Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * This file is part of UBIFS.
  3 *
  4 * Copyright (C) 2006-2008 Nokia Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published by
  8 * the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc., 51
 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18 *
 19 * Authors: Adrian Hunter
 20 *          Artem Bityutskiy (Битюцкий Артём)
 21 */
 22
 23/*
 24 * This file implements the budgeting sub-system which is responsible for UBIFS
 25 * space management.
 26 *
 27 * Factors such as compression, wasted space at the ends of LEBs, space in other
 28 * journal heads, the effect of updates on the index, and so on, make it
 29 * impossible to accurately predict the amount of space needed. Consequently
 30 * approximations are used.
 31 */
 32
 33#include "ubifs.h"
 34#include <linux/writeback.h>
 35#include <linux/math64.h>
 36
 37/*
 38 * When pessimistic budget calculations say that there is no enough space,
 39 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
 40 * or committing. The below constant defines maximum number of times UBIFS
 41 * repeats the operations.
 42 */
 43#define MAX_MKSPC_RETRIES 3
 44
 45/*
 46 * The below constant defines amount of dirty pages which should be written
 47 * back at when trying to shrink the liability.
 48 */
 49#define NR_TO_WRITE 16
 50
 51/**
 52 * shrink_liability - write-back some dirty pages/inodes.
 53 * @c: UBIFS file-system description object
 54 * @nr_to_write: how many dirty pages to write-back
 55 *
 56 * This function shrinks UBIFS liability by means of writing back some amount
 57 * of dirty inodes and their pages.
 58 *
 59 * Note, this function synchronizes even VFS inodes which are locked
 60 * (@i_mutex) by the caller of the budgeting function, because write-back does
 61 * not touch @i_mutex.
 62 */
 63static void shrink_liability(struct ubifs_info *c, int nr_to_write)
 64{
 65	down_read(&c->vfs_sb->s_umount);
 66	writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
 67	up_read(&c->vfs_sb->s_umount);
 68}
 69
 70/**
 71 * run_gc - run garbage collector.
 72 * @c: UBIFS file-system description object
 73 *
 74 * This function runs garbage collector to make some more free space. Returns
 75 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
 76 * negative error code in case of failure.
 77 */
 78static int run_gc(struct ubifs_info *c)
 79{
 80	int err, lnum;
 81
 82	/* Make some free space by garbage-collecting dirty space */
 83	down_read(&c->commit_sem);
 84	lnum = ubifs_garbage_collect(c, 1);
 85	up_read(&c->commit_sem);
 86	if (lnum < 0)
 87		return lnum;
 88
 89	/* GC freed one LEB, return it to lprops */
 90	dbg_budg("GC freed LEB %d", lnum);
 91	err = ubifs_return_leb(c, lnum);
 92	if (err)
 93		return err;
 94	return 0;
 95}
 96
 97/**
 98 * get_liability - calculate current liability.
 99 * @c: UBIFS file-system description object
100 *
101 * This function calculates and returns current UBIFS liability, i.e. the
102 * amount of bytes UBIFS has "promised" to write to the media.
103 */
104static long long get_liability(struct ubifs_info *c)
105{
106	long long liab;
107
108	spin_lock(&c->space_lock);
109	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
110	spin_unlock(&c->space_lock);
111	return liab;
112}
113
114/**
115 * make_free_space - make more free space on the file-system.
116 * @c: UBIFS file-system description object
117 *
118 * This function is called when an operation cannot be budgeted because there
119 * is supposedly no free space. But in most cases there is some free space:
120 *   o budgeting is pessimistic, so it always budgets more than it is actually
121 *     needed, so shrinking the liability is one way to make free space - the
122 *     cached data will take less space then it was budgeted for;
123 *   o GC may turn some dark space into free space (budgeting treats dark space
124 *     as not available);
125 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
126 *
127 * So this function tries to do the above. Returns %-EAGAIN if some free space
128 * was presumably made and the caller has to re-try budgeting the operation.
129 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
130 * codes on failures.
131 */
132static int make_free_space(struct ubifs_info *c)
133{
134	int err, retries = 0;
135	long long liab1, liab2;
136
137	do {
138		liab1 = get_liability(c);
139		/*
140		 * We probably have some dirty pages or inodes (liability), try
141		 * to write them back.
142		 */
143		dbg_budg("liability %lld, run write-back", liab1);
144		shrink_liability(c, NR_TO_WRITE);
145
146		liab2 = get_liability(c);
147		if (liab2 < liab1)
148			return -EAGAIN;
149
150		dbg_budg("new liability %lld (not shrunk)", liab2);
151
152		/* Liability did not shrink again, try GC */
153		dbg_budg("Run GC");
154		err = run_gc(c);
155		if (!err)
156			return -EAGAIN;
157
158		if (err != -EAGAIN && err != -ENOSPC)
159			/* Some real error happened */
160			return err;
161
162		dbg_budg("Run commit (retries %d)", retries);
163		err = ubifs_run_commit(c);
164		if (err)
165			return err;
166	} while (retries++ < MAX_MKSPC_RETRIES);
167
168	return -ENOSPC;
169}
170
171/**
172 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
173 * @c: UBIFS file-system description object
174 *
175 * This function calculates and returns the number of LEBs which should be kept
176 * for index usage.
177 */
178int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
179{
180	int idx_lebs;
181	long long idx_size;
182
183	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
184	/* And make sure we have thrice the index size of space reserved */
185	idx_size += idx_size << 1;
186	/*
187	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
188	 * pair, nor similarly the two variables for the new index size, so we
189	 * have to do this costly 64-bit division on fast-path.
190	 */
191	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
192	/*
193	 * The index head is not available for the in-the-gaps method, so add an
194	 * extra LEB to compensate.
195	 */
196	idx_lebs += 1;
197	if (idx_lebs < MIN_INDEX_LEBS)
198		idx_lebs = MIN_INDEX_LEBS;
199	return idx_lebs;
200}
201
202/**
203 * ubifs_calc_available - calculate available FS space.
204 * @c: UBIFS file-system description object
205 * @min_idx_lebs: minimum number of LEBs reserved for the index
206 *
207 * This function calculates and returns amount of FS space available for use.
208 */
209long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
210{
211	int subtract_lebs;
212	long long available;
213
214	available = c->main_bytes - c->lst.total_used;
215
216	/*
217	 * Now 'available' contains theoretically available flash space
218	 * assuming there is no index, so we have to subtract the space which
219	 * is reserved for the index.
220	 */
221	subtract_lebs = min_idx_lebs;
222
223	/* Take into account that GC reserves one LEB for its own needs */
224	subtract_lebs += 1;
225
226	/*
227	 * The GC journal head LEB is not really accessible. And since
228	 * different write types go to different heads, we may count only on
229	 * one head's space.
230	 */
231	subtract_lebs += c->jhead_cnt - 1;
232
233	/* We also reserve one LEB for deletions, which bypass budgeting */
234	subtract_lebs += 1;
235
236	available -= (long long)subtract_lebs * c->leb_size;
237
238	/* Subtract the dead space which is not available for use */
239	available -= c->lst.total_dead;
240
241	/*
242	 * Subtract dark space, which might or might not be usable - it depends
243	 * on the data which we have on the media and which will be written. If
244	 * this is a lot of uncompressed or not-compressible data, the dark
245	 * space cannot be used.
246	 */
247	available -= c->lst.total_dark;
248
249	/*
250	 * However, there is more dark space. The index may be bigger than
251	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
252	 * their dark space is not included in total_dark, so it is subtracted
253	 * here.
254	 */
255	if (c->lst.idx_lebs > min_idx_lebs) {
256		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
257		available -= subtract_lebs * c->dark_wm;
258	}
259
260	/* The calculations are rough and may end up with a negative number */
261	return available > 0 ? available : 0;
262}
263
264/**
265 * can_use_rp - check whether the user is allowed to use reserved pool.
266 * @c: UBIFS file-system description object
267 *
268 * UBIFS has so-called "reserved pool" which is flash space reserved
269 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
270 * This function checks whether current user is allowed to use reserved pool.
271 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
272 */
273static int can_use_rp(struct ubifs_info *c)
274{
275	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
276	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
277		return 1;
278	return 0;
279}
280
281/**
282 * do_budget_space - reserve flash space for index and data growth.
283 * @c: UBIFS file-system description object
284 *
285 * This function makes sure UBIFS has enough free LEBs for index growth and
286 * data.
287 *
288 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
289 * would take if it was consolidated and written to the flash. This guarantees
290 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
291 * be able to commit dirty index. So this function basically adds amount of
292 * budgeted index space to the size of the current index, multiplies this by 3,
293 * and makes sure this does not exceed the amount of free LEBs.
294 *
295 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
296 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
297 *    be large, because UBIFS does not do any index consolidation as long as
298 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
299 *    will contain a lot of dirt.
300 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
301 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
302 *
303 * This function returns zero in case of success, and %-ENOSPC in case of
304 * failure.
305 */
306static int do_budget_space(struct ubifs_info *c)
307{
308	long long outstanding, available;
309	int lebs, rsvd_idx_lebs, min_idx_lebs;
310
311	/* First budget index space */
312	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
313
314	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
315	if (min_idx_lebs > c->lst.idx_lebs)
316		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
317	else
318		rsvd_idx_lebs = 0;
319
320	/*
321	 * The number of LEBs that are available to be used by the index is:
322	 *
323	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
324	 *    @c->lst.taken_empty_lebs
325	 *
326	 * @c->lst.empty_lebs are available because they are empty.
327	 * @c->freeable_cnt are available because they contain only free and
328	 * dirty space, @c->idx_gc_cnt are available because they are index
329	 * LEBs that have been garbage collected and are awaiting the commit
330	 * before they can be used. And the in-the-gaps method will grab these
331	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
332	 * already been allocated for some purpose.
333	 *
334	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
335	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
336	 * are taken until after the commit).
337	 *
338	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
339	 * because of the way we serialize LEB allocations and budgeting. See a
340	 * comment in 'ubifs_find_free_space()'.
341	 */
342	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
343	       c->lst.taken_empty_lebs;
344	if (unlikely(rsvd_idx_lebs > lebs)) {
345		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
346			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
347		return -ENOSPC;
348	}
349
350	available = ubifs_calc_available(c, min_idx_lebs);
351	outstanding = c->bi.data_growth + c->bi.dd_growth;
352
353	if (unlikely(available < outstanding)) {
354		dbg_budg("out of data space: available %lld, outstanding %lld",
355			 available, outstanding);
356		return -ENOSPC;
357	}
358
359	if (available - outstanding <= c->rp_size && !can_use_rp(c))
360		return -ENOSPC;
361
362	c->bi.min_idx_lebs = min_idx_lebs;
363	return 0;
364}
365
366/**
367 * calc_idx_growth - calculate approximate index growth from budgeting request.
368 * @c: UBIFS file-system description object
369 * @req: budgeting request
370 *
371 * For now we assume each new node adds one znode. But this is rather poor
372 * approximation, though.
373 */
374static int calc_idx_growth(const struct ubifs_info *c,
375			   const struct ubifs_budget_req *req)
376{
377	int znodes;
378
379	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
380		 req->new_dent;
381	return znodes * c->max_idx_node_sz;
382}
383
384/**
385 * calc_data_growth - calculate approximate amount of new data from budgeting
386 * request.
387 * @c: UBIFS file-system description object
388 * @req: budgeting request
389 */
390static int calc_data_growth(const struct ubifs_info *c,
391			    const struct ubifs_budget_req *req)
392{
393	int data_growth;
394
395	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
396	if (req->new_page)
397		data_growth += c->bi.page_budget;
398	if (req->new_dent)
399		data_growth += c->bi.dent_budget;
400	data_growth += req->new_ino_d;
401	return data_growth;
402}
403
404/**
405 * calc_dd_growth - calculate approximate amount of data which makes other data
406 * dirty from budgeting request.
407 * @c: UBIFS file-system description object
408 * @req: budgeting request
409 */
410static int calc_dd_growth(const struct ubifs_info *c,
411			  const struct ubifs_budget_req *req)
412{
413	int dd_growth;
414
415	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
416
417	if (req->dirtied_ino)
418		dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
419	if (req->mod_dent)
420		dd_growth += c->bi.dent_budget;
421	dd_growth += req->dirtied_ino_d;
422	return dd_growth;
423}
424
425/**
426 * ubifs_budget_space - ensure there is enough space to complete an operation.
427 * @c: UBIFS file-system description object
428 * @req: budget request
429 *
430 * This function allocates budget for an operation. It uses pessimistic
431 * approximation of how much flash space the operation needs. The goal of this
432 * function is to make sure UBIFS always has flash space to flush all dirty
433 * pages, dirty inodes, and dirty znodes (liability). This function may force
434 * commit, garbage-collection or write-back. Returns zero in case of success,
435 * %-ENOSPC if there is no free space and other negative error codes in case of
436 * failures.
437 */
438int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
439{
440	int err, idx_growth, data_growth, dd_growth, retried = 0;
441
442	ubifs_assert(req->new_page <= 1);
443	ubifs_assert(req->dirtied_page <= 1);
444	ubifs_assert(req->new_dent <= 1);
445	ubifs_assert(req->mod_dent <= 1);
446	ubifs_assert(req->new_ino <= 1);
447	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
448	ubifs_assert(req->dirtied_ino <= 4);
449	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
450	ubifs_assert(!(req->new_ino_d & 7));
451	ubifs_assert(!(req->dirtied_ino_d & 7));
452
453	data_growth = calc_data_growth(c, req);
454	dd_growth = calc_dd_growth(c, req);
455	if (!data_growth && !dd_growth)
456		return 0;
457	idx_growth = calc_idx_growth(c, req);
458
459again:
460	spin_lock(&c->space_lock);
461	ubifs_assert(c->bi.idx_growth >= 0);
462	ubifs_assert(c->bi.data_growth >= 0);
463	ubifs_assert(c->bi.dd_growth >= 0);
464
465	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
466		dbg_budg("no space");
467		spin_unlock(&c->space_lock);
468		return -ENOSPC;
469	}
470
471	c->bi.idx_growth += idx_growth;
472	c->bi.data_growth += data_growth;
473	c->bi.dd_growth += dd_growth;
474
475	err = do_budget_space(c);
476	if (likely(!err)) {
477		req->idx_growth = idx_growth;
478		req->data_growth = data_growth;
479		req->dd_growth = dd_growth;
480		spin_unlock(&c->space_lock);
481		return 0;
482	}
483
484	/* Restore the old values */
485	c->bi.idx_growth -= idx_growth;
486	c->bi.data_growth -= data_growth;
487	c->bi.dd_growth -= dd_growth;
488	spin_unlock(&c->space_lock);
489
490	if (req->fast) {
491		dbg_budg("no space for fast budgeting");
492		return err;
493	}
494
495	err = make_free_space(c);
496	cond_resched();
497	if (err == -EAGAIN) {
498		dbg_budg("try again");
499		goto again;
500	} else if (err == -ENOSPC) {
501		if (!retried) {
502			retried = 1;
503			dbg_budg("-ENOSPC, but anyway try once again");
504			goto again;
505		}
506		dbg_budg("FS is full, -ENOSPC");
507		c->bi.nospace = 1;
508		if (can_use_rp(c) || c->rp_size == 0)
509			c->bi.nospace_rp = 1;
510		smp_wmb();
511	} else
512		ubifs_err(c, "cannot budget space, error %d", err);
513	return err;
514}
515
516/**
517 * ubifs_release_budget - release budgeted free space.
518 * @c: UBIFS file-system description object
519 * @req: budget request
520 *
521 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
522 * since the index changes (which were budgeted for in @req->idx_growth) will
523 * only be written to the media on commit, this function moves the index budget
524 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
525 * by the commit operation.
526 */
527void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
528{
529	ubifs_assert(req->new_page <= 1);
530	ubifs_assert(req->dirtied_page <= 1);
531	ubifs_assert(req->new_dent <= 1);
532	ubifs_assert(req->mod_dent <= 1);
533	ubifs_assert(req->new_ino <= 1);
534	ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
535	ubifs_assert(req->dirtied_ino <= 4);
536	ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
537	ubifs_assert(!(req->new_ino_d & 7));
538	ubifs_assert(!(req->dirtied_ino_d & 7));
539	if (!req->recalculate) {
540		ubifs_assert(req->idx_growth >= 0);
541		ubifs_assert(req->data_growth >= 0);
542		ubifs_assert(req->dd_growth >= 0);
543	}
544
545	if (req->recalculate) {
546		req->data_growth = calc_data_growth(c, req);
547		req->dd_growth = calc_dd_growth(c, req);
548		req->idx_growth = calc_idx_growth(c, req);
549	}
550
551	if (!req->data_growth && !req->dd_growth)
552		return;
553
554	c->bi.nospace = c->bi.nospace_rp = 0;
555	smp_wmb();
556
557	spin_lock(&c->space_lock);
558	c->bi.idx_growth -= req->idx_growth;
559	c->bi.uncommitted_idx += req->idx_growth;
560	c->bi.data_growth -= req->data_growth;
561	c->bi.dd_growth -= req->dd_growth;
562	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
563
564	ubifs_assert(c->bi.idx_growth >= 0);
565	ubifs_assert(c->bi.data_growth >= 0);
566	ubifs_assert(c->bi.dd_growth >= 0);
567	ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
568	ubifs_assert(!(c->bi.idx_growth & 7));
569	ubifs_assert(!(c->bi.data_growth & 7));
570	ubifs_assert(!(c->bi.dd_growth & 7));
571	spin_unlock(&c->space_lock);
572}
573
574/**
575 * ubifs_convert_page_budget - convert budget of a new page.
576 * @c: UBIFS file-system description object
577 *
578 * This function converts budget which was allocated for a new page of data to
579 * the budget of changing an existing page of data. The latter is smaller than
580 * the former, so this function only does simple re-calculation and does not
581 * involve any write-back.
582 */
583void ubifs_convert_page_budget(struct ubifs_info *c)
584{
585	spin_lock(&c->space_lock);
586	/* Release the index growth reservation */
587	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
588	/* Release the data growth reservation */
589	c->bi.data_growth -= c->bi.page_budget;
590	/* Increase the dirty data growth reservation instead */
591	c->bi.dd_growth += c->bi.page_budget;
592	/* And re-calculate the indexing space reservation */
593	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
594	spin_unlock(&c->space_lock);
595}
596
597/**
598 * ubifs_release_dirty_inode_budget - release dirty inode budget.
599 * @c: UBIFS file-system description object
600 * @ui: UBIFS inode to release the budget for
601 *
602 * This function releases budget corresponding to a dirty inode. It is usually
603 * called when after the inode has been written to the media and marked as
604 * clean. It also causes the "no space" flags to be cleared.
605 */
606void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
607				      struct ubifs_inode *ui)
608{
609	struct ubifs_budget_req req;
610
611	memset(&req, 0, sizeof(struct ubifs_budget_req));
612	/* The "no space" flags will be cleared because dd_growth is > 0 */
613	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
614	ubifs_release_budget(c, &req);
615}
616
617/**
618 * ubifs_reported_space - calculate reported free space.
619 * @c: the UBIFS file-system description object
620 * @free: amount of free space
621 *
622 * This function calculates amount of free space which will be reported to
623 * user-space. User-space application tend to expect that if the file-system
624 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
625 * are able to write a file of size N. UBIFS attaches node headers to each data
626 * node and it has to write indexing nodes as well. This introduces additional
627 * overhead, and UBIFS has to report slightly less free space to meet the above
628 * expectations.
629 *
630 * This function assumes free space is made up of uncompressed data nodes and
631 * full index nodes (one per data node, tripled because we always allow enough
632 * space to write the index thrice).
633 *
634 * Note, the calculation is pessimistic, which means that most of the time
635 * UBIFS reports less space than it actually has.
636 */
637long long ubifs_reported_space(const struct ubifs_info *c, long long free)
638{
639	int divisor, factor, f;
640
641	/*
642	 * Reported space size is @free * X, where X is UBIFS block size
643	 * divided by UBIFS block size + all overhead one data block
644	 * introduces. The overhead is the node header + indexing overhead.
645	 *
646	 * Indexing overhead calculations are based on the following formula:
647	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
648	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
649	 * as less than maximum fanout, we assume that each data node
650	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
651	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
652	 * for the index.
653	 */
654	f = c->fanout > 3 ? c->fanout >> 1 : 2;
655	factor = UBIFS_BLOCK_SIZE;
656	divisor = UBIFS_MAX_DATA_NODE_SZ;
657	divisor += (c->max_idx_node_sz * 3) / (f - 1);
658	free *= factor;
659	return div_u64(free, divisor);
660}
661
662/**
663 * ubifs_get_free_space_nolock - return amount of free space.
664 * @c: UBIFS file-system description object
665 *
666 * This function calculates amount of free space to report to user-space.
667 *
668 * Because UBIFS may introduce substantial overhead (the index, node headers,
669 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
670 * free flash space it has (well, because not all dirty space is reclaimable,
671 * UBIFS does not actually know the real amount). If UBIFS did so, it would
672 * bread user expectations about what free space is. Users seem to accustomed
673 * to assume that if the file-system reports N bytes of free space, they would
674 * be able to fit a file of N bytes to the FS. This almost works for
675 * traditional file-systems, because they have way less overhead than UBIFS.
676 * So, to keep users happy, UBIFS tries to take the overhead into account.
677 */
678long long ubifs_get_free_space_nolock(struct ubifs_info *c)
679{
680	int rsvd_idx_lebs, lebs;
681	long long available, outstanding, free;
682
683	ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
684	outstanding = c->bi.data_growth + c->bi.dd_growth;
685	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
686
687	/*
688	 * When reporting free space to user-space, UBIFS guarantees that it is
689	 * possible to write a file of free space size. This means that for
690	 * empty LEBs we may use more precise calculations than
691	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
692	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
693	 * Thus, amend the available space.
694	 *
695	 * Note, the calculations below are similar to what we have in
696	 * 'do_budget_space()', so refer there for comments.
697	 */
698	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
699		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
700	else
701		rsvd_idx_lebs = 0;
702	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
703	       c->lst.taken_empty_lebs;
704	lebs -= rsvd_idx_lebs;
705	available += lebs * (c->dark_wm - c->leb_overhead);
706
707	if (available > outstanding)
708		free = ubifs_reported_space(c, available - outstanding);
709	else
710		free = 0;
711	return free;
712}
713
714/**
715 * ubifs_get_free_space - return amount of free space.
716 * @c: UBIFS file-system description object
717 *
718 * This function calculates and returns amount of free space to report to
719 * user-space.
720 */
721long long ubifs_get_free_space(struct ubifs_info *c)
722{
723	long long free;
724
725	spin_lock(&c->space_lock);
726	free = ubifs_get_free_space_nolock(c);
727	spin_unlock(&c->space_lock);
728
729	return free;
730}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Authors: Adrian Hunter
  8 *          Artem Bityutskiy (Битюцкий Артём)
  9 */
 10
 11/*
 12 * This file implements the budgeting sub-system which is responsible for UBIFS
 13 * space management.
 14 *
 15 * Factors such as compression, wasted space at the ends of LEBs, space in other
 16 * journal heads, the effect of updates on the index, and so on, make it
 17 * impossible to accurately predict the amount of space needed. Consequently
 18 * approximations are used.
 19 */
 20
 21#include "ubifs.h"
 22#include <linux/writeback.h>
 23#include <linux/math64.h>
 24
 25/*
 26 * When pessimistic budget calculations say that there is no enough space,
 27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
 28 * or committing. The below constant defines maximum number of times UBIFS
 29 * repeats the operations.
 30 */
 31#define MAX_MKSPC_RETRIES 3
 32
 33/*
 34 * The below constant defines amount of dirty pages which should be written
 35 * back at when trying to shrink the liability.
 36 */
 37#define NR_TO_WRITE 16
 38
 39/**
 40 * shrink_liability - write-back some dirty pages/inodes.
 41 * @c: UBIFS file-system description object
 42 * @nr_to_write: how many dirty pages to write-back
 43 *
 44 * This function shrinks UBIFS liability by means of writing back some amount
 45 * of dirty inodes and their pages.
 46 *
 47 * Note, this function synchronizes even VFS inodes which are locked
 48 * (@i_mutex) by the caller of the budgeting function, because write-back does
 49 * not touch @i_mutex.
 50 */
 51static void shrink_liability(struct ubifs_info *c, int nr_to_write)
 52{
 53	down_read(&c->vfs_sb->s_umount);
 54	writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
 55	up_read(&c->vfs_sb->s_umount);
 56}
 57
 58/**
 59 * run_gc - run garbage collector.
 60 * @c: UBIFS file-system description object
 61 *
 62 * This function runs garbage collector to make some more free space. Returns
 63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
 64 * negative error code in case of failure.
 65 */
 66static int run_gc(struct ubifs_info *c)
 67{
 68	int lnum;
 69
 70	/* Make some free space by garbage-collecting dirty space */
 71	down_read(&c->commit_sem);
 72	lnum = ubifs_garbage_collect(c, 1);
 73	up_read(&c->commit_sem);
 74	if (lnum < 0)
 75		return lnum;
 76
 77	/* GC freed one LEB, return it to lprops */
 78	dbg_budg("GC freed LEB %d", lnum);
 79	return ubifs_return_leb(c, lnum);
 
 
 
 80}
 81
 82/**
 83 * get_liability - calculate current liability.
 84 * @c: UBIFS file-system description object
 85 *
 86 * This function calculates and returns current UBIFS liability, i.e. the
 87 * amount of bytes UBIFS has "promised" to write to the media.
 88 */
 89static long long get_liability(struct ubifs_info *c)
 90{
 91	long long liab;
 92
 93	spin_lock(&c->space_lock);
 94	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
 95	spin_unlock(&c->space_lock);
 96	return liab;
 97}
 98
 99/**
100 * make_free_space - make more free space on the file-system.
101 * @c: UBIFS file-system description object
102 *
103 * This function is called when an operation cannot be budgeted because there
104 * is supposedly no free space. But in most cases there is some free space:
105 *   o budgeting is pessimistic, so it always budgets more than it is actually
106 *     needed, so shrinking the liability is one way to make free space - the
107 *     cached data will take less space then it was budgeted for;
108 *   o GC may turn some dark space into free space (budgeting treats dark space
109 *     as not available);
110 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
111 *
112 * So this function tries to do the above. Returns %-EAGAIN if some free space
113 * was presumably made and the caller has to re-try budgeting the operation.
114 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
115 * codes on failures.
116 */
117static int make_free_space(struct ubifs_info *c)
118{
119	int err, retries = 0;
120	long long liab1, liab2;
121
122	do {
123		liab1 = get_liability(c);
124		/*
125		 * We probably have some dirty pages or inodes (liability), try
126		 * to write them back.
127		 */
128		dbg_budg("liability %lld, run write-back", liab1);
129		shrink_liability(c, NR_TO_WRITE);
130
131		liab2 = get_liability(c);
132		if (liab2 < liab1)
133			return -EAGAIN;
134
135		dbg_budg("new liability %lld (not shrunk)", liab2);
136
137		/* Liability did not shrink again, try GC */
138		dbg_budg("Run GC");
139		err = run_gc(c);
140		if (!err)
141			return -EAGAIN;
142
143		if (err != -EAGAIN && err != -ENOSPC)
144			/* Some real error happened */
145			return err;
146
147		dbg_budg("Run commit (retries %d)", retries);
148		err = ubifs_run_commit(c);
149		if (err)
150			return err;
151	} while (retries++ < MAX_MKSPC_RETRIES);
152
153	return -ENOSPC;
154}
155
156/**
157 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
158 * @c: UBIFS file-system description object
159 *
160 * This function calculates and returns the number of LEBs which should be kept
161 * for index usage.
162 */
163int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
164{
165	int idx_lebs;
166	long long idx_size;
167
168	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
169	/* And make sure we have thrice the index size of space reserved */
170	idx_size += idx_size << 1;
171	/*
172	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
173	 * pair, nor similarly the two variables for the new index size, so we
174	 * have to do this costly 64-bit division on fast-path.
175	 */
176	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
177	/*
178	 * The index head is not available for the in-the-gaps method, so add an
179	 * extra LEB to compensate.
180	 */
181	idx_lebs += 1;
182	if (idx_lebs < MIN_INDEX_LEBS)
183		idx_lebs = MIN_INDEX_LEBS;
184	return idx_lebs;
185}
186
187/**
188 * ubifs_calc_available - calculate available FS space.
189 * @c: UBIFS file-system description object
190 * @min_idx_lebs: minimum number of LEBs reserved for the index
191 *
192 * This function calculates and returns amount of FS space available for use.
193 */
194long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
195{
196	int subtract_lebs;
197	long long available;
198
199	available = c->main_bytes - c->lst.total_used;
200
201	/*
202	 * Now 'available' contains theoretically available flash space
203	 * assuming there is no index, so we have to subtract the space which
204	 * is reserved for the index.
205	 */
206	subtract_lebs = min_idx_lebs;
207
208	/* Take into account that GC reserves one LEB for its own needs */
209	subtract_lebs += 1;
210
211	/*
212	 * Since different write types go to different heads, we should
213	 * reserve one leb for each head.
 
214	 */
215	subtract_lebs += c->jhead_cnt;
216
217	/* We also reserve one LEB for deletions, which bypass budgeting */
218	subtract_lebs += 1;
219
220	available -= (long long)subtract_lebs * c->leb_size;
221
222	/* Subtract the dead space which is not available for use */
223	available -= c->lst.total_dead;
224
225	/*
226	 * Subtract dark space, which might or might not be usable - it depends
227	 * on the data which we have on the media and which will be written. If
228	 * this is a lot of uncompressed or not-compressible data, the dark
229	 * space cannot be used.
230	 */
231	available -= c->lst.total_dark;
232
233	/*
234	 * However, there is more dark space. The index may be bigger than
235	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
236	 * their dark space is not included in total_dark, so it is subtracted
237	 * here.
238	 */
239	if (c->lst.idx_lebs > min_idx_lebs) {
240		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
241		available -= subtract_lebs * c->dark_wm;
242	}
243
244	/* The calculations are rough and may end up with a negative number */
245	return available > 0 ? available : 0;
246}
247
248/**
249 * can_use_rp - check whether the user is allowed to use reserved pool.
250 * @c: UBIFS file-system description object
251 *
252 * UBIFS has so-called "reserved pool" which is flash space reserved
253 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
254 * This function checks whether current user is allowed to use reserved pool.
255 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
256 */
257static int can_use_rp(struct ubifs_info *c)
258{
259	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
260	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
261		return 1;
262	return 0;
263}
264
265/**
266 * do_budget_space - reserve flash space for index and data growth.
267 * @c: UBIFS file-system description object
268 *
269 * This function makes sure UBIFS has enough free LEBs for index growth and
270 * data.
271 *
272 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
273 * would take if it was consolidated and written to the flash. This guarantees
274 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
275 * be able to commit dirty index. So this function basically adds amount of
276 * budgeted index space to the size of the current index, multiplies this by 3,
277 * and makes sure this does not exceed the amount of free LEBs.
278 *
279 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
280 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
281 *    be large, because UBIFS does not do any index consolidation as long as
282 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
283 *    will contain a lot of dirt.
284 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
285 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
286 *
287 * This function returns zero in case of success, and %-ENOSPC in case of
288 * failure.
289 */
290static int do_budget_space(struct ubifs_info *c)
291{
292	long long outstanding, available;
293	int lebs, rsvd_idx_lebs, min_idx_lebs;
294
295	/* First budget index space */
296	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
297
298	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
299	if (min_idx_lebs > c->lst.idx_lebs)
300		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
301	else
302		rsvd_idx_lebs = 0;
303
304	/*
305	 * The number of LEBs that are available to be used by the index is:
306	 *
307	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
308	 *    @c->lst.taken_empty_lebs
309	 *
310	 * @c->lst.empty_lebs are available because they are empty.
311	 * @c->freeable_cnt are available because they contain only free and
312	 * dirty space, @c->idx_gc_cnt are available because they are index
313	 * LEBs that have been garbage collected and are awaiting the commit
314	 * before they can be used. And the in-the-gaps method will grab these
315	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
316	 * already been allocated for some purpose.
317	 *
318	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
319	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
320	 * are taken until after the commit).
321	 *
322	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
323	 * because of the way we serialize LEB allocations and budgeting. See a
324	 * comment in 'ubifs_find_free_space()'.
325	 */
326	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
327	       c->lst.taken_empty_lebs;
328	if (unlikely(rsvd_idx_lebs > lebs)) {
329		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
330			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
331		return -ENOSPC;
332	}
333
334	available = ubifs_calc_available(c, min_idx_lebs);
335	outstanding = c->bi.data_growth + c->bi.dd_growth;
336
337	if (unlikely(available < outstanding)) {
338		dbg_budg("out of data space: available %lld, outstanding %lld",
339			 available, outstanding);
340		return -ENOSPC;
341	}
342
343	if (available - outstanding <= c->rp_size && !can_use_rp(c))
344		return -ENOSPC;
345
346	c->bi.min_idx_lebs = min_idx_lebs;
347	return 0;
348}
349
350/**
351 * calc_idx_growth - calculate approximate index growth from budgeting request.
352 * @c: UBIFS file-system description object
353 * @req: budgeting request
354 *
355 * For now we assume each new node adds one znode. But this is rather poor
356 * approximation, though.
357 */
358static int calc_idx_growth(const struct ubifs_info *c,
359			   const struct ubifs_budget_req *req)
360{
361	int znodes;
362
363	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
364		 req->new_dent;
365	return znodes * c->max_idx_node_sz;
366}
367
368/**
369 * calc_data_growth - calculate approximate amount of new data from budgeting
370 * request.
371 * @c: UBIFS file-system description object
372 * @req: budgeting request
373 */
374static int calc_data_growth(const struct ubifs_info *c,
375			    const struct ubifs_budget_req *req)
376{
377	int data_growth;
378
379	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
380	if (req->new_page)
381		data_growth += c->bi.page_budget;
382	if (req->new_dent)
383		data_growth += c->bi.dent_budget;
384	data_growth += req->new_ino_d;
385	return data_growth;
386}
387
388/**
389 * calc_dd_growth - calculate approximate amount of data which makes other data
390 * dirty from budgeting request.
391 * @c: UBIFS file-system description object
392 * @req: budgeting request
393 */
394static int calc_dd_growth(const struct ubifs_info *c,
395			  const struct ubifs_budget_req *req)
396{
397	int dd_growth;
398
399	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
400
401	if (req->dirtied_ino)
402		dd_growth += c->bi.inode_budget * req->dirtied_ino;
403	if (req->mod_dent)
404		dd_growth += c->bi.dent_budget;
405	dd_growth += req->dirtied_ino_d;
406	return dd_growth;
407}
408
409/**
410 * ubifs_budget_space - ensure there is enough space to complete an operation.
411 * @c: UBIFS file-system description object
412 * @req: budget request
413 *
414 * This function allocates budget for an operation. It uses pessimistic
415 * approximation of how much flash space the operation needs. The goal of this
416 * function is to make sure UBIFS always has flash space to flush all dirty
417 * pages, dirty inodes, and dirty znodes (liability). This function may force
418 * commit, garbage-collection or write-back. Returns zero in case of success,
419 * %-ENOSPC if there is no free space and other negative error codes in case of
420 * failures.
421 */
422int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
423{
424	int err, idx_growth, data_growth, dd_growth, retried = 0;
425
426	ubifs_assert(c, req->new_page <= 1);
427	ubifs_assert(c, req->dirtied_page <= 1);
428	ubifs_assert(c, req->new_dent <= 1);
429	ubifs_assert(c, req->mod_dent <= 1);
430	ubifs_assert(c, req->new_ino <= 1);
431	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
432	ubifs_assert(c, req->dirtied_ino <= 4);
433	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
434	ubifs_assert(c, !(req->new_ino_d & 7));
435	ubifs_assert(c, !(req->dirtied_ino_d & 7));
436
437	data_growth = calc_data_growth(c, req);
438	dd_growth = calc_dd_growth(c, req);
439	if (!data_growth && !dd_growth)
440		return 0;
441	idx_growth = calc_idx_growth(c, req);
442
443again:
444	spin_lock(&c->space_lock);
445	ubifs_assert(c, c->bi.idx_growth >= 0);
446	ubifs_assert(c, c->bi.data_growth >= 0);
447	ubifs_assert(c, c->bi.dd_growth >= 0);
448
449	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
450		dbg_budg("no space");
451		spin_unlock(&c->space_lock);
452		return -ENOSPC;
453	}
454
455	c->bi.idx_growth += idx_growth;
456	c->bi.data_growth += data_growth;
457	c->bi.dd_growth += dd_growth;
458
459	err = do_budget_space(c);
460	if (likely(!err)) {
461		req->idx_growth = idx_growth;
462		req->data_growth = data_growth;
463		req->dd_growth = dd_growth;
464		spin_unlock(&c->space_lock);
465		return 0;
466	}
467
468	/* Restore the old values */
469	c->bi.idx_growth -= idx_growth;
470	c->bi.data_growth -= data_growth;
471	c->bi.dd_growth -= dd_growth;
472	spin_unlock(&c->space_lock);
473
474	if (req->fast) {
475		dbg_budg("no space for fast budgeting");
476		return err;
477	}
478
479	err = make_free_space(c);
480	cond_resched();
481	if (err == -EAGAIN) {
482		dbg_budg("try again");
483		goto again;
484	} else if (err == -ENOSPC) {
485		if (!retried) {
486			retried = 1;
487			dbg_budg("-ENOSPC, but anyway try once again");
488			goto again;
489		}
490		dbg_budg("FS is full, -ENOSPC");
491		c->bi.nospace = 1;
492		if (can_use_rp(c) || c->rp_size == 0)
493			c->bi.nospace_rp = 1;
494		smp_wmb();
495	} else
496		ubifs_err(c, "cannot budget space, error %d", err);
497	return err;
498}
499
500/**
501 * ubifs_release_budget - release budgeted free space.
502 * @c: UBIFS file-system description object
503 * @req: budget request
504 *
505 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
506 * since the index changes (which were budgeted for in @req->idx_growth) will
507 * only be written to the media on commit, this function moves the index budget
508 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
509 * by the commit operation.
510 */
511void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
512{
513	ubifs_assert(c, req->new_page <= 1);
514	ubifs_assert(c, req->dirtied_page <= 1);
515	ubifs_assert(c, req->new_dent <= 1);
516	ubifs_assert(c, req->mod_dent <= 1);
517	ubifs_assert(c, req->new_ino <= 1);
518	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
519	ubifs_assert(c, req->dirtied_ino <= 4);
520	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
521	ubifs_assert(c, !(req->new_ino_d & 7));
522	ubifs_assert(c, !(req->dirtied_ino_d & 7));
523	if (!req->recalculate) {
524		ubifs_assert(c, req->idx_growth >= 0);
525		ubifs_assert(c, req->data_growth >= 0);
526		ubifs_assert(c, req->dd_growth >= 0);
527	}
528
529	if (req->recalculate) {
530		req->data_growth = calc_data_growth(c, req);
531		req->dd_growth = calc_dd_growth(c, req);
532		req->idx_growth = calc_idx_growth(c, req);
533	}
534
535	if (!req->data_growth && !req->dd_growth)
536		return;
537
538	c->bi.nospace = c->bi.nospace_rp = 0;
539	smp_wmb();
540
541	spin_lock(&c->space_lock);
542	c->bi.idx_growth -= req->idx_growth;
543	c->bi.uncommitted_idx += req->idx_growth;
544	c->bi.data_growth -= req->data_growth;
545	c->bi.dd_growth -= req->dd_growth;
546	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
547
548	ubifs_assert(c, c->bi.idx_growth >= 0);
549	ubifs_assert(c, c->bi.data_growth >= 0);
550	ubifs_assert(c, c->bi.dd_growth >= 0);
551	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
552	ubifs_assert(c, !(c->bi.idx_growth & 7));
553	ubifs_assert(c, !(c->bi.data_growth & 7));
554	ubifs_assert(c, !(c->bi.dd_growth & 7));
555	spin_unlock(&c->space_lock);
556}
557
558/**
559 * ubifs_convert_page_budget - convert budget of a new page.
560 * @c: UBIFS file-system description object
561 *
562 * This function converts budget which was allocated for a new page of data to
563 * the budget of changing an existing page of data. The latter is smaller than
564 * the former, so this function only does simple re-calculation and does not
565 * involve any write-back.
566 */
567void ubifs_convert_page_budget(struct ubifs_info *c)
568{
569	spin_lock(&c->space_lock);
570	/* Release the index growth reservation */
571	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
572	/* Release the data growth reservation */
573	c->bi.data_growth -= c->bi.page_budget;
574	/* Increase the dirty data growth reservation instead */
575	c->bi.dd_growth += c->bi.page_budget;
576	/* And re-calculate the indexing space reservation */
577	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
578	spin_unlock(&c->space_lock);
579}
580
581/**
582 * ubifs_release_dirty_inode_budget - release dirty inode budget.
583 * @c: UBIFS file-system description object
584 * @ui: UBIFS inode to release the budget for
585 *
586 * This function releases budget corresponding to a dirty inode. It is usually
587 * called when after the inode has been written to the media and marked as
588 * clean. It also causes the "no space" flags to be cleared.
589 */
590void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
591				      struct ubifs_inode *ui)
592{
593	struct ubifs_budget_req req;
594
595	memset(&req, 0, sizeof(struct ubifs_budget_req));
596	/* The "no space" flags will be cleared because dd_growth is > 0 */
597	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
598	ubifs_release_budget(c, &req);
599}
600
601/**
602 * ubifs_reported_space - calculate reported free space.
603 * @c: the UBIFS file-system description object
604 * @free: amount of free space
605 *
606 * This function calculates amount of free space which will be reported to
607 * user-space. User-space application tend to expect that if the file-system
608 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
609 * are able to write a file of size N. UBIFS attaches node headers to each data
610 * node and it has to write indexing nodes as well. This introduces additional
611 * overhead, and UBIFS has to report slightly less free space to meet the above
612 * expectations.
613 *
614 * This function assumes free space is made up of uncompressed data nodes and
615 * full index nodes (one per data node, tripled because we always allow enough
616 * space to write the index thrice).
617 *
618 * Note, the calculation is pessimistic, which means that most of the time
619 * UBIFS reports less space than it actually has.
620 */
621long long ubifs_reported_space(const struct ubifs_info *c, long long free)
622{
623	int divisor, factor, f;
624
625	/*
626	 * Reported space size is @free * X, where X is UBIFS block size
627	 * divided by UBIFS block size + all overhead one data block
628	 * introduces. The overhead is the node header + indexing overhead.
629	 *
630	 * Indexing overhead calculations are based on the following formula:
631	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
632	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
633	 * as less than maximum fanout, we assume that each data node
634	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
635	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
636	 * for the index.
637	 */
638	f = c->fanout > 3 ? c->fanout >> 1 : 2;
639	factor = UBIFS_BLOCK_SIZE;
640	divisor = UBIFS_MAX_DATA_NODE_SZ;
641	divisor += (c->max_idx_node_sz * 3) / (f - 1);
642	free *= factor;
643	return div_u64(free, divisor);
644}
645
646/**
647 * ubifs_get_free_space_nolock - return amount of free space.
648 * @c: UBIFS file-system description object
649 *
650 * This function calculates amount of free space to report to user-space.
651 *
652 * Because UBIFS may introduce substantial overhead (the index, node headers,
653 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
654 * free flash space it has (well, because not all dirty space is reclaimable,
655 * UBIFS does not actually know the real amount). If UBIFS did so, it would
656 * bread user expectations about what free space is. Users seem to accustomed
657 * to assume that if the file-system reports N bytes of free space, they would
658 * be able to fit a file of N bytes to the FS. This almost works for
659 * traditional file-systems, because they have way less overhead than UBIFS.
660 * So, to keep users happy, UBIFS tries to take the overhead into account.
661 */
662long long ubifs_get_free_space_nolock(struct ubifs_info *c)
663{
664	int rsvd_idx_lebs, lebs;
665	long long available, outstanding, free;
666
667	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
668	outstanding = c->bi.data_growth + c->bi.dd_growth;
669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670
671	/*
672	 * When reporting free space to user-space, UBIFS guarantees that it is
673	 * possible to write a file of free space size. This means that for
674	 * empty LEBs we may use more precise calculations than
675	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
676	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
677	 * Thus, amend the available space.
678	 *
679	 * Note, the calculations below are similar to what we have in
680	 * 'do_budget_space()', so refer there for comments.
681	 */
682	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
683		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
684	else
685		rsvd_idx_lebs = 0;
686	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
687	       c->lst.taken_empty_lebs;
688	lebs -= rsvd_idx_lebs;
689	available += lebs * (c->dark_wm - c->leb_overhead);
690
691	if (available > outstanding)
692		free = ubifs_reported_space(c, available - outstanding);
693	else
694		free = 0;
695	return free;
696}
697
698/**
699 * ubifs_get_free_space - return amount of free space.
700 * @c: UBIFS file-system description object
701 *
702 * This function calculates and returns amount of free space to report to
703 * user-space.
704 */
705long long ubifs_get_free_space(struct ubifs_info *c)
706{
707	long long free;
708
709	spin_lock(&c->space_lock);
710	free = ubifs_get_free_space_nolock(c);
711	spin_unlock(&c->space_lock);
712
713	return free;
714}