Loading...
1/*
2 * linux/fs/pipe.c
3 *
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/file.h>
9#include <linux/poll.h>
10#include <linux/slab.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/log2.h>
15#include <linux/mount.h>
16#include <linux/magic.h>
17#include <linux/pipe_fs_i.h>
18#include <linux/uio.h>
19#include <linux/highmem.h>
20#include <linux/pagemap.h>
21#include <linux/audit.h>
22#include <linux/syscalls.h>
23#include <linux/fcntl.h>
24
25#include <asm/uaccess.h>
26#include <asm/ioctls.h>
27
28#include "internal.h"
29
30/*
31 * The max size that a non-root user is allowed to grow the pipe. Can
32 * be set by root in /proc/sys/fs/pipe-max-size
33 */
34unsigned int pipe_max_size = 1048576;
35
36/*
37 * Minimum pipe size, as required by POSIX
38 */
39unsigned int pipe_min_size = PAGE_SIZE;
40
41/* Maximum allocatable pages per user. Hard limit is unset by default, soft
42 * matches default values.
43 */
44unsigned long pipe_user_pages_hard;
45unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
46
47/*
48 * We use a start+len construction, which provides full use of the
49 * allocated memory.
50 * -- Florian Coosmann (FGC)
51 *
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
54 *
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57 *
58 * pipe_read & write cleanup
59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60 */
61
62static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63{
64 if (pipe->files)
65 mutex_lock_nested(&pipe->mutex, subclass);
66}
67
68void pipe_lock(struct pipe_inode_info *pipe)
69{
70 /*
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
72 */
73 pipe_lock_nested(pipe, I_MUTEX_PARENT);
74}
75EXPORT_SYMBOL(pipe_lock);
76
77void pipe_unlock(struct pipe_inode_info *pipe)
78{
79 if (pipe->files)
80 mutex_unlock(&pipe->mutex);
81}
82EXPORT_SYMBOL(pipe_unlock);
83
84static inline void __pipe_lock(struct pipe_inode_info *pipe)
85{
86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87}
88
89static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90{
91 mutex_unlock(&pipe->mutex);
92}
93
94void pipe_double_lock(struct pipe_inode_info *pipe1,
95 struct pipe_inode_info *pipe2)
96{
97 BUG_ON(pipe1 == pipe2);
98
99 if (pipe1 < pipe2) {
100 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102 } else {
103 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105 }
106}
107
108/* Drop the inode semaphore and wait for a pipe event, atomically */
109void pipe_wait(struct pipe_inode_info *pipe)
110{
111 DEFINE_WAIT(wait);
112
113 /*
114 * Pipes are system-local resources, so sleeping on them
115 * is considered a noninteractive wait:
116 */
117 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118 pipe_unlock(pipe);
119 schedule();
120 finish_wait(&pipe->wait, &wait);
121 pipe_lock(pipe);
122}
123
124static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 struct pipe_buffer *buf)
126{
127 struct page *page = buf->page;
128
129 /*
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
133 */
134 if (page_count(page) == 1 && !pipe->tmp_page)
135 pipe->tmp_page = page;
136 else
137 put_page(page);
138}
139
140/**
141 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
142 * @pipe: the pipe that the buffer belongs to
143 * @buf: the buffer to attempt to steal
144 *
145 * Description:
146 * This function attempts to steal the &struct page attached to
147 * @buf. If successful, this function returns 0 and returns with
148 * the page locked. The caller may then reuse the page for whatever
149 * he wishes; the typical use is insertion into a different file
150 * page cache.
151 */
152int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154{
155 struct page *page = buf->page;
156
157 /*
158 * A reference of one is golden, that means that the owner of this
159 * page is the only one holding a reference to it. lock the page
160 * and return OK.
161 */
162 if (page_count(page) == 1) {
163 lock_page(page);
164 return 0;
165 }
166
167 return 1;
168}
169EXPORT_SYMBOL(generic_pipe_buf_steal);
170
171/**
172 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
173 * @pipe: the pipe that the buffer belongs to
174 * @buf: the buffer to get a reference to
175 *
176 * Description:
177 * This function grabs an extra reference to @buf. It's used in
178 * in the tee() system call, when we duplicate the buffers in one
179 * pipe into another.
180 */
181void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
182{
183 get_page(buf->page);
184}
185EXPORT_SYMBOL(generic_pipe_buf_get);
186
187/**
188 * generic_pipe_buf_confirm - verify contents of the pipe buffer
189 * @info: the pipe that the buffer belongs to
190 * @buf: the buffer to confirm
191 *
192 * Description:
193 * This function does nothing, because the generic pipe code uses
194 * pages that are always good when inserted into the pipe.
195 */
196int generic_pipe_buf_confirm(struct pipe_inode_info *info,
197 struct pipe_buffer *buf)
198{
199 return 0;
200}
201EXPORT_SYMBOL(generic_pipe_buf_confirm);
202
203/**
204 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
205 * @pipe: the pipe that the buffer belongs to
206 * @buf: the buffer to put a reference to
207 *
208 * Description:
209 * This function releases a reference to @buf.
210 */
211void generic_pipe_buf_release(struct pipe_inode_info *pipe,
212 struct pipe_buffer *buf)
213{
214 put_page(buf->page);
215}
216EXPORT_SYMBOL(generic_pipe_buf_release);
217
218static const struct pipe_buf_operations anon_pipe_buf_ops = {
219 .can_merge = 1,
220 .confirm = generic_pipe_buf_confirm,
221 .release = anon_pipe_buf_release,
222 .steal = generic_pipe_buf_steal,
223 .get = generic_pipe_buf_get,
224};
225
226static const struct pipe_buf_operations packet_pipe_buf_ops = {
227 .can_merge = 0,
228 .confirm = generic_pipe_buf_confirm,
229 .release = anon_pipe_buf_release,
230 .steal = generic_pipe_buf_steal,
231 .get = generic_pipe_buf_get,
232};
233
234static ssize_t
235pipe_read(struct kiocb *iocb, struct iov_iter *to)
236{
237 size_t total_len = iov_iter_count(to);
238 struct file *filp = iocb->ki_filp;
239 struct pipe_inode_info *pipe = filp->private_data;
240 int do_wakeup;
241 ssize_t ret;
242
243 /* Null read succeeds. */
244 if (unlikely(total_len == 0))
245 return 0;
246
247 do_wakeup = 0;
248 ret = 0;
249 __pipe_lock(pipe);
250 for (;;) {
251 int bufs = pipe->nrbufs;
252 if (bufs) {
253 int curbuf = pipe->curbuf;
254 struct pipe_buffer *buf = pipe->bufs + curbuf;
255 const struct pipe_buf_operations *ops = buf->ops;
256 size_t chars = buf->len;
257 size_t written;
258 int error;
259
260 if (chars > total_len)
261 chars = total_len;
262
263 error = ops->confirm(pipe, buf);
264 if (error) {
265 if (!ret)
266 ret = error;
267 break;
268 }
269
270 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
271 if (unlikely(written < chars)) {
272 if (!ret)
273 ret = -EFAULT;
274 break;
275 }
276 ret += chars;
277 buf->offset += chars;
278 buf->len -= chars;
279
280 /* Was it a packet buffer? Clean up and exit */
281 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
282 total_len = chars;
283 buf->len = 0;
284 }
285
286 if (!buf->len) {
287 buf->ops = NULL;
288 ops->release(pipe, buf);
289 curbuf = (curbuf + 1) & (pipe->buffers - 1);
290 pipe->curbuf = curbuf;
291 pipe->nrbufs = --bufs;
292 do_wakeup = 1;
293 }
294 total_len -= chars;
295 if (!total_len)
296 break; /* common path: read succeeded */
297 }
298 if (bufs) /* More to do? */
299 continue;
300 if (!pipe->writers)
301 break;
302 if (!pipe->waiting_writers) {
303 /* syscall merging: Usually we must not sleep
304 * if O_NONBLOCK is set, or if we got some data.
305 * But if a writer sleeps in kernel space, then
306 * we can wait for that data without violating POSIX.
307 */
308 if (ret)
309 break;
310 if (filp->f_flags & O_NONBLOCK) {
311 ret = -EAGAIN;
312 break;
313 }
314 }
315 if (signal_pending(current)) {
316 if (!ret)
317 ret = -ERESTARTSYS;
318 break;
319 }
320 if (do_wakeup) {
321 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
322 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
323 }
324 pipe_wait(pipe);
325 }
326 __pipe_unlock(pipe);
327
328 /* Signal writers asynchronously that there is more room. */
329 if (do_wakeup) {
330 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
331 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
332 }
333 if (ret > 0)
334 file_accessed(filp);
335 return ret;
336}
337
338static inline int is_packetized(struct file *file)
339{
340 return (file->f_flags & O_DIRECT) != 0;
341}
342
343static ssize_t
344pipe_write(struct kiocb *iocb, struct iov_iter *from)
345{
346 struct file *filp = iocb->ki_filp;
347 struct pipe_inode_info *pipe = filp->private_data;
348 ssize_t ret = 0;
349 int do_wakeup = 0;
350 size_t total_len = iov_iter_count(from);
351 ssize_t chars;
352
353 /* Null write succeeds. */
354 if (unlikely(total_len == 0))
355 return 0;
356
357 __pipe_lock(pipe);
358
359 if (!pipe->readers) {
360 send_sig(SIGPIPE, current, 0);
361 ret = -EPIPE;
362 goto out;
363 }
364
365 /* We try to merge small writes */
366 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
367 if (pipe->nrbufs && chars != 0) {
368 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
369 (pipe->buffers - 1);
370 struct pipe_buffer *buf = pipe->bufs + lastbuf;
371 const struct pipe_buf_operations *ops = buf->ops;
372 int offset = buf->offset + buf->len;
373
374 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
375 ret = ops->confirm(pipe, buf);
376 if (ret)
377 goto out;
378
379 ret = copy_page_from_iter(buf->page, offset, chars, from);
380 if (unlikely(ret < chars)) {
381 ret = -EFAULT;
382 goto out;
383 }
384 do_wakeup = 1;
385 buf->len += ret;
386 if (!iov_iter_count(from))
387 goto out;
388 }
389 }
390
391 for (;;) {
392 int bufs;
393
394 if (!pipe->readers) {
395 send_sig(SIGPIPE, current, 0);
396 if (!ret)
397 ret = -EPIPE;
398 break;
399 }
400 bufs = pipe->nrbufs;
401 if (bufs < pipe->buffers) {
402 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
403 struct pipe_buffer *buf = pipe->bufs + newbuf;
404 struct page *page = pipe->tmp_page;
405 int copied;
406
407 if (!page) {
408 page = alloc_page(GFP_HIGHUSER);
409 if (unlikely(!page)) {
410 ret = ret ? : -ENOMEM;
411 break;
412 }
413 pipe->tmp_page = page;
414 }
415 /* Always wake up, even if the copy fails. Otherwise
416 * we lock up (O_NONBLOCK-)readers that sleep due to
417 * syscall merging.
418 * FIXME! Is this really true?
419 */
420 do_wakeup = 1;
421 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
422 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
423 if (!ret)
424 ret = -EFAULT;
425 break;
426 }
427 ret += copied;
428
429 /* Insert it into the buffer array */
430 buf->page = page;
431 buf->ops = &anon_pipe_buf_ops;
432 buf->offset = 0;
433 buf->len = copied;
434 buf->flags = 0;
435 if (is_packetized(filp)) {
436 buf->ops = &packet_pipe_buf_ops;
437 buf->flags = PIPE_BUF_FLAG_PACKET;
438 }
439 pipe->nrbufs = ++bufs;
440 pipe->tmp_page = NULL;
441
442 if (!iov_iter_count(from))
443 break;
444 }
445 if (bufs < pipe->buffers)
446 continue;
447 if (filp->f_flags & O_NONBLOCK) {
448 if (!ret)
449 ret = -EAGAIN;
450 break;
451 }
452 if (signal_pending(current)) {
453 if (!ret)
454 ret = -ERESTARTSYS;
455 break;
456 }
457 if (do_wakeup) {
458 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
459 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
460 do_wakeup = 0;
461 }
462 pipe->waiting_writers++;
463 pipe_wait(pipe);
464 pipe->waiting_writers--;
465 }
466out:
467 __pipe_unlock(pipe);
468 if (do_wakeup) {
469 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
470 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
471 }
472 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
473 int err = file_update_time(filp);
474 if (err)
475 ret = err;
476 sb_end_write(file_inode(filp)->i_sb);
477 }
478 return ret;
479}
480
481static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
482{
483 struct pipe_inode_info *pipe = filp->private_data;
484 int count, buf, nrbufs;
485
486 switch (cmd) {
487 case FIONREAD:
488 __pipe_lock(pipe);
489 count = 0;
490 buf = pipe->curbuf;
491 nrbufs = pipe->nrbufs;
492 while (--nrbufs >= 0) {
493 count += pipe->bufs[buf].len;
494 buf = (buf+1) & (pipe->buffers - 1);
495 }
496 __pipe_unlock(pipe);
497
498 return put_user(count, (int __user *)arg);
499 default:
500 return -ENOIOCTLCMD;
501 }
502}
503
504/* No kernel lock held - fine */
505static unsigned int
506pipe_poll(struct file *filp, poll_table *wait)
507{
508 unsigned int mask;
509 struct pipe_inode_info *pipe = filp->private_data;
510 int nrbufs;
511
512 poll_wait(filp, &pipe->wait, wait);
513
514 /* Reading only -- no need for acquiring the semaphore. */
515 nrbufs = pipe->nrbufs;
516 mask = 0;
517 if (filp->f_mode & FMODE_READ) {
518 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
519 if (!pipe->writers && filp->f_version != pipe->w_counter)
520 mask |= POLLHUP;
521 }
522
523 if (filp->f_mode & FMODE_WRITE) {
524 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
525 /*
526 * Most Unices do not set POLLERR for FIFOs but on Linux they
527 * behave exactly like pipes for poll().
528 */
529 if (!pipe->readers)
530 mask |= POLLERR;
531 }
532
533 return mask;
534}
535
536static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
537{
538 int kill = 0;
539
540 spin_lock(&inode->i_lock);
541 if (!--pipe->files) {
542 inode->i_pipe = NULL;
543 kill = 1;
544 }
545 spin_unlock(&inode->i_lock);
546
547 if (kill)
548 free_pipe_info(pipe);
549}
550
551static int
552pipe_release(struct inode *inode, struct file *file)
553{
554 struct pipe_inode_info *pipe = file->private_data;
555
556 __pipe_lock(pipe);
557 if (file->f_mode & FMODE_READ)
558 pipe->readers--;
559 if (file->f_mode & FMODE_WRITE)
560 pipe->writers--;
561
562 if (pipe->readers || pipe->writers) {
563 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
564 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
565 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
566 }
567 __pipe_unlock(pipe);
568
569 put_pipe_info(inode, pipe);
570 return 0;
571}
572
573static int
574pipe_fasync(int fd, struct file *filp, int on)
575{
576 struct pipe_inode_info *pipe = filp->private_data;
577 int retval = 0;
578
579 __pipe_lock(pipe);
580 if (filp->f_mode & FMODE_READ)
581 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
582 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
583 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
584 if (retval < 0 && (filp->f_mode & FMODE_READ))
585 /* this can happen only if on == T */
586 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
587 }
588 __pipe_unlock(pipe);
589 return retval;
590}
591
592static void account_pipe_buffers(struct pipe_inode_info *pipe,
593 unsigned long old, unsigned long new)
594{
595 atomic_long_add(new - old, &pipe->user->pipe_bufs);
596}
597
598static bool too_many_pipe_buffers_soft(struct user_struct *user)
599{
600 return pipe_user_pages_soft &&
601 atomic_long_read(&user->pipe_bufs) >= pipe_user_pages_soft;
602}
603
604static bool too_many_pipe_buffers_hard(struct user_struct *user)
605{
606 return pipe_user_pages_hard &&
607 atomic_long_read(&user->pipe_bufs) >= pipe_user_pages_hard;
608}
609
610struct pipe_inode_info *alloc_pipe_info(void)
611{
612 struct pipe_inode_info *pipe;
613
614 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
615 if (pipe) {
616 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
617 struct user_struct *user = get_current_user();
618
619 if (!too_many_pipe_buffers_hard(user)) {
620 if (too_many_pipe_buffers_soft(user))
621 pipe_bufs = 1;
622 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * pipe_bufs, GFP_KERNEL);
623 }
624
625 if (pipe->bufs) {
626 init_waitqueue_head(&pipe->wait);
627 pipe->r_counter = pipe->w_counter = 1;
628 pipe->buffers = pipe_bufs;
629 pipe->user = user;
630 account_pipe_buffers(pipe, 0, pipe_bufs);
631 mutex_init(&pipe->mutex);
632 return pipe;
633 }
634 free_uid(user);
635 kfree(pipe);
636 }
637
638 return NULL;
639}
640
641void free_pipe_info(struct pipe_inode_info *pipe)
642{
643 int i;
644
645 account_pipe_buffers(pipe, pipe->buffers, 0);
646 free_uid(pipe->user);
647 for (i = 0; i < pipe->buffers; i++) {
648 struct pipe_buffer *buf = pipe->bufs + i;
649 if (buf->ops)
650 buf->ops->release(pipe, buf);
651 }
652 if (pipe->tmp_page)
653 __free_page(pipe->tmp_page);
654 kfree(pipe->bufs);
655 kfree(pipe);
656}
657
658static struct vfsmount *pipe_mnt __read_mostly;
659
660/*
661 * pipefs_dname() is called from d_path().
662 */
663static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
664{
665 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
666 d_inode(dentry)->i_ino);
667}
668
669static const struct dentry_operations pipefs_dentry_operations = {
670 .d_dname = pipefs_dname,
671};
672
673static struct inode * get_pipe_inode(void)
674{
675 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
676 struct pipe_inode_info *pipe;
677
678 if (!inode)
679 goto fail_inode;
680
681 inode->i_ino = get_next_ino();
682
683 pipe = alloc_pipe_info();
684 if (!pipe)
685 goto fail_iput;
686
687 inode->i_pipe = pipe;
688 pipe->files = 2;
689 pipe->readers = pipe->writers = 1;
690 inode->i_fop = &pipefifo_fops;
691
692 /*
693 * Mark the inode dirty from the very beginning,
694 * that way it will never be moved to the dirty
695 * list because "mark_inode_dirty()" will think
696 * that it already _is_ on the dirty list.
697 */
698 inode->i_state = I_DIRTY;
699 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
700 inode->i_uid = current_fsuid();
701 inode->i_gid = current_fsgid();
702 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
703
704 return inode;
705
706fail_iput:
707 iput(inode);
708
709fail_inode:
710 return NULL;
711}
712
713int create_pipe_files(struct file **res, int flags)
714{
715 int err;
716 struct inode *inode = get_pipe_inode();
717 struct file *f;
718 struct path path;
719 static struct qstr name = { .name = "" };
720
721 if (!inode)
722 return -ENFILE;
723
724 err = -ENOMEM;
725 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
726 if (!path.dentry)
727 goto err_inode;
728 path.mnt = mntget(pipe_mnt);
729
730 d_instantiate(path.dentry, inode);
731
732 f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
733 if (IS_ERR(f)) {
734 err = PTR_ERR(f);
735 goto err_dentry;
736 }
737
738 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
739 f->private_data = inode->i_pipe;
740
741 res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
742 if (IS_ERR(res[0])) {
743 err = PTR_ERR(res[0]);
744 goto err_file;
745 }
746
747 path_get(&path);
748 res[0]->private_data = inode->i_pipe;
749 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
750 res[1] = f;
751 return 0;
752
753err_file:
754 put_filp(f);
755err_dentry:
756 free_pipe_info(inode->i_pipe);
757 path_put(&path);
758 return err;
759
760err_inode:
761 free_pipe_info(inode->i_pipe);
762 iput(inode);
763 return err;
764}
765
766static int __do_pipe_flags(int *fd, struct file **files, int flags)
767{
768 int error;
769 int fdw, fdr;
770
771 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
772 return -EINVAL;
773
774 error = create_pipe_files(files, flags);
775 if (error)
776 return error;
777
778 error = get_unused_fd_flags(flags);
779 if (error < 0)
780 goto err_read_pipe;
781 fdr = error;
782
783 error = get_unused_fd_flags(flags);
784 if (error < 0)
785 goto err_fdr;
786 fdw = error;
787
788 audit_fd_pair(fdr, fdw);
789 fd[0] = fdr;
790 fd[1] = fdw;
791 return 0;
792
793 err_fdr:
794 put_unused_fd(fdr);
795 err_read_pipe:
796 fput(files[0]);
797 fput(files[1]);
798 return error;
799}
800
801int do_pipe_flags(int *fd, int flags)
802{
803 struct file *files[2];
804 int error = __do_pipe_flags(fd, files, flags);
805 if (!error) {
806 fd_install(fd[0], files[0]);
807 fd_install(fd[1], files[1]);
808 }
809 return error;
810}
811
812/*
813 * sys_pipe() is the normal C calling standard for creating
814 * a pipe. It's not the way Unix traditionally does this, though.
815 */
816SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
817{
818 struct file *files[2];
819 int fd[2];
820 int error;
821
822 error = __do_pipe_flags(fd, files, flags);
823 if (!error) {
824 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
825 fput(files[0]);
826 fput(files[1]);
827 put_unused_fd(fd[0]);
828 put_unused_fd(fd[1]);
829 error = -EFAULT;
830 } else {
831 fd_install(fd[0], files[0]);
832 fd_install(fd[1], files[1]);
833 }
834 }
835 return error;
836}
837
838SYSCALL_DEFINE1(pipe, int __user *, fildes)
839{
840 return sys_pipe2(fildes, 0);
841}
842
843static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
844{
845 int cur = *cnt;
846
847 while (cur == *cnt) {
848 pipe_wait(pipe);
849 if (signal_pending(current))
850 break;
851 }
852 return cur == *cnt ? -ERESTARTSYS : 0;
853}
854
855static void wake_up_partner(struct pipe_inode_info *pipe)
856{
857 wake_up_interruptible(&pipe->wait);
858}
859
860static int fifo_open(struct inode *inode, struct file *filp)
861{
862 struct pipe_inode_info *pipe;
863 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
864 int ret;
865
866 filp->f_version = 0;
867
868 spin_lock(&inode->i_lock);
869 if (inode->i_pipe) {
870 pipe = inode->i_pipe;
871 pipe->files++;
872 spin_unlock(&inode->i_lock);
873 } else {
874 spin_unlock(&inode->i_lock);
875 pipe = alloc_pipe_info();
876 if (!pipe)
877 return -ENOMEM;
878 pipe->files = 1;
879 spin_lock(&inode->i_lock);
880 if (unlikely(inode->i_pipe)) {
881 inode->i_pipe->files++;
882 spin_unlock(&inode->i_lock);
883 free_pipe_info(pipe);
884 pipe = inode->i_pipe;
885 } else {
886 inode->i_pipe = pipe;
887 spin_unlock(&inode->i_lock);
888 }
889 }
890 filp->private_data = pipe;
891 /* OK, we have a pipe and it's pinned down */
892
893 __pipe_lock(pipe);
894
895 /* We can only do regular read/write on fifos */
896 filp->f_mode &= (FMODE_READ | FMODE_WRITE);
897
898 switch (filp->f_mode) {
899 case FMODE_READ:
900 /*
901 * O_RDONLY
902 * POSIX.1 says that O_NONBLOCK means return with the FIFO
903 * opened, even when there is no process writing the FIFO.
904 */
905 pipe->r_counter++;
906 if (pipe->readers++ == 0)
907 wake_up_partner(pipe);
908
909 if (!is_pipe && !pipe->writers) {
910 if ((filp->f_flags & O_NONBLOCK)) {
911 /* suppress POLLHUP until we have
912 * seen a writer */
913 filp->f_version = pipe->w_counter;
914 } else {
915 if (wait_for_partner(pipe, &pipe->w_counter))
916 goto err_rd;
917 }
918 }
919 break;
920
921 case FMODE_WRITE:
922 /*
923 * O_WRONLY
924 * POSIX.1 says that O_NONBLOCK means return -1 with
925 * errno=ENXIO when there is no process reading the FIFO.
926 */
927 ret = -ENXIO;
928 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
929 goto err;
930
931 pipe->w_counter++;
932 if (!pipe->writers++)
933 wake_up_partner(pipe);
934
935 if (!is_pipe && !pipe->readers) {
936 if (wait_for_partner(pipe, &pipe->r_counter))
937 goto err_wr;
938 }
939 break;
940
941 case FMODE_READ | FMODE_WRITE:
942 /*
943 * O_RDWR
944 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
945 * This implementation will NEVER block on a O_RDWR open, since
946 * the process can at least talk to itself.
947 */
948
949 pipe->readers++;
950 pipe->writers++;
951 pipe->r_counter++;
952 pipe->w_counter++;
953 if (pipe->readers == 1 || pipe->writers == 1)
954 wake_up_partner(pipe);
955 break;
956
957 default:
958 ret = -EINVAL;
959 goto err;
960 }
961
962 /* Ok! */
963 __pipe_unlock(pipe);
964 return 0;
965
966err_rd:
967 if (!--pipe->readers)
968 wake_up_interruptible(&pipe->wait);
969 ret = -ERESTARTSYS;
970 goto err;
971
972err_wr:
973 if (!--pipe->writers)
974 wake_up_interruptible(&pipe->wait);
975 ret = -ERESTARTSYS;
976 goto err;
977
978err:
979 __pipe_unlock(pipe);
980
981 put_pipe_info(inode, pipe);
982 return ret;
983}
984
985const struct file_operations pipefifo_fops = {
986 .open = fifo_open,
987 .llseek = no_llseek,
988 .read_iter = pipe_read,
989 .write_iter = pipe_write,
990 .poll = pipe_poll,
991 .unlocked_ioctl = pipe_ioctl,
992 .release = pipe_release,
993 .fasync = pipe_fasync,
994};
995
996/*
997 * Allocate a new array of pipe buffers and copy the info over. Returns the
998 * pipe size if successful, or return -ERROR on error.
999 */
1000static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1001{
1002 struct pipe_buffer *bufs;
1003
1004 /*
1005 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1006 * expect a lot of shrink+grow operations, just free and allocate
1007 * again like we would do for growing. If the pipe currently
1008 * contains more buffers than arg, then return busy.
1009 */
1010 if (nr_pages < pipe->nrbufs)
1011 return -EBUSY;
1012
1013 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1014 if (unlikely(!bufs))
1015 return -ENOMEM;
1016
1017 /*
1018 * The pipe array wraps around, so just start the new one at zero
1019 * and adjust the indexes.
1020 */
1021 if (pipe->nrbufs) {
1022 unsigned int tail;
1023 unsigned int head;
1024
1025 tail = pipe->curbuf + pipe->nrbufs;
1026 if (tail < pipe->buffers)
1027 tail = 0;
1028 else
1029 tail &= (pipe->buffers - 1);
1030
1031 head = pipe->nrbufs - tail;
1032 if (head)
1033 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1034 if (tail)
1035 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1036 }
1037
1038 account_pipe_buffers(pipe, pipe->buffers, nr_pages);
1039 pipe->curbuf = 0;
1040 kfree(pipe->bufs);
1041 pipe->bufs = bufs;
1042 pipe->buffers = nr_pages;
1043 return nr_pages * PAGE_SIZE;
1044}
1045
1046/*
1047 * Currently we rely on the pipe array holding a power-of-2 number
1048 * of pages.
1049 */
1050static inline unsigned int round_pipe_size(unsigned int size)
1051{
1052 unsigned long nr_pages;
1053
1054 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1055 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1056}
1057
1058/*
1059 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1060 * will return an error.
1061 */
1062int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1063 size_t *lenp, loff_t *ppos)
1064{
1065 int ret;
1066
1067 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1068 if (ret < 0 || !write)
1069 return ret;
1070
1071 pipe_max_size = round_pipe_size(pipe_max_size);
1072 return ret;
1073}
1074
1075/*
1076 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1077 * location, so checking ->i_pipe is not enough to verify that this is a
1078 * pipe.
1079 */
1080struct pipe_inode_info *get_pipe_info(struct file *file)
1081{
1082 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1083}
1084
1085long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1086{
1087 struct pipe_inode_info *pipe;
1088 long ret;
1089
1090 pipe = get_pipe_info(file);
1091 if (!pipe)
1092 return -EBADF;
1093
1094 __pipe_lock(pipe);
1095
1096 switch (cmd) {
1097 case F_SETPIPE_SZ: {
1098 unsigned int size, nr_pages;
1099
1100 size = round_pipe_size(arg);
1101 nr_pages = size >> PAGE_SHIFT;
1102
1103 ret = -EINVAL;
1104 if (!nr_pages)
1105 goto out;
1106
1107 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1108 ret = -EPERM;
1109 goto out;
1110 } else if ((too_many_pipe_buffers_hard(pipe->user) ||
1111 too_many_pipe_buffers_soft(pipe->user)) &&
1112 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
1113 ret = -EPERM;
1114 goto out;
1115 }
1116 ret = pipe_set_size(pipe, nr_pages);
1117 break;
1118 }
1119 case F_GETPIPE_SZ:
1120 ret = pipe->buffers * PAGE_SIZE;
1121 break;
1122 default:
1123 ret = -EINVAL;
1124 break;
1125 }
1126
1127out:
1128 __pipe_unlock(pipe);
1129 return ret;
1130}
1131
1132static const struct super_operations pipefs_ops = {
1133 .destroy_inode = free_inode_nonrcu,
1134 .statfs = simple_statfs,
1135};
1136
1137/*
1138 * pipefs should _never_ be mounted by userland - too much of security hassle,
1139 * no real gain from having the whole whorehouse mounted. So we don't need
1140 * any operations on the root directory. However, we need a non-trivial
1141 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1142 */
1143static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1144 int flags, const char *dev_name, void *data)
1145{
1146 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1147 &pipefs_dentry_operations, PIPEFS_MAGIC);
1148}
1149
1150static struct file_system_type pipe_fs_type = {
1151 .name = "pipefs",
1152 .mount = pipefs_mount,
1153 .kill_sb = kill_anon_super,
1154};
1155
1156static int __init init_pipe_fs(void)
1157{
1158 int err = register_filesystem(&pipe_fs_type);
1159
1160 if (!err) {
1161 pipe_mnt = kern_mount(&pipe_fs_type);
1162 if (IS_ERR(pipe_mnt)) {
1163 err = PTR_ERR(pipe_mnt);
1164 unregister_filesystem(&pipe_fs_type);
1165 }
1166 }
1167 return err;
1168}
1169
1170fs_initcall(init_pipe_fs);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/file.h>
10#include <linux/poll.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/fs.h>
15#include <linux/log2.h>
16#include <linux/mount.h>
17#include <linux/pseudo_fs.h>
18#include <linux/magic.h>
19#include <linux/pipe_fs_i.h>
20#include <linux/uio.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/audit.h>
24#include <linux/syscalls.h>
25#include <linux/fcntl.h>
26#include <linux/memcontrol.h>
27#include <linux/watch_queue.h>
28#include <linux/sysctl.h>
29
30#include <linux/uaccess.h>
31#include <asm/ioctls.h>
32
33#include "internal.h"
34
35/*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48#define PIPE_MIN_DEF_BUFFERS 2
49
50/*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54static unsigned int pipe_max_size = 1048576;
55
56/* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59static unsigned long pipe_user_pages_hard;
60static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62/*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80{
81 if (pipe->files)
82 mutex_lock_nested(&pipe->mutex, subclass);
83}
84
85void pipe_lock(struct pipe_inode_info *pipe)
86{
87 /*
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 */
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
91}
92EXPORT_SYMBOL(pipe_lock);
93
94void pipe_unlock(struct pipe_inode_info *pipe)
95{
96 if (pipe->files)
97 mutex_unlock(&pipe->mutex);
98}
99EXPORT_SYMBOL(pipe_unlock);
100
101static inline void __pipe_lock(struct pipe_inode_info *pipe)
102{
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104}
105
106static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107{
108 mutex_unlock(&pipe->mutex);
109}
110
111void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
113{
114 BUG_ON(pipe1 == pipe2);
115
116 if (pipe1 < pipe2) {
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 } else {
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 }
123}
124
125static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127{
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139}
140
141static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143{
144 struct page *page = buf->page;
145
146 if (page_count(page) != 1)
147 return false;
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
150 return true;
151}
152
153/**
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
165bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167{
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return true;
178 }
179 return false;
180}
181EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183/**
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
187 *
188 * Description:
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
191 * pipe into another.
192 */
193bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194{
195 return try_get_page(buf->page);
196}
197EXPORT_SYMBOL(generic_pipe_buf_get);
198
199/**
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
203 *
204 * Description:
205 * This function releases a reference to @buf.
206 */
207void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
209{
210 put_page(buf->page);
211}
212EXPORT_SYMBOL(generic_pipe_buf_release);
213
214static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
218};
219
220/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222{
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
226
227 return !pipe_empty(head, tail) || !writers;
228}
229
230static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
231 struct pipe_buffer *buf,
232 unsigned int tail)
233{
234 pipe_buf_release(pipe, buf);
235
236 /*
237 * If the pipe has a watch_queue, we need additional protection
238 * by the spinlock because notifications get posted with only
239 * this spinlock, no mutex
240 */
241 if (pipe_has_watch_queue(pipe)) {
242 spin_lock_irq(&pipe->rd_wait.lock);
243#ifdef CONFIG_WATCH_QUEUE
244 if (buf->flags & PIPE_BUF_FLAG_LOSS)
245 pipe->note_loss = true;
246#endif
247 pipe->tail = ++tail;
248 spin_unlock_irq(&pipe->rd_wait.lock);
249 return tail;
250 }
251
252 /*
253 * Without a watch_queue, we can simply increment the tail
254 * without the spinlock - the mutex is enough.
255 */
256 pipe->tail = ++tail;
257 return tail;
258}
259
260static ssize_t
261pipe_read(struct kiocb *iocb, struct iov_iter *to)
262{
263 size_t total_len = iov_iter_count(to);
264 struct file *filp = iocb->ki_filp;
265 struct pipe_inode_info *pipe = filp->private_data;
266 bool was_full, wake_next_reader = false;
267 ssize_t ret;
268
269 /* Null read succeeds. */
270 if (unlikely(total_len == 0))
271 return 0;
272
273 ret = 0;
274 __pipe_lock(pipe);
275
276 /*
277 * We only wake up writers if the pipe was full when we started
278 * reading in order to avoid unnecessary wakeups.
279 *
280 * But when we do wake up writers, we do so using a sync wakeup
281 * (WF_SYNC), because we want them to get going and generate more
282 * data for us.
283 */
284 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
285 for (;;) {
286 /* Read ->head with a barrier vs post_one_notification() */
287 unsigned int head = smp_load_acquire(&pipe->head);
288 unsigned int tail = pipe->tail;
289 unsigned int mask = pipe->ring_size - 1;
290
291#ifdef CONFIG_WATCH_QUEUE
292 if (pipe->note_loss) {
293 struct watch_notification n;
294
295 if (total_len < 8) {
296 if (ret == 0)
297 ret = -ENOBUFS;
298 break;
299 }
300
301 n.type = WATCH_TYPE_META;
302 n.subtype = WATCH_META_LOSS_NOTIFICATION;
303 n.info = watch_sizeof(n);
304 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
305 if (ret == 0)
306 ret = -EFAULT;
307 break;
308 }
309 ret += sizeof(n);
310 total_len -= sizeof(n);
311 pipe->note_loss = false;
312 }
313#endif
314
315 if (!pipe_empty(head, tail)) {
316 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
317 size_t chars = buf->len;
318 size_t written;
319 int error;
320
321 if (chars > total_len) {
322 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
323 if (ret == 0)
324 ret = -ENOBUFS;
325 break;
326 }
327 chars = total_len;
328 }
329
330 error = pipe_buf_confirm(pipe, buf);
331 if (error) {
332 if (!ret)
333 ret = error;
334 break;
335 }
336
337 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
338 if (unlikely(written < chars)) {
339 if (!ret)
340 ret = -EFAULT;
341 break;
342 }
343 ret += chars;
344 buf->offset += chars;
345 buf->len -= chars;
346
347 /* Was it a packet buffer? Clean up and exit */
348 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
349 total_len = chars;
350 buf->len = 0;
351 }
352
353 if (!buf->len)
354 tail = pipe_update_tail(pipe, buf, tail);
355 total_len -= chars;
356 if (!total_len)
357 break; /* common path: read succeeded */
358 if (!pipe_empty(head, tail)) /* More to do? */
359 continue;
360 }
361
362 if (!pipe->writers)
363 break;
364 if (ret)
365 break;
366 if ((filp->f_flags & O_NONBLOCK) ||
367 (iocb->ki_flags & IOCB_NOWAIT)) {
368 ret = -EAGAIN;
369 break;
370 }
371 __pipe_unlock(pipe);
372
373 /*
374 * We only get here if we didn't actually read anything.
375 *
376 * However, we could have seen (and removed) a zero-sized
377 * pipe buffer, and might have made space in the buffers
378 * that way.
379 *
380 * You can't make zero-sized pipe buffers by doing an empty
381 * write (not even in packet mode), but they can happen if
382 * the writer gets an EFAULT when trying to fill a buffer
383 * that already got allocated and inserted in the buffer
384 * array.
385 *
386 * So we still need to wake up any pending writers in the
387 * _very_ unlikely case that the pipe was full, but we got
388 * no data.
389 */
390 if (unlikely(was_full))
391 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
393
394 /*
395 * But because we didn't read anything, at this point we can
396 * just return directly with -ERESTARTSYS if we're interrupted,
397 * since we've done any required wakeups and there's no need
398 * to mark anything accessed. And we've dropped the lock.
399 */
400 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401 return -ERESTARTSYS;
402
403 __pipe_lock(pipe);
404 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405 wake_next_reader = true;
406 }
407 if (pipe_empty(pipe->head, pipe->tail))
408 wake_next_reader = false;
409 __pipe_unlock(pipe);
410
411 if (was_full)
412 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413 if (wake_next_reader)
414 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
415 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
416 if (ret > 0)
417 file_accessed(filp);
418 return ret;
419}
420
421static inline int is_packetized(struct file *file)
422{
423 return (file->f_flags & O_DIRECT) != 0;
424}
425
426/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
427static inline bool pipe_writable(const struct pipe_inode_info *pipe)
428{
429 unsigned int head = READ_ONCE(pipe->head);
430 unsigned int tail = READ_ONCE(pipe->tail);
431 unsigned int max_usage = READ_ONCE(pipe->max_usage);
432
433 return !pipe_full(head, tail, max_usage) ||
434 !READ_ONCE(pipe->readers);
435}
436
437static ssize_t
438pipe_write(struct kiocb *iocb, struct iov_iter *from)
439{
440 struct file *filp = iocb->ki_filp;
441 struct pipe_inode_info *pipe = filp->private_data;
442 unsigned int head;
443 ssize_t ret = 0;
444 size_t total_len = iov_iter_count(from);
445 ssize_t chars;
446 bool was_empty = false;
447 bool wake_next_writer = false;
448
449 /*
450 * Reject writing to watch queue pipes before the point where we lock
451 * the pipe.
452 * Otherwise, lockdep would be unhappy if the caller already has another
453 * pipe locked.
454 * If we had to support locking a normal pipe and a notification pipe at
455 * the same time, we could set up lockdep annotations for that, but
456 * since we don't actually need that, it's simpler to just bail here.
457 */
458 if (pipe_has_watch_queue(pipe))
459 return -EXDEV;
460
461 /* Null write succeeds. */
462 if (unlikely(total_len == 0))
463 return 0;
464
465 __pipe_lock(pipe);
466
467 if (!pipe->readers) {
468 send_sig(SIGPIPE, current, 0);
469 ret = -EPIPE;
470 goto out;
471 }
472
473 /*
474 * If it wasn't empty we try to merge new data into
475 * the last buffer.
476 *
477 * That naturally merges small writes, but it also
478 * page-aligns the rest of the writes for large writes
479 * spanning multiple pages.
480 */
481 head = pipe->head;
482 was_empty = pipe_empty(head, pipe->tail);
483 chars = total_len & (PAGE_SIZE-1);
484 if (chars && !was_empty) {
485 unsigned int mask = pipe->ring_size - 1;
486 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
487 int offset = buf->offset + buf->len;
488
489 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
490 offset + chars <= PAGE_SIZE) {
491 ret = pipe_buf_confirm(pipe, buf);
492 if (ret)
493 goto out;
494
495 ret = copy_page_from_iter(buf->page, offset, chars, from);
496 if (unlikely(ret < chars)) {
497 ret = -EFAULT;
498 goto out;
499 }
500
501 buf->len += ret;
502 if (!iov_iter_count(from))
503 goto out;
504 }
505 }
506
507 for (;;) {
508 if (!pipe->readers) {
509 send_sig(SIGPIPE, current, 0);
510 if (!ret)
511 ret = -EPIPE;
512 break;
513 }
514
515 head = pipe->head;
516 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
517 unsigned int mask = pipe->ring_size - 1;
518 struct pipe_buffer *buf;
519 struct page *page = pipe->tmp_page;
520 int copied;
521
522 if (!page) {
523 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
524 if (unlikely(!page)) {
525 ret = ret ? : -ENOMEM;
526 break;
527 }
528 pipe->tmp_page = page;
529 }
530
531 /* Allocate a slot in the ring in advance and attach an
532 * empty buffer. If we fault or otherwise fail to use
533 * it, either the reader will consume it or it'll still
534 * be there for the next write.
535 */
536 pipe->head = head + 1;
537
538 /* Insert it into the buffer array */
539 buf = &pipe->bufs[head & mask];
540 buf->page = page;
541 buf->ops = &anon_pipe_buf_ops;
542 buf->offset = 0;
543 buf->len = 0;
544 if (is_packetized(filp))
545 buf->flags = PIPE_BUF_FLAG_PACKET;
546 else
547 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
548 pipe->tmp_page = NULL;
549
550 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
551 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
552 if (!ret)
553 ret = -EFAULT;
554 break;
555 }
556 ret += copied;
557 buf->len = copied;
558
559 if (!iov_iter_count(from))
560 break;
561 }
562
563 if (!pipe_full(head, pipe->tail, pipe->max_usage))
564 continue;
565
566 /* Wait for buffer space to become available. */
567 if ((filp->f_flags & O_NONBLOCK) ||
568 (iocb->ki_flags & IOCB_NOWAIT)) {
569 if (!ret)
570 ret = -EAGAIN;
571 break;
572 }
573 if (signal_pending(current)) {
574 if (!ret)
575 ret = -ERESTARTSYS;
576 break;
577 }
578
579 /*
580 * We're going to release the pipe lock and wait for more
581 * space. We wake up any readers if necessary, and then
582 * after waiting we need to re-check whether the pipe
583 * become empty while we dropped the lock.
584 */
585 __pipe_unlock(pipe);
586 if (was_empty)
587 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
588 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
589 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
590 __pipe_lock(pipe);
591 was_empty = pipe_empty(pipe->head, pipe->tail);
592 wake_next_writer = true;
593 }
594out:
595 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
596 wake_next_writer = false;
597 __pipe_unlock(pipe);
598
599 /*
600 * If we do do a wakeup event, we do a 'sync' wakeup, because we
601 * want the reader to start processing things asap, rather than
602 * leave the data pending.
603 *
604 * This is particularly important for small writes, because of
605 * how (for example) the GNU make jobserver uses small writes to
606 * wake up pending jobs
607 *
608 * Epoll nonsensically wants a wakeup whether the pipe
609 * was already empty or not.
610 */
611 if (was_empty || pipe->poll_usage)
612 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
613 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614 if (wake_next_writer)
615 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617 int err = file_update_time(filp);
618 if (err)
619 ret = err;
620 sb_end_write(file_inode(filp)->i_sb);
621 }
622 return ret;
623}
624
625static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
626{
627 struct pipe_inode_info *pipe = filp->private_data;
628 unsigned int count, head, tail, mask;
629
630 switch (cmd) {
631 case FIONREAD:
632 __pipe_lock(pipe);
633 count = 0;
634 head = pipe->head;
635 tail = pipe->tail;
636 mask = pipe->ring_size - 1;
637
638 while (tail != head) {
639 count += pipe->bufs[tail & mask].len;
640 tail++;
641 }
642 __pipe_unlock(pipe);
643
644 return put_user(count, (int __user *)arg);
645
646#ifdef CONFIG_WATCH_QUEUE
647 case IOC_WATCH_QUEUE_SET_SIZE: {
648 int ret;
649 __pipe_lock(pipe);
650 ret = watch_queue_set_size(pipe, arg);
651 __pipe_unlock(pipe);
652 return ret;
653 }
654
655 case IOC_WATCH_QUEUE_SET_FILTER:
656 return watch_queue_set_filter(
657 pipe, (struct watch_notification_filter __user *)arg);
658#endif
659
660 default:
661 return -ENOIOCTLCMD;
662 }
663}
664
665/* No kernel lock held - fine */
666static __poll_t
667pipe_poll(struct file *filp, poll_table *wait)
668{
669 __poll_t mask;
670 struct pipe_inode_info *pipe = filp->private_data;
671 unsigned int head, tail;
672
673 /* Epoll has some historical nasty semantics, this enables them */
674 WRITE_ONCE(pipe->poll_usage, true);
675
676 /*
677 * Reading pipe state only -- no need for acquiring the semaphore.
678 *
679 * But because this is racy, the code has to add the
680 * entry to the poll table _first_ ..
681 */
682 if (filp->f_mode & FMODE_READ)
683 poll_wait(filp, &pipe->rd_wait, wait);
684 if (filp->f_mode & FMODE_WRITE)
685 poll_wait(filp, &pipe->wr_wait, wait);
686
687 /*
688 * .. and only then can you do the racy tests. That way,
689 * if something changes and you got it wrong, the poll
690 * table entry will wake you up and fix it.
691 */
692 head = READ_ONCE(pipe->head);
693 tail = READ_ONCE(pipe->tail);
694
695 mask = 0;
696 if (filp->f_mode & FMODE_READ) {
697 if (!pipe_empty(head, tail))
698 mask |= EPOLLIN | EPOLLRDNORM;
699 if (!pipe->writers && filp->f_version != pipe->w_counter)
700 mask |= EPOLLHUP;
701 }
702
703 if (filp->f_mode & FMODE_WRITE) {
704 if (!pipe_full(head, tail, pipe->max_usage))
705 mask |= EPOLLOUT | EPOLLWRNORM;
706 /*
707 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
708 * behave exactly like pipes for poll().
709 */
710 if (!pipe->readers)
711 mask |= EPOLLERR;
712 }
713
714 return mask;
715}
716
717static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
718{
719 int kill = 0;
720
721 spin_lock(&inode->i_lock);
722 if (!--pipe->files) {
723 inode->i_pipe = NULL;
724 kill = 1;
725 }
726 spin_unlock(&inode->i_lock);
727
728 if (kill)
729 free_pipe_info(pipe);
730}
731
732static int
733pipe_release(struct inode *inode, struct file *file)
734{
735 struct pipe_inode_info *pipe = file->private_data;
736
737 __pipe_lock(pipe);
738 if (file->f_mode & FMODE_READ)
739 pipe->readers--;
740 if (file->f_mode & FMODE_WRITE)
741 pipe->writers--;
742
743 /* Was that the last reader or writer, but not the other side? */
744 if (!pipe->readers != !pipe->writers) {
745 wake_up_interruptible_all(&pipe->rd_wait);
746 wake_up_interruptible_all(&pipe->wr_wait);
747 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
748 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
749 }
750 __pipe_unlock(pipe);
751
752 put_pipe_info(inode, pipe);
753 return 0;
754}
755
756static int
757pipe_fasync(int fd, struct file *filp, int on)
758{
759 struct pipe_inode_info *pipe = filp->private_data;
760 int retval = 0;
761
762 __pipe_lock(pipe);
763 if (filp->f_mode & FMODE_READ)
764 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
765 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
766 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
767 if (retval < 0 && (filp->f_mode & FMODE_READ))
768 /* this can happen only if on == T */
769 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
770 }
771 __pipe_unlock(pipe);
772 return retval;
773}
774
775unsigned long account_pipe_buffers(struct user_struct *user,
776 unsigned long old, unsigned long new)
777{
778 return atomic_long_add_return(new - old, &user->pipe_bufs);
779}
780
781bool too_many_pipe_buffers_soft(unsigned long user_bufs)
782{
783 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
784
785 return soft_limit && user_bufs > soft_limit;
786}
787
788bool too_many_pipe_buffers_hard(unsigned long user_bufs)
789{
790 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
791
792 return hard_limit && user_bufs > hard_limit;
793}
794
795bool pipe_is_unprivileged_user(void)
796{
797 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
798}
799
800struct pipe_inode_info *alloc_pipe_info(void)
801{
802 struct pipe_inode_info *pipe;
803 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
804 struct user_struct *user = get_current_user();
805 unsigned long user_bufs;
806 unsigned int max_size = READ_ONCE(pipe_max_size);
807
808 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
809 if (pipe == NULL)
810 goto out_free_uid;
811
812 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
813 pipe_bufs = max_size >> PAGE_SHIFT;
814
815 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
816
817 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
818 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
819 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
820 }
821
822 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
823 goto out_revert_acct;
824
825 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
826 GFP_KERNEL_ACCOUNT);
827
828 if (pipe->bufs) {
829 init_waitqueue_head(&pipe->rd_wait);
830 init_waitqueue_head(&pipe->wr_wait);
831 pipe->r_counter = pipe->w_counter = 1;
832 pipe->max_usage = pipe_bufs;
833 pipe->ring_size = pipe_bufs;
834 pipe->nr_accounted = pipe_bufs;
835 pipe->user = user;
836 mutex_init(&pipe->mutex);
837 return pipe;
838 }
839
840out_revert_acct:
841 (void) account_pipe_buffers(user, pipe_bufs, 0);
842 kfree(pipe);
843out_free_uid:
844 free_uid(user);
845 return NULL;
846}
847
848void free_pipe_info(struct pipe_inode_info *pipe)
849{
850 unsigned int i;
851
852#ifdef CONFIG_WATCH_QUEUE
853 if (pipe->watch_queue)
854 watch_queue_clear(pipe->watch_queue);
855#endif
856
857 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
858 free_uid(pipe->user);
859 for (i = 0; i < pipe->ring_size; i++) {
860 struct pipe_buffer *buf = pipe->bufs + i;
861 if (buf->ops)
862 pipe_buf_release(pipe, buf);
863 }
864#ifdef CONFIG_WATCH_QUEUE
865 if (pipe->watch_queue)
866 put_watch_queue(pipe->watch_queue);
867#endif
868 if (pipe->tmp_page)
869 __free_page(pipe->tmp_page);
870 kfree(pipe->bufs);
871 kfree(pipe);
872}
873
874static struct vfsmount *pipe_mnt __ro_after_init;
875
876/*
877 * pipefs_dname() is called from d_path().
878 */
879static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
880{
881 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
882 d_inode(dentry)->i_ino);
883}
884
885static const struct dentry_operations pipefs_dentry_operations = {
886 .d_dname = pipefs_dname,
887};
888
889static struct inode * get_pipe_inode(void)
890{
891 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
892 struct pipe_inode_info *pipe;
893
894 if (!inode)
895 goto fail_inode;
896
897 inode->i_ino = get_next_ino();
898
899 pipe = alloc_pipe_info();
900 if (!pipe)
901 goto fail_iput;
902
903 inode->i_pipe = pipe;
904 pipe->files = 2;
905 pipe->readers = pipe->writers = 1;
906 inode->i_fop = &pipefifo_fops;
907
908 /*
909 * Mark the inode dirty from the very beginning,
910 * that way it will never be moved to the dirty
911 * list because "mark_inode_dirty()" will think
912 * that it already _is_ on the dirty list.
913 */
914 inode->i_state = I_DIRTY;
915 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
916 inode->i_uid = current_fsuid();
917 inode->i_gid = current_fsgid();
918 simple_inode_init_ts(inode);
919
920 return inode;
921
922fail_iput:
923 iput(inode);
924
925fail_inode:
926 return NULL;
927}
928
929int create_pipe_files(struct file **res, int flags)
930{
931 struct inode *inode = get_pipe_inode();
932 struct file *f;
933 int error;
934
935 if (!inode)
936 return -ENFILE;
937
938 if (flags & O_NOTIFICATION_PIPE) {
939 error = watch_queue_init(inode->i_pipe);
940 if (error) {
941 free_pipe_info(inode->i_pipe);
942 iput(inode);
943 return error;
944 }
945 }
946
947 f = alloc_file_pseudo(inode, pipe_mnt, "",
948 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
949 &pipefifo_fops);
950 if (IS_ERR(f)) {
951 free_pipe_info(inode->i_pipe);
952 iput(inode);
953 return PTR_ERR(f);
954 }
955
956 f->private_data = inode->i_pipe;
957
958 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
959 &pipefifo_fops);
960 if (IS_ERR(res[0])) {
961 put_pipe_info(inode, inode->i_pipe);
962 fput(f);
963 return PTR_ERR(res[0]);
964 }
965 res[0]->private_data = inode->i_pipe;
966 res[1] = f;
967 stream_open(inode, res[0]);
968 stream_open(inode, res[1]);
969 return 0;
970}
971
972static int __do_pipe_flags(int *fd, struct file **files, int flags)
973{
974 int error;
975 int fdw, fdr;
976
977 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
978 return -EINVAL;
979
980 error = create_pipe_files(files, flags);
981 if (error)
982 return error;
983
984 error = get_unused_fd_flags(flags);
985 if (error < 0)
986 goto err_read_pipe;
987 fdr = error;
988
989 error = get_unused_fd_flags(flags);
990 if (error < 0)
991 goto err_fdr;
992 fdw = error;
993
994 audit_fd_pair(fdr, fdw);
995 fd[0] = fdr;
996 fd[1] = fdw;
997 /* pipe groks IOCB_NOWAIT */
998 files[0]->f_mode |= FMODE_NOWAIT;
999 files[1]->f_mode |= FMODE_NOWAIT;
1000 return 0;
1001
1002 err_fdr:
1003 put_unused_fd(fdr);
1004 err_read_pipe:
1005 fput(files[0]);
1006 fput(files[1]);
1007 return error;
1008}
1009
1010int do_pipe_flags(int *fd, int flags)
1011{
1012 struct file *files[2];
1013 int error = __do_pipe_flags(fd, files, flags);
1014 if (!error) {
1015 fd_install(fd[0], files[0]);
1016 fd_install(fd[1], files[1]);
1017 }
1018 return error;
1019}
1020
1021/*
1022 * sys_pipe() is the normal C calling standard for creating
1023 * a pipe. It's not the way Unix traditionally does this, though.
1024 */
1025static int do_pipe2(int __user *fildes, int flags)
1026{
1027 struct file *files[2];
1028 int fd[2];
1029 int error;
1030
1031 error = __do_pipe_flags(fd, files, flags);
1032 if (!error) {
1033 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1034 fput(files[0]);
1035 fput(files[1]);
1036 put_unused_fd(fd[0]);
1037 put_unused_fd(fd[1]);
1038 error = -EFAULT;
1039 } else {
1040 fd_install(fd[0], files[0]);
1041 fd_install(fd[1], files[1]);
1042 }
1043 }
1044 return error;
1045}
1046
1047SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1048{
1049 return do_pipe2(fildes, flags);
1050}
1051
1052SYSCALL_DEFINE1(pipe, int __user *, fildes)
1053{
1054 return do_pipe2(fildes, 0);
1055}
1056
1057/*
1058 * This is the stupid "wait for pipe to be readable or writable"
1059 * model.
1060 *
1061 * See pipe_read/write() for the proper kind of exclusive wait,
1062 * but that requires that we wake up any other readers/writers
1063 * if we then do not end up reading everything (ie the whole
1064 * "wake_next_reader/writer" logic in pipe_read/write()).
1065 */
1066void pipe_wait_readable(struct pipe_inode_info *pipe)
1067{
1068 pipe_unlock(pipe);
1069 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1070 pipe_lock(pipe);
1071}
1072
1073void pipe_wait_writable(struct pipe_inode_info *pipe)
1074{
1075 pipe_unlock(pipe);
1076 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1077 pipe_lock(pipe);
1078}
1079
1080/*
1081 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1082 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1083 * race with the count check and waitqueue prep.
1084 *
1085 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1086 * then check the condition you're waiting for, and only then sleep. But
1087 * because of the pipe lock, we can check the condition before being on
1088 * the wait queue.
1089 *
1090 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1091 */
1092static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1093{
1094 DEFINE_WAIT(rdwait);
1095 int cur = *cnt;
1096
1097 while (cur == *cnt) {
1098 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1099 pipe_unlock(pipe);
1100 schedule();
1101 finish_wait(&pipe->rd_wait, &rdwait);
1102 pipe_lock(pipe);
1103 if (signal_pending(current))
1104 break;
1105 }
1106 return cur == *cnt ? -ERESTARTSYS : 0;
1107}
1108
1109static void wake_up_partner(struct pipe_inode_info *pipe)
1110{
1111 wake_up_interruptible_all(&pipe->rd_wait);
1112}
1113
1114static int fifo_open(struct inode *inode, struct file *filp)
1115{
1116 struct pipe_inode_info *pipe;
1117 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1118 int ret;
1119
1120 filp->f_version = 0;
1121
1122 spin_lock(&inode->i_lock);
1123 if (inode->i_pipe) {
1124 pipe = inode->i_pipe;
1125 pipe->files++;
1126 spin_unlock(&inode->i_lock);
1127 } else {
1128 spin_unlock(&inode->i_lock);
1129 pipe = alloc_pipe_info();
1130 if (!pipe)
1131 return -ENOMEM;
1132 pipe->files = 1;
1133 spin_lock(&inode->i_lock);
1134 if (unlikely(inode->i_pipe)) {
1135 inode->i_pipe->files++;
1136 spin_unlock(&inode->i_lock);
1137 free_pipe_info(pipe);
1138 pipe = inode->i_pipe;
1139 } else {
1140 inode->i_pipe = pipe;
1141 spin_unlock(&inode->i_lock);
1142 }
1143 }
1144 filp->private_data = pipe;
1145 /* OK, we have a pipe and it's pinned down */
1146
1147 __pipe_lock(pipe);
1148
1149 /* We can only do regular read/write on fifos */
1150 stream_open(inode, filp);
1151
1152 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1153 case FMODE_READ:
1154 /*
1155 * O_RDONLY
1156 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1157 * opened, even when there is no process writing the FIFO.
1158 */
1159 pipe->r_counter++;
1160 if (pipe->readers++ == 0)
1161 wake_up_partner(pipe);
1162
1163 if (!is_pipe && !pipe->writers) {
1164 if ((filp->f_flags & O_NONBLOCK)) {
1165 /* suppress EPOLLHUP until we have
1166 * seen a writer */
1167 filp->f_version = pipe->w_counter;
1168 } else {
1169 if (wait_for_partner(pipe, &pipe->w_counter))
1170 goto err_rd;
1171 }
1172 }
1173 break;
1174
1175 case FMODE_WRITE:
1176 /*
1177 * O_WRONLY
1178 * POSIX.1 says that O_NONBLOCK means return -1 with
1179 * errno=ENXIO when there is no process reading the FIFO.
1180 */
1181 ret = -ENXIO;
1182 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1183 goto err;
1184
1185 pipe->w_counter++;
1186 if (!pipe->writers++)
1187 wake_up_partner(pipe);
1188
1189 if (!is_pipe && !pipe->readers) {
1190 if (wait_for_partner(pipe, &pipe->r_counter))
1191 goto err_wr;
1192 }
1193 break;
1194
1195 case FMODE_READ | FMODE_WRITE:
1196 /*
1197 * O_RDWR
1198 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1199 * This implementation will NEVER block on a O_RDWR open, since
1200 * the process can at least talk to itself.
1201 */
1202
1203 pipe->readers++;
1204 pipe->writers++;
1205 pipe->r_counter++;
1206 pipe->w_counter++;
1207 if (pipe->readers == 1 || pipe->writers == 1)
1208 wake_up_partner(pipe);
1209 break;
1210
1211 default:
1212 ret = -EINVAL;
1213 goto err;
1214 }
1215
1216 /* Ok! */
1217 __pipe_unlock(pipe);
1218 return 0;
1219
1220err_rd:
1221 if (!--pipe->readers)
1222 wake_up_interruptible(&pipe->wr_wait);
1223 ret = -ERESTARTSYS;
1224 goto err;
1225
1226err_wr:
1227 if (!--pipe->writers)
1228 wake_up_interruptible_all(&pipe->rd_wait);
1229 ret = -ERESTARTSYS;
1230 goto err;
1231
1232err:
1233 __pipe_unlock(pipe);
1234
1235 put_pipe_info(inode, pipe);
1236 return ret;
1237}
1238
1239const struct file_operations pipefifo_fops = {
1240 .open = fifo_open,
1241 .llseek = no_llseek,
1242 .read_iter = pipe_read,
1243 .write_iter = pipe_write,
1244 .poll = pipe_poll,
1245 .unlocked_ioctl = pipe_ioctl,
1246 .release = pipe_release,
1247 .fasync = pipe_fasync,
1248 .splice_write = iter_file_splice_write,
1249};
1250
1251/*
1252 * Currently we rely on the pipe array holding a power-of-2 number
1253 * of pages. Returns 0 on error.
1254 */
1255unsigned int round_pipe_size(unsigned int size)
1256{
1257 if (size > (1U << 31))
1258 return 0;
1259
1260 /* Minimum pipe size, as required by POSIX */
1261 if (size < PAGE_SIZE)
1262 return PAGE_SIZE;
1263
1264 return roundup_pow_of_two(size);
1265}
1266
1267/*
1268 * Resize the pipe ring to a number of slots.
1269 *
1270 * Note the pipe can be reduced in capacity, but only if the current
1271 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1272 * returned instead.
1273 */
1274int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1275{
1276 struct pipe_buffer *bufs;
1277 unsigned int head, tail, mask, n;
1278
1279 bufs = kcalloc(nr_slots, sizeof(*bufs),
1280 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1281 if (unlikely(!bufs))
1282 return -ENOMEM;
1283
1284 spin_lock_irq(&pipe->rd_wait.lock);
1285 mask = pipe->ring_size - 1;
1286 head = pipe->head;
1287 tail = pipe->tail;
1288
1289 n = pipe_occupancy(head, tail);
1290 if (nr_slots < n) {
1291 spin_unlock_irq(&pipe->rd_wait.lock);
1292 kfree(bufs);
1293 return -EBUSY;
1294 }
1295
1296 /*
1297 * The pipe array wraps around, so just start the new one at zero
1298 * and adjust the indices.
1299 */
1300 if (n > 0) {
1301 unsigned int h = head & mask;
1302 unsigned int t = tail & mask;
1303 if (h > t) {
1304 memcpy(bufs, pipe->bufs + t,
1305 n * sizeof(struct pipe_buffer));
1306 } else {
1307 unsigned int tsize = pipe->ring_size - t;
1308 if (h > 0)
1309 memcpy(bufs + tsize, pipe->bufs,
1310 h * sizeof(struct pipe_buffer));
1311 memcpy(bufs, pipe->bufs + t,
1312 tsize * sizeof(struct pipe_buffer));
1313 }
1314 }
1315
1316 head = n;
1317 tail = 0;
1318
1319 kfree(pipe->bufs);
1320 pipe->bufs = bufs;
1321 pipe->ring_size = nr_slots;
1322 if (pipe->max_usage > nr_slots)
1323 pipe->max_usage = nr_slots;
1324 pipe->tail = tail;
1325 pipe->head = head;
1326
1327 if (!pipe_has_watch_queue(pipe)) {
1328 pipe->max_usage = nr_slots;
1329 pipe->nr_accounted = nr_slots;
1330 }
1331
1332 spin_unlock_irq(&pipe->rd_wait.lock);
1333
1334 /* This might have made more room for writers */
1335 wake_up_interruptible(&pipe->wr_wait);
1336 return 0;
1337}
1338
1339/*
1340 * Allocate a new array of pipe buffers and copy the info over. Returns the
1341 * pipe size if successful, or return -ERROR on error.
1342 */
1343static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1344{
1345 unsigned long user_bufs;
1346 unsigned int nr_slots, size;
1347 long ret = 0;
1348
1349 if (pipe_has_watch_queue(pipe))
1350 return -EBUSY;
1351
1352 size = round_pipe_size(arg);
1353 nr_slots = size >> PAGE_SHIFT;
1354
1355 if (!nr_slots)
1356 return -EINVAL;
1357
1358 /*
1359 * If trying to increase the pipe capacity, check that an
1360 * unprivileged user is not trying to exceed various limits
1361 * (soft limit check here, hard limit check just below).
1362 * Decreasing the pipe capacity is always permitted, even
1363 * if the user is currently over a limit.
1364 */
1365 if (nr_slots > pipe->max_usage &&
1366 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1367 return -EPERM;
1368
1369 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1370
1371 if (nr_slots > pipe->max_usage &&
1372 (too_many_pipe_buffers_hard(user_bufs) ||
1373 too_many_pipe_buffers_soft(user_bufs)) &&
1374 pipe_is_unprivileged_user()) {
1375 ret = -EPERM;
1376 goto out_revert_acct;
1377 }
1378
1379 ret = pipe_resize_ring(pipe, nr_slots);
1380 if (ret < 0)
1381 goto out_revert_acct;
1382
1383 return pipe->max_usage * PAGE_SIZE;
1384
1385out_revert_acct:
1386 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1387 return ret;
1388}
1389
1390/*
1391 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1392 * not enough to verify that this is a pipe.
1393 */
1394struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1395{
1396 struct pipe_inode_info *pipe = file->private_data;
1397
1398 if (file->f_op != &pipefifo_fops || !pipe)
1399 return NULL;
1400 if (for_splice && pipe_has_watch_queue(pipe))
1401 return NULL;
1402 return pipe;
1403}
1404
1405long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1406{
1407 struct pipe_inode_info *pipe;
1408 long ret;
1409
1410 pipe = get_pipe_info(file, false);
1411 if (!pipe)
1412 return -EBADF;
1413
1414 __pipe_lock(pipe);
1415
1416 switch (cmd) {
1417 case F_SETPIPE_SZ:
1418 ret = pipe_set_size(pipe, arg);
1419 break;
1420 case F_GETPIPE_SZ:
1421 ret = pipe->max_usage * PAGE_SIZE;
1422 break;
1423 default:
1424 ret = -EINVAL;
1425 break;
1426 }
1427
1428 __pipe_unlock(pipe);
1429 return ret;
1430}
1431
1432static const struct super_operations pipefs_ops = {
1433 .destroy_inode = free_inode_nonrcu,
1434 .statfs = simple_statfs,
1435};
1436
1437/*
1438 * pipefs should _never_ be mounted by userland - too much of security hassle,
1439 * no real gain from having the whole whorehouse mounted. So we don't need
1440 * any operations on the root directory. However, we need a non-trivial
1441 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1442 */
1443
1444static int pipefs_init_fs_context(struct fs_context *fc)
1445{
1446 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1447 if (!ctx)
1448 return -ENOMEM;
1449 ctx->ops = &pipefs_ops;
1450 ctx->dops = &pipefs_dentry_operations;
1451 return 0;
1452}
1453
1454static struct file_system_type pipe_fs_type = {
1455 .name = "pipefs",
1456 .init_fs_context = pipefs_init_fs_context,
1457 .kill_sb = kill_anon_super,
1458};
1459
1460#ifdef CONFIG_SYSCTL
1461static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1462 unsigned int *valp,
1463 int write, void *data)
1464{
1465 if (write) {
1466 unsigned int val;
1467
1468 val = round_pipe_size(*lvalp);
1469 if (val == 0)
1470 return -EINVAL;
1471
1472 *valp = val;
1473 } else {
1474 unsigned int val = *valp;
1475 *lvalp = (unsigned long) val;
1476 }
1477
1478 return 0;
1479}
1480
1481static int proc_dopipe_max_size(struct ctl_table *table, int write,
1482 void *buffer, size_t *lenp, loff_t *ppos)
1483{
1484 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1485 do_proc_dopipe_max_size_conv, NULL);
1486}
1487
1488static struct ctl_table fs_pipe_sysctls[] = {
1489 {
1490 .procname = "pipe-max-size",
1491 .data = &pipe_max_size,
1492 .maxlen = sizeof(pipe_max_size),
1493 .mode = 0644,
1494 .proc_handler = proc_dopipe_max_size,
1495 },
1496 {
1497 .procname = "pipe-user-pages-hard",
1498 .data = &pipe_user_pages_hard,
1499 .maxlen = sizeof(pipe_user_pages_hard),
1500 .mode = 0644,
1501 .proc_handler = proc_doulongvec_minmax,
1502 },
1503 {
1504 .procname = "pipe-user-pages-soft",
1505 .data = &pipe_user_pages_soft,
1506 .maxlen = sizeof(pipe_user_pages_soft),
1507 .mode = 0644,
1508 .proc_handler = proc_doulongvec_minmax,
1509 },
1510};
1511#endif
1512
1513static int __init init_pipe_fs(void)
1514{
1515 int err = register_filesystem(&pipe_fs_type);
1516
1517 if (!err) {
1518 pipe_mnt = kern_mount(&pipe_fs_type);
1519 if (IS_ERR(pipe_mnt)) {
1520 err = PTR_ERR(pipe_mnt);
1521 unregister_filesystem(&pipe_fs_type);
1522 }
1523 }
1524#ifdef CONFIG_SYSCTL
1525 register_sysctl_init("fs", fs_pipe_sysctls);
1526#endif
1527 return err;
1528}
1529
1530fs_initcall(init_pipe_fs);