask;		/* mask for allocating pages */
 192	int safe_needed;	/* if set, only "safe" pages are allocated */
 193};
 194
 195static void
 196chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 197{
 198	ca->chain = NULL;
 199	ca->used_space = LINKED_PAGE_DATA_SIZE;
 200	ca->gfp_mask = gfp_mask;
 201	ca->safe_needed = safe_needed;
 202}
 203
 204static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 205{
 206	void *ret;
 207
 208	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 209		struct linked_page *lp;
 210
 211		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 
 212		if (!lp)
 213			return NULL;
 214
 215		lp->next = ca->chain;
 216		ca->chain = lp;
 217		ca->used_space = 0;
 218	}
 219	ret = ca->chain->data + ca->used_space;
 220	ca->used_space += size;
 221	return ret;
 222}
 223
 224/**
 225 *	Data types related to memory bitmaps.
 226 *
 227 *	Memory bitmap is a structure consiting of many linked lists of
 228 *	objects.  The main list's elements are of type struct zone_bitmap
 229 *	and each of them corresonds to one zone.  For each zone bitmap
 230 *	object there is a list of objects of type struct bm_block that
 231 *	represent each blocks of bitmap in which information is stored.
 232 *
 233 *	struct memory_bitmap contains a pointer to the main list of zone
 234 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 235 *	and a pointer to the list of pages used for allocating all of the
 236 *	zone bitmap objects and bitmap block objects.
 237 *
 238 *	NOTE: It has to be possible to lay out the bitmap in memory
 239 *	using only allocations of order 0.  Additionally, the bitmap is
 240 *	designed to work with arbitrary number of zones (this is over the
 241 *	top for now, but let's avoid making unnecessary assumptions ;-).
 242 *
 243 *	struct zone_bitmap contains a pointer to a list of bitmap block
 244 *	objects and a pointer to the bitmap block object that has been
 245 *	most recently used for setting bits.  Additionally, it contains the
 246 *	pfns that correspond to the start and end of the represented zone.
 247 *
 248 *	struct bm_block contains a pointer to the memory page in which
 249 *	information is stored (in the form of a block of bitmap)
 250 *	It also contains the pfns that correspond to the start and end of
 251 *	the represented memory area.
 252 *
 253 *	The memory bitmap is organized as a radix tree to guarantee fast random
 254 *	access to the bits. There is one radix tree for each zone (as returned
 255 *	from create_mem_extents).
 256 *
 257 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 258 *	two linked lists for the nodes of the tree, one for the inner nodes and
 259 *	one for the leave nodes. The linked leave nodes are used for fast linear
 260 *	access of the memory bitmap.
 261 *
 262 *	The struct rtree_node represents one node of the radix tree.
 263 */
 264
 265#define BM_END_OF_MAP	(~0UL)
 266
 267#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 268#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 269#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 270
 271/*
 272 * struct rtree_node is a wrapper struct to link the nodes
 273 * of the rtree together for easy linear iteration over
 274 * bits and easy freeing
 275 */
 276struct rtree_node {
 277	struct list_head list;
 278	unsigned long *data;
 279};
 280
 281/*
 282 * struct mem_zone_bm_rtree represents a bitmap used for one
 283 * populated memory zone.
 284 */
 285struct mem_zone_bm_rtree {
 286	struct list_head list;		/* Link Zones together         */
 287	struct list_head nodes;		/* Radix Tree inner nodes      */
 288	struct list_head leaves;	/* Radix Tree leaves           */
 289	unsigned long start_pfn;	/* Zone start page frame       */
 290	unsigned long end_pfn;		/* Zone end page frame + 1     */
 291	struct rtree_node *rtree;	/* Radix Tree Root             */
 292	int levels;			/* Number of Radix Tree Levels */
 293	unsigned int blocks;		/* Number of Bitmap Blocks     */
 294};
 295
 296/* strcut bm_position is used for browsing memory bitmaps */
 297
 298struct bm_position {
 299	struct mem_zone_bm_rtree *zone;
 300	struct rtree_node *node;
 301	unsigned long node_pfn;
 
 302	int node_bit;
 303};
 304
 305struct memory_bitmap {
 306	struct list_head zones;
 307	struct linked_page *p_list;	/* list of pages used to store zone
 308					 * bitmap objects and bitmap block
 309					 * objects
 310					 */
 311	struct bm_position cur;	/* most recently used bit position */
 312};
 313
 314/* Functions that operate on memory bitmaps */
 315
 316#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 317#if BITS_PER_LONG == 32
 318#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 319#else
 320#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 321#endif
 322#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 323
 324/*
 325 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 326 *
 327 *	This function is used to allocate inner nodes as well as the
 328 *	leave nodes of the radix tree. It also adds the node to the
 329 *	corresponding linked list passed in by the *list parameter.
 
 
 
 
 330 */
 331static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 332					   struct chain_allocator *ca,
 333					   struct list_head *list)
 334{
 335	struct rtree_node *node;
 336
 337	node = chain_alloc(ca, sizeof(struct rtree_node));
 338	if (!node)
 339		return NULL;
 340
 341	node->data = get_image_page(gfp_mask, safe_needed);
 342	if (!node->data)
 343		return NULL;
 344
 345	list_add_tail(&node->list, list);
 346
 347	return node;
 348}
 349
 350/*
 351 *	add_rtree_block - Add a new leave node to the radix tree
 352 *
 353 *	The leave nodes need to be allocated in order to keep the leaves
 354 *	linked list in order. This is guaranteed by the zone->blocks
 355 *	counter.
 356 */
 357static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 358			   int safe_needed, struct chain_allocator *ca)
 359{
 360	struct rtree_node *node, *block, **dst;
 361	unsigned int levels_needed, block_nr;
 362	int i;
 363
 364	block_nr = zone->blocks;
 365	levels_needed = 0;
 366
 367	/* How many levels do we need for this block nr? */
 368	while (block_nr) {
 369		levels_needed += 1;
 370		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 371	}
 372
 373	/* Make sure the rtree has enough levels */
 374	for (i = zone->levels; i < levels_needed; i++) {
 375		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 376					&zone->nodes);
 377		if (!node)
 378			return -ENOMEM;
 379
 380		node->data[0] = (unsigned long)zone->rtree;
 381		zone->rtree = node;
 382		zone->levels += 1;
 383	}
 384
 385	/* Allocate new block */
 386	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 387	if (!block)
 388		return -ENOMEM;
 389
 390	/* Now walk the rtree to insert the block */
 391	node = zone->rtree;
 392	dst = &zone->rtree;
 393	block_nr = zone->blocks;
 394	for (i = zone->levels; i > 0; i--) {
 395		int index;
 396
 397		if (!node) {
 398			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 399						&zone->nodes);
 400			if (!node)
 401				return -ENOMEM;
 402			*dst = node;
 403		}
 404
 405		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 406		index &= BM_RTREE_LEVEL_MASK;
 407		dst = (struct rtree_node **)&((*dst)->data[index]);
 408		node = *dst;
 409	}
 410
 411	zone->blocks += 1;
 412	*dst = block;
 413
 414	return 0;
 415}
 416
 417static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 418			       int clear_nosave_free);
 419
 420/*
 421 *	create_zone_bm_rtree - create a radix tree for one zone
 422 *
 423 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 424 *	This function also allocated and builds the radix tree for the
 425 *	zone.
 426 */
 427static struct mem_zone_bm_rtree *
 428create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
 429		     struct chain_allocator *ca,
 430		     unsigned long start, unsigned long end)
 
 431{
 432	struct mem_zone_bm_rtree *zone;
 433	unsigned int i, nr_blocks;
 434	unsigned long pages;
 435
 436	pages = end - start;
 437	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 438	if (!zone)
 439		return NULL;
 440
 441	INIT_LIST_HEAD(&zone->nodes);
 442	INIT_LIST_HEAD(&zone->leaves);
 443	zone->start_pfn = start;
 444	zone->end_pfn = end;
 445	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 446
 447	for (i = 0; i < nr_blocks; i++) {
 448		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 449			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 450			return NULL;
 451		}
 452	}
 453
 454	return zone;
 455}
 456
 457/*
 458 *	free_zone_bm_rtree - Free the memory of the radix tree
 459 *
 460 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 461 *	structure itself is not freed here nor are the rtree_node
 462 *	structs.
 463 */
 464static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 465			       int clear_nosave_free)
 466{
 467	struct rtree_node *node;
 468
 469	list_for_each_entry(node, &zone->nodes, list)
 470		free_image_page(node->data, clear_nosave_free);
 471
 472	list_for_each_entry(node, &zone->leaves, list)
 473		free_image_page(node->data, clear_nosave_free);
 474}
 475
 476static void memory_bm_position_reset(struct memory_bitmap *bm)
 477{
 478	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 479				  list);
 480	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 481				  struct rtree_node, list);
 482	bm->cur.node_pfn = 0;
 
 483	bm->cur.node_bit = 0;
 484}
 485
 486static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 487
 488struct mem_extent {
 489	struct list_head hook;
 490	unsigned long start;
 491	unsigned long end;
 492};
 493
 494/**
 495 *	free_mem_extents - free a list of memory extents
 496 *	@list - list of extents to empty
 497 */
 498static void free_mem_extents(struct list_head *list)
 499{
 500	struct mem_extent *ext, *aux;
 501
 502	list_for_each_entry_safe(ext, aux, list, hook) {
 503		list_del(&ext->hook);
 504		kfree(ext);
 505	}
 506}
 507
 508/**
 509 *	create_mem_extents - create a list of memory extents representing
 510 *	                     contiguous ranges of PFNs
 511 *	@list - list to put the extents into
 512 *	@gfp_mask - mask to use for memory allocations
 
 513 */
 514static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 515{
 516	struct zone *zone;
 517
 518	INIT_LIST_HEAD(list);
 519
 520	for_each_populated_zone(zone) {
 521		unsigned long zone_start, zone_end;
 522		struct mem_extent *ext, *cur, *aux;
 523
 524		zone_start = zone->zone_start_pfn;
 525		zone_end = zone_end_pfn(zone);
 526
 527		list_for_each_entry(ext, list, hook)
 528			if (zone_start <= ext->end)
 529				break;
 530
 531		if (&ext->hook == list || zone_end < ext->start) {
 532			/* New extent is necessary */
 533			struct mem_extent *new_ext;
 534
 535			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 536			if (!new_ext) {
 537				free_mem_extents(list);
 538				return -ENOMEM;
 539			}
 540			new_ext->start = zone_start;
 541			new_ext->end = zone_end;
 542			list_add_tail(&new_ext->hook, &ext->hook);
 543			continue;
 544		}
 545
 546		/* Merge this zone's range of PFNs with the existing one */
 547		if (zone_start < ext->start)
 548			ext->start = zone_start;
 549		if (zone_end > ext->end)
 550			ext->end = zone_end;
 551
 552		/* More merging may be possible */
 553		cur = ext;
 554		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 555			if (zone_end < cur->start)
 556				break;
 557			if (zone_end < cur->end)
 558				ext->end = cur->end;
 559			list_del(&cur->hook);
 560			kfree(cur);
 561		}
 562	}
 563
 564	return 0;
 565}
 566
 567/**
 568  *	memory_bm_create - allocate memory for a memory bitmap
 569  */
 570static int
 571memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 572{
 573	struct chain_allocator ca;
 574	struct list_head mem_extents;
 575	struct mem_extent *ext;
 576	int error;
 577
 578	chain_init(&ca, gfp_mask, safe_needed);
 579	INIT_LIST_HEAD(&bm->zones);
 580
 581	error = create_mem_extents(&mem_extents, gfp_mask);
 582	if (error)
 583		return error;
 584
 585	list_for_each_entry(ext, &mem_extents, hook) {
 586		struct mem_zone_bm_rtree *zone;
 587
 588		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 589					    ext->start, ext->end);
 590		if (!zone) {
 591			error = -ENOMEM;
 592			goto Error;
 593		}
 594		list_add_tail(&zone->list, &bm->zones);
 595	}
 596
 597	bm->p_list = ca.chain;
 598	memory_bm_position_reset(bm);
 599 Exit:
 600	free_mem_extents(&mem_extents);
 601	return error;
 602
 603 Error:
 604	bm->p_list = ca.chain;
 605	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 606	goto Exit;
 607}
 608
 609/**
 610  *	memory_bm_free - free memory occupied by the memory bitmap @bm
 611  */
 
 612static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 613{
 614	struct mem_zone_bm_rtree *zone;
 615
 616	list_for_each_entry(zone, &bm->zones, list)
 617		free_zone_bm_rtree(zone, clear_nosave_free);
 618
 619	free_list_of_pages(bm->p_list, clear_nosave_free);
 620
 621	INIT_LIST_HEAD(&bm->zones);
 622}
 623
 624/**
 625 *	memory_bm_find_bit - Find the bit for pfn in the memory
 626 *			     bitmap
 
 
 627 *
 628 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 629 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 630 *	updated.
 631 *	It walks the radix tree to find the page which contains the bit for
 632 *	pfn and returns the bit position in **addr and *bit_nr.
 633 */
 634static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 635			      void **addr, unsigned int *bit_nr)
 636{
 637	struct mem_zone_bm_rtree *curr, *zone;
 638	struct rtree_node *node;
 639	int i, block_nr;
 640
 641	zone = bm->cur.zone;
 642
 643	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 644		goto zone_found;
 645
 646	zone = NULL;
 647
 648	/* Find the right zone */
 649	list_for_each_entry(curr, &bm->zones, list) {
 650		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 651			zone = curr;
 652			break;
 653		}
 654	}
 655
 656	if (!zone)
 657		return -EFAULT;
 658
 659zone_found:
 660	/*
 661	 * We have a zone. Now walk the radix tree to find the leave
 662	 * node for our pfn.
 663	 */
 664
 
 
 
 
 
 665	node = bm->cur.node;
 666	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 
 667		goto node_found;
 668
 669	node      = zone->rtree;
 670	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 671
 672	for (i = zone->levels; i > 0; i--) {
 673		int index;
 674
 675		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 676		index &= BM_RTREE_LEVEL_MASK;
 677		BUG_ON(node->data[index] == 0);
 678		node = (struct rtree_node *)node->data[index];
 679	}
 680
 681node_found:
 682	/* Update last position */
 683	bm->cur.zone = zone;
 684	bm->cur.node = node;
 685	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 
 686
 687	/* Set return values */
 688	*addr = node->data;
 689	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 690
 691	return 0;
 692}
 693
 694static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 695{
 696	void *addr;
 697	unsigned int bit;
 698	int error;
 699
 700	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 701	BUG_ON(error);
 702	set_bit(bit, addr);
 703}
 704
 705static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 706{
 707	void *addr;
 708	unsigned int bit;
 709	int error;
 710
 711	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 712	if (!error)
 713		set_bit(bit, addr);
 714
 715	return error;
 716}
 717
 718static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 719{
 720	void *addr;
 721	unsigned int bit;
 722	int error;
 723
 724	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 725	BUG_ON(error);
 726	clear_bit(bit, addr);
 727}
 728
 729static void memory_bm_clear_current(struct memory_bitmap *bm)
 730{
 731	int bit;
 732
 733	bit = max(bm->cur.node_bit - 1, 0);
 734	clear_bit(bit, bm->cur.node->data);
 735}
 736
 
 
 
 
 
 737static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 738{
 739	void *addr;
 740	unsigned int bit;
 741	int error;
 742
 743	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 744	BUG_ON(error);
 745	return test_bit(bit, addr);
 746}
 747
 748static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 749{
 750	void *addr;
 751	unsigned int bit;
 752
 753	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 754}
 755
 756/*
 757 *	rtree_next_node - Jumps to the next leave node
 758 *
 759 *	Sets the position to the beginning of the next node in the
 760 *	memory bitmap. This is either the next node in the current
 761 *	zone's radix tree or the first node in the radix tree of the
 762 *	next zone.
 763 *
 764 *	Returns true if there is a next node, false otherwise.
 765 */
 766static bool rtree_next_node(struct memory_bitmap *bm)
 767{
 768	bm->cur.node = list_entry(bm->cur.node->list.next,
 769				  struct rtree_node, list);
 770	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
 771		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 772		bm->cur.node_bit  = 0;
 773		touch_softlockup_watchdog();
 774		return true;
 775	}
 776
 777	/* No more nodes, goto next zone */
 778	bm->cur.zone = list_entry(bm->cur.zone->list.next,
 
 779				  struct mem_zone_bm_rtree, list);
 780	if (&bm->cur.zone->list != &bm->zones) {
 781		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 782					  struct rtree_node, list);
 783		bm->cur.node_pfn = 0;
 784		bm->cur.node_bit = 0;
 785		return true;
 786	}
 787
 788	/* No more zones */
 789	return false;
 790}
 791
 792/**
 793 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
 
 794 *
 795 *	Starting from the last returned position this function searches
 796 *	for the next set bit in the memory bitmap and returns its
 797 *	number. If no more bit is set BM_END_OF_MAP is returned.
 798 *
 799 *	It is required to run memory_bm_position_reset() before the
 800 *	first call to this function.
 801 */
 802static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 803{
 804	unsigned long bits, pfn, pages;
 805	int bit;
 806
 807	do {
 808		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 809		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 810		bit	  = find_next_bit(bm->cur.node->data, bits,
 811					  bm->cur.node_bit);
 812		if (bit < bits) {
 813			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 814			bm->cur.node_bit = bit + 1;
 
 815			return pfn;
 816		}
 817	} while (rtree_next_node(bm));
 818
 
 819	return BM_END_OF_MAP;
 820}
 821
 822/**
 823 *	This structure represents a range of page frames the contents of which
 824 *	should not be saved during the suspend.
 825 */
 826
 827struct nosave_region {
 828	struct list_head list;
 829	unsigned long start_pfn;
 830	unsigned long end_pfn;
 831};
 832
 833static LIST_HEAD(nosave_regions);
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835/**
 836 *	register_nosave_region - register a range of page frames the contents
 837 *	of which should not be saved during the suspend (to be used in the early
 838 *	initialization code)
 
 839 */
 840
 841void __init
 842__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 843			 int use_kmalloc)
 844{
 845	struct nosave_region *region;
 846
 847	if (start_pfn >= end_pfn)
 848		return;
 849
 850	if (!list_empty(&nosave_regions)) {
 851		/* Try to extend the previous region (they should be sorted) */
 852		region = list_entry(nosave_regions.prev,
 853					struct nosave_region, list);
 854		if (region->end_pfn == start_pfn) {
 855			region->end_pfn = end_pfn;
 856			goto Report;
 857		}
 858	}
 859	if (use_kmalloc) {
 860		/* during init, this shouldn't fail */
 861		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 862		BUG_ON(!region);
 863	} else
 864		/* This allocation cannot fail */
 865		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 866	region->start_pfn = start_pfn;
 867	region->end_pfn = end_pfn;
 868	list_add_tail(&region->list, &nosave_regions);
 869 Report:
 870	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 871		(unsigned long long) start_pfn << PAGE_SHIFT,
 872		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 873}
 874
 875/*
 876 * Set bits in this map correspond to the page frames the contents of which
 877 * should not be saved during the suspend.
 878 */
 879static struct memory_bitmap *forbidden_pages_map;
 880
 881/* Set bits in this map correspond to free page frames. */
 882static struct memory_bitmap *free_pages_map;
 883
 884/*
 885 * Each page frame allocated for creating the image is marked by setting the
 886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 887 */
 888
 889void swsusp_set_page_free(struct page *page)
 890{
 891	if (free_pages_map)
 892		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 893}
 894
 895static int swsusp_page_is_free(struct page *page)
 896{
 897	return free_pages_map ?
 898		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 899}
 900
 901void swsusp_unset_page_free(struct page *page)
 902{
 903	if (free_pages_map)
 904		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 905}
 906
 907static void swsusp_set_page_forbidden(struct page *page)
 908{
 909	if (forbidden_pages_map)
 910		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 911}
 912
 913int swsusp_page_is_forbidden(struct page *page)
 914{
 915	return forbidden_pages_map ?
 916		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 917}
 918
 919static void swsusp_unset_page_forbidden(struct page *page)
 920{
 921	if (forbidden_pages_map)
 922		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 923}
 924
 925/**
 926 *	mark_nosave_pages - set bits corresponding to the page frames the
 927 *	contents of which should not be saved in a given bitmap.
 
 
 
 928 */
 929
 930static void mark_nosave_pages(struct memory_bitmap *bm)
 931{
 932	struct nosave_region *region;
 933
 934	if (list_empty(&nosave_regions))
 935		return;
 936
 937	list_for_each_entry(region, &nosave_regions, list) {
 938		unsigned long pfn;
 939
 940		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 941			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 942			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 943				- 1);
 944
 945		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 946			if (pfn_valid(pfn)) {
 947				/*
 948				 * It is safe to ignore the result of
 949				 * mem_bm_set_bit_check() here, since we won't
 950				 * touch the PFNs for which the error is
 951				 * returned anyway.
 952				 */
 953				mem_bm_set_bit_check(bm, pfn);
 954			}
 955	}
 956}
 957
 958/**
 959 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 960 *	frames that should not be saved and free page frames.  The pointers
 961 *	forbidden_pages_map and free_pages_map are only modified if everything
 962 *	goes well, because we don't want the bits to be used before both bitmaps
 963 *	are set up.
 
 964 */
 965
 966int create_basic_memory_bitmaps(void)
 967{
 968	struct memory_bitmap *bm1, *bm2;
 969	int error = 0;
 970
 971	if (forbidden_pages_map && free_pages_map)
 972		return 0;
 973	else
 974		BUG_ON(forbidden_pages_map || free_pages_map);
 975
 976	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 977	if (!bm1)
 978		return -ENOMEM;
 979
 980	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 981	if (error)
 982		goto Free_first_object;
 983
 984	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 985	if (!bm2)
 986		goto Free_first_bitmap;
 987
 988	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 989	if (error)
 990		goto Free_second_object;
 991
 992	forbidden_pages_map = bm1;
 993	free_pages_map = bm2;
 994	mark_nosave_pages(forbidden_pages_map);
 995
 996	pr_debug("PM: Basic memory bitmaps created\n");
 997
 998	return 0;
 999
1000 Free_second_object:
1001	kfree(bm2);
1002 Free_first_bitmap:
1003 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1004 Free_first_object:
1005	kfree(bm1);
1006	return -ENOMEM;
1007}
1008
1009/**
1010 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
1011 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1012 *	so that the bitmaps themselves are not referred to while they are being
1013 *	freed.
 
1014 */
1015
1016void free_basic_memory_bitmaps(void)
1017{
1018	struct memory_bitmap *bm1, *bm2;
1019
1020	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1021		return;
1022
1023	bm1 = forbidden_pages_map;
1024	bm2 = free_pages_map;
1025	forbidden_pages_map = NULL;
1026	free_pages_map = NULL;
1027	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1028	kfree(bm1);
1029	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1030	kfree(bm2);
1031
1032	pr_debug("PM: Basic memory bitmaps freed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033}
1034
1035/**
1036 *	snapshot_additional_pages - estimate the number of additional pages
1037 *	be needed for setting up the suspend image data structures for given
1038 *	zone (usually the returned value is greater than the exact number)
 
 
 
1039 */
1040
1041unsigned int snapshot_additional_pages(struct zone *zone)
1042{
1043	unsigned int rtree, nodes;
1044
1045	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1046	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1047			      LINKED_PAGE_DATA_SIZE);
1048	while (nodes > 1) {
1049		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1050		rtree += nodes;
1051	}
1052
1053	return 2 * rtree;
1054}
1055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056#ifdef CONFIG_HIGHMEM
1057/**
1058 *	count_free_highmem_pages - compute the total number of free highmem
1059 *	pages, system-wide.
 
1060 */
1061
1062static unsigned int count_free_highmem_pages(void)
1063{
1064	struct zone *zone;
1065	unsigned int cnt = 0;
1066
1067	for_each_populated_zone(zone)
1068		if (is_highmem(zone))
1069			cnt += zone_page_state(zone, NR_FREE_PAGES);
1070
1071	return cnt;
1072}
1073
1074/**
1075 *	saveable_highmem_page - Determine whether a highmem page should be
1076 *	included in the suspend image.
1077 *
1078 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1079 *	and it isn't a part of a free chunk of pages.
 
 
1080 */
1081static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1082{
1083	struct page *page;
1084
1085	if (!pfn_valid(pfn))
1086		return NULL;
1087
1088	page = pfn_to_page(pfn);
1089	if (page_zone(page) != zone)
1090		return NULL;
1091
1092	BUG_ON(!PageHighMem(page));
1093
1094	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1095	    PageReserved(page))
 
 
1096		return NULL;
1097
1098	if (page_is_guard(page))
1099		return NULL;
1100
1101	return page;
1102}
1103
1104/**
1105 *	count_highmem_pages - compute the total number of saveable highmem
1106 *	pages.
1107 */
1108
1109static unsigned int count_highmem_pages(void)
1110{
1111	struct zone *zone;
1112	unsigned int n = 0;
1113
1114	for_each_populated_zone(zone) {
1115		unsigned long pfn, max_zone_pfn;
1116
1117		if (!is_highmem(zone))
1118			continue;
1119
1120		mark_free_pages(zone);
1121		max_zone_pfn = zone_end_pfn(zone);
1122		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1123			if (saveable_highmem_page(zone, pfn))
1124				n++;
1125	}
1126	return n;
1127}
1128#else
1129static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1130{
1131	return NULL;
1132}
1133#endif /* CONFIG_HIGHMEM */
1134
1135/**
1136 *	saveable_page - Determine whether a non-highmem page should be included
1137 *	in the suspend image.
1138 *
1139 *	We should save the page if it isn't Nosave, and is not in the range
1140 *	of pages statically defined as 'unsaveable', and it isn't a part of
1141 *	a free chunk of pages.
 
 
 
1142 */
1143static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1144{
1145	struct page *page;
1146
1147	if (!pfn_valid(pfn))
1148		return NULL;
1149
1150	page = pfn_to_page(pfn);
1151	if (page_zone(page) != zone)
1152		return NULL;
1153
1154	BUG_ON(PageHighMem(page));
1155
1156	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1157		return NULL;
1158
 
 
 
1159	if (PageReserved(page)
1160	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1161		return NULL;
1162
1163	if (page_is_guard(page))
1164		return NULL;
1165
1166	return page;
1167}
1168
1169/**
1170 *	count_data_pages - compute the total number of saveable non-highmem
1171 *	pages.
1172 */
1173
1174static unsigned int count_data_pages(void)
1175{
1176	struct zone *zone;
1177	unsigned long pfn, max_zone_pfn;
1178	unsigned int n = 0;
1179
1180	for_each_populated_zone(zone) {
1181		if (is_highmem(zone))
1182			continue;
1183
1184		mark_free_pages(zone);
1185		max_zone_pfn = zone_end_pfn(zone);
1186		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187			if (saveable_page(zone, pfn))
1188				n++;
1189	}
1190	return n;
1191}
1192
1193/* This is needed, because copy_page and memcpy are not usable for copying
1194 * task structs.
 
 
1195 */
1196static inline void do_copy_page(long *dst, long *src)
1197{
 
1198	int n;
1199
1200	for (n = PAGE_SIZE / sizeof(long); n; n--)
 
1201		*dst++ = *src++;
 
 
1202}
1203
1204
1205/**
1206 *	safe_copy_page - check if the page we are going to copy is marked as
1207 *		present in the kernel page tables (this always is the case if
1208 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
1209 *		kernel_page_present() always returns 'true').
 
 
 
1210 */
1211static void safe_copy_page(void *dst, struct page *s_page)
1212{
 
 
1213	if (kernel_page_present(s_page)) {
1214		do_copy_page(dst, page_address(s_page));
1215	} else {
1216		kernel_map_pages(s_page, 1, 1);
1217		do_copy_page(dst, page_address(s_page));
1218		kernel_map_pages(s_page, 1, 0);
1219	}
 
1220}
1221
1222
1223#ifdef CONFIG_HIGHMEM
1224static inline struct page *
1225page_is_saveable(struct zone *zone, unsigned long pfn)
1226{
1227	return is_highmem(zone) ?
1228		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1229}
1230
1231static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1232{
1233	struct page *s_page, *d_page;
1234	void *src, *dst;
 
1235
1236	s_page = pfn_to_page(src_pfn);
1237	d_page = pfn_to_page(dst_pfn);
1238	if (PageHighMem(s_page)) {
1239		src = kmap_atomic(s_page);
1240		dst = kmap_atomic(d_page);
1241		do_copy_page(dst, src);
1242		kunmap_atomic(dst);
1243		kunmap_atomic(src);
1244	} else {
1245		if (PageHighMem(d_page)) {
1246			/* Page pointed to by src may contain some kernel
 
1247			 * data modified by kmap_atomic()
1248			 */
1249			safe_copy_page(buffer, s_page);
1250			dst = kmap_atomic(d_page);
1251			copy_page(dst, buffer);
1252			kunmap_atomic(dst);
1253		} else {
1254			safe_copy_page(page_address(d_page), s_page);
1255		}
1256	}
 
1257}
1258#else
1259#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1260
1261static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1262{
1263	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1264				pfn_to_page(src_pfn));
1265}
1266#endif /* CONFIG_HIGHMEM */
1267
1268static void
1269copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
 
 
 
 
 
 
 
1270{
 
1271	struct zone *zone;
1272	unsigned long pfn;
1273
1274	for_each_populated_zone(zone) {
1275		unsigned long max_zone_pfn;
1276
1277		mark_free_pages(zone);
1278		max_zone_pfn = zone_end_pfn(zone);
1279		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280			if (page_is_saveable(zone, pfn))
1281				memory_bm_set_bit(orig_bm, pfn);
1282	}
1283	memory_bm_position_reset(orig_bm);
1284	memory_bm_position_reset(copy_bm);
 
1285	for(;;) {
1286		pfn = memory_bm_next_pfn(orig_bm);
1287		if (unlikely(pfn == BM_END_OF_MAP))
1288			break;
1289		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
 
 
 
 
 
 
1290	}
 
1291}
1292
1293/* Total number of image pages */
1294static unsigned int nr_copy_pages;
1295/* Number of pages needed for saving the original pfns of the image pages */
1296static unsigned int nr_meta_pages;
 
 
 
1297/*
1298 * Numbers of normal and highmem page frames allocated for hibernation image
1299 * before suspending devices.
1300 */
1301unsigned int alloc_normal, alloc_highmem;
1302/*
1303 * Memory bitmap used for marking saveable pages (during hibernation) or
1304 * hibernation image pages (during restore)
1305 */
1306static struct memory_bitmap orig_bm;
1307/*
1308 * Memory bitmap used during hibernation for marking allocated page frames that
1309 * will contain copies of saveable pages.  During restore it is initially used
1310 * for marking hibernation image pages, but then the set bits from it are
1311 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1312 * used for marking "safe" highmem pages, but it has to be reinitialized for
1313 * this purpose.
1314 */
1315static struct memory_bitmap copy_bm;
1316
 
 
 
1317/**
1318 *	swsusp_free - free pages allocated for the suspend.
1319 *
1320 *	Suspend pages are alocated before the atomic copy is made, so we
1321 *	need to release them after the resume.
1322 */
1323
1324void swsusp_free(void)
1325{
1326	unsigned long fb_pfn, fr_pfn;
1327
1328	if (!forbidden_pages_map || !free_pages_map)
1329		goto out;
1330
1331	memory_bm_position_reset(forbidden_pages_map);
1332	memory_bm_position_reset(free_pages_map);
1333
1334loop:
1335	fr_pfn = memory_bm_next_pfn(free_pages_map);
1336	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1337
1338	/*
1339	 * Find the next bit set in both bitmaps. This is guaranteed to
1340	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1341	 */
1342	do {
1343		if (fb_pfn < fr_pfn)
1344			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1345		if (fr_pfn < fb_pfn)
1346			fr_pfn = memory_bm_next_pfn(free_pages_map);
1347	} while (fb_pfn != fr_pfn);
1348
1349	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1350		struct page *page = pfn_to_page(fr_pfn);
1351
1352		memory_bm_clear_current(forbidden_pages_map);
1353		memory_bm_clear_current(free_pages_map);
 
1354		__free_page(page);
1355		goto loop;
1356	}
1357
1358out:
1359	nr_copy_pages = 0;
1360	nr_meta_pages = 0;
 
1361	restore_pblist = NULL;
1362	buffer = NULL;
1363	alloc_normal = 0;
1364	alloc_highmem = 0;
 
1365}
1366
1367/* Helper functions used for the shrinking of memory. */
1368
1369#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1370
1371/**
1372 * preallocate_image_pages - Allocate a number of pages for hibernation image
1373 * @nr_pages: Number of page frames to allocate.
1374 * @mask: GFP flags to use for the allocation.
1375 *
1376 * Return value: Number of page frames actually allocated
1377 */
1378static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1379{
1380	unsigned long nr_alloc = 0;
1381
1382	while (nr_pages > 0) {
1383		struct page *page;
1384
1385		page = alloc_image_page(mask);
1386		if (!page)
1387			break;
1388		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1389		if (PageHighMem(page))
1390			alloc_highmem++;
1391		else
1392			alloc_normal++;
1393		nr_pages--;
1394		nr_alloc++;
1395	}
1396
1397	return nr_alloc;
1398}
1399
1400static unsigned long preallocate_image_memory(unsigned long nr_pages,
1401					      unsigned long avail_normal)
1402{
1403	unsigned long alloc;
1404
1405	if (avail_normal <= alloc_normal)
1406		return 0;
1407
1408	alloc = avail_normal - alloc_normal;
1409	if (nr_pages < alloc)
1410		alloc = nr_pages;
1411
1412	return preallocate_image_pages(alloc, GFP_IMAGE);
1413}
1414
1415#ifdef CONFIG_HIGHMEM
1416static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1417{
1418	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1419}
1420
1421/**
1422 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1423 */
1424static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1425{
1426	x *= multiplier;
1427	do_div(x, base);
1428	return (unsigned long)x;
1429}
1430
1431static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1432						unsigned long highmem,
1433						unsigned long total)
1434{
1435	unsigned long alloc = __fraction(nr_pages, highmem, total);
1436
1437	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1438}
1439#else /* CONFIG_HIGHMEM */
1440static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1441{
1442	return 0;
1443}
1444
1445static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1446						unsigned long highmem,
1447						unsigned long total)
1448{
1449	return 0;
1450}
1451#endif /* CONFIG_HIGHMEM */
1452
1453/**
1454 * free_unnecessary_pages - Release preallocated pages not needed for the image
1455 */
1456static unsigned long free_unnecessary_pages(void)
1457{
1458	unsigned long save, to_free_normal, to_free_highmem, free;
1459
1460	save = count_data_pages();
1461	if (alloc_normal >= save) {
1462		to_free_normal = alloc_normal - save;
1463		save = 0;
1464	} else {
1465		to_free_normal = 0;
1466		save -= alloc_normal;
1467	}
1468	save += count_highmem_pages();
1469	if (alloc_highmem >= save) {
1470		to_free_highmem = alloc_highmem - save;
1471	} else {
1472		to_free_highmem = 0;
1473		save -= alloc_highmem;
1474		if (to_free_normal > save)
1475			to_free_normal -= save;
1476		else
1477			to_free_normal = 0;
1478	}
1479	free = to_free_normal + to_free_highmem;
1480
1481	memory_bm_position_reset(&copy_bm);
1482
1483	while (to_free_normal > 0 || to_free_highmem > 0) {
1484		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1485		struct page *page = pfn_to_page(pfn);
1486
1487		if (PageHighMem(page)) {
1488			if (!to_free_highmem)
1489				continue;
1490			to_free_highmem--;
1491			alloc_highmem--;
1492		} else {
1493			if (!to_free_normal)
1494				continue;
1495			to_free_normal--;
1496			alloc_normal--;
1497		}
1498		memory_bm_clear_bit(&copy_bm, pfn);
1499		swsusp_unset_page_forbidden(page);
1500		swsusp_unset_page_free(page);
1501		__free_page(page);
1502	}
1503
1504	return free;
1505}
1506
1507/**
1508 * minimum_image_size - Estimate the minimum acceptable size of an image
1509 * @saveable: Number of saveable pages in the system.
1510 *
1511 * We want to avoid attempting to free too much memory too hard, so estimate the
1512 * minimum acceptable size of a hibernation image to use as the lower limit for
1513 * preallocating memory.
1514 *
1515 * We assume that the minimum image size should be proportional to
1516 *
1517 * [number of saveable pages] - [number of pages that can be freed in theory]
1518 *
1519 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1520 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1521 * minus mapped file pages.
1522 */
1523static unsigned long minimum_image_size(unsigned long saveable)
1524{
1525	unsigned long size;
1526
1527	size = global_page_state(NR_SLAB_RECLAIMABLE)
1528		+ global_page_state(NR_ACTIVE_ANON)
1529		+ global_page_state(NR_INACTIVE_ANON)
1530		+ global_page_state(NR_ACTIVE_FILE)
1531		+ global_page_state(NR_INACTIVE_FILE)
1532		- global_page_state(NR_FILE_MAPPED);
1533
1534	return saveable <= size ? 0 : saveable - size;
1535}
1536
1537/**
1538 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1539 *
1540 * To create a hibernation image it is necessary to make a copy of every page
1541 * frame in use.  We also need a number of page frames to be free during
1542 * hibernation for allocations made while saving the image and for device
1543 * drivers, in case they need to allocate memory from their hibernation
1544 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1545 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1546 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1547 * total number of available page frames and allocate at least
1548 *
1549 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1550 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1551 *
1552 * of them, which corresponds to the maximum size of a hibernation image.
1553 *
1554 * If image_size is set below the number following from the above formula,
1555 * the preallocation of memory is continued until the total number of saveable
1556 * pages in the system is below the requested image size or the minimum
1557 * acceptable image size returned by minimum_image_size(), whichever is greater.
1558 */
1559int hibernate_preallocate_memory(void)
1560{
1561	struct zone *zone;
1562	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1563	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1564	ktime_t start, stop;
1565	int error;
1566
1567	printk(KERN_INFO "PM: Preallocating image memory... ");
1568	start = ktime_get();
1569
1570	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1571	if (error)
 
1572		goto err_out;
 
1573
1574	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1575	if (error)
 
1576		goto err_out;
 
 
 
 
 
 
 
1577
1578	alloc_normal = 0;
1579	alloc_highmem = 0;
 
1580
1581	/* Count the number of saveable data pages. */
1582	save_highmem = count_highmem_pages();
1583	saveable = count_data_pages();
1584
1585	/*
1586	 * Compute the total number of page frames we can use (count) and the
1587	 * number of pages needed for image metadata (size).
1588	 */
1589	count = saveable;
1590	saveable += save_highmem;
1591	highmem = save_highmem;
1592	size = 0;
1593	for_each_populated_zone(zone) {
1594		size += snapshot_additional_pages(zone);
1595		if (is_highmem(zone))
1596			highmem += zone_page_state(zone, NR_FREE_PAGES);
1597		else
1598			count += zone_page_state(zone, NR_FREE_PAGES);
1599	}
1600	avail_normal = count;
1601	count += highmem;
1602	count -= totalreserve_pages;
1603
1604	/* Add number of pages required for page keys (s390 only). */
1605	size += page_key_additional_pages(saveable);
1606
1607	/* Compute the maximum number of saveable pages to leave in memory. */
1608	max_size = (count - (size + PAGES_FOR_IO)) / 2
1609			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1610	/* Compute the desired number of image pages specified by image_size. */
1611	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1612	if (size > max_size)
1613		size = max_size;
1614	/*
1615	 * If the desired number of image pages is at least as large as the
1616	 * current number of saveable pages in memory, allocate page frames for
1617	 * the image and we're done.
1618	 */
1619	if (size >= saveable) {
1620		pages = preallocate_image_highmem(save_highmem);
1621		pages += preallocate_image_memory(saveable - pages, avail_normal);
1622		goto out;
1623	}
1624
1625	/* Estimate the minimum size of the image. */
1626	pages = minimum_image_size(saveable);
1627	/*
1628	 * To avoid excessive pressure on the normal zone, leave room in it to
1629	 * accommodate an image of the minimum size (unless it's already too
1630	 * small, in which case don't preallocate pages from it at all).
1631	 */
1632	if (avail_normal > pages)
1633		avail_normal -= pages;
1634	else
1635		avail_normal = 0;
1636	if (size < pages)
1637		size = min_t(unsigned long, pages, max_size);
1638
1639	/*
1640	 * Let the memory management subsystem know that we're going to need a
1641	 * large number of page frames to allocate and make it free some memory.
1642	 * NOTE: If this is not done, performance will be hurt badly in some
1643	 * test cases.
1644	 */
1645	shrink_all_memory(saveable - size);
1646
1647	/*
1648	 * The number of saveable pages in memory was too high, so apply some
1649	 * pressure to decrease it.  First, make room for the largest possible
1650	 * image and fail if that doesn't work.  Next, try to decrease the size
1651	 * of the image as much as indicated by 'size' using allocations from
1652	 * highmem and non-highmem zones separately.
1653	 */
1654	pages_highmem = preallocate_image_highmem(highmem / 2);
1655	alloc = count - max_size;
1656	if (alloc > pages_highmem)
1657		alloc -= pages_highmem;
1658	else
1659		alloc = 0;
1660	pages = preallocate_image_memory(alloc, avail_normal);
1661	if (pages < alloc) {
1662		/* We have exhausted non-highmem pages, try highmem. */
1663		alloc -= pages;
1664		pages += pages_highmem;
1665		pages_highmem = preallocate_image_highmem(alloc);
1666		if (pages_highmem < alloc)
 
 
1667			goto err_out;
 
1668		pages += pages_highmem;
1669		/*
1670		 * size is the desired number of saveable pages to leave in
1671		 * memory, so try to preallocate (all memory - size) pages.
1672		 */
1673		alloc = (count - pages) - size;
1674		pages += preallocate_image_highmem(alloc);
1675	} else {
1676		/*
1677		 * There are approximately max_size saveable pages at this point
1678		 * and we want to reduce this number down to size.
1679		 */
1680		alloc = max_size - size;
1681		size = preallocate_highmem_fraction(alloc, highmem, count);
1682		pages_highmem += size;
1683		alloc -= size;
1684		size = preallocate_image_memory(alloc, avail_normal);
1685		pages_highmem += preallocate_image_highmem(alloc - size);
1686		pages += pages_highmem + size;
1687	}
1688
1689	/*
1690	 * We only need as many page frames for the image as there are saveable
1691	 * pages in memory, but we have allocated more.  Release the excessive
1692	 * ones now.
1693	 */
1694	pages -= free_unnecessary_pages();
1695
1696 out:
1697	stop = ktime_get();
1698	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1699	swsusp_show_speed(start, stop, pages, "Allocated");
1700
1701	return 0;
1702
1703 err_out:
1704	printk(KERN_CONT "\n");
1705	swsusp_free();
1706	return -ENOMEM;
1707}
1708
1709#ifdef CONFIG_HIGHMEM
1710/**
1711  *	count_pages_for_highmem - compute the number of non-highmem pages
1712  *	that will be necessary for creating copies of highmem pages.
1713  */
1714
 
1715static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1716{
1717	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1718
1719	if (free_highmem >= nr_highmem)
1720		nr_highmem = 0;
1721	else
1722		nr_highmem -= free_highmem;
1723
1724	return nr_highmem;
1725}
1726#else
1727static unsigned int
1728count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1729#endif /* CONFIG_HIGHMEM */
1730
1731/**
1732 *	enough_free_mem - Make sure we have enough free memory for the
1733 *	snapshot image.
1734 */
1735
1736static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1737{
1738	struct zone *zone;
1739	unsigned int free = alloc_normal;
1740
1741	for_each_populated_zone(zone)
1742		if (!is_highmem(zone))
1743			free += zone_page_state(zone, NR_FREE_PAGES);
1744
1745	nr_pages += count_pages_for_highmem(nr_highmem);
1746	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1747		nr_pages, PAGES_FOR_IO, free);
1748
1749	return free > nr_pages + PAGES_FOR_IO;
1750}
1751
1752#ifdef CONFIG_HIGHMEM
1753/**
1754 *	get_highmem_buffer - if there are some highmem pages in the suspend
1755 *	image, we may need the buffer to copy them and/or load their data.
 
 
1756 */
1757
1758static inline int get_highmem_buffer(int safe_needed)
1759{
1760	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1761	return buffer ? 0 : -ENOMEM;
1762}
1763
1764/**
1765 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1766 *	Try to allocate as many pages as needed, but if the number of free
1767 *	highmem pages is lesser than that, allocate them all.
 
1768 */
1769
1770static inline unsigned int
1771alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1772{
1773	unsigned int to_alloc = count_free_highmem_pages();
1774
1775	if (to_alloc > nr_highmem)
1776		to_alloc = nr_highmem;
1777
1778	nr_highmem -= to_alloc;
1779	while (to_alloc-- > 0) {
1780		struct page *page;
1781
1782		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1783		memory_bm_set_bit(bm, page_to_pfn(page));
1784	}
1785	return nr_highmem;
1786}
1787#else
1788static inline int get_highmem_buffer(int safe_needed) { return 0; }
1789
1790static inline unsigned int
1791alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1792#endif /* CONFIG_HIGHMEM */
1793
1794/**
1795 *	swsusp_alloc - allocate memory for the suspend image
1796 *
1797 *	We first try to allocate as many highmem pages as there are
1798 *	saveable highmem pages in the system.  If that fails, we allocate
1799 *	non-highmem pages for the copies of the remaining highmem ones.
1800 *
1801 *	In this approach it is likely that the copies of highmem pages will
1802 *	also be located in the high memory, because of the way in which
1803 *	copy_data_pages() works.
 
 
 
 
1804 */
1805
1806static int
1807swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1808		unsigned int nr_pages, unsigned int nr_highmem)
1809{
1810	if (nr_highmem > 0) {
1811		if (get_highmem_buffer(PG_ANY))
1812			goto err_out;
1813		if (nr_highmem > alloc_highmem) {
1814			nr_highmem -= alloc_highmem;
1815			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1816		}
1817	}
1818	if (nr_pages > alloc_normal) {
1819		nr_pages -= alloc_normal;
1820		while (nr_pages-- > 0) {
1821			struct page *page;
1822
1823			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1824			if (!page)
1825				goto err_out;
1826			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1827		}
1828	}
1829
1830	return 0;
1831
1832 err_out:
1833	swsusp_free();
1834	return -ENOMEM;
1835}
1836
1837asmlinkage __visible int swsusp_save(void)
1838{
1839	unsigned int nr_pages, nr_highmem;
1840
1841	printk(KERN_INFO "PM: Creating hibernation image:\n");
1842
1843	drain_local_pages(NULL);
1844	nr_pages = count_data_pages();
1845	nr_highmem = count_highmem_pages();
1846	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1847
1848	if (!enough_free_mem(nr_pages, nr_highmem)) {
1849		printk(KERN_ERR "PM: Not enough free memory\n");
1850		return -ENOMEM;
1851	}
1852
1853	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1854		printk(KERN_ERR "PM: Memory allocation failed\n");
1855		return -ENOMEM;
1856	}
1857
1858	/* During allocating of suspend pagedir, new cold pages may appear.
 
1859	 * Kill them.
1860	 */
1861	drain_local_pages(NULL);
1862	copy_data_pages(&copy_bm, &orig_bm);
1863
1864	/*
1865	 * End of critical section. From now on, we can write to memory,
1866	 * but we should not touch disk. This specially means we must _not_
1867	 * touch swap space! Except we must write out our image of course.
1868	 */
1869
1870	nr_pages += nr_highmem;
1871	nr_copy_pages = nr_pages;
 
1872	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1873
1874	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1875		nr_pages);
1876
1877	return 0;
1878}
1879
1880#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1881static int init_header_complete(struct swsusp_info *info)
1882{
1883	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1884	info->version_code = LINUX_VERSION_CODE;
1885	return 0;
1886}
1887
1888static char *check_image_kernel(struct swsusp_info *info)
1889{
1890	if (info->version_code != LINUX_VERSION_CODE)
1891		return "kernel version";
1892	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1893		return "system type";
1894	if (strcmp(info->uts.release,init_utsname()->release))
1895		return "kernel release";
1896	if (strcmp(info->uts.version,init_utsname()->version))
1897		return "version";
1898	if (strcmp(info->uts.machine,init_utsname()->machine))
1899		return "machine";
1900	return NULL;
1901}
1902#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1903
1904unsigned long snapshot_get_image_size(void)
1905{
1906	return nr_copy_pages + nr_meta_pages + 1;
1907}
1908
1909static int init_header(struct swsusp_info *info)
1910{
1911	memset(info, 0, sizeof(struct swsusp_info));
1912	info->num_physpages = get_num_physpages();
1913	info->image_pages = nr_copy_pages;
1914	info->pages = snapshot_get_image_size();
1915	info->size = info->pages;
1916	info->size <<= PAGE_SHIFT;
1917	return init_header_complete(info);
1918}
1919
 
 
 
1920/**
1921 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1922 *	are stored in the array @buf[] (1 page at a time)
 
 
 
 
 
 
 
1923 */
1924
1925static inline void
1926pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1927{
1928	int j;
1929
1930	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1931		buf[j] = memory_bm_next_pfn(bm);
1932		if (unlikely(buf[j] == BM_END_OF_MAP))
1933			break;
1934		/* Save page key for data page (s390 only). */
1935		page_key_read(buf + j);
1936	}
1937}
1938
1939/**
1940 *	snapshot_read_next - used for reading the system memory snapshot.
 
1941 *
1942 *	On the first call to it @handle should point to a zeroed
1943 *	snapshot_handle structure.  The structure gets updated and a pointer
1944 *	to it should be passed to this function every next time.
1945 *
1946 *	On success the function returns a positive number.  Then, the caller
1947 *	is allowed to read up to the returned number of bytes from the memory
1948 *	location computed by the data_of() macro.
1949 *
1950 *	The function returns 0 to indicate the end of data stream condition,
1951 *	and a negative number is returned on error.  In such cases the
1952 *	structure pointed to by @handle is not updated and should not be used
1953 *	any more.
1954 */
1955
1956int snapshot_read_next(struct snapshot_handle *handle)
1957{
1958	if (handle->cur > nr_meta_pages + nr_copy_pages)
1959		return 0;
1960
1961	if (!buffer) {
1962		/* This makes the buffer be freed by swsusp_free() */
1963		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1964		if (!buffer)
1965			return -ENOMEM;
1966	}
1967	if (!handle->cur) {
1968		int error;
1969
1970		error = init_header((struct swsusp_info *)buffer);
1971		if (error)
1972			return error;
1973		handle->buffer = buffer;
1974		memory_bm_position_reset(&orig_bm);
1975		memory_bm_position_reset(&copy_bm);
1976	} else if (handle->cur <= nr_meta_pages) {
1977		clear_page(buffer);
1978		pack_pfns(buffer, &orig_bm);
1979	} else {
1980		struct page *page;
1981
1982		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1983		if (PageHighMem(page)) {
1984			/* Highmem pages are copied to the buffer,
 
1985			 * because we can't return with a kmapped
1986			 * highmem page (we may not be called again).
1987			 */
1988			void *kaddr;
1989
1990			kaddr = kmap_atomic(page);
1991			copy_page(buffer, kaddr);
1992			kunmap_atomic(kaddr);
1993			handle->buffer = buffer;
1994		} else {
1995			handle->buffer = page_address(page);
1996		}
1997	}
1998	handle->cur++;
1999	return PAGE_SIZE;
2000}
2001
2002/**
2003 *	mark_unsafe_pages - mark the pages that cannot be used for storing
2004 *	the image during resume, because they conflict with the pages that
2005 *	had been used before suspend
2006 */
2007
2008static int mark_unsafe_pages(struct memory_bitmap *bm)
2009{
2010	struct zone *zone;
2011	unsigned long pfn, max_zone_pfn;
2012
2013	/* Clear page flags */
2014	for_each_populated_zone(zone) {
2015		max_zone_pfn = zone_end_pfn(zone);
2016		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2017			if (pfn_valid(pfn))
2018				swsusp_unset_page_free(pfn_to_page(pfn));
2019	}
2020
2021	/* Mark pages that correspond to the "original" pfns as "unsafe" */
2022	memory_bm_position_reset(bm);
2023	do {
2024		pfn = memory_bm_next_pfn(bm);
2025		if (likely(pfn != BM_END_OF_MAP)) {
2026			if (likely(pfn_valid(pfn)))
2027				swsusp_set_page_free(pfn_to_page(pfn));
2028			else
2029				return -EFAULT;
2030		}
2031	} while (pfn != BM_END_OF_MAP);
2032
2033	allocated_unsafe_pages = 0;
2034
2035	return 0;
2036}
2037
2038static void
2039duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
 
 
 
 
 
2040{
2041	unsigned long pfn;
2042
2043	memory_bm_position_reset(src);
2044	pfn = memory_bm_next_pfn(src);
 
2045	while (pfn != BM_END_OF_MAP) {
2046		memory_bm_set_bit(dst, pfn);
2047		pfn = memory_bm_next_pfn(src);
2048	}
 
 
 
 
 
2049}
2050
2051static int check_header(struct swsusp_info *info)
2052{
2053	char *reason;
2054
2055	reason = check_image_kernel(info);
2056	if (!reason && info->num_physpages != get_num_physpages())
2057		reason = "memory size";
2058	if (reason) {
2059		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2060		return -EPERM;
2061	}
2062	return 0;
2063}
2064
2065/**
2066 *	load header - check the image header and copy data from it
2067 */
2068
2069static int
2070load_header(struct swsusp_info *info)
2071{
2072	int error;
2073
2074	restore_pblist = NULL;
2075	error = check_header(info);
2076	if (!error) {
2077		nr_copy_pages = info->image_pages;
2078		nr_meta_pages = info->pages - info->image_pages - 1;
2079	}
2080	return error;
2081}
2082
2083/**
2084 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2085 *	the corresponding bit in the memory bitmap @bm
 
 
 
 
 
 
2086 */
2087static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
 
2088{
 
 
2089	int j;
2090
2091	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2092		if (unlikely(buf[j] == BM_END_OF_MAP))
2093			break;
2094
2095		/* Extract and buffer page key for data page (s390 only). */
2096		page_key_memorize(buf + j);
2097
2098		if (memory_bm_pfn_present(bm, buf[j]))
2099			memory_bm_set_bit(bm, buf[j]);
2100		else
 
 
 
 
 
 
2101			return -EFAULT;
 
2102	}
2103
2104	return 0;
2105}
2106
2107/* List of "safe" pages that may be used to store data loaded from the suspend
2108 * image
2109 */
2110static struct linked_page *safe_pages_list;
2111
2112#ifdef CONFIG_HIGHMEM
2113/* struct highmem_pbe is used for creating the list of highmem pages that
 
2114 * should be restored atomically during the resume from disk, because the page
2115 * frames they have occupied before the suspend are in use.
2116 */
2117struct highmem_pbe {
2118	struct page *copy_page;	/* data is here now */
2119	struct page *orig_page;	/* data was here before the suspend */
2120	struct highmem_pbe *next;
2121};
2122
2123/* List of highmem PBEs needed for restoring the highmem pages that were
 
2124 * allocated before the suspend and included in the suspend image, but have
2125 * also been allocated by the "resume" kernel, so their contents cannot be
2126 * written directly to their "original" page frames.
2127 */
2128static struct highmem_pbe *highmem_pblist;
2129
2130/**
2131 *	count_highmem_image_pages - compute the number of highmem pages in the
2132 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
2133 *	image pages are assumed to be set.
 
2134 */
2135
2136static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2137{
2138	unsigned long pfn;
2139	unsigned int cnt = 0;
2140
2141	memory_bm_position_reset(bm);
2142	pfn = memory_bm_next_pfn(bm);
2143	while (pfn != BM_END_OF_MAP) {
2144		if (PageHighMem(pfn_to_page(pfn)))
2145			cnt++;
2146
2147		pfn = memory_bm_next_pfn(bm);
2148	}
2149	return cnt;
2150}
2151
2152/**
2153 *	prepare_highmem_image - try to allocate as many highmem pages as
2154 *	there are highmem image pages (@nr_highmem_p points to the variable
2155 *	containing the number of highmem image pages).  The pages that are
2156 *	"safe" (ie. will not be overwritten when the suspend image is
2157 *	restored) have the corresponding bits set in @bm (it must be
2158 *	unitialized).
2159 *
2160 *	NOTE: This function should not be called if there are no highmem
2161 *	image pages.
2162 */
2163
2164static unsigned int safe_highmem_pages;
2165
2166static struct memory_bitmap *safe_highmem_bm;
2167
2168static int
2169prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
2170{
2171	unsigned int to_alloc;
2172
2173	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2174		return -ENOMEM;
2175
2176	if (get_highmem_buffer(PG_SAFE))
2177		return -ENOMEM;
2178
2179	to_alloc = count_free_highmem_pages();
2180	if (to_alloc > *nr_highmem_p)
2181		to_alloc = *nr_highmem_p;
2182	else
2183		*nr_highmem_p = to_alloc;
2184
2185	safe_highmem_pages = 0;
2186	while (to_alloc-- > 0) {
2187		struct page *page;
2188
2189		page = alloc_page(__GFP_HIGHMEM);
2190		if (!swsusp_page_is_free(page)) {
2191			/* The page is "safe", set its bit the bitmap */
2192			memory_bm_set_bit(bm, page_to_pfn(page));
2193			safe_highmem_pages++;
2194		}
2195		/* Mark the page as allocated */
2196		swsusp_set_page_forbidden(page);
2197		swsusp_set_page_free(page);
2198	}
2199	memory_bm_position_reset(bm);
2200	safe_highmem_bm = bm;
2201	return 0;
2202}
2203
 
 
2204/**
2205 *	get_highmem_page_buffer - for given highmem image page find the buffer
2206 *	that suspend_write_next() should set for its caller to write to.
 
 
2207 *
2208 *	If the page is to be saved to its "original" page frame or a copy of
2209 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
2210 *	the copy of the page is to be made in normal memory, so the address of
2211 *	the copy is returned.
2212 *
2213 *	If @buffer is returned, the caller of suspend_write_next() will write
2214 *	the page's contents to @buffer, so they will have to be copied to the
2215 *	right location on the next call to suspend_write_next() and it is done
2216 *	with the help of copy_last_highmem_page().  For this purpose, if
2217 *	@buffer is returned, @last_highmem page is set to the page to which
2218 *	the data will have to be copied from @buffer.
2219 */
2220
2221static struct page *last_highmem_page;
2222
2223static void *
2224get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2225{
2226	struct highmem_pbe *pbe;
2227	void *kaddr;
2228
2229	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2230		/* We have allocated the "original" page frame and we can
 
2231		 * use it directly to store the loaded page.
2232		 */
2233		last_highmem_page = page;
2234		return buffer;
2235	}
2236	/* The "original" page frame has not been allocated and we have to
 
2237	 * use a "safe" page frame to store the loaded page.
2238	 */
2239	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2240	if (!pbe) {
2241		swsusp_free();
2242		return ERR_PTR(-ENOMEM);
2243	}
2244	pbe->orig_page = page;
2245	if (safe_highmem_pages > 0) {
2246		struct page *tmp;
2247
2248		/* Copy of the page will be stored in high memory */
2249		kaddr = buffer;
2250		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2251		safe_highmem_pages--;
2252		last_highmem_page = tmp;
2253		pbe->copy_page = tmp;
2254	} else {
2255		/* Copy of the page will be stored in normal memory */
2256		kaddr = safe_pages_list;
2257		safe_pages_list = safe_pages_list->next;
 
2258		pbe->copy_page = virt_to_page(kaddr);
2259	}
2260	pbe->next = highmem_pblist;
2261	highmem_pblist = pbe;
2262	return kaddr;
2263}
2264
2265/**
2266 *	copy_last_highmem_page - copy the contents of a highmem image from
2267 *	@buffer, where the caller of snapshot_write_next() has place them,
2268 *	to the right location represented by @last_highmem_page .
 
 
2269 */
2270
2271static void copy_last_highmem_page(void)
2272{
2273	if (last_highmem_page) {
2274		void *dst;
2275
2276		dst = kmap_atomic(last_highmem_page);
2277		copy_page(dst, buffer);
2278		kunmap_atomic(dst);
2279		last_highmem_page = NULL;
2280	}
2281}
2282
2283static inline int last_highmem_page_copied(void)
2284{
2285	return !last_highmem_page;
2286}
2287
2288static inline void free_highmem_data(void)
2289{
2290	if (safe_highmem_bm)
2291		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2292
2293	if (buffer)
2294		free_image_page(buffer, PG_UNSAFE_CLEAR);
2295}
2296#else
2297static unsigned int
2298count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2299
2300static inline int
2301prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2302{
2303	return 0;
2304}
2305
2306static inline void *
2307get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2308{
2309	return ERR_PTR(-EINVAL);
2310}
2311
2312static inline void copy_last_highmem_page(void) {}
2313static inline int last_highmem_page_copied(void) { return 1; }
2314static inline void free_highmem_data(void) {}
2315#endif /* CONFIG_HIGHMEM */
2316
2317/**
2318 *	prepare_image - use the memory bitmap @bm to mark the pages that will
2319 *	be overwritten in the process of restoring the system memory state
2320 *	from the suspend image ("unsafe" pages) and allocate memory for the
2321 *	image.
2322 *
2323 *	The idea is to allocate a new memory bitmap first and then allocate
2324 *	as many pages as needed for the image data, but not to assign these
2325 *	pages to specific tasks initially.  Instead, we just mark them as
2326 *	allocated and create a lists of "safe" pages that will be used
2327 *	later.  On systems with high memory a list of "safe" highmem pages is
2328 *	also created.
2329 */
2330
2331#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2332
2333static int
2334prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2335{
2336	unsigned int nr_pages, nr_highmem;
2337	struct linked_page *sp_list, *lp;
 
2338	int error;
2339
2340	/* If there is no highmem, the buffer will not be necessary */
2341	free_image_page(buffer, PG_UNSAFE_CLEAR);
2342	buffer = NULL;
2343
2344	nr_highmem = count_highmem_image_pages(bm);
2345	error = mark_unsafe_pages(bm);
2346	if (error)
2347		goto Free;
2348
2349	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2350	if (error)
2351		goto Free;
2352
2353	duplicate_memory_bitmap(new_bm, bm);
2354	memory_bm_free(bm, PG_UNSAFE_KEEP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355	if (nr_highmem > 0) {
2356		error = prepare_highmem_image(bm, &nr_highmem);
2357		if (error)
2358			goto Free;
2359	}
2360	/* Reserve some safe pages for potential later use.
 
2361	 *
2362	 * NOTE: This way we make sure there will be enough safe pages for the
2363	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2364	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
 
 
2365	 */
2366	sp_list = NULL;
2367	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2368	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2369	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2370	while (nr_pages > 0) {
2371		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2372		if (!lp) {
2373			error = -ENOMEM;
2374			goto Free;
2375		}
2376		lp->next = sp_list;
2377		sp_list = lp;
2378		nr_pages--;
2379	}
2380	/* Preallocate memory for the image */
2381	safe_pages_list = NULL;
2382	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2383	while (nr_pages > 0) {
2384		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2385		if (!lp) {
2386			error = -ENOMEM;
2387			goto Free;
2388		}
2389		if (!swsusp_page_is_free(virt_to_page(lp))) {
2390			/* The page is "safe", add it to the list */
2391			lp->next = safe_pages_list;
2392			safe_pages_list = lp;
2393		}
2394		/* Mark the page as allocated */
2395		swsusp_set_page_forbidden(virt_to_page(lp));
2396		swsusp_set_page_free(virt_to_page(lp));
2397		nr_pages--;
2398	}
2399	/* Free the reserved safe pages so that chain_alloc() can use them */
2400	while (sp_list) {
2401		lp = sp_list->next;
2402		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2403		sp_list = lp;
2404	}
2405	return 0;
2406
2407 Free:
2408	swsusp_free();
2409	return error;
2410}
2411
2412/**
2413 *	get_buffer - compute the address that snapshot_write_next() should
2414 *	set for its caller to write to.
 
 
2415 */
2416
2417static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2418{
2419	struct pbe *pbe;
2420	struct page *page;
2421	unsigned long pfn = memory_bm_next_pfn(bm);
2422
2423	if (pfn == BM_END_OF_MAP)
2424		return ERR_PTR(-EFAULT);
2425
2426	page = pfn_to_page(pfn);
2427	if (PageHighMem(page))
2428		return get_highmem_page_buffer(page, ca);
2429
2430	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2431		/* We have allocated the "original" page frame and we can
 
2432		 * use it directly to store the loaded page.
2433		 */
2434		return page_address(page);
2435
2436	/* The "original" page frame has not been allocated and we have to
 
2437	 * use a "safe" page frame to store the loaded page.
2438	 */
2439	pbe = chain_alloc(ca, sizeof(struct pbe));
2440	if (!pbe) {
2441		swsusp_free();
2442		return ERR_PTR(-ENOMEM);
2443	}
2444	pbe->orig_address = page_address(page);
2445	pbe->address = safe_pages_list;
2446	safe_pages_list = safe_pages_list->next;
 
2447	pbe->next = restore_pblist;
2448	restore_pblist = pbe;
2449	return pbe->address;
2450}
2451
2452/**
2453 *	snapshot_write_next - used for writing the system memory snapshot.
 
2454 *
2455 *	On the first call to it @handle should point to a zeroed
2456 *	snapshot_handle structure.  The structure gets updated and a pointer
2457 *	to it should be passed to this function every next time.
2458 *
2459 *	On success the function returns a positive number.  Then, the caller
2460 *	is allowed to write up to the returned number of bytes to the memory
2461 *	location computed by the data_of() macro.
2462 *
2463 *	The function returns 0 to indicate the "end of file" condition,
2464 *	and a negative number is returned on error.  In such cases the
2465 *	structure pointed to by @handle is not updated and should not be used
2466 *	any more.
2467 */
2468
2469int snapshot_write_next(struct snapshot_handle *handle)
2470{
2471	static struct chain_allocator ca;
2472	int error = 0;
2473
 
2474	/* Check if we have already loaded the entire image */
2475	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2476		return 0;
2477
2478	handle->sync_read = 1;
2479
2480	if (!handle->cur) {
2481		if (!buffer)
2482			/* This makes the buffer be freed by swsusp_free() */
2483			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2484
2485		if (!buffer)
2486			return -ENOMEM;
2487
2488		handle->buffer = buffer;
2489	} else if (handle->cur == 1) {
2490		error = load_header(buffer);
2491		if (error)
2492			return error;
2493
 
 
2494		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2495		if (error)
2496			return error;
2497
2498		/* Allocate buffer for page keys. */
2499		error = page_key_alloc(nr_copy_pages);
2500		if (error)
2501			return error;
2502
 
 
 
2503	} else if (handle->cur <= nr_meta_pages + 1) {
2504		error = unpack_orig_pfns(buffer, &copy_bm);
2505		if (error)
2506			return error;
2507
2508		if (handle->cur == nr_meta_pages + 1) {
2509			error = prepare_image(&orig_bm, &copy_bm);
2510			if (error)
2511				return error;
2512
2513			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2514			memory_bm_position_reset(&orig_bm);
 
2515			restore_pblist = NULL;
2516			handle->buffer = get_buffer(&orig_bm, &ca);
2517			handle->sync_read = 0;
2518			if (IS_ERR(handle->buffer))
2519				return PTR_ERR(handle->buffer);
2520		}
2521	} else {
2522		copy_last_highmem_page();
2523		/* Restore page key for data page (s390 only). */
2524		page_key_write(handle->buffer);
2525		handle->buffer = get_buffer(&orig_bm, &ca);
2526		if (IS_ERR(handle->buffer))
2527			return PTR_ERR(handle->buffer);
2528		if (handle->buffer != buffer)
2529			handle->sync_read = 0;
2530	}
 
2531	handle->cur++;
 
 
 
 
 
 
 
 
2532	return PAGE_SIZE;
2533}
2534
2535/**
2536 *	snapshot_write_finalize - must be called after the last call to
2537 *	snapshot_write_next() in case the last page in the image happens
2538 *	to be a highmem page and its contents should be stored in the
2539 *	highmem.  Additionally, it releases the memory that will not be
2540 *	used any more.
 
2541 */
2542
2543void snapshot_write_finalize(struct snapshot_handle *handle)
2544{
2545	copy_last_highmem_page();
2546	/* Restore page key for data page (s390 only). */
2547	page_key_write(handle->buffer);
2548	page_key_free();
2549	/* Free only if we have loaded the image entirely */
2550	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2551		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2552		free_highmem_data();
2553	}
2554}
2555
2556int snapshot_image_loaded(struct snapshot_handle *handle)
2557{
2558	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2559			handle->cur <= nr_meta_pages + nr_copy_pages);
2560}
2561
2562#ifdef CONFIG_HIGHMEM
2563/* Assumes that @buf is ready and points to a "safe" page */
2564static inline void
2565swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2566{
2567	void *kaddr1, *kaddr2;
2568
2569	kaddr1 = kmap_atomic(p1);
2570	kaddr2 = kmap_atomic(p2);
2571	copy_page(buf, kaddr1);
2572	copy_page(kaddr1, kaddr2);
2573	copy_page(kaddr2, buf);
2574	kunmap_atomic(kaddr2);
2575	kunmap_atomic(kaddr1);
2576}
2577
2578/**
2579 *	restore_highmem - for each highmem page that was allocated before
2580 *	the suspend and included in the suspend image, and also has been
2581 *	allocated by the "resume" kernel swap its current (ie. "before
2582 *	resume") contents with the previous (ie. "before suspend") one.
2583 *
2584 *	If the resume eventually fails, we can call this function once
2585 *	again and restore the "before resume" highmem state.
 
 
 
 
2586 */
2587
2588int restore_highmem(void)
2589{
2590	struct highmem_pbe *pbe = highmem_pblist;
2591	void *buf;
2592
2593	if (!pbe)
2594		return 0;
2595
2596	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2597	if (!buf)
2598		return -ENOMEM;
2599
2600	while (pbe) {
2601		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2602		pbe = pbe->next;
2603	}
2604	free_image_page(buf, PG_UNSAFE_CLEAR);
2605	return 0;
2606}
2607#endif /* CONFIG_HIGHMEM */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79
  80/*
  81 * The calls to set_direct_map_*() should not fail because remapping a page
  82 * here means that we only update protection bits in an existing PTE.
  83 * It is still worth to have a warning here if something changes and this
  84 * will no longer be the case.
  85 */
  86static inline void hibernate_map_page(struct page *page)
  87{
  88	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  89		int ret = set_direct_map_default_noflush(page);
  90
  91		if (ret)
  92			pr_warn_once("Failed to remap page\n");
  93	} else {
  94		debug_pagealloc_map_pages(page, 1);
  95	}
  96}
  97
  98static inline void hibernate_unmap_page(struct page *page)
  99{
 100	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 101		unsigned long addr = (unsigned long)page_address(page);
 102		int ret  = set_direct_map_invalid_noflush(page);
 103
 104		if (ret)
 105			pr_warn_once("Failed to remap page\n");
 106
 107		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 108	} else {
 109		debug_pagealloc_unmap_pages(page, 1);
 110	}
 111}
 112
 113static int swsusp_page_is_free(struct page *);
 114static void swsusp_set_page_forbidden(struct page *);
 115static void swsusp_unset_page_forbidden(struct page *);
 116
 117/*
 118 * Number of bytes to reserve for memory allocations made by device drivers
 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 120 * cause image creation to fail (tunable via /sys/power/reserved_size).
 121 */
 122unsigned long reserved_size;
 123
 124void __init hibernate_reserved_size_init(void)
 125{
 126	reserved_size = SPARE_PAGES * PAGE_SIZE;
 127}
 128
 129/*
 130 * Preferred image size in bytes (tunable via /sys/power/image_size).
 131 * When it is set to N, swsusp will do its best to ensure the image
 132 * size will not exceed N bytes, but if that is impossible, it will
 133 * try to create the smallest image possible.
 134 */
 135unsigned long image_size;
 136
 137void __init hibernate_image_size_init(void)
 138{
 139	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 140}
 141
 142/*
 143 * List of PBEs needed for restoring the pages that were allocated before
 144 * the suspend and included in the suspend image, but have also been
 145 * allocated by the "resume" kernel, so their contents cannot be written
 146 * directly to their "original" page frames.
 147 */
 148struct pbe *restore_pblist;
 149
 150/* struct linked_page is used to build chains of pages */
 
 151
 152#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 153
 154struct linked_page {
 155	struct linked_page *next;
 156	char data[LINKED_PAGE_DATA_SIZE];
 157} __packed;
 158
 159/*
 160 * List of "safe" pages (ie. pages that were not used by the image kernel
 161 * before hibernation) that may be used as temporary storage for image kernel
 162 * memory contents.
 163 */
 164static struct linked_page *safe_pages_list;
 165
 166/* Pointer to an auxiliary buffer (1 page) */
 167static void *buffer;
 168
 169#define PG_ANY		0
 170#define PG_SAFE		1
 171#define PG_UNSAFE_CLEAR	1
 172#define PG_UNSAFE_KEEP	0
 173
 174static unsigned int allocated_unsafe_pages;
 175
 176/**
 177 * get_image_page - Allocate a page for a hibernation image.
 178 * @gfp_mask: GFP mask for the allocation.
 179 * @safe_needed: Get pages that were not used before hibernation (restore only)
 180 *
 181 * During image restoration, for storing the PBE list and the image data, we can
 182 * only use memory pages that do not conflict with the pages used before
 183 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 184 * using allocated_unsafe_pages.
 185 *
 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 187 * swsusp_free() can release it.
 188 */
 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 190{
 191	void *res;
 192
 193	res = (void *)get_zeroed_page(gfp_mask);
 194	if (safe_needed)
 195		while (res && swsusp_page_is_free(virt_to_page(res))) {
 196			/* The page is unsafe, mark it for swsusp_free() */
 197			swsusp_set_page_forbidden(virt_to_page(res));
 198			allocated_unsafe_pages++;
 199			res = (void *)get_zeroed_page(gfp_mask);
 200		}
 201	if (res) {
 202		swsusp_set_page_forbidden(virt_to_page(res));
 203		swsusp_set_page_free(virt_to_page(res));
 204	}
 205	return res;
 206}
 207
 208static void *__get_safe_page(gfp_t gfp_mask)
 209{
 210	if (safe_pages_list) {
 211		void *ret = safe_pages_list;
 212
 213		safe_pages_list = safe_pages_list->next;
 214		memset(ret, 0, PAGE_SIZE);
 215		return ret;
 216	}
 217	return get_image_page(gfp_mask, PG_SAFE);
 218}
 219
 220unsigned long get_safe_page(gfp_t gfp_mask)
 221{
 222	return (unsigned long)__get_safe_page(gfp_mask);
 223}
 224
 225static struct page *alloc_image_page(gfp_t gfp_mask)
 226{
 227	struct page *page;
 228
 229	page = alloc_page(gfp_mask);
 230	if (page) {
 231		swsusp_set_page_forbidden(page);
 232		swsusp_set_page_free(page);
 233	}
 234	return page;
 235}
 236
 237static void recycle_safe_page(void *page_address)
 238{
 239	struct linked_page *lp = page_address;
 240
 241	lp->next = safe_pages_list;
 242	safe_pages_list = lp;
 243}
 244
 245/**
 246 * free_image_page - Free a page allocated for hibernation image.
 247 * @addr: Address of the page to free.
 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 249 *
 250 * The page to free should have been allocated by get_image_page() (page flags
 251 * set by it are affected).
 252 */
 
 253static inline void free_image_page(void *addr, int clear_nosave_free)
 254{
 255	struct page *page;
 256
 257	BUG_ON(!virt_addr_valid(addr));
 258
 259	page = virt_to_page(addr);
 260
 261	swsusp_unset_page_forbidden(page);
 262	if (clear_nosave_free)
 263		swsusp_unset_page_free(page);
 264
 265	__free_page(page);
 266}
 267
 268static inline void free_list_of_pages(struct linked_page *list,
 269				      int clear_page_nosave)
 
 
 
 
 
 
 
 
 
 270{
 271	while (list) {
 272		struct linked_page *lp = list->next;
 273
 274		free_image_page(list, clear_page_nosave);
 275		list = lp;
 276	}
 277}
 278
 279/*
 280 * struct chain_allocator is used for allocating small objects out of
 281 * a linked list of pages called 'the chain'.
 282 *
 283 * The chain grows each time when there is no room for a new object in
 284 * the current page.  The allocated objects cannot be freed individually.
 285 * It is only possible to free them all at once, by freeing the entire
 286 * chain.
 287 *
 288 * NOTE: The chain allocator may be inefficient if the allocated objects
 289 * are not much smaller than PAGE_SIZE.
 290 */
 
 291struct chain_allocator {
 292	struct linked_page *chain;	/* the chain */
 293	unsigned int used_space;	/* total size of objects allocated out
 294					   of the current page */
 
 295	gfp_t gfp_mask;		/* mask for allocating pages */
 296	int safe_needed;	/* if set, only "safe" pages are allocated */
 297};
 298
 299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 300		       int safe_needed)
 301{
 302	ca->chain = NULL;
 303	ca->used_space = LINKED_PAGE_DATA_SIZE;
 304	ca->gfp_mask = gfp_mask;
 305	ca->safe_needed = safe_needed;
 306}
 307
 308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 309{
 310	void *ret;
 311
 312	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 313		struct linked_page *lp;
 314
 315		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 316					get_image_page(ca->gfp_mask, PG_ANY);
 317		if (!lp)
 318			return NULL;
 319
 320		lp->next = ca->chain;
 321		ca->chain = lp;
 322		ca->used_space = 0;
 323	}
 324	ret = ca->chain->data + ca->used_space;
 325	ca->used_space += size;
 326	return ret;
 327}
 328
 329/*
 330 * Data types related to memory bitmaps.
 331 *
 332 * Memory bitmap is a structure consisting of many linked lists of
 333 * objects.  The main list's elements are of type struct zone_bitmap
 334 * and each of them corresponds to one zone.  For each zone bitmap
 335 * object there is a list of objects of type struct bm_block that
 336 * represent each blocks of bitmap in which information is stored.
 337 *
 338 * struct memory_bitmap contains a pointer to the main list of zone
 339 * bitmap objects, a struct bm_position used for browsing the bitmap,
 340 * and a pointer to the list of pages used for allocating all of the
 341 * zone bitmap objects and bitmap block objects.
 342 *
 343 * NOTE: It has to be possible to lay out the bitmap in memory
 344 * using only allocations of order 0.  Additionally, the bitmap is
 345 * designed to work with arbitrary number of zones (this is over the
 346 * top for now, but let's avoid making unnecessary assumptions ;-).
 347 *
 348 * struct zone_bitmap contains a pointer to a list of bitmap block
 349 * objects and a pointer to the bitmap block object that has been
 350 * most recently used for setting bits.  Additionally, it contains the
 351 * PFNs that correspond to the start and end of the represented zone.
 352 *
 353 * struct bm_block contains a pointer to the memory page in which
 354 * information is stored (in the form of a block of bitmap)
 355 * It also contains the pfns that correspond to the start and end of
 356 * the represented memory area.
 357 *
 358 * The memory bitmap is organized as a radix tree to guarantee fast random
 359 * access to the bits. There is one radix tree for each zone (as returned
 360 * from create_mem_extents).
 361 *
 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 363 * two linked lists for the nodes of the tree, one for the inner nodes and
 364 * one for the leave nodes. The linked leave nodes are used for fast linear
 365 * access of the memory bitmap.
 366 *
 367 * The struct rtree_node represents one node of the radix tree.
 368 */
 369
 370#define BM_END_OF_MAP	(~0UL)
 371
 372#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 373#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 374#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 375
 376/*
 377 * struct rtree_node is a wrapper struct to link the nodes
 378 * of the rtree together for easy linear iteration over
 379 * bits and easy freeing
 380 */
 381struct rtree_node {
 382	struct list_head list;
 383	unsigned long *data;
 384};
 385
 386/*
 387 * struct mem_zone_bm_rtree represents a bitmap used for one
 388 * populated memory zone.
 389 */
 390struct mem_zone_bm_rtree {
 391	struct list_head list;		/* Link Zones together         */
 392	struct list_head nodes;		/* Radix Tree inner nodes      */
 393	struct list_head leaves;	/* Radix Tree leaves           */
 394	unsigned long start_pfn;	/* Zone start page frame       */
 395	unsigned long end_pfn;		/* Zone end page frame + 1     */
 396	struct rtree_node *rtree;	/* Radix Tree Root             */
 397	int levels;			/* Number of Radix Tree Levels */
 398	unsigned int blocks;		/* Number of Bitmap Blocks     */
 399};
 400
 401/* struct bm_position is used for browsing memory bitmaps */
 402
 403struct bm_position {
 404	struct mem_zone_bm_rtree *zone;
 405	struct rtree_node *node;
 406	unsigned long node_pfn;
 407	unsigned long cur_pfn;
 408	int node_bit;
 409};
 410
 411struct memory_bitmap {
 412	struct list_head zones;
 413	struct linked_page *p_list;	/* list of pages used to store zone
 414					   bitmap objects and bitmap block
 415					   objects */
 
 416	struct bm_position cur;	/* most recently used bit position */
 417};
 418
 419/* Functions that operate on memory bitmaps */
 420
 421#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 422#if BITS_PER_LONG == 32
 423#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 424#else
 425#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 426#endif
 427#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 428
 429/**
 430 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 431 * @gfp_mask: GFP mask for the allocation.
 432 * @safe_needed: Get pages not used before hibernation (restore only)
 433 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
 434 * @list: Radix Tree node to add.
 435 *
 436 * This function is used to allocate inner nodes as well as the
 437 * leave nodes of the radix tree. It also adds the node to the
 438 * corresponding linked list passed in by the *list parameter.
 439 */
 440static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 441					   struct chain_allocator *ca,
 442					   struct list_head *list)
 443{
 444	struct rtree_node *node;
 445
 446	node = chain_alloc(ca, sizeof(struct rtree_node));
 447	if (!node)
 448		return NULL;
 449
 450	node->data = get_image_page(gfp_mask, safe_needed);
 451	if (!node->data)
 452		return NULL;
 453
 454	list_add_tail(&node->list, list);
 455
 456	return node;
 457}
 458
 459/**
 460 * add_rtree_block - Add a new leave node to the radix tree.
 461 *
 462 * The leave nodes need to be allocated in order to keep the leaves
 463 * linked list in order. This is guaranteed by the zone->blocks
 464 * counter.
 465 */
 466static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 467			   int safe_needed, struct chain_allocator *ca)
 468{
 469	struct rtree_node *node, *block, **dst;
 470	unsigned int levels_needed, block_nr;
 471	int i;
 472
 473	block_nr = zone->blocks;
 474	levels_needed = 0;
 475
 476	/* How many levels do we need for this block nr? */
 477	while (block_nr) {
 478		levels_needed += 1;
 479		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 480	}
 481
 482	/* Make sure the rtree has enough levels */
 483	for (i = zone->levels; i < levels_needed; i++) {
 484		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 485					&zone->nodes);
 486		if (!node)
 487			return -ENOMEM;
 488
 489		node->data[0] = (unsigned long)zone->rtree;
 490		zone->rtree = node;
 491		zone->levels += 1;
 492	}
 493
 494	/* Allocate new block */
 495	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 496	if (!block)
 497		return -ENOMEM;
 498
 499	/* Now walk the rtree to insert the block */
 500	node = zone->rtree;
 501	dst = &zone->rtree;
 502	block_nr = zone->blocks;
 503	for (i = zone->levels; i > 0; i--) {
 504		int index;
 505
 506		if (!node) {
 507			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 508						&zone->nodes);
 509			if (!node)
 510				return -ENOMEM;
 511			*dst = node;
 512		}
 513
 514		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 515		index &= BM_RTREE_LEVEL_MASK;
 516		dst = (struct rtree_node **)&((*dst)->data[index]);
 517		node = *dst;
 518	}
 519
 520	zone->blocks += 1;
 521	*dst = block;
 522
 523	return 0;
 524}
 525
 526static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 527			       int clear_nosave_free);
 528
 529/**
 530 * create_zone_bm_rtree - Create a radix tree for one zone.
 531 *
 532 * Allocated the mem_zone_bm_rtree structure and initializes it.
 533 * This function also allocated and builds the radix tree for the
 534 * zone.
 535 */
 536static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 537						      int safe_needed,
 538						      struct chain_allocator *ca,
 539						      unsigned long start,
 540						      unsigned long end)
 541{
 542	struct mem_zone_bm_rtree *zone;
 543	unsigned int i, nr_blocks;
 544	unsigned long pages;
 545
 546	pages = end - start;
 547	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 548	if (!zone)
 549		return NULL;
 550
 551	INIT_LIST_HEAD(&zone->nodes);
 552	INIT_LIST_HEAD(&zone->leaves);
 553	zone->start_pfn = start;
 554	zone->end_pfn = end;
 555	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 556
 557	for (i = 0; i < nr_blocks; i++) {
 558		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 559			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 560			return NULL;
 561		}
 562	}
 563
 564	return zone;
 565}
 566
 567/**
 568 * free_zone_bm_rtree - Free the memory of the radix tree.
 569 *
 570 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 571 * structure itself is not freed here nor are the rtree_node
 572 * structs.
 573 */
 574static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 575			       int clear_nosave_free)
 576{
 577	struct rtree_node *node;
 578
 579	list_for_each_entry(node, &zone->nodes, list)
 580		free_image_page(node->data, clear_nosave_free);
 581
 582	list_for_each_entry(node, &zone->leaves, list)
 583		free_image_page(node->data, clear_nosave_free);
 584}
 585
 586static void memory_bm_position_reset(struct memory_bitmap *bm)
 587{
 588	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 589				  list);
 590	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 591				  struct rtree_node, list);
 592	bm->cur.node_pfn = 0;
 593	bm->cur.cur_pfn = BM_END_OF_MAP;
 594	bm->cur.node_bit = 0;
 595}
 596
 597static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 598
 599struct mem_extent {
 600	struct list_head hook;
 601	unsigned long start;
 602	unsigned long end;
 603};
 604
 605/**
 606 * free_mem_extents - Free a list of memory extents.
 607 * @list: List of extents to free.
 608 */
 609static void free_mem_extents(struct list_head *list)
 610{
 611	struct mem_extent *ext, *aux;
 612
 613	list_for_each_entry_safe(ext, aux, list, hook) {
 614		list_del(&ext->hook);
 615		kfree(ext);
 616	}
 617}
 618
 619/**
 620 * create_mem_extents - Create a list of memory extents.
 621 * @list: List to put the extents into.
 622 * @gfp_mask: Mask to use for memory allocations.
 623 *
 624 * The extents represent contiguous ranges of PFNs.
 625 */
 626static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 627{
 628	struct zone *zone;
 629
 630	INIT_LIST_HEAD(list);
 631
 632	for_each_populated_zone(zone) {
 633		unsigned long zone_start, zone_end;
 634		struct mem_extent *ext, *cur, *aux;
 635
 636		zone_start = zone->zone_start_pfn;
 637		zone_end = zone_end_pfn(zone);
 638
 639		list_for_each_entry(ext, list, hook)
 640			if (zone_start <= ext->end)
 641				break;
 642
 643		if (&ext->hook == list || zone_end < ext->start) {
 644			/* New extent is necessary */
 645			struct mem_extent *new_ext;
 646
 647			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 648			if (!new_ext) {
 649				free_mem_extents(list);
 650				return -ENOMEM;
 651			}
 652			new_ext->start = zone_start;
 653			new_ext->end = zone_end;
 654			list_add_tail(&new_ext->hook, &ext->hook);
 655			continue;
 656		}
 657
 658		/* Merge this zone's range of PFNs with the existing one */
 659		if (zone_start < ext->start)
 660			ext->start = zone_start;
 661		if (zone_end > ext->end)
 662			ext->end = zone_end;
 663
 664		/* More merging may be possible */
 665		cur = ext;
 666		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 667			if (zone_end < cur->start)
 668				break;
 669			if (zone_end < cur->end)
 670				ext->end = cur->end;
 671			list_del(&cur->hook);
 672			kfree(cur);
 673		}
 674	}
 675
 676	return 0;
 677}
 678
 679/**
 680 * memory_bm_create - Allocate memory for a memory bitmap.
 681 */
 682static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 683			    int safe_needed)
 684{
 685	struct chain_allocator ca;
 686	struct list_head mem_extents;
 687	struct mem_extent *ext;
 688	int error;
 689
 690	chain_init(&ca, gfp_mask, safe_needed);
 691	INIT_LIST_HEAD(&bm->zones);
 692
 693	error = create_mem_extents(&mem_extents, gfp_mask);
 694	if (error)
 695		return error;
 696
 697	list_for_each_entry(ext, &mem_extents, hook) {
 698		struct mem_zone_bm_rtree *zone;
 699
 700		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 701					    ext->start, ext->end);
 702		if (!zone) {
 703			error = -ENOMEM;
 704			goto Error;
 705		}
 706		list_add_tail(&zone->list, &bm->zones);
 707	}
 708
 709	bm->p_list = ca.chain;
 710	memory_bm_position_reset(bm);
 711 Exit:
 712	free_mem_extents(&mem_extents);
 713	return error;
 714
 715 Error:
 716	bm->p_list = ca.chain;
 717	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 718	goto Exit;
 719}
 720
 721/**
 722 * memory_bm_free - Free memory occupied by the memory bitmap.
 723 * @bm: Memory bitmap.
 724 */
 725static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 726{
 727	struct mem_zone_bm_rtree *zone;
 728
 729	list_for_each_entry(zone, &bm->zones, list)
 730		free_zone_bm_rtree(zone, clear_nosave_free);
 731
 732	free_list_of_pages(bm->p_list, clear_nosave_free);
 733
 734	INIT_LIST_HEAD(&bm->zones);
 735}
 736
 737/**
 738 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 739 *
 740 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 741 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 742 *
 743 * Walk the radix tree to find the page containing the bit that represents @pfn
 744 * and return the position of the bit in @addr and @bit_nr.
 
 
 
 745 */
 746static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 747			      void **addr, unsigned int *bit_nr)
 748{
 749	struct mem_zone_bm_rtree *curr, *zone;
 750	struct rtree_node *node;
 751	int i, block_nr;
 752
 753	zone = bm->cur.zone;
 754
 755	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 756		goto zone_found;
 757
 758	zone = NULL;
 759
 760	/* Find the right zone */
 761	list_for_each_entry(curr, &bm->zones, list) {
 762		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 763			zone = curr;
 764			break;
 765		}
 766	}
 767
 768	if (!zone)
 769		return -EFAULT;
 770
 771zone_found:
 772	/*
 773	 * We have found the zone. Now walk the radix tree to find the leaf node
 774	 * for our PFN.
 775	 */
 776
 777	/*
 778	 * If the zone we wish to scan is the current zone and the
 779	 * pfn falls into the current node then we do not need to walk
 780	 * the tree.
 781	 */
 782	node = bm->cur.node;
 783	if (zone == bm->cur.zone &&
 784	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 785		goto node_found;
 786
 787	node      = zone->rtree;
 788	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 789
 790	for (i = zone->levels; i > 0; i--) {
 791		int index;
 792
 793		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 794		index &= BM_RTREE_LEVEL_MASK;
 795		BUG_ON(node->data[index] == 0);
 796		node = (struct rtree_node *)node->data[index];
 797	}
 798
 799node_found:
 800	/* Update last position */
 801	bm->cur.zone = zone;
 802	bm->cur.node = node;
 803	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 804	bm->cur.cur_pfn = pfn;
 805
 806	/* Set return values */
 807	*addr = node->data;
 808	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 809
 810	return 0;
 811}
 812
 813static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 814{
 815	void *addr;
 816	unsigned int bit;
 817	int error;
 818
 819	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 820	BUG_ON(error);
 821	set_bit(bit, addr);
 822}
 823
 824static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 825{
 826	void *addr;
 827	unsigned int bit;
 828	int error;
 829
 830	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 831	if (!error)
 832		set_bit(bit, addr);
 833
 834	return error;
 835}
 836
 837static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 838{
 839	void *addr;
 840	unsigned int bit;
 841	int error;
 842
 843	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 844	BUG_ON(error);
 845	clear_bit(bit, addr);
 846}
 847
 848static void memory_bm_clear_current(struct memory_bitmap *bm)
 849{
 850	int bit;
 851
 852	bit = max(bm->cur.node_bit - 1, 0);
 853	clear_bit(bit, bm->cur.node->data);
 854}
 855
 856static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
 857{
 858	return bm->cur.cur_pfn;
 859}
 860
 861static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 862{
 863	void *addr;
 864	unsigned int bit;
 865	int error;
 866
 867	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 868	BUG_ON(error);
 869	return test_bit(bit, addr);
 870}
 871
 872static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 873{
 874	void *addr;
 875	unsigned int bit;
 876
 877	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 878}
 879
 880/*
 881 * rtree_next_node - Jump to the next leaf node.
 882 *
 883 * Set the position to the beginning of the next node in the
 884 * memory bitmap. This is either the next node in the current
 885 * zone's radix tree or the first node in the radix tree of the
 886 * next zone.
 887 *
 888 * Return true if there is a next node, false otherwise.
 889 */
 890static bool rtree_next_node(struct memory_bitmap *bm)
 891{
 892	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 893		bm->cur.node = list_entry(bm->cur.node->list.next,
 894					  struct rtree_node, list);
 895		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 896		bm->cur.node_bit  = 0;
 897		touch_softlockup_watchdog();
 898		return true;
 899	}
 900
 901	/* No more nodes, goto next zone */
 902	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 903		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 904				  struct mem_zone_bm_rtree, list);
 
 905		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 906					  struct rtree_node, list);
 907		bm->cur.node_pfn = 0;
 908		bm->cur.node_bit = 0;
 909		return true;
 910	}
 911
 912	/* No more zones */
 913	return false;
 914}
 915
 916/**
 917 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
 918 * @bm: Memory bitmap.
 919 *
 920 * Starting from the last returned position this function searches for the next
 921 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 922 * set, BM_END_OF_MAP is returned.
 923 *
 924 * It is required to run memory_bm_position_reset() before the first call to
 925 * this function for the given memory bitmap.
 926 */
 927static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 928{
 929	unsigned long bits, pfn, pages;
 930	int bit;
 931
 932	do {
 933		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 934		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 935		bit	  = find_next_bit(bm->cur.node->data, bits,
 936					  bm->cur.node_bit);
 937		if (bit < bits) {
 938			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 939			bm->cur.node_bit = bit + 1;
 940			bm->cur.cur_pfn = pfn;
 941			return pfn;
 942		}
 943	} while (rtree_next_node(bm));
 944
 945	bm->cur.cur_pfn = BM_END_OF_MAP;
 946	return BM_END_OF_MAP;
 947}
 948
 949/*
 950 * This structure represents a range of page frames the contents of which
 951 * should not be saved during hibernation.
 952 */
 
 953struct nosave_region {
 954	struct list_head list;
 955	unsigned long start_pfn;
 956	unsigned long end_pfn;
 957};
 958
 959static LIST_HEAD(nosave_regions);
 960
 961static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 962{
 963	struct rtree_node *node;
 964
 965	list_for_each_entry(node, &zone->nodes, list)
 966		recycle_safe_page(node->data);
 967
 968	list_for_each_entry(node, &zone->leaves, list)
 969		recycle_safe_page(node->data);
 970}
 971
 972static void memory_bm_recycle(struct memory_bitmap *bm)
 973{
 974	struct mem_zone_bm_rtree *zone;
 975	struct linked_page *p_list;
 976
 977	list_for_each_entry(zone, &bm->zones, list)
 978		recycle_zone_bm_rtree(zone);
 979
 980	p_list = bm->p_list;
 981	while (p_list) {
 982		struct linked_page *lp = p_list;
 983
 984		p_list = lp->next;
 985		recycle_safe_page(lp);
 986	}
 987}
 988
 989/**
 990 * register_nosave_region - Register a region of unsaveable memory.
 991 *
 992 * Register a range of page frames the contents of which should not be saved
 993 * during hibernation (to be used in the early initialization code).
 994 */
 995void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
 
 
 
 996{
 997	struct nosave_region *region;
 998
 999	if (start_pfn >= end_pfn)
1000		return;
1001
1002	if (!list_empty(&nosave_regions)) {
1003		/* Try to extend the previous region (they should be sorted) */
1004		region = list_entry(nosave_regions.prev,
1005					struct nosave_region, list);
1006		if (region->end_pfn == start_pfn) {
1007			region->end_pfn = end_pfn;
1008			goto Report;
1009		}
1010	}
1011	/* This allocation cannot fail */
1012	region = memblock_alloc(sizeof(struct nosave_region),
1013				SMP_CACHE_BYTES);
1014	if (!region)
1015		panic("%s: Failed to allocate %zu bytes\n", __func__,
1016		      sizeof(struct nosave_region));
 
1017	region->start_pfn = start_pfn;
1018	region->end_pfn = end_pfn;
1019	list_add_tail(&region->list, &nosave_regions);
1020 Report:
1021	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1022		(unsigned long long) start_pfn << PAGE_SHIFT,
1023		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1024}
1025
1026/*
1027 * Set bits in this map correspond to the page frames the contents of which
1028 * should not be saved during the suspend.
1029 */
1030static struct memory_bitmap *forbidden_pages_map;
1031
1032/* Set bits in this map correspond to free page frames. */
1033static struct memory_bitmap *free_pages_map;
1034
1035/*
1036 * Each page frame allocated for creating the image is marked by setting the
1037 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1038 */
1039
1040void swsusp_set_page_free(struct page *page)
1041{
1042	if (free_pages_map)
1043		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1044}
1045
1046static int swsusp_page_is_free(struct page *page)
1047{
1048	return free_pages_map ?
1049		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1050}
1051
1052void swsusp_unset_page_free(struct page *page)
1053{
1054	if (free_pages_map)
1055		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1056}
1057
1058static void swsusp_set_page_forbidden(struct page *page)
1059{
1060	if (forbidden_pages_map)
1061		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1062}
1063
1064int swsusp_page_is_forbidden(struct page *page)
1065{
1066	return forbidden_pages_map ?
1067		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1068}
1069
1070static void swsusp_unset_page_forbidden(struct page *page)
1071{
1072	if (forbidden_pages_map)
1073		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1074}
1075
1076/**
1077 * mark_nosave_pages - Mark pages that should not be saved.
1078 * @bm: Memory bitmap.
1079 *
1080 * Set the bits in @bm that correspond to the page frames the contents of which
1081 * should not be saved.
1082 */
 
1083static void mark_nosave_pages(struct memory_bitmap *bm)
1084{
1085	struct nosave_region *region;
1086
1087	if (list_empty(&nosave_regions))
1088		return;
1089
1090	list_for_each_entry(region, &nosave_regions, list) {
1091		unsigned long pfn;
1092
1093		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1094			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1095			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1096				- 1);
1097
1098		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1099			if (pfn_valid(pfn)) {
1100				/*
1101				 * It is safe to ignore the result of
1102				 * mem_bm_set_bit_check() here, since we won't
1103				 * touch the PFNs for which the error is
1104				 * returned anyway.
1105				 */
1106				mem_bm_set_bit_check(bm, pfn);
1107			}
1108	}
1109}
1110
1111/**
1112 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1113 *
1114 * Create bitmaps needed for marking page frames that should not be saved and
1115 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1116 * only modified if everything goes well, because we don't want the bits to be
1117 * touched before both bitmaps are set up.
1118 */
 
1119int create_basic_memory_bitmaps(void)
1120{
1121	struct memory_bitmap *bm1, *bm2;
1122	int error;
1123
1124	if (forbidden_pages_map && free_pages_map)
1125		return 0;
1126	else
1127		BUG_ON(forbidden_pages_map || free_pages_map);
1128
1129	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1130	if (!bm1)
1131		return -ENOMEM;
1132
1133	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1134	if (error)
1135		goto Free_first_object;
1136
1137	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1138	if (!bm2)
1139		goto Free_first_bitmap;
1140
1141	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1142	if (error)
1143		goto Free_second_object;
1144
1145	forbidden_pages_map = bm1;
1146	free_pages_map = bm2;
1147	mark_nosave_pages(forbidden_pages_map);
1148
1149	pr_debug("Basic memory bitmaps created\n");
1150
1151	return 0;
1152
1153 Free_second_object:
1154	kfree(bm2);
1155 Free_first_bitmap:
1156	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1157 Free_first_object:
1158	kfree(bm1);
1159	return -ENOMEM;
1160}
1161
1162/**
1163 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1164 *
1165 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1166 * auxiliary pointers are necessary so that the bitmaps themselves are not
1167 * referred to while they are being freed.
1168 */
 
1169void free_basic_memory_bitmaps(void)
1170{
1171	struct memory_bitmap *bm1, *bm2;
1172
1173	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1174		return;
1175
1176	bm1 = forbidden_pages_map;
1177	bm2 = free_pages_map;
1178	forbidden_pages_map = NULL;
1179	free_pages_map = NULL;
1180	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1181	kfree(bm1);
1182	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1183	kfree(bm2);
1184
1185	pr_debug("Basic memory bitmaps freed\n");
1186}
1187
1188static void clear_or_poison_free_page(struct page *page)
1189{
1190	if (page_poisoning_enabled_static())
1191		__kernel_poison_pages(page, 1);
1192	else if (want_init_on_free())
1193		clear_highpage(page);
1194}
1195
1196void clear_or_poison_free_pages(void)
1197{
1198	struct memory_bitmap *bm = free_pages_map;
1199	unsigned long pfn;
1200
1201	if (WARN_ON(!(free_pages_map)))
1202		return;
1203
1204	if (page_poisoning_enabled() || want_init_on_free()) {
1205		memory_bm_position_reset(bm);
1206		pfn = memory_bm_next_pfn(bm);
1207		while (pfn != BM_END_OF_MAP) {
1208			if (pfn_valid(pfn))
1209				clear_or_poison_free_page(pfn_to_page(pfn));
1210
1211			pfn = memory_bm_next_pfn(bm);
1212		}
1213		memory_bm_position_reset(bm);
1214		pr_info("free pages cleared after restore\n");
1215	}
1216}
1217
1218/**
1219 * snapshot_additional_pages - Estimate the number of extra pages needed.
1220 * @zone: Memory zone to carry out the computation for.
1221 *
1222 * Estimate the number of additional pages needed for setting up a hibernation
1223 * image data structures for @zone (usually, the returned value is greater than
1224 * the exact number).
1225 */
 
1226unsigned int snapshot_additional_pages(struct zone *zone)
1227{
1228	unsigned int rtree, nodes;
1229
1230	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1231	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1232			      LINKED_PAGE_DATA_SIZE);
1233	while (nodes > 1) {
1234		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1235		rtree += nodes;
1236	}
1237
1238	return 2 * rtree;
1239}
1240
1241/*
1242 * Touch the watchdog for every WD_PAGE_COUNT pages.
1243 */
1244#define WD_PAGE_COUNT	(128*1024)
1245
1246static void mark_free_pages(struct zone *zone)
1247{
1248	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1249	unsigned long flags;
1250	unsigned int order, t;
1251	struct page *page;
1252
1253	if (zone_is_empty(zone))
1254		return;
1255
1256	spin_lock_irqsave(&zone->lock, flags);
1257
1258	max_zone_pfn = zone_end_pfn(zone);
1259	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1260		if (pfn_valid(pfn)) {
1261			page = pfn_to_page(pfn);
1262
1263			if (!--page_count) {
1264				touch_nmi_watchdog();
1265				page_count = WD_PAGE_COUNT;
1266			}
1267
1268			if (page_zone(page) != zone)
1269				continue;
1270
1271			if (!swsusp_page_is_forbidden(page))
1272				swsusp_unset_page_free(page);
1273		}
1274
1275	for_each_migratetype_order(order, t) {
1276		list_for_each_entry(page,
1277				&zone->free_area[order].free_list[t], buddy_list) {
1278			unsigned long i;
1279
1280			pfn = page_to_pfn(page);
1281			for (i = 0; i < (1UL << order); i++) {
1282				if (!--page_count) {
1283					touch_nmi_watchdog();
1284					page_count = WD_PAGE_COUNT;
1285				}
1286				swsusp_set_page_free(pfn_to_page(pfn + i));
1287			}
1288		}
1289	}
1290	spin_unlock_irqrestore(&zone->lock, flags);
1291}
1292
1293#ifdef CONFIG_HIGHMEM
1294/**
1295 * count_free_highmem_pages - Compute the total number of free highmem pages.
1296 *
1297 * The returned number is system-wide.
1298 */
 
1299static unsigned int count_free_highmem_pages(void)
1300{
1301	struct zone *zone;
1302	unsigned int cnt = 0;
1303
1304	for_each_populated_zone(zone)
1305		if (is_highmem(zone))
1306			cnt += zone_page_state(zone, NR_FREE_PAGES);
1307
1308	return cnt;
1309}
1310
1311/**
1312 * saveable_highmem_page - Check if a highmem page is saveable.
 
1313 *
1314 * Determine whether a highmem page should be included in a hibernation image.
1315 *
1316 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1317 * and it isn't part of a free chunk of pages.
1318 */
1319static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1320{
1321	struct page *page;
1322
1323	if (!pfn_valid(pfn))
1324		return NULL;
1325
1326	page = pfn_to_online_page(pfn);
1327	if (!page || page_zone(page) != zone)
1328		return NULL;
1329
1330	BUG_ON(!PageHighMem(page));
1331
1332	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1333		return NULL;
1334
1335	if (PageReserved(page) || PageOffline(page))
1336		return NULL;
1337
1338	if (page_is_guard(page))
1339		return NULL;
1340
1341	return page;
1342}
1343
1344/**
1345 * count_highmem_pages - Compute the total number of saveable highmem pages.
 
1346 */
 
1347static unsigned int count_highmem_pages(void)
1348{
1349	struct zone *zone;
1350	unsigned int n = 0;
1351
1352	for_each_populated_zone(zone) {
1353		unsigned long pfn, max_zone_pfn;
1354
1355		if (!is_highmem(zone))
1356			continue;
1357
1358		mark_free_pages(zone);
1359		max_zone_pfn = zone_end_pfn(zone);
1360		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1361			if (saveable_highmem_page(zone, pfn))
1362				n++;
1363	}
1364	return n;
1365}
1366#else
1367static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1368{
1369	return NULL;
1370}
1371#endif /* CONFIG_HIGHMEM */
1372
1373/**
1374 * saveable_page - Check if the given page is saveable.
 
1375 *
1376 * Determine whether a non-highmem page should be included in a hibernation
1377 * image.
1378 *
1379 * We should save the page if it isn't Nosave, and is not in the range
1380 * of pages statically defined as 'unsaveable', and it isn't part of
1381 * a free chunk of pages.
1382 */
1383static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1384{
1385	struct page *page;
1386
1387	if (!pfn_valid(pfn))
1388		return NULL;
1389
1390	page = pfn_to_online_page(pfn);
1391	if (!page || page_zone(page) != zone)
1392		return NULL;
1393
1394	BUG_ON(PageHighMem(page));
1395
1396	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1397		return NULL;
1398
1399	if (PageOffline(page))
1400		return NULL;
1401
1402	if (PageReserved(page)
1403	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1404		return NULL;
1405
1406	if (page_is_guard(page))
1407		return NULL;
1408
1409	return page;
1410}
1411
1412/**
1413 * count_data_pages - Compute the total number of saveable non-highmem pages.
 
1414 */
 
1415static unsigned int count_data_pages(void)
1416{
1417	struct zone *zone;
1418	unsigned long pfn, max_zone_pfn;
1419	unsigned int n = 0;
1420
1421	for_each_populated_zone(zone) {
1422		if (is_highmem(zone))
1423			continue;
1424
1425		mark_free_pages(zone);
1426		max_zone_pfn = zone_end_pfn(zone);
1427		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1428			if (saveable_page(zone, pfn))
1429				n++;
1430	}
1431	return n;
1432}
1433
1434/*
1435 * This is needed, because copy_page and memcpy are not usable for copying
1436 * task structs. Returns true if the page was filled with only zeros,
1437 * otherwise false.
1438 */
1439static inline bool do_copy_page(long *dst, long *src)
1440{
1441	long z = 0;
1442	int n;
1443
1444	for (n = PAGE_SIZE / sizeof(long); n; n--) {
1445		z |= *src;
1446		*dst++ = *src++;
1447	}
1448	return !z;
1449}
1450
 
1451/**
1452 * safe_copy_page - Copy a page in a safe way.
1453 *
1454 * Check if the page we are going to copy is marked as present in the kernel
1455 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1456 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1457 * always returns 'true'. Returns true if the page was entirely composed of
1458 * zeros, otherwise it will return false.
1459 */
1460static bool safe_copy_page(void *dst, struct page *s_page)
1461{
1462	bool zeros_only;
1463
1464	if (kernel_page_present(s_page)) {
1465		zeros_only = do_copy_page(dst, page_address(s_page));
1466	} else {
1467		hibernate_map_page(s_page);
1468		zeros_only = do_copy_page(dst, page_address(s_page));
1469		hibernate_unmap_page(s_page);
1470	}
1471	return zeros_only;
1472}
1473
 
1474#ifdef CONFIG_HIGHMEM
1475static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
 
1476{
1477	return is_highmem(zone) ?
1478		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1479}
1480
1481static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1482{
1483	struct page *s_page, *d_page;
1484	void *src, *dst;
1485	bool zeros_only;
1486
1487	s_page = pfn_to_page(src_pfn);
1488	d_page = pfn_to_page(dst_pfn);
1489	if (PageHighMem(s_page)) {
1490		src = kmap_local_page(s_page);
1491		dst = kmap_local_page(d_page);
1492		zeros_only = do_copy_page(dst, src);
1493		kunmap_local(dst);
1494		kunmap_local(src);
1495	} else {
1496		if (PageHighMem(d_page)) {
1497			/*
1498			 * The page pointed to by src may contain some kernel
1499			 * data modified by kmap_atomic()
1500			 */
1501			zeros_only = safe_copy_page(buffer, s_page);
1502			dst = kmap_local_page(d_page);
1503			copy_page(dst, buffer);
1504			kunmap_local(dst);
1505		} else {
1506			zeros_only = safe_copy_page(page_address(d_page), s_page);
1507		}
1508	}
1509	return zeros_only;
1510}
1511#else
1512#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1513
1514static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1515{
1516	return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1517				pfn_to_page(src_pfn));
1518}
1519#endif /* CONFIG_HIGHMEM */
1520
1521/*
1522 * Copy data pages will copy all pages into pages pulled from the copy_bm.
1523 * If a page was entirely filled with zeros it will be marked in the zero_bm.
1524 *
1525 * Returns the number of pages copied.
1526 */
1527static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1528			    struct memory_bitmap *orig_bm,
1529			    struct memory_bitmap *zero_bm)
1530{
1531	unsigned long copied_pages = 0;
1532	struct zone *zone;
1533	unsigned long pfn, copy_pfn;
1534
1535	for_each_populated_zone(zone) {
1536		unsigned long max_zone_pfn;
1537
1538		mark_free_pages(zone);
1539		max_zone_pfn = zone_end_pfn(zone);
1540		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1541			if (page_is_saveable(zone, pfn))
1542				memory_bm_set_bit(orig_bm, pfn);
1543	}
1544	memory_bm_position_reset(orig_bm);
1545	memory_bm_position_reset(copy_bm);
1546	copy_pfn = memory_bm_next_pfn(copy_bm);
1547	for(;;) {
1548		pfn = memory_bm_next_pfn(orig_bm);
1549		if (unlikely(pfn == BM_END_OF_MAP))
1550			break;
1551		if (copy_data_page(copy_pfn, pfn)) {
1552			memory_bm_set_bit(zero_bm, pfn);
1553			/* Use this copy_pfn for a page that is not full of zeros */
1554			continue;
1555		}
1556		copied_pages++;
1557		copy_pfn = memory_bm_next_pfn(copy_bm);
1558	}
1559	return copied_pages;
1560}
1561
1562/* Total number of image pages */
1563static unsigned int nr_copy_pages;
1564/* Number of pages needed for saving the original pfns of the image pages */
1565static unsigned int nr_meta_pages;
1566/* Number of zero pages */
1567static unsigned int nr_zero_pages;
1568
1569/*
1570 * Numbers of normal and highmem page frames allocated for hibernation image
1571 * before suspending devices.
1572 */
1573static unsigned int alloc_normal, alloc_highmem;
1574/*
1575 * Memory bitmap used for marking saveable pages (during hibernation) or
1576 * hibernation image pages (during restore)
1577 */
1578static struct memory_bitmap orig_bm;
1579/*
1580 * Memory bitmap used during hibernation for marking allocated page frames that
1581 * will contain copies of saveable pages.  During restore it is initially used
1582 * for marking hibernation image pages, but then the set bits from it are
1583 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1584 * used for marking "safe" highmem pages, but it has to be reinitialized for
1585 * this purpose.
1586 */
1587static struct memory_bitmap copy_bm;
1588
1589/* Memory bitmap which tracks which saveable pages were zero filled. */
1590static struct memory_bitmap zero_bm;
1591
1592/**
1593 * swsusp_free - Free pages allocated for hibernation image.
1594 *
1595 * Image pages are allocated before snapshot creation, so they need to be
1596 * released after resume.
1597 */
 
1598void swsusp_free(void)
1599{
1600	unsigned long fb_pfn, fr_pfn;
1601
1602	if (!forbidden_pages_map || !free_pages_map)
1603		goto out;
1604
1605	memory_bm_position_reset(forbidden_pages_map);
1606	memory_bm_position_reset(free_pages_map);
1607
1608loop:
1609	fr_pfn = memory_bm_next_pfn(free_pages_map);
1610	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1611
1612	/*
1613	 * Find the next bit set in both bitmaps. This is guaranteed to
1614	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1615	 */
1616	do {
1617		if (fb_pfn < fr_pfn)
1618			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1619		if (fr_pfn < fb_pfn)
1620			fr_pfn = memory_bm_next_pfn(free_pages_map);
1621	} while (fb_pfn != fr_pfn);
1622
1623	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1624		struct page *page = pfn_to_page(fr_pfn);
1625
1626		memory_bm_clear_current(forbidden_pages_map);
1627		memory_bm_clear_current(free_pages_map);
1628		hibernate_restore_unprotect_page(page_address(page));
1629		__free_page(page);
1630		goto loop;
1631	}
1632
1633out:
1634	nr_copy_pages = 0;
1635	nr_meta_pages = 0;
1636	nr_zero_pages = 0;
1637	restore_pblist = NULL;
1638	buffer = NULL;
1639	alloc_normal = 0;
1640	alloc_highmem = 0;
1641	hibernate_restore_protection_end();
1642}
1643
1644/* Helper functions used for the shrinking of memory. */
1645
1646#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1647
1648/**
1649 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1650 * @nr_pages: Number of page frames to allocate.
1651 * @mask: GFP flags to use for the allocation.
1652 *
1653 * Return value: Number of page frames actually allocated
1654 */
1655static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1656{
1657	unsigned long nr_alloc = 0;
1658
1659	while (nr_pages > 0) {
1660		struct page *page;
1661
1662		page = alloc_image_page(mask);
1663		if (!page)
1664			break;
1665		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1666		if (PageHighMem(page))
1667			alloc_highmem++;
1668		else
1669			alloc_normal++;
1670		nr_pages--;
1671		nr_alloc++;
1672	}
1673
1674	return nr_alloc;
1675}
1676
1677static unsigned long preallocate_image_memory(unsigned long nr_pages,
1678					      unsigned long avail_normal)
1679{
1680	unsigned long alloc;
1681
1682	if (avail_normal <= alloc_normal)
1683		return 0;
1684
1685	alloc = avail_normal - alloc_normal;
1686	if (nr_pages < alloc)
1687		alloc = nr_pages;
1688
1689	return preallocate_image_pages(alloc, GFP_IMAGE);
1690}
1691
1692#ifdef CONFIG_HIGHMEM
1693static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1694{
1695	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1696}
1697
1698/**
1699 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1700 */
1701static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1702{
1703	return div64_u64(x * multiplier, base);
 
 
1704}
1705
1706static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1707						  unsigned long highmem,
1708						  unsigned long total)
1709{
1710	unsigned long alloc = __fraction(nr_pages, highmem, total);
1711
1712	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1713}
1714#else /* CONFIG_HIGHMEM */
1715static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1716{
1717	return 0;
1718}
1719
1720static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1721							 unsigned long highmem,
1722							 unsigned long total)
1723{
1724	return 0;
1725}
1726#endif /* CONFIG_HIGHMEM */
1727
1728/**
1729 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1730 */
1731static unsigned long free_unnecessary_pages(void)
1732{
1733	unsigned long save, to_free_normal, to_free_highmem, free;
1734
1735	save = count_data_pages();
1736	if (alloc_normal >= save) {
1737		to_free_normal = alloc_normal - save;
1738		save = 0;
1739	} else {
1740		to_free_normal = 0;
1741		save -= alloc_normal;
1742	}
1743	save += count_highmem_pages();
1744	if (alloc_highmem >= save) {
1745		to_free_highmem = alloc_highmem - save;
1746	} else {
1747		to_free_highmem = 0;
1748		save -= alloc_highmem;
1749		if (to_free_normal > save)
1750			to_free_normal -= save;
1751		else
1752			to_free_normal = 0;
1753	}
1754	free = to_free_normal + to_free_highmem;
1755
1756	memory_bm_position_reset(&copy_bm);
1757
1758	while (to_free_normal > 0 || to_free_highmem > 0) {
1759		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1760		struct page *page = pfn_to_page(pfn);
1761
1762		if (PageHighMem(page)) {
1763			if (!to_free_highmem)
1764				continue;
1765			to_free_highmem--;
1766			alloc_highmem--;
1767		} else {
1768			if (!to_free_normal)
1769				continue;
1770			to_free_normal--;
1771			alloc_normal--;
1772		}
1773		memory_bm_clear_bit(&copy_bm, pfn);
1774		swsusp_unset_page_forbidden(page);
1775		swsusp_unset_page_free(page);
1776		__free_page(page);
1777	}
1778
1779	return free;
1780}
1781
1782/**
1783 * minimum_image_size - Estimate the minimum acceptable size of an image.
1784 * @saveable: Number of saveable pages in the system.
1785 *
1786 * We want to avoid attempting to free too much memory too hard, so estimate the
1787 * minimum acceptable size of a hibernation image to use as the lower limit for
1788 * preallocating memory.
1789 *
1790 * We assume that the minimum image size should be proportional to
1791 *
1792 * [number of saveable pages] - [number of pages that can be freed in theory]
1793 *
1794 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1795 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
 
1796 */
1797static unsigned long minimum_image_size(unsigned long saveable)
1798{
1799	unsigned long size;
1800
1801	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1802		+ global_node_page_state(NR_ACTIVE_ANON)
1803		+ global_node_page_state(NR_INACTIVE_ANON)
1804		+ global_node_page_state(NR_ACTIVE_FILE)
1805		+ global_node_page_state(NR_INACTIVE_FILE);
 
1806
1807	return saveable <= size ? 0 : saveable - size;
1808}
1809
1810/**
1811 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1812 *
1813 * To create a hibernation image it is necessary to make a copy of every page
1814 * frame in use.  We also need a number of page frames to be free during
1815 * hibernation for allocations made while saving the image and for device
1816 * drivers, in case they need to allocate memory from their hibernation
1817 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1818 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1819 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1820 * total number of available page frames and allocate at least
1821 *
1822 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1823 *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1824 *
1825 * of them, which corresponds to the maximum size of a hibernation image.
1826 *
1827 * If image_size is set below the number following from the above formula,
1828 * the preallocation of memory is continued until the total number of saveable
1829 * pages in the system is below the requested image size or the minimum
1830 * acceptable image size returned by minimum_image_size(), whichever is greater.
1831 */
1832int hibernate_preallocate_memory(void)
1833{
1834	struct zone *zone;
1835	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1836	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1837	ktime_t start, stop;
1838	int error;
1839
1840	pr_info("Preallocating image memory\n");
1841	start = ktime_get();
1842
1843	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1844	if (error) {
1845		pr_err("Cannot allocate original bitmap\n");
1846		goto err_out;
1847	}
1848
1849	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1850	if (error) {
1851		pr_err("Cannot allocate copy bitmap\n");
1852		goto err_out;
1853	}
1854
1855	error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1856	if (error) {
1857		pr_err("Cannot allocate zero bitmap\n");
1858		goto err_out;
1859	}
1860
1861	alloc_normal = 0;
1862	alloc_highmem = 0;
1863	nr_zero_pages = 0;
1864
1865	/* Count the number of saveable data pages. */
1866	save_highmem = count_highmem_pages();
1867	saveable = count_data_pages();
1868
1869	/*
1870	 * Compute the total number of page frames we can use (count) and the
1871	 * number of pages needed for image metadata (size).
1872	 */
1873	count = saveable;
1874	saveable += save_highmem;
1875	highmem = save_highmem;
1876	size = 0;
1877	for_each_populated_zone(zone) {
1878		size += snapshot_additional_pages(zone);
1879		if (is_highmem(zone))
1880			highmem += zone_page_state(zone, NR_FREE_PAGES);
1881		else
1882			count += zone_page_state(zone, NR_FREE_PAGES);
1883	}
1884	avail_normal = count;
1885	count += highmem;
1886	count -= totalreserve_pages;
1887
 
 
 
1888	/* Compute the maximum number of saveable pages to leave in memory. */
1889	max_size = (count - (size + PAGES_FOR_IO)) / 2
1890			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1891	/* Compute the desired number of image pages specified by image_size. */
1892	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1893	if (size > max_size)
1894		size = max_size;
1895	/*
1896	 * If the desired number of image pages is at least as large as the
1897	 * current number of saveable pages in memory, allocate page frames for
1898	 * the image and we're done.
1899	 */
1900	if (size >= saveable) {
1901		pages = preallocate_image_highmem(save_highmem);
1902		pages += preallocate_image_memory(saveable - pages, avail_normal);
1903		goto out;
1904	}
1905
1906	/* Estimate the minimum size of the image. */
1907	pages = minimum_image_size(saveable);
1908	/*
1909	 * To avoid excessive pressure on the normal zone, leave room in it to
1910	 * accommodate an image of the minimum size (unless it's already too
1911	 * small, in which case don't preallocate pages from it at all).
1912	 */
1913	if (avail_normal > pages)
1914		avail_normal -= pages;
1915	else
1916		avail_normal = 0;
1917	if (size < pages)
1918		size = min_t(unsigned long, pages, max_size);
1919
1920	/*
1921	 * Let the memory management subsystem know that we're going to need a
1922	 * large number of page frames to allocate and make it free some memory.
1923	 * NOTE: If this is not done, performance will be hurt badly in some
1924	 * test cases.
1925	 */
1926	shrink_all_memory(saveable - size);
1927
1928	/*
1929	 * The number of saveable pages in memory was too high, so apply some
1930	 * pressure to decrease it.  First, make room for the largest possible
1931	 * image and fail if that doesn't work.  Next, try to decrease the size
1932	 * of the image as much as indicated by 'size' using allocations from
1933	 * highmem and non-highmem zones separately.
1934	 */
1935	pages_highmem = preallocate_image_highmem(highmem / 2);
1936	alloc = count - max_size;
1937	if (alloc > pages_highmem)
1938		alloc -= pages_highmem;
1939	else
1940		alloc = 0;
1941	pages = preallocate_image_memory(alloc, avail_normal);
1942	if (pages < alloc) {
1943		/* We have exhausted non-highmem pages, try highmem. */
1944		alloc -= pages;
1945		pages += pages_highmem;
1946		pages_highmem = preallocate_image_highmem(alloc);
1947		if (pages_highmem < alloc) {
1948			pr_err("Image allocation is %lu pages short\n",
1949				alloc - pages_highmem);
1950			goto err_out;
1951		}
1952		pages += pages_highmem;
1953		/*
1954		 * size is the desired number of saveable pages to leave in
1955		 * memory, so try to preallocate (all memory - size) pages.
1956		 */
1957		alloc = (count - pages) - size;
1958		pages += preallocate_image_highmem(alloc);
1959	} else {
1960		/*
1961		 * There are approximately max_size saveable pages at this point
1962		 * and we want to reduce this number down to size.
1963		 */
1964		alloc = max_size - size;
1965		size = preallocate_highmem_fraction(alloc, highmem, count);
1966		pages_highmem += size;
1967		alloc -= size;
1968		size = preallocate_image_memory(alloc, avail_normal);
1969		pages_highmem += preallocate_image_highmem(alloc - size);
1970		pages += pages_highmem + size;
1971	}
1972
1973	/*
1974	 * We only need as many page frames for the image as there are saveable
1975	 * pages in memory, but we have allocated more.  Release the excessive
1976	 * ones now.
1977	 */
1978	pages -= free_unnecessary_pages();
1979
1980 out:
1981	stop = ktime_get();
1982	pr_info("Allocated %lu pages for snapshot\n", pages);
1983	swsusp_show_speed(start, stop, pages, "Allocated");
1984
1985	return 0;
1986
1987 err_out:
 
1988	swsusp_free();
1989	return -ENOMEM;
1990}
1991
1992#ifdef CONFIG_HIGHMEM
1993/**
1994 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1995 *
1996 * Compute the number of non-highmem pages that will be necessary for creating
1997 * copies of highmem pages.
1998 */
1999static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
2000{
2001	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
2002
2003	if (free_highmem >= nr_highmem)
2004		nr_highmem = 0;
2005	else
2006		nr_highmem -= free_highmem;
2007
2008	return nr_highmem;
2009}
2010#else
2011static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
 
2012#endif /* CONFIG_HIGHMEM */
2013
2014/**
2015 * enough_free_mem - Check if there is enough free memory for the image.
 
2016 */
 
2017static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2018{
2019	struct zone *zone;
2020	unsigned int free = alloc_normal;
2021
2022	for_each_populated_zone(zone)
2023		if (!is_highmem(zone))
2024			free += zone_page_state(zone, NR_FREE_PAGES);
2025
2026	nr_pages += count_pages_for_highmem(nr_highmem);
2027	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2028		 nr_pages, PAGES_FOR_IO, free);
2029
2030	return free > nr_pages + PAGES_FOR_IO;
2031}
2032
2033#ifdef CONFIG_HIGHMEM
2034/**
2035 * get_highmem_buffer - Allocate a buffer for highmem pages.
2036 *
2037 * If there are some highmem pages in the hibernation image, we may need a
2038 * buffer to copy them and/or load their data.
2039 */
 
2040static inline int get_highmem_buffer(int safe_needed)
2041{
2042	buffer = get_image_page(GFP_ATOMIC, safe_needed);
2043	return buffer ? 0 : -ENOMEM;
2044}
2045
2046/**
2047 * alloc_highmem_pages - Allocate some highmem pages for the image.
2048 *
2049 * Try to allocate as many pages as needed, but if the number of free highmem
2050 * pages is less than that, allocate them all.
2051 */
2052static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2053					       unsigned int nr_highmem)
 
2054{
2055	unsigned int to_alloc = count_free_highmem_pages();
2056
2057	if (to_alloc > nr_highmem)
2058		to_alloc = nr_highmem;
2059
2060	nr_highmem -= to_alloc;
2061	while (to_alloc-- > 0) {
2062		struct page *page;
2063
2064		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2065		memory_bm_set_bit(bm, page_to_pfn(page));
2066	}
2067	return nr_highmem;
2068}
2069#else
2070static inline int get_highmem_buffer(int safe_needed) { return 0; }
2071
2072static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2073					       unsigned int n) { return 0; }
2074#endif /* CONFIG_HIGHMEM */
2075
2076/**
2077 * swsusp_alloc - Allocate memory for hibernation image.
 
 
 
 
2078 *
2079 * We first try to allocate as many highmem pages as there are
2080 * saveable highmem pages in the system.  If that fails, we allocate
2081 * non-highmem pages for the copies of the remaining highmem ones.
2082 *
2083 * In this approach it is likely that the copies of highmem pages will
2084 * also be located in the high memory, because of the way in which
2085 * copy_data_pages() works.
2086 */
2087static int swsusp_alloc(struct memory_bitmap *copy_bm,
2088			unsigned int nr_pages, unsigned int nr_highmem)
 
 
2089{
2090	if (nr_highmem > 0) {
2091		if (get_highmem_buffer(PG_ANY))
2092			goto err_out;
2093		if (nr_highmem > alloc_highmem) {
2094			nr_highmem -= alloc_highmem;
2095			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2096		}
2097	}
2098	if (nr_pages > alloc_normal) {
2099		nr_pages -= alloc_normal;
2100		while (nr_pages-- > 0) {
2101			struct page *page;
2102
2103			page = alloc_image_page(GFP_ATOMIC);
2104			if (!page)
2105				goto err_out;
2106			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2107		}
2108	}
2109
2110	return 0;
2111
2112 err_out:
2113	swsusp_free();
2114	return -ENOMEM;
2115}
2116
2117asmlinkage __visible int swsusp_save(void)
2118{
2119	unsigned int nr_pages, nr_highmem;
2120
2121	pr_info("Creating image:\n");
2122
2123	drain_local_pages(NULL);
2124	nr_pages = count_data_pages();
2125	nr_highmem = count_highmem_pages();
2126	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2127
2128	if (!enough_free_mem(nr_pages, nr_highmem)) {
2129		pr_err("Not enough free memory\n");
2130		return -ENOMEM;
2131	}
2132
2133	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2134		pr_err("Memory allocation failed\n");
2135		return -ENOMEM;
2136	}
2137
2138	/*
2139	 * During allocating of suspend pagedir, new cold pages may appear.
2140	 * Kill them.
2141	 */
2142	drain_local_pages(NULL);
2143	nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2144
2145	/*
2146	 * End of critical section. From now on, we can write to memory,
2147	 * but we should not touch disk. This specially means we must _not_
2148	 * touch swap space! Except we must write out our image of course.
2149	 */
 
2150	nr_pages += nr_highmem;
2151	/* We don't actually copy the zero pages */
2152	nr_zero_pages = nr_pages - nr_copy_pages;
2153	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2154
2155	pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
 
2156
2157	return 0;
2158}
2159
2160#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2161static int init_header_complete(struct swsusp_info *info)
2162{
2163	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2164	info->version_code = LINUX_VERSION_CODE;
2165	return 0;
2166}
2167
2168static const char *check_image_kernel(struct swsusp_info *info)
2169{
2170	if (info->version_code != LINUX_VERSION_CODE)
2171		return "kernel version";
2172	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2173		return "system type";
2174	if (strcmp(info->uts.release,init_utsname()->release))
2175		return "kernel release";
2176	if (strcmp(info->uts.version,init_utsname()->version))
2177		return "version";
2178	if (strcmp(info->uts.machine,init_utsname()->machine))
2179		return "machine";
2180	return NULL;
2181}
2182#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2183
2184unsigned long snapshot_get_image_size(void)
2185{
2186	return nr_copy_pages + nr_meta_pages + 1;
2187}
2188
2189static int init_header(struct swsusp_info *info)
2190{
2191	memset(info, 0, sizeof(struct swsusp_info));
2192	info->num_physpages = get_num_physpages();
2193	info->image_pages = nr_copy_pages;
2194	info->pages = snapshot_get_image_size();
2195	info->size = info->pages;
2196	info->size <<= PAGE_SHIFT;
2197	return init_header_complete(info);
2198}
2199
2200#define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2201#define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2202
2203/**
2204 * pack_pfns - Prepare PFNs for saving.
2205 * @bm: Memory bitmap.
2206 * @buf: Memory buffer to store the PFNs in.
2207 * @zero_bm: Memory bitmap containing PFNs of zero pages.
2208 *
2209 * PFNs corresponding to set bits in @bm are stored in the area of memory
2210 * pointed to by @buf (1 page at a time). Pages which were filled with only
2211 * zeros will have the highest bit set in the packed format to distinguish
2212 * them from PFNs which will be contained in the image file.
2213 */
2214static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2215		struct memory_bitmap *zero_bm)
 
2216{
2217	int j;
2218
2219	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2220		buf[j] = memory_bm_next_pfn(bm);
2221		if (unlikely(buf[j] == BM_END_OF_MAP))
2222			break;
2223		if (memory_bm_test_bit(zero_bm, buf[j]))
2224			buf[j] |= ENCODED_PFN_ZERO_FLAG;
2225	}
2226}
2227
2228/**
2229 * snapshot_read_next - Get the address to read the next image page from.
2230 * @handle: Snapshot handle to be used for the reading.
2231 *
2232 * On the first call, @handle should point to a zeroed snapshot_handle
2233 * structure.  The structure gets populated then and a pointer to it should be
2234 * passed to this function every next time.
2235 *
2236 * On success, the function returns a positive number.  Then, the caller
2237 * is allowed to read up to the returned number of bytes from the memory
2238 * location computed by the data_of() macro.
2239 *
2240 * The function returns 0 to indicate the end of the data stream condition,
2241 * and negative numbers are returned on errors.  If that happens, the structure
2242 * pointed to by @handle is not updated and should not be used any more.
 
2243 */
 
2244int snapshot_read_next(struct snapshot_handle *handle)
2245{
2246	if (handle->cur > nr_meta_pages + nr_copy_pages)
2247		return 0;
2248
2249	if (!buffer) {
2250		/* This makes the buffer be freed by swsusp_free() */
2251		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2252		if (!buffer)
2253			return -ENOMEM;
2254	}
2255	if (!handle->cur) {
2256		int error;
2257
2258		error = init_header((struct swsusp_info *)buffer);
2259		if (error)
2260			return error;
2261		handle->buffer = buffer;
2262		memory_bm_position_reset(&orig_bm);
2263		memory_bm_position_reset(&copy_bm);
2264	} else if (handle->cur <= nr_meta_pages) {
2265		clear_page(buffer);
2266		pack_pfns(buffer, &orig_bm, &zero_bm);
2267	} else {
2268		struct page *page;
2269
2270		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2271		if (PageHighMem(page)) {
2272			/*
2273			 * Highmem pages are copied to the buffer,
2274			 * because we can't return with a kmapped
2275			 * highmem page (we may not be called again).
2276			 */
2277			void *kaddr;
2278
2279			kaddr = kmap_atomic(page);
2280			copy_page(buffer, kaddr);
2281			kunmap_atomic(kaddr);
2282			handle->buffer = buffer;
2283		} else {
2284			handle->buffer = page_address(page);
2285		}
2286	}
2287	handle->cur++;
2288	return PAGE_SIZE;
2289}
2290
2291static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2292				    struct memory_bitmap *src)
 
 
 
 
 
2293{
2294	unsigned long pfn;
 
2295
2296	memory_bm_position_reset(src);
2297	pfn = memory_bm_next_pfn(src);
2298	while (pfn != BM_END_OF_MAP) {
2299		memory_bm_set_bit(dst, pfn);
2300		pfn = memory_bm_next_pfn(src);
 
2301	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302}
2303
2304/**
2305 * mark_unsafe_pages - Mark pages that were used before hibernation.
2306 *
2307 * Mark the pages that cannot be used for storing the image during restoration,
2308 * because they conflict with the pages that had been used before hibernation.
2309 */
2310static void mark_unsafe_pages(struct memory_bitmap *bm)
2311{
2312	unsigned long pfn;
2313
2314	/* Clear the "free"/"unsafe" bit for all PFNs */
2315	memory_bm_position_reset(free_pages_map);
2316	pfn = memory_bm_next_pfn(free_pages_map);
2317	while (pfn != BM_END_OF_MAP) {
2318		memory_bm_clear_current(free_pages_map);
2319		pfn = memory_bm_next_pfn(free_pages_map);
2320	}
2321
2322	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2323	duplicate_memory_bitmap(free_pages_map, bm);
2324
2325	allocated_unsafe_pages = 0;
2326}
2327
2328static int check_header(struct swsusp_info *info)
2329{
2330	const char *reason;
2331
2332	reason = check_image_kernel(info);
2333	if (!reason && info->num_physpages != get_num_physpages())
2334		reason = "memory size";
2335	if (reason) {
2336		pr_err("Image mismatch: %s\n", reason);
2337		return -EPERM;
2338	}
2339	return 0;
2340}
2341
2342/**
2343 * load_header - Check the image header and copy the data from it.
2344 */
2345static int load_header(struct swsusp_info *info)
 
 
2346{
2347	int error;
2348
2349	restore_pblist = NULL;
2350	error = check_header(info);
2351	if (!error) {
2352		nr_copy_pages = info->image_pages;
2353		nr_meta_pages = info->pages - info->image_pages - 1;
2354	}
2355	return error;
2356}
2357
2358/**
2359 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2360 * @bm: Memory bitmap.
2361 * @buf: Area of memory containing the PFNs.
2362 * @zero_bm: Memory bitmap with the zero PFNs marked.
2363 *
2364 * For each element of the array pointed to by @buf (1 page at a time), set the
2365 * corresponding bit in @bm. If the page was originally populated with only
2366 * zeros then a corresponding bit will also be set in @zero_bm.
2367 */
2368static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2369		struct memory_bitmap *zero_bm)
2370{
2371	unsigned long decoded_pfn;
2372        bool zero;
2373	int j;
2374
2375	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2376		if (unlikely(buf[j] == BM_END_OF_MAP))
2377			break;
2378
2379		zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2380		decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2381		if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2382			memory_bm_set_bit(bm, decoded_pfn);
2383			if (zero) {
2384				memory_bm_set_bit(zero_bm, decoded_pfn);
2385				nr_zero_pages++;
2386			}
2387		} else {
2388			if (!pfn_valid(decoded_pfn))
2389				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2390				       (unsigned long long)PFN_PHYS(decoded_pfn));
2391			return -EFAULT;
2392		}
2393	}
2394
2395	return 0;
2396}
2397
 
 
 
 
 
2398#ifdef CONFIG_HIGHMEM
2399/*
2400 * struct highmem_pbe is used for creating the list of highmem pages that
2401 * should be restored atomically during the resume from disk, because the page
2402 * frames they have occupied before the suspend are in use.
2403 */
2404struct highmem_pbe {
2405	struct page *copy_page;	/* data is here now */
2406	struct page *orig_page;	/* data was here before the suspend */
2407	struct highmem_pbe *next;
2408};
2409
2410/*
2411 * List of highmem PBEs needed for restoring the highmem pages that were
2412 * allocated before the suspend and included in the suspend image, but have
2413 * also been allocated by the "resume" kernel, so their contents cannot be
2414 * written directly to their "original" page frames.
2415 */
2416static struct highmem_pbe *highmem_pblist;
2417
2418/**
2419 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2420 * @bm: Memory bitmap.
2421 *
2422 * The bits in @bm that correspond to image pages are assumed to be set.
2423 */
 
2424static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2425{
2426	unsigned long pfn;
2427	unsigned int cnt = 0;
2428
2429	memory_bm_position_reset(bm);
2430	pfn = memory_bm_next_pfn(bm);
2431	while (pfn != BM_END_OF_MAP) {
2432		if (PageHighMem(pfn_to_page(pfn)))
2433			cnt++;
2434
2435		pfn = memory_bm_next_pfn(bm);
2436	}
2437	return cnt;
2438}
2439
 
 
 
 
 
 
 
 
 
 
 
 
2440static unsigned int safe_highmem_pages;
2441
2442static struct memory_bitmap *safe_highmem_bm;
2443
2444/**
2445 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2446 * @bm: Pointer to an uninitialized memory bitmap structure.
2447 * @nr_highmem_p: Pointer to the number of highmem image pages.
2448 *
2449 * Try to allocate as many highmem pages as there are highmem image pages
2450 * (@nr_highmem_p points to the variable containing the number of highmem image
2451 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2452 * hibernation image is restored entirely) have the corresponding bits set in
2453 * @bm (it must be uninitialized).
2454 *
2455 * NOTE: This function should not be called if there are no highmem image pages.
2456 */
2457static int prepare_highmem_image(struct memory_bitmap *bm,
2458				 unsigned int *nr_highmem_p)
2459{
2460	unsigned int to_alloc;
2461
2462	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2463		return -ENOMEM;
2464
2465	if (get_highmem_buffer(PG_SAFE))
2466		return -ENOMEM;
2467
2468	to_alloc = count_free_highmem_pages();
2469	if (to_alloc > *nr_highmem_p)
2470		to_alloc = *nr_highmem_p;
2471	else
2472		*nr_highmem_p = to_alloc;
2473
2474	safe_highmem_pages = 0;
2475	while (to_alloc-- > 0) {
2476		struct page *page;
2477
2478		page = alloc_page(__GFP_HIGHMEM);
2479		if (!swsusp_page_is_free(page)) {
2480			/* The page is "safe", set its bit the bitmap */
2481			memory_bm_set_bit(bm, page_to_pfn(page));
2482			safe_highmem_pages++;
2483		}
2484		/* Mark the page as allocated */
2485		swsusp_set_page_forbidden(page);
2486		swsusp_set_page_free(page);
2487	}
2488	memory_bm_position_reset(bm);
2489	safe_highmem_bm = bm;
2490	return 0;
2491}
2492
2493static struct page *last_highmem_page;
2494
2495/**
2496 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2497 *
2498 * For a given highmem image page get a buffer that suspend_write_next() should
2499 * return to its caller to write to.
2500 *
2501 * If the page is to be saved to its "original" page frame or a copy of
2502 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2503 * the copy of the page is to be made in normal memory, so the address of
2504 * the copy is returned.
2505 *
2506 * If @buffer is returned, the caller of suspend_write_next() will write
2507 * the page's contents to @buffer, so they will have to be copied to the
2508 * right location on the next call to suspend_write_next() and it is done
2509 * with the help of copy_last_highmem_page().  For this purpose, if
2510 * @buffer is returned, @last_highmem_page is set to the page to which
2511 * the data will have to be copied from @buffer.
2512 */
2513static void *get_highmem_page_buffer(struct page *page,
2514				     struct chain_allocator *ca)
 
 
 
2515{
2516	struct highmem_pbe *pbe;
2517	void *kaddr;
2518
2519	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2520		/*
2521		 * We have allocated the "original" page frame and we can
2522		 * use it directly to store the loaded page.
2523		 */
2524		last_highmem_page = page;
2525		return buffer;
2526	}
2527	/*
2528	 * The "original" page frame has not been allocated and we have to
2529	 * use a "safe" page frame to store the loaded page.
2530	 */
2531	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2532	if (!pbe) {
2533		swsusp_free();
2534		return ERR_PTR(-ENOMEM);
2535	}
2536	pbe->orig_page = page;
2537	if (safe_highmem_pages > 0) {
2538		struct page *tmp;
2539
2540		/* Copy of the page will be stored in high memory */
2541		kaddr = buffer;
2542		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2543		safe_highmem_pages--;
2544		last_highmem_page = tmp;
2545		pbe->copy_page = tmp;
2546	} else {
2547		/* Copy of the page will be stored in normal memory */
2548		kaddr = __get_safe_page(ca->gfp_mask);
2549		if (!kaddr)
2550			return ERR_PTR(-ENOMEM);
2551		pbe->copy_page = virt_to_page(kaddr);
2552	}
2553	pbe->next = highmem_pblist;
2554	highmem_pblist = pbe;
2555	return kaddr;
2556}
2557
2558/**
2559 * copy_last_highmem_page - Copy most the most recent highmem image page.
2560 *
2561 * Copy the contents of a highmem image from @buffer, where the caller of
2562 * snapshot_write_next() has stored them, to the right location represented by
2563 * @last_highmem_page .
2564 */
 
2565static void copy_last_highmem_page(void)
2566{
2567	if (last_highmem_page) {
2568		void *dst;
2569
2570		dst = kmap_atomic(last_highmem_page);
2571		copy_page(dst, buffer);
2572		kunmap_atomic(dst);
2573		last_highmem_page = NULL;
2574	}
2575}
2576
2577static inline int last_highmem_page_copied(void)
2578{
2579	return !last_highmem_page;
2580}
2581
2582static inline void free_highmem_data(void)
2583{
2584	if (safe_highmem_bm)
2585		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2586
2587	if (buffer)
2588		free_image_page(buffer, PG_UNSAFE_CLEAR);
2589}
2590#else
2591static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
 
2592
2593static inline int prepare_highmem_image(struct memory_bitmap *bm,
2594					unsigned int *nr_highmem_p) { return 0; }
 
 
 
2595
2596static inline void *get_highmem_page_buffer(struct page *page,
2597					    struct chain_allocator *ca)
2598{
2599	return ERR_PTR(-EINVAL);
2600}
2601
2602static inline void copy_last_highmem_page(void) {}
2603static inline int last_highmem_page_copied(void) { return 1; }
2604static inline void free_highmem_data(void) {}
2605#endif /* CONFIG_HIGHMEM */
2606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2608
2609/**
2610 * prepare_image - Make room for loading hibernation image.
2611 * @new_bm: Uninitialized memory bitmap structure.
2612 * @bm: Memory bitmap with unsafe pages marked.
2613 * @zero_bm: Memory bitmap containing the zero pages.
2614 *
2615 * Use @bm to mark the pages that will be overwritten in the process of
2616 * restoring the system memory state from the suspend image ("unsafe" pages)
2617 * and allocate memory for the image.
2618 *
2619 * The idea is to allocate a new memory bitmap first and then allocate
2620 * as many pages as needed for image data, but without specifying what those
2621 * pages will be used for just yet.  Instead, we mark them all as allocated and
2622 * create a lists of "safe" pages to be used later.  On systems with high
2623 * memory a list of "safe" highmem pages is created too.
2624 *
2625 * Because it was not known which pages were unsafe when @zero_bm was created,
2626 * make a copy of it and recreate it within safe pages.
2627 */
2628static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2629		struct memory_bitmap *zero_bm)
2630{
2631	unsigned int nr_pages, nr_highmem;
2632	struct memory_bitmap tmp;
2633	struct linked_page *lp;
2634	int error;
2635
2636	/* If there is no highmem, the buffer will not be necessary */
2637	free_image_page(buffer, PG_UNSAFE_CLEAR);
2638	buffer = NULL;
2639
2640	nr_highmem = count_highmem_image_pages(bm);
2641	mark_unsafe_pages(bm);
 
 
2642
2643	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2644	if (error)
2645		goto Free;
2646
2647	duplicate_memory_bitmap(new_bm, bm);
2648	memory_bm_free(bm, PG_UNSAFE_KEEP);
2649
2650	/* Make a copy of zero_bm so it can be created in safe pages */
2651	error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2652	if (error)
2653		goto Free;
2654
2655	duplicate_memory_bitmap(&tmp, zero_bm);
2656	memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2657
2658	/* Recreate zero_bm in safe pages */
2659	error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2660	if (error)
2661		goto Free;
2662
2663	duplicate_memory_bitmap(zero_bm, &tmp);
2664	memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2665	/* At this point zero_bm is in safe pages and it can be used for restoring. */
2666
2667	if (nr_highmem > 0) {
2668		error = prepare_highmem_image(bm, &nr_highmem);
2669		if (error)
2670			goto Free;
2671	}
2672	/*
2673	 * Reserve some safe pages for potential later use.
2674	 *
2675	 * NOTE: This way we make sure there will be enough safe pages for the
2676	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2677	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2678	 *
2679	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2680	 */
2681	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
 
 
2682	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2683	while (nr_pages > 0) {
2684		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2685		if (!lp) {
2686			error = -ENOMEM;
2687			goto Free;
2688		}
2689		lp->next = safe_pages_list;
2690		safe_pages_list = lp;
2691		nr_pages--;
2692	}
2693	/* Preallocate memory for the image */
2694	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
 
2695	while (nr_pages > 0) {
2696		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2697		if (!lp) {
2698			error = -ENOMEM;
2699			goto Free;
2700		}
2701		if (!swsusp_page_is_free(virt_to_page(lp))) {
2702			/* The page is "safe", add it to the list */
2703			lp->next = safe_pages_list;
2704			safe_pages_list = lp;
2705		}
2706		/* Mark the page as allocated */
2707		swsusp_set_page_forbidden(virt_to_page(lp));
2708		swsusp_set_page_free(virt_to_page(lp));
2709		nr_pages--;
2710	}
 
 
 
 
 
 
2711	return 0;
2712
2713 Free:
2714	swsusp_free();
2715	return error;
2716}
2717
2718/**
2719 * get_buffer - Get the address to store the next image data page.
2720 *
2721 * Get the address that snapshot_write_next() should return to its caller to
2722 * write to.
2723 */
 
2724static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2725{
2726	struct pbe *pbe;
2727	struct page *page;
2728	unsigned long pfn = memory_bm_next_pfn(bm);
2729
2730	if (pfn == BM_END_OF_MAP)
2731		return ERR_PTR(-EFAULT);
2732
2733	page = pfn_to_page(pfn);
2734	if (PageHighMem(page))
2735		return get_highmem_page_buffer(page, ca);
2736
2737	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2738		/*
2739		 * We have allocated the "original" page frame and we can
2740		 * use it directly to store the loaded page.
2741		 */
2742		return page_address(page);
2743
2744	/*
2745	 * The "original" page frame has not been allocated and we have to
2746	 * use a "safe" page frame to store the loaded page.
2747	 */
2748	pbe = chain_alloc(ca, sizeof(struct pbe));
2749	if (!pbe) {
2750		swsusp_free();
2751		return ERR_PTR(-ENOMEM);
2752	}
2753	pbe->orig_address = page_address(page);
2754	pbe->address = __get_safe_page(ca->gfp_mask);
2755	if (!pbe->address)
2756		return ERR_PTR(-ENOMEM);
2757	pbe->next = restore_pblist;
2758	restore_pblist = pbe;
2759	return pbe->address;
2760}
2761
2762/**
2763 * snapshot_write_next - Get the address to store the next image page.
2764 * @handle: Snapshot handle structure to guide the writing.
2765 *
2766 * On the first call, @handle should point to a zeroed snapshot_handle
2767 * structure.  The structure gets populated then and a pointer to it should be
2768 * passed to this function every next time.
2769 *
2770 * On success, the function returns a positive number.  Then, the caller
2771 * is allowed to write up to the returned number of bytes to the memory
2772 * location computed by the data_of() macro.
2773 *
2774 * The function returns 0 to indicate the "end of file" condition.  Negative
2775 * numbers are returned on errors, in which cases the structure pointed to by
2776 * @handle is not updated and should not be used any more.
 
2777 */
 
2778int snapshot_write_next(struct snapshot_handle *handle)
2779{
2780	static struct chain_allocator ca;
2781	int error;
2782
2783next:
2784	/* Check if we have already loaded the entire image */
2785	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2786		return 0;
2787
 
 
2788	if (!handle->cur) {
2789		if (!buffer)
2790			/* This makes the buffer be freed by swsusp_free() */
2791			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2792
2793		if (!buffer)
2794			return -ENOMEM;
2795
2796		handle->buffer = buffer;
2797	} else if (handle->cur == 1) {
2798		error = load_header(buffer);
2799		if (error)
2800			return error;
2801
2802		safe_pages_list = NULL;
2803
2804		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2805		if (error)
2806			return error;
2807
2808		error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
 
2809		if (error)
2810			return error;
2811
2812		nr_zero_pages = 0;
2813
2814		hibernate_restore_protection_begin();
2815	} else if (handle->cur <= nr_meta_pages + 1) {
2816		error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2817		if (error)
2818			return error;
2819
2820		if (handle->cur == nr_meta_pages + 1) {
2821			error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2822			if (error)
2823				return error;
2824
2825			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2826			memory_bm_position_reset(&orig_bm);
2827			memory_bm_position_reset(&zero_bm);
2828			restore_pblist = NULL;
2829			handle->buffer = get_buffer(&orig_bm, &ca);
 
2830			if (IS_ERR(handle->buffer))
2831				return PTR_ERR(handle->buffer);
2832		}
2833	} else {
2834		copy_last_highmem_page();
2835		hibernate_restore_protect_page(handle->buffer);
 
2836		handle->buffer = get_buffer(&orig_bm, &ca);
2837		if (IS_ERR(handle->buffer))
2838			return PTR_ERR(handle->buffer);
 
 
2839	}
2840	handle->sync_read = (handle->buffer == buffer);
2841	handle->cur++;
2842
2843	/* Zero pages were not included in the image, memset it and move on. */
2844	if (handle->cur > nr_meta_pages + 1 &&
2845	    memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2846		memset(handle->buffer, 0, PAGE_SIZE);
2847		goto next;
2848	}
2849
2850	return PAGE_SIZE;
2851}
2852
2853/**
2854 * snapshot_write_finalize - Complete the loading of a hibernation image.
2855 *
2856 * Must be called after the last call to snapshot_write_next() in case the last
2857 * page in the image happens to be a highmem page and its contents should be
2858 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2859 * necessary any more.
2860 */
 
2861void snapshot_write_finalize(struct snapshot_handle *handle)
2862{
2863	copy_last_highmem_page();
2864	hibernate_restore_protect_page(handle->buffer);
2865	/* Do that only if we have loaded the image entirely */
2866	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2867		memory_bm_recycle(&orig_bm);
 
 
2868		free_highmem_data();
2869	}
2870}
2871
2872int snapshot_image_loaded(struct snapshot_handle *handle)
2873{
2874	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2875			handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2876}
2877
2878#ifdef CONFIG_HIGHMEM
2879/* Assumes that @buf is ready and points to a "safe" page */
2880static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2881				       void *buf)
2882{
2883	void *kaddr1, *kaddr2;
2884
2885	kaddr1 = kmap_atomic(p1);
2886	kaddr2 = kmap_atomic(p2);
2887	copy_page(buf, kaddr1);
2888	copy_page(kaddr1, kaddr2);
2889	copy_page(kaddr2, buf);
2890	kunmap_atomic(kaddr2);
2891	kunmap_atomic(kaddr1);
2892}
2893
2894/**
2895 * restore_highmem - Put highmem image pages into their original locations.
 
 
 
2896 *
2897 * For each highmem page that was in use before hibernation and is included in
2898 * the image, and also has been allocated by the "restore" kernel, swap its
2899 * current contents with the previous (ie. "before hibernation") ones.
2900 *
2901 * If the restore eventually fails, we can call this function once again and
2902 * restore the highmem state as seen by the restore kernel.
2903 */
 
2904int restore_highmem(void)
2905{
2906	struct highmem_pbe *pbe = highmem_pblist;
2907	void *buf;
2908
2909	if (!pbe)
2910		return 0;
2911
2912	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2913	if (!buf)
2914		return -ENOMEM;
2915
2916	while (pbe) {
2917		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2918		pbe = pbe->next;
2919	}
2920	free_image_page(buf, PG_UNSAFE_CLEAR);
2921	return 0;
2922}
2923#endif /* CONFIG_HIGHMEM */