Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  17 */
  18
  19
  20/*
  21 * mballoc.c contains the multiblocks allocation routines
  22 */
  23
  24#include "ext4_jbd2.h"
  25#include "mballoc.h"
  26#include <linux/log2.h>
  27#include <linux/module.h>
  28#include <linux/slab.h>
 
  29#include <linux/backing-dev.h>
 
  30#include <trace/events/ext4.h>
  31
  32#ifdef CONFIG_EXT4_DEBUG
  33ushort ext4_mballoc_debug __read_mostly;
  34
  35module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
  36MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
  37#endif
  38
  39/*
  40 * MUSTDO:
  41 *   - test ext4_ext_search_left() and ext4_ext_search_right()
  42 *   - search for metadata in few groups
  43 *
  44 * TODO v4:
  45 *   - normalization should take into account whether file is still open
  46 *   - discard preallocations if no free space left (policy?)
  47 *   - don't normalize tails
  48 *   - quota
  49 *   - reservation for superuser
  50 *
  51 * TODO v3:
  52 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
  53 *   - track min/max extents in each group for better group selection
  54 *   - mb_mark_used() may allocate chunk right after splitting buddy
  55 *   - tree of groups sorted by number of free blocks
  56 *   - error handling
  57 */
  58
  59/*
  60 * The allocation request involve request for multiple number of blocks
  61 * near to the goal(block) value specified.
  62 *
  63 * During initialization phase of the allocator we decide to use the
  64 * group preallocation or inode preallocation depending on the size of
  65 * the file. The size of the file could be the resulting file size we
  66 * would have after allocation, or the current file size, which ever
  67 * is larger. If the size is less than sbi->s_mb_stream_request we
  68 * select to use the group preallocation. The default value of
  69 * s_mb_stream_request is 16 blocks. This can also be tuned via
  70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
  71 * terms of number of blocks.
  72 *
  73 * The main motivation for having small file use group preallocation is to
  74 * ensure that we have small files closer together on the disk.
  75 *
  76 * First stage the allocator looks at the inode prealloc list,
  77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
  78 * spaces for this particular inode. The inode prealloc space is
  79 * represented as:
  80 *
  81 * pa_lstart -> the logical start block for this prealloc space
  82 * pa_pstart -> the physical start block for this prealloc space
  83 * pa_len    -> length for this prealloc space (in clusters)
  84 * pa_free   ->  free space available in this prealloc space (in clusters)
  85 *
  86 * The inode preallocation space is used looking at the _logical_ start
  87 * block. If only the logical file block falls within the range of prealloc
  88 * space we will consume the particular prealloc space. This makes sure that
  89 * we have contiguous physical blocks representing the file blocks
  90 *
  91 * The important thing to be noted in case of inode prealloc space is that
  92 * we don't modify the values associated to inode prealloc space except
  93 * pa_free.
  94 *
  95 * If we are not able to find blocks in the inode prealloc space and if we
  96 * have the group allocation flag set then we look at the locality group
  97 * prealloc space. These are per CPU prealloc list represented as
  98 *
  99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 100 *
 101 * The reason for having a per cpu locality group is to reduce the contention
 102 * between CPUs. It is possible to get scheduled at this point.
 103 *
 104 * The locality group prealloc space is used looking at whether we have
 105 * enough free space (pa_free) within the prealloc space.
 106 *
 107 * If we can't allocate blocks via inode prealloc or/and locality group
 108 * prealloc then we look at the buddy cache. The buddy cache is represented
 109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 110 * mapped to the buddy and bitmap information regarding different
 111 * groups. The buddy information is attached to buddy cache inode so that
 112 * we can access them through the page cache. The information regarding
 113 * each group is loaded via ext4_mb_load_buddy.  The information involve
 114 * block bitmap and buddy information. The information are stored in the
 115 * inode as:
 116 *
 117 *  {                        page                        }
 118 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 119 *
 120 *
 121 * one block each for bitmap and buddy information.  So for each group we
 122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
 123 * blocksize) blocks.  So it can have information regarding groups_per_page
 124 * which is blocks_per_page/2
 125 *
 126 * The buddy cache inode is not stored on disk. The inode is thrown
 127 * away when the filesystem is unmounted.
 128 *
 129 * We look for count number of blocks in the buddy cache. If we were able
 130 * to locate that many free blocks we return with additional information
 131 * regarding rest of the contiguous physical block available
 132 *
 133 * Before allocating blocks via buddy cache we normalize the request
 134 * blocks. This ensure we ask for more blocks that we needed. The extra
 135 * blocks that we get after allocation is added to the respective prealloc
 136 * list. In case of inode preallocation we follow a list of heuristics
 137 * based on file size. This can be found in ext4_mb_normalize_request. If
 138 * we are doing a group prealloc we try to normalize the request to
 139 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 140 * dependent on the cluster size; for non-bigalloc file systems, it is
 141 * 512 blocks. This can be tuned via
 142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
 143 * terms of number of blocks. If we have mounted the file system with -O
 144 * stripe=<value> option the group prealloc request is normalized to the
 145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
 146 * greater than the default mb_group_prealloc.
 147 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148 * The regular allocator (using the buddy cache) supports a few tunables.
 149 *
 150 * /sys/fs/ext4/<partition>/mb_min_to_scan
 151 * /sys/fs/ext4/<partition>/mb_max_to_scan
 152 * /sys/fs/ext4/<partition>/mb_order2_req
 
 153 *
 154 * The regular allocator uses buddy scan only if the request len is power of
 155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 156 * value of s_mb_order2_reqs can be tuned via
 157 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
 158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
 159 * stripe size. This should result in better allocation on RAID setups. If
 160 * not, we search in the specific group using bitmap for best extents. The
 161 * tunable min_to_scan and max_to_scan control the behaviour here.
 162 * min_to_scan indicate how long the mballoc __must__ look for a best
 163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
 164 * best extent in the found extents. Searching for the blocks starts with
 165 * the group specified as the goal value in allocation context via
 166 * ac_g_ex. Each group is first checked based on the criteria whether it
 167 * can be used for allocation. ext4_mb_good_group explains how the groups are
 168 * checked.
 169 *
 
 
 
 
 
 
 
 
 
 
 170 * Both the prealloc space are getting populated as above. So for the first
 171 * request we will hit the buddy cache which will result in this prealloc
 172 * space getting filled. The prealloc space is then later used for the
 173 * subsequent request.
 174 */
 175
 176/*
 177 * mballoc operates on the following data:
 178 *  - on-disk bitmap
 179 *  - in-core buddy (actually includes buddy and bitmap)
 180 *  - preallocation descriptors (PAs)
 181 *
 182 * there are two types of preallocations:
 183 *  - inode
 184 *    assiged to specific inode and can be used for this inode only.
 185 *    it describes part of inode's space preallocated to specific
 186 *    physical blocks. any block from that preallocated can be used
 187 *    independent. the descriptor just tracks number of blocks left
 188 *    unused. so, before taking some block from descriptor, one must
 189 *    make sure corresponded logical block isn't allocated yet. this
 190 *    also means that freeing any block within descriptor's range
 191 *    must discard all preallocated blocks.
 192 *  - locality group
 193 *    assigned to specific locality group which does not translate to
 194 *    permanent set of inodes: inode can join and leave group. space
 195 *    from this type of preallocation can be used for any inode. thus
 196 *    it's consumed from the beginning to the end.
 197 *
 198 * relation between them can be expressed as:
 199 *    in-core buddy = on-disk bitmap + preallocation descriptors
 200 *
 201 * this mean blocks mballoc considers used are:
 202 *  - allocated blocks (persistent)
 203 *  - preallocated blocks (non-persistent)
 204 *
 205 * consistency in mballoc world means that at any time a block is either
 206 * free or used in ALL structures. notice: "any time" should not be read
 207 * literally -- time is discrete and delimited by locks.
 208 *
 209 *  to keep it simple, we don't use block numbers, instead we count number of
 210 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 211 *
 212 * all operations can be expressed as:
 213 *  - init buddy:			buddy = on-disk + PAs
 214 *  - new PA:				buddy += N; PA = N
 215 *  - use inode PA:			on-disk += N; PA -= N
 216 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 217 *  - use locality group PA		on-disk += N; PA -= N
 218 *  - discard locality group PA		buddy -= PA; PA = 0
 219 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 220 *        is used in real operation because we can't know actual used
 221 *        bits from PA, only from on-disk bitmap
 222 *
 223 * if we follow this strict logic, then all operations above should be atomic.
 224 * given some of them can block, we'd have to use something like semaphores
 225 * killing performance on high-end SMP hardware. let's try to relax it using
 226 * the following knowledge:
 227 *  1) if buddy is referenced, it's already initialized
 228 *  2) while block is used in buddy and the buddy is referenced,
 229 *     nobody can re-allocate that block
 230 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 231 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 232 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 233 *     block
 234 *
 235 * so, now we're building a concurrency table:
 236 *  - init buddy vs.
 237 *    - new PA
 238 *      blocks for PA are allocated in the buddy, buddy must be referenced
 239 *      until PA is linked to allocation group to avoid concurrent buddy init
 240 *    - use inode PA
 241 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 242 *      given (3) we care that PA-=N operation doesn't interfere with init
 243 *    - discard inode PA
 244 *      the simplest way would be to have buddy initialized by the discard
 245 *    - use locality group PA
 246 *      again PA-=N must be serialized with init
 247 *    - discard locality group PA
 248 *      the simplest way would be to have buddy initialized by the discard
 249 *  - new PA vs.
 250 *    - use inode PA
 251 *      i_data_sem serializes them
 252 *    - discard inode PA
 253 *      discard process must wait until PA isn't used by another process
 254 *    - use locality group PA
 255 *      some mutex should serialize them
 256 *    - discard locality group PA
 257 *      discard process must wait until PA isn't used by another process
 258 *  - use inode PA
 259 *    - use inode PA
 260 *      i_data_sem or another mutex should serializes them
 261 *    - discard inode PA
 262 *      discard process must wait until PA isn't used by another process
 263 *    - use locality group PA
 264 *      nothing wrong here -- they're different PAs covering different blocks
 265 *    - discard locality group PA
 266 *      discard process must wait until PA isn't used by another process
 267 *
 268 * now we're ready to make few consequences:
 269 *  - PA is referenced and while it is no discard is possible
 270 *  - PA is referenced until block isn't marked in on-disk bitmap
 271 *  - PA changes only after on-disk bitmap
 272 *  - discard must not compete with init. either init is done before
 273 *    any discard or they're serialized somehow
 274 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 275 *
 276 * a special case when we've used PA to emptiness. no need to modify buddy
 277 * in this case, but we should care about concurrent init
 278 *
 279 */
 280
 281 /*
 282 * Logic in few words:
 283 *
 284 *  - allocation:
 285 *    load group
 286 *    find blocks
 287 *    mark bits in on-disk bitmap
 288 *    release group
 289 *
 290 *  - use preallocation:
 291 *    find proper PA (per-inode or group)
 292 *    load group
 293 *    mark bits in on-disk bitmap
 294 *    release group
 295 *    release PA
 296 *
 297 *  - free:
 298 *    load group
 299 *    mark bits in on-disk bitmap
 300 *    release group
 301 *
 302 *  - discard preallocations in group:
 303 *    mark PAs deleted
 304 *    move them onto local list
 305 *    load on-disk bitmap
 306 *    load group
 307 *    remove PA from object (inode or locality group)
 308 *    mark free blocks in-core
 309 *
 310 *  - discard inode's preallocations:
 311 */
 312
 313/*
 314 * Locking rules
 315 *
 316 * Locks:
 317 *  - bitlock on a group	(group)
 318 *  - object (inode/locality)	(object)
 319 *  - per-pa lock		(pa)
 
 
 320 *
 321 * Paths:
 322 *  - new pa
 323 *    object
 324 *    group
 325 *
 326 *  - find and use pa:
 327 *    pa
 328 *
 329 *  - release consumed pa:
 330 *    pa
 331 *    group
 332 *    object
 333 *
 334 *  - generate in-core bitmap:
 335 *    group
 336 *        pa
 337 *
 338 *  - discard all for given object (inode, locality group):
 339 *    object
 340 *        pa
 341 *    group
 342 *
 343 *  - discard all for given group:
 344 *    group
 345 *        pa
 346 *    group
 347 *        object
 348 *
 
 
 
 349 */
 350static struct kmem_cache *ext4_pspace_cachep;
 351static struct kmem_cache *ext4_ac_cachep;
 352static struct kmem_cache *ext4_free_data_cachep;
 353
 354/* We create slab caches for groupinfo data structures based on the
 355 * superblock block size.  There will be one per mounted filesystem for
 356 * each unique s_blocksize_bits */
 357#define NR_GRPINFO_CACHES 8
 358static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
 359
 360static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
 361	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
 362	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
 363	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
 364};
 365
 366static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 367					ext4_group_t group);
 368static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
 369						ext4_group_t group);
 370static void ext4_free_data_callback(struct super_block *sb,
 371				struct ext4_journal_cb_entry *jce, int rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 374{
 375#if BITS_PER_LONG == 64
 376	*bit += ((unsigned long) addr & 7UL) << 3;
 377	addr = (void *) ((unsigned long) addr & ~7UL);
 378#elif BITS_PER_LONG == 32
 379	*bit += ((unsigned long) addr & 3UL) << 3;
 380	addr = (void *) ((unsigned long) addr & ~3UL);
 381#else
 382#error "how many bits you are?!"
 383#endif
 384	return addr;
 385}
 386
 387static inline int mb_test_bit(int bit, void *addr)
 388{
 389	/*
 390	 * ext4_test_bit on architecture like powerpc
 391	 * needs unsigned long aligned address
 392	 */
 393	addr = mb_correct_addr_and_bit(&bit, addr);
 394	return ext4_test_bit(bit, addr);
 395}
 396
 397static inline void mb_set_bit(int bit, void *addr)
 398{
 399	addr = mb_correct_addr_and_bit(&bit, addr);
 400	ext4_set_bit(bit, addr);
 401}
 402
 403static inline void mb_clear_bit(int bit, void *addr)
 404{
 405	addr = mb_correct_addr_and_bit(&bit, addr);
 406	ext4_clear_bit(bit, addr);
 407}
 408
 409static inline int mb_test_and_clear_bit(int bit, void *addr)
 410{
 411	addr = mb_correct_addr_and_bit(&bit, addr);
 412	return ext4_test_and_clear_bit(bit, addr);
 413}
 414
 415static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 416{
 417	int fix = 0, ret, tmpmax;
 418	addr = mb_correct_addr_and_bit(&fix, addr);
 419	tmpmax = max + fix;
 420	start += fix;
 421
 422	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 423	if (ret > max)
 424		return max;
 425	return ret;
 426}
 427
 428static inline int mb_find_next_bit(void *addr, int max, int start)
 429{
 430	int fix = 0, ret, tmpmax;
 431	addr = mb_correct_addr_and_bit(&fix, addr);
 432	tmpmax = max + fix;
 433	start += fix;
 434
 435	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 436	if (ret > max)
 437		return max;
 438	return ret;
 439}
 440
 441static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 442{
 443	char *bb;
 444
 445	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 446	BUG_ON(max == NULL);
 447
 448	if (order > e4b->bd_blkbits + 1) {
 449		*max = 0;
 450		return NULL;
 451	}
 452
 453	/* at order 0 we see each particular block */
 454	if (order == 0) {
 455		*max = 1 << (e4b->bd_blkbits + 3);
 456		return e4b->bd_bitmap;
 457	}
 458
 459	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 460	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 461
 462	return bb;
 463}
 464
 465#ifdef DOUBLE_CHECK
 466static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 467			   int first, int count)
 468{
 469	int i;
 470	struct super_block *sb = e4b->bd_sb;
 471
 472	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 473		return;
 474	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 475	for (i = 0; i < count; i++) {
 476		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 477			ext4_fsblk_t blocknr;
 478
 479			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 480			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
 
 
 481			ext4_grp_locked_error(sb, e4b->bd_group,
 482					      inode ? inode->i_ino : 0,
 483					      blocknr,
 484					      "freeing block already freed "
 485					      "(bit %u)",
 486					      first + i);
 487		}
 488		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 489	}
 490}
 491
 492static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 493{
 494	int i;
 495
 496	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 497		return;
 498	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 499	for (i = 0; i < count; i++) {
 500		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 501		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 502	}
 503}
 504
 505static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 506{
 
 
 507	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 508		unsigned char *b1, *b2;
 509		int i;
 510		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 511		b2 = (unsigned char *) bitmap;
 512		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 513			if (b1[i] != b2[i]) {
 514				ext4_msg(e4b->bd_sb, KERN_ERR,
 515					 "corruption in group %u "
 516					 "at byte %u(%u): %x in copy != %x "
 517					 "on disk/prealloc",
 518					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
 519				BUG();
 520			}
 521		}
 522	}
 523}
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525#else
 526static inline void mb_free_blocks_double(struct inode *inode,
 527				struct ext4_buddy *e4b, int first, int count)
 528{
 529	return;
 530}
 531static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 532						int first, int count)
 533{
 534	return;
 535}
 536static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 537{
 538	return;
 539}
 
 
 
 
 
 
 
 
 
 
 
 540#endif
 541
 542#ifdef AGGRESSIVE_CHECK
 543
 544#define MB_CHECK_ASSERT(assert)						\
 545do {									\
 546	if (!(assert)) {						\
 547		printk(KERN_EMERG					\
 548			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
 549			function, file, line, # assert);		\
 550		BUG();							\
 551	}								\
 552} while (0)
 553
 554static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 555				const char *function, int line)
 556{
 557	struct super_block *sb = e4b->bd_sb;
 558	int order = e4b->bd_blkbits + 1;
 559	int max;
 560	int max2;
 561	int i;
 562	int j;
 563	int k;
 564	int count;
 565	struct ext4_group_info *grp;
 566	int fragments = 0;
 567	int fstart;
 568	struct list_head *cur;
 569	void *buddy;
 570	void *buddy2;
 571
 572	{
 573		static int mb_check_counter;
 574		if (mb_check_counter++ % 100 != 0)
 575			return 0;
 576	}
 577
 578	while (order > 1) {
 579		buddy = mb_find_buddy(e4b, order, &max);
 580		MB_CHECK_ASSERT(buddy);
 581		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 582		MB_CHECK_ASSERT(buddy2);
 583		MB_CHECK_ASSERT(buddy != buddy2);
 584		MB_CHECK_ASSERT(max * 2 == max2);
 585
 586		count = 0;
 587		for (i = 0; i < max; i++) {
 588
 589			if (mb_test_bit(i, buddy)) {
 590				/* only single bit in buddy2 may be 1 */
 591				if (!mb_test_bit(i << 1, buddy2)) {
 592					MB_CHECK_ASSERT(
 593						mb_test_bit((i<<1)+1, buddy2));
 594				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
 595					MB_CHECK_ASSERT(
 596						mb_test_bit(i << 1, buddy2));
 597				}
 598				continue;
 599			}
 600
 601			/* both bits in buddy2 must be 1 */
 602			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 603			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 604
 605			for (j = 0; j < (1 << order); j++) {
 606				k = (i * (1 << order)) + j;
 607				MB_CHECK_ASSERT(
 608					!mb_test_bit(k, e4b->bd_bitmap));
 609			}
 610			count++;
 611		}
 612		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 613		order--;
 614	}
 615
 616	fstart = -1;
 617	buddy = mb_find_buddy(e4b, 0, &max);
 618	for (i = 0; i < max; i++) {
 619		if (!mb_test_bit(i, buddy)) {
 620			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 621			if (fstart == -1) {
 622				fragments++;
 623				fstart = i;
 624			}
 625			continue;
 626		}
 627		fstart = -1;
 628		/* check used bits only */
 629		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 630			buddy2 = mb_find_buddy(e4b, j, &max2);
 631			k = i >> j;
 632			MB_CHECK_ASSERT(k < max2);
 633			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 634		}
 635	}
 636	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 637	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 638
 639	grp = ext4_get_group_info(sb, e4b->bd_group);
 
 
 640	list_for_each(cur, &grp->bb_prealloc_list) {
 641		ext4_group_t groupnr;
 642		struct ext4_prealloc_space *pa;
 643		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 644		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 645		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 646		for (i = 0; i < pa->pa_len; i++)
 647			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 648	}
 649	return 0;
 650}
 651#undef MB_CHECK_ASSERT
 652#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
 653					__FILE__, __func__, __LINE__)
 654#else
 655#define mb_check_buddy(e4b)
 656#endif
 657
 658/*
 659 * Divide blocks started from @first with length @len into
 660 * smaller chunks with power of 2 blocks.
 661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 662 * then increase bb_counters[] for corresponded chunk size.
 663 */
 664static void ext4_mb_mark_free_simple(struct super_block *sb,
 665				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
 666					struct ext4_group_info *grp)
 667{
 668	struct ext4_sb_info *sbi = EXT4_SB(sb);
 669	ext4_grpblk_t min;
 670	ext4_grpblk_t max;
 671	ext4_grpblk_t chunk;
 672	unsigned short border;
 673
 674	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
 675
 676	border = 2 << sb->s_blocksize_bits;
 677
 678	while (len > 0) {
 679		/* find how many blocks can be covered since this position */
 680		max = ffs(first | border) - 1;
 681
 682		/* find how many blocks of power 2 we need to mark */
 683		min = fls(len) - 1;
 684
 685		if (max < min)
 686			min = max;
 687		chunk = 1 << min;
 688
 689		/* mark multiblock chunks only */
 690		grp->bb_counters[min]++;
 691		if (min > 0)
 692			mb_clear_bit(first >> min,
 693				     buddy + sbi->s_mb_offsets[min]);
 694
 695		len -= chunk;
 696		first += chunk;
 697	}
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700/*
 701 * Cache the order of the largest free extent we have available in this block
 702 * group.
 703 */
 704static void
 705mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
 706{
 
 707	int i;
 708	int bits;
 709
 710	grp->bb_largest_free_order = -1; /* uninit */
 711
 712	bits = sb->s_blocksize_bits + 1;
 713	for (i = bits; i >= 0; i--) {
 714		if (grp->bb_counters[i] > 0) {
 715			grp->bb_largest_free_order = i;
 716			break;
 717		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718	}
 719}
 720
 721static noinline_for_stack
 722void ext4_mb_generate_buddy(struct super_block *sb,
 723				void *buddy, void *bitmap, ext4_group_t group)
 
 724{
 725	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 726	struct ext4_sb_info *sbi = EXT4_SB(sb);
 727	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
 728	ext4_grpblk_t i = 0;
 729	ext4_grpblk_t first;
 730	ext4_grpblk_t len;
 731	unsigned free = 0;
 732	unsigned fragments = 0;
 733	unsigned long long period = get_cycles();
 734
 735	/* initialize buddy from bitmap which is aggregation
 736	 * of on-disk bitmap and preallocations */
 737	i = mb_find_next_zero_bit(bitmap, max, 0);
 738	grp->bb_first_free = i;
 739	while (i < max) {
 740		fragments++;
 741		first = i;
 742		i = mb_find_next_bit(bitmap, max, i);
 743		len = i - first;
 744		free += len;
 745		if (len > 1)
 746			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
 747		else
 748			grp->bb_counters[0]++;
 749		if (i < max)
 750			i = mb_find_next_zero_bit(bitmap, max, i);
 751	}
 752	grp->bb_fragments = fragments;
 753
 754	if (free != grp->bb_free) {
 755		ext4_grp_locked_error(sb, group, 0, 0,
 756				      "block bitmap and bg descriptor "
 757				      "inconsistent: %u vs %u free clusters",
 758				      free, grp->bb_free);
 759		/*
 760		 * If we intend to continue, we consider group descriptor
 761		 * corrupt and update bb_free using bitmap value
 762		 */
 763		grp->bb_free = free;
 764		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
 765			percpu_counter_sub(&sbi->s_freeclusters_counter,
 766					   grp->bb_free);
 767		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
 768	}
 769	mb_set_largest_free_order(sb, grp);
 
 770
 771	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
 772
 773	period = get_cycles() - period;
 774	spin_lock(&EXT4_SB(sb)->s_bal_lock);
 775	EXT4_SB(sb)->s_mb_buddies_generated++;
 776	EXT4_SB(sb)->s_mb_generation_time += period;
 777	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
 778}
 779
 780static void mb_regenerate_buddy(struct ext4_buddy *e4b)
 781{
 782	int count;
 783	int order = 1;
 784	void *buddy;
 785
 786	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
 787		ext4_set_bits(buddy, 0, count);
 788	}
 789	e4b->bd_info->bb_fragments = 0;
 790	memset(e4b->bd_info->bb_counters, 0,
 791		sizeof(*e4b->bd_info->bb_counters) *
 792		(e4b->bd_sb->s_blocksize_bits + 2));
 793
 794	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
 795		e4b->bd_bitmap, e4b->bd_group);
 796}
 797
 798/* The buddy information is attached the buddy cache inode
 799 * for convenience. The information regarding each group
 800 * is loaded via ext4_mb_load_buddy. The information involve
 801 * block bitmap and buddy information. The information are
 802 * stored in the inode as
 803 *
 804 * {                        page                        }
 805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 806 *
 807 *
 808 * one block each for bitmap and buddy information.
 809 * So for each group we take up 2 blocks. A page can
 810 * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
 811 * So it can have information regarding groups_per_page which
 812 * is blocks_per_page/2
 813 *
 814 * Locking note:  This routine takes the block group lock of all groups
 815 * for this page; do not hold this lock when calling this routine!
 816 */
 817
 818static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
 819{
 820	ext4_group_t ngroups;
 821	int blocksize;
 822	int blocks_per_page;
 823	int groups_per_page;
 824	int err = 0;
 825	int i;
 826	ext4_group_t first_group, group;
 827	int first_block;
 828	struct super_block *sb;
 829	struct buffer_head *bhs;
 830	struct buffer_head **bh = NULL;
 831	struct inode *inode;
 832	char *data;
 833	char *bitmap;
 834	struct ext4_group_info *grinfo;
 835
 836	mb_debug(1, "init page %lu\n", page->index);
 837
 838	inode = page->mapping->host;
 839	sb = inode->i_sb;
 840	ngroups = ext4_get_groups_count(sb);
 841	blocksize = 1 << inode->i_blkbits;
 842	blocks_per_page = PAGE_SIZE / blocksize;
 843
 
 
 844	groups_per_page = blocks_per_page >> 1;
 845	if (groups_per_page == 0)
 846		groups_per_page = 1;
 847
 848	/* allocate buffer_heads to read bitmaps */
 849	if (groups_per_page > 1) {
 850		i = sizeof(struct buffer_head *) * groups_per_page;
 851		bh = kzalloc(i, gfp);
 852		if (bh == NULL) {
 853			err = -ENOMEM;
 854			goto out;
 855		}
 856	} else
 857		bh = &bhs;
 858
 859	first_group = page->index * blocks_per_page / 2;
 860
 861	/* read all groups the page covers into the cache */
 862	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 863		if (group >= ngroups)
 864			break;
 865
 866		grinfo = ext4_get_group_info(sb, group);
 
 
 867		/*
 868		 * If page is uptodate then we came here after online resize
 869		 * which added some new uninitialized group info structs, so
 870		 * we must skip all initialized uptodate buddies on the page,
 871		 * which may be currently in use by an allocating task.
 872		 */
 873		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
 874			bh[i] = NULL;
 875			continue;
 876		}
 877		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
 878		if (IS_ERR(bh[i])) {
 879			err = PTR_ERR(bh[i]);
 880			bh[i] = NULL;
 881			goto out;
 882		}
 883		mb_debug(1, "read bitmap for group %u\n", group);
 884	}
 885
 886	/* wait for I/O completion */
 887	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
 888		int err2;
 889
 890		if (!bh[i])
 891			continue;
 892		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
 893		if (!err)
 894			err = err2;
 895	}
 896
 897	first_block = page->index * blocks_per_page;
 898	for (i = 0; i < blocks_per_page; i++) {
 899		group = (first_block + i) >> 1;
 900		if (group >= ngroups)
 901			break;
 902
 903		if (!bh[group - first_group])
 904			/* skip initialized uptodate buddy */
 905			continue;
 906
 907		if (!buffer_verified(bh[group - first_group]))
 908			/* Skip faulty bitmaps */
 909			continue;
 910		err = 0;
 911
 912		/*
 913		 * data carry information regarding this
 914		 * particular group in the format specified
 915		 * above
 916		 *
 917		 */
 918		data = page_address(page) + (i * blocksize);
 919		bitmap = bh[group - first_group]->b_data;
 920
 921		/*
 922		 * We place the buddy block and bitmap block
 923		 * close together
 924		 */
 
 
 
 
 
 925		if ((first_block + i) & 1) {
 926			/* this is block of buddy */
 927			BUG_ON(incore == NULL);
 928			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
 929				group, page->index, i * blocksize);
 930			trace_ext4_mb_buddy_bitmap_load(sb, group);
 931			grinfo = ext4_get_group_info(sb, group);
 932			grinfo->bb_fragments = 0;
 933			memset(grinfo->bb_counters, 0,
 934			       sizeof(*grinfo->bb_counters) *
 935				(sb->s_blocksize_bits+2));
 936			/*
 937			 * incore got set to the group block bitmap below
 938			 */
 939			ext4_lock_group(sb, group);
 940			/* init the buddy */
 941			memset(data, 0xff, blocksize);
 942			ext4_mb_generate_buddy(sb, data, incore, group);
 943			ext4_unlock_group(sb, group);
 944			incore = NULL;
 945		} else {
 946			/* this is block of bitmap */
 947			BUG_ON(incore != NULL);
 948			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
 949				group, page->index, i * blocksize);
 950			trace_ext4_mb_bitmap_load(sb, group);
 951
 952			/* see comments in ext4_mb_put_pa() */
 953			ext4_lock_group(sb, group);
 954			memcpy(data, bitmap, blocksize);
 955
 956			/* mark all preallocated blks used in in-core bitmap */
 957			ext4_mb_generate_from_pa(sb, data, group);
 958			ext4_mb_generate_from_freelist(sb, data, group);
 959			ext4_unlock_group(sb, group);
 960
 961			/* set incore so that the buddy information can be
 962			 * generated using this
 963			 */
 964			incore = data;
 965		}
 966	}
 967	SetPageUptodate(page);
 968
 969out:
 970	if (bh) {
 971		for (i = 0; i < groups_per_page; i++)
 972			brelse(bh[i]);
 973		if (bh != &bhs)
 974			kfree(bh);
 975	}
 976	return err;
 977}
 978
 979/*
 980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
 981 * on the same buddy page doesn't happen whild holding the buddy page lock.
 982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
 983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
 984 */
 985static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
 986		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
 987{
 988	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
 989	int block, pnum, poff;
 990	int blocks_per_page;
 991	struct page *page;
 992
 993	e4b->bd_buddy_page = NULL;
 994	e4b->bd_bitmap_page = NULL;
 995
 996	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
 997	/*
 998	 * the buddy cache inode stores the block bitmap
 999	 * and buddy information in consecutive blocks.
1000	 * So for each group we need two blocks.
1001	 */
1002	block = group * 2;
1003	pnum = block / blocks_per_page;
1004	poff = block % blocks_per_page;
1005	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006	if (!page)
1007		return -ENOMEM;
1008	BUG_ON(page->mapping != inode->i_mapping);
1009	e4b->bd_bitmap_page = page;
1010	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012	if (blocks_per_page >= 2) {
1013		/* buddy and bitmap are on the same page */
1014		return 0;
1015	}
1016
1017	block++;
1018	pnum = block / blocks_per_page;
1019	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020	if (!page)
1021		return -ENOMEM;
1022	BUG_ON(page->mapping != inode->i_mapping);
1023	e4b->bd_buddy_page = page;
1024	return 0;
1025}
1026
1027static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028{
1029	if (e4b->bd_bitmap_page) {
1030		unlock_page(e4b->bd_bitmap_page);
1031		put_page(e4b->bd_bitmap_page);
1032	}
1033	if (e4b->bd_buddy_page) {
1034		unlock_page(e4b->bd_buddy_page);
1035		put_page(e4b->bd_buddy_page);
1036	}
1037}
1038
1039/*
1040 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044static noinline_for_stack
1045int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046{
1047
1048	struct ext4_group_info *this_grp;
1049	struct ext4_buddy e4b;
1050	struct page *page;
1051	int ret = 0;
1052
1053	might_sleep();
1054	mb_debug(1, "init group %u\n", group);
1055	this_grp = ext4_get_group_info(sb, group);
 
 
 
1056	/*
1057	 * This ensures that we don't reinit the buddy cache
1058	 * page which map to the group from which we are already
1059	 * allocating. If we are looking at the buddy cache we would
1060	 * have taken a reference using ext4_mb_load_buddy and that
1061	 * would have pinned buddy page to page cache.
1062	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063	 * page accessed.
1064	 */
1065	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067		/*
1068		 * somebody initialized the group
1069		 * return without doing anything
1070		 */
1071		goto err;
1072	}
1073
1074	page = e4b.bd_bitmap_page;
1075	ret = ext4_mb_init_cache(page, NULL, gfp);
1076	if (ret)
1077		goto err;
1078	if (!PageUptodate(page)) {
1079		ret = -EIO;
1080		goto err;
1081	}
1082
1083	if (e4b.bd_buddy_page == NULL) {
1084		/*
1085		 * If both the bitmap and buddy are in
1086		 * the same page we don't need to force
1087		 * init the buddy
1088		 */
1089		ret = 0;
1090		goto err;
1091	}
1092	/* init buddy cache */
1093	page = e4b.bd_buddy_page;
1094	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095	if (ret)
1096		goto err;
1097	if (!PageUptodate(page)) {
1098		ret = -EIO;
1099		goto err;
1100	}
1101err:
1102	ext4_mb_put_buddy_page_lock(&e4b);
1103	return ret;
1104}
1105
1106/*
1107 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111static noinline_for_stack int
1112ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113		       struct ext4_buddy *e4b, gfp_t gfp)
1114{
1115	int blocks_per_page;
1116	int block;
1117	int pnum;
1118	int poff;
1119	struct page *page;
1120	int ret;
1121	struct ext4_group_info *grp;
1122	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123	struct inode *inode = sbi->s_buddy_cache;
1124
1125	might_sleep();
1126	mb_debug(1, "load group %u\n", group);
1127
1128	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129	grp = ext4_get_group_info(sb, group);
 
 
1130
1131	e4b->bd_blkbits = sb->s_blocksize_bits;
1132	e4b->bd_info = grp;
1133	e4b->bd_sb = sb;
1134	e4b->bd_group = group;
1135	e4b->bd_buddy_page = NULL;
1136	e4b->bd_bitmap_page = NULL;
1137
1138	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139		/*
1140		 * we need full data about the group
1141		 * to make a good selection
1142		 */
1143		ret = ext4_mb_init_group(sb, group, gfp);
1144		if (ret)
1145			return ret;
1146	}
1147
1148	/*
1149	 * the buddy cache inode stores the block bitmap
1150	 * and buddy information in consecutive blocks.
1151	 * So for each group we need two blocks.
1152	 */
1153	block = group * 2;
1154	pnum = block / blocks_per_page;
1155	poff = block % blocks_per_page;
1156
1157	/* we could use find_or_create_page(), but it locks page
1158	 * what we'd like to avoid in fast path ... */
1159	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160	if (page == NULL || !PageUptodate(page)) {
1161		if (page)
1162			/*
1163			 * drop the page reference and try
1164			 * to get the page with lock. If we
1165			 * are not uptodate that implies
1166			 * somebody just created the page but
1167			 * is yet to initialize the same. So
1168			 * wait for it to initialize.
1169			 */
1170			put_page(page);
1171		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172		if (page) {
1173			BUG_ON(page->mapping != inode->i_mapping);
 
 
 
 
 
 
1174			if (!PageUptodate(page)) {
1175				ret = ext4_mb_init_cache(page, NULL, gfp);
1176				if (ret) {
1177					unlock_page(page);
1178					goto err;
1179				}
1180				mb_cmp_bitmaps(e4b, page_address(page) +
1181					       (poff * sb->s_blocksize));
1182			}
1183			unlock_page(page);
1184		}
1185	}
1186	if (page == NULL) {
1187		ret = -ENOMEM;
1188		goto err;
1189	}
1190	if (!PageUptodate(page)) {
1191		ret = -EIO;
1192		goto err;
1193	}
1194
1195	/* Pages marked accessed already */
1196	e4b->bd_bitmap_page = page;
1197	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199	block++;
1200	pnum = block / blocks_per_page;
1201	poff = block % blocks_per_page;
1202
1203	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204	if (page == NULL || !PageUptodate(page)) {
1205		if (page)
1206			put_page(page);
1207		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208		if (page) {
1209			BUG_ON(page->mapping != inode->i_mapping);
 
 
 
 
 
 
1210			if (!PageUptodate(page)) {
1211				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212							 gfp);
1213				if (ret) {
1214					unlock_page(page);
1215					goto err;
1216				}
1217			}
1218			unlock_page(page);
1219		}
1220	}
1221	if (page == NULL) {
1222		ret = -ENOMEM;
1223		goto err;
1224	}
1225	if (!PageUptodate(page)) {
1226		ret = -EIO;
1227		goto err;
1228	}
1229
1230	/* Pages marked accessed already */
1231	e4b->bd_buddy_page = page;
1232	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233
1234	BUG_ON(e4b->bd_bitmap_page == NULL);
1235	BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237	return 0;
1238
1239err:
1240	if (page)
1241		put_page(page);
1242	if (e4b->bd_bitmap_page)
1243		put_page(e4b->bd_bitmap_page);
1244	if (e4b->bd_buddy_page)
1245		put_page(e4b->bd_buddy_page);
1246	e4b->bd_buddy = NULL;
1247	e4b->bd_bitmap = NULL;
1248	return ret;
1249}
1250
1251static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252			      struct ext4_buddy *e4b)
1253{
1254	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255}
1256
1257static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258{
1259	if (e4b->bd_bitmap_page)
1260		put_page(e4b->bd_bitmap_page);
1261	if (e4b->bd_buddy_page)
1262		put_page(e4b->bd_buddy_page);
1263}
1264
1265
1266static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267{
1268	int order = 1;
1269	void *bb;
1270
1271	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1272	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1273
1274	bb = e4b->bd_buddy;
1275	while (order <= e4b->bd_blkbits + 1) {
1276		block = block >> 1;
1277		if (!mb_test_bit(block, bb)) {
1278			/* this block is part of buddy of order 'order' */
1279			return order;
1280		}
1281		bb += 1 << (e4b->bd_blkbits - order);
1282		order++;
1283	}
1284	return 0;
1285}
1286
1287static void mb_clear_bits(void *bm, int cur, int len)
1288{
1289	__u32 *addr;
1290
1291	len = cur + len;
1292	while (cur < len) {
1293		if ((cur & 31) == 0 && (len - cur) >= 32) {
1294			/* fast path: clear whole word at once */
1295			addr = bm + (cur >> 3);
1296			*addr = 0;
1297			cur += 32;
1298			continue;
1299		}
1300		mb_clear_bit(cur, bm);
1301		cur++;
1302	}
1303}
1304
1305/* clear bits in given range
1306 * will return first found zero bit if any, -1 otherwise
1307 */
1308static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309{
1310	__u32 *addr;
1311	int zero_bit = -1;
1312
1313	len = cur + len;
1314	while (cur < len) {
1315		if ((cur & 31) == 0 && (len - cur) >= 32) {
1316			/* fast path: clear whole word at once */
1317			addr = bm + (cur >> 3);
1318			if (*addr != (__u32)(-1) && zero_bit == -1)
1319				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320			*addr = 0;
1321			cur += 32;
1322			continue;
1323		}
1324		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325			zero_bit = cur;
1326		cur++;
1327	}
1328
1329	return zero_bit;
1330}
1331
1332void ext4_set_bits(void *bm, int cur, int len)
1333{
1334	__u32 *addr;
1335
1336	len = cur + len;
1337	while (cur < len) {
1338		if ((cur & 31) == 0 && (len - cur) >= 32) {
1339			/* fast path: set whole word at once */
1340			addr = bm + (cur >> 3);
1341			*addr = 0xffffffff;
1342			cur += 32;
1343			continue;
1344		}
1345		mb_set_bit(cur, bm);
1346		cur++;
1347	}
1348}
1349
1350/*
1351 * _________________________________________________________________ */
1352
1353static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354{
1355	if (mb_test_bit(*bit + side, bitmap)) {
1356		mb_clear_bit(*bit, bitmap);
1357		(*bit) -= side;
1358		return 1;
1359	}
1360	else {
1361		(*bit) += side;
1362		mb_set_bit(*bit, bitmap);
1363		return -1;
1364	}
1365}
1366
1367static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368{
1369	int max;
1370	int order = 1;
1371	void *buddy = mb_find_buddy(e4b, order, &max);
1372
1373	while (buddy) {
1374		void *buddy2;
1375
1376		/* Bits in range [first; last] are known to be set since
1377		 * corresponding blocks were allocated. Bits in range
1378		 * (first; last) will stay set because they form buddies on
1379		 * upper layer. We just deal with borders if they don't
1380		 * align with upper layer and then go up.
1381		 * Releasing entire group is all about clearing
1382		 * single bit of highest order buddy.
1383		 */
1384
1385		/* Example:
1386		 * ---------------------------------
1387		 * |   1   |   1   |   1   |   1   |
1388		 * ---------------------------------
1389		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390		 * ---------------------------------
1391		 *   0   1   2   3   4   5   6   7
1392		 *      \_____________________/
1393		 *
1394		 * Neither [1] nor [6] is aligned to above layer.
1395		 * Left neighbour [0] is free, so mark it busy,
1396		 * decrease bb_counters and extend range to
1397		 * [0; 6]
1398		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399		 * mark [6] free, increase bb_counters and shrink range to
1400		 * [0; 5].
1401		 * Then shift range to [0; 2], go up and do the same.
1402		 */
1403
1404
1405		if (first & 1)
1406			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407		if (!(last & 1))
1408			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409		if (first > last)
1410			break;
1411		order++;
1412
1413		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
 
1414			mb_clear_bits(buddy, first, last - first + 1);
1415			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416			break;
1417		}
1418		first >>= 1;
1419		last >>= 1;
1420		buddy = buddy2;
1421	}
1422}
1423
1424static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425			   int first, int count)
1426{
1427	int left_is_free = 0;
1428	int right_is_free = 0;
1429	int block;
1430	int last = first + count - 1;
1431	struct super_block *sb = e4b->bd_sb;
1432
1433	if (WARN_ON(count == 0))
1434		return;
1435	BUG_ON(last >= (sb->s_blocksize << 3));
1436	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437	/* Don't bother if the block group is corrupt. */
1438	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439		return;
1440
1441	mb_check_buddy(e4b);
1442	mb_free_blocks_double(inode, e4b, first, count);
1443
1444	e4b->bd_info->bb_free += count;
1445	if (first < e4b->bd_info->bb_first_free)
1446		e4b->bd_info->bb_first_free = first;
1447
1448	/* access memory sequentially: check left neighbour,
1449	 * clear range and then check right neighbour
1450	 */
1451	if (first != 0)
1452		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456
1457	if (unlikely(block != -1)) {
1458		struct ext4_sb_info *sbi = EXT4_SB(sb);
1459		ext4_fsblk_t blocknr;
1460
 
 
 
 
 
 
 
 
 
1461		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462		blocknr += EXT4_C2B(EXT4_SB(sb), block);
 
 
1463		ext4_grp_locked_error(sb, e4b->bd_group,
1464				      inode ? inode->i_ino : 0,
1465				      blocknr,
1466				      "freeing already freed block "
1467				      "(bit %u); block bitmap corrupt.",
1468				      block);
1469		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470			percpu_counter_sub(&sbi->s_freeclusters_counter,
1471					   e4b->bd_info->bb_free);
1472		/* Mark the block group as corrupt. */
1473		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474			&e4b->bd_info->bb_state);
1475		mb_regenerate_buddy(e4b);
1476		goto done;
1477	}
1478
 
 
 
 
 
1479	/* let's maintain fragments counter */
1480	if (left_is_free && right_is_free)
1481		e4b->bd_info->bb_fragments--;
1482	else if (!left_is_free && !right_is_free)
1483		e4b->bd_info->bb_fragments++;
1484
1485	/* buddy[0] == bd_bitmap is a special case, so handle
1486	 * it right away and let mb_buddy_mark_free stay free of
1487	 * zero order checks.
1488	 * Check if neighbours are to be coaleasced,
1489	 * adjust bitmap bb_counters and borders appropriately.
1490	 */
1491	if (first & 1) {
1492		first += !left_is_free;
1493		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494	}
1495	if (!(last & 1)) {
1496		last -= !right_is_free;
1497		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498	}
1499
1500	if (first <= last)
1501		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1502
1503done:
1504	mb_set_largest_free_order(sb, e4b->bd_info);
 
 
1505	mb_check_buddy(e4b);
1506}
1507
1508static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509				int needed, struct ext4_free_extent *ex)
1510{
1511	int next = block;
1512	int max, order;
1513	void *buddy;
1514
1515	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516	BUG_ON(ex == NULL);
1517
1518	buddy = mb_find_buddy(e4b, 0, &max);
1519	BUG_ON(buddy == NULL);
1520	BUG_ON(block >= max);
1521	if (mb_test_bit(block, buddy)) {
1522		ex->fe_len = 0;
1523		ex->fe_start = 0;
1524		ex->fe_group = 0;
1525		return 0;
1526	}
1527
1528	/* find actual order */
1529	order = mb_find_order_for_block(e4b, block);
1530	block = block >> order;
1531
1532	ex->fe_len = 1 << order;
1533	ex->fe_start = block << order;
1534	ex->fe_group = e4b->bd_group;
1535
1536	/* calc difference from given start */
1537	next = next - ex->fe_start;
1538	ex->fe_len -= next;
1539	ex->fe_start += next;
1540
1541	while (needed > ex->fe_len &&
1542	       mb_find_buddy(e4b, order, &max)) {
1543
1544		if (block + 1 >= max)
1545			break;
1546
1547		next = (block + 1) * (1 << order);
1548		if (mb_test_bit(next, e4b->bd_bitmap))
1549			break;
1550
1551		order = mb_find_order_for_block(e4b, next);
1552
1553		block = next >> order;
1554		ex->fe_len += 1 << order;
1555	}
1556
1557	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
 
 
 
 
 
 
 
 
 
 
 
1558	return ex->fe_len;
1559}
1560
1561static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1562{
1563	int ord;
1564	int mlen = 0;
1565	int max = 0;
1566	int cur;
1567	int start = ex->fe_start;
1568	int len = ex->fe_len;
1569	unsigned ret = 0;
1570	int len0 = len;
1571	void *buddy;
 
1572
1573	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1574	BUG_ON(e4b->bd_group != ex->fe_group);
1575	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1576	mb_check_buddy(e4b);
1577	mb_mark_used_double(e4b, start, len);
1578
 
1579	e4b->bd_info->bb_free -= len;
1580	if (e4b->bd_info->bb_first_free == start)
1581		e4b->bd_info->bb_first_free += len;
1582
1583	/* let's maintain fragments counter */
1584	if (start != 0)
1585		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1586	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1587		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1588	if (mlen && max)
1589		e4b->bd_info->bb_fragments++;
1590	else if (!mlen && !max)
1591		e4b->bd_info->bb_fragments--;
1592
1593	/* let's maintain buddy itself */
1594	while (len) {
1595		ord = mb_find_order_for_block(e4b, start);
 
1596
1597		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1598			/* the whole chunk may be allocated at once! */
1599			mlen = 1 << ord;
1600			buddy = mb_find_buddy(e4b, ord, &max);
 
 
 
1601			BUG_ON((start >> ord) >= max);
1602			mb_set_bit(start >> ord, buddy);
1603			e4b->bd_info->bb_counters[ord]--;
1604			start += mlen;
1605			len -= mlen;
1606			BUG_ON(len < 0);
1607			continue;
1608		}
1609
1610		/* store for history */
1611		if (ret == 0)
1612			ret = len | (ord << 16);
1613
1614		/* we have to split large buddy */
1615		BUG_ON(ord <= 0);
1616		buddy = mb_find_buddy(e4b, ord, &max);
1617		mb_set_bit(start >> ord, buddy);
1618		e4b->bd_info->bb_counters[ord]--;
1619
1620		ord--;
1621		cur = (start >> ord) & ~1U;
1622		buddy = mb_find_buddy(e4b, ord, &max);
1623		mb_clear_bit(cur, buddy);
1624		mb_clear_bit(cur + 1, buddy);
1625		e4b->bd_info->bb_counters[ord]++;
1626		e4b->bd_info->bb_counters[ord]++;
 
1627	}
1628	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1629
1630	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
 
1631	mb_check_buddy(e4b);
1632
1633	return ret;
1634}
1635
1636/*
1637 * Must be called under group lock!
1638 */
1639static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1640					struct ext4_buddy *e4b)
1641{
1642	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1643	int ret;
1644
1645	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1646	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1647
1648	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1649	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1650	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1651
1652	/* preallocation can change ac_b_ex, thus we store actually
1653	 * allocated blocks for history */
1654	ac->ac_f_ex = ac->ac_b_ex;
1655
1656	ac->ac_status = AC_STATUS_FOUND;
1657	ac->ac_tail = ret & 0xffff;
1658	ac->ac_buddy = ret >> 16;
1659
1660	/*
1661	 * take the page reference. We want the page to be pinned
1662	 * so that we don't get a ext4_mb_init_cache_call for this
1663	 * group until we update the bitmap. That would mean we
1664	 * double allocate blocks. The reference is dropped
1665	 * in ext4_mb_release_context
1666	 */
1667	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1668	get_page(ac->ac_bitmap_page);
1669	ac->ac_buddy_page = e4b->bd_buddy_page;
1670	get_page(ac->ac_buddy_page);
1671	/* store last allocated for subsequent stream allocation */
1672	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1673		spin_lock(&sbi->s_md_lock);
1674		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1675		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1676		spin_unlock(&sbi->s_md_lock);
1677	}
1678}
 
 
 
 
 
 
1679
1680/*
1681 * regular allocator, for general purposes allocation
1682 */
1683
1684static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1685					struct ext4_buddy *e4b,
1686					int finish_group)
1687{
1688	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1689	struct ext4_free_extent *bex = &ac->ac_b_ex;
1690	struct ext4_free_extent *gex = &ac->ac_g_ex;
1691	struct ext4_free_extent ex;
1692	int max;
1693
1694	if (ac->ac_status == AC_STATUS_FOUND)
1695		return;
1696	/*
1697	 * We don't want to scan for a whole year
1698	 */
1699	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1700			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1701		ac->ac_status = AC_STATUS_BREAK;
1702		return;
1703	}
1704
1705	/*
1706	 * Haven't found good chunk so far, let's continue
1707	 */
1708	if (bex->fe_len < gex->fe_len)
1709		return;
1710
1711	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1712			&& bex->fe_group == e4b->bd_group) {
1713		/* recheck chunk's availability - we don't know
1714		 * when it was found (within this lock-unlock
1715		 * period or not) */
1716		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1717		if (max >= gex->fe_len) {
1718			ext4_mb_use_best_found(ac, e4b);
1719			return;
1720		}
1721	}
1722}
1723
1724/*
1725 * The routine checks whether found extent is good enough. If it is,
1726 * then the extent gets marked used and flag is set to the context
1727 * to stop scanning. Otherwise, the extent is compared with the
1728 * previous found extent and if new one is better, then it's stored
1729 * in the context. Later, the best found extent will be used, if
1730 * mballoc can't find good enough extent.
1731 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732 * FIXME: real allocation policy is to be designed yet!
1733 */
1734static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1735					struct ext4_free_extent *ex,
1736					struct ext4_buddy *e4b)
1737{
1738	struct ext4_free_extent *bex = &ac->ac_b_ex;
1739	struct ext4_free_extent *gex = &ac->ac_g_ex;
1740
1741	BUG_ON(ex->fe_len <= 0);
1742	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1743	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1744	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1745
1746	ac->ac_found++;
 
1747
1748	/*
1749	 * The special case - take what you catch first
1750	 */
1751	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1752		*bex = *ex;
1753		ext4_mb_use_best_found(ac, e4b);
1754		return;
1755	}
1756
1757	/*
1758	 * Let's check whether the chuck is good enough
1759	 */
1760	if (ex->fe_len == gex->fe_len) {
1761		*bex = *ex;
1762		ext4_mb_use_best_found(ac, e4b);
1763		return;
1764	}
1765
1766	/*
1767	 * If this is first found extent, just store it in the context
1768	 */
1769	if (bex->fe_len == 0) {
1770		*bex = *ex;
1771		return;
1772	}
1773
1774	/*
1775	 * If new found extent is better, store it in the context
1776	 */
1777	if (bex->fe_len < gex->fe_len) {
1778		/* if the request isn't satisfied, any found extent
1779		 * larger than previous best one is better */
1780		if (ex->fe_len > bex->fe_len)
1781			*bex = *ex;
1782	} else if (ex->fe_len > gex->fe_len) {
1783		/* if the request is satisfied, then we try to find
1784		 * an extent that still satisfy the request, but is
1785		 * smaller than previous one */
1786		if (ex->fe_len < bex->fe_len)
1787			*bex = *ex;
1788	}
1789
1790	ext4_mb_check_limits(ac, e4b, 0);
1791}
1792
1793static noinline_for_stack
1794int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1795					struct ext4_buddy *e4b)
1796{
1797	struct ext4_free_extent ex = ac->ac_b_ex;
1798	ext4_group_t group = ex.fe_group;
1799	int max;
1800	int err;
1801
1802	BUG_ON(ex.fe_len <= 0);
1803	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1804	if (err)
1805		return err;
1806
1807	ext4_lock_group(ac->ac_sb, group);
 
 
 
1808	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1809
1810	if (max > 0) {
1811		ac->ac_b_ex = ex;
1812		ext4_mb_use_best_found(ac, e4b);
1813	}
1814
 
1815	ext4_unlock_group(ac->ac_sb, group);
1816	ext4_mb_unload_buddy(e4b);
1817
1818	return 0;
1819}
1820
1821static noinline_for_stack
1822int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1823				struct ext4_buddy *e4b)
1824{
1825	ext4_group_t group = ac->ac_g_ex.fe_group;
1826	int max;
1827	int err;
1828	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1829	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1830	struct ext4_free_extent ex;
1831
1832	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
 
 
1833		return 0;
1834	if (grp->bb_free == 0)
1835		return 0;
1836
1837	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1838	if (err)
1839		return err;
1840
1841	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1842		ext4_mb_unload_buddy(e4b);
1843		return 0;
1844	}
1845
1846	ext4_lock_group(ac->ac_sb, group);
 
 
 
1847	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1848			     ac->ac_g_ex.fe_len, &ex);
1849	ex.fe_logical = 0xDEADFA11; /* debug value */
1850
1851	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
 
1852		ext4_fsblk_t start;
1853
1854		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1855			ex.fe_start;
1856		/* use do_div to get remainder (would be 64-bit modulo) */
1857		if (do_div(start, sbi->s_stripe) == 0) {
1858			ac->ac_found++;
1859			ac->ac_b_ex = ex;
1860			ext4_mb_use_best_found(ac, e4b);
1861		}
1862	} else if (max >= ac->ac_g_ex.fe_len) {
1863		BUG_ON(ex.fe_len <= 0);
1864		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1865		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1866		ac->ac_found++;
1867		ac->ac_b_ex = ex;
1868		ext4_mb_use_best_found(ac, e4b);
1869	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1870		/* Sometimes, caller may want to merge even small
1871		 * number of blocks to an existing extent */
1872		BUG_ON(ex.fe_len <= 0);
1873		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1874		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1875		ac->ac_found++;
1876		ac->ac_b_ex = ex;
1877		ext4_mb_use_best_found(ac, e4b);
1878	}
 
1879	ext4_unlock_group(ac->ac_sb, group);
1880	ext4_mb_unload_buddy(e4b);
1881
1882	return 0;
1883}
1884
1885/*
1886 * The routine scans buddy structures (not bitmap!) from given order
1887 * to max order and tries to find big enough chunk to satisfy the req
1888 */
1889static noinline_for_stack
1890void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1891					struct ext4_buddy *e4b)
1892{
1893	struct super_block *sb = ac->ac_sb;
1894	struct ext4_group_info *grp = e4b->bd_info;
1895	void *buddy;
1896	int i;
1897	int k;
1898	int max;
1899
1900	BUG_ON(ac->ac_2order <= 0);
1901	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1902		if (grp->bb_counters[i] == 0)
1903			continue;
1904
1905		buddy = mb_find_buddy(e4b, i, &max);
1906		BUG_ON(buddy == NULL);
 
 
1907
1908		k = mb_find_next_zero_bit(buddy, max, 0);
1909		BUG_ON(k >= max);
1910
 
 
 
 
 
 
 
1911		ac->ac_found++;
 
1912
1913		ac->ac_b_ex.fe_len = 1 << i;
1914		ac->ac_b_ex.fe_start = k << i;
1915		ac->ac_b_ex.fe_group = e4b->bd_group;
1916
1917		ext4_mb_use_best_found(ac, e4b);
1918
1919		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1920
1921		if (EXT4_SB(sb)->s_mb_stats)
1922			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1923
1924		break;
1925	}
1926}
1927
1928/*
1929 * The routine scans the group and measures all found extents.
1930 * In order to optimize scanning, caller must pass number of
1931 * free blocks in the group, so the routine can know upper limit.
1932 */
1933static noinline_for_stack
1934void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1935					struct ext4_buddy *e4b)
1936{
1937	struct super_block *sb = ac->ac_sb;
1938	void *bitmap = e4b->bd_bitmap;
1939	struct ext4_free_extent ex;
1940	int i;
1941	int free;
1942
1943	free = e4b->bd_info->bb_free;
1944	BUG_ON(free <= 0);
 
1945
1946	i = e4b->bd_info->bb_first_free;
1947
1948	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1949		i = mb_find_next_zero_bit(bitmap,
1950						EXT4_CLUSTERS_PER_GROUP(sb), i);
1951		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1952			/*
1953			 * IF we have corrupt bitmap, we won't find any
1954			 * free blocks even though group info says we
1955			 * we have free blocks
1956			 */
 
 
1957			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1958					"%d free clusters as per "
1959					"group info. But bitmap says 0",
1960					free);
1961			break;
1962		}
1963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1965		BUG_ON(ex.fe_len <= 0);
 
1966		if (free < ex.fe_len) {
 
 
1967			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968					"%d free clusters as per "
1969					"group info. But got %d blocks",
1970					free, ex.fe_len);
1971			/*
1972			 * The number of free blocks differs. This mostly
1973			 * indicate that the bitmap is corrupt. So exit
1974			 * without claiming the space.
1975			 */
1976			break;
1977		}
1978		ex.fe_logical = 0xDEADC0DE; /* debug value */
1979		ext4_mb_measure_extent(ac, &ex, e4b);
1980
1981		i += ex.fe_len;
1982		free -= ex.fe_len;
1983	}
1984
1985	ext4_mb_check_limits(ac, e4b, 1);
1986}
1987
1988/*
1989 * This is a special case for storages like raid5
1990 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1991 */
1992static noinline_for_stack
1993void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1994				 struct ext4_buddy *e4b)
1995{
1996	struct super_block *sb = ac->ac_sb;
1997	struct ext4_sb_info *sbi = EXT4_SB(sb);
1998	void *bitmap = e4b->bd_bitmap;
1999	struct ext4_free_extent ex;
2000	ext4_fsblk_t first_group_block;
2001	ext4_fsblk_t a;
2002	ext4_grpblk_t i;
2003	int max;
2004
2005	BUG_ON(sbi->s_stripe == 0);
2006
2007	/* find first stripe-aligned block in group */
2008	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2009
2010	a = first_group_block + sbi->s_stripe - 1;
2011	do_div(a, sbi->s_stripe);
2012	i = (a * sbi->s_stripe) - first_group_block;
2013
 
 
2014	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2015		if (!mb_test_bit(i, bitmap)) {
2016			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2017			if (max >= sbi->s_stripe) {
2018				ac->ac_found++;
 
2019				ex.fe_logical = 0xDEADF00D; /* debug value */
2020				ac->ac_b_ex = ex;
2021				ext4_mb_use_best_found(ac, e4b);
2022				break;
2023			}
2024		}
2025		i += sbi->s_stripe;
2026	}
2027}
2028
2029/*
2030 * This is now called BEFORE we load the buddy bitmap.
2031 * Returns either 1 or 0 indicating that the group is either suitable
2032 * for the allocation or not. In addition it can also return negative
2033 * error code when something goes wrong.
2034 */
2035static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2036				ext4_group_t group, int cr)
2037{
2038	unsigned free, fragments;
2039	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2040	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2041
2042	BUG_ON(cr < 0 || cr >= 4);
 
 
 
2043
2044	free = grp->bb_free;
2045	if (free == 0)
2046		return 0;
2047	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2048		return 0;
2049
2050	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2051		return 0;
2052
2053	/* We only do this if the grp has never been initialized */
2054	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2055		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2056		if (ret)
2057			return ret;
2058	}
2059
2060	fragments = grp->bb_fragments;
2061	if (fragments == 0)
2062		return 0;
2063
2064	switch (cr) {
2065	case 0:
2066		BUG_ON(ac->ac_2order == 0);
2067
2068		/* Avoid using the first bg of a flexgroup for data files */
2069		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2070		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2071		    ((group % flex_size) == 0))
2072			return 0;
2073
2074		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2075		    (free / fragments) >= ac->ac_g_ex.fe_len)
2076			return 1;
 
 
2077
2078		if (grp->bb_largest_free_order < ac->ac_2order)
2079			return 0;
2080
2081		return 1;
2082	case 1:
 
2083		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2084			return 1;
2085		break;
2086	case 2:
2087		if (free >= ac->ac_g_ex.fe_len)
2088			return 1;
2089		break;
2090	case 3:
2091		return 1;
2092	default:
2093		BUG();
2094	}
2095
2096	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097}
2098
2099static noinline_for_stack int
2100ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2101{
2102	ext4_group_t ngroups, group, i;
2103	int cr;
2104	int err = 0, first_err = 0;
 
2105	struct ext4_sb_info *sbi;
2106	struct super_block *sb;
2107	struct ext4_buddy e4b;
 
2108
2109	sb = ac->ac_sb;
2110	sbi = EXT4_SB(sb);
2111	ngroups = ext4_get_groups_count(sb);
2112	/* non-extent files are limited to low blocks/groups */
2113	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2114		ngroups = sbi->s_blockfile_groups;
2115
2116	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117
2118	/* first, try the goal */
2119	err = ext4_mb_find_by_goal(ac, &e4b);
2120	if (err || ac->ac_status == AC_STATUS_FOUND)
2121		goto out;
2122
2123	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2124		goto out;
2125
2126	/*
2127	 * ac->ac2_order is set only if the fe_len is a power of 2
2128	 * if ac2_order is set we also set criteria to 0 so that we
2129	 * try exact allocation using buddy.
2130	 */
2131	i = fls(ac->ac_g_ex.fe_len);
2132	ac->ac_2order = 0;
2133	/*
2134	 * We search using buddy data only if the order of the request
2135	 * is greater than equal to the sbi_s_mb_order2_reqs
2136	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
 
 
2137	 */
2138	if (i >= sbi->s_mb_order2_reqs) {
2139		/*
2140		 * This should tell if fe_len is exactly power of 2
2141		 */
2142		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2143			ac->ac_2order = i - 1;
2144	}
2145
2146	/* if stream allocation is enabled, use global goal */
2147	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2148		/* TBD: may be hot point */
2149		spin_lock(&sbi->s_md_lock);
2150		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2151		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2152		spin_unlock(&sbi->s_md_lock);
2153	}
2154
2155	/* Let's just scan groups to find more-less suitable blocks */
2156	cr = ac->ac_2order ? 0 : 1;
2157	/*
2158	 * cr == 0 try to get exact allocation,
2159	 * cr == 3  try to get anything
 
2160	 */
 
 
2161repeat:
2162	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2163		ac->ac_criteria = cr;
2164		/*
2165		 * searching for the right group start
2166		 * from the goal value specified
2167		 */
2168		group = ac->ac_g_ex.fe_group;
 
 
2169
2170		for (i = 0; i < ngroups; group++, i++) {
 
2171			int ret = 0;
 
2172			cond_resched();
 
 
 
 
 
2173			/*
2174			 * Artificially restricted ngroups for non-extent
2175			 * files makes group > ngroups possible on first loop.
 
 
2176			 */
2177			if (group >= ngroups)
2178				group = 0;
 
 
 
 
 
 
 
 
 
 
2179
2180			/* This now checks without needing the buddy page */
2181			ret = ext4_mb_good_group(ac, group, cr);
2182			if (ret <= 0) {
2183				if (!first_err)
2184					first_err = ret;
2185				continue;
2186			}
2187
2188			err = ext4_mb_load_buddy(sb, group, &e4b);
2189			if (err)
2190				goto out;
2191
2192			ext4_lock_group(sb, group);
2193
2194			/*
2195			 * We need to check again after locking the
2196			 * block group
2197			 */
2198			ret = ext4_mb_good_group(ac, group, cr);
2199			if (ret <= 0) {
2200				ext4_unlock_group(sb, group);
2201				ext4_mb_unload_buddy(&e4b);
2202				if (!first_err)
2203					first_err = ret;
2204				continue;
2205			}
2206
2207			ac->ac_groups_scanned++;
2208			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2209				ext4_mb_simple_scan_group(ac, &e4b);
2210			else if (cr == 1 && sbi->s_stripe &&
2211					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2212				ext4_mb_scan_aligned(ac, &e4b);
2213			else
2214				ext4_mb_complex_scan_group(ac, &e4b);
 
 
 
 
 
 
 
 
2215
2216			ext4_unlock_group(sb, group);
2217			ext4_mb_unload_buddy(&e4b);
2218
2219			if (ac->ac_status != AC_STATUS_CONTINUE)
2220				break;
2221		}
 
 
 
 
 
 
 
 
2222	}
2223
2224	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2225	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2226		/*
2227		 * We've been searching too long. Let's try to allocate
2228		 * the best chunk we've found so far
2229		 */
2230
2231		ext4_mb_try_best_found(ac, &e4b);
2232		if (ac->ac_status != AC_STATUS_FOUND) {
2233			/*
2234			 * Someone more lucky has already allocated it.
2235			 * The only thing we can do is just take first
2236			 * found block(s)
2237			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2238			 */
 
 
 
 
 
2239			ac->ac_b_ex.fe_group = 0;
2240			ac->ac_b_ex.fe_start = 0;
2241			ac->ac_b_ex.fe_len = 0;
2242			ac->ac_status = AC_STATUS_CONTINUE;
2243			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2244			cr = 3;
2245			atomic_inc(&sbi->s_mb_lost_chunks);
2246			goto repeat;
2247		}
2248	}
 
 
 
2249out:
2250	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2251		err = first_err;
 
 
 
 
 
 
 
 
2252	return err;
2253}
2254
2255static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2256{
2257	struct super_block *sb = seq->private;
2258	ext4_group_t group;
2259
2260	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2261		return NULL;
2262	group = *pos + 1;
2263	return (void *) ((unsigned long) group);
2264}
2265
2266static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2267{
2268	struct super_block *sb = seq->private;
2269	ext4_group_t group;
2270
2271	++*pos;
2272	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273		return NULL;
2274	group = *pos + 1;
2275	return (void *) ((unsigned long) group);
2276}
2277
2278static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2279{
2280	struct super_block *sb = seq->private;
2281	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2282	int i;
2283	int err, buddy_loaded = 0;
2284	struct ext4_buddy e4b;
2285	struct ext4_group_info *grinfo;
 
 
 
2286	struct sg {
2287		struct ext4_group_info info;
2288		ext4_grpblk_t counters[16];
2289	} sg;
2290
2291	group--;
2292	if (group == 0)
2293		seq_puts(seq, "#group: free  frags first ["
2294			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2295			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2296
2297	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2298		sizeof(struct ext4_group_info);
 
2299	grinfo = ext4_get_group_info(sb, group);
 
 
2300	/* Load the group info in memory only if not already loaded. */
2301	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2302		err = ext4_mb_load_buddy(sb, group, &e4b);
2303		if (err) {
2304			seq_printf(seq, "#%-5u: I/O error\n", group);
2305			return 0;
2306		}
2307		buddy_loaded = 1;
2308	}
2309
2310	memcpy(&sg, ext4_get_group_info(sb, group), i);
2311
2312	if (buddy_loaded)
2313		ext4_mb_unload_buddy(&e4b);
2314
2315	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2316			sg.info.bb_fragments, sg.info.bb_first_free);
2317	for (i = 0; i <= 13; i++)
2318		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2319				sg.info.bb_counters[i] : 0);
2320	seq_printf(seq, " ]\n");
2321
2322	return 0;
2323}
2324
2325static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2326{
2327}
2328
2329static const struct seq_operations ext4_mb_seq_groups_ops = {
2330	.start  = ext4_mb_seq_groups_start,
2331	.next   = ext4_mb_seq_groups_next,
2332	.stop   = ext4_mb_seq_groups_stop,
2333	.show   = ext4_mb_seq_groups_show,
2334};
2335
2336static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2337{
2338	struct super_block *sb = PDE_DATA(inode);
2339	int rc;
2340
2341	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2342	if (rc == 0) {
2343		struct seq_file *m = file->private_data;
2344		m->private = sb;
 
 
 
2345	}
2346	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347
 
 
 
 
 
2348}
2349
2350const struct file_operations ext4_seq_mb_groups_fops = {
2351	.owner		= THIS_MODULE,
2352	.open		= ext4_mb_seq_groups_open,
2353	.read		= seq_read,
2354	.llseek		= seq_lseek,
2355	.release	= seq_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356};
2357
2358static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2359{
2360	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2361	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2362
2363	BUG_ON(!cachep);
2364	return cachep;
2365}
2366
2367/*
2368 * Allocate the top-level s_group_info array for the specified number
2369 * of groups
2370 */
2371int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2372{
2373	struct ext4_sb_info *sbi = EXT4_SB(sb);
2374	unsigned size;
2375	struct ext4_group_info ***new_groupinfo;
2376
2377	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2378		EXT4_DESC_PER_BLOCK_BITS(sb);
2379	if (size <= sbi->s_group_info_size)
2380		return 0;
2381
2382	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2383	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2384	if (!new_groupinfo) {
2385		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2386		return -ENOMEM;
2387	}
2388	if (sbi->s_group_info) {
2389		memcpy(new_groupinfo, sbi->s_group_info,
 
 
2390		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2391		kvfree(sbi->s_group_info);
2392	}
2393	sbi->s_group_info = new_groupinfo;
2394	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2395	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 
 
 
2396		   sbi->s_group_info_size);
2397	return 0;
2398}
2399
2400/* Create and initialize ext4_group_info data for the given group. */
2401int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2402			  struct ext4_group_desc *desc)
2403{
2404	int i;
2405	int metalen = 0;
 
2406	struct ext4_sb_info *sbi = EXT4_SB(sb);
2407	struct ext4_group_info **meta_group_info;
2408	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2409
2410	/*
2411	 * First check if this group is the first of a reserved block.
2412	 * If it's true, we have to allocate a new table of pointers
2413	 * to ext4_group_info structures
2414	 */
2415	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2416		metalen = sizeof(*meta_group_info) <<
2417			EXT4_DESC_PER_BLOCK_BITS(sb);
2418		meta_group_info = kmalloc(metalen, GFP_NOFS);
2419		if (meta_group_info == NULL) {
2420			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2421				 "for a buddy group");
2422			goto exit_meta_group_info;
2423		}
2424		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2425			meta_group_info;
 
2426	}
2427
2428	meta_group_info =
2429		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2430	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2431
2432	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2433	if (meta_group_info[i] == NULL) {
2434		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2435		goto exit_group_info;
2436	}
2437	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2438		&(meta_group_info[i]->bb_state));
2439
2440	/*
2441	 * initialize bb_free to be able to skip
2442	 * empty groups without initialization
2443	 */
2444	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 
2445		meta_group_info[i]->bb_free =
2446			ext4_free_clusters_after_init(sb, group, desc);
2447	} else {
2448		meta_group_info[i]->bb_free =
2449			ext4_free_group_clusters(sb, desc);
2450	}
2451
2452	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2453	init_rwsem(&meta_group_info[i]->alloc_sem);
2454	meta_group_info[i]->bb_free_root = RB_ROOT;
 
 
2455	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
 
 
2456
2457#ifdef DOUBLE_CHECK
2458	{
2459		struct buffer_head *bh;
2460		meta_group_info[i]->bb_bitmap =
2461			kmalloc(sb->s_blocksize, GFP_NOFS);
2462		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2463		bh = ext4_read_block_bitmap(sb, group);
2464		BUG_ON(IS_ERR_OR_NULL(bh));
2465		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2466			sb->s_blocksize);
2467		put_bh(bh);
2468	}
2469#endif
2470
2471	return 0;
2472
2473exit_group_info:
2474	/* If a meta_group_info table has been allocated, release it now */
2475	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2476		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2477		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
 
 
 
 
 
2478	}
2479exit_meta_group_info:
2480	return -ENOMEM;
2481} /* ext4_mb_add_groupinfo */
2482
2483static int ext4_mb_init_backend(struct super_block *sb)
2484{
2485	ext4_group_t ngroups = ext4_get_groups_count(sb);
2486	ext4_group_t i;
2487	struct ext4_sb_info *sbi = EXT4_SB(sb);
2488	int err;
2489	struct ext4_group_desc *desc;
 
2490	struct kmem_cache *cachep;
2491
2492	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2493	if (err)
2494		return err;
2495
2496	sbi->s_buddy_cache = new_inode(sb);
2497	if (sbi->s_buddy_cache == NULL) {
2498		ext4_msg(sb, KERN_ERR, "can't get new inode");
2499		goto err_freesgi;
2500	}
2501	/* To avoid potentially colliding with an valid on-disk inode number,
2502	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2503	 * not in the inode hash, so it should never be found by iget(), but
2504	 * this will avoid confusion if it ever shows up during debugging. */
2505	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2506	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2507	for (i = 0; i < ngroups; i++) {
 
2508		desc = ext4_get_group_desc(sb, i, NULL);
2509		if (desc == NULL) {
2510			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2511			goto err_freebuddy;
2512		}
2513		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2514			goto err_freebuddy;
2515	}
2516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517	return 0;
2518
2519err_freebuddy:
2520	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2521	while (i-- > 0)
2522		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
 
 
 
 
2523	i = sbi->s_group_info_size;
 
 
2524	while (i-- > 0)
2525		kfree(sbi->s_group_info[i]);
 
2526	iput(sbi->s_buddy_cache);
2527err_freesgi:
2528	kvfree(sbi->s_group_info);
 
 
2529	return -ENOMEM;
2530}
2531
2532static void ext4_groupinfo_destroy_slabs(void)
2533{
2534	int i;
2535
2536	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2537		if (ext4_groupinfo_caches[i])
2538			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2539		ext4_groupinfo_caches[i] = NULL;
2540	}
2541}
2542
2543static int ext4_groupinfo_create_slab(size_t size)
2544{
2545	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2546	int slab_size;
2547	int blocksize_bits = order_base_2(size);
2548	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2549	struct kmem_cache *cachep;
2550
2551	if (cache_index >= NR_GRPINFO_CACHES)
2552		return -EINVAL;
2553
2554	if (unlikely(cache_index < 0))
2555		cache_index = 0;
2556
2557	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2558	if (ext4_groupinfo_caches[cache_index]) {
2559		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2560		return 0;	/* Already created */
2561	}
2562
2563	slab_size = offsetof(struct ext4_group_info,
2564				bb_counters[blocksize_bits + 2]);
2565
2566	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2567					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2568					NULL);
2569
2570	ext4_groupinfo_caches[cache_index] = cachep;
2571
2572	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2573	if (!cachep) {
2574		printk(KERN_EMERG
2575		       "EXT4-fs: no memory for groupinfo slab cache\n");
2576		return -ENOMEM;
2577	}
2578
2579	return 0;
2580}
2581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582int ext4_mb_init(struct super_block *sb)
2583{
2584	struct ext4_sb_info *sbi = EXT4_SB(sb);
2585	unsigned i, j;
2586	unsigned offset;
2587	unsigned max;
2588	int ret;
2589
2590	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2591
2592	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2593	if (sbi->s_mb_offsets == NULL) {
2594		ret = -ENOMEM;
2595		goto out;
2596	}
2597
2598	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2599	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2600	if (sbi->s_mb_maxs == NULL) {
2601		ret = -ENOMEM;
2602		goto out;
2603	}
2604
2605	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2606	if (ret < 0)
2607		goto out;
2608
2609	/* order 0 is regular bitmap */
2610	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2611	sbi->s_mb_offsets[0] = 0;
2612
2613	i = 1;
2614	offset = 0;
 
2615	max = sb->s_blocksize << 2;
2616	do {
2617		sbi->s_mb_offsets[i] = offset;
2618		sbi->s_mb_maxs[i] = max;
2619		offset += 1 << (sb->s_blocksize_bits - i);
 
2620		max = max >> 1;
2621		i++;
2622	} while (i <= sb->s_blocksize_bits + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2623
2624	spin_lock_init(&sbi->s_md_lock);
2625	spin_lock_init(&sbi->s_bal_lock);
 
 
 
 
 
2626
2627	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2628	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2629	sbi->s_mb_stats = MB_DEFAULT_STATS;
2630	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2631	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
 
 
2632	/*
2633	 * The default group preallocation is 512, which for 4k block
2634	 * sizes translates to 2 megabytes.  However for bigalloc file
2635	 * systems, this is probably too big (i.e, if the cluster size
2636	 * is 1 megabyte, then group preallocation size becomes half a
2637	 * gigabyte!).  As a default, we will keep a two megabyte
2638	 * group pralloc size for cluster sizes up to 64k, and after
2639	 * that, we will force a minimum group preallocation size of
2640	 * 32 clusters.  This translates to 8 megs when the cluster
2641	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2642	 * which seems reasonable as a default.
2643	 */
2644	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2645				       sbi->s_cluster_bits, 32);
2646	/*
2647	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2648	 * to the lowest multiple of s_stripe which is bigger than
2649	 * the s_mb_group_prealloc as determined above. We want
2650	 * the preallocation size to be an exact multiple of the
2651	 * RAID stripe size so that preallocations don't fragment
2652	 * the stripes.
2653	 */
2654	if (sbi->s_stripe > 1) {
2655		sbi->s_mb_group_prealloc = roundup(
2656			sbi->s_mb_group_prealloc, sbi->s_stripe);
2657	}
2658
2659	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2660	if (sbi->s_locality_groups == NULL) {
2661		ret = -ENOMEM;
2662		goto out;
2663	}
2664	for_each_possible_cpu(i) {
2665		struct ext4_locality_group *lg;
2666		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2667		mutex_init(&lg->lg_mutex);
2668		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2669			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2670		spin_lock_init(&lg->lg_prealloc_lock);
2671	}
2672
 
 
 
 
2673	/* init file for buddy data */
2674	ret = ext4_mb_init_backend(sb);
2675	if (ret != 0)
2676		goto out_free_locality_groups;
2677
2678	return 0;
2679
2680out_free_locality_groups:
2681	free_percpu(sbi->s_locality_groups);
2682	sbi->s_locality_groups = NULL;
2683out:
 
 
 
 
2684	kfree(sbi->s_mb_offsets);
2685	sbi->s_mb_offsets = NULL;
2686	kfree(sbi->s_mb_maxs);
2687	sbi->s_mb_maxs = NULL;
2688	return ret;
2689}
2690
2691/* need to called with the ext4 group lock held */
2692static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2693{
2694	struct ext4_prealloc_space *pa;
2695	struct list_head *cur, *tmp;
2696	int count = 0;
2697
2698	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2699		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2700		list_del(&pa->pa_group_list);
2701		count++;
2702		kmem_cache_free(ext4_pspace_cachep, pa);
2703	}
2704	if (count)
2705		mb_debug(1, "mballoc: %u PAs left\n", count);
2706
2707}
2708
2709int ext4_mb_release(struct super_block *sb)
2710{
2711	ext4_group_t ngroups = ext4_get_groups_count(sb);
2712	ext4_group_t i;
2713	int num_meta_group_infos;
2714	struct ext4_group_info *grinfo;
2715	struct ext4_sb_info *sbi = EXT4_SB(sb);
2716	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
 
 
 
 
 
 
 
 
 
2717
2718	if (sbi->s_group_info) {
2719		for (i = 0; i < ngroups; i++) {
 
2720			grinfo = ext4_get_group_info(sb, i);
2721#ifdef DOUBLE_CHECK
2722			kfree(grinfo->bb_bitmap);
2723#endif
2724			ext4_lock_group(sb, i);
2725			ext4_mb_cleanup_pa(grinfo);
 
 
 
2726			ext4_unlock_group(sb, i);
2727			kmem_cache_free(cachep, grinfo);
2728		}
2729		num_meta_group_infos = (ngroups +
2730				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2731			EXT4_DESC_PER_BLOCK_BITS(sb);
 
 
2732		for (i = 0; i < num_meta_group_infos; i++)
2733			kfree(sbi->s_group_info[i]);
2734		kvfree(sbi->s_group_info);
 
2735	}
 
 
 
 
2736	kfree(sbi->s_mb_offsets);
2737	kfree(sbi->s_mb_maxs);
2738	iput(sbi->s_buddy_cache);
2739	if (sbi->s_mb_stats) {
2740		ext4_msg(sb, KERN_INFO,
2741		       "mballoc: %u blocks %u reqs (%u success)",
2742				atomic_read(&sbi->s_bal_allocated),
2743				atomic_read(&sbi->s_bal_reqs),
2744				atomic_read(&sbi->s_bal_success));
2745		ext4_msg(sb, KERN_INFO,
2746		      "mballoc: %u extents scanned, %u goal hits, "
2747				"%u 2^N hits, %u breaks, %u lost",
2748				atomic_read(&sbi->s_bal_ex_scanned),
 
2749				atomic_read(&sbi->s_bal_goals),
2750				atomic_read(&sbi->s_bal_2orders),
2751				atomic_read(&sbi->s_bal_breaks),
2752				atomic_read(&sbi->s_mb_lost_chunks));
2753		ext4_msg(sb, KERN_INFO,
2754		       "mballoc: %lu generated and it took %Lu",
2755				sbi->s_mb_buddies_generated,
2756				sbi->s_mb_generation_time);
2757		ext4_msg(sb, KERN_INFO,
2758		       "mballoc: %u preallocated, %u discarded",
2759				atomic_read(&sbi->s_mb_preallocated),
2760				atomic_read(&sbi->s_mb_discarded));
2761	}
2762
2763	free_percpu(sbi->s_locality_groups);
2764
2765	return 0;
2766}
2767
2768static inline int ext4_issue_discard(struct super_block *sb,
2769		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
 
2770{
2771	ext4_fsblk_t discard_block;
2772
2773	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2774			 ext4_group_first_block_no(sb, block_group));
2775	count = EXT4_C2B(EXT4_SB(sb), count);
2776	trace_ext4_discard_blocks(sb,
2777			(unsigned long long) discard_block, count);
2778	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
 
 
 
 
 
 
2779}
2780
2781/*
2782 * This function is called by the jbd2 layer once the commit has finished,
2783 * so we know we can free the blocks that were released with that commit.
2784 */
2785static void ext4_free_data_callback(struct super_block *sb,
2786				    struct ext4_journal_cb_entry *jce,
2787				    int rc)
2788{
2789	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2790	struct ext4_buddy e4b;
2791	struct ext4_group_info *db;
2792	int err, count = 0, count2 = 0;
2793
2794	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2795		 entry->efd_count, entry->efd_group, entry);
2796
2797	if (test_opt(sb, DISCARD)) {
2798		err = ext4_issue_discard(sb, entry->efd_group,
2799					 entry->efd_start_cluster,
2800					 entry->efd_count);
2801		if (err && err != -EOPNOTSUPP)
2802			ext4_msg(sb, KERN_WARNING, "discard request in"
2803				 " group:%d block:%d count:%d failed"
2804				 " with %d", entry->efd_group,
2805				 entry->efd_start_cluster,
2806				 entry->efd_count, err);
2807	}
2808
2809	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2810	/* we expect to find existing buddy because it's pinned */
2811	BUG_ON(err != 0);
2812
 
 
 
2813
2814	db = e4b.bd_info;
2815	/* there are blocks to put in buddy to make them really free */
2816	count += entry->efd_count;
2817	count2++;
2818	ext4_lock_group(sb, entry->efd_group);
2819	/* Take it out of per group rb tree */
2820	rb_erase(&entry->efd_node, &(db->bb_free_root));
2821	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2822
2823	/*
2824	 * Clear the trimmed flag for the group so that the next
2825	 * ext4_trim_fs can trim it.
2826	 * If the volume is mounted with -o discard, online discard
2827	 * is supported and the free blocks will be trimmed online.
2828	 */
2829	if (!test_opt(sb, DISCARD))
2830		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2831
2832	if (!db->bb_free_root.rb_node) {
2833		/* No more items in the per group rb tree
2834		 * balance refcounts from ext4_mb_free_metadata()
2835		 */
2836		put_page(e4b.bd_buddy_page);
2837		put_page(e4b.bd_bitmap_page);
2838	}
2839	ext4_unlock_group(sb, entry->efd_group);
2840	kmem_cache_free(ext4_free_data_cachep, entry);
2841	ext4_mb_unload_buddy(&e4b);
2842
2843	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844}
2845
2846int __init ext4_init_mballoc(void)
2847{
2848	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2849					SLAB_RECLAIM_ACCOUNT);
2850	if (ext4_pspace_cachep == NULL)
2851		return -ENOMEM;
2852
2853	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2854				    SLAB_RECLAIM_ACCOUNT);
2855	if (ext4_ac_cachep == NULL) {
2856		kmem_cache_destroy(ext4_pspace_cachep);
2857		return -ENOMEM;
2858	}
2859
2860	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2861					   SLAB_RECLAIM_ACCOUNT);
2862	if (ext4_free_data_cachep == NULL) {
2863		kmem_cache_destroy(ext4_pspace_cachep);
2864		kmem_cache_destroy(ext4_ac_cachep);
2865		return -ENOMEM;
2866	}
2867	return 0;
 
 
 
 
 
 
 
2868}
2869
2870void ext4_exit_mballoc(void)
2871{
2872	/*
2873	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2874	 * before destroying the slab cache.
2875	 */
2876	rcu_barrier();
2877	kmem_cache_destroy(ext4_pspace_cachep);
2878	kmem_cache_destroy(ext4_ac_cachep);
2879	kmem_cache_destroy(ext4_free_data_cachep);
2880	ext4_groupinfo_destroy_slabs();
2881}
2882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2883
2884/*
2885 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2886 * Returns 0 if success or error code
2887 */
2888static noinline_for_stack int
2889ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2890				handle_t *handle, unsigned int reserv_clstrs)
2891{
2892	struct buffer_head *bitmap_bh = NULL;
2893	struct ext4_group_desc *gdp;
2894	struct buffer_head *gdp_bh;
2895	struct ext4_sb_info *sbi;
2896	struct super_block *sb;
2897	ext4_fsblk_t block;
2898	int err, len;
 
 
2899
2900	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2901	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2902
2903	sb = ac->ac_sb;
2904	sbi = EXT4_SB(sb);
2905
2906	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2907	if (IS_ERR(bitmap_bh)) {
2908		err = PTR_ERR(bitmap_bh);
2909		bitmap_bh = NULL;
2910		goto out_err;
2911	}
2912
2913	BUFFER_TRACE(bitmap_bh, "getting write access");
2914	err = ext4_journal_get_write_access(handle, bitmap_bh);
2915	if (err)
2916		goto out_err;
2917
2918	err = -EIO;
2919	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2920	if (!gdp)
2921		goto out_err;
2922
2923	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2924			ext4_free_group_clusters(sb, gdp));
2925
2926	BUFFER_TRACE(gdp_bh, "get_write_access");
2927	err = ext4_journal_get_write_access(handle, gdp_bh);
2928	if (err)
2929		goto out_err;
2930
2931	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2932
2933	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2934	if (!ext4_data_block_valid(sbi, block, len)) {
2935		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2936			   "fs metadata", block, block+len);
2937		/* File system mounted not to panic on error
2938		 * Fix the bitmap and repeat the block allocation
2939		 * We leak some of the blocks here.
2940		 */
2941		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2942		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2943			      ac->ac_b_ex.fe_len);
2944		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2945		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2946		if (!err)
2947			err = -EAGAIN;
2948		goto out_err;
2949	}
2950
2951	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2952#ifdef AGGRESSIVE_CHECK
2953	{
2954		int i;
2955		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2956			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2957						bitmap_bh->b_data));
2958		}
2959	}
2960#endif
2961	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2962		      ac->ac_b_ex.fe_len);
2963	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2964		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2965		ext4_free_group_clusters_set(sb, gdp,
2966					     ext4_free_clusters_after_init(sb,
2967						ac->ac_b_ex.fe_group, gdp));
2968	}
2969	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2970	ext4_free_group_clusters_set(sb, gdp, len);
2971	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2972	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2973
2974	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
 
 
 
 
 
2975	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2976	/*
2977	 * Now reduce the dirty block count also. Should not go negative
2978	 */
2979	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2980		/* release all the reserved blocks if non delalloc */
2981		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2982				   reserv_clstrs);
2983
2984	if (sbi->s_log_groups_per_flex) {
2985		ext4_group_t flex_group = ext4_flex_group(sbi,
2986							  ac->ac_b_ex.fe_group);
2987		atomic64_sub(ac->ac_b_ex.fe_len,
2988			     &sbi->s_flex_groups[flex_group].free_clusters);
2989	}
2990
2991	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2992	if (err)
2993		goto out_err;
2994	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
 
 
 
 
 
 
 
 
2995
2996out_err:
2997	brelse(bitmap_bh);
2998	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2999}
3000
3001/*
3002 * here we normalize request for locality group
3003 * Group request are normalized to s_mb_group_prealloc, which goes to
3004 * s_strip if we set the same via mount option.
3005 * s_mb_group_prealloc can be configured via
3006 * /sys/fs/ext4/<partition>/mb_group_prealloc
3007 *
3008 * XXX: should we try to preallocate more than the group has now?
3009 */
3010static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3011{
3012	struct super_block *sb = ac->ac_sb;
3013	struct ext4_locality_group *lg = ac->ac_lg;
3014
3015	BUG_ON(lg == NULL);
3016	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3017	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3018		current->pid, ac->ac_g_ex.fe_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3019}
3020
3021/*
3022 * Normalization means making request better in terms of
3023 * size and alignment
3024 */
3025static noinline_for_stack void
3026ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3027				struct ext4_allocation_request *ar)
3028{
3029	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 
3030	int bsbits, max;
3031	ext4_lblk_t end;
3032	loff_t size, start_off;
3033	loff_t orig_size __maybe_unused;
3034	ext4_lblk_t start;
3035	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3036	struct ext4_prealloc_space *pa;
3037
3038	/* do normalize only data requests, metadata requests
3039	   do not need preallocation */
3040	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3041		return;
3042
3043	/* sometime caller may want exact blocks */
3044	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3045		return;
3046
3047	/* caller may indicate that preallocation isn't
3048	 * required (it's a tail, for example) */
3049	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3050		return;
3051
3052	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3053		ext4_mb_normalize_group_request(ac);
3054		return ;
3055	}
3056
3057	bsbits = ac->ac_sb->s_blocksize_bits;
3058
3059	/* first, let's learn actual file size
3060	 * given current request is allocated */
3061	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3062	size = size << bsbits;
3063	if (size < i_size_read(ac->ac_inode))
3064		size = i_size_read(ac->ac_inode);
3065	orig_size = size;
3066
3067	/* max size of free chunks */
3068	max = 2 << bsbits;
3069
3070#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3071		(req <= (size) || max <= (chunk_size))
3072
3073	/* first, try to predict filesize */
3074	/* XXX: should this table be tunable? */
3075	start_off = 0;
3076	if (size <= 16 * 1024) {
3077		size = 16 * 1024;
3078	} else if (size <= 32 * 1024) {
3079		size = 32 * 1024;
3080	} else if (size <= 64 * 1024) {
3081		size = 64 * 1024;
3082	} else if (size <= 128 * 1024) {
3083		size = 128 * 1024;
3084	} else if (size <= 256 * 1024) {
3085		size = 256 * 1024;
3086	} else if (size <= 512 * 1024) {
3087		size = 512 * 1024;
3088	} else if (size <= 1024 * 1024) {
3089		size = 1024 * 1024;
3090	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3091		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3092						(21 - bsbits)) << 21;
3093		size = 2 * 1024 * 1024;
3094	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3095		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3096							(22 - bsbits)) << 22;
3097		size = 4 * 1024 * 1024;
3098	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3099					(8<<20)>>bsbits, max, 8 * 1024)) {
3100		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3101							(23 - bsbits)) << 23;
3102		size = 8 * 1024 * 1024;
3103	} else {
3104		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3105		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3106					      ac->ac_o_ex.fe_len) << bsbits;
3107	}
3108	size = size >> bsbits;
3109	start = start_off >> bsbits;
3110
 
 
 
 
 
 
 
 
 
 
 
 
 
3111	/* don't cover already allocated blocks in selected range */
3112	if (ar->pleft && start <= ar->lleft) {
3113		size -= ar->lleft + 1 - start;
3114		start = ar->lleft + 1;
3115	}
3116	if (ar->pright && start + size - 1 >= ar->lright)
3117		size -= start + size - ar->lright;
3118
3119	end = start + size;
3120
3121	/* check we don't cross already preallocated blocks */
3122	rcu_read_lock();
3123	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3124		ext4_lblk_t pa_end;
3125
3126		if (pa->pa_deleted)
3127			continue;
3128		spin_lock(&pa->pa_lock);
3129		if (pa->pa_deleted) {
3130			spin_unlock(&pa->pa_lock);
3131			continue;
3132		}
3133
3134		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3135						  pa->pa_len);
3136
3137		/* PA must not overlap original request */
3138		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3139			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3140
3141		/* skip PAs this normalized request doesn't overlap with */
3142		if (pa->pa_lstart >= end || pa_end <= start) {
3143			spin_unlock(&pa->pa_lock);
3144			continue;
3145		}
3146		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3147
3148		/* adjust start or end to be adjacent to this pa */
3149		if (pa_end <= ac->ac_o_ex.fe_logical) {
3150			BUG_ON(pa_end < start);
3151			start = pa_end;
3152		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3153			BUG_ON(pa->pa_lstart > end);
3154			end = pa->pa_lstart;
3155		}
3156		spin_unlock(&pa->pa_lock);
3157	}
3158	rcu_read_unlock();
3159	size = end - start;
3160
3161	/* XXX: extra loop to check we really don't overlap preallocations */
3162	rcu_read_lock();
3163	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3164		ext4_lblk_t pa_end;
3165
3166		spin_lock(&pa->pa_lock);
3167		if (pa->pa_deleted == 0) {
3168			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3169							  pa->pa_len);
3170			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3171		}
3172		spin_unlock(&pa->pa_lock);
3173	}
3174	rcu_read_unlock();
3175
3176	if (start + size <= ac->ac_o_ex.fe_logical &&
3177			start > ac->ac_o_ex.fe_logical) {
3178		ext4_msg(ac->ac_sb, KERN_ERR,
3179			 "start %lu, size %lu, fe_logical %lu",
3180			 (unsigned long) start, (unsigned long) size,
3181			 (unsigned long) ac->ac_o_ex.fe_logical);
3182		BUG();
3183	}
3184	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3185
3186	/* now prepare goal request */
3187
3188	/* XXX: is it better to align blocks WRT to logical
3189	 * placement or satisfy big request as is */
3190	ac->ac_g_ex.fe_logical = start;
3191	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
 
3192
3193	/* define goal start in order to merge */
3194	if (ar->pright && (ar->lright == (start + size))) {
 
 
3195		/* merge to the right */
3196		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3197						&ac->ac_f_ex.fe_group,
3198						&ac->ac_f_ex.fe_start);
3199		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3200	}
3201	if (ar->pleft && (ar->lleft + 1 == start)) {
 
3202		/* merge to the left */
3203		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3204						&ac->ac_f_ex.fe_group,
3205						&ac->ac_f_ex.fe_start);
3206		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3207	}
3208
3209	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3210		(unsigned) orig_size, (unsigned) start);
3211}
3212
3213static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3214{
3215	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3216
3217	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3218		atomic_inc(&sbi->s_bal_reqs);
3219		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3220		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3221			atomic_inc(&sbi->s_bal_success);
 
3222		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
 
 
 
 
 
3223		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3224				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3225			atomic_inc(&sbi->s_bal_goals);
 
 
 
 
3226		if (ac->ac_found > sbi->s_mb_max_to_scan)
3227			atomic_inc(&sbi->s_bal_breaks);
3228	}
3229
3230	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3231		trace_ext4_mballoc_alloc(ac);
3232	else
3233		trace_ext4_mballoc_prealloc(ac);
3234}
3235
3236/*
3237 * Called on failure; free up any blocks from the inode PA for this
3238 * context.  We don't need this for MB_GROUP_PA because we only change
3239 * pa_free in ext4_mb_release_context(), but on failure, we've already
3240 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3241 */
3242static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3243{
3244	struct ext4_prealloc_space *pa = ac->ac_pa;
3245	struct ext4_buddy e4b;
3246	int err;
3247
3248	if (pa == NULL) {
3249		if (ac->ac_f_ex.fe_len == 0)
3250			return;
3251		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3252		if (err) {
 
3253			/*
3254			 * This should never happen since we pin the
3255			 * pages in the ext4_allocation_context so
3256			 * ext4_mb_load_buddy() should never fail.
3257			 */
3258			WARN(1, "mb_load_buddy failed (%d)", err);
3259			return;
3260		}
3261		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3262		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3263			       ac->ac_f_ex.fe_len);
3264		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3265		ext4_mb_unload_buddy(&e4b);
3266		return;
3267	}
3268	if (pa->pa_type == MB_INODE_PA)
 
3269		pa->pa_free += ac->ac_b_ex.fe_len;
 
 
3270}
3271
3272/*
3273 * use blocks preallocated to inode
3274 */
3275static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3276				struct ext4_prealloc_space *pa)
3277{
3278	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3279	ext4_fsblk_t start;
3280	ext4_fsblk_t end;
3281	int len;
3282
3283	/* found preallocated blocks, use them */
3284	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3285	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3286		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3287	len = EXT4_NUM_B2C(sbi, end - start);
3288	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3289					&ac->ac_b_ex.fe_start);
3290	ac->ac_b_ex.fe_len = len;
3291	ac->ac_status = AC_STATUS_FOUND;
3292	ac->ac_pa = pa;
3293
3294	BUG_ON(start < pa->pa_pstart);
3295	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3296	BUG_ON(pa->pa_free < len);
 
3297	pa->pa_free -= len;
3298
3299	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3300}
3301
3302/*
3303 * use blocks preallocated to locality group
3304 */
3305static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3306				struct ext4_prealloc_space *pa)
3307{
3308	unsigned int len = ac->ac_o_ex.fe_len;
3309
3310	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3311					&ac->ac_b_ex.fe_group,
3312					&ac->ac_b_ex.fe_start);
3313	ac->ac_b_ex.fe_len = len;
3314	ac->ac_status = AC_STATUS_FOUND;
3315	ac->ac_pa = pa;
3316
3317	/* we don't correct pa_pstart or pa_plen here to avoid
3318	 * possible race when the group is being loaded concurrently
3319	 * instead we correct pa later, after blocks are marked
3320	 * in on-disk bitmap -- see ext4_mb_release_context()
3321	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3322	 */
3323	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
 
3324}
3325
3326/*
3327 * Return the prealloc space that have minimal distance
3328 * from the goal block. @cpa is the prealloc
3329 * space that is having currently known minimal distance
3330 * from the goal block.
3331 */
3332static struct ext4_prealloc_space *
3333ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3334			struct ext4_prealloc_space *pa,
3335			struct ext4_prealloc_space *cpa)
3336{
3337	ext4_fsblk_t cur_distance, new_distance;
3338
3339	if (cpa == NULL) {
3340		atomic_inc(&pa->pa_count);
3341		return pa;
3342	}
3343	cur_distance = abs(goal_block - cpa->pa_pstart);
3344	new_distance = abs(goal_block - pa->pa_pstart);
3345
3346	if (cur_distance <= new_distance)
3347		return cpa;
3348
3349	/* drop the previous reference */
3350	atomic_dec(&cpa->pa_count);
3351	atomic_inc(&pa->pa_count);
3352	return pa;
3353}
3354
3355/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3356 * search goal blocks in preallocated space
3357 */
3358static noinline_for_stack int
3359ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3360{
3361	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3362	int order, i;
3363	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3364	struct ext4_locality_group *lg;
3365	struct ext4_prealloc_space *pa, *cpa = NULL;
 
3366	ext4_fsblk_t goal_block;
3367
3368	/* only data can be preallocated */
3369	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3370		return 0;
3371
3372	/* first, try per-file preallocation */
3373	rcu_read_lock();
3374	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
 
 
 
 
 
3375
3376		/* all fields in this condition don't change,
3377		 * so we can skip locking for them */
3378		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3379		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3380					       EXT4_C2B(sbi, pa->pa_len)))
3381			continue;
3382
3383		/* non-extent files can't have physical blocks past 2^32 */
3384		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3385		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3386		     EXT4_MAX_BLOCK_FILE_PHYS))
3387			continue;
 
 
 
 
 
 
 
3388
3389		/* found preallocated blocks, use them */
3390		spin_lock(&pa->pa_lock);
3391		if (pa->pa_deleted == 0 && pa->pa_free) {
3392			atomic_inc(&pa->pa_count);
3393			ext4_mb_use_inode_pa(ac, pa);
3394			spin_unlock(&pa->pa_lock);
3395			ac->ac_criteria = 10;
3396			rcu_read_unlock();
3397			return 1;
 
 
 
 
 
 
 
 
 
 
3398		}
3399		spin_unlock(&pa->pa_lock);
3400	}
3401	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3402
3403	/* can we use group allocation? */
3404	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3405		return 0;
3406
3407	/* inode may have no locality group for some reason */
3408	lg = ac->ac_lg;
3409	if (lg == NULL)
3410		return 0;
3411	order  = fls(ac->ac_o_ex.fe_len) - 1;
3412	if (order > PREALLOC_TB_SIZE - 1)
3413		/* The max size of hash table is PREALLOC_TB_SIZE */
3414		order = PREALLOC_TB_SIZE - 1;
3415
3416	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3417	/*
3418	 * search for the prealloc space that is having
3419	 * minimal distance from the goal block.
3420	 */
3421	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3422		rcu_read_lock();
3423		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3424					pa_inode_list) {
3425			spin_lock(&pa->pa_lock);
3426			if (pa->pa_deleted == 0 &&
3427					pa->pa_free >= ac->ac_o_ex.fe_len) {
3428
3429				cpa = ext4_mb_check_group_pa(goal_block,
3430								pa, cpa);
3431			}
3432			spin_unlock(&pa->pa_lock);
3433		}
3434		rcu_read_unlock();
3435	}
3436	if (cpa) {
3437		ext4_mb_use_group_pa(ac, cpa);
3438		ac->ac_criteria = 20;
3439		return 1;
3440	}
3441	return 0;
3442}
3443
3444/*
3445 * the function goes through all block freed in the group
3446 * but not yet committed and marks them used in in-core bitmap.
3447 * buddy must be generated from this bitmap
3448 * Need to be called with the ext4 group lock held
3449 */
3450static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3451						ext4_group_t group)
3452{
3453	struct rb_node *n;
3454	struct ext4_group_info *grp;
3455	struct ext4_free_data *entry;
3456
3457	grp = ext4_get_group_info(sb, group);
3458	n = rb_first(&(grp->bb_free_root));
3459
3460	while (n) {
3461		entry = rb_entry(n, struct ext4_free_data, efd_node);
3462		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3463		n = rb_next(n);
3464	}
3465	return;
3466}
3467
3468/*
3469 * the function goes through all preallocation in this group and marks them
3470 * used in in-core bitmap. buddy must be generated from this bitmap
3471 * Need to be called with ext4 group lock held
3472 */
3473static noinline_for_stack
3474void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3475					ext4_group_t group)
3476{
3477	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3478	struct ext4_prealloc_space *pa;
3479	struct list_head *cur;
3480	ext4_group_t groupnr;
3481	ext4_grpblk_t start;
3482	int preallocated = 0;
3483	int len;
3484
 
 
 
3485	/* all form of preallocation discards first load group,
3486	 * so the only competing code is preallocation use.
3487	 * we don't need any locking here
3488	 * notice we do NOT ignore preallocations with pa_deleted
3489	 * otherwise we could leave used blocks available for
3490	 * allocation in buddy when concurrent ext4_mb_put_pa()
3491	 * is dropping preallocation
3492	 */
3493	list_for_each(cur, &grp->bb_prealloc_list) {
3494		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3495		spin_lock(&pa->pa_lock);
3496		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3497					     &groupnr, &start);
3498		len = pa->pa_len;
3499		spin_unlock(&pa->pa_lock);
3500		if (unlikely(len == 0))
3501			continue;
3502		BUG_ON(groupnr != group);
3503		ext4_set_bits(bitmap, start, len);
3504		preallocated += len;
3505	}
3506	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3507}
3508
3509static void ext4_mb_pa_callback(struct rcu_head *head)
 
3510{
3511	struct ext4_prealloc_space *pa;
3512	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
 
 
 
 
 
 
 
 
3513
 
 
 
 
 
 
 
 
 
3514	BUG_ON(atomic_read(&pa->pa_count));
3515	BUG_ON(pa->pa_deleted == 0);
3516	kmem_cache_free(ext4_pspace_cachep, pa);
3517}
3518
 
 
 
 
 
 
 
 
3519/*
3520 * drops a reference to preallocated space descriptor
3521 * if this was the last reference and the space is consumed
3522 */
3523static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3524			struct super_block *sb, struct ext4_prealloc_space *pa)
3525{
3526	ext4_group_t grp;
3527	ext4_fsblk_t grp_blk;
 
3528
3529	/* in this short window concurrent discard can set pa_deleted */
3530	spin_lock(&pa->pa_lock);
3531	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3532		spin_unlock(&pa->pa_lock);
3533		return;
3534	}
3535
3536	if (pa->pa_deleted == 1) {
3537		spin_unlock(&pa->pa_lock);
3538		return;
3539	}
3540
3541	pa->pa_deleted = 1;
3542	spin_unlock(&pa->pa_lock);
3543
3544	grp_blk = pa->pa_pstart;
3545	/*
3546	 * If doing group-based preallocation, pa_pstart may be in the
3547	 * next group when pa is used up
3548	 */
3549	if (pa->pa_type == MB_GROUP_PA)
3550		grp_blk--;
3551
3552	grp = ext4_get_group_number(sb, grp_blk);
3553
3554	/*
3555	 * possible race:
3556	 *
3557	 *  P1 (buddy init)			P2 (regular allocation)
3558	 *					find block B in PA
3559	 *  copy on-disk bitmap to buddy
3560	 *  					mark B in on-disk bitmap
3561	 *					drop PA from group
3562	 *  mark all PAs in buddy
3563	 *
3564	 * thus, P1 initializes buddy with B available. to prevent this
3565	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3566	 * against that pair
3567	 */
3568	ext4_lock_group(sb, grp);
3569	list_del(&pa->pa_group_list);
3570	ext4_unlock_group(sb, grp);
3571
3572	spin_lock(pa->pa_obj_lock);
3573	list_del_rcu(&pa->pa_inode_list);
3574	spin_unlock(pa->pa_obj_lock);
 
 
 
 
 
 
 
 
 
3575
3576	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3577}
3578
3579/*
3580 * creates new preallocated space for given inode
3581 */
3582static noinline_for_stack int
3583ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3584{
3585	struct super_block *sb = ac->ac_sb;
3586	struct ext4_sb_info *sbi = EXT4_SB(sb);
3587	struct ext4_prealloc_space *pa;
3588	struct ext4_group_info *grp;
3589	struct ext4_inode_info *ei;
3590
3591	/* preallocate only when found space is larger then requested */
3592	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3593	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3594	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
 
3595
3596	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3597	if (pa == NULL)
3598		return -ENOMEM;
3599
3600	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3601		int winl;
3602		int wins;
3603		int win;
3604		int offs;
 
3605
3606		/* we can't allocate as much as normalizer wants.
3607		 * so, found space must get proper lstart
3608		 * to cover original request */
3609		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3610		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3611
3612		/* we're limited by original request in that
3613		 * logical block must be covered any way
3614		 * winl is window we can move our chunk within */
3615		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3616
3617		/* also, we should cover whole original request */
3618		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3619
3620		/* the smallest one defines real window */
3621		win = min(winl, wins);
3622
3623		offs = ac->ac_o_ex.fe_logical %
3624			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3625		if (offs && offs < win)
3626			win = offs;
 
 
 
 
 
 
 
 
 
3627
3628		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3629			EXT4_NUM_B2C(sbi, win);
3630		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3631		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
 
3632	}
3633
3634	/* preallocation can change ac_b_ex, thus we store actually
3635	 * allocated blocks for history */
3636	ac->ac_f_ex = ac->ac_b_ex;
3637
3638	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3639	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3640	pa->pa_len = ac->ac_b_ex.fe_len;
3641	pa->pa_free = pa->pa_len;
3642	atomic_set(&pa->pa_count, 1);
3643	spin_lock_init(&pa->pa_lock);
3644	INIT_LIST_HEAD(&pa->pa_inode_list);
3645	INIT_LIST_HEAD(&pa->pa_group_list);
3646	pa->pa_deleted = 0;
3647	pa->pa_type = MB_INODE_PA;
3648
3649	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3650			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3651	trace_ext4_mb_new_inode_pa(ac, pa);
3652
3653	ext4_mb_use_inode_pa(ac, pa);
3654	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
 
3655
3656	ei = EXT4_I(ac->ac_inode);
3657	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
 
 
3658
3659	pa->pa_obj_lock = &ei->i_prealloc_lock;
3660	pa->pa_inode = ac->ac_inode;
3661
3662	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3663	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3664	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3665
3666	spin_lock(pa->pa_obj_lock);
3667	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3668	spin_unlock(pa->pa_obj_lock);
3669
3670	return 0;
 
 
 
3671}
3672
3673/*
3674 * creates new preallocated space for locality group inodes belongs to
3675 */
3676static noinline_for_stack int
3677ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3678{
3679	struct super_block *sb = ac->ac_sb;
3680	struct ext4_locality_group *lg;
3681	struct ext4_prealloc_space *pa;
3682	struct ext4_group_info *grp;
3683
3684	/* preallocate only when found space is larger then requested */
3685	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3686	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3687	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
 
3688
3689	BUG_ON(ext4_pspace_cachep == NULL);
3690	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3691	if (pa == NULL)
3692		return -ENOMEM;
3693
3694	/* preallocation can change ac_b_ex, thus we store actually
3695	 * allocated blocks for history */
3696	ac->ac_f_ex = ac->ac_b_ex;
3697
3698	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3699	pa->pa_lstart = pa->pa_pstart;
3700	pa->pa_len = ac->ac_b_ex.fe_len;
3701	pa->pa_free = pa->pa_len;
3702	atomic_set(&pa->pa_count, 1);
3703	spin_lock_init(&pa->pa_lock);
3704	INIT_LIST_HEAD(&pa->pa_inode_list);
3705	INIT_LIST_HEAD(&pa->pa_group_list);
3706	pa->pa_deleted = 0;
3707	pa->pa_type = MB_GROUP_PA;
3708
3709	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3710			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3711	trace_ext4_mb_new_group_pa(ac, pa);
3712
3713	ext4_mb_use_group_pa(ac, pa);
3714	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3715
3716	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
 
 
3717	lg = ac->ac_lg;
3718	BUG_ON(lg == NULL);
3719
3720	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3721	pa->pa_inode = NULL;
3722
3723	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3724	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3725	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3726
3727	/*
3728	 * We will later add the new pa to the right bucket
3729	 * after updating the pa_free in ext4_mb_release_context
3730	 */
3731	return 0;
3732}
3733
3734static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3735{
3736	int err;
3737
3738	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3739		err = ext4_mb_new_group_pa(ac);
3740	else
3741		err = ext4_mb_new_inode_pa(ac);
3742	return err;
3743}
3744
3745/*
3746 * finds all unused blocks in on-disk bitmap, frees them in
3747 * in-core bitmap and buddy.
3748 * @pa must be unlinked from inode and group lists, so that
3749 * nobody else can find/use it.
3750 * the caller MUST hold group/inode locks.
3751 * TODO: optimize the case when there are no in-core structures yet
3752 */
3753static noinline_for_stack int
3754ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3755			struct ext4_prealloc_space *pa)
3756{
3757	struct super_block *sb = e4b->bd_sb;
3758	struct ext4_sb_info *sbi = EXT4_SB(sb);
3759	unsigned int end;
3760	unsigned int next;
3761	ext4_group_t group;
3762	ext4_grpblk_t bit;
3763	unsigned long long grp_blk_start;
3764	int err = 0;
3765	int free = 0;
3766
3767	BUG_ON(pa->pa_deleted == 0);
3768	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3769	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3770	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3771	end = bit + pa->pa_len;
3772
3773	while (bit < end) {
3774		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3775		if (bit >= end)
3776			break;
3777		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3778		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3779			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3780			 (unsigned) next - bit, (unsigned) group);
3781		free += next - bit;
3782
3783		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3784		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3785						    EXT4_C2B(sbi, bit)),
3786					       next - bit);
3787		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3788		bit = next + 1;
3789	}
3790	if (free != pa->pa_free) {
3791		ext4_msg(e4b->bd_sb, KERN_CRIT,
3792			 "pa %p: logic %lu, phys. %lu, len %lu",
3793			 pa, (unsigned long) pa->pa_lstart,
3794			 (unsigned long) pa->pa_pstart,
3795			 (unsigned long) pa->pa_len);
3796		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3797					free, pa->pa_free);
3798		/*
3799		 * pa is already deleted so we use the value obtained
3800		 * from the bitmap and continue.
3801		 */
3802	}
3803	atomic_add(free, &sbi->s_mb_discarded);
3804
3805	return err;
3806}
3807
3808static noinline_for_stack int
3809ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3810				struct ext4_prealloc_space *pa)
3811{
3812	struct super_block *sb = e4b->bd_sb;
3813	ext4_group_t group;
3814	ext4_grpblk_t bit;
3815
3816	trace_ext4_mb_release_group_pa(sb, pa);
3817	BUG_ON(pa->pa_deleted == 0);
3818	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3819	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
 
 
 
 
3820	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3821	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3822	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3823
3824	return 0;
3825}
3826
3827/*
3828 * releases all preallocations in given group
3829 *
3830 * first, we need to decide discard policy:
3831 * - when do we discard
3832 *   1) ENOSPC
3833 * - how many do we discard
3834 *   1) how many requested
3835 */
3836static noinline_for_stack int
3837ext4_mb_discard_group_preallocations(struct super_block *sb,
3838					ext4_group_t group, int needed)
3839{
3840	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3841	struct buffer_head *bitmap_bh = NULL;
3842	struct ext4_prealloc_space *pa, *tmp;
3843	struct list_head list;
3844	struct ext4_buddy e4b;
 
3845	int err;
3846	int busy = 0;
3847	int free = 0;
3848
3849	mb_debug(1, "discard preallocation for group %u\n", group);
3850
3851	if (list_empty(&grp->bb_prealloc_list))
3852		return 0;
 
 
 
3853
3854	bitmap_bh = ext4_read_block_bitmap(sb, group);
3855	if (IS_ERR(bitmap_bh)) {
3856		err = PTR_ERR(bitmap_bh);
3857		ext4_error(sb, "Error %d reading block bitmap for %u",
3858			   err, group);
3859		return 0;
 
3860	}
3861
3862	err = ext4_mb_load_buddy(sb, group, &e4b);
3863	if (err) {
3864		ext4_error(sb, "Error loading buddy information for %u", group);
 
3865		put_bh(bitmap_bh);
3866		return 0;
3867	}
3868
3869	if (needed == 0)
3870		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3871
3872	INIT_LIST_HEAD(&list);
3873repeat:
3874	ext4_lock_group(sb, group);
3875	list_for_each_entry_safe(pa, tmp,
3876				&grp->bb_prealloc_list, pa_group_list) {
3877		spin_lock(&pa->pa_lock);
3878		if (atomic_read(&pa->pa_count)) {
3879			spin_unlock(&pa->pa_lock);
3880			busy = 1;
3881			continue;
3882		}
3883		if (pa->pa_deleted) {
3884			spin_unlock(&pa->pa_lock);
3885			continue;
3886		}
3887
3888		/* seems this one can be freed ... */
3889		pa->pa_deleted = 1;
 
 
 
3890
3891		/* we can trust pa_free ... */
3892		free += pa->pa_free;
3893
3894		spin_unlock(&pa->pa_lock);
3895
3896		list_del(&pa->pa_group_list);
3897		list_add(&pa->u.pa_tmp_list, &list);
3898	}
3899
3900	/* if we still need more blocks and some PAs were used, try again */
3901	if (free < needed && busy) {
3902		busy = 0;
3903		ext4_unlock_group(sb, group);
3904		cond_resched();
3905		goto repeat;
3906	}
3907
3908	/* found anything to free? */
3909	if (list_empty(&list)) {
3910		BUG_ON(free != 0);
3911		goto out;
3912	}
3913
3914	/* now free all selected PAs */
3915	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3916
3917		/* remove from object (inode or locality group) */
3918		spin_lock(pa->pa_obj_lock);
3919		list_del_rcu(&pa->pa_inode_list);
3920		spin_unlock(pa->pa_obj_lock);
 
 
 
 
 
 
 
3921
3922		if (pa->pa_type == MB_GROUP_PA)
 
 
3923			ext4_mb_release_group_pa(&e4b, pa);
3924		else
 
3925			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3926
3927		list_del(&pa->u.pa_tmp_list);
3928		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3929	}
3930
3931out:
3932	ext4_unlock_group(sb, group);
3933	ext4_mb_unload_buddy(&e4b);
3934	put_bh(bitmap_bh);
 
 
 
3935	return free;
3936}
3937
3938/*
3939 * releases all non-used preallocated blocks for given inode
3940 *
3941 * It's important to discard preallocations under i_data_sem
3942 * We don't want another block to be served from the prealloc
3943 * space when we are discarding the inode prealloc space.
3944 *
3945 * FIXME!! Make sure it is valid at all the call sites
3946 */
3947void ext4_discard_preallocations(struct inode *inode)
3948{
3949	struct ext4_inode_info *ei = EXT4_I(inode);
3950	struct super_block *sb = inode->i_sb;
3951	struct buffer_head *bitmap_bh = NULL;
3952	struct ext4_prealloc_space *pa, *tmp;
3953	ext4_group_t group = 0;
3954	struct list_head list;
3955	struct ext4_buddy e4b;
 
3956	int err;
3957
3958	if (!S_ISREG(inode->i_mode)) {
3959		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3960		return;
3961	}
3962
3963	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3964	trace_ext4_discard_preallocations(inode);
3965
3966	INIT_LIST_HEAD(&list);
 
 
 
3967
3968repeat:
3969	/* first, collect all pa's in the inode */
3970	spin_lock(&ei->i_prealloc_lock);
3971	while (!list_empty(&ei->i_prealloc_list)) {
3972		pa = list_entry(ei->i_prealloc_list.next,
3973				struct ext4_prealloc_space, pa_inode_list);
3974		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
 
 
3975		spin_lock(&pa->pa_lock);
3976		if (atomic_read(&pa->pa_count)) {
3977			/* this shouldn't happen often - nobody should
3978			 * use preallocation while we're discarding it */
3979			spin_unlock(&pa->pa_lock);
3980			spin_unlock(&ei->i_prealloc_lock);
3981			ext4_msg(sb, KERN_ERR,
3982				 "uh-oh! used pa while discarding");
3983			WARN_ON(1);
3984			schedule_timeout_uninterruptible(HZ);
3985			goto repeat;
3986
3987		}
3988		if (pa->pa_deleted == 0) {
3989			pa->pa_deleted = 1;
3990			spin_unlock(&pa->pa_lock);
3991			list_del_rcu(&pa->pa_inode_list);
3992			list_add(&pa->u.pa_tmp_list, &list);
3993			continue;
3994		}
3995
3996		/* someone is deleting pa right now */
3997		spin_unlock(&pa->pa_lock);
3998		spin_unlock(&ei->i_prealloc_lock);
3999
4000		/* we have to wait here because pa_deleted
4001		 * doesn't mean pa is already unlinked from
4002		 * the list. as we might be called from
4003		 * ->clear_inode() the inode will get freed
4004		 * and concurrent thread which is unlinking
4005		 * pa from inode's list may access already
4006		 * freed memory, bad-bad-bad */
4007
4008		/* XXX: if this happens too often, we can
4009		 * add a flag to force wait only in case
4010		 * of ->clear_inode(), but not in case of
4011		 * regular truncate */
4012		schedule_timeout_uninterruptible(HZ);
4013		goto repeat;
4014	}
4015	spin_unlock(&ei->i_prealloc_lock);
4016
4017	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4018		BUG_ON(pa->pa_type != MB_INODE_PA);
4019		group = ext4_get_group_number(sb, pa->pa_pstart);
4020
4021		err = ext4_mb_load_buddy(sb, group, &e4b);
 
4022		if (err) {
4023			ext4_error(sb, "Error loading buddy information for %u",
4024					group);
4025			continue;
4026		}
4027
4028		bitmap_bh = ext4_read_block_bitmap(sb, group);
4029		if (IS_ERR(bitmap_bh)) {
4030			err = PTR_ERR(bitmap_bh);
4031			ext4_error(sb, "Error %d reading block bitmap for %u",
4032					err, group);
4033			ext4_mb_unload_buddy(&e4b);
4034			continue;
4035		}
4036
4037		ext4_lock_group(sb, group);
4038		list_del(&pa->pa_group_list);
4039		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4040		ext4_unlock_group(sb, group);
4041
4042		ext4_mb_unload_buddy(&e4b);
4043		put_bh(bitmap_bh);
4044
4045		list_del(&pa->u.pa_tmp_list);
4046		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4047	}
4048}
4049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4050#ifdef CONFIG_EXT4_DEBUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4051static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4052{
4053	struct super_block *sb = ac->ac_sb;
4054	ext4_group_t ngroups, i;
4055
4056	if (!ext4_mballoc_debug ||
4057	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4058		return;
4059
4060	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4061			" Allocation context details:");
4062	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4063			ac->ac_status, ac->ac_flags);
4064	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4065		 	"goal %lu/%lu/%lu@%lu, "
4066			"best %lu/%lu/%lu@%lu cr %d",
4067			(unsigned long)ac->ac_o_ex.fe_group,
4068			(unsigned long)ac->ac_o_ex.fe_start,
4069			(unsigned long)ac->ac_o_ex.fe_len,
4070			(unsigned long)ac->ac_o_ex.fe_logical,
4071			(unsigned long)ac->ac_g_ex.fe_group,
4072			(unsigned long)ac->ac_g_ex.fe_start,
4073			(unsigned long)ac->ac_g_ex.fe_len,
4074			(unsigned long)ac->ac_g_ex.fe_logical,
4075			(unsigned long)ac->ac_b_ex.fe_group,
4076			(unsigned long)ac->ac_b_ex.fe_start,
4077			(unsigned long)ac->ac_b_ex.fe_len,
4078			(unsigned long)ac->ac_b_ex.fe_logical,
4079			(int)ac->ac_criteria);
4080	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4081	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4082	ngroups = ext4_get_groups_count(sb);
4083	for (i = 0; i < ngroups; i++) {
4084		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4085		struct ext4_prealloc_space *pa;
4086		ext4_grpblk_t start;
4087		struct list_head *cur;
4088		ext4_lock_group(sb, i);
4089		list_for_each(cur, &grp->bb_prealloc_list) {
4090			pa = list_entry(cur, struct ext4_prealloc_space,
4091					pa_group_list);
4092			spin_lock(&pa->pa_lock);
4093			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4094						     NULL, &start);
4095			spin_unlock(&pa->pa_lock);
4096			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4097			       start, pa->pa_len);
4098		}
4099		ext4_unlock_group(sb, i);
4100
4101		if (grp->bb_free == 0)
4102			continue;
4103		printk(KERN_ERR "%u: %d/%d \n",
4104		       i, grp->bb_free, grp->bb_fragments);
4105	}
4106	printk(KERN_ERR "\n");
4107}
4108#else
 
 
 
4109static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4110{
4111	return;
4112}
4113#endif
4114
4115/*
4116 * We use locality group preallocation for small size file. The size of the
4117 * file is determined by the current size or the resulting size after
4118 * allocation which ever is larger
4119 *
4120 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4121 */
4122static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4123{
4124	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4125	int bsbits = ac->ac_sb->s_blocksize_bits;
4126	loff_t size, isize;
 
4127
4128	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4129		return;
4130
4131	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4132		return;
4133
4134	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
 
 
4135	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4136		>> bsbits;
4137
4138	if ((size == isize) &&
4139	    !ext4_fs_is_busy(sbi) &&
4140	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4141		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4142		return;
4143	}
4144
4145	if (sbi->s_mb_group_prealloc <= 0) {
4146		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4147		return;
4148	}
4149
4150	/* don't use group allocation for large files */
4151	size = max(size, isize);
4152	if (size > sbi->s_mb_stream_request) {
4153		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
 
 
 
 
 
 
 
4154		return;
4155	}
4156
4157	BUG_ON(ac->ac_lg != NULL);
4158	/*
4159	 * locality group prealloc space are per cpu. The reason for having
4160	 * per cpu locality group is to reduce the contention between block
4161	 * request from multiple CPUs.
4162	 */
4163	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4164
4165	/* we're going to use group allocation */
4166	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4167
4168	/* serialize all allocations in the group */
4169	mutex_lock(&ac->ac_lg->lg_mutex);
4170}
4171
4172static noinline_for_stack int
4173ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4174				struct ext4_allocation_request *ar)
4175{
4176	struct super_block *sb = ar->inode->i_sb;
4177	struct ext4_sb_info *sbi = EXT4_SB(sb);
4178	struct ext4_super_block *es = sbi->s_es;
4179	ext4_group_t group;
4180	unsigned int len;
4181	ext4_fsblk_t goal;
4182	ext4_grpblk_t block;
4183
4184	/* we can't allocate > group size */
4185	len = ar->len;
4186
4187	/* just a dirty hack to filter too big requests  */
4188	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4189		len = EXT4_CLUSTERS_PER_GROUP(sb);
4190
4191	/* start searching from the goal */
4192	goal = ar->goal;
4193	if (goal < le32_to_cpu(es->s_first_data_block) ||
4194			goal >= ext4_blocks_count(es))
4195		goal = le32_to_cpu(es->s_first_data_block);
4196	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4197
4198	/* set up allocation goals */
4199	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4200	ac->ac_status = AC_STATUS_CONTINUE;
4201	ac->ac_sb = sb;
4202	ac->ac_inode = ar->inode;
4203	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4204	ac->ac_o_ex.fe_group = group;
4205	ac->ac_o_ex.fe_start = block;
4206	ac->ac_o_ex.fe_len = len;
4207	ac->ac_g_ex = ac->ac_o_ex;
 
4208	ac->ac_flags = ar->flags;
4209
4210	/* we have to define context: we'll we work with a file or
4211	 * locality group. this is a policy, actually */
4212	ext4_mb_group_or_file(ac);
4213
4214	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4215			"left: %u/%u, right %u/%u to %swritable\n",
4216			(unsigned) ar->len, (unsigned) ar->logical,
4217			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4218			(unsigned) ar->lleft, (unsigned) ar->pleft,
4219			(unsigned) ar->lright, (unsigned) ar->pright,
4220			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4221	return 0;
4222
4223}
4224
4225static noinline_for_stack void
4226ext4_mb_discard_lg_preallocations(struct super_block *sb,
4227					struct ext4_locality_group *lg,
4228					int order, int total_entries)
4229{
4230	ext4_group_t group = 0;
4231	struct ext4_buddy e4b;
4232	struct list_head discard_list;
4233	struct ext4_prealloc_space *pa, *tmp;
4234
4235	mb_debug(1, "discard locality group preallocation\n");
4236
4237	INIT_LIST_HEAD(&discard_list);
4238
4239	spin_lock(&lg->lg_prealloc_lock);
4240	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4241						pa_inode_list) {
 
4242		spin_lock(&pa->pa_lock);
4243		if (atomic_read(&pa->pa_count)) {
4244			/*
4245			 * This is the pa that we just used
4246			 * for block allocation. So don't
4247			 * free that
4248			 */
4249			spin_unlock(&pa->pa_lock);
4250			continue;
4251		}
4252		if (pa->pa_deleted) {
4253			spin_unlock(&pa->pa_lock);
4254			continue;
4255		}
4256		/* only lg prealloc space */
4257		BUG_ON(pa->pa_type != MB_GROUP_PA);
4258
4259		/* seems this one can be freed ... */
4260		pa->pa_deleted = 1;
4261		spin_unlock(&pa->pa_lock);
4262
4263		list_del_rcu(&pa->pa_inode_list);
4264		list_add(&pa->u.pa_tmp_list, &discard_list);
4265
4266		total_entries--;
4267		if (total_entries <= 5) {
4268			/*
4269			 * we want to keep only 5 entries
4270			 * allowing it to grow to 8. This
4271			 * mak sure we don't call discard
4272			 * soon for this list.
4273			 */
4274			break;
4275		}
4276	}
4277	spin_unlock(&lg->lg_prealloc_lock);
4278
4279	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
 
4280
4281		group = ext4_get_group_number(sb, pa->pa_pstart);
4282		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4283			ext4_error(sb, "Error loading buddy information for %u",
4284					group);
 
 
4285			continue;
4286		}
4287		ext4_lock_group(sb, group);
4288		list_del(&pa->pa_group_list);
4289		ext4_mb_release_group_pa(&e4b, pa);
4290		ext4_unlock_group(sb, group);
4291
4292		ext4_mb_unload_buddy(&e4b);
4293		list_del(&pa->u.pa_tmp_list);
4294		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4295	}
4296}
4297
4298/*
4299 * We have incremented pa_count. So it cannot be freed at this
4300 * point. Also we hold lg_mutex. So no parallel allocation is
4301 * possible from this lg. That means pa_free cannot be updated.
4302 *
4303 * A parallel ext4_mb_discard_group_preallocations is possible.
4304 * which can cause the lg_prealloc_list to be updated.
4305 */
4306
4307static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4308{
4309	int order, added = 0, lg_prealloc_count = 1;
4310	struct super_block *sb = ac->ac_sb;
4311	struct ext4_locality_group *lg = ac->ac_lg;
4312	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4313
4314	order = fls(pa->pa_free) - 1;
4315	if (order > PREALLOC_TB_SIZE - 1)
4316		/* The max size of hash table is PREALLOC_TB_SIZE */
4317		order = PREALLOC_TB_SIZE - 1;
4318	/* Add the prealloc space to lg */
4319	spin_lock(&lg->lg_prealloc_lock);
4320	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4321						pa_inode_list) {
 
4322		spin_lock(&tmp_pa->pa_lock);
4323		if (tmp_pa->pa_deleted) {
4324			spin_unlock(&tmp_pa->pa_lock);
4325			continue;
4326		}
4327		if (!added && pa->pa_free < tmp_pa->pa_free) {
4328			/* Add to the tail of the previous entry */
4329			list_add_tail_rcu(&pa->pa_inode_list,
4330						&tmp_pa->pa_inode_list);
4331			added = 1;
4332			/*
4333			 * we want to count the total
4334			 * number of entries in the list
4335			 */
4336		}
4337		spin_unlock(&tmp_pa->pa_lock);
4338		lg_prealloc_count++;
4339	}
4340	if (!added)
4341		list_add_tail_rcu(&pa->pa_inode_list,
4342					&lg->lg_prealloc_list[order]);
4343	spin_unlock(&lg->lg_prealloc_lock);
4344
4345	/* Now trim the list to be not more than 8 elements */
4346	if (lg_prealloc_count > 8) {
4347		ext4_mb_discard_lg_preallocations(sb, lg,
4348						  order, lg_prealloc_count);
4349		return;
4350	}
4351	return ;
4352}
4353
4354/*
4355 * release all resource we used in allocation
4356 */
4357static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4358{
4359	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4360	struct ext4_prealloc_space *pa = ac->ac_pa;
4361	if (pa) {
4362		if (pa->pa_type == MB_GROUP_PA) {
4363			/* see comment in ext4_mb_use_group_pa() */
4364			spin_lock(&pa->pa_lock);
4365			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4366			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4367			pa->pa_free -= ac->ac_b_ex.fe_len;
4368			pa->pa_len -= ac->ac_b_ex.fe_len;
4369			spin_unlock(&pa->pa_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
4370		}
4371	}
4372	if (pa) {
4373		/*
4374		 * We want to add the pa to the right bucket.
4375		 * Remove it from the list and while adding
4376		 * make sure the list to which we are adding
4377		 * doesn't grow big.
4378		 */
4379		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4380			spin_lock(pa->pa_obj_lock);
4381			list_del_rcu(&pa->pa_inode_list);
4382			spin_unlock(pa->pa_obj_lock);
4383			ext4_mb_add_n_trim(ac);
4384		}
4385		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4386	}
4387	if (ac->ac_bitmap_page)
4388		put_page(ac->ac_bitmap_page);
4389	if (ac->ac_buddy_page)
4390		put_page(ac->ac_buddy_page);
4391	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4392		mutex_unlock(&ac->ac_lg->lg_mutex);
4393	ext4_mb_collect_stats(ac);
4394	return 0;
4395}
4396
4397static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4398{
4399	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4400	int ret;
4401	int freed = 0;
 
4402
4403	trace_ext4_mb_discard_preallocations(sb, needed);
 
 
 
 
4404	for (i = 0; i < ngroups && needed > 0; i++) {
4405		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4406		freed += ret;
4407		needed -= ret;
 
 
 
 
 
 
4408	}
4409
4410	return freed;
4411}
4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4413/*
4414 * Main entry point into mballoc to allocate blocks
4415 * it tries to use preallocation first, then falls back
4416 * to usual allocation
4417 */
4418ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4419				struct ext4_allocation_request *ar, int *errp)
4420{
4421	int freed;
4422	struct ext4_allocation_context *ac = NULL;
4423	struct ext4_sb_info *sbi;
4424	struct super_block *sb;
4425	ext4_fsblk_t block = 0;
4426	unsigned int inquota = 0;
4427	unsigned int reserv_clstrs = 0;
 
 
4428
4429	might_sleep();
4430	sb = ar->inode->i_sb;
4431	sbi = EXT4_SB(sb);
4432
4433	trace_ext4_request_blocks(ar);
 
 
4434
4435	/* Allow to use superuser reservation for quota file */
4436	if (IS_NOQUOTA(ar->inode))
4437		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4438
4439	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4440		/* Without delayed allocation we need to verify
4441		 * there is enough free blocks to do block allocation
4442		 * and verify allocation doesn't exceed the quota limits.
4443		 */
4444		while (ar->len &&
4445			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4446
4447			/* let others to free the space */
4448			cond_resched();
4449			ar->len = ar->len >> 1;
4450		}
4451		if (!ar->len) {
 
4452			*errp = -ENOSPC;
4453			return 0;
4454		}
4455		reserv_clstrs = ar->len;
4456		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4457			dquot_alloc_block_nofail(ar->inode,
4458						 EXT4_C2B(sbi, ar->len));
4459		} else {
4460			while (ar->len &&
4461				dquot_alloc_block(ar->inode,
4462						  EXT4_C2B(sbi, ar->len))) {
4463
4464				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4465				ar->len--;
4466			}
4467		}
4468		inquota = ar->len;
4469		if (ar->len == 0) {
4470			*errp = -EDQUOT;
4471			goto out;
4472		}
4473	}
4474
4475	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4476	if (!ac) {
4477		ar->len = 0;
4478		*errp = -ENOMEM;
4479		goto out;
4480	}
4481
4482	*errp = ext4_mb_initialize_context(ac, ar);
4483	if (*errp) {
4484		ar->len = 0;
4485		goto out;
4486	}
4487
4488	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
 
4489	if (!ext4_mb_use_preallocated(ac)) {
4490		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4491		ext4_mb_normalize_request(ac, ar);
 
 
 
 
4492repeat:
4493		/* allocate space in core */
4494		*errp = ext4_mb_regular_allocator(ac);
4495		if (*errp)
4496			goto discard_and_exit;
4497
4498		/* as we've just preallocated more space than
4499		 * user requested originally, we store allocated
4500		 * space in a special descriptor */
4501		if (ac->ac_status == AC_STATUS_FOUND &&
4502		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4503			*errp = ext4_mb_new_preallocation(ac);
4504		if (*errp) {
4505		discard_and_exit:
4506			ext4_discard_allocated_blocks(ac);
4507			goto errout;
4508		}
 
 
 
4509	}
4510	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4511		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4512		if (*errp == -EAGAIN) {
4513			/*
4514			 * drop the reference that we took
4515			 * in ext4_mb_use_best_found
4516			 */
4517			ext4_mb_release_context(ac);
4518			ac->ac_b_ex.fe_group = 0;
4519			ac->ac_b_ex.fe_start = 0;
4520			ac->ac_b_ex.fe_len = 0;
4521			ac->ac_status = AC_STATUS_CONTINUE;
4522			goto repeat;
4523		} else if (*errp) {
4524			ext4_discard_allocated_blocks(ac);
4525			goto errout;
4526		} else {
4527			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4528			ar->len = ac->ac_b_ex.fe_len;
4529		}
4530	} else {
4531		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4532		if (freed)
4533			goto repeat;
 
 
 
 
 
4534		*errp = -ENOSPC;
4535	}
4536
4537errout:
4538	if (*errp) {
 
4539		ac->ac_b_ex.fe_len = 0;
4540		ar->len = 0;
4541		ext4_mb_show_ac(ac);
4542	}
4543	ext4_mb_release_context(ac);
 
4544out:
4545	if (ac)
4546		kmem_cache_free(ext4_ac_cachep, ac);
4547	if (inquota && ar->len < inquota)
4548		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4549	if (!ar->len) {
4550		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4551			/* release all the reserved blocks if non delalloc */
4552			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4553						reserv_clstrs);
4554	}
4555
4556	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4557
4558	return block;
4559}
4560
4561/*
4562 * We can merge two free data extents only if the physical blocks
4563 * are contiguous, AND the extents were freed by the same transaction,
4564 * AND the blocks are associated with the same group.
4565 */
4566static int can_merge(struct ext4_free_data *entry1,
4567			struct ext4_free_data *entry2)
 
 
4568{
4569	if ((entry1->efd_tid == entry2->efd_tid) &&
4570	    (entry1->efd_group == entry2->efd_group) &&
4571	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4572		return 1;
4573	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
4574}
4575
4576static noinline_for_stack int
4577ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4578		      struct ext4_free_data *new_entry)
4579{
4580	ext4_group_t group = e4b->bd_group;
4581	ext4_grpblk_t cluster;
 
4582	struct ext4_free_data *entry;
4583	struct ext4_group_info *db = e4b->bd_info;
4584	struct super_block *sb = e4b->bd_sb;
4585	struct ext4_sb_info *sbi = EXT4_SB(sb);
4586	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4587	struct rb_node *parent = NULL, *new_node;
4588
4589	BUG_ON(!ext4_handle_valid(handle));
4590	BUG_ON(e4b->bd_bitmap_page == NULL);
4591	BUG_ON(e4b->bd_buddy_page == NULL);
4592
4593	new_node = &new_entry->efd_node;
4594	cluster = new_entry->efd_start_cluster;
4595
4596	if (!*n) {
4597		/* first free block exent. We need to
4598		   protect buddy cache from being freed,
4599		 * otherwise we'll refresh it from
4600		 * on-disk bitmap and lose not-yet-available
4601		 * blocks */
4602		get_page(e4b->bd_buddy_page);
4603		get_page(e4b->bd_bitmap_page);
4604	}
4605	while (*n) {
4606		parent = *n;
4607		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4608		if (cluster < entry->efd_start_cluster)
4609			n = &(*n)->rb_left;
4610		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4611			n = &(*n)->rb_right;
4612		else {
4613			ext4_grp_locked_error(sb, group, 0,
4614				ext4_group_first_block_no(sb, group) +
4615				EXT4_C2B(sbi, cluster),
4616				"Block already on to-be-freed list");
4617			return 0;
 
4618		}
4619	}
4620
4621	rb_link_node(new_node, parent, n);
4622	rb_insert_color(new_node, &db->bb_free_root);
4623
4624	/* Now try to see the extent can be merged to left and right */
4625	node = rb_prev(new_node);
4626	if (node) {
4627		entry = rb_entry(node, struct ext4_free_data, efd_node);
4628		if (can_merge(entry, new_entry) &&
4629		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4630			new_entry->efd_start_cluster = entry->efd_start_cluster;
4631			new_entry->efd_count += entry->efd_count;
4632			rb_erase(node, &(db->bb_free_root));
4633			kmem_cache_free(ext4_free_data_cachep, entry);
4634		}
4635	}
4636
4637	node = rb_next(new_node);
4638	if (node) {
4639		entry = rb_entry(node, struct ext4_free_data, efd_node);
4640		if (can_merge(new_entry, entry) &&
4641		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4642			new_entry->efd_count += entry->efd_count;
4643			rb_erase(node, &(db->bb_free_root));
4644			kmem_cache_free(ext4_free_data_cachep, entry);
4645		}
4646	}
4647	/* Add the extent to transaction's private list */
4648	ext4_journal_callback_add(handle, ext4_free_data_callback,
4649				  &new_entry->efd_jce);
4650	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4651}
4652
4653/**
4654 * ext4_free_blocks() -- Free given blocks and update quota
 
4655 * @handle:		handle for this transaction
4656 * @inode:		inode
4657 * @block:		start physical block to free
4658 * @count:		number of blocks to count
4659 * @flags:		flags used by ext4_free_blocks
4660 */
4661void ext4_free_blocks(handle_t *handle, struct inode *inode,
4662		      struct buffer_head *bh, ext4_fsblk_t block,
4663		      unsigned long count, int flags)
4664{
4665	struct buffer_head *bitmap_bh = NULL;
4666	struct super_block *sb = inode->i_sb;
4667	struct ext4_group_desc *gdp;
4668	unsigned int overflow;
4669	ext4_grpblk_t bit;
4670	struct buffer_head *gd_bh;
4671	ext4_group_t block_group;
4672	struct ext4_sb_info *sbi;
4673	struct ext4_buddy e4b;
4674	unsigned int count_clusters;
4675	int err = 0;
4676	int ret;
4677
4678	might_sleep();
4679	if (bh) {
4680		if (block)
4681			BUG_ON(block != bh->b_blocknr);
4682		else
4683			block = bh->b_blocknr;
4684	}
4685
4686	sbi = EXT4_SB(sb);
4687	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4688	    !ext4_data_block_valid(sbi, block, count)) {
4689		ext4_error(sb, "Freeing blocks not in datazone - "
4690			   "block = %llu, count = %lu", block, count);
4691		goto error_return;
4692	}
4693
4694	ext4_debug("freeing block %llu\n", block);
4695	trace_ext4_free_blocks(inode, block, count, flags);
4696
4697	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4698		BUG_ON(count > 1);
4699
4700		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4701			    inode, bh, block);
4702	}
4703
4704	/*
4705	 * If the extent to be freed does not begin on a cluster
4706	 * boundary, we need to deal with partial clusters at the
4707	 * beginning and end of the extent.  Normally we will free
4708	 * blocks at the beginning or the end unless we are explicitly
4709	 * requested to avoid doing so.
4710	 */
4711	overflow = EXT4_PBLK_COFF(sbi, block);
4712	if (overflow) {
4713		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4714			overflow = sbi->s_cluster_ratio - overflow;
4715			block += overflow;
4716			if (count > overflow)
4717				count -= overflow;
4718			else
4719				return;
4720		} else {
4721			block -= overflow;
4722			count += overflow;
4723		}
4724	}
4725	overflow = EXT4_LBLK_COFF(sbi, count);
4726	if (overflow) {
4727		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4728			if (count > overflow)
4729				count -= overflow;
4730			else
4731				return;
4732		} else
4733			count += sbi->s_cluster_ratio - overflow;
4734	}
4735
4736	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4737		int i;
4738		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4739
4740		for (i = 0; i < count; i++) {
4741			cond_resched();
4742			if (is_metadata)
4743				bh = sb_find_get_block(inode->i_sb, block + i);
4744			ext4_forget(handle, is_metadata, inode, bh, block + i);
4745		}
4746	}
 
4747
4748do_more:
4749	overflow = 0;
4750	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4751
4752	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4753			ext4_get_group_info(sb, block_group))))
4754		return;
4755
4756	/*
4757	 * Check to see if we are freeing blocks across a group
4758	 * boundary.
4759	 */
4760	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4761		overflow = EXT4_C2B(sbi, bit) + count -
4762			EXT4_BLOCKS_PER_GROUP(sb);
4763		count -= overflow;
 
 
4764	}
4765	count_clusters = EXT4_NUM_B2C(sbi, count);
4766	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4767	if (IS_ERR(bitmap_bh)) {
4768		err = PTR_ERR(bitmap_bh);
4769		bitmap_bh = NULL;
4770		goto error_return;
4771	}
4772	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4773	if (!gdp) {
4774		err = -EIO;
4775		goto error_return;
4776	}
4777
4778	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4779	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4780	    in_range(block, ext4_inode_table(sb, gdp),
4781		     EXT4_SB(sb)->s_itb_per_group) ||
4782	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4783		     EXT4_SB(sb)->s_itb_per_group)) {
4784
 
 
4785		ext4_error(sb, "Freeing blocks in system zone - "
4786			   "Block = %llu, count = %lu", block, count);
4787		/* err = 0. ext4_std_error should be a no op */
4788		goto error_return;
4789	}
4790
4791	BUFFER_TRACE(bitmap_bh, "getting write access");
4792	err = ext4_journal_get_write_access(handle, bitmap_bh);
4793	if (err)
4794		goto error_return;
4795
4796	/*
4797	 * We are about to modify some metadata.  Call the journal APIs
4798	 * to unshare ->b_data if a currently-committing transaction is
4799	 * using it
4800	 */
4801	BUFFER_TRACE(gd_bh, "get_write_access");
4802	err = ext4_journal_get_write_access(handle, gd_bh);
4803	if (err)
4804		goto error_return;
4805#ifdef AGGRESSIVE_CHECK
4806	{
4807		int i;
4808		for (i = 0; i < count_clusters; i++)
4809			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4810	}
4811#endif
4812	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
 
4813
4814	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4815	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4816				     GFP_NOFS|__GFP_NOFAIL);
4817	if (err)
4818		goto error_return;
 
 
4819
4820	/*
4821	 * We need to make sure we don't reuse the freed block until after the
4822	 * transaction is committed. We make an exception if the inode is to be
4823	 * written in writeback mode since writeback mode has weak data
4824	 * consistency guarantees.
4825	 */
4826	if (ext4_handle_valid(handle) &&
4827	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4828	     !ext4_should_writeback_data(inode))) {
4829		struct ext4_free_data *new_entry;
4830		/*
4831		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4832		 * to fail.
4833		 */
4834		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4835				GFP_NOFS|__GFP_NOFAIL);
4836		new_entry->efd_start_cluster = bit;
4837		new_entry->efd_group = block_group;
4838		new_entry->efd_count = count_clusters;
4839		new_entry->efd_tid = handle->h_transaction->t_tid;
4840
4841		ext4_lock_group(sb, block_group);
4842		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843		ext4_mb_free_metadata(handle, &e4b, new_entry);
4844	} else {
4845		/* need to update group_info->bb_free and bitmap
4846		 * with group lock held. generate_buddy look at
4847		 * them with group lock_held
4848		 */
4849		if (test_opt(sb, DISCARD)) {
4850			err = ext4_issue_discard(sb, block_group, bit, count);
 
4851			if (err && err != -EOPNOTSUPP)
4852				ext4_msg(sb, KERN_WARNING, "discard request in"
4853					 " group:%d block:%d count:%lu failed"
4854					 " with %d", block_group, bit, count,
4855					 err);
4856		} else
4857			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4858
4859		ext4_lock_group(sb, block_group);
4860		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4861		mb_free_blocks(inode, &e4b, bit, count_clusters);
4862	}
4863
4864	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4865	ext4_free_group_clusters_set(sb, gdp, ret);
4866	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4867	ext4_group_desc_csum_set(sb, block_group, gdp);
4868	ext4_unlock_group(sb, block_group);
4869
4870	if (sbi->s_log_groups_per_flex) {
4871		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4872		atomic64_add(count_clusters,
4873			     &sbi->s_flex_groups[flex_group].free_clusters);
 
 
 
 
 
 
4874	}
4875
4876	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4877		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4878	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4879
4880	ext4_mb_unload_buddy(&e4b);
4881
4882	/* We dirtied the bitmap block */
4883	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4884	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4885
4886	/* And the group descriptor block */
4887	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4888	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4889	if (!err)
4890		err = ret;
4891
4892	if (overflow && !err) {
4893		block += count;
4894		count = overflow;
4895		put_bh(bitmap_bh);
 
 
4896		goto do_more;
4897	}
4898error_return:
4899	brelse(bitmap_bh);
 
 
4900	ext4_std_error(sb, err);
4901	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4902}
4903
4904/**
4905 * ext4_group_add_blocks() -- Add given blocks to an existing group
4906 * @handle:			handle to this transaction
4907 * @sb:				super block
4908 * @block:			start physical block to add to the block group
4909 * @count:			number of blocks to free
4910 *
4911 * This marks the blocks as free in the bitmap and buddy.
4912 */
4913int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4914			 ext4_fsblk_t block, unsigned long count)
4915{
4916	struct buffer_head *bitmap_bh = NULL;
4917	struct buffer_head *gd_bh;
4918	ext4_group_t block_group;
4919	ext4_grpblk_t bit;
4920	unsigned int i;
4921	struct ext4_group_desc *desc;
4922	struct ext4_sb_info *sbi = EXT4_SB(sb);
4923	struct ext4_buddy e4b;
4924	int err = 0, ret, blk_free_count;
4925	ext4_grpblk_t blocks_freed;
 
 
 
4926
4927	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4928
4929	if (count == 0)
4930		return 0;
4931
4932	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4933	/*
4934	 * Check to see if we are freeing blocks across a group
4935	 * boundary.
4936	 */
4937	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4938		ext4_warning(sb, "too much blocks added to group %u\n",
4939			     block_group);
4940		err = -EINVAL;
4941		goto error_return;
4942	}
4943
4944	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4945	if (IS_ERR(bitmap_bh)) {
4946		err = PTR_ERR(bitmap_bh);
4947		bitmap_bh = NULL;
4948		goto error_return;
4949	}
4950
4951	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4952	if (!desc) {
4953		err = -EIO;
4954		goto error_return;
4955	}
4956
4957	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4958	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4959	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4960	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4961		     sbi->s_itb_per_group)) {
4962		ext4_error(sb, "Adding blocks in system zones - "
4963			   "Block = %llu, count = %lu",
4964			   block, count);
4965		err = -EINVAL;
4966		goto error_return;
4967	}
4968
4969	BUFFER_TRACE(bitmap_bh, "getting write access");
4970	err = ext4_journal_get_write_access(handle, bitmap_bh);
4971	if (err)
4972		goto error_return;
4973
4974	/*
4975	 * We are about to modify some metadata.  Call the journal APIs
4976	 * to unshare ->b_data if a currently-committing transaction is
4977	 * using it
4978	 */
4979	BUFFER_TRACE(gd_bh, "get_write_access");
4980	err = ext4_journal_get_write_access(handle, gd_bh);
4981	if (err)
4982		goto error_return;
4983
4984	for (i = 0, blocks_freed = 0; i < count; i++) {
4985		BUFFER_TRACE(bitmap_bh, "clear bit");
4986		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4987			ext4_error(sb, "bit already cleared for block %llu",
4988				   (ext4_fsblk_t)(block + i));
4989			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4990		} else {
4991			blocks_freed++;
4992		}
4993	}
4994
4995	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4996	if (err)
4997		goto error_return;
4998
4999	/*
5000	 * need to update group_info->bb_free and bitmap
5001	 * with group lock held. generate_buddy look at
5002	 * them with group lock_held
5003	 */
5004	ext4_lock_group(sb, block_group);
5005	mb_clear_bits(bitmap_bh->b_data, bit, count);
5006	mb_free_blocks(NULL, &e4b, bit, count);
5007	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5008	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5009	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5010	ext4_group_desc_csum_set(sb, block_group, desc);
5011	ext4_unlock_group(sb, block_group);
5012	percpu_counter_add(&sbi->s_freeclusters_counter,
5013			   EXT4_NUM_B2C(sbi, blocks_freed));
5014
5015	if (sbi->s_log_groups_per_flex) {
5016		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5017		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5018			     &sbi->s_flex_groups[flex_group].free_clusters);
5019	}
5020
 
5021	ext4_mb_unload_buddy(&e4b);
5022
5023	/* We dirtied the bitmap block */
5024	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5025	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5026
5027	/* And the group descriptor block */
5028	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5029	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5030	if (!err)
5031		err = ret;
5032
5033error_return:
5034	brelse(bitmap_bh);
5035	ext4_std_error(sb, err);
5036	return err;
5037}
5038
5039/**
5040 * ext4_trim_extent -- function to TRIM one single free extent in the group
5041 * @sb:		super block for the file system
5042 * @start:	starting block of the free extent in the alloc. group
5043 * @count:	number of blocks to TRIM
5044 * @group:	alloc. group we are working with
5045 * @e4b:	ext4 buddy for the group
5046 *
5047 * Trim "count" blocks starting at "start" in the "group". To assure that no
5048 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5049 * be called with under the group lock.
5050 */
5051static int ext4_trim_extent(struct super_block *sb, int start, int count,
5052			     ext4_group_t group, struct ext4_buddy *e4b)
5053__releases(bitlock)
5054__acquires(bitlock)
5055{
5056	struct ext4_free_extent ex;
 
5057	int ret = 0;
5058
5059	trace_ext4_trim_extent(sb, group, start, count);
5060
5061	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5062
5063	ex.fe_start = start;
5064	ex.fe_group = group;
5065	ex.fe_len = count;
5066
5067	/*
5068	 * Mark blocks used, so no one can reuse them while
5069	 * being trimmed.
5070	 */
5071	mb_mark_used(e4b, &ex);
5072	ext4_unlock_group(sb, group);
5073	ret = ext4_issue_discard(sb, group, start, count);
5074	ext4_lock_group(sb, group);
5075	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5076	return ret;
5077}
5078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5079/**
5080 * ext4_trim_all_free -- function to trim all free space in alloc. group
5081 * @sb:			super block for file system
5082 * @group:		group to be trimmed
5083 * @start:		first group block to examine
5084 * @max:		last group block to examine
5085 * @minblocks:		minimum extent block count
5086 *
5087 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5088 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5089 * the extent.
5090 *
5091 *
5092 * ext4_trim_all_free walks through group's block bitmap searching for free
5093 * extents. When the free extent is found, mark it as used in group buddy
5094 * bitmap. Then issue a TRIM command on this extent and free the extent in
5095 * the group buddy bitmap. This is done until whole group is scanned.
5096 */
5097static ext4_grpblk_t
5098ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5099		   ext4_grpblk_t start, ext4_grpblk_t max,
5100		   ext4_grpblk_t minblocks)
5101{
5102	void *bitmap;
5103	ext4_grpblk_t next, count = 0, free_count = 0;
5104	struct ext4_buddy e4b;
5105	int ret = 0;
5106
5107	trace_ext4_trim_all_free(sb, group, start, max);
5108
5109	ret = ext4_mb_load_buddy(sb, group, &e4b);
5110	if (ret) {
5111		ext4_error(sb, "Error in loading buddy "
5112				"information for %u", group);
5113		return ret;
5114	}
5115	bitmap = e4b.bd_bitmap;
5116
5117	ext4_lock_group(sb, group);
5118	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5119	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5120		goto out;
5121
5122	start = (e4b.bd_info->bb_first_free > start) ?
5123		e4b.bd_info->bb_first_free : start;
5124
5125	while (start <= max) {
5126		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5127		if (start > max)
5128			break;
5129		next = mb_find_next_bit(bitmap, max + 1, start);
5130
5131		if ((next - start) >= minblocks) {
5132			ret = ext4_trim_extent(sb, start,
5133					       next - start, group, &e4b);
5134			if (ret && ret != -EOPNOTSUPP)
5135				break;
5136			ret = 0;
5137			count += next - start;
5138		}
5139		free_count += next - start;
5140		start = next + 1;
5141
5142		if (fatal_signal_pending(current)) {
5143			count = -ERESTARTSYS;
5144			break;
5145		}
5146
5147		if (need_resched()) {
5148			ext4_unlock_group(sb, group);
5149			cond_resched();
5150			ext4_lock_group(sb, group);
5151		}
5152
5153		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5154			break;
5155	}
5156
5157	if (!ret) {
5158		ret = count;
5159		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5160	}
5161out:
5162	ext4_unlock_group(sb, group);
5163	ext4_mb_unload_buddy(&e4b);
5164
5165	ext4_debug("trimmed %d blocks in the group %d\n",
5166		count, group);
5167
5168	return ret;
5169}
5170
5171/**
5172 * ext4_trim_fs() -- trim ioctl handle function
5173 * @sb:			superblock for filesystem
5174 * @range:		fstrim_range structure
5175 *
5176 * start:	First Byte to trim
5177 * len:		number of Bytes to trim from start
5178 * minlen:	minimum extent length in Bytes
5179 * ext4_trim_fs goes through all allocation groups containing Bytes from
5180 * start to start+len. For each such a group ext4_trim_all_free function
5181 * is invoked to trim all free space.
5182 */
5183int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5184{
 
5185	struct ext4_group_info *grp;
5186	ext4_group_t group, first_group, last_group;
5187	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5188	uint64_t start, end, minlen, trimmed = 0;
5189	ext4_fsblk_t first_data_blk =
5190			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5191	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5192	int ret = 0;
5193
5194	start = range->start >> sb->s_blocksize_bits;
5195	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5196	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5197			      range->minlen >> sb->s_blocksize_bits);
5198
5199	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5200	    start >= max_blks ||
5201	    range->len < sb->s_blocksize)
5202		return -EINVAL;
5203	if (end >= max_blks)
 
 
 
 
 
 
 
5204		end = max_blks - 1;
5205	if (end <= first_data_blk)
5206		goto out;
5207	if (start < first_data_blk)
5208		start = first_data_blk;
5209
5210	/* Determine first and last group to examine based on start and end */
5211	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5212				     &first_group, &first_cluster);
5213	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5214				     &last_group, &last_cluster);
5215
5216	/* end now represents the last cluster to discard in this group */
5217	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5218
5219	for (group = first_group; group <= last_group; group++) {
 
 
5220		grp = ext4_get_group_info(sb, group);
 
 
5221		/* We only do this if the grp has never been initialized */
5222		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5223			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5224			if (ret)
5225				break;
5226		}
5227
5228		/*
5229		 * For all the groups except the last one, last cluster will
5230		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5231		 * change it for the last group, note that last_cluster is
5232		 * already computed earlier by ext4_get_group_no_and_offset()
5233		 */
5234		if (group == last_group)
5235			end = last_cluster;
5236
5237		if (grp->bb_free >= minlen) {
5238			cnt = ext4_trim_all_free(sb, group, first_cluster,
5239						end, minlen);
5240			if (cnt < 0) {
5241				ret = cnt;
5242				break;
5243			}
5244			trimmed += cnt;
5245		}
5246
5247		/*
5248		 * For every group except the first one, we are sure
5249		 * that the first cluster to discard will be cluster #0.
5250		 */
5251		first_cluster = 0;
5252	}
5253
5254	if (!ret)
5255		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5256
5257out:
5258	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5259	return ret;
5260}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   4 * Written by Alex Tomas <alex@clusterfs.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7
   8/*
   9 * mballoc.c contains the multiblocks allocation routines
  10 */
  11
  12#include "ext4_jbd2.h"
  13#include "mballoc.h"
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/nospec.h>
  18#include <linux/backing-dev.h>
  19#include <linux/freezer.h>
  20#include <trace/events/ext4.h>
  21#include <kunit/static_stub.h>
 
 
 
 
 
 
  22
  23/*
  24 * MUSTDO:
  25 *   - test ext4_ext_search_left() and ext4_ext_search_right()
  26 *   - search for metadata in few groups
  27 *
  28 * TODO v4:
  29 *   - normalization should take into account whether file is still open
  30 *   - discard preallocations if no free space left (policy?)
  31 *   - don't normalize tails
  32 *   - quota
  33 *   - reservation for superuser
  34 *
  35 * TODO v3:
  36 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
  37 *   - track min/max extents in each group for better group selection
  38 *   - mb_mark_used() may allocate chunk right after splitting buddy
  39 *   - tree of groups sorted by number of free blocks
  40 *   - error handling
  41 */
  42
  43/*
  44 * The allocation request involve request for multiple number of blocks
  45 * near to the goal(block) value specified.
  46 *
  47 * During initialization phase of the allocator we decide to use the
  48 * group preallocation or inode preallocation depending on the size of
  49 * the file. The size of the file could be the resulting file size we
  50 * would have after allocation, or the current file size, which ever
  51 * is larger. If the size is less than sbi->s_mb_stream_request we
  52 * select to use the group preallocation. The default value of
  53 * s_mb_stream_request is 16 blocks. This can also be tuned via
  54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
  55 * terms of number of blocks.
  56 *
  57 * The main motivation for having small file use group preallocation is to
  58 * ensure that we have small files closer together on the disk.
  59 *
  60 * First stage the allocator looks at the inode prealloc list,
  61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
  62 * spaces for this particular inode. The inode prealloc space is
  63 * represented as:
  64 *
  65 * pa_lstart -> the logical start block for this prealloc space
  66 * pa_pstart -> the physical start block for this prealloc space
  67 * pa_len    -> length for this prealloc space (in clusters)
  68 * pa_free   ->  free space available in this prealloc space (in clusters)
  69 *
  70 * The inode preallocation space is used looking at the _logical_ start
  71 * block. If only the logical file block falls within the range of prealloc
  72 * space we will consume the particular prealloc space. This makes sure that
  73 * we have contiguous physical blocks representing the file blocks
  74 *
  75 * The important thing to be noted in case of inode prealloc space is that
  76 * we don't modify the values associated to inode prealloc space except
  77 * pa_free.
  78 *
  79 * If we are not able to find blocks in the inode prealloc space and if we
  80 * have the group allocation flag set then we look at the locality group
  81 * prealloc space. These are per CPU prealloc list represented as
  82 *
  83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
  84 *
  85 * The reason for having a per cpu locality group is to reduce the contention
  86 * between CPUs. It is possible to get scheduled at this point.
  87 *
  88 * The locality group prealloc space is used looking at whether we have
  89 * enough free space (pa_free) within the prealloc space.
  90 *
  91 * If we can't allocate blocks via inode prealloc or/and locality group
  92 * prealloc then we look at the buddy cache. The buddy cache is represented
  93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
  94 * mapped to the buddy and bitmap information regarding different
  95 * groups. The buddy information is attached to buddy cache inode so that
  96 * we can access them through the page cache. The information regarding
  97 * each group is loaded via ext4_mb_load_buddy.  The information involve
  98 * block bitmap and buddy information. The information are stored in the
  99 * inode as:
 100 *
 101 *  {                        page                        }
 102 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
 103 *
 104 *
 105 * one block each for bitmap and buddy information.  So for each group we
 106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
 107 * blocksize) blocks.  So it can have information regarding groups_per_page
 108 * which is blocks_per_page/2
 109 *
 110 * The buddy cache inode is not stored on disk. The inode is thrown
 111 * away when the filesystem is unmounted.
 112 *
 113 * We look for count number of blocks in the buddy cache. If we were able
 114 * to locate that many free blocks we return with additional information
 115 * regarding rest of the contiguous physical block available
 116 *
 117 * Before allocating blocks via buddy cache we normalize the request
 118 * blocks. This ensure we ask for more blocks that we needed. The extra
 119 * blocks that we get after allocation is added to the respective prealloc
 120 * list. In case of inode preallocation we follow a list of heuristics
 121 * based on file size. This can be found in ext4_mb_normalize_request. If
 122 * we are doing a group prealloc we try to normalize the request to
 123 * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
 124 * dependent on the cluster size; for non-bigalloc file systems, it is
 125 * 512 blocks. This can be tuned via
 126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
 127 * terms of number of blocks. If we have mounted the file system with -O
 128 * stripe=<value> option the group prealloc request is normalized to the
 129 * smallest multiple of the stripe value (sbi->s_stripe) which is
 130 * greater than the default mb_group_prealloc.
 131 *
 132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
 133 * structures in two data structures:
 134 *
 135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
 136 *
 137 *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
 138 *
 139 *    This is an array of lists where the index in the array represents the
 140 *    largest free order in the buddy bitmap of the participating group infos of
 141 *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
 142 *    number of buddy bitmap orders possible) number of lists. Group-infos are
 143 *    placed in appropriate lists.
 144 *
 145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
 146 *
 147 *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
 148 *
 149 *    This is an array of lists where in the i-th list there are groups with
 150 *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
 151 *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
 152 *    Note that we don't bother with a special list for completely empty groups
 153 *    so we only have MB_NUM_ORDERS(sb) lists.
 154 *
 155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
 156 * structures to decide the order in which groups are to be traversed for
 157 * fulfilling an allocation request.
 158 *
 159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
 160 * >= the order of the request. We directly look at the largest free order list
 161 * in the data structure (1) above where largest_free_order = order of the
 162 * request. If that list is empty, we look at remaining list in the increasing
 163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
 164 * lookup in O(1) time.
 165 *
 166 * At CR_GOAL_LEN_FAST, we only consider groups where
 167 * average fragment size > request size. So, we lookup a group which has average
 168 * fragment size just above or equal to request size using our average fragment
 169 * size group lists (data structure 2) in O(1) time.
 170 *
 171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
 172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
 173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
 174 * fragment size > goal length. So before falling to the slower
 175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
 176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
 177 * enough average fragment size. This increases the chances of finding a
 178 * suitable block group in O(1) time and results in faster allocation at the
 179 * cost of reduced size of allocation.
 180 *
 181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
 182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
 183 * CR_GOAL_LEN_FAST phase.
 184 *
 185 * The regular allocator (using the buddy cache) supports a few tunables.
 186 *
 187 * /sys/fs/ext4/<partition>/mb_min_to_scan
 188 * /sys/fs/ext4/<partition>/mb_max_to_scan
 189 * /sys/fs/ext4/<partition>/mb_order2_req
 190 * /sys/fs/ext4/<partition>/mb_linear_limit
 191 *
 192 * The regular allocator uses buddy scan only if the request len is power of
 193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 194 * value of s_mb_order2_reqs can be tuned via
 195 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
 196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
 197 * stripe size. This should result in better allocation on RAID setups. If
 198 * not, we search in the specific group using bitmap for best extents. The
 199 * tunable min_to_scan and max_to_scan control the behaviour here.
 200 * min_to_scan indicate how long the mballoc __must__ look for a best
 201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
 202 * best extent in the found extents. Searching for the blocks starts with
 203 * the group specified as the goal value in allocation context via
 204 * ac_g_ex. Each group is first checked based on the criteria whether it
 205 * can be used for allocation. ext4_mb_good_group explains how the groups are
 206 * checked.
 207 *
 208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
 209 * get traversed linearly. That may result in subsequent allocations being not
 210 * close to each other. And so, the underlying device may get filled up in a
 211 * non-linear fashion. While that may not matter on non-rotational devices, for
 212 * rotational devices that may result in higher seek times. "mb_linear_limit"
 213 * tells mballoc how many groups mballoc should search linearly before
 214 * performing consulting above data structures for more efficient lookups. For
 215 * non rotational devices, this value defaults to 0 and for rotational devices
 216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
 217 *
 218 * Both the prealloc space are getting populated as above. So for the first
 219 * request we will hit the buddy cache which will result in this prealloc
 220 * space getting filled. The prealloc space is then later used for the
 221 * subsequent request.
 222 */
 223
 224/*
 225 * mballoc operates on the following data:
 226 *  - on-disk bitmap
 227 *  - in-core buddy (actually includes buddy and bitmap)
 228 *  - preallocation descriptors (PAs)
 229 *
 230 * there are two types of preallocations:
 231 *  - inode
 232 *    assiged to specific inode and can be used for this inode only.
 233 *    it describes part of inode's space preallocated to specific
 234 *    physical blocks. any block from that preallocated can be used
 235 *    independent. the descriptor just tracks number of blocks left
 236 *    unused. so, before taking some block from descriptor, one must
 237 *    make sure corresponded logical block isn't allocated yet. this
 238 *    also means that freeing any block within descriptor's range
 239 *    must discard all preallocated blocks.
 240 *  - locality group
 241 *    assigned to specific locality group which does not translate to
 242 *    permanent set of inodes: inode can join and leave group. space
 243 *    from this type of preallocation can be used for any inode. thus
 244 *    it's consumed from the beginning to the end.
 245 *
 246 * relation between them can be expressed as:
 247 *    in-core buddy = on-disk bitmap + preallocation descriptors
 248 *
 249 * this mean blocks mballoc considers used are:
 250 *  - allocated blocks (persistent)
 251 *  - preallocated blocks (non-persistent)
 252 *
 253 * consistency in mballoc world means that at any time a block is either
 254 * free or used in ALL structures. notice: "any time" should not be read
 255 * literally -- time is discrete and delimited by locks.
 256 *
 257 *  to keep it simple, we don't use block numbers, instead we count number of
 258 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 259 *
 260 * all operations can be expressed as:
 261 *  - init buddy:			buddy = on-disk + PAs
 262 *  - new PA:				buddy += N; PA = N
 263 *  - use inode PA:			on-disk += N; PA -= N
 264 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 265 *  - use locality group PA		on-disk += N; PA -= N
 266 *  - discard locality group PA		buddy -= PA; PA = 0
 267 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 268 *        is used in real operation because we can't know actual used
 269 *        bits from PA, only from on-disk bitmap
 270 *
 271 * if we follow this strict logic, then all operations above should be atomic.
 272 * given some of them can block, we'd have to use something like semaphores
 273 * killing performance on high-end SMP hardware. let's try to relax it using
 274 * the following knowledge:
 275 *  1) if buddy is referenced, it's already initialized
 276 *  2) while block is used in buddy and the buddy is referenced,
 277 *     nobody can re-allocate that block
 278 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 279 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 280 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 281 *     block
 282 *
 283 * so, now we're building a concurrency table:
 284 *  - init buddy vs.
 285 *    - new PA
 286 *      blocks for PA are allocated in the buddy, buddy must be referenced
 287 *      until PA is linked to allocation group to avoid concurrent buddy init
 288 *    - use inode PA
 289 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 290 *      given (3) we care that PA-=N operation doesn't interfere with init
 291 *    - discard inode PA
 292 *      the simplest way would be to have buddy initialized by the discard
 293 *    - use locality group PA
 294 *      again PA-=N must be serialized with init
 295 *    - discard locality group PA
 296 *      the simplest way would be to have buddy initialized by the discard
 297 *  - new PA vs.
 298 *    - use inode PA
 299 *      i_data_sem serializes them
 300 *    - discard inode PA
 301 *      discard process must wait until PA isn't used by another process
 302 *    - use locality group PA
 303 *      some mutex should serialize them
 304 *    - discard locality group PA
 305 *      discard process must wait until PA isn't used by another process
 306 *  - use inode PA
 307 *    - use inode PA
 308 *      i_data_sem or another mutex should serializes them
 309 *    - discard inode PA
 310 *      discard process must wait until PA isn't used by another process
 311 *    - use locality group PA
 312 *      nothing wrong here -- they're different PAs covering different blocks
 313 *    - discard locality group PA
 314 *      discard process must wait until PA isn't used by another process
 315 *
 316 * now we're ready to make few consequences:
 317 *  - PA is referenced and while it is no discard is possible
 318 *  - PA is referenced until block isn't marked in on-disk bitmap
 319 *  - PA changes only after on-disk bitmap
 320 *  - discard must not compete with init. either init is done before
 321 *    any discard or they're serialized somehow
 322 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 323 *
 324 * a special case when we've used PA to emptiness. no need to modify buddy
 325 * in this case, but we should care about concurrent init
 326 *
 327 */
 328
 329 /*
 330 * Logic in few words:
 331 *
 332 *  - allocation:
 333 *    load group
 334 *    find blocks
 335 *    mark bits in on-disk bitmap
 336 *    release group
 337 *
 338 *  - use preallocation:
 339 *    find proper PA (per-inode or group)
 340 *    load group
 341 *    mark bits in on-disk bitmap
 342 *    release group
 343 *    release PA
 344 *
 345 *  - free:
 346 *    load group
 347 *    mark bits in on-disk bitmap
 348 *    release group
 349 *
 350 *  - discard preallocations in group:
 351 *    mark PAs deleted
 352 *    move them onto local list
 353 *    load on-disk bitmap
 354 *    load group
 355 *    remove PA from object (inode or locality group)
 356 *    mark free blocks in-core
 357 *
 358 *  - discard inode's preallocations:
 359 */
 360
 361/*
 362 * Locking rules
 363 *
 364 * Locks:
 365 *  - bitlock on a group	(group)
 366 *  - object (inode/locality)	(object)
 367 *  - per-pa lock		(pa)
 368 *  - cr_power2_aligned lists lock	(cr_power2_aligned)
 369 *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
 370 *
 371 * Paths:
 372 *  - new pa
 373 *    object
 374 *    group
 375 *
 376 *  - find and use pa:
 377 *    pa
 378 *
 379 *  - release consumed pa:
 380 *    pa
 381 *    group
 382 *    object
 383 *
 384 *  - generate in-core bitmap:
 385 *    group
 386 *        pa
 387 *
 388 *  - discard all for given object (inode, locality group):
 389 *    object
 390 *        pa
 391 *    group
 392 *
 393 *  - discard all for given group:
 394 *    group
 395 *        pa
 396 *    group
 397 *        object
 398 *
 399 *  - allocation path (ext4_mb_regular_allocator)
 400 *    group
 401 *    cr_power2_aligned/cr_goal_len_fast
 402 */
 403static struct kmem_cache *ext4_pspace_cachep;
 404static struct kmem_cache *ext4_ac_cachep;
 405static struct kmem_cache *ext4_free_data_cachep;
 406
 407/* We create slab caches for groupinfo data structures based on the
 408 * superblock block size.  There will be one per mounted filesystem for
 409 * each unique s_blocksize_bits */
 410#define NR_GRPINFO_CACHES 8
 411static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
 412
 413static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
 414	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
 415	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
 416	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
 417};
 418
 419static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
 420					ext4_group_t group);
 421static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
 422
 423static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
 424			       ext4_group_t group, enum criteria cr);
 425
 426static int ext4_try_to_trim_range(struct super_block *sb,
 427		struct ext4_buddy *e4b, ext4_grpblk_t start,
 428		ext4_grpblk_t max, ext4_grpblk_t minblocks);
 429
 430/*
 431 * The algorithm using this percpu seq counter goes below:
 432 * 1. We sample the percpu discard_pa_seq counter before trying for block
 433 *    allocation in ext4_mb_new_blocks().
 434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
 435 *    or free these blocks i.e. while marking those blocks as used/free in
 436 *    mb_mark_used()/mb_free_blocks().
 437 * 3. We also increment this percpu seq counter when we successfully identify
 438 *    that the bb_prealloc_list is not empty and hence proceed for discarding
 439 *    of those PAs inside ext4_mb_discard_group_preallocations().
 440 *
 441 * Now to make sure that the regular fast path of block allocation is not
 442 * affected, as a small optimization we only sample the percpu seq counter
 443 * on that cpu. Only when the block allocation fails and when freed blocks
 444 * found were 0, that is when we sample percpu seq counter for all cpus using
 445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
 446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
 447 */
 448static DEFINE_PER_CPU(u64, discard_pa_seq);
 449static inline u64 ext4_get_discard_pa_seq_sum(void)
 450{
 451	int __cpu;
 452	u64 __seq = 0;
 453
 454	for_each_possible_cpu(__cpu)
 455		__seq += per_cpu(discard_pa_seq, __cpu);
 456	return __seq;
 457}
 458
 459static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
 460{
 461#if BITS_PER_LONG == 64
 462	*bit += ((unsigned long) addr & 7UL) << 3;
 463	addr = (void *) ((unsigned long) addr & ~7UL);
 464#elif BITS_PER_LONG == 32
 465	*bit += ((unsigned long) addr & 3UL) << 3;
 466	addr = (void *) ((unsigned long) addr & ~3UL);
 467#else
 468#error "how many bits you are?!"
 469#endif
 470	return addr;
 471}
 472
 473static inline int mb_test_bit(int bit, void *addr)
 474{
 475	/*
 476	 * ext4_test_bit on architecture like powerpc
 477	 * needs unsigned long aligned address
 478	 */
 479	addr = mb_correct_addr_and_bit(&bit, addr);
 480	return ext4_test_bit(bit, addr);
 481}
 482
 483static inline void mb_set_bit(int bit, void *addr)
 484{
 485	addr = mb_correct_addr_and_bit(&bit, addr);
 486	ext4_set_bit(bit, addr);
 487}
 488
 489static inline void mb_clear_bit(int bit, void *addr)
 490{
 491	addr = mb_correct_addr_and_bit(&bit, addr);
 492	ext4_clear_bit(bit, addr);
 493}
 494
 495static inline int mb_test_and_clear_bit(int bit, void *addr)
 496{
 497	addr = mb_correct_addr_and_bit(&bit, addr);
 498	return ext4_test_and_clear_bit(bit, addr);
 499}
 500
 501static inline int mb_find_next_zero_bit(void *addr, int max, int start)
 502{
 503	int fix = 0, ret, tmpmax;
 504	addr = mb_correct_addr_and_bit(&fix, addr);
 505	tmpmax = max + fix;
 506	start += fix;
 507
 508	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
 509	if (ret > max)
 510		return max;
 511	return ret;
 512}
 513
 514static inline int mb_find_next_bit(void *addr, int max, int start)
 515{
 516	int fix = 0, ret, tmpmax;
 517	addr = mb_correct_addr_and_bit(&fix, addr);
 518	tmpmax = max + fix;
 519	start += fix;
 520
 521	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
 522	if (ret > max)
 523		return max;
 524	return ret;
 525}
 526
 527static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
 528{
 529	char *bb;
 530
 531	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
 532	BUG_ON(max == NULL);
 533
 534	if (order > e4b->bd_blkbits + 1) {
 535		*max = 0;
 536		return NULL;
 537	}
 538
 539	/* at order 0 we see each particular block */
 540	if (order == 0) {
 541		*max = 1 << (e4b->bd_blkbits + 3);
 542		return e4b->bd_bitmap;
 543	}
 544
 545	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
 546	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
 547
 548	return bb;
 549}
 550
 551#ifdef DOUBLE_CHECK
 552static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
 553			   int first, int count)
 554{
 555	int i;
 556	struct super_block *sb = e4b->bd_sb;
 557
 558	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 559		return;
 560	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
 561	for (i = 0; i < count; i++) {
 562		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
 563			ext4_fsblk_t blocknr;
 564
 565			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
 566			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
 567			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
 568					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 569			ext4_grp_locked_error(sb, e4b->bd_group,
 570					      inode ? inode->i_ino : 0,
 571					      blocknr,
 572					      "freeing block already freed "
 573					      "(bit %u)",
 574					      first + i);
 575		}
 576		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
 577	}
 578}
 579
 580static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
 581{
 582	int i;
 583
 584	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 585		return;
 586	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
 587	for (i = 0; i < count; i++) {
 588		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
 589		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
 590	}
 591}
 592
 593static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 594{
 595	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
 596		return;
 597	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
 598		unsigned char *b1, *b2;
 599		int i;
 600		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
 601		b2 = (unsigned char *) bitmap;
 602		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
 603			if (b1[i] != b2[i]) {
 604				ext4_msg(e4b->bd_sb, KERN_ERR,
 605					 "corruption in group %u "
 606					 "at byte %u(%u): %x in copy != %x "
 607					 "on disk/prealloc",
 608					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
 609				BUG();
 610			}
 611		}
 612	}
 613}
 614
 615static void mb_group_bb_bitmap_alloc(struct super_block *sb,
 616			struct ext4_group_info *grp, ext4_group_t group)
 617{
 618	struct buffer_head *bh;
 619
 620	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
 621	if (!grp->bb_bitmap)
 622		return;
 623
 624	bh = ext4_read_block_bitmap(sb, group);
 625	if (IS_ERR_OR_NULL(bh)) {
 626		kfree(grp->bb_bitmap);
 627		grp->bb_bitmap = NULL;
 628		return;
 629	}
 630
 631	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
 632	put_bh(bh);
 633}
 634
 635static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
 636{
 637	kfree(grp->bb_bitmap);
 638}
 639
 640#else
 641static inline void mb_free_blocks_double(struct inode *inode,
 642				struct ext4_buddy *e4b, int first, int count)
 643{
 644	return;
 645}
 646static inline void mb_mark_used_double(struct ext4_buddy *e4b,
 647						int first, int count)
 648{
 649	return;
 650}
 651static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
 652{
 653	return;
 654}
 655
 656static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
 657			struct ext4_group_info *grp, ext4_group_t group)
 658{
 659	return;
 660}
 661
 662static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
 663{
 664	return;
 665}
 666#endif
 667
 668#ifdef AGGRESSIVE_CHECK
 669
 670#define MB_CHECK_ASSERT(assert)						\
 671do {									\
 672	if (!(assert)) {						\
 673		printk(KERN_EMERG					\
 674			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
 675			function, file, line, # assert);		\
 676		BUG();							\
 677	}								\
 678} while (0)
 679
 680static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
 681				const char *function, int line)
 682{
 683	struct super_block *sb = e4b->bd_sb;
 684	int order = e4b->bd_blkbits + 1;
 685	int max;
 686	int max2;
 687	int i;
 688	int j;
 689	int k;
 690	int count;
 691	struct ext4_group_info *grp;
 692	int fragments = 0;
 693	int fstart;
 694	struct list_head *cur;
 695	void *buddy;
 696	void *buddy2;
 697
 698	if (e4b->bd_info->bb_check_counter++ % 10)
 699		return;
 
 
 
 700
 701	while (order > 1) {
 702		buddy = mb_find_buddy(e4b, order, &max);
 703		MB_CHECK_ASSERT(buddy);
 704		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
 705		MB_CHECK_ASSERT(buddy2);
 706		MB_CHECK_ASSERT(buddy != buddy2);
 707		MB_CHECK_ASSERT(max * 2 == max2);
 708
 709		count = 0;
 710		for (i = 0; i < max; i++) {
 711
 712			if (mb_test_bit(i, buddy)) {
 713				/* only single bit in buddy2 may be 0 */
 714				if (!mb_test_bit(i << 1, buddy2)) {
 715					MB_CHECK_ASSERT(
 716						mb_test_bit((i<<1)+1, buddy2));
 
 
 
 717				}
 718				continue;
 719			}
 720
 721			/* both bits in buddy2 must be 1 */
 722			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
 723			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
 724
 725			for (j = 0; j < (1 << order); j++) {
 726				k = (i * (1 << order)) + j;
 727				MB_CHECK_ASSERT(
 728					!mb_test_bit(k, e4b->bd_bitmap));
 729			}
 730			count++;
 731		}
 732		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
 733		order--;
 734	}
 735
 736	fstart = -1;
 737	buddy = mb_find_buddy(e4b, 0, &max);
 738	for (i = 0; i < max; i++) {
 739		if (!mb_test_bit(i, buddy)) {
 740			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
 741			if (fstart == -1) {
 742				fragments++;
 743				fstart = i;
 744			}
 745			continue;
 746		}
 747		fstart = -1;
 748		/* check used bits only */
 749		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
 750			buddy2 = mb_find_buddy(e4b, j, &max2);
 751			k = i >> j;
 752			MB_CHECK_ASSERT(k < max2);
 753			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
 754		}
 755	}
 756	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
 757	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
 758
 759	grp = ext4_get_group_info(sb, e4b->bd_group);
 760	if (!grp)
 761		return;
 762	list_for_each(cur, &grp->bb_prealloc_list) {
 763		ext4_group_t groupnr;
 764		struct ext4_prealloc_space *pa;
 765		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
 766		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
 767		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
 768		for (i = 0; i < pa->pa_len; i++)
 769			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
 770	}
 
 771}
 772#undef MB_CHECK_ASSERT
 773#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
 774					__FILE__, __func__, __LINE__)
 775#else
 776#define mb_check_buddy(e4b)
 777#endif
 778
 779/*
 780 * Divide blocks started from @first with length @len into
 781 * smaller chunks with power of 2 blocks.
 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
 783 * then increase bb_counters[] for corresponded chunk size.
 784 */
 785static void ext4_mb_mark_free_simple(struct super_block *sb,
 786				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
 787					struct ext4_group_info *grp)
 788{
 789	struct ext4_sb_info *sbi = EXT4_SB(sb);
 790	ext4_grpblk_t min;
 791	ext4_grpblk_t max;
 792	ext4_grpblk_t chunk;
 793	unsigned int border;
 794
 795	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
 796
 797	border = 2 << sb->s_blocksize_bits;
 798
 799	while (len > 0) {
 800		/* find how many blocks can be covered since this position */
 801		max = ffs(first | border) - 1;
 802
 803		/* find how many blocks of power 2 we need to mark */
 804		min = fls(len) - 1;
 805
 806		if (max < min)
 807			min = max;
 808		chunk = 1 << min;
 809
 810		/* mark multiblock chunks only */
 811		grp->bb_counters[min]++;
 812		if (min > 0)
 813			mb_clear_bit(first >> min,
 814				     buddy + sbi->s_mb_offsets[min]);
 815
 816		len -= chunk;
 817		first += chunk;
 818	}
 819}
 820
 821static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
 822{
 823	int order;
 824
 825	/*
 826	 * We don't bother with a special lists groups with only 1 block free
 827	 * extents and for completely empty groups.
 828	 */
 829	order = fls(len) - 2;
 830	if (order < 0)
 831		return 0;
 832	if (order == MB_NUM_ORDERS(sb))
 833		order--;
 834	return order;
 835}
 836
 837/* Move group to appropriate avg_fragment_size list */
 838static void
 839mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
 840{
 841	struct ext4_sb_info *sbi = EXT4_SB(sb);
 842	int new_order;
 843
 844	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
 845		return;
 846
 847	new_order = mb_avg_fragment_size_order(sb,
 848					grp->bb_free / grp->bb_fragments);
 849	if (new_order == grp->bb_avg_fragment_size_order)
 850		return;
 851
 852	if (grp->bb_avg_fragment_size_order != -1) {
 853		write_lock(&sbi->s_mb_avg_fragment_size_locks[
 854					grp->bb_avg_fragment_size_order]);
 855		list_del(&grp->bb_avg_fragment_size_node);
 856		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
 857					grp->bb_avg_fragment_size_order]);
 858	}
 859	grp->bb_avg_fragment_size_order = new_order;
 860	write_lock(&sbi->s_mb_avg_fragment_size_locks[
 861					grp->bb_avg_fragment_size_order]);
 862	list_add_tail(&grp->bb_avg_fragment_size_node,
 863		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
 864	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
 865					grp->bb_avg_fragment_size_order]);
 866}
 867
 868/*
 869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
 870 * cr level needs an update.
 871 */
 872static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
 873			enum criteria *new_cr, ext4_group_t *group)
 874{
 875	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 876	struct ext4_group_info *iter;
 877	int i;
 878
 879	if (ac->ac_status == AC_STATUS_FOUND)
 880		return;
 881
 882	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
 883		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
 884
 885	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
 886		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
 887			continue;
 888		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
 889		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
 890			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
 891			continue;
 892		}
 893		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
 894				    bb_largest_free_order_node) {
 895			if (sbi->s_mb_stats)
 896				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
 897			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
 898				*group = iter->bb_group;
 899				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
 900				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
 901				return;
 902			}
 903		}
 904		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
 905	}
 906
 907	/* Increment cr and search again if no group is found */
 908	*new_cr = CR_GOAL_LEN_FAST;
 909}
 910
 911/*
 912 * Find a suitable group of given order from the average fragments list.
 913 */
 914static struct ext4_group_info *
 915ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
 916{
 917	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 918	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
 919	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
 920	struct ext4_group_info *grp = NULL, *iter;
 921	enum criteria cr = ac->ac_criteria;
 922
 923	if (list_empty(frag_list))
 924		return NULL;
 925	read_lock(frag_list_lock);
 926	if (list_empty(frag_list)) {
 927		read_unlock(frag_list_lock);
 928		return NULL;
 929	}
 930	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
 931		if (sbi->s_mb_stats)
 932			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
 933		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
 934			grp = iter;
 935			break;
 936		}
 937	}
 938	read_unlock(frag_list_lock);
 939	return grp;
 940}
 941
 942/*
 943 * Choose next group by traversing average fragment size list of suitable
 944 * order. Updates *new_cr if cr level needs an update.
 945 */
 946static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
 947		enum criteria *new_cr, ext4_group_t *group)
 948{
 949	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 950	struct ext4_group_info *grp = NULL;
 951	int i;
 952
 953	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
 954		if (sbi->s_mb_stats)
 955			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
 956	}
 957
 958	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
 959	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
 960		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
 961		if (grp) {
 962			*group = grp->bb_group;
 963			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
 964			return;
 965		}
 966	}
 967
 968	/*
 969	 * CR_BEST_AVAIL_LEN works based on the concept that we have
 970	 * a larger normalized goal len request which can be trimmed to
 971	 * a smaller goal len such that it can still satisfy original
 972	 * request len. However, allocation request for non-regular
 973	 * files never gets normalized.
 974	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
 975	 */
 976	if (ac->ac_flags & EXT4_MB_HINT_DATA)
 977		*new_cr = CR_BEST_AVAIL_LEN;
 978	else
 979		*new_cr = CR_GOAL_LEN_SLOW;
 980}
 981
 982/*
 983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
 984 * order we have and proactively trim the goal request length to that order to
 985 * find a suitable group faster.
 986 *
 987 * This optimizes allocation speed at the cost of slightly reduced
 988 * preallocations. However, we make sure that we don't trim the request too
 989 * much and fall to CR_GOAL_LEN_SLOW in that case.
 990 */
 991static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
 992		enum criteria *new_cr, ext4_group_t *group)
 993{
 994	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
 995	struct ext4_group_info *grp = NULL;
 996	int i, order, min_order;
 997	unsigned long num_stripe_clusters = 0;
 998
 999	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000		if (sbi->s_mb_stats)
1001			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002	}
1003
1004	/*
1005	 * mb_avg_fragment_size_order() returns order in a way that makes
1006	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1007	 * fls() instead since we need to know the actual length while modifying
1008	 * goal length.
1009	 */
1010	order = fls(ac->ac_g_ex.fe_len) - 1;
1011	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012	if (min_order < 0)
1013		min_order = 0;
1014
1015	if (sbi->s_stripe > 0) {
1016		/*
1017		 * We are assuming that stripe size is always a multiple of
1018		 * cluster ratio otherwise __ext4_fill_super exists early.
1019		 */
1020		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021		if (1 << min_order < num_stripe_clusters)
1022			/*
1023			 * We consider 1 order less because later we round
1024			 * up the goal len to num_stripe_clusters
1025			 */
1026			min_order = fls(num_stripe_clusters) - 1;
1027	}
1028
1029	if (1 << min_order < ac->ac_o_ex.fe_len)
1030		min_order = fls(ac->ac_o_ex.fe_len);
1031
1032	for (i = order; i >= min_order; i--) {
1033		int frag_order;
1034		/*
1035		 * Scale down goal len to make sure we find something
1036		 * in the free fragments list. Basically, reduce
1037		 * preallocations.
1038		 */
1039		ac->ac_g_ex.fe_len = 1 << i;
1040
1041		if (num_stripe_clusters > 0) {
1042			/*
1043			 * Try to round up the adjusted goal length to
1044			 * stripe size (in cluster units) multiple for
1045			 * efficiency.
1046			 */
1047			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048						     num_stripe_clusters);
1049		}
1050
1051		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052							ac->ac_g_ex.fe_len);
1053
1054		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055		if (grp) {
1056			*group = grp->bb_group;
1057			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058			return;
1059		}
1060	}
1061
1062	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064	*new_cr = CR_GOAL_LEN_SLOW;
1065}
1066
1067static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068{
1069	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070		return 0;
1071	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072		return 0;
1073	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074		return 0;
1075	return 1;
1076}
1077
1078/*
1079 * Return next linear group for allocation. If linear traversal should not be
1080 * performed, this function just returns the same group
1081 */
1082static ext4_group_t
1083next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084		  ext4_group_t ngroups)
1085{
1086	if (!should_optimize_scan(ac))
1087		goto inc_and_return;
1088
1089	if (ac->ac_groups_linear_remaining) {
1090		ac->ac_groups_linear_remaining--;
1091		goto inc_and_return;
1092	}
1093
1094	return group;
1095inc_and_return:
1096	/*
1097	 * Artificially restricted ngroups for non-extent
1098	 * files makes group > ngroups possible on first loop.
1099	 */
1100	return group + 1 >= ngroups ? 0 : group + 1;
1101}
1102
1103/*
1104 * ext4_mb_choose_next_group: choose next group for allocation.
1105 *
1106 * @ac        Allocation Context
1107 * @new_cr    This is an output parameter. If the there is no good group
1108 *            available at current CR level, this field is updated to indicate
1109 *            the new cr level that should be used.
1110 * @group     This is an input / output parameter. As an input it indicates the
1111 *            next group that the allocator intends to use for allocation. As
1112 *            output, this field indicates the next group that should be used as
1113 *            determined by the optimization functions.
1114 * @ngroups   Total number of groups
1115 */
1116static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118{
1119	*new_cr = ac->ac_criteria;
1120
1121	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122		*group = next_linear_group(ac, *group, ngroups);
1123		return;
1124	}
1125
1126	if (*new_cr == CR_POWER2_ALIGNED) {
1127		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1128	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1129		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1130	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131		ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1132	} else {
1133		/*
1134		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135		 * bb_free. But until that happens, we should never come here.
1136		 */
1137		WARN_ON(1);
1138	}
1139}
1140
1141/*
1142 * Cache the order of the largest free extent we have available in this block
1143 * group.
1144 */
1145static void
1146mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147{
1148	struct ext4_sb_info *sbi = EXT4_SB(sb);
1149	int i;
 
 
 
1150
1151	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152		if (grp->bb_counters[i] > 0)
 
 
1153			break;
1154	/* No need to move between order lists? */
1155	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156	    i == grp->bb_largest_free_order) {
1157		grp->bb_largest_free_order = i;
1158		return;
1159	}
1160
1161	if (grp->bb_largest_free_order >= 0) {
1162		write_lock(&sbi->s_mb_largest_free_orders_locks[
1163					      grp->bb_largest_free_order]);
1164		list_del_init(&grp->bb_largest_free_order_node);
1165		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166					      grp->bb_largest_free_order]);
1167	}
1168	grp->bb_largest_free_order = i;
1169	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170		write_lock(&sbi->s_mb_largest_free_orders_locks[
1171					      grp->bb_largest_free_order]);
1172		list_add_tail(&grp->bb_largest_free_order_node,
1173		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175					      grp->bb_largest_free_order]);
1176	}
1177}
1178
1179static noinline_for_stack
1180void ext4_mb_generate_buddy(struct super_block *sb,
1181			    void *buddy, void *bitmap, ext4_group_t group,
1182			    struct ext4_group_info *grp)
1183{
 
1184	struct ext4_sb_info *sbi = EXT4_SB(sb);
1185	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186	ext4_grpblk_t i = 0;
1187	ext4_grpblk_t first;
1188	ext4_grpblk_t len;
1189	unsigned free = 0;
1190	unsigned fragments = 0;
1191	unsigned long long period = get_cycles();
1192
1193	/* initialize buddy from bitmap which is aggregation
1194	 * of on-disk bitmap and preallocations */
1195	i = mb_find_next_zero_bit(bitmap, max, 0);
1196	grp->bb_first_free = i;
1197	while (i < max) {
1198		fragments++;
1199		first = i;
1200		i = mb_find_next_bit(bitmap, max, i);
1201		len = i - first;
1202		free += len;
1203		if (len > 1)
1204			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205		else
1206			grp->bb_counters[0]++;
1207		if (i < max)
1208			i = mb_find_next_zero_bit(bitmap, max, i);
1209	}
1210	grp->bb_fragments = fragments;
1211
1212	if (free != grp->bb_free) {
1213		ext4_grp_locked_error(sb, group, 0, 0,
1214				      "block bitmap and bg descriptor "
1215				      "inconsistent: %u vs %u free clusters",
1216				      free, grp->bb_free);
1217		/*
1218		 * If we intend to continue, we consider group descriptor
1219		 * corrupt and update bb_free using bitmap value
1220		 */
1221		grp->bb_free = free;
1222		ext4_mark_group_bitmap_corrupted(sb, group,
1223					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
 
 
1224	}
1225	mb_set_largest_free_order(sb, grp);
1226	mb_update_avg_fragment_size(sb, grp);
1227
1228	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230	period = get_cycles() - period;
1231	atomic_inc(&sbi->s_mb_buddies_generated);
1232	atomic64_add(period, &sbi->s_mb_generation_time);
 
 
1233}
1234
1235static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236{
1237	int count;
1238	int order = 1;
1239	void *buddy;
1240
1241	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242		mb_set_bits(buddy, 0, count);
1243
1244	e4b->bd_info->bb_fragments = 0;
1245	memset(e4b->bd_info->bb_counters, 0,
1246		sizeof(*e4b->bd_info->bb_counters) *
1247		(e4b->bd_sb->s_blocksize_bits + 2));
1248
1249	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251}
1252
1253/* The buddy information is attached the buddy cache inode
1254 * for convenience. The information regarding each group
1255 * is loaded via ext4_mb_load_buddy. The information involve
1256 * block bitmap and buddy information. The information are
1257 * stored in the inode as
1258 *
1259 * {                        page                        }
1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261 *
1262 *
1263 * one block each for bitmap and buddy information.
1264 * So for each group we take up 2 blocks. A page can
1265 * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1266 * So it can have information regarding groups_per_page which
1267 * is blocks_per_page/2
1268 *
1269 * Locking note:  This routine takes the block group lock of all groups
1270 * for this page; do not hold this lock when calling this routine!
1271 */
1272
1273static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274{
1275	ext4_group_t ngroups;
1276	unsigned int blocksize;
1277	int blocks_per_page;
1278	int groups_per_page;
1279	int err = 0;
1280	int i;
1281	ext4_group_t first_group, group;
1282	int first_block;
1283	struct super_block *sb;
1284	struct buffer_head *bhs;
1285	struct buffer_head **bh = NULL;
1286	struct inode *inode;
1287	char *data;
1288	char *bitmap;
1289	struct ext4_group_info *grinfo;
1290
 
 
1291	inode = page->mapping->host;
1292	sb = inode->i_sb;
1293	ngroups = ext4_get_groups_count(sb);
1294	blocksize = i_blocksize(inode);
1295	blocks_per_page = PAGE_SIZE / blocksize;
1296
1297	mb_debug(sb, "init page %lu\n", page->index);
1298
1299	groups_per_page = blocks_per_page >> 1;
1300	if (groups_per_page == 0)
1301		groups_per_page = 1;
1302
1303	/* allocate buffer_heads to read bitmaps */
1304	if (groups_per_page > 1) {
1305		i = sizeof(struct buffer_head *) * groups_per_page;
1306		bh = kzalloc(i, gfp);
1307		if (bh == NULL)
1308			return -ENOMEM;
 
 
1309	} else
1310		bh = &bhs;
1311
1312	first_group = page->index * blocks_per_page / 2;
1313
1314	/* read all groups the page covers into the cache */
1315	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316		if (group >= ngroups)
1317			break;
1318
1319		grinfo = ext4_get_group_info(sb, group);
1320		if (!grinfo)
1321			continue;
1322		/*
1323		 * If page is uptodate then we came here after online resize
1324		 * which added some new uninitialized group info structs, so
1325		 * we must skip all initialized uptodate buddies on the page,
1326		 * which may be currently in use by an allocating task.
1327		 */
1328		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329			bh[i] = NULL;
1330			continue;
1331		}
1332		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333		if (IS_ERR(bh[i])) {
1334			err = PTR_ERR(bh[i]);
1335			bh[i] = NULL;
1336			goto out;
1337		}
1338		mb_debug(sb, "read bitmap for group %u\n", group);
1339	}
1340
1341	/* wait for I/O completion */
1342	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343		int err2;
1344
1345		if (!bh[i])
1346			continue;
1347		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348		if (!err)
1349			err = err2;
1350	}
1351
1352	first_block = page->index * blocks_per_page;
1353	for (i = 0; i < blocks_per_page; i++) {
1354		group = (first_block + i) >> 1;
1355		if (group >= ngroups)
1356			break;
1357
1358		if (!bh[group - first_group])
1359			/* skip initialized uptodate buddy */
1360			continue;
1361
1362		if (!buffer_verified(bh[group - first_group]))
1363			/* Skip faulty bitmaps */
1364			continue;
1365		err = 0;
1366
1367		/*
1368		 * data carry information regarding this
1369		 * particular group in the format specified
1370		 * above
1371		 *
1372		 */
1373		data = page_address(page) + (i * blocksize);
1374		bitmap = bh[group - first_group]->b_data;
1375
1376		/*
1377		 * We place the buddy block and bitmap block
1378		 * close together
1379		 */
1380		grinfo = ext4_get_group_info(sb, group);
1381		if (!grinfo) {
1382			err = -EFSCORRUPTED;
1383		        goto out;
1384		}
1385		if ((first_block + i) & 1) {
1386			/* this is block of buddy */
1387			BUG_ON(incore == NULL);
1388			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389				group, page->index, i * blocksize);
1390			trace_ext4_mb_buddy_bitmap_load(sb, group);
 
1391			grinfo->bb_fragments = 0;
1392			memset(grinfo->bb_counters, 0,
1393			       sizeof(*grinfo->bb_counters) *
1394			       (MB_NUM_ORDERS(sb)));
1395			/*
1396			 * incore got set to the group block bitmap below
1397			 */
1398			ext4_lock_group(sb, group);
1399			/* init the buddy */
1400			memset(data, 0xff, blocksize);
1401			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402			ext4_unlock_group(sb, group);
1403			incore = NULL;
1404		} else {
1405			/* this is block of bitmap */
1406			BUG_ON(incore != NULL);
1407			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408				group, page->index, i * blocksize);
1409			trace_ext4_mb_bitmap_load(sb, group);
1410
1411			/* see comments in ext4_mb_put_pa() */
1412			ext4_lock_group(sb, group);
1413			memcpy(data, bitmap, blocksize);
1414
1415			/* mark all preallocated blks used in in-core bitmap */
1416			ext4_mb_generate_from_pa(sb, data, group);
1417			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418			ext4_unlock_group(sb, group);
1419
1420			/* set incore so that the buddy information can be
1421			 * generated using this
1422			 */
1423			incore = data;
1424		}
1425	}
1426	SetPageUptodate(page);
1427
1428out:
1429	if (bh) {
1430		for (i = 0; i < groups_per_page; i++)
1431			brelse(bh[i]);
1432		if (bh != &bhs)
1433			kfree(bh);
1434	}
1435	return err;
1436}
1437
1438/*
1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440 * on the same buddy page doesn't happen whild holding the buddy page lock.
1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443 */
1444static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446{
1447	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448	int block, pnum, poff;
1449	int blocks_per_page;
1450	struct page *page;
1451
1452	e4b->bd_buddy_page = NULL;
1453	e4b->bd_bitmap_page = NULL;
1454
1455	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456	/*
1457	 * the buddy cache inode stores the block bitmap
1458	 * and buddy information in consecutive blocks.
1459	 * So for each group we need two blocks.
1460	 */
1461	block = group * 2;
1462	pnum = block / blocks_per_page;
1463	poff = block % blocks_per_page;
1464	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465	if (!page)
1466		return -ENOMEM;
1467	BUG_ON(page->mapping != inode->i_mapping);
1468	e4b->bd_bitmap_page = page;
1469	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470
1471	if (blocks_per_page >= 2) {
1472		/* buddy and bitmap are on the same page */
1473		return 0;
1474	}
1475
1476	/* blocks_per_page == 1, hence we need another page for the buddy */
1477	page = find_or_create_page(inode->i_mapping, block + 1, gfp);
 
1478	if (!page)
1479		return -ENOMEM;
1480	BUG_ON(page->mapping != inode->i_mapping);
1481	e4b->bd_buddy_page = page;
1482	return 0;
1483}
1484
1485static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1486{
1487	if (e4b->bd_bitmap_page) {
1488		unlock_page(e4b->bd_bitmap_page);
1489		put_page(e4b->bd_bitmap_page);
1490	}
1491	if (e4b->bd_buddy_page) {
1492		unlock_page(e4b->bd_buddy_page);
1493		put_page(e4b->bd_buddy_page);
1494	}
1495}
1496
1497/*
1498 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1499 * block group lock of all groups for this page; do not hold the BG lock when
1500 * calling this routine!
1501 */
1502static noinline_for_stack
1503int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1504{
1505
1506	struct ext4_group_info *this_grp;
1507	struct ext4_buddy e4b;
1508	struct page *page;
1509	int ret = 0;
1510
1511	might_sleep();
1512	mb_debug(sb, "init group %u\n", group);
1513	this_grp = ext4_get_group_info(sb, group);
1514	if (!this_grp)
1515		return -EFSCORRUPTED;
1516
1517	/*
1518	 * This ensures that we don't reinit the buddy cache
1519	 * page which map to the group from which we are already
1520	 * allocating. If we are looking at the buddy cache we would
1521	 * have taken a reference using ext4_mb_load_buddy and that
1522	 * would have pinned buddy page to page cache.
1523	 * The call to ext4_mb_get_buddy_page_lock will mark the
1524	 * page accessed.
1525	 */
1526	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1527	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1528		/*
1529		 * somebody initialized the group
1530		 * return without doing anything
1531		 */
1532		goto err;
1533	}
1534
1535	page = e4b.bd_bitmap_page;
1536	ret = ext4_mb_init_cache(page, NULL, gfp);
1537	if (ret)
1538		goto err;
1539	if (!PageUptodate(page)) {
1540		ret = -EIO;
1541		goto err;
1542	}
1543
1544	if (e4b.bd_buddy_page == NULL) {
1545		/*
1546		 * If both the bitmap and buddy are in
1547		 * the same page we don't need to force
1548		 * init the buddy
1549		 */
1550		ret = 0;
1551		goto err;
1552	}
1553	/* init buddy cache */
1554	page = e4b.bd_buddy_page;
1555	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1556	if (ret)
1557		goto err;
1558	if (!PageUptodate(page)) {
1559		ret = -EIO;
1560		goto err;
1561	}
1562err:
1563	ext4_mb_put_buddy_page_lock(&e4b);
1564	return ret;
1565}
1566
1567/*
1568 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1569 * block group lock of all groups for this page; do not hold the BG lock when
1570 * calling this routine!
1571 */
1572static noinline_for_stack int
1573ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1574		       struct ext4_buddy *e4b, gfp_t gfp)
1575{
1576	int blocks_per_page;
1577	int block;
1578	int pnum;
1579	int poff;
1580	struct page *page;
1581	int ret;
1582	struct ext4_group_info *grp;
1583	struct ext4_sb_info *sbi = EXT4_SB(sb);
1584	struct inode *inode = sbi->s_buddy_cache;
1585
1586	might_sleep();
1587	mb_debug(sb, "load group %u\n", group);
1588
1589	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1590	grp = ext4_get_group_info(sb, group);
1591	if (!grp)
1592		return -EFSCORRUPTED;
1593
1594	e4b->bd_blkbits = sb->s_blocksize_bits;
1595	e4b->bd_info = grp;
1596	e4b->bd_sb = sb;
1597	e4b->bd_group = group;
1598	e4b->bd_buddy_page = NULL;
1599	e4b->bd_bitmap_page = NULL;
1600
1601	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1602		/*
1603		 * we need full data about the group
1604		 * to make a good selection
1605		 */
1606		ret = ext4_mb_init_group(sb, group, gfp);
1607		if (ret)
1608			return ret;
1609	}
1610
1611	/*
1612	 * the buddy cache inode stores the block bitmap
1613	 * and buddy information in consecutive blocks.
1614	 * So for each group we need two blocks.
1615	 */
1616	block = group * 2;
1617	pnum = block / blocks_per_page;
1618	poff = block % blocks_per_page;
1619
1620	/* we could use find_or_create_page(), but it locks page
1621	 * what we'd like to avoid in fast path ... */
1622	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1623	if (page == NULL || !PageUptodate(page)) {
1624		if (page)
1625			/*
1626			 * drop the page reference and try
1627			 * to get the page with lock. If we
1628			 * are not uptodate that implies
1629			 * somebody just created the page but
1630			 * is yet to initialize the same. So
1631			 * wait for it to initialize.
1632			 */
1633			put_page(page);
1634		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1635		if (page) {
1636			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1637	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1638				/* should never happen */
1639				unlock_page(page);
1640				ret = -EINVAL;
1641				goto err;
1642			}
1643			if (!PageUptodate(page)) {
1644				ret = ext4_mb_init_cache(page, NULL, gfp);
1645				if (ret) {
1646					unlock_page(page);
1647					goto err;
1648				}
1649				mb_cmp_bitmaps(e4b, page_address(page) +
1650					       (poff * sb->s_blocksize));
1651			}
1652			unlock_page(page);
1653		}
1654	}
1655	if (page == NULL) {
1656		ret = -ENOMEM;
1657		goto err;
1658	}
1659	if (!PageUptodate(page)) {
1660		ret = -EIO;
1661		goto err;
1662	}
1663
1664	/* Pages marked accessed already */
1665	e4b->bd_bitmap_page = page;
1666	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1667
1668	block++;
1669	pnum = block / blocks_per_page;
1670	poff = block % blocks_per_page;
1671
1672	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1673	if (page == NULL || !PageUptodate(page)) {
1674		if (page)
1675			put_page(page);
1676		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1677		if (page) {
1678			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1679	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1680				/* should never happen */
1681				unlock_page(page);
1682				ret = -EINVAL;
1683				goto err;
1684			}
1685			if (!PageUptodate(page)) {
1686				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1687							 gfp);
1688				if (ret) {
1689					unlock_page(page);
1690					goto err;
1691				}
1692			}
1693			unlock_page(page);
1694		}
1695	}
1696	if (page == NULL) {
1697		ret = -ENOMEM;
1698		goto err;
1699	}
1700	if (!PageUptodate(page)) {
1701		ret = -EIO;
1702		goto err;
1703	}
1704
1705	/* Pages marked accessed already */
1706	e4b->bd_buddy_page = page;
1707	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1708
 
 
 
1709	return 0;
1710
1711err:
1712	if (page)
1713		put_page(page);
1714	if (e4b->bd_bitmap_page)
1715		put_page(e4b->bd_bitmap_page);
1716
 
1717	e4b->bd_buddy = NULL;
1718	e4b->bd_bitmap = NULL;
1719	return ret;
1720}
1721
1722static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1723			      struct ext4_buddy *e4b)
1724{
1725	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1726}
1727
1728static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1729{
1730	if (e4b->bd_bitmap_page)
1731		put_page(e4b->bd_bitmap_page);
1732	if (e4b->bd_buddy_page)
1733		put_page(e4b->bd_buddy_page);
1734}
1735
1736
1737static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1738{
1739	int order = 1, max;
1740	void *bb;
1741
1742	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1743	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1744
 
1745	while (order <= e4b->bd_blkbits + 1) {
1746		bb = mb_find_buddy(e4b, order, &max);
1747		if (!mb_test_bit(block >> order, bb)) {
1748			/* this block is part of buddy of order 'order' */
1749			return order;
1750		}
 
1751		order++;
1752	}
1753	return 0;
1754}
1755
1756static void mb_clear_bits(void *bm, int cur, int len)
1757{
1758	__u32 *addr;
1759
1760	len = cur + len;
1761	while (cur < len) {
1762		if ((cur & 31) == 0 && (len - cur) >= 32) {
1763			/* fast path: clear whole word at once */
1764			addr = bm + (cur >> 3);
1765			*addr = 0;
1766			cur += 32;
1767			continue;
1768		}
1769		mb_clear_bit(cur, bm);
1770		cur++;
1771	}
1772}
1773
1774/* clear bits in given range
1775 * will return first found zero bit if any, -1 otherwise
1776 */
1777static int mb_test_and_clear_bits(void *bm, int cur, int len)
1778{
1779	__u32 *addr;
1780	int zero_bit = -1;
1781
1782	len = cur + len;
1783	while (cur < len) {
1784		if ((cur & 31) == 0 && (len - cur) >= 32) {
1785			/* fast path: clear whole word at once */
1786			addr = bm + (cur >> 3);
1787			if (*addr != (__u32)(-1) && zero_bit == -1)
1788				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1789			*addr = 0;
1790			cur += 32;
1791			continue;
1792		}
1793		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1794			zero_bit = cur;
1795		cur++;
1796	}
1797
1798	return zero_bit;
1799}
1800
1801void mb_set_bits(void *bm, int cur, int len)
1802{
1803	__u32 *addr;
1804
1805	len = cur + len;
1806	while (cur < len) {
1807		if ((cur & 31) == 0 && (len - cur) >= 32) {
1808			/* fast path: set whole word at once */
1809			addr = bm + (cur >> 3);
1810			*addr = 0xffffffff;
1811			cur += 32;
1812			continue;
1813		}
1814		mb_set_bit(cur, bm);
1815		cur++;
1816	}
1817}
1818
 
 
 
1819static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1820{
1821	if (mb_test_bit(*bit + side, bitmap)) {
1822		mb_clear_bit(*bit, bitmap);
1823		(*bit) -= side;
1824		return 1;
1825	}
1826	else {
1827		(*bit) += side;
1828		mb_set_bit(*bit, bitmap);
1829		return -1;
1830	}
1831}
1832
1833static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1834{
1835	int max;
1836	int order = 1;
1837	void *buddy = mb_find_buddy(e4b, order, &max);
1838
1839	while (buddy) {
1840		void *buddy2;
1841
1842		/* Bits in range [first; last] are known to be set since
1843		 * corresponding blocks were allocated. Bits in range
1844		 * (first; last) will stay set because they form buddies on
1845		 * upper layer. We just deal with borders if they don't
1846		 * align with upper layer and then go up.
1847		 * Releasing entire group is all about clearing
1848		 * single bit of highest order buddy.
1849		 */
1850
1851		/* Example:
1852		 * ---------------------------------
1853		 * |   1   |   1   |   1   |   1   |
1854		 * ---------------------------------
1855		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1856		 * ---------------------------------
1857		 *   0   1   2   3   4   5   6   7
1858		 *      \_____________________/
1859		 *
1860		 * Neither [1] nor [6] is aligned to above layer.
1861		 * Left neighbour [0] is free, so mark it busy,
1862		 * decrease bb_counters and extend range to
1863		 * [0; 6]
1864		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1865		 * mark [6] free, increase bb_counters and shrink range to
1866		 * [0; 5].
1867		 * Then shift range to [0; 2], go up and do the same.
1868		 */
1869
1870
1871		if (first & 1)
1872			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1873		if (!(last & 1))
1874			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1875		if (first > last)
1876			break;
1877		order++;
1878
1879		buddy2 = mb_find_buddy(e4b, order, &max);
1880		if (!buddy2) {
1881			mb_clear_bits(buddy, first, last - first + 1);
1882			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1883			break;
1884		}
1885		first >>= 1;
1886		last >>= 1;
1887		buddy = buddy2;
1888	}
1889}
1890
1891static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1892			   int first, int count)
1893{
1894	int left_is_free = 0;
1895	int right_is_free = 0;
1896	int block;
1897	int last = first + count - 1;
1898	struct super_block *sb = e4b->bd_sb;
1899
1900	if (WARN_ON(count == 0))
1901		return;
1902	BUG_ON(last >= (sb->s_blocksize << 3));
1903	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1904	/* Don't bother if the block group is corrupt. */
1905	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1906		return;
1907
1908	mb_check_buddy(e4b);
1909	mb_free_blocks_double(inode, e4b, first, count);
1910
 
 
 
 
1911	/* access memory sequentially: check left neighbour,
1912	 * clear range and then check right neighbour
1913	 */
1914	if (first != 0)
1915		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1916	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1917	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1918		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1919
1920	if (unlikely(block != -1)) {
1921		struct ext4_sb_info *sbi = EXT4_SB(sb);
1922		ext4_fsblk_t blocknr;
1923
1924		/*
1925		 * Fastcommit replay can free already freed blocks which
1926		 * corrupts allocation info. Regenerate it.
1927		 */
1928		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1929			mb_regenerate_buddy(e4b);
1930			goto check;
1931		}
1932
1933		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1934		blocknr += EXT4_C2B(sbi, block);
1935		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1936				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1937		ext4_grp_locked_error(sb, e4b->bd_group,
1938				      inode ? inode->i_ino : 0, blocknr,
1939				      "freeing already freed block (bit %u); block bitmap corrupt.",
 
 
1940				      block);
1941		return;
 
 
 
 
 
 
 
1942	}
1943
1944	this_cpu_inc(discard_pa_seq);
1945	e4b->bd_info->bb_free += count;
1946	if (first < e4b->bd_info->bb_first_free)
1947		e4b->bd_info->bb_first_free = first;
1948
1949	/* let's maintain fragments counter */
1950	if (left_is_free && right_is_free)
1951		e4b->bd_info->bb_fragments--;
1952	else if (!left_is_free && !right_is_free)
1953		e4b->bd_info->bb_fragments++;
1954
1955	/* buddy[0] == bd_bitmap is a special case, so handle
1956	 * it right away and let mb_buddy_mark_free stay free of
1957	 * zero order checks.
1958	 * Check if neighbours are to be coaleasced,
1959	 * adjust bitmap bb_counters and borders appropriately.
1960	 */
1961	if (first & 1) {
1962		first += !left_is_free;
1963		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1964	}
1965	if (!(last & 1)) {
1966		last -= !right_is_free;
1967		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1968	}
1969
1970	if (first <= last)
1971		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1972
 
1973	mb_set_largest_free_order(sb, e4b->bd_info);
1974	mb_update_avg_fragment_size(sb, e4b->bd_info);
1975check:
1976	mb_check_buddy(e4b);
1977}
1978
1979static int mb_find_extent(struct ext4_buddy *e4b, int block,
1980				int needed, struct ext4_free_extent *ex)
1981{
1982	int max, order, next;
 
1983	void *buddy;
1984
1985	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1986	BUG_ON(ex == NULL);
1987
1988	buddy = mb_find_buddy(e4b, 0, &max);
1989	BUG_ON(buddy == NULL);
1990	BUG_ON(block >= max);
1991	if (mb_test_bit(block, buddy)) {
1992		ex->fe_len = 0;
1993		ex->fe_start = 0;
1994		ex->fe_group = 0;
1995		return 0;
1996	}
1997
1998	/* find actual order */
1999	order = mb_find_order_for_block(e4b, block);
 
2000
2001	ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2002	ex->fe_start = block;
2003	ex->fe_group = e4b->bd_group;
2004
2005	block = block >> order;
 
 
 
2006
2007	while (needed > ex->fe_len &&
2008	       mb_find_buddy(e4b, order, &max)) {
2009
2010		if (block + 1 >= max)
2011			break;
2012
2013		next = (block + 1) * (1 << order);
2014		if (mb_test_bit(next, e4b->bd_bitmap))
2015			break;
2016
2017		order = mb_find_order_for_block(e4b, next);
2018
2019		block = next >> order;
2020		ex->fe_len += 1 << order;
2021	}
2022
2023	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2024		/* Should never happen! (but apparently sometimes does?!?) */
2025		WARN_ON(1);
2026		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2027			"corruption or bug in mb_find_extent "
2028			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2029			block, order, needed, ex->fe_group, ex->fe_start,
2030			ex->fe_len, ex->fe_logical);
2031		ex->fe_len = 0;
2032		ex->fe_start = 0;
2033		ex->fe_group = 0;
2034	}
2035	return ex->fe_len;
2036}
2037
2038static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2039{
2040	int ord;
2041	int mlen = 0;
2042	int max = 0;
2043	int cur;
2044	int start = ex->fe_start;
2045	int len = ex->fe_len;
2046	unsigned ret = 0;
2047	int len0 = len;
2048	void *buddy;
2049	bool split = false;
2050
2051	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2052	BUG_ON(e4b->bd_group != ex->fe_group);
2053	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2054	mb_check_buddy(e4b);
2055	mb_mark_used_double(e4b, start, len);
2056
2057	this_cpu_inc(discard_pa_seq);
2058	e4b->bd_info->bb_free -= len;
2059	if (e4b->bd_info->bb_first_free == start)
2060		e4b->bd_info->bb_first_free += len;
2061
2062	/* let's maintain fragments counter */
2063	if (start != 0)
2064		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2065	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2066		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2067	if (mlen && max)
2068		e4b->bd_info->bb_fragments++;
2069	else if (!mlen && !max)
2070		e4b->bd_info->bb_fragments--;
2071
2072	/* let's maintain buddy itself */
2073	while (len) {
2074		if (!split)
2075			ord = mb_find_order_for_block(e4b, start);
2076
2077		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2078			/* the whole chunk may be allocated at once! */
2079			mlen = 1 << ord;
2080			if (!split)
2081				buddy = mb_find_buddy(e4b, ord, &max);
2082			else
2083				split = false;
2084			BUG_ON((start >> ord) >= max);
2085			mb_set_bit(start >> ord, buddy);
2086			e4b->bd_info->bb_counters[ord]--;
2087			start += mlen;
2088			len -= mlen;
2089			BUG_ON(len < 0);
2090			continue;
2091		}
2092
2093		/* store for history */
2094		if (ret == 0)
2095			ret = len | (ord << 16);
2096
2097		/* we have to split large buddy */
2098		BUG_ON(ord <= 0);
2099		buddy = mb_find_buddy(e4b, ord, &max);
2100		mb_set_bit(start >> ord, buddy);
2101		e4b->bd_info->bb_counters[ord]--;
2102
2103		ord--;
2104		cur = (start >> ord) & ~1U;
2105		buddy = mb_find_buddy(e4b, ord, &max);
2106		mb_clear_bit(cur, buddy);
2107		mb_clear_bit(cur + 1, buddy);
2108		e4b->bd_info->bb_counters[ord]++;
2109		e4b->bd_info->bb_counters[ord]++;
2110		split = true;
2111	}
2112	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2113
2114	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2115	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2116	mb_check_buddy(e4b);
2117
2118	return ret;
2119}
2120
2121/*
2122 * Must be called under group lock!
2123 */
2124static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2125					struct ext4_buddy *e4b)
2126{
2127	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2128	int ret;
2129
2130	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2131	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2132
2133	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2134	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2135	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2136
2137	/* preallocation can change ac_b_ex, thus we store actually
2138	 * allocated blocks for history */
2139	ac->ac_f_ex = ac->ac_b_ex;
2140
2141	ac->ac_status = AC_STATUS_FOUND;
2142	ac->ac_tail = ret & 0xffff;
2143	ac->ac_buddy = ret >> 16;
2144
2145	/*
2146	 * take the page reference. We want the page to be pinned
2147	 * so that we don't get a ext4_mb_init_cache_call for this
2148	 * group until we update the bitmap. That would mean we
2149	 * double allocate blocks. The reference is dropped
2150	 * in ext4_mb_release_context
2151	 */
2152	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2153	get_page(ac->ac_bitmap_page);
2154	ac->ac_buddy_page = e4b->bd_buddy_page;
2155	get_page(ac->ac_buddy_page);
2156	/* store last allocated for subsequent stream allocation */
2157	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2158		spin_lock(&sbi->s_md_lock);
2159		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2160		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2161		spin_unlock(&sbi->s_md_lock);
2162	}
2163	/*
2164	 * As we've just preallocated more space than
2165	 * user requested originally, we store allocated
2166	 * space in a special descriptor.
2167	 */
2168	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2169		ext4_mb_new_preallocation(ac);
2170
2171}
 
 
2172
2173static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2174					struct ext4_buddy *e4b,
2175					int finish_group)
2176{
2177	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2178	struct ext4_free_extent *bex = &ac->ac_b_ex;
2179	struct ext4_free_extent *gex = &ac->ac_g_ex;
 
 
2180
2181	if (ac->ac_status == AC_STATUS_FOUND)
2182		return;
2183	/*
2184	 * We don't want to scan for a whole year
2185	 */
2186	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2187			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2188		ac->ac_status = AC_STATUS_BREAK;
2189		return;
2190	}
2191
2192	/*
2193	 * Haven't found good chunk so far, let's continue
2194	 */
2195	if (bex->fe_len < gex->fe_len)
2196		return;
2197
2198	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2199		ext4_mb_use_best_found(ac, e4b);
 
 
 
 
 
 
 
 
 
2200}
2201
2202/*
2203 * The routine checks whether found extent is good enough. If it is,
2204 * then the extent gets marked used and flag is set to the context
2205 * to stop scanning. Otherwise, the extent is compared with the
2206 * previous found extent and if new one is better, then it's stored
2207 * in the context. Later, the best found extent will be used, if
2208 * mballoc can't find good enough extent.
2209 *
2210 * The algorithm used is roughly as follows:
2211 *
2212 * * If free extent found is exactly as big as goal, then
2213 *   stop the scan and use it immediately
2214 *
2215 * * If free extent found is smaller than goal, then keep retrying
2216 *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2217 *   that stop scanning and use whatever we have.
2218 *
2219 * * If free extent found is bigger than goal, then keep retrying
2220 *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2221 *   stopping the scan and using the extent.
2222 *
2223 *
2224 * FIXME: real allocation policy is to be designed yet!
2225 */
2226static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2227					struct ext4_free_extent *ex,
2228					struct ext4_buddy *e4b)
2229{
2230	struct ext4_free_extent *bex = &ac->ac_b_ex;
2231	struct ext4_free_extent *gex = &ac->ac_g_ex;
2232
2233	BUG_ON(ex->fe_len <= 0);
2234	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2235	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2236	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2237
2238	ac->ac_found++;
2239	ac->ac_cX_found[ac->ac_criteria]++;
2240
2241	/*
2242	 * The special case - take what you catch first
2243	 */
2244	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2245		*bex = *ex;
2246		ext4_mb_use_best_found(ac, e4b);
2247		return;
2248	}
2249
2250	/*
2251	 * Let's check whether the chuck is good enough
2252	 */
2253	if (ex->fe_len == gex->fe_len) {
2254		*bex = *ex;
2255		ext4_mb_use_best_found(ac, e4b);
2256		return;
2257	}
2258
2259	/*
2260	 * If this is first found extent, just store it in the context
2261	 */
2262	if (bex->fe_len == 0) {
2263		*bex = *ex;
2264		return;
2265	}
2266
2267	/*
2268	 * If new found extent is better, store it in the context
2269	 */
2270	if (bex->fe_len < gex->fe_len) {
2271		/* if the request isn't satisfied, any found extent
2272		 * larger than previous best one is better */
2273		if (ex->fe_len > bex->fe_len)
2274			*bex = *ex;
2275	} else if (ex->fe_len > gex->fe_len) {
2276		/* if the request is satisfied, then we try to find
2277		 * an extent that still satisfy the request, but is
2278		 * smaller than previous one */
2279		if (ex->fe_len < bex->fe_len)
2280			*bex = *ex;
2281	}
2282
2283	ext4_mb_check_limits(ac, e4b, 0);
2284}
2285
2286static noinline_for_stack
2287void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2288					struct ext4_buddy *e4b)
2289{
2290	struct ext4_free_extent ex = ac->ac_b_ex;
2291	ext4_group_t group = ex.fe_group;
2292	int max;
2293	int err;
2294
2295	BUG_ON(ex.fe_len <= 0);
2296	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2297	if (err)
2298		return;
2299
2300	ext4_lock_group(ac->ac_sb, group);
2301	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2302		goto out;
2303
2304	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2305
2306	if (max > 0) {
2307		ac->ac_b_ex = ex;
2308		ext4_mb_use_best_found(ac, e4b);
2309	}
2310
2311out:
2312	ext4_unlock_group(ac->ac_sb, group);
2313	ext4_mb_unload_buddy(e4b);
 
 
2314}
2315
2316static noinline_for_stack
2317int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2318				struct ext4_buddy *e4b)
2319{
2320	ext4_group_t group = ac->ac_g_ex.fe_group;
2321	int max;
2322	int err;
2323	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2324	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2325	struct ext4_free_extent ex;
2326
2327	if (!grp)
2328		return -EFSCORRUPTED;
2329	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2330		return 0;
2331	if (grp->bb_free == 0)
2332		return 0;
2333
2334	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2335	if (err)
2336		return err;
2337
 
 
 
 
 
2338	ext4_lock_group(ac->ac_sb, group);
2339	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2340		goto out;
2341
2342	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2343			     ac->ac_g_ex.fe_len, &ex);
2344	ex.fe_logical = 0xDEADFA11; /* debug value */
2345
2346	if (max >= ac->ac_g_ex.fe_len &&
2347	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2348		ext4_fsblk_t start;
2349
2350		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
 
2351		/* use do_div to get remainder (would be 64-bit modulo) */
2352		if (do_div(start, sbi->s_stripe) == 0) {
2353			ac->ac_found++;
2354			ac->ac_b_ex = ex;
2355			ext4_mb_use_best_found(ac, e4b);
2356		}
2357	} else if (max >= ac->ac_g_ex.fe_len) {
2358		BUG_ON(ex.fe_len <= 0);
2359		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2360		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2361		ac->ac_found++;
2362		ac->ac_b_ex = ex;
2363		ext4_mb_use_best_found(ac, e4b);
2364	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2365		/* Sometimes, caller may want to merge even small
2366		 * number of blocks to an existing extent */
2367		BUG_ON(ex.fe_len <= 0);
2368		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2369		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2370		ac->ac_found++;
2371		ac->ac_b_ex = ex;
2372		ext4_mb_use_best_found(ac, e4b);
2373	}
2374out:
2375	ext4_unlock_group(ac->ac_sb, group);
2376	ext4_mb_unload_buddy(e4b);
2377
2378	return 0;
2379}
2380
2381/*
2382 * The routine scans buddy structures (not bitmap!) from given order
2383 * to max order and tries to find big enough chunk to satisfy the req
2384 */
2385static noinline_for_stack
2386void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2387					struct ext4_buddy *e4b)
2388{
2389	struct super_block *sb = ac->ac_sb;
2390	struct ext4_group_info *grp = e4b->bd_info;
2391	void *buddy;
2392	int i;
2393	int k;
2394	int max;
2395
2396	BUG_ON(ac->ac_2order <= 0);
2397	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2398		if (grp->bb_counters[i] == 0)
2399			continue;
2400
2401		buddy = mb_find_buddy(e4b, i, &max);
2402		if (WARN_RATELIMIT(buddy == NULL,
2403			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2404			continue;
2405
2406		k = mb_find_next_zero_bit(buddy, max, 0);
2407		if (k >= max) {
2408			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2409					e4b->bd_group,
2410					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2411			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2412				"%d free clusters of order %d. But found 0",
2413				grp->bb_counters[i], i);
2414			break;
2415		}
2416		ac->ac_found++;
2417		ac->ac_cX_found[ac->ac_criteria]++;
2418
2419		ac->ac_b_ex.fe_len = 1 << i;
2420		ac->ac_b_ex.fe_start = k << i;
2421		ac->ac_b_ex.fe_group = e4b->bd_group;
2422
2423		ext4_mb_use_best_found(ac, e4b);
2424
2425		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2426
2427		if (EXT4_SB(sb)->s_mb_stats)
2428			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2429
2430		break;
2431	}
2432}
2433
2434/*
2435 * The routine scans the group and measures all found extents.
2436 * In order to optimize scanning, caller must pass number of
2437 * free blocks in the group, so the routine can know upper limit.
2438 */
2439static noinline_for_stack
2440void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2441					struct ext4_buddy *e4b)
2442{
2443	struct super_block *sb = ac->ac_sb;
2444	void *bitmap = e4b->bd_bitmap;
2445	struct ext4_free_extent ex;
2446	int i, j, freelen;
2447	int free;
2448
2449	free = e4b->bd_info->bb_free;
2450	if (WARN_ON(free <= 0))
2451		return;
2452
2453	i = e4b->bd_info->bb_first_free;
2454
2455	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2456		i = mb_find_next_zero_bit(bitmap,
2457						EXT4_CLUSTERS_PER_GROUP(sb), i);
2458		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2459			/*
2460			 * IF we have corrupt bitmap, we won't find any
2461			 * free blocks even though group info says we
2462			 * have free blocks
2463			 */
2464			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2465					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2466			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2467					"%d free clusters as per "
2468					"group info. But bitmap says 0",
2469					free);
2470			break;
2471		}
2472
2473		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2474			/*
2475			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2476			 * sure that this group will have a large enough
2477			 * continuous free extent, so skip over the smaller free
2478			 * extents
2479			 */
2480			j = mb_find_next_bit(bitmap,
2481						EXT4_CLUSTERS_PER_GROUP(sb), i);
2482			freelen = j - i;
2483
2484			if (freelen < ac->ac_g_ex.fe_len) {
2485				i = j;
2486				free -= freelen;
2487				continue;
2488			}
2489		}
2490
2491		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2492		if (WARN_ON(ex.fe_len <= 0))
2493			break;
2494		if (free < ex.fe_len) {
2495			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2496					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2497			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2498					"%d free clusters as per "
2499					"group info. But got %d blocks",
2500					free, ex.fe_len);
2501			/*
2502			 * The number of free blocks differs. This mostly
2503			 * indicate that the bitmap is corrupt. So exit
2504			 * without claiming the space.
2505			 */
2506			break;
2507		}
2508		ex.fe_logical = 0xDEADC0DE; /* debug value */
2509		ext4_mb_measure_extent(ac, &ex, e4b);
2510
2511		i += ex.fe_len;
2512		free -= ex.fe_len;
2513	}
2514
2515	ext4_mb_check_limits(ac, e4b, 1);
2516}
2517
2518/*
2519 * This is a special case for storages like raid5
2520 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2521 */
2522static noinline_for_stack
2523void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2524				 struct ext4_buddy *e4b)
2525{
2526	struct super_block *sb = ac->ac_sb;
2527	struct ext4_sb_info *sbi = EXT4_SB(sb);
2528	void *bitmap = e4b->bd_bitmap;
2529	struct ext4_free_extent ex;
2530	ext4_fsblk_t first_group_block;
2531	ext4_fsblk_t a;
2532	ext4_grpblk_t i, stripe;
2533	int max;
2534
2535	BUG_ON(sbi->s_stripe == 0);
2536
2537	/* find first stripe-aligned block in group */
2538	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2539
2540	a = first_group_block + sbi->s_stripe - 1;
2541	do_div(a, sbi->s_stripe);
2542	i = (a * sbi->s_stripe) - first_group_block;
2543
2544	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2545	i = EXT4_B2C(sbi, i);
2546	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2547		if (!mb_test_bit(i, bitmap)) {
2548			max = mb_find_extent(e4b, i, stripe, &ex);
2549			if (max >= stripe) {
2550				ac->ac_found++;
2551				ac->ac_cX_found[ac->ac_criteria]++;
2552				ex.fe_logical = 0xDEADF00D; /* debug value */
2553				ac->ac_b_ex = ex;
2554				ext4_mb_use_best_found(ac, e4b);
2555				break;
2556			}
2557		}
2558		i += stripe;
2559	}
2560}
2561
2562/*
2563 * This is also called BEFORE we load the buddy bitmap.
2564 * Returns either 1 or 0 indicating that the group is either suitable
2565 * for the allocation or not.
 
2566 */
2567static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2568				ext4_group_t group, enum criteria cr)
2569{
2570	ext4_grpblk_t free, fragments;
2571	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2572	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2573
2574	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2575
2576	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2577		return false;
2578
2579	free = grp->bb_free;
2580	if (free == 0)
2581		return false;
 
 
 
 
 
 
 
 
 
 
 
 
2582
2583	fragments = grp->bb_fragments;
2584	if (fragments == 0)
2585		return false;
2586
2587	switch (cr) {
2588	case CR_POWER2_ALIGNED:
2589		BUG_ON(ac->ac_2order == 0);
2590
2591		/* Avoid using the first bg of a flexgroup for data files */
2592		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2593		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2594		    ((group % flex_size) == 0))
2595			return false;
2596
2597		if (free < ac->ac_g_ex.fe_len)
2598			return false;
2599
2600		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2601			return true;
2602
2603		if (grp->bb_largest_free_order < ac->ac_2order)
2604			return false;
2605
2606		return true;
2607	case CR_GOAL_LEN_FAST:
2608	case CR_BEST_AVAIL_LEN:
2609		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2610			return true;
2611		break;
2612	case CR_GOAL_LEN_SLOW:
2613		if (free >= ac->ac_g_ex.fe_len)
2614			return true;
2615		break;
2616	case CR_ANY_FREE:
2617		return true;
2618	default:
2619		BUG();
2620	}
2621
2622	return false;
2623}
2624
2625/*
2626 * This could return negative error code if something goes wrong
2627 * during ext4_mb_init_group(). This should not be called with
2628 * ext4_lock_group() held.
2629 *
2630 * Note: because we are conditionally operating with the group lock in
2631 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2632 * function using __acquire and __release.  This means we need to be
2633 * super careful before messing with the error path handling via "goto
2634 * out"!
2635 */
2636static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2637				     ext4_group_t group, enum criteria cr)
2638{
2639	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2640	struct super_block *sb = ac->ac_sb;
2641	struct ext4_sb_info *sbi = EXT4_SB(sb);
2642	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2643	ext4_grpblk_t free;
2644	int ret = 0;
2645
2646	if (!grp)
2647		return -EFSCORRUPTED;
2648	if (sbi->s_mb_stats)
2649		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2650	if (should_lock) {
2651		ext4_lock_group(sb, group);
2652		__release(ext4_group_lock_ptr(sb, group));
2653	}
2654	free = grp->bb_free;
2655	if (free == 0)
2656		goto out;
2657	/*
2658	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2659	 * can't possibly satisfy the full goal request due to insufficient
2660	 * free blocks.
2661	 */
2662	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2663		goto out;
2664	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2665		goto out;
2666	if (should_lock) {
2667		__acquire(ext4_group_lock_ptr(sb, group));
2668		ext4_unlock_group(sb, group);
2669	}
2670
2671	/* We only do this if the grp has never been initialized */
2672	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2673		struct ext4_group_desc *gdp =
2674			ext4_get_group_desc(sb, group, NULL);
2675		int ret;
2676
2677		/*
2678		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2679		 * search to find large good chunks almost for free. If buddy
2680		 * data is not ready, then this optimization makes no sense. But
2681		 * we never skip the first block group in a flex_bg, since this
2682		 * gets used for metadata block allocation, and we want to make
2683		 * sure we locate metadata blocks in the first block group in
2684		 * the flex_bg if possible.
2685		 */
2686		if (!ext4_mb_cr_expensive(cr) &&
2687		    (!sbi->s_log_groups_per_flex ||
2688		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2689		    !(ext4_has_group_desc_csum(sb) &&
2690		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2691			return 0;
2692		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2693		if (ret)
2694			return ret;
2695	}
2696
2697	if (should_lock) {
2698		ext4_lock_group(sb, group);
2699		__release(ext4_group_lock_ptr(sb, group));
2700	}
2701	ret = ext4_mb_good_group(ac, group, cr);
2702out:
2703	if (should_lock) {
2704		__acquire(ext4_group_lock_ptr(sb, group));
2705		ext4_unlock_group(sb, group);
2706	}
2707	return ret;
2708}
2709
2710/*
2711 * Start prefetching @nr block bitmaps starting at @group.
2712 * Return the next group which needs to be prefetched.
2713 */
2714ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2715			      unsigned int nr, int *cnt)
2716{
2717	ext4_group_t ngroups = ext4_get_groups_count(sb);
2718	struct buffer_head *bh;
2719	struct blk_plug plug;
2720
2721	blk_start_plug(&plug);
2722	while (nr-- > 0) {
2723		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2724								  NULL);
2725		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2726
2727		/*
2728		 * Prefetch block groups with free blocks; but don't
2729		 * bother if it is marked uninitialized on disk, since
2730		 * it won't require I/O to read.  Also only try to
2731		 * prefetch once, so we avoid getblk() call, which can
2732		 * be expensive.
2733		 */
2734		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2735		    EXT4_MB_GRP_NEED_INIT(grp) &&
2736		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2737			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2738			if (bh && !IS_ERR(bh)) {
2739				if (!buffer_uptodate(bh) && cnt)
2740					(*cnt)++;
2741				brelse(bh);
2742			}
2743		}
2744		if (++group >= ngroups)
2745			group = 0;
2746	}
2747	blk_finish_plug(&plug);
2748	return group;
2749}
2750
2751/*
2752 * Prefetching reads the block bitmap into the buffer cache; but we
2753 * need to make sure that the buddy bitmap in the page cache has been
2754 * initialized.  Note that ext4_mb_init_group() will block if the I/O
2755 * is not yet completed, or indeed if it was not initiated by
2756 * ext4_mb_prefetch did not start the I/O.
2757 *
2758 * TODO: We should actually kick off the buddy bitmap setup in a work
2759 * queue when the buffer I/O is completed, so that we don't block
2760 * waiting for the block allocation bitmap read to finish when
2761 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2762 */
2763void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2764			   unsigned int nr)
2765{
2766	struct ext4_group_desc *gdp;
2767	struct ext4_group_info *grp;
2768
2769	while (nr-- > 0) {
2770		if (!group)
2771			group = ext4_get_groups_count(sb);
2772		group--;
2773		gdp = ext4_get_group_desc(sb, group, NULL);
2774		grp = ext4_get_group_info(sb, group);
2775
2776		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2777		    ext4_free_group_clusters(sb, gdp) > 0) {
2778			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2779				break;
2780		}
2781	}
2782}
2783
2784static noinline_for_stack int
2785ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2786{
2787	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2788	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2789	int err = 0, first_err = 0;
2790	unsigned int nr = 0, prefetch_ios = 0;
2791	struct ext4_sb_info *sbi;
2792	struct super_block *sb;
2793	struct ext4_buddy e4b;
2794	int lost;
2795
2796	sb = ac->ac_sb;
2797	sbi = EXT4_SB(sb);
2798	ngroups = ext4_get_groups_count(sb);
2799	/* non-extent files are limited to low blocks/groups */
2800	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2801		ngroups = sbi->s_blockfile_groups;
2802
2803	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2804
2805	/* first, try the goal */
2806	err = ext4_mb_find_by_goal(ac, &e4b);
2807	if (err || ac->ac_status == AC_STATUS_FOUND)
2808		goto out;
2809
2810	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2811		goto out;
2812
2813	/*
2814	 * ac->ac_2order is set only if the fe_len is a power of 2
2815	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2816	 * so that we try exact allocation using buddy.
2817	 */
2818	i = fls(ac->ac_g_ex.fe_len);
2819	ac->ac_2order = 0;
2820	/*
2821	 * We search using buddy data only if the order of the request
2822	 * is greater than equal to the sbi_s_mb_order2_reqs
2823	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2824	 * We also support searching for power-of-two requests only for
2825	 * requests upto maximum buddy size we have constructed.
2826	 */
2827	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2828		if (is_power_of_2(ac->ac_g_ex.fe_len))
2829			ac->ac_2order = array_index_nospec(i - 1,
2830							   MB_NUM_ORDERS(sb));
 
 
2831	}
2832
2833	/* if stream allocation is enabled, use global goal */
2834	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2835		/* TBD: may be hot point */
2836		spin_lock(&sbi->s_md_lock);
2837		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2838		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2839		spin_unlock(&sbi->s_md_lock);
2840	}
2841
 
 
2842	/*
2843	 * Let's just scan groups to find more-less suitable blocks We
2844	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2845	 * aligned, in which case let's do that faster approach first.
2846	 */
2847	if (ac->ac_2order)
2848		cr = CR_POWER2_ALIGNED;
2849repeat:
2850	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2851		ac->ac_criteria = cr;
2852		/*
2853		 * searching for the right group start
2854		 * from the goal value specified
2855		 */
2856		group = ac->ac_g_ex.fe_group;
2857		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2858		prefetch_grp = group;
2859
2860		for (i = 0, new_cr = cr; i < ngroups; i++,
2861		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2862			int ret = 0;
2863
2864			cond_resched();
2865			if (new_cr != cr) {
2866				cr = new_cr;
2867				goto repeat;
2868			}
2869
2870			/*
2871			 * Batch reads of the block allocation bitmaps
2872			 * to get multiple READs in flight; limit
2873			 * prefetching at inexpensive CR, otherwise mballoc
2874			 * can spend a lot of time loading imperfect groups
2875			 */
2876			if ((prefetch_grp == group) &&
2877			    (ext4_mb_cr_expensive(cr) ||
2878			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2879				nr = sbi->s_mb_prefetch;
2880				if (ext4_has_feature_flex_bg(sb)) {
2881					nr = 1 << sbi->s_log_groups_per_flex;
2882					nr -= group & (nr - 1);
2883					nr = min(nr, sbi->s_mb_prefetch);
2884				}
2885				prefetch_grp = ext4_mb_prefetch(sb, group,
2886							nr, &prefetch_ios);
2887			}
2888
2889			/* This now checks without needing the buddy page */
2890			ret = ext4_mb_good_group_nolock(ac, group, cr);
2891			if (ret <= 0) {
2892				if (!first_err)
2893					first_err = ret;
2894				continue;
2895			}
2896
2897			err = ext4_mb_load_buddy(sb, group, &e4b);
2898			if (err)
2899				goto out;
2900
2901			ext4_lock_group(sb, group);
2902
2903			/*
2904			 * We need to check again after locking the
2905			 * block group
2906			 */
2907			ret = ext4_mb_good_group(ac, group, cr);
2908			if (ret == 0) {
2909				ext4_unlock_group(sb, group);
2910				ext4_mb_unload_buddy(&e4b);
 
 
2911				continue;
2912			}
2913
2914			ac->ac_groups_scanned++;
2915			if (cr == CR_POWER2_ALIGNED)
2916				ext4_mb_simple_scan_group(ac, &e4b);
2917			else {
2918				bool is_stripe_aligned = sbi->s_stripe &&
2919					!(ac->ac_g_ex.fe_len %
2920					  EXT4_B2C(sbi, sbi->s_stripe));
2921
2922				if ((cr == CR_GOAL_LEN_FAST ||
2923				     cr == CR_BEST_AVAIL_LEN) &&
2924				    is_stripe_aligned)
2925					ext4_mb_scan_aligned(ac, &e4b);
2926
2927				if (ac->ac_status == AC_STATUS_CONTINUE)
2928					ext4_mb_complex_scan_group(ac, &e4b);
2929			}
2930
2931			ext4_unlock_group(sb, group);
2932			ext4_mb_unload_buddy(&e4b);
2933
2934			if (ac->ac_status != AC_STATUS_CONTINUE)
2935				break;
2936		}
2937		/* Processed all groups and haven't found blocks */
2938		if (sbi->s_mb_stats && i == ngroups)
2939			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2940
2941		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2942			/* Reset goal length to original goal length before
2943			 * falling into CR_GOAL_LEN_SLOW */
2944			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2945	}
2946
2947	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2948	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2949		/*
2950		 * We've been searching too long. Let's try to allocate
2951		 * the best chunk we've found so far
2952		 */
 
2953		ext4_mb_try_best_found(ac, &e4b);
2954		if (ac->ac_status != AC_STATUS_FOUND) {
2955			/*
2956			 * Someone more lucky has already allocated it.
2957			 * The only thing we can do is just take first
2958			 * found block(s)
 
2959			 */
2960			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2961			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2962				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2963				 ac->ac_b_ex.fe_len, lost);
2964
2965			ac->ac_b_ex.fe_group = 0;
2966			ac->ac_b_ex.fe_start = 0;
2967			ac->ac_b_ex.fe_len = 0;
2968			ac->ac_status = AC_STATUS_CONTINUE;
2969			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2970			cr = CR_ANY_FREE;
 
2971			goto repeat;
2972		}
2973	}
2974
2975	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2976		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2977out:
2978	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2979		err = first_err;
2980
2981	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2982		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2983		 ac->ac_flags, cr, err);
2984
2985	if (nr)
2986		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2987
2988	return err;
2989}
2990
2991static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2992{
2993	struct super_block *sb = pde_data(file_inode(seq->file));
2994	ext4_group_t group;
2995
2996	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2997		return NULL;
2998	group = *pos + 1;
2999	return (void *) ((unsigned long) group);
3000}
3001
3002static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3003{
3004	struct super_block *sb = pde_data(file_inode(seq->file));
3005	ext4_group_t group;
3006
3007	++*pos;
3008	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3009		return NULL;
3010	group = *pos + 1;
3011	return (void *) ((unsigned long) group);
3012}
3013
3014static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3015{
3016	struct super_block *sb = pde_data(file_inode(seq->file));
3017	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3018	int i;
3019	int err, buddy_loaded = 0;
3020	struct ext4_buddy e4b;
3021	struct ext4_group_info *grinfo;
3022	unsigned char blocksize_bits = min_t(unsigned char,
3023					     sb->s_blocksize_bits,
3024					     EXT4_MAX_BLOCK_LOG_SIZE);
3025	struct sg {
3026		struct ext4_group_info info;
3027		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3028	} sg;
3029
3030	group--;
3031	if (group == 0)
3032		seq_puts(seq, "#group: free  frags first ["
3033			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3034			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3035
3036	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3037		sizeof(struct ext4_group_info);
3038
3039	grinfo = ext4_get_group_info(sb, group);
3040	if (!grinfo)
3041		return 0;
3042	/* Load the group info in memory only if not already loaded. */
3043	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3044		err = ext4_mb_load_buddy(sb, group, &e4b);
3045		if (err) {
3046			seq_printf(seq, "#%-5u: I/O error\n", group);
3047			return 0;
3048		}
3049		buddy_loaded = 1;
3050	}
3051
3052	memcpy(&sg, grinfo, i);
3053
3054	if (buddy_loaded)
3055		ext4_mb_unload_buddy(&e4b);
3056
3057	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3058			sg.info.bb_fragments, sg.info.bb_first_free);
3059	for (i = 0; i <= 13; i++)
3060		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3061				sg.info.bb_counters[i] : 0);
3062	seq_puts(seq, " ]\n");
3063
3064	return 0;
3065}
3066
3067static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3068{
3069}
3070
3071const struct seq_operations ext4_mb_seq_groups_ops = {
3072	.start  = ext4_mb_seq_groups_start,
3073	.next   = ext4_mb_seq_groups_next,
3074	.stop   = ext4_mb_seq_groups_stop,
3075	.show   = ext4_mb_seq_groups_show,
3076};
3077
3078int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3079{
3080	struct super_block *sb = seq->private;
3081	struct ext4_sb_info *sbi = EXT4_SB(sb);
3082
3083	seq_puts(seq, "mballoc:\n");
3084	if (!sbi->s_mb_stats) {
3085		seq_puts(seq, "\tmb stats collection turned off.\n");
3086		seq_puts(
3087			seq,
3088			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3089		return 0;
3090	}
3091	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3092	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3093
3094	seq_printf(seq, "\tgroups_scanned: %u\n",
3095		   atomic_read(&sbi->s_bal_groups_scanned));
3096
3097	/* CR_POWER2_ALIGNED stats */
3098	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3099	seq_printf(seq, "\t\thits: %llu\n",
3100		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3101	seq_printf(
3102		seq, "\t\tgroups_considered: %llu\n",
3103		atomic64_read(
3104			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3105	seq_printf(seq, "\t\textents_scanned: %u\n",
3106		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3107	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3108		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3109	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3110		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3111
3112	/* CR_GOAL_LEN_FAST stats */
3113	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3114	seq_printf(seq, "\t\thits: %llu\n",
3115		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3116	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3117		   atomic64_read(
3118			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3119	seq_printf(seq, "\t\textents_scanned: %u\n",
3120		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3121	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3122		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3123	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3124		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3125
3126	/* CR_BEST_AVAIL_LEN stats */
3127	seq_puts(seq, "\tcr_best_avail_stats:\n");
3128	seq_printf(seq, "\t\thits: %llu\n",
3129		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3130	seq_printf(
3131		seq, "\t\tgroups_considered: %llu\n",
3132		atomic64_read(
3133			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3134	seq_printf(seq, "\t\textents_scanned: %u\n",
3135		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3136	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3137		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3138	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3139		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3140
3141	/* CR_GOAL_LEN_SLOW stats */
3142	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3143	seq_printf(seq, "\t\thits: %llu\n",
3144		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3145	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3146		   atomic64_read(
3147			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3148	seq_printf(seq, "\t\textents_scanned: %u\n",
3149		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3150	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3151		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3152
3153	/* CR_ANY_FREE stats */
3154	seq_puts(seq, "\tcr_any_free_stats:\n");
3155	seq_printf(seq, "\t\thits: %llu\n",
3156		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3157	seq_printf(
3158		seq, "\t\tgroups_considered: %llu\n",
3159		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3160	seq_printf(seq, "\t\textents_scanned: %u\n",
3161		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3162	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3163		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3164
3165	/* Aggregates */
3166	seq_printf(seq, "\textents_scanned: %u\n",
3167		   atomic_read(&sbi->s_bal_ex_scanned));
3168	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3169	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3170		   atomic_read(&sbi->s_bal_len_goals));
3171	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3172	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3173	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3174	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3175		   atomic_read(&sbi->s_mb_buddies_generated),
3176		   ext4_get_groups_count(sb));
3177	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3178		   atomic64_read(&sbi->s_mb_generation_time));
3179	seq_printf(seq, "\tpreallocated: %u\n",
3180		   atomic_read(&sbi->s_mb_preallocated));
3181	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3182	return 0;
3183}
3184
3185static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3186__acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3187{
3188	struct super_block *sb = pde_data(file_inode(seq->file));
3189	unsigned long position;
3190
3191	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3192		return NULL;
3193	position = *pos + 1;
3194	return (void *) ((unsigned long) position);
3195}
3196
3197static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3198{
3199	struct super_block *sb = pde_data(file_inode(seq->file));
3200	unsigned long position;
3201
3202	++*pos;
3203	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3204		return NULL;
3205	position = *pos + 1;
3206	return (void *) ((unsigned long) position);
3207}
3208
3209static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3210{
3211	struct super_block *sb = pde_data(file_inode(seq->file));
3212	struct ext4_sb_info *sbi = EXT4_SB(sb);
3213	unsigned long position = ((unsigned long) v);
3214	struct ext4_group_info *grp;
3215	unsigned int count;
3216
3217	position--;
3218	if (position >= MB_NUM_ORDERS(sb)) {
3219		position -= MB_NUM_ORDERS(sb);
3220		if (position == 0)
3221			seq_puts(seq, "avg_fragment_size_lists:\n");
3222
3223		count = 0;
3224		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3225		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3226				    bb_avg_fragment_size_node)
3227			count++;
3228		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3229		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3230					(unsigned int)position, count);
3231		return 0;
3232	}
3233
3234	if (position == 0) {
3235		seq_printf(seq, "optimize_scan: %d\n",
3236			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3237		seq_puts(seq, "max_free_order_lists:\n");
3238	}
3239	count = 0;
3240	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3241	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3242			    bb_largest_free_order_node)
3243		count++;
3244	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3245	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3246		   (unsigned int)position, count);
3247
3248	return 0;
3249}
3250
3251static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3252{
3253}
3254
3255const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3256	.start  = ext4_mb_seq_structs_summary_start,
3257	.next   = ext4_mb_seq_structs_summary_next,
3258	.stop   = ext4_mb_seq_structs_summary_stop,
3259	.show   = ext4_mb_seq_structs_summary_show,
3260};
3261
3262static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3263{
3264	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3265	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3266
3267	BUG_ON(!cachep);
3268	return cachep;
3269}
3270
3271/*
3272 * Allocate the top-level s_group_info array for the specified number
3273 * of groups
3274 */
3275int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3276{
3277	struct ext4_sb_info *sbi = EXT4_SB(sb);
3278	unsigned size;
3279	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3280
3281	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3282		EXT4_DESC_PER_BLOCK_BITS(sb);
3283	if (size <= sbi->s_group_info_size)
3284		return 0;
3285
3286	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3287	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3288	if (!new_groupinfo) {
3289		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3290		return -ENOMEM;
3291	}
3292	rcu_read_lock();
3293	old_groupinfo = rcu_dereference(sbi->s_group_info);
3294	if (old_groupinfo)
3295		memcpy(new_groupinfo, old_groupinfo,
3296		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3297	rcu_read_unlock();
3298	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
 
3299	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3300	if (old_groupinfo)
3301		ext4_kvfree_array_rcu(old_groupinfo);
3302	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3303		   sbi->s_group_info_size);
3304	return 0;
3305}
3306
3307/* Create and initialize ext4_group_info data for the given group. */
3308int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3309			  struct ext4_group_desc *desc)
3310{
3311	int i;
3312	int metalen = 0;
3313	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3314	struct ext4_sb_info *sbi = EXT4_SB(sb);
3315	struct ext4_group_info **meta_group_info;
3316	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3317
3318	/*
3319	 * First check if this group is the first of a reserved block.
3320	 * If it's true, we have to allocate a new table of pointers
3321	 * to ext4_group_info structures
3322	 */
3323	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3324		metalen = sizeof(*meta_group_info) <<
3325			EXT4_DESC_PER_BLOCK_BITS(sb);
3326		meta_group_info = kmalloc(metalen, GFP_NOFS);
3327		if (meta_group_info == NULL) {
3328			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3329				 "for a buddy group");
3330			return -ENOMEM;
3331		}
3332		rcu_read_lock();
3333		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3334		rcu_read_unlock();
3335	}
3336
3337	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
 
3338	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3339
3340	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3341	if (meta_group_info[i] == NULL) {
3342		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3343		goto exit_group_info;
3344	}
3345	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3346		&(meta_group_info[i]->bb_state));
3347
3348	/*
3349	 * initialize bb_free to be able to skip
3350	 * empty groups without initialization
3351	 */
3352	if (ext4_has_group_desc_csum(sb) &&
3353	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3354		meta_group_info[i]->bb_free =
3355			ext4_free_clusters_after_init(sb, group, desc);
3356	} else {
3357		meta_group_info[i]->bb_free =
3358			ext4_free_group_clusters(sb, desc);
3359	}
3360
3361	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3362	init_rwsem(&meta_group_info[i]->alloc_sem);
3363	meta_group_info[i]->bb_free_root = RB_ROOT;
3364	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3365	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3366	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3367	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3368	meta_group_info[i]->bb_group = group;
3369
3370	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
 
 
 
 
 
 
 
 
 
 
 
 
 
3371	return 0;
3372
3373exit_group_info:
3374	/* If a meta_group_info table has been allocated, release it now */
3375	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3376		struct ext4_group_info ***group_info;
3377
3378		rcu_read_lock();
3379		group_info = rcu_dereference(sbi->s_group_info);
3380		kfree(group_info[idx]);
3381		group_info[idx] = NULL;
3382		rcu_read_unlock();
3383	}
 
3384	return -ENOMEM;
3385} /* ext4_mb_add_groupinfo */
3386
3387static int ext4_mb_init_backend(struct super_block *sb)
3388{
3389	ext4_group_t ngroups = ext4_get_groups_count(sb);
3390	ext4_group_t i;
3391	struct ext4_sb_info *sbi = EXT4_SB(sb);
3392	int err;
3393	struct ext4_group_desc *desc;
3394	struct ext4_group_info ***group_info;
3395	struct kmem_cache *cachep;
3396
3397	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3398	if (err)
3399		return err;
3400
3401	sbi->s_buddy_cache = new_inode(sb);
3402	if (sbi->s_buddy_cache == NULL) {
3403		ext4_msg(sb, KERN_ERR, "can't get new inode");
3404		goto err_freesgi;
3405	}
3406	/* To avoid potentially colliding with an valid on-disk inode number,
3407	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3408	 * not in the inode hash, so it should never be found by iget(), but
3409	 * this will avoid confusion if it ever shows up during debugging. */
3410	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3411	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3412	for (i = 0; i < ngroups; i++) {
3413		cond_resched();
3414		desc = ext4_get_group_desc(sb, i, NULL);
3415		if (desc == NULL) {
3416			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3417			goto err_freebuddy;
3418		}
3419		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3420			goto err_freebuddy;
3421	}
3422
3423	if (ext4_has_feature_flex_bg(sb)) {
3424		/* a single flex group is supposed to be read by a single IO.
3425		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3426		 * unsigned integer, so the maximum shift is 32.
3427		 */
3428		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3429			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3430			goto err_freebuddy;
3431		}
3432		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3433			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3434		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3435	} else {
3436		sbi->s_mb_prefetch = 32;
3437	}
3438	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3439		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3440	/* now many real IOs to prefetch within a single allocation at cr=0
3441	 * given cr=0 is an CPU-related optimization we shouldn't try to
3442	 * load too many groups, at some point we should start to use what
3443	 * we've got in memory.
3444	 * with an average random access time 5ms, it'd take a second to get
3445	 * 200 groups (* N with flex_bg), so let's make this limit 4
3446	 */
3447	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3448	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3449		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3450
3451	return 0;
3452
3453err_freebuddy:
3454	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3455	while (i-- > 0) {
3456		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3457
3458		if (grp)
3459			kmem_cache_free(cachep, grp);
3460	}
3461	i = sbi->s_group_info_size;
3462	rcu_read_lock();
3463	group_info = rcu_dereference(sbi->s_group_info);
3464	while (i-- > 0)
3465		kfree(group_info[i]);
3466	rcu_read_unlock();
3467	iput(sbi->s_buddy_cache);
3468err_freesgi:
3469	rcu_read_lock();
3470	kvfree(rcu_dereference(sbi->s_group_info));
3471	rcu_read_unlock();
3472	return -ENOMEM;
3473}
3474
3475static void ext4_groupinfo_destroy_slabs(void)
3476{
3477	int i;
3478
3479	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3480		kmem_cache_destroy(ext4_groupinfo_caches[i]);
 
3481		ext4_groupinfo_caches[i] = NULL;
3482	}
3483}
3484
3485static int ext4_groupinfo_create_slab(size_t size)
3486{
3487	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3488	int slab_size;
3489	int blocksize_bits = order_base_2(size);
3490	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3491	struct kmem_cache *cachep;
3492
3493	if (cache_index >= NR_GRPINFO_CACHES)
3494		return -EINVAL;
3495
3496	if (unlikely(cache_index < 0))
3497		cache_index = 0;
3498
3499	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3500	if (ext4_groupinfo_caches[cache_index]) {
3501		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3502		return 0;	/* Already created */
3503	}
3504
3505	slab_size = offsetof(struct ext4_group_info,
3506				bb_counters[blocksize_bits + 2]);
3507
3508	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3509					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3510					NULL);
3511
3512	ext4_groupinfo_caches[cache_index] = cachep;
3513
3514	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3515	if (!cachep) {
3516		printk(KERN_EMERG
3517		       "EXT4-fs: no memory for groupinfo slab cache\n");
3518		return -ENOMEM;
3519	}
3520
3521	return 0;
3522}
3523
3524static void ext4_discard_work(struct work_struct *work)
3525{
3526	struct ext4_sb_info *sbi = container_of(work,
3527			struct ext4_sb_info, s_discard_work);
3528	struct super_block *sb = sbi->s_sb;
3529	struct ext4_free_data *fd, *nfd;
3530	struct ext4_buddy e4b;
3531	LIST_HEAD(discard_list);
3532	ext4_group_t grp, load_grp;
3533	int err = 0;
3534
3535	spin_lock(&sbi->s_md_lock);
3536	list_splice_init(&sbi->s_discard_list, &discard_list);
3537	spin_unlock(&sbi->s_md_lock);
3538
3539	load_grp = UINT_MAX;
3540	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3541		/*
3542		 * If filesystem is umounting or no memory or suffering
3543		 * from no space, give up the discard
3544		 */
3545		if ((sb->s_flags & SB_ACTIVE) && !err &&
3546		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3547			grp = fd->efd_group;
3548			if (grp != load_grp) {
3549				if (load_grp != UINT_MAX)
3550					ext4_mb_unload_buddy(&e4b);
3551
3552				err = ext4_mb_load_buddy(sb, grp, &e4b);
3553				if (err) {
3554					kmem_cache_free(ext4_free_data_cachep, fd);
3555					load_grp = UINT_MAX;
3556					continue;
3557				} else {
3558					load_grp = grp;
3559				}
3560			}
3561
3562			ext4_lock_group(sb, grp);
3563			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3564						fd->efd_start_cluster + fd->efd_count - 1, 1);
3565			ext4_unlock_group(sb, grp);
3566		}
3567		kmem_cache_free(ext4_free_data_cachep, fd);
3568	}
3569
3570	if (load_grp != UINT_MAX)
3571		ext4_mb_unload_buddy(&e4b);
3572}
3573
3574int ext4_mb_init(struct super_block *sb)
3575{
3576	struct ext4_sb_info *sbi = EXT4_SB(sb);
3577	unsigned i, j;
3578	unsigned offset, offset_incr;
3579	unsigned max;
3580	int ret;
3581
3582	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3583
3584	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3585	if (sbi->s_mb_offsets == NULL) {
3586		ret = -ENOMEM;
3587		goto out;
3588	}
3589
3590	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3591	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3592	if (sbi->s_mb_maxs == NULL) {
3593		ret = -ENOMEM;
3594		goto out;
3595	}
3596
3597	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3598	if (ret < 0)
3599		goto out;
3600
3601	/* order 0 is regular bitmap */
3602	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3603	sbi->s_mb_offsets[0] = 0;
3604
3605	i = 1;
3606	offset = 0;
3607	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3608	max = sb->s_blocksize << 2;
3609	do {
3610		sbi->s_mb_offsets[i] = offset;
3611		sbi->s_mb_maxs[i] = max;
3612		offset += offset_incr;
3613		offset_incr = offset_incr >> 1;
3614		max = max >> 1;
3615		i++;
3616	} while (i < MB_NUM_ORDERS(sb));
3617
3618	sbi->s_mb_avg_fragment_size =
3619		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3620			GFP_KERNEL);
3621	if (!sbi->s_mb_avg_fragment_size) {
3622		ret = -ENOMEM;
3623		goto out;
3624	}
3625	sbi->s_mb_avg_fragment_size_locks =
3626		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3627			GFP_KERNEL);
3628	if (!sbi->s_mb_avg_fragment_size_locks) {
3629		ret = -ENOMEM;
3630		goto out;
3631	}
3632	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3633		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3634		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3635	}
3636	sbi->s_mb_largest_free_orders =
3637		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3638			GFP_KERNEL);
3639	if (!sbi->s_mb_largest_free_orders) {
3640		ret = -ENOMEM;
3641		goto out;
3642	}
3643	sbi->s_mb_largest_free_orders_locks =
3644		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3645			GFP_KERNEL);
3646	if (!sbi->s_mb_largest_free_orders_locks) {
3647		ret = -ENOMEM;
3648		goto out;
3649	}
3650	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3651		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3652		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3653	}
3654
3655	spin_lock_init(&sbi->s_md_lock);
3656	sbi->s_mb_free_pending = 0;
3657	INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3658	INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3659	INIT_LIST_HEAD(&sbi->s_discard_list);
3660	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3661	atomic_set(&sbi->s_retry_alloc_pending, 0);
3662
3663	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3664	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3665	sbi->s_mb_stats = MB_DEFAULT_STATS;
3666	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3667	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3668	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3669
3670	/*
3671	 * The default group preallocation is 512, which for 4k block
3672	 * sizes translates to 2 megabytes.  However for bigalloc file
3673	 * systems, this is probably too big (i.e, if the cluster size
3674	 * is 1 megabyte, then group preallocation size becomes half a
3675	 * gigabyte!).  As a default, we will keep a two megabyte
3676	 * group pralloc size for cluster sizes up to 64k, and after
3677	 * that, we will force a minimum group preallocation size of
3678	 * 32 clusters.  This translates to 8 megs when the cluster
3679	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3680	 * which seems reasonable as a default.
3681	 */
3682	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3683				       sbi->s_cluster_bits, 32);
3684	/*
3685	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3686	 * to the lowest multiple of s_stripe which is bigger than
3687	 * the s_mb_group_prealloc as determined above. We want
3688	 * the preallocation size to be an exact multiple of the
3689	 * RAID stripe size so that preallocations don't fragment
3690	 * the stripes.
3691	 */
3692	if (sbi->s_stripe > 1) {
3693		sbi->s_mb_group_prealloc = roundup(
3694			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3695	}
3696
3697	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3698	if (sbi->s_locality_groups == NULL) {
3699		ret = -ENOMEM;
3700		goto out;
3701	}
3702	for_each_possible_cpu(i) {
3703		struct ext4_locality_group *lg;
3704		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3705		mutex_init(&lg->lg_mutex);
3706		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3707			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3708		spin_lock_init(&lg->lg_prealloc_lock);
3709	}
3710
3711	if (bdev_nonrot(sb->s_bdev))
3712		sbi->s_mb_max_linear_groups = 0;
3713	else
3714		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3715	/* init file for buddy data */
3716	ret = ext4_mb_init_backend(sb);
3717	if (ret != 0)
3718		goto out_free_locality_groups;
3719
3720	return 0;
3721
3722out_free_locality_groups:
3723	free_percpu(sbi->s_locality_groups);
3724	sbi->s_locality_groups = NULL;
3725out:
3726	kfree(sbi->s_mb_avg_fragment_size);
3727	kfree(sbi->s_mb_avg_fragment_size_locks);
3728	kfree(sbi->s_mb_largest_free_orders);
3729	kfree(sbi->s_mb_largest_free_orders_locks);
3730	kfree(sbi->s_mb_offsets);
3731	sbi->s_mb_offsets = NULL;
3732	kfree(sbi->s_mb_maxs);
3733	sbi->s_mb_maxs = NULL;
3734	return ret;
3735}
3736
3737/* need to called with the ext4 group lock held */
3738static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3739{
3740	struct ext4_prealloc_space *pa;
3741	struct list_head *cur, *tmp;
3742	int count = 0;
3743
3744	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3745		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3746		list_del(&pa->pa_group_list);
3747		count++;
3748		kmem_cache_free(ext4_pspace_cachep, pa);
3749	}
3750	return count;
 
 
3751}
3752
3753void ext4_mb_release(struct super_block *sb)
3754{
3755	ext4_group_t ngroups = ext4_get_groups_count(sb);
3756	ext4_group_t i;
3757	int num_meta_group_infos;
3758	struct ext4_group_info *grinfo, ***group_info;
3759	struct ext4_sb_info *sbi = EXT4_SB(sb);
3760	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3761	int count;
3762
3763	if (test_opt(sb, DISCARD)) {
3764		/*
3765		 * wait the discard work to drain all of ext4_free_data
3766		 */
3767		flush_work(&sbi->s_discard_work);
3768		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3769	}
3770
3771	if (sbi->s_group_info) {
3772		for (i = 0; i < ngroups; i++) {
3773			cond_resched();
3774			grinfo = ext4_get_group_info(sb, i);
3775			if (!grinfo)
3776				continue;
3777			mb_group_bb_bitmap_free(grinfo);
3778			ext4_lock_group(sb, i);
3779			count = ext4_mb_cleanup_pa(grinfo);
3780			if (count)
3781				mb_debug(sb, "mballoc: %d PAs left\n",
3782					 count);
3783			ext4_unlock_group(sb, i);
3784			kmem_cache_free(cachep, grinfo);
3785		}
3786		num_meta_group_infos = (ngroups +
3787				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3788			EXT4_DESC_PER_BLOCK_BITS(sb);
3789		rcu_read_lock();
3790		group_info = rcu_dereference(sbi->s_group_info);
3791		for (i = 0; i < num_meta_group_infos; i++)
3792			kfree(group_info[i]);
3793		kvfree(group_info);
3794		rcu_read_unlock();
3795	}
3796	kfree(sbi->s_mb_avg_fragment_size);
3797	kfree(sbi->s_mb_avg_fragment_size_locks);
3798	kfree(sbi->s_mb_largest_free_orders);
3799	kfree(sbi->s_mb_largest_free_orders_locks);
3800	kfree(sbi->s_mb_offsets);
3801	kfree(sbi->s_mb_maxs);
3802	iput(sbi->s_buddy_cache);
3803	if (sbi->s_mb_stats) {
3804		ext4_msg(sb, KERN_INFO,
3805		       "mballoc: %u blocks %u reqs (%u success)",
3806				atomic_read(&sbi->s_bal_allocated),
3807				atomic_read(&sbi->s_bal_reqs),
3808				atomic_read(&sbi->s_bal_success));
3809		ext4_msg(sb, KERN_INFO,
3810		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3811				"%u 2^N hits, %u breaks, %u lost",
3812				atomic_read(&sbi->s_bal_ex_scanned),
3813				atomic_read(&sbi->s_bal_groups_scanned),
3814				atomic_read(&sbi->s_bal_goals),
3815				atomic_read(&sbi->s_bal_2orders),
3816				atomic_read(&sbi->s_bal_breaks),
3817				atomic_read(&sbi->s_mb_lost_chunks));
3818		ext4_msg(sb, KERN_INFO,
3819		       "mballoc: %u generated and it took %llu",
3820				atomic_read(&sbi->s_mb_buddies_generated),
3821				atomic64_read(&sbi->s_mb_generation_time));
3822		ext4_msg(sb, KERN_INFO,
3823		       "mballoc: %u preallocated, %u discarded",
3824				atomic_read(&sbi->s_mb_preallocated),
3825				atomic_read(&sbi->s_mb_discarded));
3826	}
3827
3828	free_percpu(sbi->s_locality_groups);
 
 
3829}
3830
3831static inline int ext4_issue_discard(struct super_block *sb,
3832		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3833		struct bio **biop)
3834{
3835	ext4_fsblk_t discard_block;
3836
3837	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3838			 ext4_group_first_block_no(sb, block_group));
3839	count = EXT4_C2B(EXT4_SB(sb), count);
3840	trace_ext4_discard_blocks(sb,
3841			(unsigned long long) discard_block, count);
3842	if (biop) {
3843		return __blkdev_issue_discard(sb->s_bdev,
3844			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3845			(sector_t)count << (sb->s_blocksize_bits - 9),
3846			GFP_NOFS, biop);
3847	} else
3848		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3849}
3850
3851static void ext4_free_data_in_buddy(struct super_block *sb,
3852				    struct ext4_free_data *entry)
 
 
 
 
 
3853{
 
3854	struct ext4_buddy e4b;
3855	struct ext4_group_info *db;
3856	int err, count = 0;
3857
3858	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3859		 entry->efd_count, entry->efd_group, entry);
3860
 
 
 
 
 
 
 
 
 
 
 
 
3861	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3862	/* we expect to find existing buddy because it's pinned */
3863	BUG_ON(err != 0);
3864
3865	spin_lock(&EXT4_SB(sb)->s_md_lock);
3866	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3867	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3868
3869	db = e4b.bd_info;
3870	/* there are blocks to put in buddy to make them really free */
3871	count += entry->efd_count;
 
3872	ext4_lock_group(sb, entry->efd_group);
3873	/* Take it out of per group rb tree */
3874	rb_erase(&entry->efd_node, &(db->bb_free_root));
3875	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3876
3877	/*
3878	 * Clear the trimmed flag for the group so that the next
3879	 * ext4_trim_fs can trim it.
3880	 * If the volume is mounted with -o discard, online discard
3881	 * is supported and the free blocks will be trimmed online.
3882	 */
3883	if (!test_opt(sb, DISCARD))
3884		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3885
3886	if (!db->bb_free_root.rb_node) {
3887		/* No more items in the per group rb tree
3888		 * balance refcounts from ext4_mb_free_metadata()
3889		 */
3890		put_page(e4b.bd_buddy_page);
3891		put_page(e4b.bd_bitmap_page);
3892	}
3893	ext4_unlock_group(sb, entry->efd_group);
 
3894	ext4_mb_unload_buddy(&e4b);
3895
3896	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3897}
3898
3899/*
3900 * This function is called by the jbd2 layer once the commit has finished,
3901 * so we know we can free the blocks that were released with that commit.
3902 */
3903void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3904{
3905	struct ext4_sb_info *sbi = EXT4_SB(sb);
3906	struct ext4_free_data *entry, *tmp;
3907	LIST_HEAD(freed_data_list);
3908	struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3909	bool wake;
3910
3911	list_replace_init(s_freed_head, &freed_data_list);
3912
3913	list_for_each_entry(entry, &freed_data_list, efd_list)
3914		ext4_free_data_in_buddy(sb, entry);
3915
3916	if (test_opt(sb, DISCARD)) {
3917		spin_lock(&sbi->s_md_lock);
3918		wake = list_empty(&sbi->s_discard_list);
3919		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3920		spin_unlock(&sbi->s_md_lock);
3921		if (wake)
3922			queue_work(system_unbound_wq, &sbi->s_discard_work);
3923	} else {
3924		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3925			kmem_cache_free(ext4_free_data_cachep, entry);
3926	}
3927}
3928
3929int __init ext4_init_mballoc(void)
3930{
3931	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3932					SLAB_RECLAIM_ACCOUNT);
3933	if (ext4_pspace_cachep == NULL)
3934		goto out;
3935
3936	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3937				    SLAB_RECLAIM_ACCOUNT);
3938	if (ext4_ac_cachep == NULL)
3939		goto out_pa_free;
 
 
3940
3941	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3942					   SLAB_RECLAIM_ACCOUNT);
3943	if (ext4_free_data_cachep == NULL)
3944		goto out_ac_free;
3945
 
 
3946	return 0;
3947
3948out_ac_free:
3949	kmem_cache_destroy(ext4_ac_cachep);
3950out_pa_free:
3951	kmem_cache_destroy(ext4_pspace_cachep);
3952out:
3953	return -ENOMEM;
3954}
3955
3956void ext4_exit_mballoc(void)
3957{
3958	/*
3959	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3960	 * before destroying the slab cache.
3961	 */
3962	rcu_barrier();
3963	kmem_cache_destroy(ext4_pspace_cachep);
3964	kmem_cache_destroy(ext4_ac_cachep);
3965	kmem_cache_destroy(ext4_free_data_cachep);
3966	ext4_groupinfo_destroy_slabs();
3967}
3968
3969#define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3970#define EXT4_MB_SYNC_UPDATE 0x0002
3971static int
3972ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3973		     ext4_group_t group, ext4_grpblk_t blkoff,
3974		     ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3975{
3976	struct ext4_sb_info *sbi = EXT4_SB(sb);
3977	struct buffer_head *bitmap_bh = NULL;
3978	struct ext4_group_desc *gdp;
3979	struct buffer_head *gdp_bh;
3980	int err;
3981	unsigned int i, already, changed = len;
3982
3983	KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3984				   handle, sb, state, group, blkoff, len,
3985				   flags, ret_changed);
3986
3987	if (ret_changed)
3988		*ret_changed = 0;
3989	bitmap_bh = ext4_read_block_bitmap(sb, group);
3990	if (IS_ERR(bitmap_bh))
3991		return PTR_ERR(bitmap_bh);
3992
3993	if (handle) {
3994		BUFFER_TRACE(bitmap_bh, "getting write access");
3995		err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3996						    EXT4_JTR_NONE);
3997		if (err)
3998			goto out_err;
3999	}
4000
4001	err = -EIO;
4002	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4003	if (!gdp)
4004		goto out_err;
4005
4006	if (handle) {
4007		BUFFER_TRACE(gdp_bh, "get_write_access");
4008		err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4009						    EXT4_JTR_NONE);
4010		if (err)
4011			goto out_err;
4012	}
4013
4014	ext4_lock_group(sb, group);
4015	if (ext4_has_group_desc_csum(sb) &&
4016	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4017		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4018		ext4_free_group_clusters_set(sb, gdp,
4019			ext4_free_clusters_after_init(sb, group, gdp));
4020	}
4021
4022	if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4023		already = 0;
4024		for (i = 0; i < len; i++)
4025			if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4026					state)
4027				already++;
4028		changed = len - already;
4029	}
4030
4031	if (state) {
4032		mb_set_bits(bitmap_bh->b_data, blkoff, len);
4033		ext4_free_group_clusters_set(sb, gdp,
4034			ext4_free_group_clusters(sb, gdp) - changed);
4035	} else {
4036		mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4037		ext4_free_group_clusters_set(sb, gdp,
4038			ext4_free_group_clusters(sb, gdp) + changed);
4039	}
4040
4041	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4042	ext4_group_desc_csum_set(sb, group, gdp);
4043	ext4_unlock_group(sb, group);
4044	if (ret_changed)
4045		*ret_changed = changed;
4046
4047	if (sbi->s_log_groups_per_flex) {
4048		ext4_group_t flex_group = ext4_flex_group(sbi, group);
4049		struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4050					   s_flex_groups, flex_group);
4051
4052		if (state)
4053			atomic64_sub(changed, &fg->free_clusters);
4054		else
4055			atomic64_add(changed, &fg->free_clusters);
4056	}
4057
4058	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4059	if (err)
4060		goto out_err;
4061	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4062	if (err)
4063		goto out_err;
4064
4065	if (flags & EXT4_MB_SYNC_UPDATE) {
4066		sync_dirty_buffer(bitmap_bh);
4067		sync_dirty_buffer(gdp_bh);
4068	}
4069
4070out_err:
4071	brelse(bitmap_bh);
4072	return err;
4073}
4074
4075/*
4076 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4077 * Returns 0 if success or error code
4078 */
4079static noinline_for_stack int
4080ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4081				handle_t *handle, unsigned int reserv_clstrs)
4082{
 
4083	struct ext4_group_desc *gdp;
 
4084	struct ext4_sb_info *sbi;
4085	struct super_block *sb;
4086	ext4_fsblk_t block;
4087	int err, len;
4088	int flags = 0;
4089	ext4_grpblk_t changed;
4090
4091	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4092	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4093
4094	sb = ac->ac_sb;
4095	sbi = EXT4_SB(sb);
4096
4097	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
4098	if (!gdp)
4099		return -EIO;
 
4100	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4101			ext4_free_group_clusters(sb, gdp));
4102
 
 
 
 
 
4103	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
 
4104	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4105	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4106		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4107			   "fs metadata", block, block+len);
4108		/* File system mounted not to panic on error
4109		 * Fix the bitmap and return EFSCORRUPTED
4110		 * We leak some of the blocks here.
4111		 */
4112		err = ext4_mb_mark_context(handle, sb, true,
4113					   ac->ac_b_ex.fe_group,
4114					   ac->ac_b_ex.fe_start,
4115					   ac->ac_b_ex.fe_len,
4116					   0, NULL);
4117		if (!err)
4118			err = -EFSCORRUPTED;
4119		return err;
4120	}
4121
 
4122#ifdef AGGRESSIVE_CHECK
4123	flags |= EXT4_MB_BITMAP_MARKED_CHECK;
 
 
 
 
 
 
4124#endif
4125	err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4126				   ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4127				   flags, &changed);
 
 
 
 
 
 
 
 
 
4128
4129	if (err && changed == 0)
4130		return err;
4131
4132#ifdef AGGRESSIVE_CHECK
4133	BUG_ON(changed != ac->ac_b_ex.fe_len);
4134#endif
4135	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4136	/*
4137	 * Now reduce the dirty block count also. Should not go negative
4138	 */
4139	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4140		/* release all the reserved blocks if non delalloc */
4141		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4142				   reserv_clstrs);
4143
4144	return err;
4145}
 
 
 
 
4146
4147/*
4148 * Idempotent helper for Ext4 fast commit replay path to set the state of
4149 * blocks in bitmaps and update counters.
4150 */
4151void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4152		     int len, bool state)
4153{
4154	struct ext4_sb_info *sbi = EXT4_SB(sb);
4155	ext4_group_t group;
4156	ext4_grpblk_t blkoff;
4157	int err = 0;
4158	unsigned int clen, thisgrp_len;
4159
4160	while (len > 0) {
4161		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4162
4163		/*
4164		 * Check to see if we are freeing blocks across a group
4165		 * boundary.
4166		 * In case of flex_bg, this can happen that (block, len) may
4167		 * span across more than one group. In that case we need to
4168		 * get the corresponding group metadata to work with.
4169		 * For this we have goto again loop.
4170		 */
4171		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4172			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4173		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4174
4175		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4176			ext4_error(sb, "Marking blocks in system zone - "
4177				   "Block = %llu, len = %u",
4178				   block, thisgrp_len);
4179			break;
4180		}
4181
4182		err = ext4_mb_mark_context(NULL, sb, state,
4183					   group, blkoff, clen,
4184					   EXT4_MB_BITMAP_MARKED_CHECK |
4185					   EXT4_MB_SYNC_UPDATE,
4186					   NULL);
4187		if (err)
4188			break;
4189
4190		block += thisgrp_len;
4191		len -= thisgrp_len;
4192		BUG_ON(len < 0);
4193	}
4194}
4195
4196/*
4197 * here we normalize request for locality group
4198 * Group request are normalized to s_mb_group_prealloc, which goes to
4199 * s_strip if we set the same via mount option.
4200 * s_mb_group_prealloc can be configured via
4201 * /sys/fs/ext4/<partition>/mb_group_prealloc
4202 *
4203 * XXX: should we try to preallocate more than the group has now?
4204 */
4205static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4206{
4207	struct super_block *sb = ac->ac_sb;
4208	struct ext4_locality_group *lg = ac->ac_lg;
4209
4210	BUG_ON(lg == NULL);
4211	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4212	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4213}
4214
4215/*
4216 * This function returns the next element to look at during inode
4217 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4218 * (ei->i_prealloc_lock)
4219 *
4220 * new_start	The start of the range we want to compare
4221 * cur_start	The existing start that we are comparing against
4222 * node	The node of the rb_tree
4223 */
4224static inline struct rb_node*
4225ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4226{
4227	if (new_start < cur_start)
4228		return node->rb_left;
4229	else
4230		return node->rb_right;
4231}
4232
4233static inline void
4234ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4235			  ext4_lblk_t start, loff_t end)
4236{
4237	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4238	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4239	struct ext4_prealloc_space *tmp_pa;
4240	ext4_lblk_t tmp_pa_start;
4241	loff_t tmp_pa_end;
4242	struct rb_node *iter;
4243
4244	read_lock(&ei->i_prealloc_lock);
4245	for (iter = ei->i_prealloc_node.rb_node; iter;
4246	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4247		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4248				  pa_node.inode_node);
4249		tmp_pa_start = tmp_pa->pa_lstart;
4250		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4251
4252		spin_lock(&tmp_pa->pa_lock);
4253		if (tmp_pa->pa_deleted == 0)
4254			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4255		spin_unlock(&tmp_pa->pa_lock);
4256	}
4257	read_unlock(&ei->i_prealloc_lock);
4258}
4259
4260/*
4261 * Given an allocation context "ac" and a range "start", "end", check
4262 * and adjust boundaries if the range overlaps with any of the existing
4263 * preallocatoins stored in the corresponding inode of the allocation context.
4264 *
4265 * Parameters:
4266 *	ac			allocation context
4267 *	start			start of the new range
4268 *	end			end of the new range
4269 */
4270static inline void
4271ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4272			  ext4_lblk_t *start, loff_t *end)
4273{
4274	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4275	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4276	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4277	struct rb_node *iter;
4278	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4279	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4280
4281	new_start = *start;
4282	new_end = *end;
4283
4284	/*
4285	 * Adjust the normalized range so that it doesn't overlap with any
4286	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4287	 * so it doesn't change underneath us.
4288	 */
4289	read_lock(&ei->i_prealloc_lock);
4290
4291	/* Step 1: find any one immediate neighboring PA of the normalized range */
4292	for (iter = ei->i_prealloc_node.rb_node; iter;
4293	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4294					    tmp_pa_start, iter)) {
4295		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4296				  pa_node.inode_node);
4297		tmp_pa_start = tmp_pa->pa_lstart;
4298		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4299
4300		/* PA must not overlap original request */
4301		spin_lock(&tmp_pa->pa_lock);
4302		if (tmp_pa->pa_deleted == 0)
4303			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4304				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4305		spin_unlock(&tmp_pa->pa_lock);
4306	}
4307
4308	/*
4309	 * Step 2: check if the found PA is left or right neighbor and
4310	 * get the other neighbor
4311	 */
4312	if (tmp_pa) {
4313		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4314			struct rb_node *tmp;
4315
4316			left_pa = tmp_pa;
4317			tmp = rb_next(&left_pa->pa_node.inode_node);
4318			if (tmp) {
4319				right_pa = rb_entry(tmp,
4320						    struct ext4_prealloc_space,
4321						    pa_node.inode_node);
4322			}
4323		} else {
4324			struct rb_node *tmp;
4325
4326			right_pa = tmp_pa;
4327			tmp = rb_prev(&right_pa->pa_node.inode_node);
4328			if (tmp) {
4329				left_pa = rb_entry(tmp,
4330						   struct ext4_prealloc_space,
4331						   pa_node.inode_node);
4332			}
4333		}
4334	}
4335
4336	/* Step 3: get the non deleted neighbors */
4337	if (left_pa) {
4338		for (iter = &left_pa->pa_node.inode_node;;
4339		     iter = rb_prev(iter)) {
4340			if (!iter) {
4341				left_pa = NULL;
4342				break;
4343			}
4344
4345			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4346					  pa_node.inode_node);
4347			left_pa = tmp_pa;
4348			spin_lock(&tmp_pa->pa_lock);
4349			if (tmp_pa->pa_deleted == 0) {
4350				spin_unlock(&tmp_pa->pa_lock);
4351				break;
4352			}
4353			spin_unlock(&tmp_pa->pa_lock);
4354		}
4355	}
4356
4357	if (right_pa) {
4358		for (iter = &right_pa->pa_node.inode_node;;
4359		     iter = rb_next(iter)) {
4360			if (!iter) {
4361				right_pa = NULL;
4362				break;
4363			}
4364
4365			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4366					  pa_node.inode_node);
4367			right_pa = tmp_pa;
4368			spin_lock(&tmp_pa->pa_lock);
4369			if (tmp_pa->pa_deleted == 0) {
4370				spin_unlock(&tmp_pa->pa_lock);
4371				break;
4372			}
4373			spin_unlock(&tmp_pa->pa_lock);
4374		}
4375	}
4376
4377	if (left_pa) {
4378		left_pa_end = pa_logical_end(sbi, left_pa);
4379		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4380	}
4381
4382	if (right_pa) {
4383		right_pa_start = right_pa->pa_lstart;
4384		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4385	}
4386
4387	/* Step 4: trim our normalized range to not overlap with the neighbors */
4388	if (left_pa) {
4389		if (left_pa_end > new_start)
4390			new_start = left_pa_end;
4391	}
4392
4393	if (right_pa) {
4394		if (right_pa_start < new_end)
4395			new_end = right_pa_start;
4396	}
4397	read_unlock(&ei->i_prealloc_lock);
4398
4399	/* XXX: extra loop to check we really don't overlap preallocations */
4400	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4401
4402	*start = new_start;
4403	*end = new_end;
4404}
4405
4406/*
4407 * Normalization means making request better in terms of
4408 * size and alignment
4409 */
4410static noinline_for_stack void
4411ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4412				struct ext4_allocation_request *ar)
4413{
4414	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4415	struct ext4_super_block *es = sbi->s_es;
4416	int bsbits, max;
4417	loff_t size, start_off, end;
 
4418	loff_t orig_size __maybe_unused;
4419	ext4_lblk_t start;
 
 
4420
4421	/* do normalize only data requests, metadata requests
4422	   do not need preallocation */
4423	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4424		return;
4425
4426	/* sometime caller may want exact blocks */
4427	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4428		return;
4429
4430	/* caller may indicate that preallocation isn't
4431	 * required (it's a tail, for example) */
4432	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4433		return;
4434
4435	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4436		ext4_mb_normalize_group_request(ac);
4437		return ;
4438	}
4439
4440	bsbits = ac->ac_sb->s_blocksize_bits;
4441
4442	/* first, let's learn actual file size
4443	 * given current request is allocated */
4444	size = extent_logical_end(sbi, &ac->ac_o_ex);
4445	size = size << bsbits;
4446	if (size < i_size_read(ac->ac_inode))
4447		size = i_size_read(ac->ac_inode);
4448	orig_size = size;
4449
4450	/* max size of free chunks */
4451	max = 2 << bsbits;
4452
4453#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4454		(req <= (size) || max <= (chunk_size))
4455
4456	/* first, try to predict filesize */
4457	/* XXX: should this table be tunable? */
4458	start_off = 0;
4459	if (size <= 16 * 1024) {
4460		size = 16 * 1024;
4461	} else if (size <= 32 * 1024) {
4462		size = 32 * 1024;
4463	} else if (size <= 64 * 1024) {
4464		size = 64 * 1024;
4465	} else if (size <= 128 * 1024) {
4466		size = 128 * 1024;
4467	} else if (size <= 256 * 1024) {
4468		size = 256 * 1024;
4469	} else if (size <= 512 * 1024) {
4470		size = 512 * 1024;
4471	} else if (size <= 1024 * 1024) {
4472		size = 1024 * 1024;
4473	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4474		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4475						(21 - bsbits)) << 21;
4476		size = 2 * 1024 * 1024;
4477	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4478		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4479							(22 - bsbits)) << 22;
4480		size = 4 * 1024 * 1024;
4481	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4482					(8<<20)>>bsbits, max, 8 * 1024)) {
4483		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4484							(23 - bsbits)) << 23;
4485		size = 8 * 1024 * 1024;
4486	} else {
4487		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4488		size	  = (loff_t) EXT4_C2B(sbi,
4489					      ac->ac_o_ex.fe_len) << bsbits;
4490	}
4491	size = size >> bsbits;
4492	start = start_off >> bsbits;
4493
4494	/*
4495	 * For tiny groups (smaller than 8MB) the chosen allocation
4496	 * alignment may be larger than group size. Make sure the
4497	 * alignment does not move allocation to a different group which
4498	 * makes mballoc fail assertions later.
4499	 */
4500	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4501			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4502
4503	/* avoid unnecessary preallocation that may trigger assertions */
4504	if (start + size > EXT_MAX_BLOCKS)
4505		size = EXT_MAX_BLOCKS - start;
4506
4507	/* don't cover already allocated blocks in selected range */
4508	if (ar->pleft && start <= ar->lleft) {
4509		size -= ar->lleft + 1 - start;
4510		start = ar->lleft + 1;
4511	}
4512	if (ar->pright && start + size - 1 >= ar->lright)
4513		size -= start + size - ar->lright;
4514
4515	/*
4516	 * Trim allocation request for filesystems with artificially small
4517	 * groups.
4518	 */
4519	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4520		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
 
 
 
 
 
 
 
 
 
 
 
4521
4522	end = start + size;
 
 
4523
4524	ext4_mb_pa_adjust_overlap(ac, &start, &end);
 
 
 
 
 
4525
 
 
 
 
 
 
 
 
 
 
 
4526	size = end - start;
4527
4528	/*
4529	 * In this function "start" and "size" are normalized for better
4530	 * alignment and length such that we could preallocate more blocks.
4531	 * This normalization is done such that original request of
4532	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4533	 * "size" boundaries.
4534	 * (Note fe_len can be relaxed since FS block allocation API does not
4535	 * provide gurantee on number of contiguous blocks allocation since that
4536	 * depends upon free space left, etc).
4537	 * In case of inode pa, later we use the allocated blocks
4538	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4539	 * range of goal/best blocks [start, size] to put it at the
4540	 * ac_o_ex.fe_logical extent of this inode.
4541	 * (See ext4_mb_use_inode_pa() for more details)
4542	 */
4543	if (start + size <= ac->ac_o_ex.fe_logical ||
4544			start > ac->ac_o_ex.fe_logical) {
4545		ext4_msg(ac->ac_sb, KERN_ERR,
4546			 "start %lu, size %lu, fe_logical %lu",
4547			 (unsigned long) start, (unsigned long) size,
4548			 (unsigned long) ac->ac_o_ex.fe_logical);
4549		BUG();
4550	}
4551	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4552
4553	/* now prepare goal request */
4554
4555	/* XXX: is it better to align blocks WRT to logical
4556	 * placement or satisfy big request as is */
4557	ac->ac_g_ex.fe_logical = start;
4558	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4559	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4560
4561	/* define goal start in order to merge */
4562	if (ar->pright && (ar->lright == (start + size)) &&
4563	    ar->pright >= size &&
4564	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4565		/* merge to the right */
4566		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4567						&ac->ac_g_ex.fe_group,
4568						&ac->ac_g_ex.fe_start);
4569		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4570	}
4571	if (ar->pleft && (ar->lleft + 1 == start) &&
4572	    ar->pleft + 1 < ext4_blocks_count(es)) {
4573		/* merge to the left */
4574		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4575						&ac->ac_g_ex.fe_group,
4576						&ac->ac_g_ex.fe_start);
4577		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4578	}
4579
4580	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4581		 orig_size, start);
4582}
4583
4584static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4585{
4586	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4587
4588	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4589		atomic_inc(&sbi->s_bal_reqs);
4590		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4591		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4592			atomic_inc(&sbi->s_bal_success);
4593
4594		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4595		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4596			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4597		}
4598
4599		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4600		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4601				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4602			atomic_inc(&sbi->s_bal_goals);
4603		/* did we allocate as much as normalizer originally wanted? */
4604		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4605			atomic_inc(&sbi->s_bal_len_goals);
4606
4607		if (ac->ac_found > sbi->s_mb_max_to_scan)
4608			atomic_inc(&sbi->s_bal_breaks);
4609	}
4610
4611	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4612		trace_ext4_mballoc_alloc(ac);
4613	else
4614		trace_ext4_mballoc_prealloc(ac);
4615}
4616
4617/*
4618 * Called on failure; free up any blocks from the inode PA for this
4619 * context.  We don't need this for MB_GROUP_PA because we only change
4620 * pa_free in ext4_mb_release_context(), but on failure, we've already
4621 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4622 */
4623static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4624{
4625	struct ext4_prealloc_space *pa = ac->ac_pa;
4626	struct ext4_buddy e4b;
4627	int err;
4628
4629	if (pa == NULL) {
4630		if (ac->ac_f_ex.fe_len == 0)
4631			return;
4632		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4633		if (WARN_RATELIMIT(err,
4634				   "ext4: mb_load_buddy failed (%d)", err))
4635			/*
4636			 * This should never happen since we pin the
4637			 * pages in the ext4_allocation_context so
4638			 * ext4_mb_load_buddy() should never fail.
4639			 */
 
4640			return;
 
4641		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4642		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4643			       ac->ac_f_ex.fe_len);
4644		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4645		ext4_mb_unload_buddy(&e4b);
4646		return;
4647	}
4648	if (pa->pa_type == MB_INODE_PA) {
4649		spin_lock(&pa->pa_lock);
4650		pa->pa_free += ac->ac_b_ex.fe_len;
4651		spin_unlock(&pa->pa_lock);
4652	}
4653}
4654
4655/*
4656 * use blocks preallocated to inode
4657 */
4658static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4659				struct ext4_prealloc_space *pa)
4660{
4661	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4662	ext4_fsblk_t start;
4663	ext4_fsblk_t end;
4664	int len;
4665
4666	/* found preallocated blocks, use them */
4667	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4668	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4669		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4670	len = EXT4_NUM_B2C(sbi, end - start);
4671	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4672					&ac->ac_b_ex.fe_start);
4673	ac->ac_b_ex.fe_len = len;
4674	ac->ac_status = AC_STATUS_FOUND;
4675	ac->ac_pa = pa;
4676
4677	BUG_ON(start < pa->pa_pstart);
4678	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4679	BUG_ON(pa->pa_free < len);
4680	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4681	pa->pa_free -= len;
4682
4683	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4684}
4685
4686/*
4687 * use blocks preallocated to locality group
4688 */
4689static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4690				struct ext4_prealloc_space *pa)
4691{
4692	unsigned int len = ac->ac_o_ex.fe_len;
4693
4694	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4695					&ac->ac_b_ex.fe_group,
4696					&ac->ac_b_ex.fe_start);
4697	ac->ac_b_ex.fe_len = len;
4698	ac->ac_status = AC_STATUS_FOUND;
4699	ac->ac_pa = pa;
4700
4701	/* we don't correct pa_pstart or pa_len here to avoid
4702	 * possible race when the group is being loaded concurrently
4703	 * instead we correct pa later, after blocks are marked
4704	 * in on-disk bitmap -- see ext4_mb_release_context()
4705	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4706	 */
4707	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4708		 pa->pa_lstart, len, pa);
4709}
4710
4711/*
4712 * Return the prealloc space that have minimal distance
4713 * from the goal block. @cpa is the prealloc
4714 * space that is having currently known minimal distance
4715 * from the goal block.
4716 */
4717static struct ext4_prealloc_space *
4718ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4719			struct ext4_prealloc_space *pa,
4720			struct ext4_prealloc_space *cpa)
4721{
4722	ext4_fsblk_t cur_distance, new_distance;
4723
4724	if (cpa == NULL) {
4725		atomic_inc(&pa->pa_count);
4726		return pa;
4727	}
4728	cur_distance = abs(goal_block - cpa->pa_pstart);
4729	new_distance = abs(goal_block - pa->pa_pstart);
4730
4731	if (cur_distance <= new_distance)
4732		return cpa;
4733
4734	/* drop the previous reference */
4735	atomic_dec(&cpa->pa_count);
4736	atomic_inc(&pa->pa_count);
4737	return pa;
4738}
4739
4740/*
4741 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4742 */
4743static bool
4744ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4745		      struct ext4_prealloc_space *pa)
4746{
4747	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4748	ext4_fsblk_t start;
4749
4750	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4751		return true;
4752
4753	/*
4754	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4755	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4756	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4757	 * consistent with ext4_mb_find_by_goal.
4758	 */
4759	start = pa->pa_pstart +
4760		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4761	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4762		return false;
4763
4764	if (ac->ac_g_ex.fe_len > pa->pa_len -
4765	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4766		return false;
4767
4768	return true;
4769}
4770
4771/*
4772 * search goal blocks in preallocated space
4773 */
4774static noinline_for_stack bool
4775ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4776{
4777	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4778	int order, i;
4779	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4780	struct ext4_locality_group *lg;
4781	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4782	struct rb_node *iter;
4783	ext4_fsblk_t goal_block;
4784
4785	/* only data can be preallocated */
4786	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4787		return false;
4788
4789	/*
4790	 * first, try per-file preallocation by searching the inode pa rbtree.
4791	 *
4792	 * Here, we can't do a direct traversal of the tree because
4793	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4794	 * deleted and that can cause direct traversal to skip some entries.
4795	 */
4796	read_lock(&ei->i_prealloc_lock);
4797
4798	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4799		goto try_group_pa;
4800	}
 
 
 
4801
4802	/*
4803	 * Step 1: Find a pa with logical start immediately adjacent to the
4804	 * original logical start. This could be on the left or right.
4805	 *
4806	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4807	 */
4808	for (iter = ei->i_prealloc_node.rb_node; iter;
4809	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4810					    tmp_pa->pa_lstart, iter)) {
4811		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4812				  pa_node.inode_node);
4813	}
4814
4815	/*
4816	 * Step 2: The adjacent pa might be to the right of logical start, find
4817	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4818	 * logical start is towards the left of original request's logical start
4819	 */
4820	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4821		struct rb_node *tmp;
4822		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4823
4824		if (tmp) {
4825			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4826					    pa_node.inode_node);
4827		} else {
4828			/*
4829			 * If there is no adjacent pa to the left then finding
4830			 * an overlapping pa is not possible hence stop searching
4831			 * inode pa tree
4832			 */
4833			goto try_group_pa;
4834		}
 
4835	}
4836
4837	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4838
4839	/*
4840	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4841	 * the first non deleted adjacent pa. After this step we should have a
4842	 * valid tmp_pa which is guaranteed to be non deleted.
4843	 */
4844	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4845		if (!iter) {
4846			/*
4847			 * no non deleted left adjacent pa, so stop searching
4848			 * inode pa tree
4849			 */
4850			goto try_group_pa;
4851		}
4852		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4853				  pa_node.inode_node);
4854		spin_lock(&tmp_pa->pa_lock);
4855		if (tmp_pa->pa_deleted == 0) {
4856			/*
4857			 * We will keep holding the pa_lock from
4858			 * this point on because we don't want group discard
4859			 * to delete this pa underneath us. Since group
4860			 * discard is anyways an ENOSPC operation it
4861			 * should be okay for it to wait a few more cycles.
4862			 */
4863			break;
4864		} else {
4865			spin_unlock(&tmp_pa->pa_lock);
4866		}
4867	}
4868
4869	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4870	BUG_ON(tmp_pa->pa_deleted == 1);
4871
4872	/*
4873	 * Step 4: We now have the non deleted left adjacent pa. Only this
4874	 * pa can possibly satisfy the request hence check if it overlaps
4875	 * original logical start and stop searching if it doesn't.
4876	 */
4877	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4878		spin_unlock(&tmp_pa->pa_lock);
4879		goto try_group_pa;
4880	}
4881
4882	/* non-extent files can't have physical blocks past 2^32 */
4883	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4884	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4885	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4886		/*
4887		 * Since PAs don't overlap, we won't find any other PA to
4888		 * satisfy this.
4889		 */
4890		spin_unlock(&tmp_pa->pa_lock);
4891		goto try_group_pa;
4892	}
4893
4894	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4895		atomic_inc(&tmp_pa->pa_count);
4896		ext4_mb_use_inode_pa(ac, tmp_pa);
4897		spin_unlock(&tmp_pa->pa_lock);
4898		read_unlock(&ei->i_prealloc_lock);
4899		return true;
4900	} else {
4901		/*
4902		 * We found a valid overlapping pa but couldn't use it because
4903		 * it had no free blocks. This should ideally never happen
4904		 * because:
4905		 *
4906		 * 1. When a new inode pa is added to rbtree it must have
4907		 *    pa_free > 0 since otherwise we won't actually need
4908		 *    preallocation.
4909		 *
4910		 * 2. An inode pa that is in the rbtree can only have it's
4911		 *    pa_free become zero when another thread calls:
4912		 *      ext4_mb_new_blocks
4913		 *       ext4_mb_use_preallocated
4914		 *        ext4_mb_use_inode_pa
4915		 *
4916		 * 3. Further, after the above calls make pa_free == 0, we will
4917		 *    immediately remove it from the rbtree in:
4918		 *      ext4_mb_new_blocks
4919		 *       ext4_mb_release_context
4920		 *        ext4_mb_put_pa
4921		 *
4922		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4923		 * from tree both happen in ext4_mb_new_blocks, which is always
4924		 * called with i_data_sem held for data allocations, we can be
4925		 * sure that another process will never see a pa in rbtree with
4926		 * pa_free == 0.
4927		 */
4928		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4929	}
4930	spin_unlock(&tmp_pa->pa_lock);
4931try_group_pa:
4932	read_unlock(&ei->i_prealloc_lock);
4933
4934	/* can we use group allocation? */
4935	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4936		return false;
4937
4938	/* inode may have no locality group for some reason */
4939	lg = ac->ac_lg;
4940	if (lg == NULL)
4941		return false;
4942	order  = fls(ac->ac_o_ex.fe_len) - 1;
4943	if (order > PREALLOC_TB_SIZE - 1)
4944		/* The max size of hash table is PREALLOC_TB_SIZE */
4945		order = PREALLOC_TB_SIZE - 1;
4946
4947	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4948	/*
4949	 * search for the prealloc space that is having
4950	 * minimal distance from the goal block.
4951	 */
4952	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4953		rcu_read_lock();
4954		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4955					pa_node.lg_list) {
4956			spin_lock(&tmp_pa->pa_lock);
4957			if (tmp_pa->pa_deleted == 0 &&
4958					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4959
4960				cpa = ext4_mb_check_group_pa(goal_block,
4961								tmp_pa, cpa);
4962			}
4963			spin_unlock(&tmp_pa->pa_lock);
4964		}
4965		rcu_read_unlock();
4966	}
4967	if (cpa) {
4968		ext4_mb_use_group_pa(ac, cpa);
4969		return true;
 
4970	}
4971	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4972}
4973
4974/*
4975 * the function goes through all preallocation in this group and marks them
4976 * used in in-core bitmap. buddy must be generated from this bitmap
4977 * Need to be called with ext4 group lock held
4978 */
4979static noinline_for_stack
4980void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4981					ext4_group_t group)
4982{
4983	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4984	struct ext4_prealloc_space *pa;
4985	struct list_head *cur;
4986	ext4_group_t groupnr;
4987	ext4_grpblk_t start;
4988	int preallocated = 0;
4989	int len;
4990
4991	if (!grp)
4992		return;
4993
4994	/* all form of preallocation discards first load group,
4995	 * so the only competing code is preallocation use.
4996	 * we don't need any locking here
4997	 * notice we do NOT ignore preallocations with pa_deleted
4998	 * otherwise we could leave used blocks available for
4999	 * allocation in buddy when concurrent ext4_mb_put_pa()
5000	 * is dropping preallocation
5001	 */
5002	list_for_each(cur, &grp->bb_prealloc_list) {
5003		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5004		spin_lock(&pa->pa_lock);
5005		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5006					     &groupnr, &start);
5007		len = pa->pa_len;
5008		spin_unlock(&pa->pa_lock);
5009		if (unlikely(len == 0))
5010			continue;
5011		BUG_ON(groupnr != group);
5012		mb_set_bits(bitmap, start, len);
5013		preallocated += len;
5014	}
5015	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5016}
5017
5018static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5019				    struct ext4_prealloc_space *pa)
5020{
5021	struct ext4_inode_info *ei;
5022
5023	if (pa->pa_deleted) {
5024		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5025			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5026			     pa->pa_len);
5027		return;
5028	}
5029
5030	pa->pa_deleted = 1;
5031
5032	if (pa->pa_type == MB_INODE_PA) {
5033		ei = EXT4_I(pa->pa_inode);
5034		atomic_dec(&ei->i_prealloc_active);
5035	}
5036}
5037
5038static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5039{
5040	BUG_ON(!pa);
5041	BUG_ON(atomic_read(&pa->pa_count));
5042	BUG_ON(pa->pa_deleted == 0);
5043	kmem_cache_free(ext4_pspace_cachep, pa);
5044}
5045
5046static void ext4_mb_pa_callback(struct rcu_head *head)
5047{
5048	struct ext4_prealloc_space *pa;
5049
5050	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5051	ext4_mb_pa_free(pa);
5052}
5053
5054/*
5055 * drops a reference to preallocated space descriptor
5056 * if this was the last reference and the space is consumed
5057 */
5058static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5059			struct super_block *sb, struct ext4_prealloc_space *pa)
5060{
5061	ext4_group_t grp;
5062	ext4_fsblk_t grp_blk;
5063	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5064
5065	/* in this short window concurrent discard can set pa_deleted */
5066	spin_lock(&pa->pa_lock);
5067	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5068		spin_unlock(&pa->pa_lock);
5069		return;
5070	}
5071
5072	if (pa->pa_deleted == 1) {
5073		spin_unlock(&pa->pa_lock);
5074		return;
5075	}
5076
5077	ext4_mb_mark_pa_deleted(sb, pa);
5078	spin_unlock(&pa->pa_lock);
5079
5080	grp_blk = pa->pa_pstart;
5081	/*
5082	 * If doing group-based preallocation, pa_pstart may be in the
5083	 * next group when pa is used up
5084	 */
5085	if (pa->pa_type == MB_GROUP_PA)
5086		grp_blk--;
5087
5088	grp = ext4_get_group_number(sb, grp_blk);
5089
5090	/*
5091	 * possible race:
5092	 *
5093	 *  P1 (buddy init)			P2 (regular allocation)
5094	 *					find block B in PA
5095	 *  copy on-disk bitmap to buddy
5096	 *  					mark B in on-disk bitmap
5097	 *					drop PA from group
5098	 *  mark all PAs in buddy
5099	 *
5100	 * thus, P1 initializes buddy with B available. to prevent this
5101	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5102	 * against that pair
5103	 */
5104	ext4_lock_group(sb, grp);
5105	list_del(&pa->pa_group_list);
5106	ext4_unlock_group(sb, grp);
5107
5108	if (pa->pa_type == MB_INODE_PA) {
5109		write_lock(pa->pa_node_lock.inode_lock);
5110		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5111		write_unlock(pa->pa_node_lock.inode_lock);
5112		ext4_mb_pa_free(pa);
5113	} else {
5114		spin_lock(pa->pa_node_lock.lg_lock);
5115		list_del_rcu(&pa->pa_node.lg_list);
5116		spin_unlock(pa->pa_node_lock.lg_lock);
5117		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5118	}
5119}
5120
5121static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5122{
5123	struct rb_node **iter = &root->rb_node, *parent = NULL;
5124	struct ext4_prealloc_space *iter_pa, *new_pa;
5125	ext4_lblk_t iter_start, new_start;
5126
5127	while (*iter) {
5128		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5129				   pa_node.inode_node);
5130		new_pa = rb_entry(new, struct ext4_prealloc_space,
5131				   pa_node.inode_node);
5132		iter_start = iter_pa->pa_lstart;
5133		new_start = new_pa->pa_lstart;
5134
5135		parent = *iter;
5136		if (new_start < iter_start)
5137			iter = &((*iter)->rb_left);
5138		else
5139			iter = &((*iter)->rb_right);
5140	}
5141
5142	rb_link_node(new, parent, iter);
5143	rb_insert_color(new, root);
5144}
5145
5146/*
5147 * creates new preallocated space for given inode
5148 */
5149static noinline_for_stack void
5150ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5151{
5152	struct super_block *sb = ac->ac_sb;
5153	struct ext4_sb_info *sbi = EXT4_SB(sb);
5154	struct ext4_prealloc_space *pa;
5155	struct ext4_group_info *grp;
5156	struct ext4_inode_info *ei;
5157
5158	/* preallocate only when found space is larger then requested */
5159	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5160	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5161	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5162	BUG_ON(ac->ac_pa == NULL);
5163
5164	pa = ac->ac_pa;
 
 
5165
5166	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5167		struct ext4_free_extent ex = {
5168			.fe_logical = ac->ac_g_ex.fe_logical,
5169			.fe_len = ac->ac_orig_goal_len,
5170		};
5171		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5172
5173		/* we can't allocate as much as normalizer wants.
5174		 * so, found space must get proper lstart
5175		 * to cover original request */
5176		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5177		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5178
5179		/*
5180		 * Use the below logic for adjusting best extent as it keeps
5181		 * fragmentation in check while ensuring logical range of best
5182		 * extent doesn't overflow out of goal extent:
5183		 *
5184		 * 1. Check if best ex can be kept at end of goal (before
5185		 *    cr_best_avail trimmed it) and still cover original start
5186		 * 2. Else, check if best ex can be kept at start of goal and
5187		 *    still cover original start
5188		 * 3. Else, keep the best ex at start of original request.
5189		 */
5190		ex.fe_len = ac->ac_b_ex.fe_len;
5191
5192		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5193		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5194			goto adjust_bex;
5195
5196		ex.fe_logical = ac->ac_g_ex.fe_logical;
5197		if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5198			goto adjust_bex;
5199
5200		ex.fe_logical = ac->ac_o_ex.fe_logical;
5201adjust_bex:
5202		ac->ac_b_ex.fe_logical = ex.fe_logical;
5203
 
 
5204		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5205		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5206		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5207	}
5208
 
 
 
 
5209	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5210	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5211	pa->pa_len = ac->ac_b_ex.fe_len;
5212	pa->pa_free = pa->pa_len;
 
5213	spin_lock_init(&pa->pa_lock);
 
5214	INIT_LIST_HEAD(&pa->pa_group_list);
5215	pa->pa_deleted = 0;
5216	pa->pa_type = MB_INODE_PA;
5217
5218	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5219		 pa->pa_len, pa->pa_lstart);
5220	trace_ext4_mb_new_inode_pa(ac, pa);
5221
 
5222	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5223	ext4_mb_use_inode_pa(ac, pa);
5224
5225	ei = EXT4_I(ac->ac_inode);
5226	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5227	if (!grp)
5228		return;
5229
5230	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5231	pa->pa_inode = ac->ac_inode;
5232
 
5233	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
 
 
 
 
 
5234
5235	write_lock(pa->pa_node_lock.inode_lock);
5236	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5237	write_unlock(pa->pa_node_lock.inode_lock);
5238	atomic_inc(&ei->i_prealloc_active);
5239}
5240
5241/*
5242 * creates new preallocated space for locality group inodes belongs to
5243 */
5244static noinline_for_stack void
5245ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5246{
5247	struct super_block *sb = ac->ac_sb;
5248	struct ext4_locality_group *lg;
5249	struct ext4_prealloc_space *pa;
5250	struct ext4_group_info *grp;
5251
5252	/* preallocate only when found space is larger then requested */
5253	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5254	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5255	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5256	BUG_ON(ac->ac_pa == NULL);
5257
5258	pa = ac->ac_pa;
 
 
 
 
 
 
 
5259
5260	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5261	pa->pa_lstart = pa->pa_pstart;
5262	pa->pa_len = ac->ac_b_ex.fe_len;
5263	pa->pa_free = pa->pa_len;
 
5264	spin_lock_init(&pa->pa_lock);
5265	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5266	INIT_LIST_HEAD(&pa->pa_group_list);
5267	pa->pa_deleted = 0;
5268	pa->pa_type = MB_GROUP_PA;
5269
5270	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5271		 pa->pa_len, pa->pa_lstart);
5272	trace_ext4_mb_new_group_pa(ac, pa);
5273
5274	ext4_mb_use_group_pa(ac, pa);
5275	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5276
5277	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5278	if (!grp)
5279		return;
5280	lg = ac->ac_lg;
5281	BUG_ON(lg == NULL);
5282
5283	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5284	pa->pa_inode = NULL;
5285
 
5286	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
 
5287
5288	/*
5289	 * We will later add the new pa to the right bucket
5290	 * after updating the pa_free in ext4_mb_release_context
5291	 */
 
5292}
5293
5294static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5295{
 
 
5296	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5297		ext4_mb_new_group_pa(ac);
5298	else
5299		ext4_mb_new_inode_pa(ac);
 
5300}
5301
5302/*
5303 * finds all unused blocks in on-disk bitmap, frees them in
5304 * in-core bitmap and buddy.
5305 * @pa must be unlinked from inode and group lists, so that
5306 * nobody else can find/use it.
5307 * the caller MUST hold group/inode locks.
5308 * TODO: optimize the case when there are no in-core structures yet
5309 */
5310static noinline_for_stack void
5311ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5312			struct ext4_prealloc_space *pa)
5313{
5314	struct super_block *sb = e4b->bd_sb;
5315	struct ext4_sb_info *sbi = EXT4_SB(sb);
5316	unsigned int end;
5317	unsigned int next;
5318	ext4_group_t group;
5319	ext4_grpblk_t bit;
5320	unsigned long long grp_blk_start;
 
5321	int free = 0;
5322
5323	BUG_ON(pa->pa_deleted == 0);
5324	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5325	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5326	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5327	end = bit + pa->pa_len;
5328
5329	while (bit < end) {
5330		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5331		if (bit >= end)
5332			break;
5333		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5334		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5335			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5336			 (unsigned) next - bit, (unsigned) group);
5337		free += next - bit;
5338
5339		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5340		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5341						    EXT4_C2B(sbi, bit)),
5342					       next - bit);
5343		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5344		bit = next + 1;
5345	}
5346	if (free != pa->pa_free) {
5347		ext4_msg(e4b->bd_sb, KERN_CRIT,
5348			 "pa %p: logic %lu, phys. %lu, len %d",
5349			 pa, (unsigned long) pa->pa_lstart,
5350			 (unsigned long) pa->pa_pstart,
5351			 pa->pa_len);
5352		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5353					free, pa->pa_free);
5354		/*
5355		 * pa is already deleted so we use the value obtained
5356		 * from the bitmap and continue.
5357		 */
5358	}
5359	atomic_add(free, &sbi->s_mb_discarded);
 
 
5360}
5361
5362static noinline_for_stack void
5363ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5364				struct ext4_prealloc_space *pa)
5365{
5366	struct super_block *sb = e4b->bd_sb;
5367	ext4_group_t group;
5368	ext4_grpblk_t bit;
5369
5370	trace_ext4_mb_release_group_pa(sb, pa);
5371	BUG_ON(pa->pa_deleted == 0);
5372	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5373	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5374		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5375			     e4b->bd_group, group, pa->pa_pstart);
5376		return;
5377	}
5378	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5379	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5380	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
 
 
5381}
5382
5383/*
5384 * releases all preallocations in given group
5385 *
5386 * first, we need to decide discard policy:
5387 * - when do we discard
5388 *   1) ENOSPC
5389 * - how many do we discard
5390 *   1) how many requested
5391 */
5392static noinline_for_stack int
5393ext4_mb_discard_group_preallocations(struct super_block *sb,
5394				     ext4_group_t group, int *busy)
5395{
5396	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5397	struct buffer_head *bitmap_bh = NULL;
5398	struct ext4_prealloc_space *pa, *tmp;
5399	LIST_HEAD(list);
5400	struct ext4_buddy e4b;
5401	struct ext4_inode_info *ei;
5402	int err;
 
5403	int free = 0;
5404
5405	if (!grp)
 
 
5406		return 0;
5407	mb_debug(sb, "discard preallocation for group %u\n", group);
5408	if (list_empty(&grp->bb_prealloc_list))
5409		goto out_dbg;
5410
5411	bitmap_bh = ext4_read_block_bitmap(sb, group);
5412	if (IS_ERR(bitmap_bh)) {
5413		err = PTR_ERR(bitmap_bh);
5414		ext4_error_err(sb, -err,
5415			       "Error %d reading block bitmap for %u",
5416			       err, group);
5417		goto out_dbg;
5418	}
5419
5420	err = ext4_mb_load_buddy(sb, group, &e4b);
5421	if (err) {
5422		ext4_warning(sb, "Error %d loading buddy information for %u",
5423			     err, group);
5424		put_bh(bitmap_bh);
5425		goto out_dbg;
5426	}
5427
 
 
 
 
 
5428	ext4_lock_group(sb, group);
5429	list_for_each_entry_safe(pa, tmp,
5430				&grp->bb_prealloc_list, pa_group_list) {
5431		spin_lock(&pa->pa_lock);
5432		if (atomic_read(&pa->pa_count)) {
5433			spin_unlock(&pa->pa_lock);
5434			*busy = 1;
5435			continue;
5436		}
5437		if (pa->pa_deleted) {
5438			spin_unlock(&pa->pa_lock);
5439			continue;
5440		}
5441
5442		/* seems this one can be freed ... */
5443		ext4_mb_mark_pa_deleted(sb, pa);
5444
5445		if (!free)
5446			this_cpu_inc(discard_pa_seq);
5447
5448		/* we can trust pa_free ... */
5449		free += pa->pa_free;
5450
5451		spin_unlock(&pa->pa_lock);
5452
5453		list_del(&pa->pa_group_list);
5454		list_add(&pa->u.pa_tmp_list, &list);
5455	}
5456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5457	/* now free all selected PAs */
5458	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5459
5460		/* remove from object (inode or locality group) */
5461		if (pa->pa_type == MB_GROUP_PA) {
5462			spin_lock(pa->pa_node_lock.lg_lock);
5463			list_del_rcu(&pa->pa_node.lg_list);
5464			spin_unlock(pa->pa_node_lock.lg_lock);
5465		} else {
5466			write_lock(pa->pa_node_lock.inode_lock);
5467			ei = EXT4_I(pa->pa_inode);
5468			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5469			write_unlock(pa->pa_node_lock.inode_lock);
5470		}
5471
5472		list_del(&pa->u.pa_tmp_list);
5473
5474		if (pa->pa_type == MB_GROUP_PA) {
5475			ext4_mb_release_group_pa(&e4b, pa);
5476			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5477		} else {
5478			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5479			ext4_mb_pa_free(pa);
5480		}
 
5481	}
5482
 
5483	ext4_unlock_group(sb, group);
5484	ext4_mb_unload_buddy(&e4b);
5485	put_bh(bitmap_bh);
5486out_dbg:
5487	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5488		 free, group, grp->bb_free);
5489	return free;
5490}
5491
5492/*
5493 * releases all non-used preallocated blocks for given inode
5494 *
5495 * It's important to discard preallocations under i_data_sem
5496 * We don't want another block to be served from the prealloc
5497 * space when we are discarding the inode prealloc space.
5498 *
5499 * FIXME!! Make sure it is valid at all the call sites
5500 */
5501void ext4_discard_preallocations(struct inode *inode)
5502{
5503	struct ext4_inode_info *ei = EXT4_I(inode);
5504	struct super_block *sb = inode->i_sb;
5505	struct buffer_head *bitmap_bh = NULL;
5506	struct ext4_prealloc_space *pa, *tmp;
5507	ext4_group_t group = 0;
5508	LIST_HEAD(list);
5509	struct ext4_buddy e4b;
5510	struct rb_node *iter;
5511	int err;
5512
5513	if (!S_ISREG(inode->i_mode))
 
5514		return;
 
5515
5516	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5517		return;
5518
5519	mb_debug(sb, "discard preallocation for inode %lu\n",
5520		 inode->i_ino);
5521	trace_ext4_discard_preallocations(inode,
5522			atomic_read(&ei->i_prealloc_active));
5523
5524repeat:
5525	/* first, collect all pa's in the inode */
5526	write_lock(&ei->i_prealloc_lock);
5527	for (iter = rb_first(&ei->i_prealloc_node); iter;
5528	     iter = rb_next(iter)) {
5529		pa = rb_entry(iter, struct ext4_prealloc_space,
5530			      pa_node.inode_node);
5531		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5532
5533		spin_lock(&pa->pa_lock);
5534		if (atomic_read(&pa->pa_count)) {
5535			/* this shouldn't happen often - nobody should
5536			 * use preallocation while we're discarding it */
5537			spin_unlock(&pa->pa_lock);
5538			write_unlock(&ei->i_prealloc_lock);
5539			ext4_msg(sb, KERN_ERR,
5540				 "uh-oh! used pa while discarding");
5541			WARN_ON(1);
5542			schedule_timeout_uninterruptible(HZ);
5543			goto repeat;
5544
5545		}
5546		if (pa->pa_deleted == 0) {
5547			ext4_mb_mark_pa_deleted(sb, pa);
5548			spin_unlock(&pa->pa_lock);
5549			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5550			list_add(&pa->u.pa_tmp_list, &list);
5551			continue;
5552		}
5553
5554		/* someone is deleting pa right now */
5555		spin_unlock(&pa->pa_lock);
5556		write_unlock(&ei->i_prealloc_lock);
5557
5558		/* we have to wait here because pa_deleted
5559		 * doesn't mean pa is already unlinked from
5560		 * the list. as we might be called from
5561		 * ->clear_inode() the inode will get freed
5562		 * and concurrent thread which is unlinking
5563		 * pa from inode's list may access already
5564		 * freed memory, bad-bad-bad */
5565
5566		/* XXX: if this happens too often, we can
5567		 * add a flag to force wait only in case
5568		 * of ->clear_inode(), but not in case of
5569		 * regular truncate */
5570		schedule_timeout_uninterruptible(HZ);
5571		goto repeat;
5572	}
5573	write_unlock(&ei->i_prealloc_lock);
5574
5575	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5576		BUG_ON(pa->pa_type != MB_INODE_PA);
5577		group = ext4_get_group_number(sb, pa->pa_pstart);
5578
5579		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5580					     GFP_NOFS|__GFP_NOFAIL);
5581		if (err) {
5582			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5583				       err, group);
5584			continue;
5585		}
5586
5587		bitmap_bh = ext4_read_block_bitmap(sb, group);
5588		if (IS_ERR(bitmap_bh)) {
5589			err = PTR_ERR(bitmap_bh);
5590			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5591				       err, group);
5592			ext4_mb_unload_buddy(&e4b);
5593			continue;
5594		}
5595
5596		ext4_lock_group(sb, group);
5597		list_del(&pa->pa_group_list);
5598		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5599		ext4_unlock_group(sb, group);
5600
5601		ext4_mb_unload_buddy(&e4b);
5602		put_bh(bitmap_bh);
5603
5604		list_del(&pa->u.pa_tmp_list);
5605		ext4_mb_pa_free(pa);
5606	}
5607}
5608
5609static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5610{
5611	struct ext4_prealloc_space *pa;
5612
5613	BUG_ON(ext4_pspace_cachep == NULL);
5614	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5615	if (!pa)
5616		return -ENOMEM;
5617	atomic_set(&pa->pa_count, 1);
5618	ac->ac_pa = pa;
5619	return 0;
5620}
5621
5622static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5623{
5624	struct ext4_prealloc_space *pa = ac->ac_pa;
5625
5626	BUG_ON(!pa);
5627	ac->ac_pa = NULL;
5628	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5629	/*
5630	 * current function is only called due to an error or due to
5631	 * len of found blocks < len of requested blocks hence the PA has not
5632	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5633	 */
5634	pa->pa_deleted = 1;
5635	ext4_mb_pa_free(pa);
5636}
5637
5638#ifdef CONFIG_EXT4_DEBUG
5639static inline void ext4_mb_show_pa(struct super_block *sb)
5640{
5641	ext4_group_t i, ngroups;
5642
5643	if (ext4_forced_shutdown(sb))
5644		return;
5645
5646	ngroups = ext4_get_groups_count(sb);
5647	mb_debug(sb, "groups: ");
5648	for (i = 0; i < ngroups; i++) {
5649		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5650		struct ext4_prealloc_space *pa;
5651		ext4_grpblk_t start;
5652		struct list_head *cur;
5653
5654		if (!grp)
5655			continue;
5656		ext4_lock_group(sb, i);
5657		list_for_each(cur, &grp->bb_prealloc_list) {
5658			pa = list_entry(cur, struct ext4_prealloc_space,
5659					pa_group_list);
5660			spin_lock(&pa->pa_lock);
5661			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5662						     NULL, &start);
5663			spin_unlock(&pa->pa_lock);
5664			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5665				 pa->pa_len);
5666		}
5667		ext4_unlock_group(sb, i);
5668		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5669			 grp->bb_fragments);
5670	}
5671}
5672
5673static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5674{
5675	struct super_block *sb = ac->ac_sb;
 
5676
5677	if (ext4_forced_shutdown(sb))
 
5678		return;
5679
5680	mb_debug(sb, "Can't allocate:"
5681			" Allocation context details:");
5682	mb_debug(sb, "status %u flags 0x%x",
5683			ac->ac_status, ac->ac_flags);
5684	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5685			"goal %lu/%lu/%lu@%lu, "
5686			"best %lu/%lu/%lu@%lu cr %d",
5687			(unsigned long)ac->ac_o_ex.fe_group,
5688			(unsigned long)ac->ac_o_ex.fe_start,
5689			(unsigned long)ac->ac_o_ex.fe_len,
5690			(unsigned long)ac->ac_o_ex.fe_logical,
5691			(unsigned long)ac->ac_g_ex.fe_group,
5692			(unsigned long)ac->ac_g_ex.fe_start,
5693			(unsigned long)ac->ac_g_ex.fe_len,
5694			(unsigned long)ac->ac_g_ex.fe_logical,
5695			(unsigned long)ac->ac_b_ex.fe_group,
5696			(unsigned long)ac->ac_b_ex.fe_start,
5697			(unsigned long)ac->ac_b_ex.fe_len,
5698			(unsigned long)ac->ac_b_ex.fe_logical,
5699			(int)ac->ac_criteria);
5700	mb_debug(sb, "%u found", ac->ac_found);
5701	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5702	if (ac->ac_pa)
5703		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5704			 "group pa" : "inode pa");
5705	ext4_mb_show_pa(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5706}
5707#else
5708static inline void ext4_mb_show_pa(struct super_block *sb)
5709{
5710}
5711static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5712{
5713	ext4_mb_show_pa(ac->ac_sb);
5714}
5715#endif
5716
5717/*
5718 * We use locality group preallocation for small size file. The size of the
5719 * file is determined by the current size or the resulting size after
5720 * allocation which ever is larger
5721 *
5722 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5723 */
5724static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5725{
5726	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5727	int bsbits = ac->ac_sb->s_blocksize_bits;
5728	loff_t size, isize;
5729	bool inode_pa_eligible, group_pa_eligible;
5730
5731	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5732		return;
5733
5734	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5735		return;
5736
5737	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5738	inode_pa_eligible = true;
5739	size = extent_logical_end(sbi, &ac->ac_o_ex);
5740	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5741		>> bsbits;
5742
5743	/* No point in using inode preallocation for closed files */
5744	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5745	    !inode_is_open_for_write(ac->ac_inode))
5746		inode_pa_eligible = false;
 
 
 
 
 
 
 
5747
 
5748	size = max(size, isize);
5749	/* Don't use group allocation for large files */
5750	if (size > sbi->s_mb_stream_request)
5751		group_pa_eligible = false;
5752
5753	if (!group_pa_eligible) {
5754		if (inode_pa_eligible)
5755			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5756		else
5757			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5758		return;
5759	}
5760
5761	BUG_ON(ac->ac_lg != NULL);
5762	/*
5763	 * locality group prealloc space are per cpu. The reason for having
5764	 * per cpu locality group is to reduce the contention between block
5765	 * request from multiple CPUs.
5766	 */
5767	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5768
5769	/* we're going to use group allocation */
5770	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5771
5772	/* serialize all allocations in the group */
5773	mutex_lock(&ac->ac_lg->lg_mutex);
5774}
5775
5776static noinline_for_stack void
5777ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5778				struct ext4_allocation_request *ar)
5779{
5780	struct super_block *sb = ar->inode->i_sb;
5781	struct ext4_sb_info *sbi = EXT4_SB(sb);
5782	struct ext4_super_block *es = sbi->s_es;
5783	ext4_group_t group;
5784	unsigned int len;
5785	ext4_fsblk_t goal;
5786	ext4_grpblk_t block;
5787
5788	/* we can't allocate > group size */
5789	len = ar->len;
5790
5791	/* just a dirty hack to filter too big requests  */
5792	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5793		len = EXT4_CLUSTERS_PER_GROUP(sb);
5794
5795	/* start searching from the goal */
5796	goal = ar->goal;
5797	if (goal < le32_to_cpu(es->s_first_data_block) ||
5798			goal >= ext4_blocks_count(es))
5799		goal = le32_to_cpu(es->s_first_data_block);
5800	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5801
5802	/* set up allocation goals */
5803	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5804	ac->ac_status = AC_STATUS_CONTINUE;
5805	ac->ac_sb = sb;
5806	ac->ac_inode = ar->inode;
5807	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5808	ac->ac_o_ex.fe_group = group;
5809	ac->ac_o_ex.fe_start = block;
5810	ac->ac_o_ex.fe_len = len;
5811	ac->ac_g_ex = ac->ac_o_ex;
5812	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5813	ac->ac_flags = ar->flags;
5814
5815	/* we have to define context: we'll work with a file or
5816	 * locality group. this is a policy, actually */
5817	ext4_mb_group_or_file(ac);
5818
5819	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5820			"left: %u/%u, right %u/%u to %swritable\n",
5821			(unsigned) ar->len, (unsigned) ar->logical,
5822			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5823			(unsigned) ar->lleft, (unsigned) ar->pleft,
5824			(unsigned) ar->lright, (unsigned) ar->pright,
5825			inode_is_open_for_write(ar->inode) ? "" : "non-");
 
 
5826}
5827
5828static noinline_for_stack void
5829ext4_mb_discard_lg_preallocations(struct super_block *sb,
5830					struct ext4_locality_group *lg,
5831					int order, int total_entries)
5832{
5833	ext4_group_t group = 0;
5834	struct ext4_buddy e4b;
5835	LIST_HEAD(discard_list);
5836	struct ext4_prealloc_space *pa, *tmp;
5837
5838	mb_debug(sb, "discard locality group preallocation\n");
 
 
5839
5840	spin_lock(&lg->lg_prealloc_lock);
5841	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5842				pa_node.lg_list,
5843				lockdep_is_held(&lg->lg_prealloc_lock)) {
5844		spin_lock(&pa->pa_lock);
5845		if (atomic_read(&pa->pa_count)) {
5846			/*
5847			 * This is the pa that we just used
5848			 * for block allocation. So don't
5849			 * free that
5850			 */
5851			spin_unlock(&pa->pa_lock);
5852			continue;
5853		}
5854		if (pa->pa_deleted) {
5855			spin_unlock(&pa->pa_lock);
5856			continue;
5857		}
5858		/* only lg prealloc space */
5859		BUG_ON(pa->pa_type != MB_GROUP_PA);
5860
5861		/* seems this one can be freed ... */
5862		ext4_mb_mark_pa_deleted(sb, pa);
5863		spin_unlock(&pa->pa_lock);
5864
5865		list_del_rcu(&pa->pa_node.lg_list);
5866		list_add(&pa->u.pa_tmp_list, &discard_list);
5867
5868		total_entries--;
5869		if (total_entries <= 5) {
5870			/*
5871			 * we want to keep only 5 entries
5872			 * allowing it to grow to 8. This
5873			 * mak sure we don't call discard
5874			 * soon for this list.
5875			 */
5876			break;
5877		}
5878	}
5879	spin_unlock(&lg->lg_prealloc_lock);
5880
5881	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5882		int err;
5883
5884		group = ext4_get_group_number(sb, pa->pa_pstart);
5885		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5886					     GFP_NOFS|__GFP_NOFAIL);
5887		if (err) {
5888			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5889				       err, group);
5890			continue;
5891		}
5892		ext4_lock_group(sb, group);
5893		list_del(&pa->pa_group_list);
5894		ext4_mb_release_group_pa(&e4b, pa);
5895		ext4_unlock_group(sb, group);
5896
5897		ext4_mb_unload_buddy(&e4b);
5898		list_del(&pa->u.pa_tmp_list);
5899		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5900	}
5901}
5902
5903/*
5904 * We have incremented pa_count. So it cannot be freed at this
5905 * point. Also we hold lg_mutex. So no parallel allocation is
5906 * possible from this lg. That means pa_free cannot be updated.
5907 *
5908 * A parallel ext4_mb_discard_group_preallocations is possible.
5909 * which can cause the lg_prealloc_list to be updated.
5910 */
5911
5912static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5913{
5914	int order, added = 0, lg_prealloc_count = 1;
5915	struct super_block *sb = ac->ac_sb;
5916	struct ext4_locality_group *lg = ac->ac_lg;
5917	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5918
5919	order = fls(pa->pa_free) - 1;
5920	if (order > PREALLOC_TB_SIZE - 1)
5921		/* The max size of hash table is PREALLOC_TB_SIZE */
5922		order = PREALLOC_TB_SIZE - 1;
5923	/* Add the prealloc space to lg */
5924	spin_lock(&lg->lg_prealloc_lock);
5925	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5926				pa_node.lg_list,
5927				lockdep_is_held(&lg->lg_prealloc_lock)) {
5928		spin_lock(&tmp_pa->pa_lock);
5929		if (tmp_pa->pa_deleted) {
5930			spin_unlock(&tmp_pa->pa_lock);
5931			continue;
5932		}
5933		if (!added && pa->pa_free < tmp_pa->pa_free) {
5934			/* Add to the tail of the previous entry */
5935			list_add_tail_rcu(&pa->pa_node.lg_list,
5936						&tmp_pa->pa_node.lg_list);
5937			added = 1;
5938			/*
5939			 * we want to count the total
5940			 * number of entries in the list
5941			 */
5942		}
5943		spin_unlock(&tmp_pa->pa_lock);
5944		lg_prealloc_count++;
5945	}
5946	if (!added)
5947		list_add_tail_rcu(&pa->pa_node.lg_list,
5948					&lg->lg_prealloc_list[order]);
5949	spin_unlock(&lg->lg_prealloc_lock);
5950
5951	/* Now trim the list to be not more than 8 elements */
5952	if (lg_prealloc_count > 8)
5953		ext4_mb_discard_lg_preallocations(sb, lg,
5954						  order, lg_prealloc_count);
 
 
 
5955}
5956
5957/*
5958 * release all resource we used in allocation
5959 */
5960static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5961{
5962	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5963	struct ext4_prealloc_space *pa = ac->ac_pa;
5964	if (pa) {
5965		if (pa->pa_type == MB_GROUP_PA) {
5966			/* see comment in ext4_mb_use_group_pa() */
5967			spin_lock(&pa->pa_lock);
5968			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5969			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5970			pa->pa_free -= ac->ac_b_ex.fe_len;
5971			pa->pa_len -= ac->ac_b_ex.fe_len;
5972			spin_unlock(&pa->pa_lock);
5973
5974			/*
5975			 * We want to add the pa to the right bucket.
5976			 * Remove it from the list and while adding
5977			 * make sure the list to which we are adding
5978			 * doesn't grow big.
5979			 */
5980			if (likely(pa->pa_free)) {
5981				spin_lock(pa->pa_node_lock.lg_lock);
5982				list_del_rcu(&pa->pa_node.lg_list);
5983				spin_unlock(pa->pa_node_lock.lg_lock);
5984				ext4_mb_add_n_trim(ac);
5985			}
5986		}
5987
 
 
 
 
 
 
 
 
 
 
 
 
 
5988		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5989	}
5990	if (ac->ac_bitmap_page)
5991		put_page(ac->ac_bitmap_page);
5992	if (ac->ac_buddy_page)
5993		put_page(ac->ac_buddy_page);
5994	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5995		mutex_unlock(&ac->ac_lg->lg_mutex);
5996	ext4_mb_collect_stats(ac);
 
5997}
5998
5999static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6000{
6001	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6002	int ret;
6003	int freed = 0, busy = 0;
6004	int retry = 0;
6005
6006	trace_ext4_mb_discard_preallocations(sb, needed);
6007
6008	if (needed == 0)
6009		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6010 repeat:
6011	for (i = 0; i < ngroups && needed > 0; i++) {
6012		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6013		freed += ret;
6014		needed -= ret;
6015		cond_resched();
6016	}
6017
6018	if (needed > 0 && busy && ++retry < 3) {
6019		busy = 0;
6020		goto repeat;
6021	}
6022
6023	return freed;
6024}
6025
6026static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6027			struct ext4_allocation_context *ac, u64 *seq)
6028{
6029	int freed;
6030	u64 seq_retry = 0;
6031	bool ret = false;
6032
6033	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6034	if (freed) {
6035		ret = true;
6036		goto out_dbg;
6037	}
6038	seq_retry = ext4_get_discard_pa_seq_sum();
6039	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6040		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6041		*seq = seq_retry;
6042		ret = true;
6043	}
6044
6045out_dbg:
6046	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6047	return ret;
6048}
6049
6050/*
6051 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6052 * linearly starting at the goal block and also excludes the blocks which
6053 * are going to be in use after fast commit replay.
6054 */
6055static ext4_fsblk_t
6056ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6057{
6058	struct buffer_head *bitmap_bh;
6059	struct super_block *sb = ar->inode->i_sb;
6060	struct ext4_sb_info *sbi = EXT4_SB(sb);
6061	ext4_group_t group, nr;
6062	ext4_grpblk_t blkoff;
6063	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6064	ext4_grpblk_t i = 0;
6065	ext4_fsblk_t goal, block;
6066	struct ext4_super_block *es = sbi->s_es;
6067
6068	goal = ar->goal;
6069	if (goal < le32_to_cpu(es->s_first_data_block) ||
6070			goal >= ext4_blocks_count(es))
6071		goal = le32_to_cpu(es->s_first_data_block);
6072
6073	ar->len = 0;
6074	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6075	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6076		bitmap_bh = ext4_read_block_bitmap(sb, group);
6077		if (IS_ERR(bitmap_bh)) {
6078			*errp = PTR_ERR(bitmap_bh);
6079			pr_warn("Failed to read block bitmap\n");
6080			return 0;
6081		}
6082
6083		while (1) {
6084			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6085						blkoff);
6086			if (i >= max)
6087				break;
6088			if (ext4_fc_replay_check_excluded(sb,
6089				ext4_group_first_block_no(sb, group) +
6090				EXT4_C2B(sbi, i))) {
6091				blkoff = i + 1;
6092			} else
6093				break;
6094		}
6095		brelse(bitmap_bh);
6096		if (i < max)
6097			break;
6098
6099		if (++group >= ext4_get_groups_count(sb))
6100			group = 0;
6101
6102		blkoff = 0;
6103	}
6104
6105	if (i >= max) {
6106		*errp = -ENOSPC;
6107		return 0;
6108	}
6109
6110	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6111	ext4_mb_mark_bb(sb, block, 1, true);
6112	ar->len = 1;
6113
6114	return block;
6115}
6116
6117/*
6118 * Main entry point into mballoc to allocate blocks
6119 * it tries to use preallocation first, then falls back
6120 * to usual allocation
6121 */
6122ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6123				struct ext4_allocation_request *ar, int *errp)
6124{
 
6125	struct ext4_allocation_context *ac = NULL;
6126	struct ext4_sb_info *sbi;
6127	struct super_block *sb;
6128	ext4_fsblk_t block = 0;
6129	unsigned int inquota = 0;
6130	unsigned int reserv_clstrs = 0;
6131	int retries = 0;
6132	u64 seq;
6133
6134	might_sleep();
6135	sb = ar->inode->i_sb;
6136	sbi = EXT4_SB(sb);
6137
6138	trace_ext4_request_blocks(ar);
6139	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6140		return ext4_mb_new_blocks_simple(ar, errp);
6141
6142	/* Allow to use superuser reservation for quota file */
6143	if (ext4_is_quota_file(ar->inode))
6144		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6145
6146	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6147		/* Without delayed allocation we need to verify
6148		 * there is enough free blocks to do block allocation
6149		 * and verify allocation doesn't exceed the quota limits.
6150		 */
6151		while (ar->len &&
6152			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6153
6154			/* let others to free the space */
6155			cond_resched();
6156			ar->len = ar->len >> 1;
6157		}
6158		if (!ar->len) {
6159			ext4_mb_show_pa(sb);
6160			*errp = -ENOSPC;
6161			return 0;
6162		}
6163		reserv_clstrs = ar->len;
6164		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6165			dquot_alloc_block_nofail(ar->inode,
6166						 EXT4_C2B(sbi, ar->len));
6167		} else {
6168			while (ar->len &&
6169				dquot_alloc_block(ar->inode,
6170						  EXT4_C2B(sbi, ar->len))) {
6171
6172				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6173				ar->len--;
6174			}
6175		}
6176		inquota = ar->len;
6177		if (ar->len == 0) {
6178			*errp = -EDQUOT;
6179			goto out;
6180		}
6181	}
6182
6183	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6184	if (!ac) {
6185		ar->len = 0;
6186		*errp = -ENOMEM;
6187		goto out;
6188	}
6189
6190	ext4_mb_initialize_context(ac, ar);
 
 
 
 
6191
6192	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6193	seq = this_cpu_read(discard_pa_seq);
6194	if (!ext4_mb_use_preallocated(ac)) {
6195		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6196		ext4_mb_normalize_request(ac, ar);
6197
6198		*errp = ext4_mb_pa_alloc(ac);
6199		if (*errp)
6200			goto errout;
6201repeat:
6202		/* allocate space in core */
6203		*errp = ext4_mb_regular_allocator(ac);
6204		/*
6205		 * pa allocated above is added to grp->bb_prealloc_list only
6206		 * when we were able to allocate some block i.e. when
6207		 * ac->ac_status == AC_STATUS_FOUND.
6208		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6209		 * So we have to free this pa here itself.
6210		 */
 
 
6211		if (*errp) {
6212			ext4_mb_pa_put_free(ac);
6213			ext4_discard_allocated_blocks(ac);
6214			goto errout;
6215		}
6216		if (ac->ac_status == AC_STATUS_FOUND &&
6217			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6218			ext4_mb_pa_put_free(ac);
6219	}
6220	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6221		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6222		if (*errp) {
 
 
 
 
 
 
 
 
 
 
 
6223			ext4_discard_allocated_blocks(ac);
6224			goto errout;
6225		} else {
6226			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6227			ar->len = ac->ac_b_ex.fe_len;
6228		}
6229	} else {
6230		if (++retries < 3 &&
6231		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6232			goto repeat;
6233		/*
6234		 * If block allocation fails then the pa allocated above
6235		 * needs to be freed here itself.
6236		 */
6237		ext4_mb_pa_put_free(ac);
6238		*errp = -ENOSPC;
6239	}
6240
 
6241	if (*errp) {
6242errout:
6243		ac->ac_b_ex.fe_len = 0;
6244		ar->len = 0;
6245		ext4_mb_show_ac(ac);
6246	}
6247	ext4_mb_release_context(ac);
6248	kmem_cache_free(ext4_ac_cachep, ac);
6249out:
 
 
6250	if (inquota && ar->len < inquota)
6251		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6252	if (!ar->len) {
6253		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6254			/* release all the reserved blocks if non delalloc */
6255			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6256						reserv_clstrs);
6257	}
6258
6259	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6260
6261	return block;
6262}
6263
6264/*
6265 * We can merge two free data extents only if the physical blocks
6266 * are contiguous, AND the extents were freed by the same transaction,
6267 * AND the blocks are associated with the same group.
6268 */
6269static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6270					struct ext4_free_data *entry,
6271					struct ext4_free_data *new_entry,
6272					struct rb_root *entry_rb_root)
6273{
6274	if ((entry->efd_tid != new_entry->efd_tid) ||
6275	    (entry->efd_group != new_entry->efd_group))
6276		return;
6277	if (entry->efd_start_cluster + entry->efd_count ==
6278	    new_entry->efd_start_cluster) {
6279		new_entry->efd_start_cluster = entry->efd_start_cluster;
6280		new_entry->efd_count += entry->efd_count;
6281	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6282		   entry->efd_start_cluster) {
6283		new_entry->efd_count += entry->efd_count;
6284	} else
6285		return;
6286	spin_lock(&sbi->s_md_lock);
6287	list_del(&entry->efd_list);
6288	spin_unlock(&sbi->s_md_lock);
6289	rb_erase(&entry->efd_node, entry_rb_root);
6290	kmem_cache_free(ext4_free_data_cachep, entry);
6291}
6292
6293static noinline_for_stack void
6294ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6295		      struct ext4_free_data *new_entry)
6296{
6297	ext4_group_t group = e4b->bd_group;
6298	ext4_grpblk_t cluster;
6299	ext4_grpblk_t clusters = new_entry->efd_count;
6300	struct ext4_free_data *entry;
6301	struct ext4_group_info *db = e4b->bd_info;
6302	struct super_block *sb = e4b->bd_sb;
6303	struct ext4_sb_info *sbi = EXT4_SB(sb);
6304	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6305	struct rb_node *parent = NULL, *new_node;
6306
6307	BUG_ON(!ext4_handle_valid(handle));
6308	BUG_ON(e4b->bd_bitmap_page == NULL);
6309	BUG_ON(e4b->bd_buddy_page == NULL);
6310
6311	new_node = &new_entry->efd_node;
6312	cluster = new_entry->efd_start_cluster;
6313
6314	if (!*n) {
6315		/* first free block exent. We need to
6316		   protect buddy cache from being freed,
6317		 * otherwise we'll refresh it from
6318		 * on-disk bitmap and lose not-yet-available
6319		 * blocks */
6320		get_page(e4b->bd_buddy_page);
6321		get_page(e4b->bd_bitmap_page);
6322	}
6323	while (*n) {
6324		parent = *n;
6325		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6326		if (cluster < entry->efd_start_cluster)
6327			n = &(*n)->rb_left;
6328		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6329			n = &(*n)->rb_right;
6330		else {
6331			ext4_grp_locked_error(sb, group, 0,
6332				ext4_group_first_block_no(sb, group) +
6333				EXT4_C2B(sbi, cluster),
6334				"Block already on to-be-freed list");
6335			kmem_cache_free(ext4_free_data_cachep, new_entry);
6336			return;
6337		}
6338	}
6339
6340	rb_link_node(new_node, parent, n);
6341	rb_insert_color(new_node, &db->bb_free_root);
6342
6343	/* Now try to see the extent can be merged to left and right */
6344	node = rb_prev(new_node);
6345	if (node) {
6346		entry = rb_entry(node, struct ext4_free_data, efd_node);
6347		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6348					    &(db->bb_free_root));
 
 
 
 
 
6349	}
6350
6351	node = rb_next(new_node);
6352	if (node) {
6353		entry = rb_entry(node, struct ext4_free_data, efd_node);
6354		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6355					    &(db->bb_free_root));
 
 
 
 
6356	}
6357
6358	spin_lock(&sbi->s_md_lock);
6359	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6360	sbi->s_mb_free_pending += clusters;
6361	spin_unlock(&sbi->s_md_lock);
6362}
6363
6364static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6365					unsigned long count)
6366{
6367	struct super_block *sb = inode->i_sb;
6368	ext4_group_t group;
6369	ext4_grpblk_t blkoff;
6370
6371	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6372	ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6373			     EXT4_MB_BITMAP_MARKED_CHECK |
6374			     EXT4_MB_SYNC_UPDATE,
6375			     NULL);
6376}
6377
6378/**
6379 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6380 *			Used by ext4_free_blocks()
6381 * @handle:		handle for this transaction
6382 * @inode:		inode
6383 * @block:		starting physical block to be freed
6384 * @count:		number of blocks to be freed
6385 * @flags:		flags used by ext4_free_blocks
6386 */
6387static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6388			       ext4_fsblk_t block, unsigned long count,
6389			       int flags)
6390{
 
6391	struct super_block *sb = inode->i_sb;
6392	struct ext4_group_info *grp;
6393	unsigned int overflow;
6394	ext4_grpblk_t bit;
 
6395	ext4_group_t block_group;
6396	struct ext4_sb_info *sbi;
6397	struct ext4_buddy e4b;
6398	unsigned int count_clusters;
6399	int err = 0;
6400	int mark_flags = 0;
6401	ext4_grpblk_t changed;
 
 
 
 
 
 
 
6402
6403	sbi = EXT4_SB(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6404
6405	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6406	    !ext4_inode_block_valid(inode, block, count)) {
6407		ext4_error(sb, "Freeing blocks in system zone - "
6408			   "Block = %llu, count = %lu", block, count);
6409		/* err = 0. ext4_std_error should be a no op */
6410		goto error_out;
 
 
 
 
6411	}
6412	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6413
6414do_more:
6415	overflow = 0;
6416	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6417
6418	grp = ext4_get_group_info(sb, block_group);
6419	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6420		return;
6421
6422	/*
6423	 * Check to see if we are freeing blocks across a group
6424	 * boundary.
6425	 */
6426	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6427		overflow = EXT4_C2B(sbi, bit) + count -
6428			EXT4_BLOCKS_PER_GROUP(sb);
6429		count -= overflow;
6430		/* The range changed so it's no longer validated */
6431		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6432	}
6433	count_clusters = EXT4_NUM_B2C(sbi, count);
6434	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
 
 
 
 
 
 
 
 
 
 
6435
6436	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6437	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6438				     GFP_NOFS|__GFP_NOFAIL);
6439	if (err)
6440		goto error_out;
 
6441
6442	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6443	    !ext4_inode_block_valid(inode, block, count)) {
6444		ext4_error(sb, "Freeing blocks in system zone - "
6445			   "Block = %llu, count = %lu", block, count);
6446		/* err = 0. ext4_std_error should be a no op */
6447		goto error_clean;
6448	}
6449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6450#ifdef AGGRESSIVE_CHECK
6451	mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
 
 
 
 
6452#endif
6453	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6454				   count_clusters, mark_flags, &changed);
6455
6456
6457	if (err && changed == 0)
6458		goto error_clean;
6459
6460#ifdef AGGRESSIVE_CHECK
6461	BUG_ON(changed != count_clusters);
6462#endif
6463
6464	/*
6465	 * We need to make sure we don't reuse the freed block until after the
6466	 * transaction is committed. We make an exception if the inode is to be
6467	 * written in writeback mode since writeback mode has weak data
6468	 * consistency guarantees.
6469	 */
6470	if (ext4_handle_valid(handle) &&
6471	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6472	     !ext4_should_writeback_data(inode))) {
6473		struct ext4_free_data *new_entry;
6474		/*
6475		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6476		 * to fail.
6477		 */
6478		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6479				GFP_NOFS|__GFP_NOFAIL);
6480		new_entry->efd_start_cluster = bit;
6481		new_entry->efd_group = block_group;
6482		new_entry->efd_count = count_clusters;
6483		new_entry->efd_tid = handle->h_transaction->t_tid;
6484
6485		ext4_lock_group(sb, block_group);
 
6486		ext4_mb_free_metadata(handle, &e4b, new_entry);
6487	} else {
 
 
 
 
6488		if (test_opt(sb, DISCARD)) {
6489			err = ext4_issue_discard(sb, block_group, bit,
6490						 count_clusters, NULL);
6491			if (err && err != -EOPNOTSUPP)
6492				ext4_msg(sb, KERN_WARNING, "discard request in"
6493					 " group:%u block:%d count:%lu failed"
6494					 " with %d", block_group, bit, count,
6495					 err);
6496		} else
6497			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6498
6499		ext4_lock_group(sb, block_group);
 
6500		mb_free_blocks(inode, &e4b, bit, count_clusters);
6501	}
6502
 
 
 
 
6503	ext4_unlock_group(sb, block_group);
6504
6505	/*
6506	 * on a bigalloc file system, defer the s_freeclusters_counter
6507	 * update to the caller (ext4_remove_space and friends) so they
6508	 * can determine if a cluster freed here should be rereserved
6509	 */
6510	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6511		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6512			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6513		percpu_counter_add(&sbi->s_freeclusters_counter,
6514				   count_clusters);
6515	}
6516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6517	if (overflow && !err) {
6518		block += count;
6519		count = overflow;
6520		ext4_mb_unload_buddy(&e4b);
6521		/* The range changed so it's no longer validated */
6522		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6523		goto do_more;
6524	}
6525
6526error_clean:
6527	ext4_mb_unload_buddy(&e4b);
6528error_out:
6529	ext4_std_error(sb, err);
6530}
6531
6532/**
6533 * ext4_free_blocks() -- Free given blocks and update quota
6534 * @handle:		handle for this transaction
6535 * @inode:		inode
6536 * @bh:			optional buffer of the block to be freed
6537 * @block:		starting physical block to be freed
6538 * @count:		number of blocks to be freed
6539 * @flags:		flags used by ext4_free_blocks
6540 */
6541void ext4_free_blocks(handle_t *handle, struct inode *inode,
6542		      struct buffer_head *bh, ext4_fsblk_t block,
6543		      unsigned long count, int flags)
6544{
6545	struct super_block *sb = inode->i_sb;
6546	unsigned int overflow;
6547	struct ext4_sb_info *sbi;
6548
6549	sbi = EXT4_SB(sb);
6550
6551	if (bh) {
6552		if (block)
6553			BUG_ON(block != bh->b_blocknr);
6554		else
6555			block = bh->b_blocknr;
6556	}
6557
6558	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6559		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6560		return;
6561	}
6562
6563	might_sleep();
6564
6565	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6566	    !ext4_inode_block_valid(inode, block, count)) {
6567		ext4_error(sb, "Freeing blocks not in datazone - "
6568			   "block = %llu, count = %lu", block, count);
6569		return;
6570	}
6571	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6572
6573	ext4_debug("freeing block %llu\n", block);
6574	trace_ext4_free_blocks(inode, block, count, flags);
6575
6576	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6577		BUG_ON(count > 1);
6578
6579		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6580			    inode, bh, block);
6581	}
6582
6583	/*
6584	 * If the extent to be freed does not begin on a cluster
6585	 * boundary, we need to deal with partial clusters at the
6586	 * beginning and end of the extent.  Normally we will free
6587	 * blocks at the beginning or the end unless we are explicitly
6588	 * requested to avoid doing so.
6589	 */
6590	overflow = EXT4_PBLK_COFF(sbi, block);
6591	if (overflow) {
6592		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6593			overflow = sbi->s_cluster_ratio - overflow;
6594			block += overflow;
6595			if (count > overflow)
6596				count -= overflow;
6597			else
6598				return;
6599		} else {
6600			block -= overflow;
6601			count += overflow;
6602		}
6603		/* The range changed so it's no longer validated */
6604		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6605	}
6606	overflow = EXT4_LBLK_COFF(sbi, count);
6607	if (overflow) {
6608		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6609			if (count > overflow)
6610				count -= overflow;
6611			else
6612				return;
6613		} else
6614			count += sbi->s_cluster_ratio - overflow;
6615		/* The range changed so it's no longer validated */
6616		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6617	}
6618
6619	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6620		int i;
6621		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6622
6623		for (i = 0; i < count; i++) {
6624			cond_resched();
6625			if (is_metadata)
6626				bh = sb_find_get_block(inode->i_sb, block + i);
6627			ext4_forget(handle, is_metadata, inode, bh, block + i);
6628		}
6629	}
6630
6631	ext4_mb_clear_bb(handle, inode, block, count, flags);
6632}
6633
6634/**
6635 * ext4_group_add_blocks() -- Add given blocks to an existing group
6636 * @handle:			handle to this transaction
6637 * @sb:				super block
6638 * @block:			start physical block to add to the block group
6639 * @count:			number of blocks to free
6640 *
6641 * This marks the blocks as free in the bitmap and buddy.
6642 */
6643int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6644			 ext4_fsblk_t block, unsigned long count)
6645{
 
 
6646	ext4_group_t block_group;
6647	ext4_grpblk_t bit;
 
 
6648	struct ext4_sb_info *sbi = EXT4_SB(sb);
6649	struct ext4_buddy e4b;
6650	int err = 0;
6651	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6652	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6653	unsigned long cluster_count = last_cluster - first_cluster + 1;
6654	ext4_grpblk_t changed;
6655
6656	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6657
6658	if (cluster_count == 0)
6659		return 0;
6660
6661	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6662	/*
6663	 * Check to see if we are freeing blocks across a group
6664	 * boundary.
6665	 */
6666	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6667		ext4_warning(sb, "too many blocks added to group %u",
6668			     block_group);
6669		err = -EINVAL;
6670		goto error_out;
6671	}
6672
6673	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6674	if (err)
6675		goto error_out;
 
 
 
 
 
 
 
 
 
6676
6677	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
 
 
 
 
6678		ext4_error(sb, "Adding blocks in system zones - "
6679			   "Block = %llu, count = %lu",
6680			   block, count);
6681		err = -EINVAL;
6682		goto error_clean;
6683	}
6684
6685	err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6686				   cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6687				   &changed);
6688	if (err && changed == 0)
6689		goto error_clean;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6690
6691	if (changed != cluster_count)
6692		ext4_error(sb, "bit already cleared in group %u", block_group);
 
6693
 
 
 
 
 
6694	ext4_lock_group(sb, block_group);
6695	mb_free_blocks(NULL, &e4b, bit, cluster_count);
 
 
 
 
 
6696	ext4_unlock_group(sb, block_group);
6697	percpu_counter_add(&sbi->s_freeclusters_counter,
6698			   changed);
 
 
 
 
 
 
6699
6700error_clean:
6701	ext4_mb_unload_buddy(&e4b);
6702error_out:
 
 
 
 
 
 
 
 
 
 
 
 
6703	ext4_std_error(sb, err);
6704	return err;
6705}
6706
6707/**
6708 * ext4_trim_extent -- function to TRIM one single free extent in the group
6709 * @sb:		super block for the file system
6710 * @start:	starting block of the free extent in the alloc. group
6711 * @count:	number of blocks to TRIM
 
6712 * @e4b:	ext4 buddy for the group
6713 *
6714 * Trim "count" blocks starting at "start" in the "group". To assure that no
6715 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6716 * be called with under the group lock.
6717 */
6718static int ext4_trim_extent(struct super_block *sb,
6719		int start, int count, struct ext4_buddy *e4b)
6720__releases(bitlock)
6721__acquires(bitlock)
6722{
6723	struct ext4_free_extent ex;
6724	ext4_group_t group = e4b->bd_group;
6725	int ret = 0;
6726
6727	trace_ext4_trim_extent(sb, group, start, count);
6728
6729	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6730
6731	ex.fe_start = start;
6732	ex.fe_group = group;
6733	ex.fe_len = count;
6734
6735	/*
6736	 * Mark blocks used, so no one can reuse them while
6737	 * being trimmed.
6738	 */
6739	mb_mark_used(e4b, &ex);
6740	ext4_unlock_group(sb, group);
6741	ret = ext4_issue_discard(sb, group, start, count, NULL);
6742	ext4_lock_group(sb, group);
6743	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6744	return ret;
6745}
6746
6747static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6748					   ext4_group_t grp)
6749{
6750	unsigned long nr_clusters_in_group;
6751
6752	if (grp < (ext4_get_groups_count(sb) - 1))
6753		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6754	else
6755		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6756					ext4_group_first_block_no(sb, grp))
6757				       >> EXT4_CLUSTER_BITS(sb);
6758
6759	return nr_clusters_in_group - 1;
6760}
6761
6762static bool ext4_trim_interrupted(void)
6763{
6764	return fatal_signal_pending(current) || freezing(current);
6765}
6766
6767static int ext4_try_to_trim_range(struct super_block *sb,
6768		struct ext4_buddy *e4b, ext4_grpblk_t start,
6769		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6770__acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6771__releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6772{
6773	ext4_grpblk_t next, count, free_count, last, origin_start;
6774	bool set_trimmed = false;
6775	void *bitmap;
6776
6777	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6778		return 0;
6779
6780	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6781	bitmap = e4b->bd_bitmap;
6782	if (start == 0 && max >= last)
6783		set_trimmed = true;
6784	origin_start = start;
6785	start = max(e4b->bd_info->bb_first_free, start);
6786	count = 0;
6787	free_count = 0;
6788
6789	while (start <= max) {
6790		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6791		if (start > max)
6792			break;
6793
6794		next = mb_find_next_bit(bitmap, last + 1, start);
6795		if (origin_start == 0 && next >= last)
6796			set_trimmed = true;
6797
6798		if ((next - start) >= minblocks) {
6799			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6800
6801			if (ret && ret != -EOPNOTSUPP)
6802				return count;
6803			count += next - start;
6804		}
6805		free_count += next - start;
6806		start = next + 1;
6807
6808		if (ext4_trim_interrupted())
6809			return count;
6810
6811		if (need_resched()) {
6812			ext4_unlock_group(sb, e4b->bd_group);
6813			cond_resched();
6814			ext4_lock_group(sb, e4b->bd_group);
6815		}
6816
6817		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6818			break;
6819	}
6820
6821	if (set_trimmed)
6822		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6823
6824	return count;
6825}
6826
6827/**
6828 * ext4_trim_all_free -- function to trim all free space in alloc. group
6829 * @sb:			super block for file system
6830 * @group:		group to be trimmed
6831 * @start:		first group block to examine
6832 * @max:		last group block to examine
6833 * @minblocks:		minimum extent block count
6834 *
 
 
 
 
 
6835 * ext4_trim_all_free walks through group's block bitmap searching for free
6836 * extents. When the free extent is found, mark it as used in group buddy
6837 * bitmap. Then issue a TRIM command on this extent and free the extent in
6838 * the group buddy bitmap.
6839 */
6840static ext4_grpblk_t
6841ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6842		   ext4_grpblk_t start, ext4_grpblk_t max,
6843		   ext4_grpblk_t minblocks)
6844{
 
 
6845	struct ext4_buddy e4b;
6846	int ret;
6847
6848	trace_ext4_trim_all_free(sb, group, start, max);
6849
6850	ret = ext4_mb_load_buddy(sb, group, &e4b);
6851	if (ret) {
6852		ext4_warning(sb, "Error %d loading buddy information for %u",
6853			     ret, group);
6854		return ret;
6855	}
 
6856
6857	ext4_lock_group(sb, group);
 
 
 
 
 
 
6858
6859	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6860	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6861		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6862	else
6863		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6864
 
 
 
 
 
6865	ext4_unlock_group(sb, group);
6866	ext4_mb_unload_buddy(&e4b);
6867
6868	ext4_debug("trimmed %d blocks in the group %d\n",
6869		ret, group);
6870
6871	return ret;
6872}
6873
6874/**
6875 * ext4_trim_fs() -- trim ioctl handle function
6876 * @sb:			superblock for filesystem
6877 * @range:		fstrim_range structure
6878 *
6879 * start:	First Byte to trim
6880 * len:		number of Bytes to trim from start
6881 * minlen:	minimum extent length in Bytes
6882 * ext4_trim_fs goes through all allocation groups containing Bytes from
6883 * start to start+len. For each such a group ext4_trim_all_free function
6884 * is invoked to trim all free space.
6885 */
6886int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6887{
6888	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6889	struct ext4_group_info *grp;
6890	ext4_group_t group, first_group, last_group;
6891	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6892	uint64_t start, end, minlen, trimmed = 0;
6893	ext4_fsblk_t first_data_blk =
6894			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6895	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6896	int ret = 0;
6897
6898	start = range->start >> sb->s_blocksize_bits;
6899	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6900	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6901			      range->minlen >> sb->s_blocksize_bits);
6902
6903	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6904	    start >= max_blks ||
6905	    range->len < sb->s_blocksize)
6906		return -EINVAL;
6907	/* No point to try to trim less than discard granularity */
6908	if (range->minlen < discard_granularity) {
6909		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6910				discard_granularity >> sb->s_blocksize_bits);
6911		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6912			goto out;
6913	}
6914	if (end >= max_blks - 1)
6915		end = max_blks - 1;
6916	if (end <= first_data_blk)
6917		goto out;
6918	if (start < first_data_blk)
6919		start = first_data_blk;
6920
6921	/* Determine first and last group to examine based on start and end */
6922	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6923				     &first_group, &first_cluster);
6924	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6925				     &last_group, &last_cluster);
6926
6927	/* end now represents the last cluster to discard in this group */
6928	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6929
6930	for (group = first_group; group <= last_group; group++) {
6931		if (ext4_trim_interrupted())
6932			break;
6933		grp = ext4_get_group_info(sb, group);
6934		if (!grp)
6935			continue;
6936		/* We only do this if the grp has never been initialized */
6937		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6938			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6939			if (ret)
6940				break;
6941		}
6942
6943		/*
6944		 * For all the groups except the last one, last cluster will
6945		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6946		 * change it for the last group, note that last_cluster is
6947		 * already computed earlier by ext4_get_group_no_and_offset()
6948		 */
6949		if (group == last_group)
6950			end = last_cluster;
 
6951		if (grp->bb_free >= minlen) {
6952			cnt = ext4_trim_all_free(sb, group, first_cluster,
6953						 end, minlen);
6954			if (cnt < 0) {
6955				ret = cnt;
6956				break;
6957			}
6958			trimmed += cnt;
6959		}
6960
6961		/*
6962		 * For every group except the first one, we are sure
6963		 * that the first cluster to discard will be cluster #0.
6964		 */
6965		first_cluster = 0;
6966	}
6967
6968	if (!ret)
6969		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6970
6971out:
6972	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6973	return ret;
6974}
6975
6976/* Iterate all the free extents in the group. */
6977int
6978ext4_mballoc_query_range(
6979	struct super_block		*sb,
6980	ext4_group_t			group,
6981	ext4_grpblk_t			start,
6982	ext4_grpblk_t			end,
6983	ext4_mballoc_query_range_fn	formatter,
6984	void				*priv)
6985{
6986	void				*bitmap;
6987	ext4_grpblk_t			next;
6988	struct ext4_buddy		e4b;
6989	int				error;
6990
6991	error = ext4_mb_load_buddy(sb, group, &e4b);
6992	if (error)
6993		return error;
6994	bitmap = e4b.bd_bitmap;
6995
6996	ext4_lock_group(sb, group);
6997
6998	start = max(e4b.bd_info->bb_first_free, start);
6999	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7000		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7001
7002	while (start <= end) {
7003		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7004		if (start > end)
7005			break;
7006		next = mb_find_next_bit(bitmap, end + 1, start);
7007
7008		ext4_unlock_group(sb, group);
7009		error = formatter(sb, group, start, next - start, priv);
7010		if (error)
7011			goto out_unload;
7012		ext4_lock_group(sb, group);
7013
7014		start = next + 1;
7015	}
7016
7017	ext4_unlock_group(sb, group);
7018out_unload:
7019	ext4_mb_unload_buddy(&e4b);
7020
7021	return error;
7022}
7023
7024#ifdef CONFIG_EXT4_KUNIT_TESTS
7025#include "mballoc-test.c"
7026#endif