Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Fast Userspace Mutexes (which I call "Futexes!").
   4 *  (C) Rusty Russell, IBM 2002
   5 *
   6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   8 *
   9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
  10 *  (C) Copyright 2003, 2004 Jamie Lokier
  11 *
  12 *  Robust futex support started by Ingo Molnar
  13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  15 *
  16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  19 *
  20 *  PRIVATE futexes by Eric Dumazet
  21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  22 *
  23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  24 *  Copyright (C) IBM Corporation, 2009
  25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  26 *
  27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  28 *  enough at me, Linus for the original (flawed) idea, Matthew
  29 *  Kirkwood for proof-of-concept implementation.
  30 *
  31 *  "The futexes are also cursed."
  32 *  "But they come in a choice of three flavours!"
  33 */
  34#include <linux/compat.h>
  35#include <linux/jhash.h>
  36#include <linux/pagemap.h>
  37#include <linux/plist.h>
  38#include <linux/memblock.h>
  39#include <linux/fault-inject.h>
  40#include <linux/slab.h>
  41
  42#include "futex.h"
  43#include "../locking/rtmutex_common.h"
  44
  45/*
  46 * The base of the bucket array and its size are always used together
  47 * (after initialization only in futex_hash()), so ensure that they
  48 * reside in the same cacheline.
  49 */
  50static struct {
  51	struct futex_hash_bucket *queues;
  52	unsigned long            hashsize;
  53} __futex_data __read_mostly __aligned(2*sizeof(long));
  54#define futex_queues   (__futex_data.queues)
  55#define futex_hashsize (__futex_data.hashsize)
  56
  57
  58/*
  59 * Fault injections for futexes.
  60 */
  61#ifdef CONFIG_FAIL_FUTEX
  62
  63static struct {
  64	struct fault_attr attr;
  65
  66	bool ignore_private;
  67} fail_futex = {
  68	.attr = FAULT_ATTR_INITIALIZER,
  69	.ignore_private = false,
  70};
  71
  72static int __init setup_fail_futex(char *str)
  73{
  74	return setup_fault_attr(&fail_futex.attr, str);
  75}
  76__setup("fail_futex=", setup_fail_futex);
  77
  78bool should_fail_futex(bool fshared)
  79{
  80	if (fail_futex.ignore_private && !fshared)
  81		return false;
  82
  83	return should_fail(&fail_futex.attr, 1);
  84}
  85
  86#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  87
  88static int __init fail_futex_debugfs(void)
  89{
  90	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  91	struct dentry *dir;
  92
  93	dir = fault_create_debugfs_attr("fail_futex", NULL,
  94					&fail_futex.attr);
  95	if (IS_ERR(dir))
  96		return PTR_ERR(dir);
  97
  98	debugfs_create_bool("ignore-private", mode, dir,
  99			    &fail_futex.ignore_private);
 100	return 0;
 101}
 102
 103late_initcall(fail_futex_debugfs);
 104
 105#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 106
 107#endif /* CONFIG_FAIL_FUTEX */
 108
 109/**
 110 * futex_hash - Return the hash bucket in the global hash
 111 * @key:	Pointer to the futex key for which the hash is calculated
 112 *
 113 * We hash on the keys returned from get_futex_key (see below) and return the
 114 * corresponding hash bucket in the global hash.
 115 */
 116struct futex_hash_bucket *futex_hash(union futex_key *key)
 117{
 118	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
 119			  key->both.offset);
 120
 121	return &futex_queues[hash & (futex_hashsize - 1)];
 122}
 123
 124
 125/**
 126 * futex_setup_timer - set up the sleeping hrtimer.
 127 * @time:	ptr to the given timeout value
 128 * @timeout:	the hrtimer_sleeper structure to be set up
 129 * @flags:	futex flags
 130 * @range_ns:	optional range in ns
 131 *
 132 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 133 *	   value given
 134 */
 135struct hrtimer_sleeper *
 136futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
 137		  int flags, u64 range_ns)
 138{
 139	if (!time)
 140		return NULL;
 141
 142	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
 143				      CLOCK_REALTIME : CLOCK_MONOTONIC,
 144				      HRTIMER_MODE_ABS);
 145	/*
 146	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
 147	 * effectively the same as calling hrtimer_set_expires().
 148	 */
 149	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
 150
 151	return timeout;
 152}
 153
 154/*
 155 * Generate a machine wide unique identifier for this inode.
 156 *
 157 * This relies on u64 not wrapping in the life-time of the machine; which with
 158 * 1ns resolution means almost 585 years.
 159 *
 160 * This further relies on the fact that a well formed program will not unmap
 161 * the file while it has a (shared) futex waiting on it. This mapping will have
 162 * a file reference which pins the mount and inode.
 163 *
 164 * If for some reason an inode gets evicted and read back in again, it will get
 165 * a new sequence number and will _NOT_ match, even though it is the exact same
 166 * file.
 167 *
 168 * It is important that futex_match() will never have a false-positive, esp.
 169 * for PI futexes that can mess up the state. The above argues that false-negatives
 170 * are only possible for malformed programs.
 171 */
 172static u64 get_inode_sequence_number(struct inode *inode)
 173{
 174	static atomic64_t i_seq;
 175	u64 old;
 176
 177	/* Does the inode already have a sequence number? */
 178	old = atomic64_read(&inode->i_sequence);
 179	if (likely(old))
 180		return old;
 181
 182	for (;;) {
 183		u64 new = atomic64_add_return(1, &i_seq);
 184		if (WARN_ON_ONCE(!new))
 185			continue;
 186
 187		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
 188		if (old)
 189			return old;
 190		return new;
 191	}
 192}
 193
 194/**
 195 * get_futex_key() - Get parameters which are the keys for a futex
 196 * @uaddr:	virtual address of the futex
 197 * @flags:	FLAGS_*
 198 * @key:	address where result is stored.
 199 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 200 *              FUTEX_WRITE)
 201 *
 202 * Return: a negative error code or 0
 203 *
 204 * The key words are stored in @key on success.
 205 *
 206 * For shared mappings (when @fshared), the key is:
 207 *
 208 *   ( inode->i_sequence, page->index, offset_within_page )
 209 *
 210 * [ also see get_inode_sequence_number() ]
 211 *
 212 * For private mappings (or when !@fshared), the key is:
 213 *
 214 *   ( current->mm, address, 0 )
 215 *
 216 * This allows (cross process, where applicable) identification of the futex
 217 * without keeping the page pinned for the duration of the FUTEX_WAIT.
 218 *
 219 * lock_page() might sleep, the caller should not hold a spinlock.
 220 */
 221int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
 222		  enum futex_access rw)
 223{
 224	unsigned long address = (unsigned long)uaddr;
 225	struct mm_struct *mm = current->mm;
 226	struct page *page;
 227	struct folio *folio;
 228	struct address_space *mapping;
 229	int err, ro = 0;
 230	bool fshared;
 231
 232	fshared = flags & FLAGS_SHARED;
 233
 234	/*
 235	 * The futex address must be "naturally" aligned.
 236	 */
 237	key->both.offset = address % PAGE_SIZE;
 238	if (unlikely((address % sizeof(u32)) != 0))
 239		return -EINVAL;
 240	address -= key->both.offset;
 241
 242	if (unlikely(!access_ok(uaddr, sizeof(u32))))
 243		return -EFAULT;
 244
 245	if (unlikely(should_fail_futex(fshared)))
 246		return -EFAULT;
 247
 248	/*
 249	 * PROCESS_PRIVATE futexes are fast.
 250	 * As the mm cannot disappear under us and the 'key' only needs
 251	 * virtual address, we dont even have to find the underlying vma.
 252	 * Note : We do have to check 'uaddr' is a valid user address,
 253	 *        but access_ok() should be faster than find_vma()
 254	 */
 255	if (!fshared) {
 256		/*
 257		 * On no-MMU, shared futexes are treated as private, therefore
 258		 * we must not include the current process in the key. Since
 259		 * there is only one address space, the address is a unique key
 260		 * on its own.
 261		 */
 262		if (IS_ENABLED(CONFIG_MMU))
 263			key->private.mm = mm;
 264		else
 265			key->private.mm = NULL;
 266
 267		key->private.address = address;
 268		return 0;
 269	}
 270
 271again:
 272	/* Ignore any VERIFY_READ mapping (futex common case) */
 273	if (unlikely(should_fail_futex(true)))
 274		return -EFAULT;
 275
 276	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
 277	/*
 278	 * If write access is not required (eg. FUTEX_WAIT), try
 279	 * and get read-only access.
 280	 */
 281	if (err == -EFAULT && rw == FUTEX_READ) {
 282		err = get_user_pages_fast(address, 1, 0, &page);
 283		ro = 1;
 284	}
 285	if (err < 0)
 286		return err;
 287	else
 288		err = 0;
 289
 290	/*
 291	 * The treatment of mapping from this point on is critical. The folio
 292	 * lock protects many things but in this context the folio lock
 293	 * stabilizes mapping, prevents inode freeing in the shared
 294	 * file-backed region case and guards against movement to swap cache.
 295	 *
 296	 * Strictly speaking the folio lock is not needed in all cases being
 297	 * considered here and folio lock forces unnecessarily serialization.
 298	 * From this point on, mapping will be re-verified if necessary and
 299	 * folio lock will be acquired only if it is unavoidable
 300	 *
 301	 * Mapping checks require the folio so it is looked up now. For
 302	 * anonymous pages, it does not matter if the folio is split
 303	 * in the future as the key is based on the address. For
 304	 * filesystem-backed pages, the precise page is required as the
 305	 * index of the page determines the key.
 306	 */
 307	folio = page_folio(page);
 308	mapping = READ_ONCE(folio->mapping);
 309
 310	/*
 311	 * If folio->mapping is NULL, then it cannot be an anonymous
 312	 * page; but it might be the ZERO_PAGE or in the gate area or
 313	 * in a special mapping (all cases which we are happy to fail);
 314	 * or it may have been a good file page when get_user_pages_fast
 315	 * found it, but truncated or holepunched or subjected to
 316	 * invalidate_complete_page2 before we got the folio lock (also
 317	 * cases which we are happy to fail).  And we hold a reference,
 318	 * so refcount care in invalidate_inode_page's remove_mapping
 319	 * prevents drop_caches from setting mapping to NULL beneath us.
 320	 *
 321	 * The case we do have to guard against is when memory pressure made
 322	 * shmem_writepage move it from filecache to swapcache beneath us:
 323	 * an unlikely race, but we do need to retry for folio->mapping.
 324	 */
 325	if (unlikely(!mapping)) {
 326		int shmem_swizzled;
 327
 328		/*
 329		 * Folio lock is required to identify which special case above
 330		 * applies. If this is really a shmem page then the folio lock
 331		 * will prevent unexpected transitions.
 332		 */
 333		folio_lock(folio);
 334		shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
 335		folio_unlock(folio);
 336		folio_put(folio);
 337
 338		if (shmem_swizzled)
 339			goto again;
 340
 341		return -EFAULT;
 342	}
 343
 344	/*
 345	 * Private mappings are handled in a simple way.
 346	 *
 347	 * If the futex key is stored in anonymous memory, then the associated
 348	 * object is the mm which is implicitly pinned by the calling process.
 349	 *
 350	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 351	 * it's a read-only handle, it's expected that futexes attach to
 352	 * the object not the particular process.
 353	 */
 354	if (folio_test_anon(folio)) {
 355		/*
 356		 * A RO anonymous page will never change and thus doesn't make
 357		 * sense for futex operations.
 358		 */
 359		if (unlikely(should_fail_futex(true)) || ro) {
 360			err = -EFAULT;
 361			goto out;
 362		}
 363
 364		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 365		key->private.mm = mm;
 366		key->private.address = address;
 367
 368	} else {
 369		struct inode *inode;
 370
 371		/*
 372		 * The associated futex object in this case is the inode and
 373		 * the folio->mapping must be traversed. Ordinarily this should
 374		 * be stabilised under folio lock but it's not strictly
 375		 * necessary in this case as we just want to pin the inode, not
 376		 * update i_pages or anything like that.
 377		 *
 378		 * The RCU read lock is taken as the inode is finally freed
 379		 * under RCU. If the mapping still matches expectations then the
 380		 * mapping->host can be safely accessed as being a valid inode.
 381		 */
 382		rcu_read_lock();
 383
 384		if (READ_ONCE(folio->mapping) != mapping) {
 385			rcu_read_unlock();
 386			folio_put(folio);
 387
 388			goto again;
 389		}
 390
 391		inode = READ_ONCE(mapping->host);
 392		if (!inode) {
 393			rcu_read_unlock();
 394			folio_put(folio);
 395
 396			goto again;
 397		}
 398
 399		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 400		key->shared.i_seq = get_inode_sequence_number(inode);
 401		key->shared.pgoff = folio->index + folio_page_idx(folio, page);
 402		rcu_read_unlock();
 403	}
 404
 405out:
 406	folio_put(folio);
 407	return err;
 408}
 409
 410/**
 411 * fault_in_user_writeable() - Fault in user address and verify RW access
 412 * @uaddr:	pointer to faulting user space address
 413 *
 414 * Slow path to fixup the fault we just took in the atomic write
 415 * access to @uaddr.
 416 *
 417 * We have no generic implementation of a non-destructive write to the
 418 * user address. We know that we faulted in the atomic pagefault
 419 * disabled section so we can as well avoid the #PF overhead by
 420 * calling get_user_pages() right away.
 421 */
 422int fault_in_user_writeable(u32 __user *uaddr)
 423{
 424	struct mm_struct *mm = current->mm;
 425	int ret;
 426
 427	mmap_read_lock(mm);
 428	ret = fixup_user_fault(mm, (unsigned long)uaddr,
 429			       FAULT_FLAG_WRITE, NULL);
 430	mmap_read_unlock(mm);
 431
 432	return ret < 0 ? ret : 0;
 433}
 434
 435/**
 436 * futex_top_waiter() - Return the highest priority waiter on a futex
 437 * @hb:		the hash bucket the futex_q's reside in
 438 * @key:	the futex key (to distinguish it from other futex futex_q's)
 439 *
 440 * Must be called with the hb lock held.
 441 */
 442struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
 443{
 444	struct futex_q *this;
 445
 446	plist_for_each_entry(this, &hb->chain, list) {
 447		if (futex_match(&this->key, key))
 448			return this;
 449	}
 450	return NULL;
 451}
 452
 453int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
 454{
 455	int ret;
 456
 457	pagefault_disable();
 458	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 459	pagefault_enable();
 460
 461	return ret;
 462}
 463
 464int futex_get_value_locked(u32 *dest, u32 __user *from)
 465{
 466	int ret;
 467
 468	pagefault_disable();
 469	ret = __get_user(*dest, from);
 470	pagefault_enable();
 471
 472	return ret ? -EFAULT : 0;
 473}
 474
 475/**
 476 * wait_for_owner_exiting - Block until the owner has exited
 477 * @ret: owner's current futex lock status
 478 * @exiting:	Pointer to the exiting task
 479 *
 480 * Caller must hold a refcount on @exiting.
 481 */
 482void wait_for_owner_exiting(int ret, struct task_struct *exiting)
 483{
 484	if (ret != -EBUSY) {
 485		WARN_ON_ONCE(exiting);
 486		return;
 487	}
 488
 489	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
 490		return;
 491
 492	mutex_lock(&exiting->futex_exit_mutex);
 493	/*
 494	 * No point in doing state checking here. If the waiter got here
 495	 * while the task was in exec()->exec_futex_release() then it can
 496	 * have any FUTEX_STATE_* value when the waiter has acquired the
 497	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
 498	 * already. Highly unlikely and not a problem. Just one more round
 499	 * through the futex maze.
 500	 */
 501	mutex_unlock(&exiting->futex_exit_mutex);
 502
 503	put_task_struct(exiting);
 504}
 505
 506/**
 507 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
 508 * @q:	The futex_q to unqueue
 509 *
 510 * The q->lock_ptr must not be NULL and must be held by the caller.
 511 */
 512void __futex_unqueue(struct futex_q *q)
 513{
 514	struct futex_hash_bucket *hb;
 515
 516	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
 517		return;
 518	lockdep_assert_held(q->lock_ptr);
 519
 520	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 521	plist_del(&q->list, &hb->chain);
 522	futex_hb_waiters_dec(hb);
 523}
 524
 525/* The key must be already stored in q->key. */
 526struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
 527	__acquires(&hb->lock)
 528{
 529	struct futex_hash_bucket *hb;
 530
 531	hb = futex_hash(&q->key);
 532
 533	/*
 534	 * Increment the counter before taking the lock so that
 535	 * a potential waker won't miss a to-be-slept task that is
 536	 * waiting for the spinlock. This is safe as all futex_q_lock()
 537	 * users end up calling futex_queue(). Similarly, for housekeeping,
 538	 * decrement the counter at futex_q_unlock() when some error has
 539	 * occurred and we don't end up adding the task to the list.
 540	 */
 541	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
 542
 543	q->lock_ptr = &hb->lock;
 544
 545	spin_lock(&hb->lock);
 546	return hb;
 547}
 548
 549void futex_q_unlock(struct futex_hash_bucket *hb)
 550	__releases(&hb->lock)
 551{
 552	spin_unlock(&hb->lock);
 553	futex_hb_waiters_dec(hb);
 554}
 555
 556void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
 557{
 558	int prio;
 559
 560	/*
 561	 * The priority used to register this element is
 562	 * - either the real thread-priority for the real-time threads
 563	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
 564	 * - or MAX_RT_PRIO for non-RT threads.
 565	 * Thus, all RT-threads are woken first in priority order, and
 566	 * the others are woken last, in FIFO order.
 567	 */
 568	prio = min(current->normal_prio, MAX_RT_PRIO);
 569
 570	plist_node_init(&q->list, prio);
 571	plist_add(&q->list, &hb->chain);
 572	q->task = current;
 573}
 574
 575/**
 576 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
 577 * @q:	The futex_q to unqueue
 578 *
 579 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
 580 * be paired with exactly one earlier call to futex_queue().
 581 *
 582 * Return:
 583 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 584 *  - 0 - if the futex_q was already removed by the waking thread
 585 */
 586int futex_unqueue(struct futex_q *q)
 587{
 588	spinlock_t *lock_ptr;
 589	int ret = 0;
 590
 591	/* In the common case we don't take the spinlock, which is nice. */
 592retry:
 593	/*
 594	 * q->lock_ptr can change between this read and the following spin_lock.
 595	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
 596	 * optimizing lock_ptr out of the logic below.
 597	 */
 598	lock_ptr = READ_ONCE(q->lock_ptr);
 599	if (lock_ptr != NULL) {
 600		spin_lock(lock_ptr);
 601		/*
 602		 * q->lock_ptr can change between reading it and
 603		 * spin_lock(), causing us to take the wrong lock.  This
 604		 * corrects the race condition.
 605		 *
 606		 * Reasoning goes like this: if we have the wrong lock,
 607		 * q->lock_ptr must have changed (maybe several times)
 608		 * between reading it and the spin_lock().  It can
 609		 * change again after the spin_lock() but only if it was
 610		 * already changed before the spin_lock().  It cannot,
 611		 * however, change back to the original value.  Therefore
 612		 * we can detect whether we acquired the correct lock.
 613		 */
 614		if (unlikely(lock_ptr != q->lock_ptr)) {
 615			spin_unlock(lock_ptr);
 616			goto retry;
 617		}
 618		__futex_unqueue(q);
 619
 620		BUG_ON(q->pi_state);
 621
 622		spin_unlock(lock_ptr);
 623		ret = 1;
 624	}
 625
 626	return ret;
 627}
 628
 629/*
 630 * PI futexes can not be requeued and must remove themselves from the hash
 631 * bucket. The hash bucket lock (i.e. lock_ptr) is held.
 632 */
 633void futex_unqueue_pi(struct futex_q *q)
 634{
 635	/*
 636	 * If the lock was not acquired (due to timeout or signal) then the
 637	 * rt_waiter is removed before futex_q is. If this is observed by
 638	 * an unlocker after dropping the rtmutex wait lock and before
 639	 * acquiring the hash bucket lock, then the unlocker dequeues the
 640	 * futex_q from the hash bucket list to guarantee consistent state
 641	 * vs. userspace. Therefore the dequeue here must be conditional.
 642	 */
 643	if (!plist_node_empty(&q->list))
 644		__futex_unqueue(q);
 645
 646	BUG_ON(!q->pi_state);
 647	put_pi_state(q->pi_state);
 648	q->pi_state = NULL;
 649}
 650
 651/* Constants for the pending_op argument of handle_futex_death */
 652#define HANDLE_DEATH_PENDING	true
 653#define HANDLE_DEATH_LIST	false
 654
 655/*
 656 * Process a futex-list entry, check whether it's owned by the
 657 * dying task, and do notification if so:
 658 */
 659static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
 660			      bool pi, bool pending_op)
 661{
 662	u32 uval, nval, mval;
 663	pid_t owner;
 664	int err;
 665
 666	/* Futex address must be 32bit aligned */
 667	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
 668		return -1;
 669
 670retry:
 671	if (get_user(uval, uaddr))
 672		return -1;
 673
 674	/*
 675	 * Special case for regular (non PI) futexes. The unlock path in
 676	 * user space has two race scenarios:
 677	 *
 678	 * 1. The unlock path releases the user space futex value and
 679	 *    before it can execute the futex() syscall to wake up
 680	 *    waiters it is killed.
 681	 *
 682	 * 2. A woken up waiter is killed before it can acquire the
 683	 *    futex in user space.
 684	 *
 685	 * In the second case, the wake up notification could be generated
 686	 * by the unlock path in user space after setting the futex value
 687	 * to zero or by the kernel after setting the OWNER_DIED bit below.
 688	 *
 689	 * In both cases the TID validation below prevents a wakeup of
 690	 * potential waiters which can cause these waiters to block
 691	 * forever.
 692	 *
 693	 * In both cases the following conditions are met:
 694	 *
 695	 *	1) task->robust_list->list_op_pending != NULL
 696	 *	   @pending_op == true
 697	 *	2) The owner part of user space futex value == 0
 698	 *	3) Regular futex: @pi == false
 699	 *
 700	 * If these conditions are met, it is safe to attempt waking up a
 701	 * potential waiter without touching the user space futex value and
 702	 * trying to set the OWNER_DIED bit. If the futex value is zero,
 703	 * the rest of the user space mutex state is consistent, so a woken
 704	 * waiter will just take over the uncontended futex. Setting the
 705	 * OWNER_DIED bit would create inconsistent state and malfunction
 706	 * of the user space owner died handling. Otherwise, the OWNER_DIED
 707	 * bit is already set, and the woken waiter is expected to deal with
 708	 * this.
 709	 */
 710	owner = uval & FUTEX_TID_MASK;
 711
 712	if (pending_op && !pi && !owner) {
 713		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
 714			   FUTEX_BITSET_MATCH_ANY);
 715		return 0;
 716	}
 717
 718	if (owner != task_pid_vnr(curr))
 719		return 0;
 720
 721	/*
 722	 * Ok, this dying thread is truly holding a futex
 723	 * of interest. Set the OWNER_DIED bit atomically
 724	 * via cmpxchg, and if the value had FUTEX_WAITERS
 725	 * set, wake up a waiter (if any). (We have to do a
 726	 * futex_wake() even if OWNER_DIED is already set -
 727	 * to handle the rare but possible case of recursive
 728	 * thread-death.) The rest of the cleanup is done in
 729	 * userspace.
 730	 */
 731	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
 732
 733	/*
 734	 * We are not holding a lock here, but we want to have
 735	 * the pagefault_disable/enable() protection because
 736	 * we want to handle the fault gracefully. If the
 737	 * access fails we try to fault in the futex with R/W
 738	 * verification via get_user_pages. get_user() above
 739	 * does not guarantee R/W access. If that fails we
 740	 * give up and leave the futex locked.
 741	 */
 742	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
 743		switch (err) {
 744		case -EFAULT:
 745			if (fault_in_user_writeable(uaddr))
 746				return -1;
 747			goto retry;
 748
 749		case -EAGAIN:
 750			cond_resched();
 751			goto retry;
 752
 753		default:
 754			WARN_ON_ONCE(1);
 755			return err;
 756		}
 757	}
 758
 759	if (nval != uval)
 760		goto retry;
 761
 762	/*
 763	 * Wake robust non-PI futexes here. The wakeup of
 764	 * PI futexes happens in exit_pi_state():
 765	 */
 766	if (!pi && (uval & FUTEX_WAITERS)) {
 767		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
 768			   FUTEX_BITSET_MATCH_ANY);
 769	}
 770
 771	return 0;
 772}
 773
 774/*
 775 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 776 */
 777static inline int fetch_robust_entry(struct robust_list __user **entry,
 778				     struct robust_list __user * __user *head,
 779				     unsigned int *pi)
 780{
 781	unsigned long uentry;
 782
 783	if (get_user(uentry, (unsigned long __user *)head))
 784		return -EFAULT;
 785
 786	*entry = (void __user *)(uentry & ~1UL);
 787	*pi = uentry & 1;
 788
 789	return 0;
 790}
 791
 792/*
 793 * Walk curr->robust_list (very carefully, it's a userspace list!)
 794 * and mark any locks found there dead, and notify any waiters.
 795 *
 796 * We silently return on any sign of list-walking problem.
 797 */
 798static void exit_robust_list(struct task_struct *curr)
 799{
 800	struct robust_list_head __user *head = curr->robust_list;
 801	struct robust_list __user *entry, *next_entry, *pending;
 802	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
 803	unsigned int next_pi;
 804	unsigned long futex_offset;
 805	int rc;
 806
 807	/*
 808	 * Fetch the list head (which was registered earlier, via
 809	 * sys_set_robust_list()):
 810	 */
 811	if (fetch_robust_entry(&entry, &head->list.next, &pi))
 812		return;
 813	/*
 814	 * Fetch the relative futex offset:
 815	 */
 816	if (get_user(futex_offset, &head->futex_offset))
 817		return;
 818	/*
 819	 * Fetch any possibly pending lock-add first, and handle it
 820	 * if it exists:
 821	 */
 822	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
 823		return;
 824
 825	next_entry = NULL;	/* avoid warning with gcc */
 826	while (entry != &head->list) {
 827		/*
 828		 * Fetch the next entry in the list before calling
 829		 * handle_futex_death:
 830		 */
 831		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
 832		/*
 833		 * A pending lock might already be on the list, so
 834		 * don't process it twice:
 835		 */
 836		if (entry != pending) {
 837			if (handle_futex_death((void __user *)entry + futex_offset,
 838						curr, pi, HANDLE_DEATH_LIST))
 839				return;
 840		}
 841		if (rc)
 842			return;
 843		entry = next_entry;
 844		pi = next_pi;
 845		/*
 846		 * Avoid excessively long or circular lists:
 847		 */
 848		if (!--limit)
 849			break;
 850
 851		cond_resched();
 852	}
 853
 854	if (pending) {
 855		handle_futex_death((void __user *)pending + futex_offset,
 856				   curr, pip, HANDLE_DEATH_PENDING);
 857	}
 858}
 859
 860#ifdef CONFIG_COMPAT
 861static void __user *futex_uaddr(struct robust_list __user *entry,
 862				compat_long_t futex_offset)
 863{
 864	compat_uptr_t base = ptr_to_compat(entry);
 865	void __user *uaddr = compat_ptr(base + futex_offset);
 866
 867	return uaddr;
 868}
 869
 870/*
 871 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 872 */
 873static inline int
 874compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
 875		   compat_uptr_t __user *head, unsigned int *pi)
 876{
 877	if (get_user(*uentry, head))
 878		return -EFAULT;
 879
 880	*entry = compat_ptr((*uentry) & ~1);
 881	*pi = (unsigned int)(*uentry) & 1;
 882
 883	return 0;
 884}
 885
 886/*
 887 * Walk curr->robust_list (very carefully, it's a userspace list!)
 888 * and mark any locks found there dead, and notify any waiters.
 889 *
 890 * We silently return on any sign of list-walking problem.
 891 */
 892static void compat_exit_robust_list(struct task_struct *curr)
 893{
 894	struct compat_robust_list_head __user *head = curr->compat_robust_list;
 895	struct robust_list __user *entry, *next_entry, *pending;
 896	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
 897	unsigned int next_pi;
 898	compat_uptr_t uentry, next_uentry, upending;
 899	compat_long_t futex_offset;
 900	int rc;
 901
 902	/*
 903	 * Fetch the list head (which was registered earlier, via
 904	 * sys_set_robust_list()):
 905	 */
 906	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
 907		return;
 908	/*
 909	 * Fetch the relative futex offset:
 910	 */
 911	if (get_user(futex_offset, &head->futex_offset))
 912		return;
 913	/*
 914	 * Fetch any possibly pending lock-add first, and handle it
 915	 * if it exists:
 916	 */
 917	if (compat_fetch_robust_entry(&upending, &pending,
 918			       &head->list_op_pending, &pip))
 919		return;
 920
 921	next_entry = NULL;	/* avoid warning with gcc */
 922	while (entry != (struct robust_list __user *) &head->list) {
 923		/*
 924		 * Fetch the next entry in the list before calling
 925		 * handle_futex_death:
 926		 */
 927		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
 928			(compat_uptr_t __user *)&entry->next, &next_pi);
 929		/*
 930		 * A pending lock might already be on the list, so
 931		 * dont process it twice:
 932		 */
 933		if (entry != pending) {
 934			void __user *uaddr = futex_uaddr(entry, futex_offset);
 935
 936			if (handle_futex_death(uaddr, curr, pi,
 937					       HANDLE_DEATH_LIST))
 938				return;
 939		}
 940		if (rc)
 941			return;
 942		uentry = next_uentry;
 943		entry = next_entry;
 944		pi = next_pi;
 945		/*
 946		 * Avoid excessively long or circular lists:
 947		 */
 948		if (!--limit)
 949			break;
 950
 951		cond_resched();
 952	}
 953	if (pending) {
 954		void __user *uaddr = futex_uaddr(pending, futex_offset);
 955
 956		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
 957	}
 958}
 959#endif
 960
 961#ifdef CONFIG_FUTEX_PI
 962
 963/*
 964 * This task is holding PI mutexes at exit time => bad.
 965 * Kernel cleans up PI-state, but userspace is likely hosed.
 966 * (Robust-futex cleanup is separate and might save the day for userspace.)
 967 */
 968static void exit_pi_state_list(struct task_struct *curr)
 969{
 970	struct list_head *next, *head = &curr->pi_state_list;
 971	struct futex_pi_state *pi_state;
 972	struct futex_hash_bucket *hb;
 973	union futex_key key = FUTEX_KEY_INIT;
 974
 975	/*
 976	 * We are a ZOMBIE and nobody can enqueue itself on
 977	 * pi_state_list anymore, but we have to be careful
 978	 * versus waiters unqueueing themselves:
 979	 */
 980	raw_spin_lock_irq(&curr->pi_lock);
 981	while (!list_empty(head)) {
 982		next = head->next;
 983		pi_state = list_entry(next, struct futex_pi_state, list);
 984		key = pi_state->key;
 985		hb = futex_hash(&key);
 986
 987		/*
 988		 * We can race against put_pi_state() removing itself from the
 989		 * list (a waiter going away). put_pi_state() will first
 990		 * decrement the reference count and then modify the list, so
 991		 * its possible to see the list entry but fail this reference
 992		 * acquire.
 993		 *
 994		 * In that case; drop the locks to let put_pi_state() make
 995		 * progress and retry the loop.
 996		 */
 997		if (!refcount_inc_not_zero(&pi_state->refcount)) {
 998			raw_spin_unlock_irq(&curr->pi_lock);
 999			cpu_relax();
1000			raw_spin_lock_irq(&curr->pi_lock);
1001			continue;
1002		}
1003		raw_spin_unlock_irq(&curr->pi_lock);
1004
1005		spin_lock(&hb->lock);
1006		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1007		raw_spin_lock(&curr->pi_lock);
1008		/*
1009		 * We dropped the pi-lock, so re-check whether this
1010		 * task still owns the PI-state:
1011		 */
1012		if (head->next != next) {
1013			/* retain curr->pi_lock for the loop invariant */
1014			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1015			spin_unlock(&hb->lock);
1016			put_pi_state(pi_state);
1017			continue;
1018		}
1019
1020		WARN_ON(pi_state->owner != curr);
1021		WARN_ON(list_empty(&pi_state->list));
1022		list_del_init(&pi_state->list);
1023		pi_state->owner = NULL;
1024
1025		raw_spin_unlock(&curr->pi_lock);
1026		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1027		spin_unlock(&hb->lock);
1028
1029		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1030		put_pi_state(pi_state);
1031
1032		raw_spin_lock_irq(&curr->pi_lock);
1033	}
1034	raw_spin_unlock_irq(&curr->pi_lock);
1035}
1036#else
1037static inline void exit_pi_state_list(struct task_struct *curr) { }
1038#endif
1039
1040static void futex_cleanup(struct task_struct *tsk)
1041{
1042	if (unlikely(tsk->robust_list)) {
1043		exit_robust_list(tsk);
1044		tsk->robust_list = NULL;
1045	}
1046
1047#ifdef CONFIG_COMPAT
1048	if (unlikely(tsk->compat_robust_list)) {
1049		compat_exit_robust_list(tsk);
1050		tsk->compat_robust_list = NULL;
1051	}
1052#endif
1053
1054	if (unlikely(!list_empty(&tsk->pi_state_list)))
1055		exit_pi_state_list(tsk);
1056}
1057
1058/**
1059 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1060 * @tsk:	task to set the state on
1061 *
1062 * Set the futex exit state of the task lockless. The futex waiter code
1063 * observes that state when a task is exiting and loops until the task has
1064 * actually finished the futex cleanup. The worst case for this is that the
1065 * waiter runs through the wait loop until the state becomes visible.
1066 *
1067 * This is called from the recursive fault handling path in make_task_dead().
1068 *
1069 * This is best effort. Either the futex exit code has run already or
1070 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1071 * take it over. If not, the problem is pushed back to user space. If the
1072 * futex exit code did not run yet, then an already queued waiter might
1073 * block forever, but there is nothing which can be done about that.
1074 */
1075void futex_exit_recursive(struct task_struct *tsk)
1076{
1077	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1078	if (tsk->futex_state == FUTEX_STATE_EXITING)
1079		mutex_unlock(&tsk->futex_exit_mutex);
1080	tsk->futex_state = FUTEX_STATE_DEAD;
1081}
1082
1083static void futex_cleanup_begin(struct task_struct *tsk)
1084{
1085	/*
1086	 * Prevent various race issues against a concurrent incoming waiter
1087	 * including live locks by forcing the waiter to block on
1088	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1089	 * attach_to_pi_owner().
1090	 */
1091	mutex_lock(&tsk->futex_exit_mutex);
1092
1093	/*
1094	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1095	 *
1096	 * This ensures that all subsequent checks of tsk->futex_state in
1097	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1098	 * tsk->pi_lock held.
1099	 *
1100	 * It guarantees also that a pi_state which was queued right before
1101	 * the state change under tsk->pi_lock by a concurrent waiter must
1102	 * be observed in exit_pi_state_list().
1103	 */
1104	raw_spin_lock_irq(&tsk->pi_lock);
1105	tsk->futex_state = FUTEX_STATE_EXITING;
1106	raw_spin_unlock_irq(&tsk->pi_lock);
1107}
1108
1109static void futex_cleanup_end(struct task_struct *tsk, int state)
1110{
1111	/*
1112	 * Lockless store. The only side effect is that an observer might
1113	 * take another loop until it becomes visible.
1114	 */
1115	tsk->futex_state = state;
1116	/*
1117	 * Drop the exit protection. This unblocks waiters which observed
1118	 * FUTEX_STATE_EXITING to reevaluate the state.
1119	 */
1120	mutex_unlock(&tsk->futex_exit_mutex);
1121}
1122
1123void futex_exec_release(struct task_struct *tsk)
1124{
1125	/*
1126	 * The state handling is done for consistency, but in the case of
1127	 * exec() there is no way to prevent further damage as the PID stays
1128	 * the same. But for the unlikely and arguably buggy case that a
1129	 * futex is held on exec(), this provides at least as much state
1130	 * consistency protection which is possible.
1131	 */
1132	futex_cleanup_begin(tsk);
1133	futex_cleanup(tsk);
1134	/*
1135	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1136	 * exec a new binary.
1137	 */
1138	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1139}
1140
1141void futex_exit_release(struct task_struct *tsk)
1142{
1143	futex_cleanup_begin(tsk);
1144	futex_cleanup(tsk);
1145	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1146}
1147
1148static int __init futex_init(void)
1149{
1150	unsigned int futex_shift;
1151	unsigned long i;
1152
1153#if CONFIG_BASE_SMALL
1154	futex_hashsize = 16;
1155#else
1156	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1157#endif
1158
1159	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1160					       futex_hashsize, 0, 0,
1161					       &futex_shift, NULL,
1162					       futex_hashsize, futex_hashsize);
1163	futex_hashsize = 1UL << futex_shift;
1164
1165	for (i = 0; i < futex_hashsize; i++) {
1166		atomic_set(&futex_queues[i].waiters, 0);
1167		plist_head_init(&futex_queues[i].chain);
1168		spin_lock_init(&futex_queues[i].lock);
1169	}
1170
1171	return 0;
1172}
1173core_initcall(futex_init);