Loading...
1/*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20/*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24#include "ext4_jbd2.h"
25#include "mballoc.h"
26#include <linux/log2.h>
27#include <linux/module.h>
28#include <linux/slab.h>
29#include <linux/backing-dev.h>
30#include <trace/events/ext4.h>
31
32#ifdef CONFIG_EXT4_DEBUG
33ushort ext4_mballoc_debug __read_mostly;
34
35module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37#endif
38
39/*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59/*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176/*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313/*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350static struct kmem_cache *ext4_pspace_cachep;
351static struct kmem_cache *ext4_ac_cachep;
352static struct kmem_cache *ext4_free_data_cachep;
353
354/* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357#define NR_GRPINFO_CACHES 8
358static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364};
365
366static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370static void ext4_free_data_callback(struct super_block *sb,
371 struct ext4_journal_cb_entry *jce, int rc);
372
373static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374{
375#if BITS_PER_LONG == 64
376 *bit += ((unsigned long) addr & 7UL) << 3;
377 addr = (void *) ((unsigned long) addr & ~7UL);
378#elif BITS_PER_LONG == 32
379 *bit += ((unsigned long) addr & 3UL) << 3;
380 addr = (void *) ((unsigned long) addr & ~3UL);
381#else
382#error "how many bits you are?!"
383#endif
384 return addr;
385}
386
387static inline int mb_test_bit(int bit, void *addr)
388{
389 /*
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
392 */
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 return ext4_test_bit(bit, addr);
395}
396
397static inline void mb_set_bit(int bit, void *addr)
398{
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 ext4_set_bit(bit, addr);
401}
402
403static inline void mb_clear_bit(int bit, void *addr)
404{
405 addr = mb_correct_addr_and_bit(&bit, addr);
406 ext4_clear_bit(bit, addr);
407}
408
409static inline int mb_test_and_clear_bit(int bit, void *addr)
410{
411 addr = mb_correct_addr_and_bit(&bit, addr);
412 return ext4_test_and_clear_bit(bit, addr);
413}
414
415static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416{
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
421
422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
426}
427
428static inline int mb_find_next_bit(void *addr, int max, int start)
429{
430 int fix = 0, ret, tmpmax;
431 addr = mb_correct_addr_and_bit(&fix, addr);
432 tmpmax = max + fix;
433 start += fix;
434
435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 if (ret > max)
437 return max;
438 return ret;
439}
440
441static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442{
443 char *bb;
444
445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 BUG_ON(max == NULL);
447
448 if (order > e4b->bd_blkbits + 1) {
449 *max = 0;
450 return NULL;
451 }
452
453 /* at order 0 we see each particular block */
454 if (order == 0) {
455 *max = 1 << (e4b->bd_blkbits + 3);
456 return e4b->bd_bitmap;
457 }
458
459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461
462 return bb;
463}
464
465#ifdef DOUBLE_CHECK
466static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 int first, int count)
468{
469 int i;
470 struct super_block *sb = e4b->bd_sb;
471
472 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 return;
474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 for (i = 0; i < count; i++) {
476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 ext4_fsblk_t blocknr;
478
479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 ext4_grp_locked_error(sb, e4b->bd_group,
482 inode ? inode->i_ino : 0,
483 blocknr,
484 "freeing block already freed "
485 "(bit %u)",
486 first + i);
487 }
488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 }
490}
491
492static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493{
494 int i;
495
496 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 return;
498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 for (i = 0; i < count; i++) {
500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 }
503}
504
505static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506{
507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 unsigned char *b1, *b2;
509 int i;
510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 b2 = (unsigned char *) bitmap;
512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 if (b1[i] != b2[i]) {
514 ext4_msg(e4b->bd_sb, KERN_ERR,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
517 "on disk/prealloc",
518 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 BUG();
520 }
521 }
522 }
523}
524
525#else
526static inline void mb_free_blocks_double(struct inode *inode,
527 struct ext4_buddy *e4b, int first, int count)
528{
529 return;
530}
531static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 int first, int count)
533{
534 return;
535}
536static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537{
538 return;
539}
540#endif
541
542#ifdef AGGRESSIVE_CHECK
543
544#define MB_CHECK_ASSERT(assert) \
545do { \
546 if (!(assert)) { \
547 printk(KERN_EMERG \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
550 BUG(); \
551 } \
552} while (0)
553
554static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 const char *function, int line)
556{
557 struct super_block *sb = e4b->bd_sb;
558 int order = e4b->bd_blkbits + 1;
559 int max;
560 int max2;
561 int i;
562 int j;
563 int k;
564 int count;
565 struct ext4_group_info *grp;
566 int fragments = 0;
567 int fstart;
568 struct list_head *cur;
569 void *buddy;
570 void *buddy2;
571
572 {
573 static int mb_check_counter;
574 if (mb_check_counter++ % 100 != 0)
575 return 0;
576 }
577
578 while (order > 1) {
579 buddy = mb_find_buddy(e4b, order, &max);
580 MB_CHECK_ASSERT(buddy);
581 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 MB_CHECK_ASSERT(buddy2);
583 MB_CHECK_ASSERT(buddy != buddy2);
584 MB_CHECK_ASSERT(max * 2 == max2);
585
586 count = 0;
587 for (i = 0; i < max; i++) {
588
589 if (mb_test_bit(i, buddy)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i << 1, buddy2)) {
592 MB_CHECK_ASSERT(
593 mb_test_bit((i<<1)+1, buddy2));
594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 MB_CHECK_ASSERT(
596 mb_test_bit(i << 1, buddy2));
597 }
598 continue;
599 }
600
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604
605 for (j = 0; j < (1 << order); j++) {
606 k = (i * (1 << order)) + j;
607 MB_CHECK_ASSERT(
608 !mb_test_bit(k, e4b->bd_bitmap));
609 }
610 count++;
611 }
612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 order--;
614 }
615
616 fstart = -1;
617 buddy = mb_find_buddy(e4b, 0, &max);
618 for (i = 0; i < max; i++) {
619 if (!mb_test_bit(i, buddy)) {
620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 if (fstart == -1) {
622 fragments++;
623 fstart = i;
624 }
625 continue;
626 }
627 fstart = -1;
628 /* check used bits only */
629 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 buddy2 = mb_find_buddy(e4b, j, &max2);
631 k = i >> j;
632 MB_CHECK_ASSERT(k < max2);
633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 }
635 }
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638
639 grp = ext4_get_group_info(sb, e4b->bd_group);
640 list_for_each(cur, &grp->bb_prealloc_list) {
641 ext4_group_t groupnr;
642 struct ext4_prealloc_space *pa;
643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 for (i = 0; i < pa->pa_len; i++)
647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 }
649 return 0;
650}
651#undef MB_CHECK_ASSERT
652#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
654#else
655#define mb_check_buddy(e4b)
656#endif
657
658/*
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
663 */
664static void ext4_mb_mark_free_simple(struct super_block *sb,
665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 struct ext4_group_info *grp)
667{
668 struct ext4_sb_info *sbi = EXT4_SB(sb);
669 ext4_grpblk_t min;
670 ext4_grpblk_t max;
671 ext4_grpblk_t chunk;
672 unsigned short border;
673
674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675
676 border = 2 << sb->s_blocksize_bits;
677
678 while (len > 0) {
679 /* find how many blocks can be covered since this position */
680 max = ffs(first | border) - 1;
681
682 /* find how many blocks of power 2 we need to mark */
683 min = fls(len) - 1;
684
685 if (max < min)
686 min = max;
687 chunk = 1 << min;
688
689 /* mark multiblock chunks only */
690 grp->bb_counters[min]++;
691 if (min > 0)
692 mb_clear_bit(first >> min,
693 buddy + sbi->s_mb_offsets[min]);
694
695 len -= chunk;
696 first += chunk;
697 }
698}
699
700/*
701 * Cache the order of the largest free extent we have available in this block
702 * group.
703 */
704static void
705mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706{
707 int i;
708 int bits;
709
710 grp->bb_largest_free_order = -1; /* uninit */
711
712 bits = sb->s_blocksize_bits + 1;
713 for (i = bits; i >= 0; i--) {
714 if (grp->bb_counters[i] > 0) {
715 grp->bb_largest_free_order = i;
716 break;
717 }
718 }
719}
720
721static noinline_for_stack
722void ext4_mb_generate_buddy(struct super_block *sb,
723 void *buddy, void *bitmap, ext4_group_t group)
724{
725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 struct ext4_sb_info *sbi = EXT4_SB(sb);
727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 ext4_grpblk_t i = 0;
729 ext4_grpblk_t first;
730 ext4_grpblk_t len;
731 unsigned free = 0;
732 unsigned fragments = 0;
733 unsigned long long period = get_cycles();
734
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i = mb_find_next_zero_bit(bitmap, max, 0);
738 grp->bb_first_free = i;
739 while (i < max) {
740 fragments++;
741 first = i;
742 i = mb_find_next_bit(bitmap, max, i);
743 len = i - first;
744 free += len;
745 if (len > 1)
746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 else
748 grp->bb_counters[0]++;
749 if (i < max)
750 i = mb_find_next_zero_bit(bitmap, max, i);
751 }
752 grp->bb_fragments = fragments;
753
754 if (free != grp->bb_free) {
755 ext4_grp_locked_error(sb, group, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
758 free, grp->bb_free);
759 /*
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
762 */
763 grp->bb_free = free;
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 percpu_counter_sub(&sbi->s_freeclusters_counter,
766 grp->bb_free);
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 }
769 mb_set_largest_free_order(sb, grp);
770
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772
773 period = get_cycles() - period;
774 spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 EXT4_SB(sb)->s_mb_buddies_generated++;
776 EXT4_SB(sb)->s_mb_generation_time += period;
777 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778}
779
780static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781{
782 int count;
783 int order = 1;
784 void *buddy;
785
786 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 ext4_set_bits(buddy, 0, count);
788 }
789 e4b->bd_info->bb_fragments = 0;
790 memset(e4b->bd_info->bb_counters, 0,
791 sizeof(*e4b->bd_info->bb_counters) *
792 (e4b->bd_sb->s_blocksize_bits + 2));
793
794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 e4b->bd_bitmap, e4b->bd_group);
796}
797
798/* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
803 *
804 * { page }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 *
807 *
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
813 *
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
816 */
817
818static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819{
820 ext4_group_t ngroups;
821 int blocksize;
822 int blocks_per_page;
823 int groups_per_page;
824 int err = 0;
825 int i;
826 ext4_group_t first_group, group;
827 int first_block;
828 struct super_block *sb;
829 struct buffer_head *bhs;
830 struct buffer_head **bh = NULL;
831 struct inode *inode;
832 char *data;
833 char *bitmap;
834 struct ext4_group_info *grinfo;
835
836 mb_debug(1, "init page %lu\n", page->index);
837
838 inode = page->mapping->host;
839 sb = inode->i_sb;
840 ngroups = ext4_get_groups_count(sb);
841 blocksize = 1 << inode->i_blkbits;
842 blocks_per_page = PAGE_SIZE / blocksize;
843
844 groups_per_page = blocks_per_page >> 1;
845 if (groups_per_page == 0)
846 groups_per_page = 1;
847
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page > 1) {
850 i = sizeof(struct buffer_head *) * groups_per_page;
851 bh = kzalloc(i, gfp);
852 if (bh == NULL) {
853 err = -ENOMEM;
854 goto out;
855 }
856 } else
857 bh = &bhs;
858
859 first_group = page->index * blocks_per_page / 2;
860
861 /* read all groups the page covers into the cache */
862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 if (group >= ngroups)
864 break;
865
866 grinfo = ext4_get_group_info(sb, group);
867 /*
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
872 */
873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 bh[i] = NULL;
875 continue;
876 }
877 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 if (IS_ERR(bh[i])) {
879 err = PTR_ERR(bh[i]);
880 bh[i] = NULL;
881 goto out;
882 }
883 mb_debug(1, "read bitmap for group %u\n", group);
884 }
885
886 /* wait for I/O completion */
887 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 int err2;
889
890 if (!bh[i])
891 continue;
892 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 if (!err)
894 err = err2;
895 }
896
897 first_block = page->index * blocks_per_page;
898 for (i = 0; i < blocks_per_page; i++) {
899 group = (first_block + i) >> 1;
900 if (group >= ngroups)
901 break;
902
903 if (!bh[group - first_group])
904 /* skip initialized uptodate buddy */
905 continue;
906
907 if (!buffer_verified(bh[group - first_group]))
908 /* Skip faulty bitmaps */
909 continue;
910 err = 0;
911
912 /*
913 * data carry information regarding this
914 * particular group in the format specified
915 * above
916 *
917 */
918 data = page_address(page) + (i * blocksize);
919 bitmap = bh[group - first_group]->b_data;
920
921 /*
922 * We place the buddy block and bitmap block
923 * close together
924 */
925 if ((first_block + i) & 1) {
926 /* this is block of buddy */
927 BUG_ON(incore == NULL);
928 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 group, page->index, i * blocksize);
930 trace_ext4_mb_buddy_bitmap_load(sb, group);
931 grinfo = ext4_get_group_info(sb, group);
932 grinfo->bb_fragments = 0;
933 memset(grinfo->bb_counters, 0,
934 sizeof(*grinfo->bb_counters) *
935 (sb->s_blocksize_bits+2));
936 /*
937 * incore got set to the group block bitmap below
938 */
939 ext4_lock_group(sb, group);
940 /* init the buddy */
941 memset(data, 0xff, blocksize);
942 ext4_mb_generate_buddy(sb, data, incore, group);
943 ext4_unlock_group(sb, group);
944 incore = NULL;
945 } else {
946 /* this is block of bitmap */
947 BUG_ON(incore != NULL);
948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 group, page->index, i * blocksize);
950 trace_ext4_mb_bitmap_load(sb, group);
951
952 /* see comments in ext4_mb_put_pa() */
953 ext4_lock_group(sb, group);
954 memcpy(data, bitmap, blocksize);
955
956 /* mark all preallocated blks used in in-core bitmap */
957 ext4_mb_generate_from_pa(sb, data, group);
958 ext4_mb_generate_from_freelist(sb, data, group);
959 ext4_unlock_group(sb, group);
960
961 /* set incore so that the buddy information can be
962 * generated using this
963 */
964 incore = data;
965 }
966 }
967 SetPageUptodate(page);
968
969out:
970 if (bh) {
971 for (i = 0; i < groups_per_page; i++)
972 brelse(bh[i]);
973 if (bh != &bhs)
974 kfree(bh);
975 }
976 return err;
977}
978
979/*
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 */
985static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987{
988 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 int block, pnum, poff;
990 int blocks_per_page;
991 struct page *page;
992
993 e4b->bd_buddy_page = NULL;
994 e4b->bd_bitmap_page = NULL;
995
996 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 /*
998 * the buddy cache inode stores the block bitmap
999 * and buddy information in consecutive blocks.
1000 * So for each group we need two blocks.
1001 */
1002 block = group * 2;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1005 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 if (!page)
1007 return -ENOMEM;
1008 BUG_ON(page->mapping != inode->i_mapping);
1009 e4b->bd_bitmap_page = page;
1010 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012 if (blocks_per_page >= 2) {
1013 /* buddy and bitmap are on the same page */
1014 return 0;
1015 }
1016
1017 block++;
1018 pnum = block / blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 if (!page)
1021 return -ENOMEM;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1025}
1026
1027static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028{
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 put_page(e4b->bd_bitmap_page);
1032 }
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 put_page(e4b->bd_buddy_page);
1036 }
1037}
1038
1039/*
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044static noinline_for_stack
1045int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046{
1047
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1052
1053 might_sleep();
1054 mb_debug(1, "init group %u\n", group);
1055 this_grp = ext4_get_group_info(sb, group);
1056 /*
1057 * This ensures that we don't reinit the buddy cache
1058 * page which map to the group from which we are already
1059 * allocating. If we are looking at the buddy cache we would
1060 * have taken a reference using ext4_mb_load_buddy and that
1061 * would have pinned buddy page to page cache.
1062 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 * page accessed.
1064 */
1065 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 /*
1068 * somebody initialized the group
1069 * return without doing anything
1070 */
1071 goto err;
1072 }
1073
1074 page = e4b.bd_bitmap_page;
1075 ret = ext4_mb_init_cache(page, NULL, gfp);
1076 if (ret)
1077 goto err;
1078 if (!PageUptodate(page)) {
1079 ret = -EIO;
1080 goto err;
1081 }
1082
1083 if (e4b.bd_buddy_page == NULL) {
1084 /*
1085 * If both the bitmap and buddy are in
1086 * the same page we don't need to force
1087 * init the buddy
1088 */
1089 ret = 0;
1090 goto err;
1091 }
1092 /* init buddy cache */
1093 page = e4b.bd_buddy_page;
1094 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 if (ret)
1096 goto err;
1097 if (!PageUptodate(page)) {
1098 ret = -EIO;
1099 goto err;
1100 }
1101err:
1102 ext4_mb_put_buddy_page_lock(&e4b);
1103 return ret;
1104}
1105
1106/*
1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111static noinline_for_stack int
1112ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 struct ext4_buddy *e4b, gfp_t gfp)
1114{
1115 int blocks_per_page;
1116 int block;
1117 int pnum;
1118 int poff;
1119 struct page *page;
1120 int ret;
1121 struct ext4_group_info *grp;
1122 struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 struct inode *inode = sbi->s_buddy_cache;
1124
1125 might_sleep();
1126 mb_debug(1, "load group %u\n", group);
1127
1128 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 grp = ext4_get_group_info(sb, group);
1130
1131 e4b->bd_blkbits = sb->s_blocksize_bits;
1132 e4b->bd_info = grp;
1133 e4b->bd_sb = sb;
1134 e4b->bd_group = group;
1135 e4b->bd_buddy_page = NULL;
1136 e4b->bd_bitmap_page = NULL;
1137
1138 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 /*
1140 * we need full data about the group
1141 * to make a good selection
1142 */
1143 ret = ext4_mb_init_group(sb, group, gfp);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 /*
1149 * the buddy cache inode stores the block bitmap
1150 * and buddy information in consecutive blocks.
1151 * So for each group we need two blocks.
1152 */
1153 block = group * 2;
1154 pnum = block / blocks_per_page;
1155 poff = block % blocks_per_page;
1156
1157 /* we could use find_or_create_page(), but it locks page
1158 * what we'd like to avoid in fast path ... */
1159 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 if (page == NULL || !PageUptodate(page)) {
1161 if (page)
1162 /*
1163 * drop the page reference and try
1164 * to get the page with lock. If we
1165 * are not uptodate that implies
1166 * somebody just created the page but
1167 * is yet to initialize the same. So
1168 * wait for it to initialize.
1169 */
1170 put_page(page);
1171 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 if (page) {
1173 BUG_ON(page->mapping != inode->i_mapping);
1174 if (!PageUptodate(page)) {
1175 ret = ext4_mb_init_cache(page, NULL, gfp);
1176 if (ret) {
1177 unlock_page(page);
1178 goto err;
1179 }
1180 mb_cmp_bitmaps(e4b, page_address(page) +
1181 (poff * sb->s_blocksize));
1182 }
1183 unlock_page(page);
1184 }
1185 }
1186 if (page == NULL) {
1187 ret = -ENOMEM;
1188 goto err;
1189 }
1190 if (!PageUptodate(page)) {
1191 ret = -EIO;
1192 goto err;
1193 }
1194
1195 /* Pages marked accessed already */
1196 e4b->bd_bitmap_page = page;
1197 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199 block++;
1200 pnum = block / blocks_per_page;
1201 poff = block % blocks_per_page;
1202
1203 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 if (page == NULL || !PageUptodate(page)) {
1205 if (page)
1206 put_page(page);
1207 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 if (page) {
1209 BUG_ON(page->mapping != inode->i_mapping);
1210 if (!PageUptodate(page)) {
1211 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 gfp);
1213 if (ret) {
1214 unlock_page(page);
1215 goto err;
1216 }
1217 }
1218 unlock_page(page);
1219 }
1220 }
1221 if (page == NULL) {
1222 ret = -ENOMEM;
1223 goto err;
1224 }
1225 if (!PageUptodate(page)) {
1226 ret = -EIO;
1227 goto err;
1228 }
1229
1230 /* Pages marked accessed already */
1231 e4b->bd_buddy_page = page;
1232 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233
1234 BUG_ON(e4b->bd_bitmap_page == NULL);
1235 BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237 return 0;
1238
1239err:
1240 if (page)
1241 put_page(page);
1242 if (e4b->bd_bitmap_page)
1243 put_page(e4b->bd_bitmap_page);
1244 if (e4b->bd_buddy_page)
1245 put_page(e4b->bd_buddy_page);
1246 e4b->bd_buddy = NULL;
1247 e4b->bd_bitmap = NULL;
1248 return ret;
1249}
1250
1251static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 struct ext4_buddy *e4b)
1253{
1254 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255}
1256
1257static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258{
1259 if (e4b->bd_bitmap_page)
1260 put_page(e4b->bd_bitmap_page);
1261 if (e4b->bd_buddy_page)
1262 put_page(e4b->bd_buddy_page);
1263}
1264
1265
1266static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267{
1268 int order = 1;
1269 void *bb;
1270
1271 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1272 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1273
1274 bb = e4b->bd_buddy;
1275 while (order <= e4b->bd_blkbits + 1) {
1276 block = block >> 1;
1277 if (!mb_test_bit(block, bb)) {
1278 /* this block is part of buddy of order 'order' */
1279 return order;
1280 }
1281 bb += 1 << (e4b->bd_blkbits - order);
1282 order++;
1283 }
1284 return 0;
1285}
1286
1287static void mb_clear_bits(void *bm, int cur, int len)
1288{
1289 __u32 *addr;
1290
1291 len = cur + len;
1292 while (cur < len) {
1293 if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 /* fast path: clear whole word at once */
1295 addr = bm + (cur >> 3);
1296 *addr = 0;
1297 cur += 32;
1298 continue;
1299 }
1300 mb_clear_bit(cur, bm);
1301 cur++;
1302 }
1303}
1304
1305/* clear bits in given range
1306 * will return first found zero bit if any, -1 otherwise
1307 */
1308static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309{
1310 __u32 *addr;
1311 int zero_bit = -1;
1312
1313 len = cur + len;
1314 while (cur < len) {
1315 if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 /* fast path: clear whole word at once */
1317 addr = bm + (cur >> 3);
1318 if (*addr != (__u32)(-1) && zero_bit == -1)
1319 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320 *addr = 0;
1321 cur += 32;
1322 continue;
1323 }
1324 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325 zero_bit = cur;
1326 cur++;
1327 }
1328
1329 return zero_bit;
1330}
1331
1332void ext4_set_bits(void *bm, int cur, int len)
1333{
1334 __u32 *addr;
1335
1336 len = cur + len;
1337 while (cur < len) {
1338 if ((cur & 31) == 0 && (len - cur) >= 32) {
1339 /* fast path: set whole word at once */
1340 addr = bm + (cur >> 3);
1341 *addr = 0xffffffff;
1342 cur += 32;
1343 continue;
1344 }
1345 mb_set_bit(cur, bm);
1346 cur++;
1347 }
1348}
1349
1350/*
1351 * _________________________________________________________________ */
1352
1353static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354{
1355 if (mb_test_bit(*bit + side, bitmap)) {
1356 mb_clear_bit(*bit, bitmap);
1357 (*bit) -= side;
1358 return 1;
1359 }
1360 else {
1361 (*bit) += side;
1362 mb_set_bit(*bit, bitmap);
1363 return -1;
1364 }
1365}
1366
1367static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368{
1369 int max;
1370 int order = 1;
1371 void *buddy = mb_find_buddy(e4b, order, &max);
1372
1373 while (buddy) {
1374 void *buddy2;
1375
1376 /* Bits in range [first; last] are known to be set since
1377 * corresponding blocks were allocated. Bits in range
1378 * (first; last) will stay set because they form buddies on
1379 * upper layer. We just deal with borders if they don't
1380 * align with upper layer and then go up.
1381 * Releasing entire group is all about clearing
1382 * single bit of highest order buddy.
1383 */
1384
1385 /* Example:
1386 * ---------------------------------
1387 * | 1 | 1 | 1 | 1 |
1388 * ---------------------------------
1389 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * 0 1 2 3 4 5 6 7
1392 * \_____________________/
1393 *
1394 * Neither [1] nor [6] is aligned to above layer.
1395 * Left neighbour [0] is free, so mark it busy,
1396 * decrease bb_counters and extend range to
1397 * [0; 6]
1398 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399 * mark [6] free, increase bb_counters and shrink range to
1400 * [0; 5].
1401 * Then shift range to [0; 2], go up and do the same.
1402 */
1403
1404
1405 if (first & 1)
1406 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407 if (!(last & 1))
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409 if (first > last)
1410 break;
1411 order++;
1412
1413 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1414 mb_clear_bits(buddy, first, last - first + 1);
1415 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416 break;
1417 }
1418 first >>= 1;
1419 last >>= 1;
1420 buddy = buddy2;
1421 }
1422}
1423
1424static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425 int first, int count)
1426{
1427 int left_is_free = 0;
1428 int right_is_free = 0;
1429 int block;
1430 int last = first + count - 1;
1431 struct super_block *sb = e4b->bd_sb;
1432
1433 if (WARN_ON(count == 0))
1434 return;
1435 BUG_ON(last >= (sb->s_blocksize << 3));
1436 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437 /* Don't bother if the block group is corrupt. */
1438 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439 return;
1440
1441 mb_check_buddy(e4b);
1442 mb_free_blocks_double(inode, e4b, first, count);
1443
1444 e4b->bd_info->bb_free += count;
1445 if (first < e4b->bd_info->bb_first_free)
1446 e4b->bd_info->bb_first_free = first;
1447
1448 /* access memory sequentially: check left neighbour,
1449 * clear range and then check right neighbour
1450 */
1451 if (first != 0)
1452 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456
1457 if (unlikely(block != -1)) {
1458 struct ext4_sb_info *sbi = EXT4_SB(sb);
1459 ext4_fsblk_t blocknr;
1460
1461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1463 ext4_grp_locked_error(sb, e4b->bd_group,
1464 inode ? inode->i_ino : 0,
1465 blocknr,
1466 "freeing already freed block "
1467 "(bit %u); block bitmap corrupt.",
1468 block);
1469 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470 percpu_counter_sub(&sbi->s_freeclusters_counter,
1471 e4b->bd_info->bb_free);
1472 /* Mark the block group as corrupt. */
1473 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474 &e4b->bd_info->bb_state);
1475 mb_regenerate_buddy(e4b);
1476 goto done;
1477 }
1478
1479 /* let's maintain fragments counter */
1480 if (left_is_free && right_is_free)
1481 e4b->bd_info->bb_fragments--;
1482 else if (!left_is_free && !right_is_free)
1483 e4b->bd_info->bb_fragments++;
1484
1485 /* buddy[0] == bd_bitmap is a special case, so handle
1486 * it right away and let mb_buddy_mark_free stay free of
1487 * zero order checks.
1488 * Check if neighbours are to be coaleasced,
1489 * adjust bitmap bb_counters and borders appropriately.
1490 */
1491 if (first & 1) {
1492 first += !left_is_free;
1493 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494 }
1495 if (!(last & 1)) {
1496 last -= !right_is_free;
1497 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498 }
1499
1500 if (first <= last)
1501 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1502
1503done:
1504 mb_set_largest_free_order(sb, e4b->bd_info);
1505 mb_check_buddy(e4b);
1506}
1507
1508static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509 int needed, struct ext4_free_extent *ex)
1510{
1511 int next = block;
1512 int max, order;
1513 void *buddy;
1514
1515 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516 BUG_ON(ex == NULL);
1517
1518 buddy = mb_find_buddy(e4b, 0, &max);
1519 BUG_ON(buddy == NULL);
1520 BUG_ON(block >= max);
1521 if (mb_test_bit(block, buddy)) {
1522 ex->fe_len = 0;
1523 ex->fe_start = 0;
1524 ex->fe_group = 0;
1525 return 0;
1526 }
1527
1528 /* find actual order */
1529 order = mb_find_order_for_block(e4b, block);
1530 block = block >> order;
1531
1532 ex->fe_len = 1 << order;
1533 ex->fe_start = block << order;
1534 ex->fe_group = e4b->bd_group;
1535
1536 /* calc difference from given start */
1537 next = next - ex->fe_start;
1538 ex->fe_len -= next;
1539 ex->fe_start += next;
1540
1541 while (needed > ex->fe_len &&
1542 mb_find_buddy(e4b, order, &max)) {
1543
1544 if (block + 1 >= max)
1545 break;
1546
1547 next = (block + 1) * (1 << order);
1548 if (mb_test_bit(next, e4b->bd_bitmap))
1549 break;
1550
1551 order = mb_find_order_for_block(e4b, next);
1552
1553 block = next >> order;
1554 ex->fe_len += 1 << order;
1555 }
1556
1557 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1558 return ex->fe_len;
1559}
1560
1561static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1562{
1563 int ord;
1564 int mlen = 0;
1565 int max = 0;
1566 int cur;
1567 int start = ex->fe_start;
1568 int len = ex->fe_len;
1569 unsigned ret = 0;
1570 int len0 = len;
1571 void *buddy;
1572
1573 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1574 BUG_ON(e4b->bd_group != ex->fe_group);
1575 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1576 mb_check_buddy(e4b);
1577 mb_mark_used_double(e4b, start, len);
1578
1579 e4b->bd_info->bb_free -= len;
1580 if (e4b->bd_info->bb_first_free == start)
1581 e4b->bd_info->bb_first_free += len;
1582
1583 /* let's maintain fragments counter */
1584 if (start != 0)
1585 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1586 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1587 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1588 if (mlen && max)
1589 e4b->bd_info->bb_fragments++;
1590 else if (!mlen && !max)
1591 e4b->bd_info->bb_fragments--;
1592
1593 /* let's maintain buddy itself */
1594 while (len) {
1595 ord = mb_find_order_for_block(e4b, start);
1596
1597 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1598 /* the whole chunk may be allocated at once! */
1599 mlen = 1 << ord;
1600 buddy = mb_find_buddy(e4b, ord, &max);
1601 BUG_ON((start >> ord) >= max);
1602 mb_set_bit(start >> ord, buddy);
1603 e4b->bd_info->bb_counters[ord]--;
1604 start += mlen;
1605 len -= mlen;
1606 BUG_ON(len < 0);
1607 continue;
1608 }
1609
1610 /* store for history */
1611 if (ret == 0)
1612 ret = len | (ord << 16);
1613
1614 /* we have to split large buddy */
1615 BUG_ON(ord <= 0);
1616 buddy = mb_find_buddy(e4b, ord, &max);
1617 mb_set_bit(start >> ord, buddy);
1618 e4b->bd_info->bb_counters[ord]--;
1619
1620 ord--;
1621 cur = (start >> ord) & ~1U;
1622 buddy = mb_find_buddy(e4b, ord, &max);
1623 mb_clear_bit(cur, buddy);
1624 mb_clear_bit(cur + 1, buddy);
1625 e4b->bd_info->bb_counters[ord]++;
1626 e4b->bd_info->bb_counters[ord]++;
1627 }
1628 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1629
1630 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1631 mb_check_buddy(e4b);
1632
1633 return ret;
1634}
1635
1636/*
1637 * Must be called under group lock!
1638 */
1639static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1640 struct ext4_buddy *e4b)
1641{
1642 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1643 int ret;
1644
1645 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1646 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1647
1648 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1649 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1650 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1651
1652 /* preallocation can change ac_b_ex, thus we store actually
1653 * allocated blocks for history */
1654 ac->ac_f_ex = ac->ac_b_ex;
1655
1656 ac->ac_status = AC_STATUS_FOUND;
1657 ac->ac_tail = ret & 0xffff;
1658 ac->ac_buddy = ret >> 16;
1659
1660 /*
1661 * take the page reference. We want the page to be pinned
1662 * so that we don't get a ext4_mb_init_cache_call for this
1663 * group until we update the bitmap. That would mean we
1664 * double allocate blocks. The reference is dropped
1665 * in ext4_mb_release_context
1666 */
1667 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1668 get_page(ac->ac_bitmap_page);
1669 ac->ac_buddy_page = e4b->bd_buddy_page;
1670 get_page(ac->ac_buddy_page);
1671 /* store last allocated for subsequent stream allocation */
1672 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1673 spin_lock(&sbi->s_md_lock);
1674 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1675 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1676 spin_unlock(&sbi->s_md_lock);
1677 }
1678}
1679
1680/*
1681 * regular allocator, for general purposes allocation
1682 */
1683
1684static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1685 struct ext4_buddy *e4b,
1686 int finish_group)
1687{
1688 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1689 struct ext4_free_extent *bex = &ac->ac_b_ex;
1690 struct ext4_free_extent *gex = &ac->ac_g_ex;
1691 struct ext4_free_extent ex;
1692 int max;
1693
1694 if (ac->ac_status == AC_STATUS_FOUND)
1695 return;
1696 /*
1697 * We don't want to scan for a whole year
1698 */
1699 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1700 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1701 ac->ac_status = AC_STATUS_BREAK;
1702 return;
1703 }
1704
1705 /*
1706 * Haven't found good chunk so far, let's continue
1707 */
1708 if (bex->fe_len < gex->fe_len)
1709 return;
1710
1711 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1712 && bex->fe_group == e4b->bd_group) {
1713 /* recheck chunk's availability - we don't know
1714 * when it was found (within this lock-unlock
1715 * period or not) */
1716 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1717 if (max >= gex->fe_len) {
1718 ext4_mb_use_best_found(ac, e4b);
1719 return;
1720 }
1721 }
1722}
1723
1724/*
1725 * The routine checks whether found extent is good enough. If it is,
1726 * then the extent gets marked used and flag is set to the context
1727 * to stop scanning. Otherwise, the extent is compared with the
1728 * previous found extent and if new one is better, then it's stored
1729 * in the context. Later, the best found extent will be used, if
1730 * mballoc can't find good enough extent.
1731 *
1732 * FIXME: real allocation policy is to be designed yet!
1733 */
1734static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1735 struct ext4_free_extent *ex,
1736 struct ext4_buddy *e4b)
1737{
1738 struct ext4_free_extent *bex = &ac->ac_b_ex;
1739 struct ext4_free_extent *gex = &ac->ac_g_ex;
1740
1741 BUG_ON(ex->fe_len <= 0);
1742 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1743 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1744 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1745
1746 ac->ac_found++;
1747
1748 /*
1749 * The special case - take what you catch first
1750 */
1751 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1752 *bex = *ex;
1753 ext4_mb_use_best_found(ac, e4b);
1754 return;
1755 }
1756
1757 /*
1758 * Let's check whether the chuck is good enough
1759 */
1760 if (ex->fe_len == gex->fe_len) {
1761 *bex = *ex;
1762 ext4_mb_use_best_found(ac, e4b);
1763 return;
1764 }
1765
1766 /*
1767 * If this is first found extent, just store it in the context
1768 */
1769 if (bex->fe_len == 0) {
1770 *bex = *ex;
1771 return;
1772 }
1773
1774 /*
1775 * If new found extent is better, store it in the context
1776 */
1777 if (bex->fe_len < gex->fe_len) {
1778 /* if the request isn't satisfied, any found extent
1779 * larger than previous best one is better */
1780 if (ex->fe_len > bex->fe_len)
1781 *bex = *ex;
1782 } else if (ex->fe_len > gex->fe_len) {
1783 /* if the request is satisfied, then we try to find
1784 * an extent that still satisfy the request, but is
1785 * smaller than previous one */
1786 if (ex->fe_len < bex->fe_len)
1787 *bex = *ex;
1788 }
1789
1790 ext4_mb_check_limits(ac, e4b, 0);
1791}
1792
1793static noinline_for_stack
1794int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1795 struct ext4_buddy *e4b)
1796{
1797 struct ext4_free_extent ex = ac->ac_b_ex;
1798 ext4_group_t group = ex.fe_group;
1799 int max;
1800 int err;
1801
1802 BUG_ON(ex.fe_len <= 0);
1803 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1804 if (err)
1805 return err;
1806
1807 ext4_lock_group(ac->ac_sb, group);
1808 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1809
1810 if (max > 0) {
1811 ac->ac_b_ex = ex;
1812 ext4_mb_use_best_found(ac, e4b);
1813 }
1814
1815 ext4_unlock_group(ac->ac_sb, group);
1816 ext4_mb_unload_buddy(e4b);
1817
1818 return 0;
1819}
1820
1821static noinline_for_stack
1822int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1823 struct ext4_buddy *e4b)
1824{
1825 ext4_group_t group = ac->ac_g_ex.fe_group;
1826 int max;
1827 int err;
1828 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1829 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1830 struct ext4_free_extent ex;
1831
1832 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1833 return 0;
1834 if (grp->bb_free == 0)
1835 return 0;
1836
1837 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1838 if (err)
1839 return err;
1840
1841 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1842 ext4_mb_unload_buddy(e4b);
1843 return 0;
1844 }
1845
1846 ext4_lock_group(ac->ac_sb, group);
1847 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1848 ac->ac_g_ex.fe_len, &ex);
1849 ex.fe_logical = 0xDEADFA11; /* debug value */
1850
1851 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1852 ext4_fsblk_t start;
1853
1854 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1855 ex.fe_start;
1856 /* use do_div to get remainder (would be 64-bit modulo) */
1857 if (do_div(start, sbi->s_stripe) == 0) {
1858 ac->ac_found++;
1859 ac->ac_b_ex = ex;
1860 ext4_mb_use_best_found(ac, e4b);
1861 }
1862 } else if (max >= ac->ac_g_ex.fe_len) {
1863 BUG_ON(ex.fe_len <= 0);
1864 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1865 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1866 ac->ac_found++;
1867 ac->ac_b_ex = ex;
1868 ext4_mb_use_best_found(ac, e4b);
1869 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1870 /* Sometimes, caller may want to merge even small
1871 * number of blocks to an existing extent */
1872 BUG_ON(ex.fe_len <= 0);
1873 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1874 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1875 ac->ac_found++;
1876 ac->ac_b_ex = ex;
1877 ext4_mb_use_best_found(ac, e4b);
1878 }
1879 ext4_unlock_group(ac->ac_sb, group);
1880 ext4_mb_unload_buddy(e4b);
1881
1882 return 0;
1883}
1884
1885/*
1886 * The routine scans buddy structures (not bitmap!) from given order
1887 * to max order and tries to find big enough chunk to satisfy the req
1888 */
1889static noinline_for_stack
1890void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1891 struct ext4_buddy *e4b)
1892{
1893 struct super_block *sb = ac->ac_sb;
1894 struct ext4_group_info *grp = e4b->bd_info;
1895 void *buddy;
1896 int i;
1897 int k;
1898 int max;
1899
1900 BUG_ON(ac->ac_2order <= 0);
1901 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1902 if (grp->bb_counters[i] == 0)
1903 continue;
1904
1905 buddy = mb_find_buddy(e4b, i, &max);
1906 BUG_ON(buddy == NULL);
1907
1908 k = mb_find_next_zero_bit(buddy, max, 0);
1909 BUG_ON(k >= max);
1910
1911 ac->ac_found++;
1912
1913 ac->ac_b_ex.fe_len = 1 << i;
1914 ac->ac_b_ex.fe_start = k << i;
1915 ac->ac_b_ex.fe_group = e4b->bd_group;
1916
1917 ext4_mb_use_best_found(ac, e4b);
1918
1919 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1920
1921 if (EXT4_SB(sb)->s_mb_stats)
1922 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1923
1924 break;
1925 }
1926}
1927
1928/*
1929 * The routine scans the group and measures all found extents.
1930 * In order to optimize scanning, caller must pass number of
1931 * free blocks in the group, so the routine can know upper limit.
1932 */
1933static noinline_for_stack
1934void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1935 struct ext4_buddy *e4b)
1936{
1937 struct super_block *sb = ac->ac_sb;
1938 void *bitmap = e4b->bd_bitmap;
1939 struct ext4_free_extent ex;
1940 int i;
1941 int free;
1942
1943 free = e4b->bd_info->bb_free;
1944 BUG_ON(free <= 0);
1945
1946 i = e4b->bd_info->bb_first_free;
1947
1948 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1949 i = mb_find_next_zero_bit(bitmap,
1950 EXT4_CLUSTERS_PER_GROUP(sb), i);
1951 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1952 /*
1953 * IF we have corrupt bitmap, we won't find any
1954 * free blocks even though group info says we
1955 * we have free blocks
1956 */
1957 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1958 "%d free clusters as per "
1959 "group info. But bitmap says 0",
1960 free);
1961 break;
1962 }
1963
1964 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1965 BUG_ON(ex.fe_len <= 0);
1966 if (free < ex.fe_len) {
1967 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968 "%d free clusters as per "
1969 "group info. But got %d blocks",
1970 free, ex.fe_len);
1971 /*
1972 * The number of free blocks differs. This mostly
1973 * indicate that the bitmap is corrupt. So exit
1974 * without claiming the space.
1975 */
1976 break;
1977 }
1978 ex.fe_logical = 0xDEADC0DE; /* debug value */
1979 ext4_mb_measure_extent(ac, &ex, e4b);
1980
1981 i += ex.fe_len;
1982 free -= ex.fe_len;
1983 }
1984
1985 ext4_mb_check_limits(ac, e4b, 1);
1986}
1987
1988/*
1989 * This is a special case for storages like raid5
1990 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1991 */
1992static noinline_for_stack
1993void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1994 struct ext4_buddy *e4b)
1995{
1996 struct super_block *sb = ac->ac_sb;
1997 struct ext4_sb_info *sbi = EXT4_SB(sb);
1998 void *bitmap = e4b->bd_bitmap;
1999 struct ext4_free_extent ex;
2000 ext4_fsblk_t first_group_block;
2001 ext4_fsblk_t a;
2002 ext4_grpblk_t i;
2003 int max;
2004
2005 BUG_ON(sbi->s_stripe == 0);
2006
2007 /* find first stripe-aligned block in group */
2008 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2009
2010 a = first_group_block + sbi->s_stripe - 1;
2011 do_div(a, sbi->s_stripe);
2012 i = (a * sbi->s_stripe) - first_group_block;
2013
2014 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2015 if (!mb_test_bit(i, bitmap)) {
2016 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2017 if (max >= sbi->s_stripe) {
2018 ac->ac_found++;
2019 ex.fe_logical = 0xDEADF00D; /* debug value */
2020 ac->ac_b_ex = ex;
2021 ext4_mb_use_best_found(ac, e4b);
2022 break;
2023 }
2024 }
2025 i += sbi->s_stripe;
2026 }
2027}
2028
2029/*
2030 * This is now called BEFORE we load the buddy bitmap.
2031 * Returns either 1 or 0 indicating that the group is either suitable
2032 * for the allocation or not. In addition it can also return negative
2033 * error code when something goes wrong.
2034 */
2035static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2036 ext4_group_t group, int cr)
2037{
2038 unsigned free, fragments;
2039 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2040 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2041
2042 BUG_ON(cr < 0 || cr >= 4);
2043
2044 free = grp->bb_free;
2045 if (free == 0)
2046 return 0;
2047 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2048 return 0;
2049
2050 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2051 return 0;
2052
2053 /* We only do this if the grp has never been initialized */
2054 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2055 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2056 if (ret)
2057 return ret;
2058 }
2059
2060 fragments = grp->bb_fragments;
2061 if (fragments == 0)
2062 return 0;
2063
2064 switch (cr) {
2065 case 0:
2066 BUG_ON(ac->ac_2order == 0);
2067
2068 /* Avoid using the first bg of a flexgroup for data files */
2069 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2070 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2071 ((group % flex_size) == 0))
2072 return 0;
2073
2074 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2075 (free / fragments) >= ac->ac_g_ex.fe_len)
2076 return 1;
2077
2078 if (grp->bb_largest_free_order < ac->ac_2order)
2079 return 0;
2080
2081 return 1;
2082 case 1:
2083 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2084 return 1;
2085 break;
2086 case 2:
2087 if (free >= ac->ac_g_ex.fe_len)
2088 return 1;
2089 break;
2090 case 3:
2091 return 1;
2092 default:
2093 BUG();
2094 }
2095
2096 return 0;
2097}
2098
2099static noinline_for_stack int
2100ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2101{
2102 ext4_group_t ngroups, group, i;
2103 int cr;
2104 int err = 0, first_err = 0;
2105 struct ext4_sb_info *sbi;
2106 struct super_block *sb;
2107 struct ext4_buddy e4b;
2108
2109 sb = ac->ac_sb;
2110 sbi = EXT4_SB(sb);
2111 ngroups = ext4_get_groups_count(sb);
2112 /* non-extent files are limited to low blocks/groups */
2113 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2114 ngroups = sbi->s_blockfile_groups;
2115
2116 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117
2118 /* first, try the goal */
2119 err = ext4_mb_find_by_goal(ac, &e4b);
2120 if (err || ac->ac_status == AC_STATUS_FOUND)
2121 goto out;
2122
2123 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2124 goto out;
2125
2126 /*
2127 * ac->ac2_order is set only if the fe_len is a power of 2
2128 * if ac2_order is set we also set criteria to 0 so that we
2129 * try exact allocation using buddy.
2130 */
2131 i = fls(ac->ac_g_ex.fe_len);
2132 ac->ac_2order = 0;
2133 /*
2134 * We search using buddy data only if the order of the request
2135 * is greater than equal to the sbi_s_mb_order2_reqs
2136 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2137 */
2138 if (i >= sbi->s_mb_order2_reqs) {
2139 /*
2140 * This should tell if fe_len is exactly power of 2
2141 */
2142 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2143 ac->ac_2order = i - 1;
2144 }
2145
2146 /* if stream allocation is enabled, use global goal */
2147 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2148 /* TBD: may be hot point */
2149 spin_lock(&sbi->s_md_lock);
2150 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2151 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2152 spin_unlock(&sbi->s_md_lock);
2153 }
2154
2155 /* Let's just scan groups to find more-less suitable blocks */
2156 cr = ac->ac_2order ? 0 : 1;
2157 /*
2158 * cr == 0 try to get exact allocation,
2159 * cr == 3 try to get anything
2160 */
2161repeat:
2162 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2163 ac->ac_criteria = cr;
2164 /*
2165 * searching for the right group start
2166 * from the goal value specified
2167 */
2168 group = ac->ac_g_ex.fe_group;
2169
2170 for (i = 0; i < ngroups; group++, i++) {
2171 int ret = 0;
2172 cond_resched();
2173 /*
2174 * Artificially restricted ngroups for non-extent
2175 * files makes group > ngroups possible on first loop.
2176 */
2177 if (group >= ngroups)
2178 group = 0;
2179
2180 /* This now checks without needing the buddy page */
2181 ret = ext4_mb_good_group(ac, group, cr);
2182 if (ret <= 0) {
2183 if (!first_err)
2184 first_err = ret;
2185 continue;
2186 }
2187
2188 err = ext4_mb_load_buddy(sb, group, &e4b);
2189 if (err)
2190 goto out;
2191
2192 ext4_lock_group(sb, group);
2193
2194 /*
2195 * We need to check again after locking the
2196 * block group
2197 */
2198 ret = ext4_mb_good_group(ac, group, cr);
2199 if (ret <= 0) {
2200 ext4_unlock_group(sb, group);
2201 ext4_mb_unload_buddy(&e4b);
2202 if (!first_err)
2203 first_err = ret;
2204 continue;
2205 }
2206
2207 ac->ac_groups_scanned++;
2208 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2209 ext4_mb_simple_scan_group(ac, &e4b);
2210 else if (cr == 1 && sbi->s_stripe &&
2211 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2212 ext4_mb_scan_aligned(ac, &e4b);
2213 else
2214 ext4_mb_complex_scan_group(ac, &e4b);
2215
2216 ext4_unlock_group(sb, group);
2217 ext4_mb_unload_buddy(&e4b);
2218
2219 if (ac->ac_status != AC_STATUS_CONTINUE)
2220 break;
2221 }
2222 }
2223
2224 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2225 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2226 /*
2227 * We've been searching too long. Let's try to allocate
2228 * the best chunk we've found so far
2229 */
2230
2231 ext4_mb_try_best_found(ac, &e4b);
2232 if (ac->ac_status != AC_STATUS_FOUND) {
2233 /*
2234 * Someone more lucky has already allocated it.
2235 * The only thing we can do is just take first
2236 * found block(s)
2237 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2238 */
2239 ac->ac_b_ex.fe_group = 0;
2240 ac->ac_b_ex.fe_start = 0;
2241 ac->ac_b_ex.fe_len = 0;
2242 ac->ac_status = AC_STATUS_CONTINUE;
2243 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2244 cr = 3;
2245 atomic_inc(&sbi->s_mb_lost_chunks);
2246 goto repeat;
2247 }
2248 }
2249out:
2250 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2251 err = first_err;
2252 return err;
2253}
2254
2255static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2256{
2257 struct super_block *sb = seq->private;
2258 ext4_group_t group;
2259
2260 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2261 return NULL;
2262 group = *pos + 1;
2263 return (void *) ((unsigned long) group);
2264}
2265
2266static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2267{
2268 struct super_block *sb = seq->private;
2269 ext4_group_t group;
2270
2271 ++*pos;
2272 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 return NULL;
2274 group = *pos + 1;
2275 return (void *) ((unsigned long) group);
2276}
2277
2278static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2279{
2280 struct super_block *sb = seq->private;
2281 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2282 int i;
2283 int err, buddy_loaded = 0;
2284 struct ext4_buddy e4b;
2285 struct ext4_group_info *grinfo;
2286 struct sg {
2287 struct ext4_group_info info;
2288 ext4_grpblk_t counters[16];
2289 } sg;
2290
2291 group--;
2292 if (group == 0)
2293 seq_puts(seq, "#group: free frags first ["
2294 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2295 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2296
2297 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2298 sizeof(struct ext4_group_info);
2299 grinfo = ext4_get_group_info(sb, group);
2300 /* Load the group info in memory only if not already loaded. */
2301 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2302 err = ext4_mb_load_buddy(sb, group, &e4b);
2303 if (err) {
2304 seq_printf(seq, "#%-5u: I/O error\n", group);
2305 return 0;
2306 }
2307 buddy_loaded = 1;
2308 }
2309
2310 memcpy(&sg, ext4_get_group_info(sb, group), i);
2311
2312 if (buddy_loaded)
2313 ext4_mb_unload_buddy(&e4b);
2314
2315 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2316 sg.info.bb_fragments, sg.info.bb_first_free);
2317 for (i = 0; i <= 13; i++)
2318 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2319 sg.info.bb_counters[i] : 0);
2320 seq_printf(seq, " ]\n");
2321
2322 return 0;
2323}
2324
2325static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2326{
2327}
2328
2329static const struct seq_operations ext4_mb_seq_groups_ops = {
2330 .start = ext4_mb_seq_groups_start,
2331 .next = ext4_mb_seq_groups_next,
2332 .stop = ext4_mb_seq_groups_stop,
2333 .show = ext4_mb_seq_groups_show,
2334};
2335
2336static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2337{
2338 struct super_block *sb = PDE_DATA(inode);
2339 int rc;
2340
2341 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2342 if (rc == 0) {
2343 struct seq_file *m = file->private_data;
2344 m->private = sb;
2345 }
2346 return rc;
2347
2348}
2349
2350const struct file_operations ext4_seq_mb_groups_fops = {
2351 .owner = THIS_MODULE,
2352 .open = ext4_mb_seq_groups_open,
2353 .read = seq_read,
2354 .llseek = seq_lseek,
2355 .release = seq_release,
2356};
2357
2358static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2359{
2360 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2361 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2362
2363 BUG_ON(!cachep);
2364 return cachep;
2365}
2366
2367/*
2368 * Allocate the top-level s_group_info array for the specified number
2369 * of groups
2370 */
2371int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2372{
2373 struct ext4_sb_info *sbi = EXT4_SB(sb);
2374 unsigned size;
2375 struct ext4_group_info ***new_groupinfo;
2376
2377 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2378 EXT4_DESC_PER_BLOCK_BITS(sb);
2379 if (size <= sbi->s_group_info_size)
2380 return 0;
2381
2382 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2383 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2384 if (!new_groupinfo) {
2385 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2386 return -ENOMEM;
2387 }
2388 if (sbi->s_group_info) {
2389 memcpy(new_groupinfo, sbi->s_group_info,
2390 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2391 kvfree(sbi->s_group_info);
2392 }
2393 sbi->s_group_info = new_groupinfo;
2394 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2395 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2396 sbi->s_group_info_size);
2397 return 0;
2398}
2399
2400/* Create and initialize ext4_group_info data for the given group. */
2401int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2402 struct ext4_group_desc *desc)
2403{
2404 int i;
2405 int metalen = 0;
2406 struct ext4_sb_info *sbi = EXT4_SB(sb);
2407 struct ext4_group_info **meta_group_info;
2408 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2409
2410 /*
2411 * First check if this group is the first of a reserved block.
2412 * If it's true, we have to allocate a new table of pointers
2413 * to ext4_group_info structures
2414 */
2415 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2416 metalen = sizeof(*meta_group_info) <<
2417 EXT4_DESC_PER_BLOCK_BITS(sb);
2418 meta_group_info = kmalloc(metalen, GFP_NOFS);
2419 if (meta_group_info == NULL) {
2420 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2421 "for a buddy group");
2422 goto exit_meta_group_info;
2423 }
2424 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2425 meta_group_info;
2426 }
2427
2428 meta_group_info =
2429 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2430 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2431
2432 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2433 if (meta_group_info[i] == NULL) {
2434 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2435 goto exit_group_info;
2436 }
2437 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2438 &(meta_group_info[i]->bb_state));
2439
2440 /*
2441 * initialize bb_free to be able to skip
2442 * empty groups without initialization
2443 */
2444 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2445 meta_group_info[i]->bb_free =
2446 ext4_free_clusters_after_init(sb, group, desc);
2447 } else {
2448 meta_group_info[i]->bb_free =
2449 ext4_free_group_clusters(sb, desc);
2450 }
2451
2452 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2453 init_rwsem(&meta_group_info[i]->alloc_sem);
2454 meta_group_info[i]->bb_free_root = RB_ROOT;
2455 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2456
2457#ifdef DOUBLE_CHECK
2458 {
2459 struct buffer_head *bh;
2460 meta_group_info[i]->bb_bitmap =
2461 kmalloc(sb->s_blocksize, GFP_NOFS);
2462 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2463 bh = ext4_read_block_bitmap(sb, group);
2464 BUG_ON(IS_ERR_OR_NULL(bh));
2465 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2466 sb->s_blocksize);
2467 put_bh(bh);
2468 }
2469#endif
2470
2471 return 0;
2472
2473exit_group_info:
2474 /* If a meta_group_info table has been allocated, release it now */
2475 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2476 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2477 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2478 }
2479exit_meta_group_info:
2480 return -ENOMEM;
2481} /* ext4_mb_add_groupinfo */
2482
2483static int ext4_mb_init_backend(struct super_block *sb)
2484{
2485 ext4_group_t ngroups = ext4_get_groups_count(sb);
2486 ext4_group_t i;
2487 struct ext4_sb_info *sbi = EXT4_SB(sb);
2488 int err;
2489 struct ext4_group_desc *desc;
2490 struct kmem_cache *cachep;
2491
2492 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2493 if (err)
2494 return err;
2495
2496 sbi->s_buddy_cache = new_inode(sb);
2497 if (sbi->s_buddy_cache == NULL) {
2498 ext4_msg(sb, KERN_ERR, "can't get new inode");
2499 goto err_freesgi;
2500 }
2501 /* To avoid potentially colliding with an valid on-disk inode number,
2502 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2503 * not in the inode hash, so it should never be found by iget(), but
2504 * this will avoid confusion if it ever shows up during debugging. */
2505 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2506 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2507 for (i = 0; i < ngroups; i++) {
2508 desc = ext4_get_group_desc(sb, i, NULL);
2509 if (desc == NULL) {
2510 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2511 goto err_freebuddy;
2512 }
2513 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2514 goto err_freebuddy;
2515 }
2516
2517 return 0;
2518
2519err_freebuddy:
2520 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2521 while (i-- > 0)
2522 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2523 i = sbi->s_group_info_size;
2524 while (i-- > 0)
2525 kfree(sbi->s_group_info[i]);
2526 iput(sbi->s_buddy_cache);
2527err_freesgi:
2528 kvfree(sbi->s_group_info);
2529 return -ENOMEM;
2530}
2531
2532static void ext4_groupinfo_destroy_slabs(void)
2533{
2534 int i;
2535
2536 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2537 if (ext4_groupinfo_caches[i])
2538 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2539 ext4_groupinfo_caches[i] = NULL;
2540 }
2541}
2542
2543static int ext4_groupinfo_create_slab(size_t size)
2544{
2545 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2546 int slab_size;
2547 int blocksize_bits = order_base_2(size);
2548 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2549 struct kmem_cache *cachep;
2550
2551 if (cache_index >= NR_GRPINFO_CACHES)
2552 return -EINVAL;
2553
2554 if (unlikely(cache_index < 0))
2555 cache_index = 0;
2556
2557 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2558 if (ext4_groupinfo_caches[cache_index]) {
2559 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2560 return 0; /* Already created */
2561 }
2562
2563 slab_size = offsetof(struct ext4_group_info,
2564 bb_counters[blocksize_bits + 2]);
2565
2566 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2567 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2568 NULL);
2569
2570 ext4_groupinfo_caches[cache_index] = cachep;
2571
2572 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2573 if (!cachep) {
2574 printk(KERN_EMERG
2575 "EXT4-fs: no memory for groupinfo slab cache\n");
2576 return -ENOMEM;
2577 }
2578
2579 return 0;
2580}
2581
2582int ext4_mb_init(struct super_block *sb)
2583{
2584 struct ext4_sb_info *sbi = EXT4_SB(sb);
2585 unsigned i, j;
2586 unsigned offset;
2587 unsigned max;
2588 int ret;
2589
2590 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2591
2592 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2593 if (sbi->s_mb_offsets == NULL) {
2594 ret = -ENOMEM;
2595 goto out;
2596 }
2597
2598 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2599 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2600 if (sbi->s_mb_maxs == NULL) {
2601 ret = -ENOMEM;
2602 goto out;
2603 }
2604
2605 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2606 if (ret < 0)
2607 goto out;
2608
2609 /* order 0 is regular bitmap */
2610 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2611 sbi->s_mb_offsets[0] = 0;
2612
2613 i = 1;
2614 offset = 0;
2615 max = sb->s_blocksize << 2;
2616 do {
2617 sbi->s_mb_offsets[i] = offset;
2618 sbi->s_mb_maxs[i] = max;
2619 offset += 1 << (sb->s_blocksize_bits - i);
2620 max = max >> 1;
2621 i++;
2622 } while (i <= sb->s_blocksize_bits + 1);
2623
2624 spin_lock_init(&sbi->s_md_lock);
2625 spin_lock_init(&sbi->s_bal_lock);
2626
2627 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2628 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2629 sbi->s_mb_stats = MB_DEFAULT_STATS;
2630 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2631 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2632 /*
2633 * The default group preallocation is 512, which for 4k block
2634 * sizes translates to 2 megabytes. However for bigalloc file
2635 * systems, this is probably too big (i.e, if the cluster size
2636 * is 1 megabyte, then group preallocation size becomes half a
2637 * gigabyte!). As a default, we will keep a two megabyte
2638 * group pralloc size for cluster sizes up to 64k, and after
2639 * that, we will force a minimum group preallocation size of
2640 * 32 clusters. This translates to 8 megs when the cluster
2641 * size is 256k, and 32 megs when the cluster size is 1 meg,
2642 * which seems reasonable as a default.
2643 */
2644 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2645 sbi->s_cluster_bits, 32);
2646 /*
2647 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2648 * to the lowest multiple of s_stripe which is bigger than
2649 * the s_mb_group_prealloc as determined above. We want
2650 * the preallocation size to be an exact multiple of the
2651 * RAID stripe size so that preallocations don't fragment
2652 * the stripes.
2653 */
2654 if (sbi->s_stripe > 1) {
2655 sbi->s_mb_group_prealloc = roundup(
2656 sbi->s_mb_group_prealloc, sbi->s_stripe);
2657 }
2658
2659 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2660 if (sbi->s_locality_groups == NULL) {
2661 ret = -ENOMEM;
2662 goto out;
2663 }
2664 for_each_possible_cpu(i) {
2665 struct ext4_locality_group *lg;
2666 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2667 mutex_init(&lg->lg_mutex);
2668 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2669 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2670 spin_lock_init(&lg->lg_prealloc_lock);
2671 }
2672
2673 /* init file for buddy data */
2674 ret = ext4_mb_init_backend(sb);
2675 if (ret != 0)
2676 goto out_free_locality_groups;
2677
2678 return 0;
2679
2680out_free_locality_groups:
2681 free_percpu(sbi->s_locality_groups);
2682 sbi->s_locality_groups = NULL;
2683out:
2684 kfree(sbi->s_mb_offsets);
2685 sbi->s_mb_offsets = NULL;
2686 kfree(sbi->s_mb_maxs);
2687 sbi->s_mb_maxs = NULL;
2688 return ret;
2689}
2690
2691/* need to called with the ext4 group lock held */
2692static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2693{
2694 struct ext4_prealloc_space *pa;
2695 struct list_head *cur, *tmp;
2696 int count = 0;
2697
2698 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2699 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2700 list_del(&pa->pa_group_list);
2701 count++;
2702 kmem_cache_free(ext4_pspace_cachep, pa);
2703 }
2704 if (count)
2705 mb_debug(1, "mballoc: %u PAs left\n", count);
2706
2707}
2708
2709int ext4_mb_release(struct super_block *sb)
2710{
2711 ext4_group_t ngroups = ext4_get_groups_count(sb);
2712 ext4_group_t i;
2713 int num_meta_group_infos;
2714 struct ext4_group_info *grinfo;
2715 struct ext4_sb_info *sbi = EXT4_SB(sb);
2716 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2717
2718 if (sbi->s_group_info) {
2719 for (i = 0; i < ngroups; i++) {
2720 grinfo = ext4_get_group_info(sb, i);
2721#ifdef DOUBLE_CHECK
2722 kfree(grinfo->bb_bitmap);
2723#endif
2724 ext4_lock_group(sb, i);
2725 ext4_mb_cleanup_pa(grinfo);
2726 ext4_unlock_group(sb, i);
2727 kmem_cache_free(cachep, grinfo);
2728 }
2729 num_meta_group_infos = (ngroups +
2730 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2731 EXT4_DESC_PER_BLOCK_BITS(sb);
2732 for (i = 0; i < num_meta_group_infos; i++)
2733 kfree(sbi->s_group_info[i]);
2734 kvfree(sbi->s_group_info);
2735 }
2736 kfree(sbi->s_mb_offsets);
2737 kfree(sbi->s_mb_maxs);
2738 iput(sbi->s_buddy_cache);
2739 if (sbi->s_mb_stats) {
2740 ext4_msg(sb, KERN_INFO,
2741 "mballoc: %u blocks %u reqs (%u success)",
2742 atomic_read(&sbi->s_bal_allocated),
2743 atomic_read(&sbi->s_bal_reqs),
2744 atomic_read(&sbi->s_bal_success));
2745 ext4_msg(sb, KERN_INFO,
2746 "mballoc: %u extents scanned, %u goal hits, "
2747 "%u 2^N hits, %u breaks, %u lost",
2748 atomic_read(&sbi->s_bal_ex_scanned),
2749 atomic_read(&sbi->s_bal_goals),
2750 atomic_read(&sbi->s_bal_2orders),
2751 atomic_read(&sbi->s_bal_breaks),
2752 atomic_read(&sbi->s_mb_lost_chunks));
2753 ext4_msg(sb, KERN_INFO,
2754 "mballoc: %lu generated and it took %Lu",
2755 sbi->s_mb_buddies_generated,
2756 sbi->s_mb_generation_time);
2757 ext4_msg(sb, KERN_INFO,
2758 "mballoc: %u preallocated, %u discarded",
2759 atomic_read(&sbi->s_mb_preallocated),
2760 atomic_read(&sbi->s_mb_discarded));
2761 }
2762
2763 free_percpu(sbi->s_locality_groups);
2764
2765 return 0;
2766}
2767
2768static inline int ext4_issue_discard(struct super_block *sb,
2769 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2770{
2771 ext4_fsblk_t discard_block;
2772
2773 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2774 ext4_group_first_block_no(sb, block_group));
2775 count = EXT4_C2B(EXT4_SB(sb), count);
2776 trace_ext4_discard_blocks(sb,
2777 (unsigned long long) discard_block, count);
2778 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2779}
2780
2781/*
2782 * This function is called by the jbd2 layer once the commit has finished,
2783 * so we know we can free the blocks that were released with that commit.
2784 */
2785static void ext4_free_data_callback(struct super_block *sb,
2786 struct ext4_journal_cb_entry *jce,
2787 int rc)
2788{
2789 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2790 struct ext4_buddy e4b;
2791 struct ext4_group_info *db;
2792 int err, count = 0, count2 = 0;
2793
2794 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2795 entry->efd_count, entry->efd_group, entry);
2796
2797 if (test_opt(sb, DISCARD)) {
2798 err = ext4_issue_discard(sb, entry->efd_group,
2799 entry->efd_start_cluster,
2800 entry->efd_count);
2801 if (err && err != -EOPNOTSUPP)
2802 ext4_msg(sb, KERN_WARNING, "discard request in"
2803 " group:%d block:%d count:%d failed"
2804 " with %d", entry->efd_group,
2805 entry->efd_start_cluster,
2806 entry->efd_count, err);
2807 }
2808
2809 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2810 /* we expect to find existing buddy because it's pinned */
2811 BUG_ON(err != 0);
2812
2813
2814 db = e4b.bd_info;
2815 /* there are blocks to put in buddy to make them really free */
2816 count += entry->efd_count;
2817 count2++;
2818 ext4_lock_group(sb, entry->efd_group);
2819 /* Take it out of per group rb tree */
2820 rb_erase(&entry->efd_node, &(db->bb_free_root));
2821 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2822
2823 /*
2824 * Clear the trimmed flag for the group so that the next
2825 * ext4_trim_fs can trim it.
2826 * If the volume is mounted with -o discard, online discard
2827 * is supported and the free blocks will be trimmed online.
2828 */
2829 if (!test_opt(sb, DISCARD))
2830 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2831
2832 if (!db->bb_free_root.rb_node) {
2833 /* No more items in the per group rb tree
2834 * balance refcounts from ext4_mb_free_metadata()
2835 */
2836 put_page(e4b.bd_buddy_page);
2837 put_page(e4b.bd_bitmap_page);
2838 }
2839 ext4_unlock_group(sb, entry->efd_group);
2840 kmem_cache_free(ext4_free_data_cachep, entry);
2841 ext4_mb_unload_buddy(&e4b);
2842
2843 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2844}
2845
2846int __init ext4_init_mballoc(void)
2847{
2848 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2849 SLAB_RECLAIM_ACCOUNT);
2850 if (ext4_pspace_cachep == NULL)
2851 return -ENOMEM;
2852
2853 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2854 SLAB_RECLAIM_ACCOUNT);
2855 if (ext4_ac_cachep == NULL) {
2856 kmem_cache_destroy(ext4_pspace_cachep);
2857 return -ENOMEM;
2858 }
2859
2860 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2861 SLAB_RECLAIM_ACCOUNT);
2862 if (ext4_free_data_cachep == NULL) {
2863 kmem_cache_destroy(ext4_pspace_cachep);
2864 kmem_cache_destroy(ext4_ac_cachep);
2865 return -ENOMEM;
2866 }
2867 return 0;
2868}
2869
2870void ext4_exit_mballoc(void)
2871{
2872 /*
2873 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2874 * before destroying the slab cache.
2875 */
2876 rcu_barrier();
2877 kmem_cache_destroy(ext4_pspace_cachep);
2878 kmem_cache_destroy(ext4_ac_cachep);
2879 kmem_cache_destroy(ext4_free_data_cachep);
2880 ext4_groupinfo_destroy_slabs();
2881}
2882
2883
2884/*
2885 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2886 * Returns 0 if success or error code
2887 */
2888static noinline_for_stack int
2889ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2890 handle_t *handle, unsigned int reserv_clstrs)
2891{
2892 struct buffer_head *bitmap_bh = NULL;
2893 struct ext4_group_desc *gdp;
2894 struct buffer_head *gdp_bh;
2895 struct ext4_sb_info *sbi;
2896 struct super_block *sb;
2897 ext4_fsblk_t block;
2898 int err, len;
2899
2900 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2901 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2902
2903 sb = ac->ac_sb;
2904 sbi = EXT4_SB(sb);
2905
2906 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2907 if (IS_ERR(bitmap_bh)) {
2908 err = PTR_ERR(bitmap_bh);
2909 bitmap_bh = NULL;
2910 goto out_err;
2911 }
2912
2913 BUFFER_TRACE(bitmap_bh, "getting write access");
2914 err = ext4_journal_get_write_access(handle, bitmap_bh);
2915 if (err)
2916 goto out_err;
2917
2918 err = -EIO;
2919 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2920 if (!gdp)
2921 goto out_err;
2922
2923 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2924 ext4_free_group_clusters(sb, gdp));
2925
2926 BUFFER_TRACE(gdp_bh, "get_write_access");
2927 err = ext4_journal_get_write_access(handle, gdp_bh);
2928 if (err)
2929 goto out_err;
2930
2931 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2932
2933 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2934 if (!ext4_data_block_valid(sbi, block, len)) {
2935 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2936 "fs metadata", block, block+len);
2937 /* File system mounted not to panic on error
2938 * Fix the bitmap and repeat the block allocation
2939 * We leak some of the blocks here.
2940 */
2941 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2942 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2943 ac->ac_b_ex.fe_len);
2944 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2945 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2946 if (!err)
2947 err = -EAGAIN;
2948 goto out_err;
2949 }
2950
2951 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2952#ifdef AGGRESSIVE_CHECK
2953 {
2954 int i;
2955 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2956 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2957 bitmap_bh->b_data));
2958 }
2959 }
2960#endif
2961 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2962 ac->ac_b_ex.fe_len);
2963 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2964 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2965 ext4_free_group_clusters_set(sb, gdp,
2966 ext4_free_clusters_after_init(sb,
2967 ac->ac_b_ex.fe_group, gdp));
2968 }
2969 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2970 ext4_free_group_clusters_set(sb, gdp, len);
2971 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2972 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2973
2974 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2975 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2976 /*
2977 * Now reduce the dirty block count also. Should not go negative
2978 */
2979 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2980 /* release all the reserved blocks if non delalloc */
2981 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2982 reserv_clstrs);
2983
2984 if (sbi->s_log_groups_per_flex) {
2985 ext4_group_t flex_group = ext4_flex_group(sbi,
2986 ac->ac_b_ex.fe_group);
2987 atomic64_sub(ac->ac_b_ex.fe_len,
2988 &sbi->s_flex_groups[flex_group].free_clusters);
2989 }
2990
2991 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2992 if (err)
2993 goto out_err;
2994 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2995
2996out_err:
2997 brelse(bitmap_bh);
2998 return err;
2999}
3000
3001/*
3002 * here we normalize request for locality group
3003 * Group request are normalized to s_mb_group_prealloc, which goes to
3004 * s_strip if we set the same via mount option.
3005 * s_mb_group_prealloc can be configured via
3006 * /sys/fs/ext4/<partition>/mb_group_prealloc
3007 *
3008 * XXX: should we try to preallocate more than the group has now?
3009 */
3010static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3011{
3012 struct super_block *sb = ac->ac_sb;
3013 struct ext4_locality_group *lg = ac->ac_lg;
3014
3015 BUG_ON(lg == NULL);
3016 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3017 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3018 current->pid, ac->ac_g_ex.fe_len);
3019}
3020
3021/*
3022 * Normalization means making request better in terms of
3023 * size and alignment
3024 */
3025static noinline_for_stack void
3026ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3027 struct ext4_allocation_request *ar)
3028{
3029 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3030 int bsbits, max;
3031 ext4_lblk_t end;
3032 loff_t size, start_off;
3033 loff_t orig_size __maybe_unused;
3034 ext4_lblk_t start;
3035 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3036 struct ext4_prealloc_space *pa;
3037
3038 /* do normalize only data requests, metadata requests
3039 do not need preallocation */
3040 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3041 return;
3042
3043 /* sometime caller may want exact blocks */
3044 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3045 return;
3046
3047 /* caller may indicate that preallocation isn't
3048 * required (it's a tail, for example) */
3049 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3050 return;
3051
3052 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3053 ext4_mb_normalize_group_request(ac);
3054 return ;
3055 }
3056
3057 bsbits = ac->ac_sb->s_blocksize_bits;
3058
3059 /* first, let's learn actual file size
3060 * given current request is allocated */
3061 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3062 size = size << bsbits;
3063 if (size < i_size_read(ac->ac_inode))
3064 size = i_size_read(ac->ac_inode);
3065 orig_size = size;
3066
3067 /* max size of free chunks */
3068 max = 2 << bsbits;
3069
3070#define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3071 (req <= (size) || max <= (chunk_size))
3072
3073 /* first, try to predict filesize */
3074 /* XXX: should this table be tunable? */
3075 start_off = 0;
3076 if (size <= 16 * 1024) {
3077 size = 16 * 1024;
3078 } else if (size <= 32 * 1024) {
3079 size = 32 * 1024;
3080 } else if (size <= 64 * 1024) {
3081 size = 64 * 1024;
3082 } else if (size <= 128 * 1024) {
3083 size = 128 * 1024;
3084 } else if (size <= 256 * 1024) {
3085 size = 256 * 1024;
3086 } else if (size <= 512 * 1024) {
3087 size = 512 * 1024;
3088 } else if (size <= 1024 * 1024) {
3089 size = 1024 * 1024;
3090 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3091 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3092 (21 - bsbits)) << 21;
3093 size = 2 * 1024 * 1024;
3094 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3095 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3096 (22 - bsbits)) << 22;
3097 size = 4 * 1024 * 1024;
3098 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3099 (8<<20)>>bsbits, max, 8 * 1024)) {
3100 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3101 (23 - bsbits)) << 23;
3102 size = 8 * 1024 * 1024;
3103 } else {
3104 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3105 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3106 ac->ac_o_ex.fe_len) << bsbits;
3107 }
3108 size = size >> bsbits;
3109 start = start_off >> bsbits;
3110
3111 /* don't cover already allocated blocks in selected range */
3112 if (ar->pleft && start <= ar->lleft) {
3113 size -= ar->lleft + 1 - start;
3114 start = ar->lleft + 1;
3115 }
3116 if (ar->pright && start + size - 1 >= ar->lright)
3117 size -= start + size - ar->lright;
3118
3119 end = start + size;
3120
3121 /* check we don't cross already preallocated blocks */
3122 rcu_read_lock();
3123 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3124 ext4_lblk_t pa_end;
3125
3126 if (pa->pa_deleted)
3127 continue;
3128 spin_lock(&pa->pa_lock);
3129 if (pa->pa_deleted) {
3130 spin_unlock(&pa->pa_lock);
3131 continue;
3132 }
3133
3134 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3135 pa->pa_len);
3136
3137 /* PA must not overlap original request */
3138 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3139 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3140
3141 /* skip PAs this normalized request doesn't overlap with */
3142 if (pa->pa_lstart >= end || pa_end <= start) {
3143 spin_unlock(&pa->pa_lock);
3144 continue;
3145 }
3146 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3147
3148 /* adjust start or end to be adjacent to this pa */
3149 if (pa_end <= ac->ac_o_ex.fe_logical) {
3150 BUG_ON(pa_end < start);
3151 start = pa_end;
3152 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3153 BUG_ON(pa->pa_lstart > end);
3154 end = pa->pa_lstart;
3155 }
3156 spin_unlock(&pa->pa_lock);
3157 }
3158 rcu_read_unlock();
3159 size = end - start;
3160
3161 /* XXX: extra loop to check we really don't overlap preallocations */
3162 rcu_read_lock();
3163 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3164 ext4_lblk_t pa_end;
3165
3166 spin_lock(&pa->pa_lock);
3167 if (pa->pa_deleted == 0) {
3168 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3169 pa->pa_len);
3170 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3171 }
3172 spin_unlock(&pa->pa_lock);
3173 }
3174 rcu_read_unlock();
3175
3176 if (start + size <= ac->ac_o_ex.fe_logical &&
3177 start > ac->ac_o_ex.fe_logical) {
3178 ext4_msg(ac->ac_sb, KERN_ERR,
3179 "start %lu, size %lu, fe_logical %lu",
3180 (unsigned long) start, (unsigned long) size,
3181 (unsigned long) ac->ac_o_ex.fe_logical);
3182 BUG();
3183 }
3184 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3185
3186 /* now prepare goal request */
3187
3188 /* XXX: is it better to align blocks WRT to logical
3189 * placement or satisfy big request as is */
3190 ac->ac_g_ex.fe_logical = start;
3191 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3192
3193 /* define goal start in order to merge */
3194 if (ar->pright && (ar->lright == (start + size))) {
3195 /* merge to the right */
3196 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3197 &ac->ac_f_ex.fe_group,
3198 &ac->ac_f_ex.fe_start);
3199 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3200 }
3201 if (ar->pleft && (ar->lleft + 1 == start)) {
3202 /* merge to the left */
3203 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3204 &ac->ac_f_ex.fe_group,
3205 &ac->ac_f_ex.fe_start);
3206 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3207 }
3208
3209 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3210 (unsigned) orig_size, (unsigned) start);
3211}
3212
3213static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3214{
3215 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3216
3217 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3218 atomic_inc(&sbi->s_bal_reqs);
3219 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3220 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3221 atomic_inc(&sbi->s_bal_success);
3222 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3223 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3224 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3225 atomic_inc(&sbi->s_bal_goals);
3226 if (ac->ac_found > sbi->s_mb_max_to_scan)
3227 atomic_inc(&sbi->s_bal_breaks);
3228 }
3229
3230 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3231 trace_ext4_mballoc_alloc(ac);
3232 else
3233 trace_ext4_mballoc_prealloc(ac);
3234}
3235
3236/*
3237 * Called on failure; free up any blocks from the inode PA for this
3238 * context. We don't need this for MB_GROUP_PA because we only change
3239 * pa_free in ext4_mb_release_context(), but on failure, we've already
3240 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3241 */
3242static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3243{
3244 struct ext4_prealloc_space *pa = ac->ac_pa;
3245 struct ext4_buddy e4b;
3246 int err;
3247
3248 if (pa == NULL) {
3249 if (ac->ac_f_ex.fe_len == 0)
3250 return;
3251 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3252 if (err) {
3253 /*
3254 * This should never happen since we pin the
3255 * pages in the ext4_allocation_context so
3256 * ext4_mb_load_buddy() should never fail.
3257 */
3258 WARN(1, "mb_load_buddy failed (%d)", err);
3259 return;
3260 }
3261 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3262 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3263 ac->ac_f_ex.fe_len);
3264 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3265 ext4_mb_unload_buddy(&e4b);
3266 return;
3267 }
3268 if (pa->pa_type == MB_INODE_PA)
3269 pa->pa_free += ac->ac_b_ex.fe_len;
3270}
3271
3272/*
3273 * use blocks preallocated to inode
3274 */
3275static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3276 struct ext4_prealloc_space *pa)
3277{
3278 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3279 ext4_fsblk_t start;
3280 ext4_fsblk_t end;
3281 int len;
3282
3283 /* found preallocated blocks, use them */
3284 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3285 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3286 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3287 len = EXT4_NUM_B2C(sbi, end - start);
3288 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3289 &ac->ac_b_ex.fe_start);
3290 ac->ac_b_ex.fe_len = len;
3291 ac->ac_status = AC_STATUS_FOUND;
3292 ac->ac_pa = pa;
3293
3294 BUG_ON(start < pa->pa_pstart);
3295 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3296 BUG_ON(pa->pa_free < len);
3297 pa->pa_free -= len;
3298
3299 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3300}
3301
3302/*
3303 * use blocks preallocated to locality group
3304 */
3305static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3306 struct ext4_prealloc_space *pa)
3307{
3308 unsigned int len = ac->ac_o_ex.fe_len;
3309
3310 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3311 &ac->ac_b_ex.fe_group,
3312 &ac->ac_b_ex.fe_start);
3313 ac->ac_b_ex.fe_len = len;
3314 ac->ac_status = AC_STATUS_FOUND;
3315 ac->ac_pa = pa;
3316
3317 /* we don't correct pa_pstart or pa_plen here to avoid
3318 * possible race when the group is being loaded concurrently
3319 * instead we correct pa later, after blocks are marked
3320 * in on-disk bitmap -- see ext4_mb_release_context()
3321 * Other CPUs are prevented from allocating from this pa by lg_mutex
3322 */
3323 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3324}
3325
3326/*
3327 * Return the prealloc space that have minimal distance
3328 * from the goal block. @cpa is the prealloc
3329 * space that is having currently known minimal distance
3330 * from the goal block.
3331 */
3332static struct ext4_prealloc_space *
3333ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3334 struct ext4_prealloc_space *pa,
3335 struct ext4_prealloc_space *cpa)
3336{
3337 ext4_fsblk_t cur_distance, new_distance;
3338
3339 if (cpa == NULL) {
3340 atomic_inc(&pa->pa_count);
3341 return pa;
3342 }
3343 cur_distance = abs(goal_block - cpa->pa_pstart);
3344 new_distance = abs(goal_block - pa->pa_pstart);
3345
3346 if (cur_distance <= new_distance)
3347 return cpa;
3348
3349 /* drop the previous reference */
3350 atomic_dec(&cpa->pa_count);
3351 atomic_inc(&pa->pa_count);
3352 return pa;
3353}
3354
3355/*
3356 * search goal blocks in preallocated space
3357 */
3358static noinline_for_stack int
3359ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3360{
3361 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3362 int order, i;
3363 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3364 struct ext4_locality_group *lg;
3365 struct ext4_prealloc_space *pa, *cpa = NULL;
3366 ext4_fsblk_t goal_block;
3367
3368 /* only data can be preallocated */
3369 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3370 return 0;
3371
3372 /* first, try per-file preallocation */
3373 rcu_read_lock();
3374 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3375
3376 /* all fields in this condition don't change,
3377 * so we can skip locking for them */
3378 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3379 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3380 EXT4_C2B(sbi, pa->pa_len)))
3381 continue;
3382
3383 /* non-extent files can't have physical blocks past 2^32 */
3384 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3385 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3386 EXT4_MAX_BLOCK_FILE_PHYS))
3387 continue;
3388
3389 /* found preallocated blocks, use them */
3390 spin_lock(&pa->pa_lock);
3391 if (pa->pa_deleted == 0 && pa->pa_free) {
3392 atomic_inc(&pa->pa_count);
3393 ext4_mb_use_inode_pa(ac, pa);
3394 spin_unlock(&pa->pa_lock);
3395 ac->ac_criteria = 10;
3396 rcu_read_unlock();
3397 return 1;
3398 }
3399 spin_unlock(&pa->pa_lock);
3400 }
3401 rcu_read_unlock();
3402
3403 /* can we use group allocation? */
3404 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3405 return 0;
3406
3407 /* inode may have no locality group for some reason */
3408 lg = ac->ac_lg;
3409 if (lg == NULL)
3410 return 0;
3411 order = fls(ac->ac_o_ex.fe_len) - 1;
3412 if (order > PREALLOC_TB_SIZE - 1)
3413 /* The max size of hash table is PREALLOC_TB_SIZE */
3414 order = PREALLOC_TB_SIZE - 1;
3415
3416 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3417 /*
3418 * search for the prealloc space that is having
3419 * minimal distance from the goal block.
3420 */
3421 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3422 rcu_read_lock();
3423 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3424 pa_inode_list) {
3425 spin_lock(&pa->pa_lock);
3426 if (pa->pa_deleted == 0 &&
3427 pa->pa_free >= ac->ac_o_ex.fe_len) {
3428
3429 cpa = ext4_mb_check_group_pa(goal_block,
3430 pa, cpa);
3431 }
3432 spin_unlock(&pa->pa_lock);
3433 }
3434 rcu_read_unlock();
3435 }
3436 if (cpa) {
3437 ext4_mb_use_group_pa(ac, cpa);
3438 ac->ac_criteria = 20;
3439 return 1;
3440 }
3441 return 0;
3442}
3443
3444/*
3445 * the function goes through all block freed in the group
3446 * but not yet committed and marks them used in in-core bitmap.
3447 * buddy must be generated from this bitmap
3448 * Need to be called with the ext4 group lock held
3449 */
3450static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3451 ext4_group_t group)
3452{
3453 struct rb_node *n;
3454 struct ext4_group_info *grp;
3455 struct ext4_free_data *entry;
3456
3457 grp = ext4_get_group_info(sb, group);
3458 n = rb_first(&(grp->bb_free_root));
3459
3460 while (n) {
3461 entry = rb_entry(n, struct ext4_free_data, efd_node);
3462 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3463 n = rb_next(n);
3464 }
3465 return;
3466}
3467
3468/*
3469 * the function goes through all preallocation in this group and marks them
3470 * used in in-core bitmap. buddy must be generated from this bitmap
3471 * Need to be called with ext4 group lock held
3472 */
3473static noinline_for_stack
3474void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3475 ext4_group_t group)
3476{
3477 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3478 struct ext4_prealloc_space *pa;
3479 struct list_head *cur;
3480 ext4_group_t groupnr;
3481 ext4_grpblk_t start;
3482 int preallocated = 0;
3483 int len;
3484
3485 /* all form of preallocation discards first load group,
3486 * so the only competing code is preallocation use.
3487 * we don't need any locking here
3488 * notice we do NOT ignore preallocations with pa_deleted
3489 * otherwise we could leave used blocks available for
3490 * allocation in buddy when concurrent ext4_mb_put_pa()
3491 * is dropping preallocation
3492 */
3493 list_for_each(cur, &grp->bb_prealloc_list) {
3494 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3495 spin_lock(&pa->pa_lock);
3496 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3497 &groupnr, &start);
3498 len = pa->pa_len;
3499 spin_unlock(&pa->pa_lock);
3500 if (unlikely(len == 0))
3501 continue;
3502 BUG_ON(groupnr != group);
3503 ext4_set_bits(bitmap, start, len);
3504 preallocated += len;
3505 }
3506 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3507}
3508
3509static void ext4_mb_pa_callback(struct rcu_head *head)
3510{
3511 struct ext4_prealloc_space *pa;
3512 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3513
3514 BUG_ON(atomic_read(&pa->pa_count));
3515 BUG_ON(pa->pa_deleted == 0);
3516 kmem_cache_free(ext4_pspace_cachep, pa);
3517}
3518
3519/*
3520 * drops a reference to preallocated space descriptor
3521 * if this was the last reference and the space is consumed
3522 */
3523static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3524 struct super_block *sb, struct ext4_prealloc_space *pa)
3525{
3526 ext4_group_t grp;
3527 ext4_fsblk_t grp_blk;
3528
3529 /* in this short window concurrent discard can set pa_deleted */
3530 spin_lock(&pa->pa_lock);
3531 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3532 spin_unlock(&pa->pa_lock);
3533 return;
3534 }
3535
3536 if (pa->pa_deleted == 1) {
3537 spin_unlock(&pa->pa_lock);
3538 return;
3539 }
3540
3541 pa->pa_deleted = 1;
3542 spin_unlock(&pa->pa_lock);
3543
3544 grp_blk = pa->pa_pstart;
3545 /*
3546 * If doing group-based preallocation, pa_pstart may be in the
3547 * next group when pa is used up
3548 */
3549 if (pa->pa_type == MB_GROUP_PA)
3550 grp_blk--;
3551
3552 grp = ext4_get_group_number(sb, grp_blk);
3553
3554 /*
3555 * possible race:
3556 *
3557 * P1 (buddy init) P2 (regular allocation)
3558 * find block B in PA
3559 * copy on-disk bitmap to buddy
3560 * mark B in on-disk bitmap
3561 * drop PA from group
3562 * mark all PAs in buddy
3563 *
3564 * thus, P1 initializes buddy with B available. to prevent this
3565 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3566 * against that pair
3567 */
3568 ext4_lock_group(sb, grp);
3569 list_del(&pa->pa_group_list);
3570 ext4_unlock_group(sb, grp);
3571
3572 spin_lock(pa->pa_obj_lock);
3573 list_del_rcu(&pa->pa_inode_list);
3574 spin_unlock(pa->pa_obj_lock);
3575
3576 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3577}
3578
3579/*
3580 * creates new preallocated space for given inode
3581 */
3582static noinline_for_stack int
3583ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3584{
3585 struct super_block *sb = ac->ac_sb;
3586 struct ext4_sb_info *sbi = EXT4_SB(sb);
3587 struct ext4_prealloc_space *pa;
3588 struct ext4_group_info *grp;
3589 struct ext4_inode_info *ei;
3590
3591 /* preallocate only when found space is larger then requested */
3592 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3593 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3594 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3595
3596 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3597 if (pa == NULL)
3598 return -ENOMEM;
3599
3600 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3601 int winl;
3602 int wins;
3603 int win;
3604 int offs;
3605
3606 /* we can't allocate as much as normalizer wants.
3607 * so, found space must get proper lstart
3608 * to cover original request */
3609 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3610 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3611
3612 /* we're limited by original request in that
3613 * logical block must be covered any way
3614 * winl is window we can move our chunk within */
3615 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3616
3617 /* also, we should cover whole original request */
3618 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3619
3620 /* the smallest one defines real window */
3621 win = min(winl, wins);
3622
3623 offs = ac->ac_o_ex.fe_logical %
3624 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3625 if (offs && offs < win)
3626 win = offs;
3627
3628 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3629 EXT4_NUM_B2C(sbi, win);
3630 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3631 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3632 }
3633
3634 /* preallocation can change ac_b_ex, thus we store actually
3635 * allocated blocks for history */
3636 ac->ac_f_ex = ac->ac_b_ex;
3637
3638 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3639 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3640 pa->pa_len = ac->ac_b_ex.fe_len;
3641 pa->pa_free = pa->pa_len;
3642 atomic_set(&pa->pa_count, 1);
3643 spin_lock_init(&pa->pa_lock);
3644 INIT_LIST_HEAD(&pa->pa_inode_list);
3645 INIT_LIST_HEAD(&pa->pa_group_list);
3646 pa->pa_deleted = 0;
3647 pa->pa_type = MB_INODE_PA;
3648
3649 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3650 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3651 trace_ext4_mb_new_inode_pa(ac, pa);
3652
3653 ext4_mb_use_inode_pa(ac, pa);
3654 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3655
3656 ei = EXT4_I(ac->ac_inode);
3657 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3658
3659 pa->pa_obj_lock = &ei->i_prealloc_lock;
3660 pa->pa_inode = ac->ac_inode;
3661
3662 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3663 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3664 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3665
3666 spin_lock(pa->pa_obj_lock);
3667 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3668 spin_unlock(pa->pa_obj_lock);
3669
3670 return 0;
3671}
3672
3673/*
3674 * creates new preallocated space for locality group inodes belongs to
3675 */
3676static noinline_for_stack int
3677ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3678{
3679 struct super_block *sb = ac->ac_sb;
3680 struct ext4_locality_group *lg;
3681 struct ext4_prealloc_space *pa;
3682 struct ext4_group_info *grp;
3683
3684 /* preallocate only when found space is larger then requested */
3685 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3686 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3687 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3688
3689 BUG_ON(ext4_pspace_cachep == NULL);
3690 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3691 if (pa == NULL)
3692 return -ENOMEM;
3693
3694 /* preallocation can change ac_b_ex, thus we store actually
3695 * allocated blocks for history */
3696 ac->ac_f_ex = ac->ac_b_ex;
3697
3698 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3699 pa->pa_lstart = pa->pa_pstart;
3700 pa->pa_len = ac->ac_b_ex.fe_len;
3701 pa->pa_free = pa->pa_len;
3702 atomic_set(&pa->pa_count, 1);
3703 spin_lock_init(&pa->pa_lock);
3704 INIT_LIST_HEAD(&pa->pa_inode_list);
3705 INIT_LIST_HEAD(&pa->pa_group_list);
3706 pa->pa_deleted = 0;
3707 pa->pa_type = MB_GROUP_PA;
3708
3709 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3710 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3711 trace_ext4_mb_new_group_pa(ac, pa);
3712
3713 ext4_mb_use_group_pa(ac, pa);
3714 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3715
3716 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3717 lg = ac->ac_lg;
3718 BUG_ON(lg == NULL);
3719
3720 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3721 pa->pa_inode = NULL;
3722
3723 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3724 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3725 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3726
3727 /*
3728 * We will later add the new pa to the right bucket
3729 * after updating the pa_free in ext4_mb_release_context
3730 */
3731 return 0;
3732}
3733
3734static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3735{
3736 int err;
3737
3738 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3739 err = ext4_mb_new_group_pa(ac);
3740 else
3741 err = ext4_mb_new_inode_pa(ac);
3742 return err;
3743}
3744
3745/*
3746 * finds all unused blocks in on-disk bitmap, frees them in
3747 * in-core bitmap and buddy.
3748 * @pa must be unlinked from inode and group lists, so that
3749 * nobody else can find/use it.
3750 * the caller MUST hold group/inode locks.
3751 * TODO: optimize the case when there are no in-core structures yet
3752 */
3753static noinline_for_stack int
3754ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3755 struct ext4_prealloc_space *pa)
3756{
3757 struct super_block *sb = e4b->bd_sb;
3758 struct ext4_sb_info *sbi = EXT4_SB(sb);
3759 unsigned int end;
3760 unsigned int next;
3761 ext4_group_t group;
3762 ext4_grpblk_t bit;
3763 unsigned long long grp_blk_start;
3764 int err = 0;
3765 int free = 0;
3766
3767 BUG_ON(pa->pa_deleted == 0);
3768 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3769 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3770 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3771 end = bit + pa->pa_len;
3772
3773 while (bit < end) {
3774 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3775 if (bit >= end)
3776 break;
3777 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3778 mb_debug(1, " free preallocated %u/%u in group %u\n",
3779 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3780 (unsigned) next - bit, (unsigned) group);
3781 free += next - bit;
3782
3783 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3784 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3785 EXT4_C2B(sbi, bit)),
3786 next - bit);
3787 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3788 bit = next + 1;
3789 }
3790 if (free != pa->pa_free) {
3791 ext4_msg(e4b->bd_sb, KERN_CRIT,
3792 "pa %p: logic %lu, phys. %lu, len %lu",
3793 pa, (unsigned long) pa->pa_lstart,
3794 (unsigned long) pa->pa_pstart,
3795 (unsigned long) pa->pa_len);
3796 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3797 free, pa->pa_free);
3798 /*
3799 * pa is already deleted so we use the value obtained
3800 * from the bitmap and continue.
3801 */
3802 }
3803 atomic_add(free, &sbi->s_mb_discarded);
3804
3805 return err;
3806}
3807
3808static noinline_for_stack int
3809ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3810 struct ext4_prealloc_space *pa)
3811{
3812 struct super_block *sb = e4b->bd_sb;
3813 ext4_group_t group;
3814 ext4_grpblk_t bit;
3815
3816 trace_ext4_mb_release_group_pa(sb, pa);
3817 BUG_ON(pa->pa_deleted == 0);
3818 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3819 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3820 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3821 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3822 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3823
3824 return 0;
3825}
3826
3827/*
3828 * releases all preallocations in given group
3829 *
3830 * first, we need to decide discard policy:
3831 * - when do we discard
3832 * 1) ENOSPC
3833 * - how many do we discard
3834 * 1) how many requested
3835 */
3836static noinline_for_stack int
3837ext4_mb_discard_group_preallocations(struct super_block *sb,
3838 ext4_group_t group, int needed)
3839{
3840 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3841 struct buffer_head *bitmap_bh = NULL;
3842 struct ext4_prealloc_space *pa, *tmp;
3843 struct list_head list;
3844 struct ext4_buddy e4b;
3845 int err;
3846 int busy = 0;
3847 int free = 0;
3848
3849 mb_debug(1, "discard preallocation for group %u\n", group);
3850
3851 if (list_empty(&grp->bb_prealloc_list))
3852 return 0;
3853
3854 bitmap_bh = ext4_read_block_bitmap(sb, group);
3855 if (IS_ERR(bitmap_bh)) {
3856 err = PTR_ERR(bitmap_bh);
3857 ext4_error(sb, "Error %d reading block bitmap for %u",
3858 err, group);
3859 return 0;
3860 }
3861
3862 err = ext4_mb_load_buddy(sb, group, &e4b);
3863 if (err) {
3864 ext4_error(sb, "Error loading buddy information for %u", group);
3865 put_bh(bitmap_bh);
3866 return 0;
3867 }
3868
3869 if (needed == 0)
3870 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3871
3872 INIT_LIST_HEAD(&list);
3873repeat:
3874 ext4_lock_group(sb, group);
3875 list_for_each_entry_safe(pa, tmp,
3876 &grp->bb_prealloc_list, pa_group_list) {
3877 spin_lock(&pa->pa_lock);
3878 if (atomic_read(&pa->pa_count)) {
3879 spin_unlock(&pa->pa_lock);
3880 busy = 1;
3881 continue;
3882 }
3883 if (pa->pa_deleted) {
3884 spin_unlock(&pa->pa_lock);
3885 continue;
3886 }
3887
3888 /* seems this one can be freed ... */
3889 pa->pa_deleted = 1;
3890
3891 /* we can trust pa_free ... */
3892 free += pa->pa_free;
3893
3894 spin_unlock(&pa->pa_lock);
3895
3896 list_del(&pa->pa_group_list);
3897 list_add(&pa->u.pa_tmp_list, &list);
3898 }
3899
3900 /* if we still need more blocks and some PAs were used, try again */
3901 if (free < needed && busy) {
3902 busy = 0;
3903 ext4_unlock_group(sb, group);
3904 cond_resched();
3905 goto repeat;
3906 }
3907
3908 /* found anything to free? */
3909 if (list_empty(&list)) {
3910 BUG_ON(free != 0);
3911 goto out;
3912 }
3913
3914 /* now free all selected PAs */
3915 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3916
3917 /* remove from object (inode or locality group) */
3918 spin_lock(pa->pa_obj_lock);
3919 list_del_rcu(&pa->pa_inode_list);
3920 spin_unlock(pa->pa_obj_lock);
3921
3922 if (pa->pa_type == MB_GROUP_PA)
3923 ext4_mb_release_group_pa(&e4b, pa);
3924 else
3925 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3926
3927 list_del(&pa->u.pa_tmp_list);
3928 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3929 }
3930
3931out:
3932 ext4_unlock_group(sb, group);
3933 ext4_mb_unload_buddy(&e4b);
3934 put_bh(bitmap_bh);
3935 return free;
3936}
3937
3938/*
3939 * releases all non-used preallocated blocks for given inode
3940 *
3941 * It's important to discard preallocations under i_data_sem
3942 * We don't want another block to be served from the prealloc
3943 * space when we are discarding the inode prealloc space.
3944 *
3945 * FIXME!! Make sure it is valid at all the call sites
3946 */
3947void ext4_discard_preallocations(struct inode *inode)
3948{
3949 struct ext4_inode_info *ei = EXT4_I(inode);
3950 struct super_block *sb = inode->i_sb;
3951 struct buffer_head *bitmap_bh = NULL;
3952 struct ext4_prealloc_space *pa, *tmp;
3953 ext4_group_t group = 0;
3954 struct list_head list;
3955 struct ext4_buddy e4b;
3956 int err;
3957
3958 if (!S_ISREG(inode->i_mode)) {
3959 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3960 return;
3961 }
3962
3963 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3964 trace_ext4_discard_preallocations(inode);
3965
3966 INIT_LIST_HEAD(&list);
3967
3968repeat:
3969 /* first, collect all pa's in the inode */
3970 spin_lock(&ei->i_prealloc_lock);
3971 while (!list_empty(&ei->i_prealloc_list)) {
3972 pa = list_entry(ei->i_prealloc_list.next,
3973 struct ext4_prealloc_space, pa_inode_list);
3974 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3975 spin_lock(&pa->pa_lock);
3976 if (atomic_read(&pa->pa_count)) {
3977 /* this shouldn't happen often - nobody should
3978 * use preallocation while we're discarding it */
3979 spin_unlock(&pa->pa_lock);
3980 spin_unlock(&ei->i_prealloc_lock);
3981 ext4_msg(sb, KERN_ERR,
3982 "uh-oh! used pa while discarding");
3983 WARN_ON(1);
3984 schedule_timeout_uninterruptible(HZ);
3985 goto repeat;
3986
3987 }
3988 if (pa->pa_deleted == 0) {
3989 pa->pa_deleted = 1;
3990 spin_unlock(&pa->pa_lock);
3991 list_del_rcu(&pa->pa_inode_list);
3992 list_add(&pa->u.pa_tmp_list, &list);
3993 continue;
3994 }
3995
3996 /* someone is deleting pa right now */
3997 spin_unlock(&pa->pa_lock);
3998 spin_unlock(&ei->i_prealloc_lock);
3999
4000 /* we have to wait here because pa_deleted
4001 * doesn't mean pa is already unlinked from
4002 * the list. as we might be called from
4003 * ->clear_inode() the inode will get freed
4004 * and concurrent thread which is unlinking
4005 * pa from inode's list may access already
4006 * freed memory, bad-bad-bad */
4007
4008 /* XXX: if this happens too often, we can
4009 * add a flag to force wait only in case
4010 * of ->clear_inode(), but not in case of
4011 * regular truncate */
4012 schedule_timeout_uninterruptible(HZ);
4013 goto repeat;
4014 }
4015 spin_unlock(&ei->i_prealloc_lock);
4016
4017 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4018 BUG_ON(pa->pa_type != MB_INODE_PA);
4019 group = ext4_get_group_number(sb, pa->pa_pstart);
4020
4021 err = ext4_mb_load_buddy(sb, group, &e4b);
4022 if (err) {
4023 ext4_error(sb, "Error loading buddy information for %u",
4024 group);
4025 continue;
4026 }
4027
4028 bitmap_bh = ext4_read_block_bitmap(sb, group);
4029 if (IS_ERR(bitmap_bh)) {
4030 err = PTR_ERR(bitmap_bh);
4031 ext4_error(sb, "Error %d reading block bitmap for %u",
4032 err, group);
4033 ext4_mb_unload_buddy(&e4b);
4034 continue;
4035 }
4036
4037 ext4_lock_group(sb, group);
4038 list_del(&pa->pa_group_list);
4039 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4040 ext4_unlock_group(sb, group);
4041
4042 ext4_mb_unload_buddy(&e4b);
4043 put_bh(bitmap_bh);
4044
4045 list_del(&pa->u.pa_tmp_list);
4046 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4047 }
4048}
4049
4050#ifdef CONFIG_EXT4_DEBUG
4051static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4052{
4053 struct super_block *sb = ac->ac_sb;
4054 ext4_group_t ngroups, i;
4055
4056 if (!ext4_mballoc_debug ||
4057 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4058 return;
4059
4060 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4061 " Allocation context details:");
4062 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4063 ac->ac_status, ac->ac_flags);
4064 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4065 "goal %lu/%lu/%lu@%lu, "
4066 "best %lu/%lu/%lu@%lu cr %d",
4067 (unsigned long)ac->ac_o_ex.fe_group,
4068 (unsigned long)ac->ac_o_ex.fe_start,
4069 (unsigned long)ac->ac_o_ex.fe_len,
4070 (unsigned long)ac->ac_o_ex.fe_logical,
4071 (unsigned long)ac->ac_g_ex.fe_group,
4072 (unsigned long)ac->ac_g_ex.fe_start,
4073 (unsigned long)ac->ac_g_ex.fe_len,
4074 (unsigned long)ac->ac_g_ex.fe_logical,
4075 (unsigned long)ac->ac_b_ex.fe_group,
4076 (unsigned long)ac->ac_b_ex.fe_start,
4077 (unsigned long)ac->ac_b_ex.fe_len,
4078 (unsigned long)ac->ac_b_ex.fe_logical,
4079 (int)ac->ac_criteria);
4080 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4081 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4082 ngroups = ext4_get_groups_count(sb);
4083 for (i = 0; i < ngroups; i++) {
4084 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4085 struct ext4_prealloc_space *pa;
4086 ext4_grpblk_t start;
4087 struct list_head *cur;
4088 ext4_lock_group(sb, i);
4089 list_for_each(cur, &grp->bb_prealloc_list) {
4090 pa = list_entry(cur, struct ext4_prealloc_space,
4091 pa_group_list);
4092 spin_lock(&pa->pa_lock);
4093 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4094 NULL, &start);
4095 spin_unlock(&pa->pa_lock);
4096 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4097 start, pa->pa_len);
4098 }
4099 ext4_unlock_group(sb, i);
4100
4101 if (grp->bb_free == 0)
4102 continue;
4103 printk(KERN_ERR "%u: %d/%d \n",
4104 i, grp->bb_free, grp->bb_fragments);
4105 }
4106 printk(KERN_ERR "\n");
4107}
4108#else
4109static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4110{
4111 return;
4112}
4113#endif
4114
4115/*
4116 * We use locality group preallocation for small size file. The size of the
4117 * file is determined by the current size or the resulting size after
4118 * allocation which ever is larger
4119 *
4120 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4121 */
4122static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4123{
4124 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4125 int bsbits = ac->ac_sb->s_blocksize_bits;
4126 loff_t size, isize;
4127
4128 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4129 return;
4130
4131 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4132 return;
4133
4134 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4135 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4136 >> bsbits;
4137
4138 if ((size == isize) &&
4139 !ext4_fs_is_busy(sbi) &&
4140 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4141 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4142 return;
4143 }
4144
4145 if (sbi->s_mb_group_prealloc <= 0) {
4146 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4147 return;
4148 }
4149
4150 /* don't use group allocation for large files */
4151 size = max(size, isize);
4152 if (size > sbi->s_mb_stream_request) {
4153 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4154 return;
4155 }
4156
4157 BUG_ON(ac->ac_lg != NULL);
4158 /*
4159 * locality group prealloc space are per cpu. The reason for having
4160 * per cpu locality group is to reduce the contention between block
4161 * request from multiple CPUs.
4162 */
4163 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4164
4165 /* we're going to use group allocation */
4166 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4167
4168 /* serialize all allocations in the group */
4169 mutex_lock(&ac->ac_lg->lg_mutex);
4170}
4171
4172static noinline_for_stack int
4173ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4174 struct ext4_allocation_request *ar)
4175{
4176 struct super_block *sb = ar->inode->i_sb;
4177 struct ext4_sb_info *sbi = EXT4_SB(sb);
4178 struct ext4_super_block *es = sbi->s_es;
4179 ext4_group_t group;
4180 unsigned int len;
4181 ext4_fsblk_t goal;
4182 ext4_grpblk_t block;
4183
4184 /* we can't allocate > group size */
4185 len = ar->len;
4186
4187 /* just a dirty hack to filter too big requests */
4188 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4189 len = EXT4_CLUSTERS_PER_GROUP(sb);
4190
4191 /* start searching from the goal */
4192 goal = ar->goal;
4193 if (goal < le32_to_cpu(es->s_first_data_block) ||
4194 goal >= ext4_blocks_count(es))
4195 goal = le32_to_cpu(es->s_first_data_block);
4196 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4197
4198 /* set up allocation goals */
4199 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4200 ac->ac_status = AC_STATUS_CONTINUE;
4201 ac->ac_sb = sb;
4202 ac->ac_inode = ar->inode;
4203 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4204 ac->ac_o_ex.fe_group = group;
4205 ac->ac_o_ex.fe_start = block;
4206 ac->ac_o_ex.fe_len = len;
4207 ac->ac_g_ex = ac->ac_o_ex;
4208 ac->ac_flags = ar->flags;
4209
4210 /* we have to define context: we'll we work with a file or
4211 * locality group. this is a policy, actually */
4212 ext4_mb_group_or_file(ac);
4213
4214 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4215 "left: %u/%u, right %u/%u to %swritable\n",
4216 (unsigned) ar->len, (unsigned) ar->logical,
4217 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4218 (unsigned) ar->lleft, (unsigned) ar->pleft,
4219 (unsigned) ar->lright, (unsigned) ar->pright,
4220 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4221 return 0;
4222
4223}
4224
4225static noinline_for_stack void
4226ext4_mb_discard_lg_preallocations(struct super_block *sb,
4227 struct ext4_locality_group *lg,
4228 int order, int total_entries)
4229{
4230 ext4_group_t group = 0;
4231 struct ext4_buddy e4b;
4232 struct list_head discard_list;
4233 struct ext4_prealloc_space *pa, *tmp;
4234
4235 mb_debug(1, "discard locality group preallocation\n");
4236
4237 INIT_LIST_HEAD(&discard_list);
4238
4239 spin_lock(&lg->lg_prealloc_lock);
4240 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4241 pa_inode_list) {
4242 spin_lock(&pa->pa_lock);
4243 if (atomic_read(&pa->pa_count)) {
4244 /*
4245 * This is the pa that we just used
4246 * for block allocation. So don't
4247 * free that
4248 */
4249 spin_unlock(&pa->pa_lock);
4250 continue;
4251 }
4252 if (pa->pa_deleted) {
4253 spin_unlock(&pa->pa_lock);
4254 continue;
4255 }
4256 /* only lg prealloc space */
4257 BUG_ON(pa->pa_type != MB_GROUP_PA);
4258
4259 /* seems this one can be freed ... */
4260 pa->pa_deleted = 1;
4261 spin_unlock(&pa->pa_lock);
4262
4263 list_del_rcu(&pa->pa_inode_list);
4264 list_add(&pa->u.pa_tmp_list, &discard_list);
4265
4266 total_entries--;
4267 if (total_entries <= 5) {
4268 /*
4269 * we want to keep only 5 entries
4270 * allowing it to grow to 8. This
4271 * mak sure we don't call discard
4272 * soon for this list.
4273 */
4274 break;
4275 }
4276 }
4277 spin_unlock(&lg->lg_prealloc_lock);
4278
4279 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4280
4281 group = ext4_get_group_number(sb, pa->pa_pstart);
4282 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4283 ext4_error(sb, "Error loading buddy information for %u",
4284 group);
4285 continue;
4286 }
4287 ext4_lock_group(sb, group);
4288 list_del(&pa->pa_group_list);
4289 ext4_mb_release_group_pa(&e4b, pa);
4290 ext4_unlock_group(sb, group);
4291
4292 ext4_mb_unload_buddy(&e4b);
4293 list_del(&pa->u.pa_tmp_list);
4294 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4295 }
4296}
4297
4298/*
4299 * We have incremented pa_count. So it cannot be freed at this
4300 * point. Also we hold lg_mutex. So no parallel allocation is
4301 * possible from this lg. That means pa_free cannot be updated.
4302 *
4303 * A parallel ext4_mb_discard_group_preallocations is possible.
4304 * which can cause the lg_prealloc_list to be updated.
4305 */
4306
4307static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4308{
4309 int order, added = 0, lg_prealloc_count = 1;
4310 struct super_block *sb = ac->ac_sb;
4311 struct ext4_locality_group *lg = ac->ac_lg;
4312 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4313
4314 order = fls(pa->pa_free) - 1;
4315 if (order > PREALLOC_TB_SIZE - 1)
4316 /* The max size of hash table is PREALLOC_TB_SIZE */
4317 order = PREALLOC_TB_SIZE - 1;
4318 /* Add the prealloc space to lg */
4319 spin_lock(&lg->lg_prealloc_lock);
4320 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4321 pa_inode_list) {
4322 spin_lock(&tmp_pa->pa_lock);
4323 if (tmp_pa->pa_deleted) {
4324 spin_unlock(&tmp_pa->pa_lock);
4325 continue;
4326 }
4327 if (!added && pa->pa_free < tmp_pa->pa_free) {
4328 /* Add to the tail of the previous entry */
4329 list_add_tail_rcu(&pa->pa_inode_list,
4330 &tmp_pa->pa_inode_list);
4331 added = 1;
4332 /*
4333 * we want to count the total
4334 * number of entries in the list
4335 */
4336 }
4337 spin_unlock(&tmp_pa->pa_lock);
4338 lg_prealloc_count++;
4339 }
4340 if (!added)
4341 list_add_tail_rcu(&pa->pa_inode_list,
4342 &lg->lg_prealloc_list[order]);
4343 spin_unlock(&lg->lg_prealloc_lock);
4344
4345 /* Now trim the list to be not more than 8 elements */
4346 if (lg_prealloc_count > 8) {
4347 ext4_mb_discard_lg_preallocations(sb, lg,
4348 order, lg_prealloc_count);
4349 return;
4350 }
4351 return ;
4352}
4353
4354/*
4355 * release all resource we used in allocation
4356 */
4357static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4358{
4359 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4360 struct ext4_prealloc_space *pa = ac->ac_pa;
4361 if (pa) {
4362 if (pa->pa_type == MB_GROUP_PA) {
4363 /* see comment in ext4_mb_use_group_pa() */
4364 spin_lock(&pa->pa_lock);
4365 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4366 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4367 pa->pa_free -= ac->ac_b_ex.fe_len;
4368 pa->pa_len -= ac->ac_b_ex.fe_len;
4369 spin_unlock(&pa->pa_lock);
4370 }
4371 }
4372 if (pa) {
4373 /*
4374 * We want to add the pa to the right bucket.
4375 * Remove it from the list and while adding
4376 * make sure the list to which we are adding
4377 * doesn't grow big.
4378 */
4379 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4380 spin_lock(pa->pa_obj_lock);
4381 list_del_rcu(&pa->pa_inode_list);
4382 spin_unlock(pa->pa_obj_lock);
4383 ext4_mb_add_n_trim(ac);
4384 }
4385 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4386 }
4387 if (ac->ac_bitmap_page)
4388 put_page(ac->ac_bitmap_page);
4389 if (ac->ac_buddy_page)
4390 put_page(ac->ac_buddy_page);
4391 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4392 mutex_unlock(&ac->ac_lg->lg_mutex);
4393 ext4_mb_collect_stats(ac);
4394 return 0;
4395}
4396
4397static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4398{
4399 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4400 int ret;
4401 int freed = 0;
4402
4403 trace_ext4_mb_discard_preallocations(sb, needed);
4404 for (i = 0; i < ngroups && needed > 0; i++) {
4405 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4406 freed += ret;
4407 needed -= ret;
4408 }
4409
4410 return freed;
4411}
4412
4413/*
4414 * Main entry point into mballoc to allocate blocks
4415 * it tries to use preallocation first, then falls back
4416 * to usual allocation
4417 */
4418ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4419 struct ext4_allocation_request *ar, int *errp)
4420{
4421 int freed;
4422 struct ext4_allocation_context *ac = NULL;
4423 struct ext4_sb_info *sbi;
4424 struct super_block *sb;
4425 ext4_fsblk_t block = 0;
4426 unsigned int inquota = 0;
4427 unsigned int reserv_clstrs = 0;
4428
4429 might_sleep();
4430 sb = ar->inode->i_sb;
4431 sbi = EXT4_SB(sb);
4432
4433 trace_ext4_request_blocks(ar);
4434
4435 /* Allow to use superuser reservation for quota file */
4436 if (IS_NOQUOTA(ar->inode))
4437 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4438
4439 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4440 /* Without delayed allocation we need to verify
4441 * there is enough free blocks to do block allocation
4442 * and verify allocation doesn't exceed the quota limits.
4443 */
4444 while (ar->len &&
4445 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4446
4447 /* let others to free the space */
4448 cond_resched();
4449 ar->len = ar->len >> 1;
4450 }
4451 if (!ar->len) {
4452 *errp = -ENOSPC;
4453 return 0;
4454 }
4455 reserv_clstrs = ar->len;
4456 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4457 dquot_alloc_block_nofail(ar->inode,
4458 EXT4_C2B(sbi, ar->len));
4459 } else {
4460 while (ar->len &&
4461 dquot_alloc_block(ar->inode,
4462 EXT4_C2B(sbi, ar->len))) {
4463
4464 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4465 ar->len--;
4466 }
4467 }
4468 inquota = ar->len;
4469 if (ar->len == 0) {
4470 *errp = -EDQUOT;
4471 goto out;
4472 }
4473 }
4474
4475 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4476 if (!ac) {
4477 ar->len = 0;
4478 *errp = -ENOMEM;
4479 goto out;
4480 }
4481
4482 *errp = ext4_mb_initialize_context(ac, ar);
4483 if (*errp) {
4484 ar->len = 0;
4485 goto out;
4486 }
4487
4488 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4489 if (!ext4_mb_use_preallocated(ac)) {
4490 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4491 ext4_mb_normalize_request(ac, ar);
4492repeat:
4493 /* allocate space in core */
4494 *errp = ext4_mb_regular_allocator(ac);
4495 if (*errp)
4496 goto discard_and_exit;
4497
4498 /* as we've just preallocated more space than
4499 * user requested originally, we store allocated
4500 * space in a special descriptor */
4501 if (ac->ac_status == AC_STATUS_FOUND &&
4502 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4503 *errp = ext4_mb_new_preallocation(ac);
4504 if (*errp) {
4505 discard_and_exit:
4506 ext4_discard_allocated_blocks(ac);
4507 goto errout;
4508 }
4509 }
4510 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4511 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4512 if (*errp == -EAGAIN) {
4513 /*
4514 * drop the reference that we took
4515 * in ext4_mb_use_best_found
4516 */
4517 ext4_mb_release_context(ac);
4518 ac->ac_b_ex.fe_group = 0;
4519 ac->ac_b_ex.fe_start = 0;
4520 ac->ac_b_ex.fe_len = 0;
4521 ac->ac_status = AC_STATUS_CONTINUE;
4522 goto repeat;
4523 } else if (*errp) {
4524 ext4_discard_allocated_blocks(ac);
4525 goto errout;
4526 } else {
4527 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4528 ar->len = ac->ac_b_ex.fe_len;
4529 }
4530 } else {
4531 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4532 if (freed)
4533 goto repeat;
4534 *errp = -ENOSPC;
4535 }
4536
4537errout:
4538 if (*errp) {
4539 ac->ac_b_ex.fe_len = 0;
4540 ar->len = 0;
4541 ext4_mb_show_ac(ac);
4542 }
4543 ext4_mb_release_context(ac);
4544out:
4545 if (ac)
4546 kmem_cache_free(ext4_ac_cachep, ac);
4547 if (inquota && ar->len < inquota)
4548 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4549 if (!ar->len) {
4550 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4551 /* release all the reserved blocks if non delalloc */
4552 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4553 reserv_clstrs);
4554 }
4555
4556 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4557
4558 return block;
4559}
4560
4561/*
4562 * We can merge two free data extents only if the physical blocks
4563 * are contiguous, AND the extents were freed by the same transaction,
4564 * AND the blocks are associated with the same group.
4565 */
4566static int can_merge(struct ext4_free_data *entry1,
4567 struct ext4_free_data *entry2)
4568{
4569 if ((entry1->efd_tid == entry2->efd_tid) &&
4570 (entry1->efd_group == entry2->efd_group) &&
4571 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4572 return 1;
4573 return 0;
4574}
4575
4576static noinline_for_stack int
4577ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4578 struct ext4_free_data *new_entry)
4579{
4580 ext4_group_t group = e4b->bd_group;
4581 ext4_grpblk_t cluster;
4582 struct ext4_free_data *entry;
4583 struct ext4_group_info *db = e4b->bd_info;
4584 struct super_block *sb = e4b->bd_sb;
4585 struct ext4_sb_info *sbi = EXT4_SB(sb);
4586 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4587 struct rb_node *parent = NULL, *new_node;
4588
4589 BUG_ON(!ext4_handle_valid(handle));
4590 BUG_ON(e4b->bd_bitmap_page == NULL);
4591 BUG_ON(e4b->bd_buddy_page == NULL);
4592
4593 new_node = &new_entry->efd_node;
4594 cluster = new_entry->efd_start_cluster;
4595
4596 if (!*n) {
4597 /* first free block exent. We need to
4598 protect buddy cache from being freed,
4599 * otherwise we'll refresh it from
4600 * on-disk bitmap and lose not-yet-available
4601 * blocks */
4602 get_page(e4b->bd_buddy_page);
4603 get_page(e4b->bd_bitmap_page);
4604 }
4605 while (*n) {
4606 parent = *n;
4607 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4608 if (cluster < entry->efd_start_cluster)
4609 n = &(*n)->rb_left;
4610 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4611 n = &(*n)->rb_right;
4612 else {
4613 ext4_grp_locked_error(sb, group, 0,
4614 ext4_group_first_block_no(sb, group) +
4615 EXT4_C2B(sbi, cluster),
4616 "Block already on to-be-freed list");
4617 return 0;
4618 }
4619 }
4620
4621 rb_link_node(new_node, parent, n);
4622 rb_insert_color(new_node, &db->bb_free_root);
4623
4624 /* Now try to see the extent can be merged to left and right */
4625 node = rb_prev(new_node);
4626 if (node) {
4627 entry = rb_entry(node, struct ext4_free_data, efd_node);
4628 if (can_merge(entry, new_entry) &&
4629 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4630 new_entry->efd_start_cluster = entry->efd_start_cluster;
4631 new_entry->efd_count += entry->efd_count;
4632 rb_erase(node, &(db->bb_free_root));
4633 kmem_cache_free(ext4_free_data_cachep, entry);
4634 }
4635 }
4636
4637 node = rb_next(new_node);
4638 if (node) {
4639 entry = rb_entry(node, struct ext4_free_data, efd_node);
4640 if (can_merge(new_entry, entry) &&
4641 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4642 new_entry->efd_count += entry->efd_count;
4643 rb_erase(node, &(db->bb_free_root));
4644 kmem_cache_free(ext4_free_data_cachep, entry);
4645 }
4646 }
4647 /* Add the extent to transaction's private list */
4648 ext4_journal_callback_add(handle, ext4_free_data_callback,
4649 &new_entry->efd_jce);
4650 return 0;
4651}
4652
4653/**
4654 * ext4_free_blocks() -- Free given blocks and update quota
4655 * @handle: handle for this transaction
4656 * @inode: inode
4657 * @block: start physical block to free
4658 * @count: number of blocks to count
4659 * @flags: flags used by ext4_free_blocks
4660 */
4661void ext4_free_blocks(handle_t *handle, struct inode *inode,
4662 struct buffer_head *bh, ext4_fsblk_t block,
4663 unsigned long count, int flags)
4664{
4665 struct buffer_head *bitmap_bh = NULL;
4666 struct super_block *sb = inode->i_sb;
4667 struct ext4_group_desc *gdp;
4668 unsigned int overflow;
4669 ext4_grpblk_t bit;
4670 struct buffer_head *gd_bh;
4671 ext4_group_t block_group;
4672 struct ext4_sb_info *sbi;
4673 struct ext4_buddy e4b;
4674 unsigned int count_clusters;
4675 int err = 0;
4676 int ret;
4677
4678 might_sleep();
4679 if (bh) {
4680 if (block)
4681 BUG_ON(block != bh->b_blocknr);
4682 else
4683 block = bh->b_blocknr;
4684 }
4685
4686 sbi = EXT4_SB(sb);
4687 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4688 !ext4_data_block_valid(sbi, block, count)) {
4689 ext4_error(sb, "Freeing blocks not in datazone - "
4690 "block = %llu, count = %lu", block, count);
4691 goto error_return;
4692 }
4693
4694 ext4_debug("freeing block %llu\n", block);
4695 trace_ext4_free_blocks(inode, block, count, flags);
4696
4697 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4698 BUG_ON(count > 1);
4699
4700 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4701 inode, bh, block);
4702 }
4703
4704 /*
4705 * If the extent to be freed does not begin on a cluster
4706 * boundary, we need to deal with partial clusters at the
4707 * beginning and end of the extent. Normally we will free
4708 * blocks at the beginning or the end unless we are explicitly
4709 * requested to avoid doing so.
4710 */
4711 overflow = EXT4_PBLK_COFF(sbi, block);
4712 if (overflow) {
4713 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4714 overflow = sbi->s_cluster_ratio - overflow;
4715 block += overflow;
4716 if (count > overflow)
4717 count -= overflow;
4718 else
4719 return;
4720 } else {
4721 block -= overflow;
4722 count += overflow;
4723 }
4724 }
4725 overflow = EXT4_LBLK_COFF(sbi, count);
4726 if (overflow) {
4727 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4728 if (count > overflow)
4729 count -= overflow;
4730 else
4731 return;
4732 } else
4733 count += sbi->s_cluster_ratio - overflow;
4734 }
4735
4736 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4737 int i;
4738 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4739
4740 for (i = 0; i < count; i++) {
4741 cond_resched();
4742 if (is_metadata)
4743 bh = sb_find_get_block(inode->i_sb, block + i);
4744 ext4_forget(handle, is_metadata, inode, bh, block + i);
4745 }
4746 }
4747
4748do_more:
4749 overflow = 0;
4750 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4751
4752 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4753 ext4_get_group_info(sb, block_group))))
4754 return;
4755
4756 /*
4757 * Check to see if we are freeing blocks across a group
4758 * boundary.
4759 */
4760 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4761 overflow = EXT4_C2B(sbi, bit) + count -
4762 EXT4_BLOCKS_PER_GROUP(sb);
4763 count -= overflow;
4764 }
4765 count_clusters = EXT4_NUM_B2C(sbi, count);
4766 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4767 if (IS_ERR(bitmap_bh)) {
4768 err = PTR_ERR(bitmap_bh);
4769 bitmap_bh = NULL;
4770 goto error_return;
4771 }
4772 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4773 if (!gdp) {
4774 err = -EIO;
4775 goto error_return;
4776 }
4777
4778 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4779 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4780 in_range(block, ext4_inode_table(sb, gdp),
4781 EXT4_SB(sb)->s_itb_per_group) ||
4782 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4783 EXT4_SB(sb)->s_itb_per_group)) {
4784
4785 ext4_error(sb, "Freeing blocks in system zone - "
4786 "Block = %llu, count = %lu", block, count);
4787 /* err = 0. ext4_std_error should be a no op */
4788 goto error_return;
4789 }
4790
4791 BUFFER_TRACE(bitmap_bh, "getting write access");
4792 err = ext4_journal_get_write_access(handle, bitmap_bh);
4793 if (err)
4794 goto error_return;
4795
4796 /*
4797 * We are about to modify some metadata. Call the journal APIs
4798 * to unshare ->b_data if a currently-committing transaction is
4799 * using it
4800 */
4801 BUFFER_TRACE(gd_bh, "get_write_access");
4802 err = ext4_journal_get_write_access(handle, gd_bh);
4803 if (err)
4804 goto error_return;
4805#ifdef AGGRESSIVE_CHECK
4806 {
4807 int i;
4808 for (i = 0; i < count_clusters; i++)
4809 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4810 }
4811#endif
4812 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4813
4814 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4815 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4816 GFP_NOFS|__GFP_NOFAIL);
4817 if (err)
4818 goto error_return;
4819
4820 /*
4821 * We need to make sure we don't reuse the freed block until after the
4822 * transaction is committed. We make an exception if the inode is to be
4823 * written in writeback mode since writeback mode has weak data
4824 * consistency guarantees.
4825 */
4826 if (ext4_handle_valid(handle) &&
4827 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4828 !ext4_should_writeback_data(inode))) {
4829 struct ext4_free_data *new_entry;
4830 /*
4831 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4832 * to fail.
4833 */
4834 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4835 GFP_NOFS|__GFP_NOFAIL);
4836 new_entry->efd_start_cluster = bit;
4837 new_entry->efd_group = block_group;
4838 new_entry->efd_count = count_clusters;
4839 new_entry->efd_tid = handle->h_transaction->t_tid;
4840
4841 ext4_lock_group(sb, block_group);
4842 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843 ext4_mb_free_metadata(handle, &e4b, new_entry);
4844 } else {
4845 /* need to update group_info->bb_free and bitmap
4846 * with group lock held. generate_buddy look at
4847 * them with group lock_held
4848 */
4849 if (test_opt(sb, DISCARD)) {
4850 err = ext4_issue_discard(sb, block_group, bit, count);
4851 if (err && err != -EOPNOTSUPP)
4852 ext4_msg(sb, KERN_WARNING, "discard request in"
4853 " group:%d block:%d count:%lu failed"
4854 " with %d", block_group, bit, count,
4855 err);
4856 } else
4857 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4858
4859 ext4_lock_group(sb, block_group);
4860 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4861 mb_free_blocks(inode, &e4b, bit, count_clusters);
4862 }
4863
4864 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4865 ext4_free_group_clusters_set(sb, gdp, ret);
4866 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4867 ext4_group_desc_csum_set(sb, block_group, gdp);
4868 ext4_unlock_group(sb, block_group);
4869
4870 if (sbi->s_log_groups_per_flex) {
4871 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4872 atomic64_add(count_clusters,
4873 &sbi->s_flex_groups[flex_group].free_clusters);
4874 }
4875
4876 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4877 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4878 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4879
4880 ext4_mb_unload_buddy(&e4b);
4881
4882 /* We dirtied the bitmap block */
4883 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4884 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4885
4886 /* And the group descriptor block */
4887 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4888 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4889 if (!err)
4890 err = ret;
4891
4892 if (overflow && !err) {
4893 block += count;
4894 count = overflow;
4895 put_bh(bitmap_bh);
4896 goto do_more;
4897 }
4898error_return:
4899 brelse(bitmap_bh);
4900 ext4_std_error(sb, err);
4901 return;
4902}
4903
4904/**
4905 * ext4_group_add_blocks() -- Add given blocks to an existing group
4906 * @handle: handle to this transaction
4907 * @sb: super block
4908 * @block: start physical block to add to the block group
4909 * @count: number of blocks to free
4910 *
4911 * This marks the blocks as free in the bitmap and buddy.
4912 */
4913int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4914 ext4_fsblk_t block, unsigned long count)
4915{
4916 struct buffer_head *bitmap_bh = NULL;
4917 struct buffer_head *gd_bh;
4918 ext4_group_t block_group;
4919 ext4_grpblk_t bit;
4920 unsigned int i;
4921 struct ext4_group_desc *desc;
4922 struct ext4_sb_info *sbi = EXT4_SB(sb);
4923 struct ext4_buddy e4b;
4924 int err = 0, ret, blk_free_count;
4925 ext4_grpblk_t blocks_freed;
4926
4927 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4928
4929 if (count == 0)
4930 return 0;
4931
4932 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4933 /*
4934 * Check to see if we are freeing blocks across a group
4935 * boundary.
4936 */
4937 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4938 ext4_warning(sb, "too much blocks added to group %u\n",
4939 block_group);
4940 err = -EINVAL;
4941 goto error_return;
4942 }
4943
4944 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4945 if (IS_ERR(bitmap_bh)) {
4946 err = PTR_ERR(bitmap_bh);
4947 bitmap_bh = NULL;
4948 goto error_return;
4949 }
4950
4951 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4952 if (!desc) {
4953 err = -EIO;
4954 goto error_return;
4955 }
4956
4957 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4958 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4959 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4960 in_range(block + count - 1, ext4_inode_table(sb, desc),
4961 sbi->s_itb_per_group)) {
4962 ext4_error(sb, "Adding blocks in system zones - "
4963 "Block = %llu, count = %lu",
4964 block, count);
4965 err = -EINVAL;
4966 goto error_return;
4967 }
4968
4969 BUFFER_TRACE(bitmap_bh, "getting write access");
4970 err = ext4_journal_get_write_access(handle, bitmap_bh);
4971 if (err)
4972 goto error_return;
4973
4974 /*
4975 * We are about to modify some metadata. Call the journal APIs
4976 * to unshare ->b_data if a currently-committing transaction is
4977 * using it
4978 */
4979 BUFFER_TRACE(gd_bh, "get_write_access");
4980 err = ext4_journal_get_write_access(handle, gd_bh);
4981 if (err)
4982 goto error_return;
4983
4984 for (i = 0, blocks_freed = 0; i < count; i++) {
4985 BUFFER_TRACE(bitmap_bh, "clear bit");
4986 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4987 ext4_error(sb, "bit already cleared for block %llu",
4988 (ext4_fsblk_t)(block + i));
4989 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4990 } else {
4991 blocks_freed++;
4992 }
4993 }
4994
4995 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4996 if (err)
4997 goto error_return;
4998
4999 /*
5000 * need to update group_info->bb_free and bitmap
5001 * with group lock held. generate_buddy look at
5002 * them with group lock_held
5003 */
5004 ext4_lock_group(sb, block_group);
5005 mb_clear_bits(bitmap_bh->b_data, bit, count);
5006 mb_free_blocks(NULL, &e4b, bit, count);
5007 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5008 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5009 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5010 ext4_group_desc_csum_set(sb, block_group, desc);
5011 ext4_unlock_group(sb, block_group);
5012 percpu_counter_add(&sbi->s_freeclusters_counter,
5013 EXT4_NUM_B2C(sbi, blocks_freed));
5014
5015 if (sbi->s_log_groups_per_flex) {
5016 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5017 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5018 &sbi->s_flex_groups[flex_group].free_clusters);
5019 }
5020
5021 ext4_mb_unload_buddy(&e4b);
5022
5023 /* We dirtied the bitmap block */
5024 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5025 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5026
5027 /* And the group descriptor block */
5028 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5029 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5030 if (!err)
5031 err = ret;
5032
5033error_return:
5034 brelse(bitmap_bh);
5035 ext4_std_error(sb, err);
5036 return err;
5037}
5038
5039/**
5040 * ext4_trim_extent -- function to TRIM one single free extent in the group
5041 * @sb: super block for the file system
5042 * @start: starting block of the free extent in the alloc. group
5043 * @count: number of blocks to TRIM
5044 * @group: alloc. group we are working with
5045 * @e4b: ext4 buddy for the group
5046 *
5047 * Trim "count" blocks starting at "start" in the "group". To assure that no
5048 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5049 * be called with under the group lock.
5050 */
5051static int ext4_trim_extent(struct super_block *sb, int start, int count,
5052 ext4_group_t group, struct ext4_buddy *e4b)
5053__releases(bitlock)
5054__acquires(bitlock)
5055{
5056 struct ext4_free_extent ex;
5057 int ret = 0;
5058
5059 trace_ext4_trim_extent(sb, group, start, count);
5060
5061 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5062
5063 ex.fe_start = start;
5064 ex.fe_group = group;
5065 ex.fe_len = count;
5066
5067 /*
5068 * Mark blocks used, so no one can reuse them while
5069 * being trimmed.
5070 */
5071 mb_mark_used(e4b, &ex);
5072 ext4_unlock_group(sb, group);
5073 ret = ext4_issue_discard(sb, group, start, count);
5074 ext4_lock_group(sb, group);
5075 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5076 return ret;
5077}
5078
5079/**
5080 * ext4_trim_all_free -- function to trim all free space in alloc. group
5081 * @sb: super block for file system
5082 * @group: group to be trimmed
5083 * @start: first group block to examine
5084 * @max: last group block to examine
5085 * @minblocks: minimum extent block count
5086 *
5087 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5088 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5089 * the extent.
5090 *
5091 *
5092 * ext4_trim_all_free walks through group's block bitmap searching for free
5093 * extents. When the free extent is found, mark it as used in group buddy
5094 * bitmap. Then issue a TRIM command on this extent and free the extent in
5095 * the group buddy bitmap. This is done until whole group is scanned.
5096 */
5097static ext4_grpblk_t
5098ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5099 ext4_grpblk_t start, ext4_grpblk_t max,
5100 ext4_grpblk_t minblocks)
5101{
5102 void *bitmap;
5103 ext4_grpblk_t next, count = 0, free_count = 0;
5104 struct ext4_buddy e4b;
5105 int ret = 0;
5106
5107 trace_ext4_trim_all_free(sb, group, start, max);
5108
5109 ret = ext4_mb_load_buddy(sb, group, &e4b);
5110 if (ret) {
5111 ext4_error(sb, "Error in loading buddy "
5112 "information for %u", group);
5113 return ret;
5114 }
5115 bitmap = e4b.bd_bitmap;
5116
5117 ext4_lock_group(sb, group);
5118 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5119 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5120 goto out;
5121
5122 start = (e4b.bd_info->bb_first_free > start) ?
5123 e4b.bd_info->bb_first_free : start;
5124
5125 while (start <= max) {
5126 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5127 if (start > max)
5128 break;
5129 next = mb_find_next_bit(bitmap, max + 1, start);
5130
5131 if ((next - start) >= minblocks) {
5132 ret = ext4_trim_extent(sb, start,
5133 next - start, group, &e4b);
5134 if (ret && ret != -EOPNOTSUPP)
5135 break;
5136 ret = 0;
5137 count += next - start;
5138 }
5139 free_count += next - start;
5140 start = next + 1;
5141
5142 if (fatal_signal_pending(current)) {
5143 count = -ERESTARTSYS;
5144 break;
5145 }
5146
5147 if (need_resched()) {
5148 ext4_unlock_group(sb, group);
5149 cond_resched();
5150 ext4_lock_group(sb, group);
5151 }
5152
5153 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5154 break;
5155 }
5156
5157 if (!ret) {
5158 ret = count;
5159 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5160 }
5161out:
5162 ext4_unlock_group(sb, group);
5163 ext4_mb_unload_buddy(&e4b);
5164
5165 ext4_debug("trimmed %d blocks in the group %d\n",
5166 count, group);
5167
5168 return ret;
5169}
5170
5171/**
5172 * ext4_trim_fs() -- trim ioctl handle function
5173 * @sb: superblock for filesystem
5174 * @range: fstrim_range structure
5175 *
5176 * start: First Byte to trim
5177 * len: number of Bytes to trim from start
5178 * minlen: minimum extent length in Bytes
5179 * ext4_trim_fs goes through all allocation groups containing Bytes from
5180 * start to start+len. For each such a group ext4_trim_all_free function
5181 * is invoked to trim all free space.
5182 */
5183int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5184{
5185 struct ext4_group_info *grp;
5186 ext4_group_t group, first_group, last_group;
5187 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5188 uint64_t start, end, minlen, trimmed = 0;
5189 ext4_fsblk_t first_data_blk =
5190 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5191 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5192 int ret = 0;
5193
5194 start = range->start >> sb->s_blocksize_bits;
5195 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5196 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5197 range->minlen >> sb->s_blocksize_bits);
5198
5199 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5200 start >= max_blks ||
5201 range->len < sb->s_blocksize)
5202 return -EINVAL;
5203 if (end >= max_blks)
5204 end = max_blks - 1;
5205 if (end <= first_data_blk)
5206 goto out;
5207 if (start < first_data_blk)
5208 start = first_data_blk;
5209
5210 /* Determine first and last group to examine based on start and end */
5211 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5212 &first_group, &first_cluster);
5213 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5214 &last_group, &last_cluster);
5215
5216 /* end now represents the last cluster to discard in this group */
5217 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5218
5219 for (group = first_group; group <= last_group; group++) {
5220 grp = ext4_get_group_info(sb, group);
5221 /* We only do this if the grp has never been initialized */
5222 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5223 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5224 if (ret)
5225 break;
5226 }
5227
5228 /*
5229 * For all the groups except the last one, last cluster will
5230 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5231 * change it for the last group, note that last_cluster is
5232 * already computed earlier by ext4_get_group_no_and_offset()
5233 */
5234 if (group == last_group)
5235 end = last_cluster;
5236
5237 if (grp->bb_free >= minlen) {
5238 cnt = ext4_trim_all_free(sb, group, first_cluster,
5239 end, minlen);
5240 if (cnt < 0) {
5241 ret = cnt;
5242 break;
5243 }
5244 trimmed += cnt;
5245 }
5246
5247 /*
5248 * For every group except the first one, we are sure
5249 * that the first cluster to discard will be cluster #0.
5250 */
5251 first_cluster = 0;
5252 }
5253
5254 if (!ret)
5255 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5256
5257out:
5258 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5259 return ret;
5260}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8/*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12#include "ext4_jbd2.h"
13#include "mballoc.h"
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/nospec.h>
18#include <linux/backing-dev.h>
19#include <linux/freezer.h>
20#include <trace/events/ext4.h>
21#include <kunit/static_stub.h>
22
23/*
24 * MUSTDO:
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
27 *
28 * TODO v4:
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
32 * - quota
33 * - reservation for superuser
34 *
35 * TODO v3:
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
40 * - error handling
41 */
42
43/*
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
46 *
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
56 *
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
59 *
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
63 * represented as:
64 *
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
69 *
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
74 *
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
77 * pa_free.
78 *
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
82 *
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
84 *
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
87 *
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
90 *
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
99 * inode as:
100 *
101 * { page }
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 *
104 *
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
109 *
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
112 *
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
116 *
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
131 *
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
134 *
135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136 *
137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138 *
139 * This is an array of lists where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of lists. Group-infos are
143 * placed in appropriate lists.
144 *
145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146 *
147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148 *
149 * This is an array of lists where in the i-th list there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special list for completely empty groups
153 * so we only have MB_NUM_ORDERS(sb) lists.
154 *
155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156 * structures to decide the order in which groups are to be traversed for
157 * fulfilling an allocation request.
158 *
159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160 * >= the order of the request. We directly look at the largest free order list
161 * in the data structure (1) above where largest_free_order = order of the
162 * request. If that list is empty, we look at remaining list in the increasing
163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164 * lookup in O(1) time.
165 *
166 * At CR_GOAL_LEN_FAST, we only consider groups where
167 * average fragment size > request size. So, we lookup a group which has average
168 * fragment size just above or equal to request size using our average fragment
169 * size group lists (data structure 2) in O(1) time.
170 *
171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174 * fragment size > goal length. So before falling to the slower
175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177 * enough average fragment size. This increases the chances of finding a
178 * suitable block group in O(1) time and results in faster allocation at the
179 * cost of reduced size of allocation.
180 *
181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183 * CR_GOAL_LEN_FAST phase.
184 *
185 * The regular allocator (using the buddy cache) supports a few tunables.
186 *
187 * /sys/fs/ext4/<partition>/mb_min_to_scan
188 * /sys/fs/ext4/<partition>/mb_max_to_scan
189 * /sys/fs/ext4/<partition>/mb_order2_req
190 * /sys/fs/ext4/<partition>/mb_linear_limit
191 *
192 * The regular allocator uses buddy scan only if the request len is power of
193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194 * value of s_mb_order2_reqs can be tuned via
195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
197 * stripe size. This should result in better allocation on RAID setups. If
198 * not, we search in the specific group using bitmap for best extents. The
199 * tunable min_to_scan and max_to_scan control the behaviour here.
200 * min_to_scan indicate how long the mballoc __must__ look for a best
201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
202 * best extent in the found extents. Searching for the blocks starts with
203 * the group specified as the goal value in allocation context via
204 * ac_g_ex. Each group is first checked based on the criteria whether it
205 * can be used for allocation. ext4_mb_good_group explains how the groups are
206 * checked.
207 *
208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209 * get traversed linearly. That may result in subsequent allocations being not
210 * close to each other. And so, the underlying device may get filled up in a
211 * non-linear fashion. While that may not matter on non-rotational devices, for
212 * rotational devices that may result in higher seek times. "mb_linear_limit"
213 * tells mballoc how many groups mballoc should search linearly before
214 * performing consulting above data structures for more efficient lookups. For
215 * non rotational devices, this value defaults to 0 and for rotational devices
216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
217 *
218 * Both the prealloc space are getting populated as above. So for the first
219 * request we will hit the buddy cache which will result in this prealloc
220 * space getting filled. The prealloc space is then later used for the
221 * subsequent request.
222 */
223
224/*
225 * mballoc operates on the following data:
226 * - on-disk bitmap
227 * - in-core buddy (actually includes buddy and bitmap)
228 * - preallocation descriptors (PAs)
229 *
230 * there are two types of preallocations:
231 * - inode
232 * assiged to specific inode and can be used for this inode only.
233 * it describes part of inode's space preallocated to specific
234 * physical blocks. any block from that preallocated can be used
235 * independent. the descriptor just tracks number of blocks left
236 * unused. so, before taking some block from descriptor, one must
237 * make sure corresponded logical block isn't allocated yet. this
238 * also means that freeing any block within descriptor's range
239 * must discard all preallocated blocks.
240 * - locality group
241 * assigned to specific locality group which does not translate to
242 * permanent set of inodes: inode can join and leave group. space
243 * from this type of preallocation can be used for any inode. thus
244 * it's consumed from the beginning to the end.
245 *
246 * relation between them can be expressed as:
247 * in-core buddy = on-disk bitmap + preallocation descriptors
248 *
249 * this mean blocks mballoc considers used are:
250 * - allocated blocks (persistent)
251 * - preallocated blocks (non-persistent)
252 *
253 * consistency in mballoc world means that at any time a block is either
254 * free or used in ALL structures. notice: "any time" should not be read
255 * literally -- time is discrete and delimited by locks.
256 *
257 * to keep it simple, we don't use block numbers, instead we count number of
258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259 *
260 * all operations can be expressed as:
261 * - init buddy: buddy = on-disk + PAs
262 * - new PA: buddy += N; PA = N
263 * - use inode PA: on-disk += N; PA -= N
264 * - discard inode PA buddy -= on-disk - PA; PA = 0
265 * - use locality group PA on-disk += N; PA -= N
266 * - discard locality group PA buddy -= PA; PA = 0
267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268 * is used in real operation because we can't know actual used
269 * bits from PA, only from on-disk bitmap
270 *
271 * if we follow this strict logic, then all operations above should be atomic.
272 * given some of them can block, we'd have to use something like semaphores
273 * killing performance on high-end SMP hardware. let's try to relax it using
274 * the following knowledge:
275 * 1) if buddy is referenced, it's already initialized
276 * 2) while block is used in buddy and the buddy is referenced,
277 * nobody can re-allocate that block
278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279 * bit set and PA claims same block, it's OK. IOW, one can set bit in
280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281 * block
282 *
283 * so, now we're building a concurrency table:
284 * - init buddy vs.
285 * - new PA
286 * blocks for PA are allocated in the buddy, buddy must be referenced
287 * until PA is linked to allocation group to avoid concurrent buddy init
288 * - use inode PA
289 * we need to make sure that either on-disk bitmap or PA has uptodate data
290 * given (3) we care that PA-=N operation doesn't interfere with init
291 * - discard inode PA
292 * the simplest way would be to have buddy initialized by the discard
293 * - use locality group PA
294 * again PA-=N must be serialized with init
295 * - discard locality group PA
296 * the simplest way would be to have buddy initialized by the discard
297 * - new PA vs.
298 * - use inode PA
299 * i_data_sem serializes them
300 * - discard inode PA
301 * discard process must wait until PA isn't used by another process
302 * - use locality group PA
303 * some mutex should serialize them
304 * - discard locality group PA
305 * discard process must wait until PA isn't used by another process
306 * - use inode PA
307 * - use inode PA
308 * i_data_sem or another mutex should serializes them
309 * - discard inode PA
310 * discard process must wait until PA isn't used by another process
311 * - use locality group PA
312 * nothing wrong here -- they're different PAs covering different blocks
313 * - discard locality group PA
314 * discard process must wait until PA isn't used by another process
315 *
316 * now we're ready to make few consequences:
317 * - PA is referenced and while it is no discard is possible
318 * - PA is referenced until block isn't marked in on-disk bitmap
319 * - PA changes only after on-disk bitmap
320 * - discard must not compete with init. either init is done before
321 * any discard or they're serialized somehow
322 * - buddy init as sum of on-disk bitmap and PAs is done atomically
323 *
324 * a special case when we've used PA to emptiness. no need to modify buddy
325 * in this case, but we should care about concurrent init
326 *
327 */
328
329 /*
330 * Logic in few words:
331 *
332 * - allocation:
333 * load group
334 * find blocks
335 * mark bits in on-disk bitmap
336 * release group
337 *
338 * - use preallocation:
339 * find proper PA (per-inode or group)
340 * load group
341 * mark bits in on-disk bitmap
342 * release group
343 * release PA
344 *
345 * - free:
346 * load group
347 * mark bits in on-disk bitmap
348 * release group
349 *
350 * - discard preallocations in group:
351 * mark PAs deleted
352 * move them onto local list
353 * load on-disk bitmap
354 * load group
355 * remove PA from object (inode or locality group)
356 * mark free blocks in-core
357 *
358 * - discard inode's preallocations:
359 */
360
361/*
362 * Locking rules
363 *
364 * Locks:
365 * - bitlock on a group (group)
366 * - object (inode/locality) (object)
367 * - per-pa lock (pa)
368 * - cr_power2_aligned lists lock (cr_power2_aligned)
369 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
370 *
371 * Paths:
372 * - new pa
373 * object
374 * group
375 *
376 * - find and use pa:
377 * pa
378 *
379 * - release consumed pa:
380 * pa
381 * group
382 * object
383 *
384 * - generate in-core bitmap:
385 * group
386 * pa
387 *
388 * - discard all for given object (inode, locality group):
389 * object
390 * pa
391 * group
392 *
393 * - discard all for given group:
394 * group
395 * pa
396 * group
397 * object
398 *
399 * - allocation path (ext4_mb_regular_allocator)
400 * group
401 * cr_power2_aligned/cr_goal_len_fast
402 */
403static struct kmem_cache *ext4_pspace_cachep;
404static struct kmem_cache *ext4_ac_cachep;
405static struct kmem_cache *ext4_free_data_cachep;
406
407/* We create slab caches for groupinfo data structures based on the
408 * superblock block size. There will be one per mounted filesystem for
409 * each unique s_blocksize_bits */
410#define NR_GRPINFO_CACHES 8
411static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417};
418
419static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420 ext4_group_t group);
421static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 ext4_group_t group, enum criteria cr);
425
426static int ext4_try_to_trim_range(struct super_block *sb,
427 struct ext4_buddy *e4b, ext4_grpblk_t start,
428 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430/*
431 * The algorithm using this percpu seq counter goes below:
432 * 1. We sample the percpu discard_pa_seq counter before trying for block
433 * allocation in ext4_mb_new_blocks().
434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
435 * or free these blocks i.e. while marking those blocks as used/free in
436 * mb_mark_used()/mb_free_blocks().
437 * 3. We also increment this percpu seq counter when we successfully identify
438 * that the bb_prealloc_list is not empty and hence proceed for discarding
439 * of those PAs inside ext4_mb_discard_group_preallocations().
440 *
441 * Now to make sure that the regular fast path of block allocation is not
442 * affected, as a small optimization we only sample the percpu seq counter
443 * on that cpu. Only when the block allocation fails and when freed blocks
444 * found were 0, that is when we sample percpu seq counter for all cpus using
445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447 */
448static DEFINE_PER_CPU(u64, discard_pa_seq);
449static inline u64 ext4_get_discard_pa_seq_sum(void)
450{
451 int __cpu;
452 u64 __seq = 0;
453
454 for_each_possible_cpu(__cpu)
455 __seq += per_cpu(discard_pa_seq, __cpu);
456 return __seq;
457}
458
459static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460{
461#if BITS_PER_LONG == 64
462 *bit += ((unsigned long) addr & 7UL) << 3;
463 addr = (void *) ((unsigned long) addr & ~7UL);
464#elif BITS_PER_LONG == 32
465 *bit += ((unsigned long) addr & 3UL) << 3;
466 addr = (void *) ((unsigned long) addr & ~3UL);
467#else
468#error "how many bits you are?!"
469#endif
470 return addr;
471}
472
473static inline int mb_test_bit(int bit, void *addr)
474{
475 /*
476 * ext4_test_bit on architecture like powerpc
477 * needs unsigned long aligned address
478 */
479 addr = mb_correct_addr_and_bit(&bit, addr);
480 return ext4_test_bit(bit, addr);
481}
482
483static inline void mb_set_bit(int bit, void *addr)
484{
485 addr = mb_correct_addr_and_bit(&bit, addr);
486 ext4_set_bit(bit, addr);
487}
488
489static inline void mb_clear_bit(int bit, void *addr)
490{
491 addr = mb_correct_addr_and_bit(&bit, addr);
492 ext4_clear_bit(bit, addr);
493}
494
495static inline int mb_test_and_clear_bit(int bit, void *addr)
496{
497 addr = mb_correct_addr_and_bit(&bit, addr);
498 return ext4_test_and_clear_bit(bit, addr);
499}
500
501static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502{
503 int fix = 0, ret, tmpmax;
504 addr = mb_correct_addr_and_bit(&fix, addr);
505 tmpmax = max + fix;
506 start += fix;
507
508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 if (ret > max)
510 return max;
511 return ret;
512}
513
514static inline int mb_find_next_bit(void *addr, int max, int start)
515{
516 int fix = 0, ret, tmpmax;
517 addr = mb_correct_addr_and_bit(&fix, addr);
518 tmpmax = max + fix;
519 start += fix;
520
521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 if (ret > max)
523 return max;
524 return ret;
525}
526
527static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528{
529 char *bb;
530
531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 BUG_ON(max == NULL);
533
534 if (order > e4b->bd_blkbits + 1) {
535 *max = 0;
536 return NULL;
537 }
538
539 /* at order 0 we see each particular block */
540 if (order == 0) {
541 *max = 1 << (e4b->bd_blkbits + 3);
542 return e4b->bd_bitmap;
543 }
544
545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548 return bb;
549}
550
551#ifdef DOUBLE_CHECK
552static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 int first, int count)
554{
555 int i;
556 struct super_block *sb = e4b->bd_sb;
557
558 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 return;
560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 for (i = 0; i < count; i++) {
562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 ext4_fsblk_t blocknr;
564
565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 ext4_grp_locked_error(sb, e4b->bd_group,
570 inode ? inode->i_ino : 0,
571 blocknr,
572 "freeing block already freed "
573 "(bit %u)",
574 first + i);
575 }
576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 }
578}
579
580static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581{
582 int i;
583
584 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 return;
586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 for (i = 0; i < count; i++) {
588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 }
591}
592
593static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594{
595 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 return;
597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 unsigned char *b1, *b2;
599 int i;
600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 b2 = (unsigned char *) bitmap;
602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 if (b1[i] != b2[i]) {
604 ext4_msg(e4b->bd_sb, KERN_ERR,
605 "corruption in group %u "
606 "at byte %u(%u): %x in copy != %x "
607 "on disk/prealloc",
608 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 BUG();
610 }
611 }
612 }
613}
614
615static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 struct ext4_group_info *grp, ext4_group_t group)
617{
618 struct buffer_head *bh;
619
620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 if (!grp->bb_bitmap)
622 return;
623
624 bh = ext4_read_block_bitmap(sb, group);
625 if (IS_ERR_OR_NULL(bh)) {
626 kfree(grp->bb_bitmap);
627 grp->bb_bitmap = NULL;
628 return;
629 }
630
631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 put_bh(bh);
633}
634
635static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636{
637 kfree(grp->bb_bitmap);
638}
639
640#else
641static inline void mb_free_blocks_double(struct inode *inode,
642 struct ext4_buddy *e4b, int first, int count)
643{
644 return;
645}
646static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 int first, int count)
648{
649 return;
650}
651static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652{
653 return;
654}
655
656static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 struct ext4_group_info *grp, ext4_group_t group)
658{
659 return;
660}
661
662static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663{
664 return;
665}
666#endif
667
668#ifdef AGGRESSIVE_CHECK
669
670#define MB_CHECK_ASSERT(assert) \
671do { \
672 if (!(assert)) { \
673 printk(KERN_EMERG \
674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675 function, file, line, # assert); \
676 BUG(); \
677 } \
678} while (0)
679
680static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 const char *function, int line)
682{
683 struct super_block *sb = e4b->bd_sb;
684 int order = e4b->bd_blkbits + 1;
685 int max;
686 int max2;
687 int i;
688 int j;
689 int k;
690 int count;
691 struct ext4_group_info *grp;
692 int fragments = 0;
693 int fstart;
694 struct list_head *cur;
695 void *buddy;
696 void *buddy2;
697
698 if (e4b->bd_info->bb_check_counter++ % 10)
699 return;
700
701 while (order > 1) {
702 buddy = mb_find_buddy(e4b, order, &max);
703 MB_CHECK_ASSERT(buddy);
704 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 MB_CHECK_ASSERT(buddy2);
706 MB_CHECK_ASSERT(buddy != buddy2);
707 MB_CHECK_ASSERT(max * 2 == max2);
708
709 count = 0;
710 for (i = 0; i < max; i++) {
711
712 if (mb_test_bit(i, buddy)) {
713 /* only single bit in buddy2 may be 0 */
714 if (!mb_test_bit(i << 1, buddy2)) {
715 MB_CHECK_ASSERT(
716 mb_test_bit((i<<1)+1, buddy2));
717 }
718 continue;
719 }
720
721 /* both bits in buddy2 must be 1 */
722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725 for (j = 0; j < (1 << order); j++) {
726 k = (i * (1 << order)) + j;
727 MB_CHECK_ASSERT(
728 !mb_test_bit(k, e4b->bd_bitmap));
729 }
730 count++;
731 }
732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 order--;
734 }
735
736 fstart = -1;
737 buddy = mb_find_buddy(e4b, 0, &max);
738 for (i = 0; i < max; i++) {
739 if (!mb_test_bit(i, buddy)) {
740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 if (fstart == -1) {
742 fragments++;
743 fstart = i;
744 }
745 continue;
746 }
747 fstart = -1;
748 /* check used bits only */
749 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 buddy2 = mb_find_buddy(e4b, j, &max2);
751 k = i >> j;
752 MB_CHECK_ASSERT(k < max2);
753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 }
755 }
756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759 grp = ext4_get_group_info(sb, e4b->bd_group);
760 if (!grp)
761 return;
762 list_for_each(cur, &grp->bb_prealloc_list) {
763 ext4_group_t groupnr;
764 struct ext4_prealloc_space *pa;
765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 for (i = 0; i < pa->pa_len; i++)
769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 }
771}
772#undef MB_CHECK_ASSERT
773#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
774 __FILE__, __func__, __LINE__)
775#else
776#define mb_check_buddy(e4b)
777#endif
778
779/*
780 * Divide blocks started from @first with length @len into
781 * smaller chunks with power of 2 blocks.
782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783 * then increase bb_counters[] for corresponded chunk size.
784 */
785static void ext4_mb_mark_free_simple(struct super_block *sb,
786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 struct ext4_group_info *grp)
788{
789 struct ext4_sb_info *sbi = EXT4_SB(sb);
790 ext4_grpblk_t min;
791 ext4_grpblk_t max;
792 ext4_grpblk_t chunk;
793 unsigned int border;
794
795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796
797 border = 2 << sb->s_blocksize_bits;
798
799 while (len > 0) {
800 /* find how many blocks can be covered since this position */
801 max = ffs(first | border) - 1;
802
803 /* find how many blocks of power 2 we need to mark */
804 min = fls(len) - 1;
805
806 if (max < min)
807 min = max;
808 chunk = 1 << min;
809
810 /* mark multiblock chunks only */
811 grp->bb_counters[min]++;
812 if (min > 0)
813 mb_clear_bit(first >> min,
814 buddy + sbi->s_mb_offsets[min]);
815
816 len -= chunk;
817 first += chunk;
818 }
819}
820
821static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822{
823 int order;
824
825 /*
826 * We don't bother with a special lists groups with only 1 block free
827 * extents and for completely empty groups.
828 */
829 order = fls(len) - 2;
830 if (order < 0)
831 return 0;
832 if (order == MB_NUM_ORDERS(sb))
833 order--;
834 return order;
835}
836
837/* Move group to appropriate avg_fragment_size list */
838static void
839mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840{
841 struct ext4_sb_info *sbi = EXT4_SB(sb);
842 int new_order;
843
844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845 return;
846
847 new_order = mb_avg_fragment_size_order(sb,
848 grp->bb_free / grp->bb_fragments);
849 if (new_order == grp->bb_avg_fragment_size_order)
850 return;
851
852 if (grp->bb_avg_fragment_size_order != -1) {
853 write_lock(&sbi->s_mb_avg_fragment_size_locks[
854 grp->bb_avg_fragment_size_order]);
855 list_del(&grp->bb_avg_fragment_size_node);
856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857 grp->bb_avg_fragment_size_order]);
858 }
859 grp->bb_avg_fragment_size_order = new_order;
860 write_lock(&sbi->s_mb_avg_fragment_size_locks[
861 grp->bb_avg_fragment_size_order]);
862 list_add_tail(&grp->bb_avg_fragment_size_node,
863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865 grp->bb_avg_fragment_size_order]);
866}
867
868/*
869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870 * cr level needs an update.
871 */
872static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873 enum criteria *new_cr, ext4_group_t *group)
874{
875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876 struct ext4_group_info *iter;
877 int i;
878
879 if (ac->ac_status == AC_STATUS_FOUND)
880 return;
881
882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884
885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887 continue;
888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891 continue;
892 }
893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894 bb_largest_free_order_node) {
895 if (sbi->s_mb_stats)
896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898 *group = iter->bb_group;
899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901 return;
902 }
903 }
904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905 }
906
907 /* Increment cr and search again if no group is found */
908 *new_cr = CR_GOAL_LEN_FAST;
909}
910
911/*
912 * Find a suitable group of given order from the average fragments list.
913 */
914static struct ext4_group_info *
915ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916{
917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920 struct ext4_group_info *grp = NULL, *iter;
921 enum criteria cr = ac->ac_criteria;
922
923 if (list_empty(frag_list))
924 return NULL;
925 read_lock(frag_list_lock);
926 if (list_empty(frag_list)) {
927 read_unlock(frag_list_lock);
928 return NULL;
929 }
930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931 if (sbi->s_mb_stats)
932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934 grp = iter;
935 break;
936 }
937 }
938 read_unlock(frag_list_lock);
939 return grp;
940}
941
942/*
943 * Choose next group by traversing average fragment size list of suitable
944 * order. Updates *new_cr if cr level needs an update.
945 */
946static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947 enum criteria *new_cr, ext4_group_t *group)
948{
949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950 struct ext4_group_info *grp = NULL;
951 int i;
952
953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954 if (sbi->s_mb_stats)
955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956 }
957
958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959 i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961 if (grp) {
962 *group = grp->bb_group;
963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964 return;
965 }
966 }
967
968 /*
969 * CR_BEST_AVAIL_LEN works based on the concept that we have
970 * a larger normalized goal len request which can be trimmed to
971 * a smaller goal len such that it can still satisfy original
972 * request len. However, allocation request for non-regular
973 * files never gets normalized.
974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975 */
976 if (ac->ac_flags & EXT4_MB_HINT_DATA)
977 *new_cr = CR_BEST_AVAIL_LEN;
978 else
979 *new_cr = CR_GOAL_LEN_SLOW;
980}
981
982/*
983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984 * order we have and proactively trim the goal request length to that order to
985 * find a suitable group faster.
986 *
987 * This optimizes allocation speed at the cost of slightly reduced
988 * preallocations. However, we make sure that we don't trim the request too
989 * much and fall to CR_GOAL_LEN_SLOW in that case.
990 */
991static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992 enum criteria *new_cr, ext4_group_t *group)
993{
994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995 struct ext4_group_info *grp = NULL;
996 int i, order, min_order;
997 unsigned long num_stripe_clusters = 0;
998
999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000 if (sbi->s_mb_stats)
1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002 }
1003
1004 /*
1005 * mb_avg_fragment_size_order() returns order in a way that makes
1006 * retrieving back the length using (1 << order) inaccurate. Hence, use
1007 * fls() instead since we need to know the actual length while modifying
1008 * goal length.
1009 */
1010 order = fls(ac->ac_g_ex.fe_len) - 1;
1011 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012 if (min_order < 0)
1013 min_order = 0;
1014
1015 if (sbi->s_stripe > 0) {
1016 /*
1017 * We are assuming that stripe size is always a multiple of
1018 * cluster ratio otherwise __ext4_fill_super exists early.
1019 */
1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021 if (1 << min_order < num_stripe_clusters)
1022 /*
1023 * We consider 1 order less because later we round
1024 * up the goal len to num_stripe_clusters
1025 */
1026 min_order = fls(num_stripe_clusters) - 1;
1027 }
1028
1029 if (1 << min_order < ac->ac_o_ex.fe_len)
1030 min_order = fls(ac->ac_o_ex.fe_len);
1031
1032 for (i = order; i >= min_order; i--) {
1033 int frag_order;
1034 /*
1035 * Scale down goal len to make sure we find something
1036 * in the free fragments list. Basically, reduce
1037 * preallocations.
1038 */
1039 ac->ac_g_ex.fe_len = 1 << i;
1040
1041 if (num_stripe_clusters > 0) {
1042 /*
1043 * Try to round up the adjusted goal length to
1044 * stripe size (in cluster units) multiple for
1045 * efficiency.
1046 */
1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048 num_stripe_clusters);
1049 }
1050
1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052 ac->ac_g_ex.fe_len);
1053
1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055 if (grp) {
1056 *group = grp->bb_group;
1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058 return;
1059 }
1060 }
1061
1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064 *new_cr = CR_GOAL_LEN_SLOW;
1065}
1066
1067static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068{
1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070 return 0;
1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072 return 0;
1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074 return 0;
1075 return 1;
1076}
1077
1078/*
1079 * Return next linear group for allocation. If linear traversal should not be
1080 * performed, this function just returns the same group
1081 */
1082static ext4_group_t
1083next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084 ext4_group_t ngroups)
1085{
1086 if (!should_optimize_scan(ac))
1087 goto inc_and_return;
1088
1089 if (ac->ac_groups_linear_remaining) {
1090 ac->ac_groups_linear_remaining--;
1091 goto inc_and_return;
1092 }
1093
1094 return group;
1095inc_and_return:
1096 /*
1097 * Artificially restricted ngroups for non-extent
1098 * files makes group > ngroups possible on first loop.
1099 */
1100 return group + 1 >= ngroups ? 0 : group + 1;
1101}
1102
1103/*
1104 * ext4_mb_choose_next_group: choose next group for allocation.
1105 *
1106 * @ac Allocation Context
1107 * @new_cr This is an output parameter. If the there is no good group
1108 * available at current CR level, this field is updated to indicate
1109 * the new cr level that should be used.
1110 * @group This is an input / output parameter. As an input it indicates the
1111 * next group that the allocator intends to use for allocation. As
1112 * output, this field indicates the next group that should be used as
1113 * determined by the optimization functions.
1114 * @ngroups Total number of groups
1115 */
1116static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118{
1119 *new_cr = ac->ac_criteria;
1120
1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122 *group = next_linear_group(ac, *group, ngroups);
1123 return;
1124 }
1125
1126 if (*new_cr == CR_POWER2_ALIGNED) {
1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1128 } else if (*new_cr == CR_GOAL_LEN_FAST) {
1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1132 } else {
1133 /*
1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135 * bb_free. But until that happens, we should never come here.
1136 */
1137 WARN_ON(1);
1138 }
1139}
1140
1141/*
1142 * Cache the order of the largest free extent we have available in this block
1143 * group.
1144 */
1145static void
1146mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147{
1148 struct ext4_sb_info *sbi = EXT4_SB(sb);
1149 int i;
1150
1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152 if (grp->bb_counters[i] > 0)
1153 break;
1154 /* No need to move between order lists? */
1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156 i == grp->bb_largest_free_order) {
1157 grp->bb_largest_free_order = i;
1158 return;
1159 }
1160
1161 if (grp->bb_largest_free_order >= 0) {
1162 write_lock(&sbi->s_mb_largest_free_orders_locks[
1163 grp->bb_largest_free_order]);
1164 list_del_init(&grp->bb_largest_free_order_node);
1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166 grp->bb_largest_free_order]);
1167 }
1168 grp->bb_largest_free_order = i;
1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170 write_lock(&sbi->s_mb_largest_free_orders_locks[
1171 grp->bb_largest_free_order]);
1172 list_add_tail(&grp->bb_largest_free_order_node,
1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175 grp->bb_largest_free_order]);
1176 }
1177}
1178
1179static noinline_for_stack
1180void ext4_mb_generate_buddy(struct super_block *sb,
1181 void *buddy, void *bitmap, ext4_group_t group,
1182 struct ext4_group_info *grp)
1183{
1184 struct ext4_sb_info *sbi = EXT4_SB(sb);
1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186 ext4_grpblk_t i = 0;
1187 ext4_grpblk_t first;
1188 ext4_grpblk_t len;
1189 unsigned free = 0;
1190 unsigned fragments = 0;
1191 unsigned long long period = get_cycles();
1192
1193 /* initialize buddy from bitmap which is aggregation
1194 * of on-disk bitmap and preallocations */
1195 i = mb_find_next_zero_bit(bitmap, max, 0);
1196 grp->bb_first_free = i;
1197 while (i < max) {
1198 fragments++;
1199 first = i;
1200 i = mb_find_next_bit(bitmap, max, i);
1201 len = i - first;
1202 free += len;
1203 if (len > 1)
1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205 else
1206 grp->bb_counters[0]++;
1207 if (i < max)
1208 i = mb_find_next_zero_bit(bitmap, max, i);
1209 }
1210 grp->bb_fragments = fragments;
1211
1212 if (free != grp->bb_free) {
1213 ext4_grp_locked_error(sb, group, 0, 0,
1214 "block bitmap and bg descriptor "
1215 "inconsistent: %u vs %u free clusters",
1216 free, grp->bb_free);
1217 /*
1218 * If we intend to continue, we consider group descriptor
1219 * corrupt and update bb_free using bitmap value
1220 */
1221 grp->bb_free = free;
1222 ext4_mark_group_bitmap_corrupted(sb, group,
1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224 }
1225 mb_set_largest_free_order(sb, grp);
1226 mb_update_avg_fragment_size(sb, grp);
1227
1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230 period = get_cycles() - period;
1231 atomic_inc(&sbi->s_mb_buddies_generated);
1232 atomic64_add(period, &sbi->s_mb_generation_time);
1233}
1234
1235static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236{
1237 int count;
1238 int order = 1;
1239 void *buddy;
1240
1241 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242 mb_set_bits(buddy, 0, count);
1243
1244 e4b->bd_info->bb_fragments = 0;
1245 memset(e4b->bd_info->bb_counters, 0,
1246 sizeof(*e4b->bd_info->bb_counters) *
1247 (e4b->bd_sb->s_blocksize_bits + 2));
1248
1249 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251}
1252
1253/* The buddy information is attached the buddy cache inode
1254 * for convenience. The information regarding each group
1255 * is loaded via ext4_mb_load_buddy. The information involve
1256 * block bitmap and buddy information. The information are
1257 * stored in the inode as
1258 *
1259 * { page }
1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261 *
1262 *
1263 * one block each for bitmap and buddy information.
1264 * So for each group we take up 2 blocks. A page can
1265 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1266 * So it can have information regarding groups_per_page which
1267 * is blocks_per_page/2
1268 *
1269 * Locking note: This routine takes the block group lock of all groups
1270 * for this page; do not hold this lock when calling this routine!
1271 */
1272
1273static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274{
1275 ext4_group_t ngroups;
1276 unsigned int blocksize;
1277 int blocks_per_page;
1278 int groups_per_page;
1279 int err = 0;
1280 int i;
1281 ext4_group_t first_group, group;
1282 int first_block;
1283 struct super_block *sb;
1284 struct buffer_head *bhs;
1285 struct buffer_head **bh = NULL;
1286 struct inode *inode;
1287 char *data;
1288 char *bitmap;
1289 struct ext4_group_info *grinfo;
1290
1291 inode = page->mapping->host;
1292 sb = inode->i_sb;
1293 ngroups = ext4_get_groups_count(sb);
1294 blocksize = i_blocksize(inode);
1295 blocks_per_page = PAGE_SIZE / blocksize;
1296
1297 mb_debug(sb, "init page %lu\n", page->index);
1298
1299 groups_per_page = blocks_per_page >> 1;
1300 if (groups_per_page == 0)
1301 groups_per_page = 1;
1302
1303 /* allocate buffer_heads to read bitmaps */
1304 if (groups_per_page > 1) {
1305 i = sizeof(struct buffer_head *) * groups_per_page;
1306 bh = kzalloc(i, gfp);
1307 if (bh == NULL)
1308 return -ENOMEM;
1309 } else
1310 bh = &bhs;
1311
1312 first_group = page->index * blocks_per_page / 2;
1313
1314 /* read all groups the page covers into the cache */
1315 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316 if (group >= ngroups)
1317 break;
1318
1319 grinfo = ext4_get_group_info(sb, group);
1320 if (!grinfo)
1321 continue;
1322 /*
1323 * If page is uptodate then we came here after online resize
1324 * which added some new uninitialized group info structs, so
1325 * we must skip all initialized uptodate buddies on the page,
1326 * which may be currently in use by an allocating task.
1327 */
1328 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329 bh[i] = NULL;
1330 continue;
1331 }
1332 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333 if (IS_ERR(bh[i])) {
1334 err = PTR_ERR(bh[i]);
1335 bh[i] = NULL;
1336 goto out;
1337 }
1338 mb_debug(sb, "read bitmap for group %u\n", group);
1339 }
1340
1341 /* wait for I/O completion */
1342 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343 int err2;
1344
1345 if (!bh[i])
1346 continue;
1347 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348 if (!err)
1349 err = err2;
1350 }
1351
1352 first_block = page->index * blocks_per_page;
1353 for (i = 0; i < blocks_per_page; i++) {
1354 group = (first_block + i) >> 1;
1355 if (group >= ngroups)
1356 break;
1357
1358 if (!bh[group - first_group])
1359 /* skip initialized uptodate buddy */
1360 continue;
1361
1362 if (!buffer_verified(bh[group - first_group]))
1363 /* Skip faulty bitmaps */
1364 continue;
1365 err = 0;
1366
1367 /*
1368 * data carry information regarding this
1369 * particular group in the format specified
1370 * above
1371 *
1372 */
1373 data = page_address(page) + (i * blocksize);
1374 bitmap = bh[group - first_group]->b_data;
1375
1376 /*
1377 * We place the buddy block and bitmap block
1378 * close together
1379 */
1380 grinfo = ext4_get_group_info(sb, group);
1381 if (!grinfo) {
1382 err = -EFSCORRUPTED;
1383 goto out;
1384 }
1385 if ((first_block + i) & 1) {
1386 /* this is block of buddy */
1387 BUG_ON(incore == NULL);
1388 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389 group, page->index, i * blocksize);
1390 trace_ext4_mb_buddy_bitmap_load(sb, group);
1391 grinfo->bb_fragments = 0;
1392 memset(grinfo->bb_counters, 0,
1393 sizeof(*grinfo->bb_counters) *
1394 (MB_NUM_ORDERS(sb)));
1395 /*
1396 * incore got set to the group block bitmap below
1397 */
1398 ext4_lock_group(sb, group);
1399 /* init the buddy */
1400 memset(data, 0xff, blocksize);
1401 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402 ext4_unlock_group(sb, group);
1403 incore = NULL;
1404 } else {
1405 /* this is block of bitmap */
1406 BUG_ON(incore != NULL);
1407 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408 group, page->index, i * blocksize);
1409 trace_ext4_mb_bitmap_load(sb, group);
1410
1411 /* see comments in ext4_mb_put_pa() */
1412 ext4_lock_group(sb, group);
1413 memcpy(data, bitmap, blocksize);
1414
1415 /* mark all preallocated blks used in in-core bitmap */
1416 ext4_mb_generate_from_pa(sb, data, group);
1417 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418 ext4_unlock_group(sb, group);
1419
1420 /* set incore so that the buddy information can be
1421 * generated using this
1422 */
1423 incore = data;
1424 }
1425 }
1426 SetPageUptodate(page);
1427
1428out:
1429 if (bh) {
1430 for (i = 0; i < groups_per_page; i++)
1431 brelse(bh[i]);
1432 if (bh != &bhs)
1433 kfree(bh);
1434 }
1435 return err;
1436}
1437
1438/*
1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440 * on the same buddy page doesn't happen whild holding the buddy page lock.
1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443 */
1444static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446{
1447 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448 int block, pnum, poff;
1449 int blocks_per_page;
1450 struct page *page;
1451
1452 e4b->bd_buddy_page = NULL;
1453 e4b->bd_bitmap_page = NULL;
1454
1455 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456 /*
1457 * the buddy cache inode stores the block bitmap
1458 * and buddy information in consecutive blocks.
1459 * So for each group we need two blocks.
1460 */
1461 block = group * 2;
1462 pnum = block / blocks_per_page;
1463 poff = block % blocks_per_page;
1464 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465 if (!page)
1466 return -ENOMEM;
1467 BUG_ON(page->mapping != inode->i_mapping);
1468 e4b->bd_bitmap_page = page;
1469 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470
1471 if (blocks_per_page >= 2) {
1472 /* buddy and bitmap are on the same page */
1473 return 0;
1474 }
1475
1476 /* blocks_per_page == 1, hence we need another page for the buddy */
1477 page = find_or_create_page(inode->i_mapping, block + 1, gfp);
1478 if (!page)
1479 return -ENOMEM;
1480 BUG_ON(page->mapping != inode->i_mapping);
1481 e4b->bd_buddy_page = page;
1482 return 0;
1483}
1484
1485static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1486{
1487 if (e4b->bd_bitmap_page) {
1488 unlock_page(e4b->bd_bitmap_page);
1489 put_page(e4b->bd_bitmap_page);
1490 }
1491 if (e4b->bd_buddy_page) {
1492 unlock_page(e4b->bd_buddy_page);
1493 put_page(e4b->bd_buddy_page);
1494 }
1495}
1496
1497/*
1498 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1499 * block group lock of all groups for this page; do not hold the BG lock when
1500 * calling this routine!
1501 */
1502static noinline_for_stack
1503int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1504{
1505
1506 struct ext4_group_info *this_grp;
1507 struct ext4_buddy e4b;
1508 struct page *page;
1509 int ret = 0;
1510
1511 might_sleep();
1512 mb_debug(sb, "init group %u\n", group);
1513 this_grp = ext4_get_group_info(sb, group);
1514 if (!this_grp)
1515 return -EFSCORRUPTED;
1516
1517 /*
1518 * This ensures that we don't reinit the buddy cache
1519 * page which map to the group from which we are already
1520 * allocating. If we are looking at the buddy cache we would
1521 * have taken a reference using ext4_mb_load_buddy and that
1522 * would have pinned buddy page to page cache.
1523 * The call to ext4_mb_get_buddy_page_lock will mark the
1524 * page accessed.
1525 */
1526 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1527 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1528 /*
1529 * somebody initialized the group
1530 * return without doing anything
1531 */
1532 goto err;
1533 }
1534
1535 page = e4b.bd_bitmap_page;
1536 ret = ext4_mb_init_cache(page, NULL, gfp);
1537 if (ret)
1538 goto err;
1539 if (!PageUptodate(page)) {
1540 ret = -EIO;
1541 goto err;
1542 }
1543
1544 if (e4b.bd_buddy_page == NULL) {
1545 /*
1546 * If both the bitmap and buddy are in
1547 * the same page we don't need to force
1548 * init the buddy
1549 */
1550 ret = 0;
1551 goto err;
1552 }
1553 /* init buddy cache */
1554 page = e4b.bd_buddy_page;
1555 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1556 if (ret)
1557 goto err;
1558 if (!PageUptodate(page)) {
1559 ret = -EIO;
1560 goto err;
1561 }
1562err:
1563 ext4_mb_put_buddy_page_lock(&e4b);
1564 return ret;
1565}
1566
1567/*
1568 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1569 * block group lock of all groups for this page; do not hold the BG lock when
1570 * calling this routine!
1571 */
1572static noinline_for_stack int
1573ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1574 struct ext4_buddy *e4b, gfp_t gfp)
1575{
1576 int blocks_per_page;
1577 int block;
1578 int pnum;
1579 int poff;
1580 struct page *page;
1581 int ret;
1582 struct ext4_group_info *grp;
1583 struct ext4_sb_info *sbi = EXT4_SB(sb);
1584 struct inode *inode = sbi->s_buddy_cache;
1585
1586 might_sleep();
1587 mb_debug(sb, "load group %u\n", group);
1588
1589 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1590 grp = ext4_get_group_info(sb, group);
1591 if (!grp)
1592 return -EFSCORRUPTED;
1593
1594 e4b->bd_blkbits = sb->s_blocksize_bits;
1595 e4b->bd_info = grp;
1596 e4b->bd_sb = sb;
1597 e4b->bd_group = group;
1598 e4b->bd_buddy_page = NULL;
1599 e4b->bd_bitmap_page = NULL;
1600
1601 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1602 /*
1603 * we need full data about the group
1604 * to make a good selection
1605 */
1606 ret = ext4_mb_init_group(sb, group, gfp);
1607 if (ret)
1608 return ret;
1609 }
1610
1611 /*
1612 * the buddy cache inode stores the block bitmap
1613 * and buddy information in consecutive blocks.
1614 * So for each group we need two blocks.
1615 */
1616 block = group * 2;
1617 pnum = block / blocks_per_page;
1618 poff = block % blocks_per_page;
1619
1620 /* we could use find_or_create_page(), but it locks page
1621 * what we'd like to avoid in fast path ... */
1622 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1623 if (page == NULL || !PageUptodate(page)) {
1624 if (page)
1625 /*
1626 * drop the page reference and try
1627 * to get the page with lock. If we
1628 * are not uptodate that implies
1629 * somebody just created the page but
1630 * is yet to initialize the same. So
1631 * wait for it to initialize.
1632 */
1633 put_page(page);
1634 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1635 if (page) {
1636 if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1637 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1638 /* should never happen */
1639 unlock_page(page);
1640 ret = -EINVAL;
1641 goto err;
1642 }
1643 if (!PageUptodate(page)) {
1644 ret = ext4_mb_init_cache(page, NULL, gfp);
1645 if (ret) {
1646 unlock_page(page);
1647 goto err;
1648 }
1649 mb_cmp_bitmaps(e4b, page_address(page) +
1650 (poff * sb->s_blocksize));
1651 }
1652 unlock_page(page);
1653 }
1654 }
1655 if (page == NULL) {
1656 ret = -ENOMEM;
1657 goto err;
1658 }
1659 if (!PageUptodate(page)) {
1660 ret = -EIO;
1661 goto err;
1662 }
1663
1664 /* Pages marked accessed already */
1665 e4b->bd_bitmap_page = page;
1666 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1667
1668 block++;
1669 pnum = block / blocks_per_page;
1670 poff = block % blocks_per_page;
1671
1672 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1673 if (page == NULL || !PageUptodate(page)) {
1674 if (page)
1675 put_page(page);
1676 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1677 if (page) {
1678 if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1679 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1680 /* should never happen */
1681 unlock_page(page);
1682 ret = -EINVAL;
1683 goto err;
1684 }
1685 if (!PageUptodate(page)) {
1686 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1687 gfp);
1688 if (ret) {
1689 unlock_page(page);
1690 goto err;
1691 }
1692 }
1693 unlock_page(page);
1694 }
1695 }
1696 if (page == NULL) {
1697 ret = -ENOMEM;
1698 goto err;
1699 }
1700 if (!PageUptodate(page)) {
1701 ret = -EIO;
1702 goto err;
1703 }
1704
1705 /* Pages marked accessed already */
1706 e4b->bd_buddy_page = page;
1707 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1708
1709 return 0;
1710
1711err:
1712 if (page)
1713 put_page(page);
1714 if (e4b->bd_bitmap_page)
1715 put_page(e4b->bd_bitmap_page);
1716
1717 e4b->bd_buddy = NULL;
1718 e4b->bd_bitmap = NULL;
1719 return ret;
1720}
1721
1722static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1723 struct ext4_buddy *e4b)
1724{
1725 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1726}
1727
1728static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1729{
1730 if (e4b->bd_bitmap_page)
1731 put_page(e4b->bd_bitmap_page);
1732 if (e4b->bd_buddy_page)
1733 put_page(e4b->bd_buddy_page);
1734}
1735
1736
1737static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1738{
1739 int order = 1, max;
1740 void *bb;
1741
1742 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1743 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1744
1745 while (order <= e4b->bd_blkbits + 1) {
1746 bb = mb_find_buddy(e4b, order, &max);
1747 if (!mb_test_bit(block >> order, bb)) {
1748 /* this block is part of buddy of order 'order' */
1749 return order;
1750 }
1751 order++;
1752 }
1753 return 0;
1754}
1755
1756static void mb_clear_bits(void *bm, int cur, int len)
1757{
1758 __u32 *addr;
1759
1760 len = cur + len;
1761 while (cur < len) {
1762 if ((cur & 31) == 0 && (len - cur) >= 32) {
1763 /* fast path: clear whole word at once */
1764 addr = bm + (cur >> 3);
1765 *addr = 0;
1766 cur += 32;
1767 continue;
1768 }
1769 mb_clear_bit(cur, bm);
1770 cur++;
1771 }
1772}
1773
1774/* clear bits in given range
1775 * will return first found zero bit if any, -1 otherwise
1776 */
1777static int mb_test_and_clear_bits(void *bm, int cur, int len)
1778{
1779 __u32 *addr;
1780 int zero_bit = -1;
1781
1782 len = cur + len;
1783 while (cur < len) {
1784 if ((cur & 31) == 0 && (len - cur) >= 32) {
1785 /* fast path: clear whole word at once */
1786 addr = bm + (cur >> 3);
1787 if (*addr != (__u32)(-1) && zero_bit == -1)
1788 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1789 *addr = 0;
1790 cur += 32;
1791 continue;
1792 }
1793 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1794 zero_bit = cur;
1795 cur++;
1796 }
1797
1798 return zero_bit;
1799}
1800
1801void mb_set_bits(void *bm, int cur, int len)
1802{
1803 __u32 *addr;
1804
1805 len = cur + len;
1806 while (cur < len) {
1807 if ((cur & 31) == 0 && (len - cur) >= 32) {
1808 /* fast path: set whole word at once */
1809 addr = bm + (cur >> 3);
1810 *addr = 0xffffffff;
1811 cur += 32;
1812 continue;
1813 }
1814 mb_set_bit(cur, bm);
1815 cur++;
1816 }
1817}
1818
1819static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1820{
1821 if (mb_test_bit(*bit + side, bitmap)) {
1822 mb_clear_bit(*bit, bitmap);
1823 (*bit) -= side;
1824 return 1;
1825 }
1826 else {
1827 (*bit) += side;
1828 mb_set_bit(*bit, bitmap);
1829 return -1;
1830 }
1831}
1832
1833static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1834{
1835 int max;
1836 int order = 1;
1837 void *buddy = mb_find_buddy(e4b, order, &max);
1838
1839 while (buddy) {
1840 void *buddy2;
1841
1842 /* Bits in range [first; last] are known to be set since
1843 * corresponding blocks were allocated. Bits in range
1844 * (first; last) will stay set because they form buddies on
1845 * upper layer. We just deal with borders if they don't
1846 * align with upper layer and then go up.
1847 * Releasing entire group is all about clearing
1848 * single bit of highest order buddy.
1849 */
1850
1851 /* Example:
1852 * ---------------------------------
1853 * | 1 | 1 | 1 | 1 |
1854 * ---------------------------------
1855 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1856 * ---------------------------------
1857 * 0 1 2 3 4 5 6 7
1858 * \_____________________/
1859 *
1860 * Neither [1] nor [6] is aligned to above layer.
1861 * Left neighbour [0] is free, so mark it busy,
1862 * decrease bb_counters and extend range to
1863 * [0; 6]
1864 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1865 * mark [6] free, increase bb_counters and shrink range to
1866 * [0; 5].
1867 * Then shift range to [0; 2], go up and do the same.
1868 */
1869
1870
1871 if (first & 1)
1872 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1873 if (!(last & 1))
1874 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1875 if (first > last)
1876 break;
1877 order++;
1878
1879 buddy2 = mb_find_buddy(e4b, order, &max);
1880 if (!buddy2) {
1881 mb_clear_bits(buddy, first, last - first + 1);
1882 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1883 break;
1884 }
1885 first >>= 1;
1886 last >>= 1;
1887 buddy = buddy2;
1888 }
1889}
1890
1891static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1892 int first, int count)
1893{
1894 int left_is_free = 0;
1895 int right_is_free = 0;
1896 int block;
1897 int last = first + count - 1;
1898 struct super_block *sb = e4b->bd_sb;
1899
1900 if (WARN_ON(count == 0))
1901 return;
1902 BUG_ON(last >= (sb->s_blocksize << 3));
1903 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1904 /* Don't bother if the block group is corrupt. */
1905 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1906 return;
1907
1908 mb_check_buddy(e4b);
1909 mb_free_blocks_double(inode, e4b, first, count);
1910
1911 /* access memory sequentially: check left neighbour,
1912 * clear range and then check right neighbour
1913 */
1914 if (first != 0)
1915 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1916 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1917 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1918 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1919
1920 if (unlikely(block != -1)) {
1921 struct ext4_sb_info *sbi = EXT4_SB(sb);
1922 ext4_fsblk_t blocknr;
1923
1924 /*
1925 * Fastcommit replay can free already freed blocks which
1926 * corrupts allocation info. Regenerate it.
1927 */
1928 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1929 mb_regenerate_buddy(e4b);
1930 goto check;
1931 }
1932
1933 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1934 blocknr += EXT4_C2B(sbi, block);
1935 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1936 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1937 ext4_grp_locked_error(sb, e4b->bd_group,
1938 inode ? inode->i_ino : 0, blocknr,
1939 "freeing already freed block (bit %u); block bitmap corrupt.",
1940 block);
1941 return;
1942 }
1943
1944 this_cpu_inc(discard_pa_seq);
1945 e4b->bd_info->bb_free += count;
1946 if (first < e4b->bd_info->bb_first_free)
1947 e4b->bd_info->bb_first_free = first;
1948
1949 /* let's maintain fragments counter */
1950 if (left_is_free && right_is_free)
1951 e4b->bd_info->bb_fragments--;
1952 else if (!left_is_free && !right_is_free)
1953 e4b->bd_info->bb_fragments++;
1954
1955 /* buddy[0] == bd_bitmap is a special case, so handle
1956 * it right away and let mb_buddy_mark_free stay free of
1957 * zero order checks.
1958 * Check if neighbours are to be coaleasced,
1959 * adjust bitmap bb_counters and borders appropriately.
1960 */
1961 if (first & 1) {
1962 first += !left_is_free;
1963 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1964 }
1965 if (!(last & 1)) {
1966 last -= !right_is_free;
1967 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1968 }
1969
1970 if (first <= last)
1971 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1972
1973 mb_set_largest_free_order(sb, e4b->bd_info);
1974 mb_update_avg_fragment_size(sb, e4b->bd_info);
1975check:
1976 mb_check_buddy(e4b);
1977}
1978
1979static int mb_find_extent(struct ext4_buddy *e4b, int block,
1980 int needed, struct ext4_free_extent *ex)
1981{
1982 int max, order, next;
1983 void *buddy;
1984
1985 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1986 BUG_ON(ex == NULL);
1987
1988 buddy = mb_find_buddy(e4b, 0, &max);
1989 BUG_ON(buddy == NULL);
1990 BUG_ON(block >= max);
1991 if (mb_test_bit(block, buddy)) {
1992 ex->fe_len = 0;
1993 ex->fe_start = 0;
1994 ex->fe_group = 0;
1995 return 0;
1996 }
1997
1998 /* find actual order */
1999 order = mb_find_order_for_block(e4b, block);
2000
2001 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2002 ex->fe_start = block;
2003 ex->fe_group = e4b->bd_group;
2004
2005 block = block >> order;
2006
2007 while (needed > ex->fe_len &&
2008 mb_find_buddy(e4b, order, &max)) {
2009
2010 if (block + 1 >= max)
2011 break;
2012
2013 next = (block + 1) * (1 << order);
2014 if (mb_test_bit(next, e4b->bd_bitmap))
2015 break;
2016
2017 order = mb_find_order_for_block(e4b, next);
2018
2019 block = next >> order;
2020 ex->fe_len += 1 << order;
2021 }
2022
2023 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2024 /* Should never happen! (but apparently sometimes does?!?) */
2025 WARN_ON(1);
2026 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2027 "corruption or bug in mb_find_extent "
2028 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2029 block, order, needed, ex->fe_group, ex->fe_start,
2030 ex->fe_len, ex->fe_logical);
2031 ex->fe_len = 0;
2032 ex->fe_start = 0;
2033 ex->fe_group = 0;
2034 }
2035 return ex->fe_len;
2036}
2037
2038static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2039{
2040 int ord;
2041 int mlen = 0;
2042 int max = 0;
2043 int cur;
2044 int start = ex->fe_start;
2045 int len = ex->fe_len;
2046 unsigned ret = 0;
2047 int len0 = len;
2048 void *buddy;
2049 bool split = false;
2050
2051 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2052 BUG_ON(e4b->bd_group != ex->fe_group);
2053 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2054 mb_check_buddy(e4b);
2055 mb_mark_used_double(e4b, start, len);
2056
2057 this_cpu_inc(discard_pa_seq);
2058 e4b->bd_info->bb_free -= len;
2059 if (e4b->bd_info->bb_first_free == start)
2060 e4b->bd_info->bb_first_free += len;
2061
2062 /* let's maintain fragments counter */
2063 if (start != 0)
2064 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2065 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2066 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2067 if (mlen && max)
2068 e4b->bd_info->bb_fragments++;
2069 else if (!mlen && !max)
2070 e4b->bd_info->bb_fragments--;
2071
2072 /* let's maintain buddy itself */
2073 while (len) {
2074 if (!split)
2075 ord = mb_find_order_for_block(e4b, start);
2076
2077 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2078 /* the whole chunk may be allocated at once! */
2079 mlen = 1 << ord;
2080 if (!split)
2081 buddy = mb_find_buddy(e4b, ord, &max);
2082 else
2083 split = false;
2084 BUG_ON((start >> ord) >= max);
2085 mb_set_bit(start >> ord, buddy);
2086 e4b->bd_info->bb_counters[ord]--;
2087 start += mlen;
2088 len -= mlen;
2089 BUG_ON(len < 0);
2090 continue;
2091 }
2092
2093 /* store for history */
2094 if (ret == 0)
2095 ret = len | (ord << 16);
2096
2097 /* we have to split large buddy */
2098 BUG_ON(ord <= 0);
2099 buddy = mb_find_buddy(e4b, ord, &max);
2100 mb_set_bit(start >> ord, buddy);
2101 e4b->bd_info->bb_counters[ord]--;
2102
2103 ord--;
2104 cur = (start >> ord) & ~1U;
2105 buddy = mb_find_buddy(e4b, ord, &max);
2106 mb_clear_bit(cur, buddy);
2107 mb_clear_bit(cur + 1, buddy);
2108 e4b->bd_info->bb_counters[ord]++;
2109 e4b->bd_info->bb_counters[ord]++;
2110 split = true;
2111 }
2112 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2113
2114 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2115 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2116 mb_check_buddy(e4b);
2117
2118 return ret;
2119}
2120
2121/*
2122 * Must be called under group lock!
2123 */
2124static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2125 struct ext4_buddy *e4b)
2126{
2127 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2128 int ret;
2129
2130 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2131 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2132
2133 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2134 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2135 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2136
2137 /* preallocation can change ac_b_ex, thus we store actually
2138 * allocated blocks for history */
2139 ac->ac_f_ex = ac->ac_b_ex;
2140
2141 ac->ac_status = AC_STATUS_FOUND;
2142 ac->ac_tail = ret & 0xffff;
2143 ac->ac_buddy = ret >> 16;
2144
2145 /*
2146 * take the page reference. We want the page to be pinned
2147 * so that we don't get a ext4_mb_init_cache_call for this
2148 * group until we update the bitmap. That would mean we
2149 * double allocate blocks. The reference is dropped
2150 * in ext4_mb_release_context
2151 */
2152 ac->ac_bitmap_page = e4b->bd_bitmap_page;
2153 get_page(ac->ac_bitmap_page);
2154 ac->ac_buddy_page = e4b->bd_buddy_page;
2155 get_page(ac->ac_buddy_page);
2156 /* store last allocated for subsequent stream allocation */
2157 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2158 spin_lock(&sbi->s_md_lock);
2159 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2160 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2161 spin_unlock(&sbi->s_md_lock);
2162 }
2163 /*
2164 * As we've just preallocated more space than
2165 * user requested originally, we store allocated
2166 * space in a special descriptor.
2167 */
2168 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2169 ext4_mb_new_preallocation(ac);
2170
2171}
2172
2173static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2174 struct ext4_buddy *e4b,
2175 int finish_group)
2176{
2177 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2178 struct ext4_free_extent *bex = &ac->ac_b_ex;
2179 struct ext4_free_extent *gex = &ac->ac_g_ex;
2180
2181 if (ac->ac_status == AC_STATUS_FOUND)
2182 return;
2183 /*
2184 * We don't want to scan for a whole year
2185 */
2186 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2187 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2188 ac->ac_status = AC_STATUS_BREAK;
2189 return;
2190 }
2191
2192 /*
2193 * Haven't found good chunk so far, let's continue
2194 */
2195 if (bex->fe_len < gex->fe_len)
2196 return;
2197
2198 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2199 ext4_mb_use_best_found(ac, e4b);
2200}
2201
2202/*
2203 * The routine checks whether found extent is good enough. If it is,
2204 * then the extent gets marked used and flag is set to the context
2205 * to stop scanning. Otherwise, the extent is compared with the
2206 * previous found extent and if new one is better, then it's stored
2207 * in the context. Later, the best found extent will be used, if
2208 * mballoc can't find good enough extent.
2209 *
2210 * The algorithm used is roughly as follows:
2211 *
2212 * * If free extent found is exactly as big as goal, then
2213 * stop the scan and use it immediately
2214 *
2215 * * If free extent found is smaller than goal, then keep retrying
2216 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2217 * that stop scanning and use whatever we have.
2218 *
2219 * * If free extent found is bigger than goal, then keep retrying
2220 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2221 * stopping the scan and using the extent.
2222 *
2223 *
2224 * FIXME: real allocation policy is to be designed yet!
2225 */
2226static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2227 struct ext4_free_extent *ex,
2228 struct ext4_buddy *e4b)
2229{
2230 struct ext4_free_extent *bex = &ac->ac_b_ex;
2231 struct ext4_free_extent *gex = &ac->ac_g_ex;
2232
2233 BUG_ON(ex->fe_len <= 0);
2234 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2235 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2236 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2237
2238 ac->ac_found++;
2239 ac->ac_cX_found[ac->ac_criteria]++;
2240
2241 /*
2242 * The special case - take what you catch first
2243 */
2244 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2245 *bex = *ex;
2246 ext4_mb_use_best_found(ac, e4b);
2247 return;
2248 }
2249
2250 /*
2251 * Let's check whether the chuck is good enough
2252 */
2253 if (ex->fe_len == gex->fe_len) {
2254 *bex = *ex;
2255 ext4_mb_use_best_found(ac, e4b);
2256 return;
2257 }
2258
2259 /*
2260 * If this is first found extent, just store it in the context
2261 */
2262 if (bex->fe_len == 0) {
2263 *bex = *ex;
2264 return;
2265 }
2266
2267 /*
2268 * If new found extent is better, store it in the context
2269 */
2270 if (bex->fe_len < gex->fe_len) {
2271 /* if the request isn't satisfied, any found extent
2272 * larger than previous best one is better */
2273 if (ex->fe_len > bex->fe_len)
2274 *bex = *ex;
2275 } else if (ex->fe_len > gex->fe_len) {
2276 /* if the request is satisfied, then we try to find
2277 * an extent that still satisfy the request, but is
2278 * smaller than previous one */
2279 if (ex->fe_len < bex->fe_len)
2280 *bex = *ex;
2281 }
2282
2283 ext4_mb_check_limits(ac, e4b, 0);
2284}
2285
2286static noinline_for_stack
2287void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2288 struct ext4_buddy *e4b)
2289{
2290 struct ext4_free_extent ex = ac->ac_b_ex;
2291 ext4_group_t group = ex.fe_group;
2292 int max;
2293 int err;
2294
2295 BUG_ON(ex.fe_len <= 0);
2296 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2297 if (err)
2298 return;
2299
2300 ext4_lock_group(ac->ac_sb, group);
2301 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2302 goto out;
2303
2304 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2305
2306 if (max > 0) {
2307 ac->ac_b_ex = ex;
2308 ext4_mb_use_best_found(ac, e4b);
2309 }
2310
2311out:
2312 ext4_unlock_group(ac->ac_sb, group);
2313 ext4_mb_unload_buddy(e4b);
2314}
2315
2316static noinline_for_stack
2317int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2318 struct ext4_buddy *e4b)
2319{
2320 ext4_group_t group = ac->ac_g_ex.fe_group;
2321 int max;
2322 int err;
2323 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2324 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2325 struct ext4_free_extent ex;
2326
2327 if (!grp)
2328 return -EFSCORRUPTED;
2329 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2330 return 0;
2331 if (grp->bb_free == 0)
2332 return 0;
2333
2334 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2335 if (err)
2336 return err;
2337
2338 ext4_lock_group(ac->ac_sb, group);
2339 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2340 goto out;
2341
2342 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2343 ac->ac_g_ex.fe_len, &ex);
2344 ex.fe_logical = 0xDEADFA11; /* debug value */
2345
2346 if (max >= ac->ac_g_ex.fe_len &&
2347 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2348 ext4_fsblk_t start;
2349
2350 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2351 /* use do_div to get remainder (would be 64-bit modulo) */
2352 if (do_div(start, sbi->s_stripe) == 0) {
2353 ac->ac_found++;
2354 ac->ac_b_ex = ex;
2355 ext4_mb_use_best_found(ac, e4b);
2356 }
2357 } else if (max >= ac->ac_g_ex.fe_len) {
2358 BUG_ON(ex.fe_len <= 0);
2359 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2360 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2361 ac->ac_found++;
2362 ac->ac_b_ex = ex;
2363 ext4_mb_use_best_found(ac, e4b);
2364 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2365 /* Sometimes, caller may want to merge even small
2366 * number of blocks to an existing extent */
2367 BUG_ON(ex.fe_len <= 0);
2368 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2369 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2370 ac->ac_found++;
2371 ac->ac_b_ex = ex;
2372 ext4_mb_use_best_found(ac, e4b);
2373 }
2374out:
2375 ext4_unlock_group(ac->ac_sb, group);
2376 ext4_mb_unload_buddy(e4b);
2377
2378 return 0;
2379}
2380
2381/*
2382 * The routine scans buddy structures (not bitmap!) from given order
2383 * to max order and tries to find big enough chunk to satisfy the req
2384 */
2385static noinline_for_stack
2386void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2387 struct ext4_buddy *e4b)
2388{
2389 struct super_block *sb = ac->ac_sb;
2390 struct ext4_group_info *grp = e4b->bd_info;
2391 void *buddy;
2392 int i;
2393 int k;
2394 int max;
2395
2396 BUG_ON(ac->ac_2order <= 0);
2397 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2398 if (grp->bb_counters[i] == 0)
2399 continue;
2400
2401 buddy = mb_find_buddy(e4b, i, &max);
2402 if (WARN_RATELIMIT(buddy == NULL,
2403 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2404 continue;
2405
2406 k = mb_find_next_zero_bit(buddy, max, 0);
2407 if (k >= max) {
2408 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2409 e4b->bd_group,
2410 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2411 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2412 "%d free clusters of order %d. But found 0",
2413 grp->bb_counters[i], i);
2414 break;
2415 }
2416 ac->ac_found++;
2417 ac->ac_cX_found[ac->ac_criteria]++;
2418
2419 ac->ac_b_ex.fe_len = 1 << i;
2420 ac->ac_b_ex.fe_start = k << i;
2421 ac->ac_b_ex.fe_group = e4b->bd_group;
2422
2423 ext4_mb_use_best_found(ac, e4b);
2424
2425 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2426
2427 if (EXT4_SB(sb)->s_mb_stats)
2428 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2429
2430 break;
2431 }
2432}
2433
2434/*
2435 * The routine scans the group and measures all found extents.
2436 * In order to optimize scanning, caller must pass number of
2437 * free blocks in the group, so the routine can know upper limit.
2438 */
2439static noinline_for_stack
2440void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2441 struct ext4_buddy *e4b)
2442{
2443 struct super_block *sb = ac->ac_sb;
2444 void *bitmap = e4b->bd_bitmap;
2445 struct ext4_free_extent ex;
2446 int i, j, freelen;
2447 int free;
2448
2449 free = e4b->bd_info->bb_free;
2450 if (WARN_ON(free <= 0))
2451 return;
2452
2453 i = e4b->bd_info->bb_first_free;
2454
2455 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2456 i = mb_find_next_zero_bit(bitmap,
2457 EXT4_CLUSTERS_PER_GROUP(sb), i);
2458 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2459 /*
2460 * IF we have corrupt bitmap, we won't find any
2461 * free blocks even though group info says we
2462 * have free blocks
2463 */
2464 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2465 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2466 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2467 "%d free clusters as per "
2468 "group info. But bitmap says 0",
2469 free);
2470 break;
2471 }
2472
2473 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2474 /*
2475 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2476 * sure that this group will have a large enough
2477 * continuous free extent, so skip over the smaller free
2478 * extents
2479 */
2480 j = mb_find_next_bit(bitmap,
2481 EXT4_CLUSTERS_PER_GROUP(sb), i);
2482 freelen = j - i;
2483
2484 if (freelen < ac->ac_g_ex.fe_len) {
2485 i = j;
2486 free -= freelen;
2487 continue;
2488 }
2489 }
2490
2491 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2492 if (WARN_ON(ex.fe_len <= 0))
2493 break;
2494 if (free < ex.fe_len) {
2495 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2496 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2497 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2498 "%d free clusters as per "
2499 "group info. But got %d blocks",
2500 free, ex.fe_len);
2501 /*
2502 * The number of free blocks differs. This mostly
2503 * indicate that the bitmap is corrupt. So exit
2504 * without claiming the space.
2505 */
2506 break;
2507 }
2508 ex.fe_logical = 0xDEADC0DE; /* debug value */
2509 ext4_mb_measure_extent(ac, &ex, e4b);
2510
2511 i += ex.fe_len;
2512 free -= ex.fe_len;
2513 }
2514
2515 ext4_mb_check_limits(ac, e4b, 1);
2516}
2517
2518/*
2519 * This is a special case for storages like raid5
2520 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2521 */
2522static noinline_for_stack
2523void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2524 struct ext4_buddy *e4b)
2525{
2526 struct super_block *sb = ac->ac_sb;
2527 struct ext4_sb_info *sbi = EXT4_SB(sb);
2528 void *bitmap = e4b->bd_bitmap;
2529 struct ext4_free_extent ex;
2530 ext4_fsblk_t first_group_block;
2531 ext4_fsblk_t a;
2532 ext4_grpblk_t i, stripe;
2533 int max;
2534
2535 BUG_ON(sbi->s_stripe == 0);
2536
2537 /* find first stripe-aligned block in group */
2538 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2539
2540 a = first_group_block + sbi->s_stripe - 1;
2541 do_div(a, sbi->s_stripe);
2542 i = (a * sbi->s_stripe) - first_group_block;
2543
2544 stripe = EXT4_B2C(sbi, sbi->s_stripe);
2545 i = EXT4_B2C(sbi, i);
2546 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2547 if (!mb_test_bit(i, bitmap)) {
2548 max = mb_find_extent(e4b, i, stripe, &ex);
2549 if (max >= stripe) {
2550 ac->ac_found++;
2551 ac->ac_cX_found[ac->ac_criteria]++;
2552 ex.fe_logical = 0xDEADF00D; /* debug value */
2553 ac->ac_b_ex = ex;
2554 ext4_mb_use_best_found(ac, e4b);
2555 break;
2556 }
2557 }
2558 i += stripe;
2559 }
2560}
2561
2562/*
2563 * This is also called BEFORE we load the buddy bitmap.
2564 * Returns either 1 or 0 indicating that the group is either suitable
2565 * for the allocation or not.
2566 */
2567static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2568 ext4_group_t group, enum criteria cr)
2569{
2570 ext4_grpblk_t free, fragments;
2571 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2572 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2573
2574 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2575
2576 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2577 return false;
2578
2579 free = grp->bb_free;
2580 if (free == 0)
2581 return false;
2582
2583 fragments = grp->bb_fragments;
2584 if (fragments == 0)
2585 return false;
2586
2587 switch (cr) {
2588 case CR_POWER2_ALIGNED:
2589 BUG_ON(ac->ac_2order == 0);
2590
2591 /* Avoid using the first bg of a flexgroup for data files */
2592 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2593 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2594 ((group % flex_size) == 0))
2595 return false;
2596
2597 if (free < ac->ac_g_ex.fe_len)
2598 return false;
2599
2600 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2601 return true;
2602
2603 if (grp->bb_largest_free_order < ac->ac_2order)
2604 return false;
2605
2606 return true;
2607 case CR_GOAL_LEN_FAST:
2608 case CR_BEST_AVAIL_LEN:
2609 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2610 return true;
2611 break;
2612 case CR_GOAL_LEN_SLOW:
2613 if (free >= ac->ac_g_ex.fe_len)
2614 return true;
2615 break;
2616 case CR_ANY_FREE:
2617 return true;
2618 default:
2619 BUG();
2620 }
2621
2622 return false;
2623}
2624
2625/*
2626 * This could return negative error code if something goes wrong
2627 * during ext4_mb_init_group(). This should not be called with
2628 * ext4_lock_group() held.
2629 *
2630 * Note: because we are conditionally operating with the group lock in
2631 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2632 * function using __acquire and __release. This means we need to be
2633 * super careful before messing with the error path handling via "goto
2634 * out"!
2635 */
2636static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2637 ext4_group_t group, enum criteria cr)
2638{
2639 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2640 struct super_block *sb = ac->ac_sb;
2641 struct ext4_sb_info *sbi = EXT4_SB(sb);
2642 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2643 ext4_grpblk_t free;
2644 int ret = 0;
2645
2646 if (!grp)
2647 return -EFSCORRUPTED;
2648 if (sbi->s_mb_stats)
2649 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2650 if (should_lock) {
2651 ext4_lock_group(sb, group);
2652 __release(ext4_group_lock_ptr(sb, group));
2653 }
2654 free = grp->bb_free;
2655 if (free == 0)
2656 goto out;
2657 /*
2658 * In all criterias except CR_ANY_FREE we try to avoid groups that
2659 * can't possibly satisfy the full goal request due to insufficient
2660 * free blocks.
2661 */
2662 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2663 goto out;
2664 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2665 goto out;
2666 if (should_lock) {
2667 __acquire(ext4_group_lock_ptr(sb, group));
2668 ext4_unlock_group(sb, group);
2669 }
2670
2671 /* We only do this if the grp has never been initialized */
2672 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2673 struct ext4_group_desc *gdp =
2674 ext4_get_group_desc(sb, group, NULL);
2675 int ret;
2676
2677 /*
2678 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2679 * search to find large good chunks almost for free. If buddy
2680 * data is not ready, then this optimization makes no sense. But
2681 * we never skip the first block group in a flex_bg, since this
2682 * gets used for metadata block allocation, and we want to make
2683 * sure we locate metadata blocks in the first block group in
2684 * the flex_bg if possible.
2685 */
2686 if (!ext4_mb_cr_expensive(cr) &&
2687 (!sbi->s_log_groups_per_flex ||
2688 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2689 !(ext4_has_group_desc_csum(sb) &&
2690 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2691 return 0;
2692 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2693 if (ret)
2694 return ret;
2695 }
2696
2697 if (should_lock) {
2698 ext4_lock_group(sb, group);
2699 __release(ext4_group_lock_ptr(sb, group));
2700 }
2701 ret = ext4_mb_good_group(ac, group, cr);
2702out:
2703 if (should_lock) {
2704 __acquire(ext4_group_lock_ptr(sb, group));
2705 ext4_unlock_group(sb, group);
2706 }
2707 return ret;
2708}
2709
2710/*
2711 * Start prefetching @nr block bitmaps starting at @group.
2712 * Return the next group which needs to be prefetched.
2713 */
2714ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2715 unsigned int nr, int *cnt)
2716{
2717 ext4_group_t ngroups = ext4_get_groups_count(sb);
2718 struct buffer_head *bh;
2719 struct blk_plug plug;
2720
2721 blk_start_plug(&plug);
2722 while (nr-- > 0) {
2723 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2724 NULL);
2725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2726
2727 /*
2728 * Prefetch block groups with free blocks; but don't
2729 * bother if it is marked uninitialized on disk, since
2730 * it won't require I/O to read. Also only try to
2731 * prefetch once, so we avoid getblk() call, which can
2732 * be expensive.
2733 */
2734 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2735 EXT4_MB_GRP_NEED_INIT(grp) &&
2736 ext4_free_group_clusters(sb, gdp) > 0 ) {
2737 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2738 if (bh && !IS_ERR(bh)) {
2739 if (!buffer_uptodate(bh) && cnt)
2740 (*cnt)++;
2741 brelse(bh);
2742 }
2743 }
2744 if (++group >= ngroups)
2745 group = 0;
2746 }
2747 blk_finish_plug(&plug);
2748 return group;
2749}
2750
2751/*
2752 * Prefetching reads the block bitmap into the buffer cache; but we
2753 * need to make sure that the buddy bitmap in the page cache has been
2754 * initialized. Note that ext4_mb_init_group() will block if the I/O
2755 * is not yet completed, or indeed if it was not initiated by
2756 * ext4_mb_prefetch did not start the I/O.
2757 *
2758 * TODO: We should actually kick off the buddy bitmap setup in a work
2759 * queue when the buffer I/O is completed, so that we don't block
2760 * waiting for the block allocation bitmap read to finish when
2761 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2762 */
2763void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2764 unsigned int nr)
2765{
2766 struct ext4_group_desc *gdp;
2767 struct ext4_group_info *grp;
2768
2769 while (nr-- > 0) {
2770 if (!group)
2771 group = ext4_get_groups_count(sb);
2772 group--;
2773 gdp = ext4_get_group_desc(sb, group, NULL);
2774 grp = ext4_get_group_info(sb, group);
2775
2776 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2777 ext4_free_group_clusters(sb, gdp) > 0) {
2778 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2779 break;
2780 }
2781 }
2782}
2783
2784static noinline_for_stack int
2785ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2786{
2787 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2788 enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2789 int err = 0, first_err = 0;
2790 unsigned int nr = 0, prefetch_ios = 0;
2791 struct ext4_sb_info *sbi;
2792 struct super_block *sb;
2793 struct ext4_buddy e4b;
2794 int lost;
2795
2796 sb = ac->ac_sb;
2797 sbi = EXT4_SB(sb);
2798 ngroups = ext4_get_groups_count(sb);
2799 /* non-extent files are limited to low blocks/groups */
2800 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2801 ngroups = sbi->s_blockfile_groups;
2802
2803 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2804
2805 /* first, try the goal */
2806 err = ext4_mb_find_by_goal(ac, &e4b);
2807 if (err || ac->ac_status == AC_STATUS_FOUND)
2808 goto out;
2809
2810 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2811 goto out;
2812
2813 /*
2814 * ac->ac_2order is set only if the fe_len is a power of 2
2815 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2816 * so that we try exact allocation using buddy.
2817 */
2818 i = fls(ac->ac_g_ex.fe_len);
2819 ac->ac_2order = 0;
2820 /*
2821 * We search using buddy data only if the order of the request
2822 * is greater than equal to the sbi_s_mb_order2_reqs
2823 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2824 * We also support searching for power-of-two requests only for
2825 * requests upto maximum buddy size we have constructed.
2826 */
2827 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2828 if (is_power_of_2(ac->ac_g_ex.fe_len))
2829 ac->ac_2order = array_index_nospec(i - 1,
2830 MB_NUM_ORDERS(sb));
2831 }
2832
2833 /* if stream allocation is enabled, use global goal */
2834 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2835 /* TBD: may be hot point */
2836 spin_lock(&sbi->s_md_lock);
2837 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2838 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2839 spin_unlock(&sbi->s_md_lock);
2840 }
2841
2842 /*
2843 * Let's just scan groups to find more-less suitable blocks We
2844 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2845 * aligned, in which case let's do that faster approach first.
2846 */
2847 if (ac->ac_2order)
2848 cr = CR_POWER2_ALIGNED;
2849repeat:
2850 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2851 ac->ac_criteria = cr;
2852 /*
2853 * searching for the right group start
2854 * from the goal value specified
2855 */
2856 group = ac->ac_g_ex.fe_group;
2857 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2858 prefetch_grp = group;
2859
2860 for (i = 0, new_cr = cr; i < ngroups; i++,
2861 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2862 int ret = 0;
2863
2864 cond_resched();
2865 if (new_cr != cr) {
2866 cr = new_cr;
2867 goto repeat;
2868 }
2869
2870 /*
2871 * Batch reads of the block allocation bitmaps
2872 * to get multiple READs in flight; limit
2873 * prefetching at inexpensive CR, otherwise mballoc
2874 * can spend a lot of time loading imperfect groups
2875 */
2876 if ((prefetch_grp == group) &&
2877 (ext4_mb_cr_expensive(cr) ||
2878 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2879 nr = sbi->s_mb_prefetch;
2880 if (ext4_has_feature_flex_bg(sb)) {
2881 nr = 1 << sbi->s_log_groups_per_flex;
2882 nr -= group & (nr - 1);
2883 nr = min(nr, sbi->s_mb_prefetch);
2884 }
2885 prefetch_grp = ext4_mb_prefetch(sb, group,
2886 nr, &prefetch_ios);
2887 }
2888
2889 /* This now checks without needing the buddy page */
2890 ret = ext4_mb_good_group_nolock(ac, group, cr);
2891 if (ret <= 0) {
2892 if (!first_err)
2893 first_err = ret;
2894 continue;
2895 }
2896
2897 err = ext4_mb_load_buddy(sb, group, &e4b);
2898 if (err)
2899 goto out;
2900
2901 ext4_lock_group(sb, group);
2902
2903 /*
2904 * We need to check again after locking the
2905 * block group
2906 */
2907 ret = ext4_mb_good_group(ac, group, cr);
2908 if (ret == 0) {
2909 ext4_unlock_group(sb, group);
2910 ext4_mb_unload_buddy(&e4b);
2911 continue;
2912 }
2913
2914 ac->ac_groups_scanned++;
2915 if (cr == CR_POWER2_ALIGNED)
2916 ext4_mb_simple_scan_group(ac, &e4b);
2917 else {
2918 bool is_stripe_aligned = sbi->s_stripe &&
2919 !(ac->ac_g_ex.fe_len %
2920 EXT4_B2C(sbi, sbi->s_stripe));
2921
2922 if ((cr == CR_GOAL_LEN_FAST ||
2923 cr == CR_BEST_AVAIL_LEN) &&
2924 is_stripe_aligned)
2925 ext4_mb_scan_aligned(ac, &e4b);
2926
2927 if (ac->ac_status == AC_STATUS_CONTINUE)
2928 ext4_mb_complex_scan_group(ac, &e4b);
2929 }
2930
2931 ext4_unlock_group(sb, group);
2932 ext4_mb_unload_buddy(&e4b);
2933
2934 if (ac->ac_status != AC_STATUS_CONTINUE)
2935 break;
2936 }
2937 /* Processed all groups and haven't found blocks */
2938 if (sbi->s_mb_stats && i == ngroups)
2939 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2940
2941 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2942 /* Reset goal length to original goal length before
2943 * falling into CR_GOAL_LEN_SLOW */
2944 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2945 }
2946
2947 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2948 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2949 /*
2950 * We've been searching too long. Let's try to allocate
2951 * the best chunk we've found so far
2952 */
2953 ext4_mb_try_best_found(ac, &e4b);
2954 if (ac->ac_status != AC_STATUS_FOUND) {
2955 /*
2956 * Someone more lucky has already allocated it.
2957 * The only thing we can do is just take first
2958 * found block(s)
2959 */
2960 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2961 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2962 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2963 ac->ac_b_ex.fe_len, lost);
2964
2965 ac->ac_b_ex.fe_group = 0;
2966 ac->ac_b_ex.fe_start = 0;
2967 ac->ac_b_ex.fe_len = 0;
2968 ac->ac_status = AC_STATUS_CONTINUE;
2969 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2970 cr = CR_ANY_FREE;
2971 goto repeat;
2972 }
2973 }
2974
2975 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2976 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2977out:
2978 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2979 err = first_err;
2980
2981 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2982 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2983 ac->ac_flags, cr, err);
2984
2985 if (nr)
2986 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2987
2988 return err;
2989}
2990
2991static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2992{
2993 struct super_block *sb = pde_data(file_inode(seq->file));
2994 ext4_group_t group;
2995
2996 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2997 return NULL;
2998 group = *pos + 1;
2999 return (void *) ((unsigned long) group);
3000}
3001
3002static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3003{
3004 struct super_block *sb = pde_data(file_inode(seq->file));
3005 ext4_group_t group;
3006
3007 ++*pos;
3008 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3009 return NULL;
3010 group = *pos + 1;
3011 return (void *) ((unsigned long) group);
3012}
3013
3014static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3015{
3016 struct super_block *sb = pde_data(file_inode(seq->file));
3017 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3018 int i;
3019 int err, buddy_loaded = 0;
3020 struct ext4_buddy e4b;
3021 struct ext4_group_info *grinfo;
3022 unsigned char blocksize_bits = min_t(unsigned char,
3023 sb->s_blocksize_bits,
3024 EXT4_MAX_BLOCK_LOG_SIZE);
3025 struct sg {
3026 struct ext4_group_info info;
3027 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3028 } sg;
3029
3030 group--;
3031 if (group == 0)
3032 seq_puts(seq, "#group: free frags first ["
3033 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3034 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3035
3036 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3037 sizeof(struct ext4_group_info);
3038
3039 grinfo = ext4_get_group_info(sb, group);
3040 if (!grinfo)
3041 return 0;
3042 /* Load the group info in memory only if not already loaded. */
3043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3044 err = ext4_mb_load_buddy(sb, group, &e4b);
3045 if (err) {
3046 seq_printf(seq, "#%-5u: I/O error\n", group);
3047 return 0;
3048 }
3049 buddy_loaded = 1;
3050 }
3051
3052 memcpy(&sg, grinfo, i);
3053
3054 if (buddy_loaded)
3055 ext4_mb_unload_buddy(&e4b);
3056
3057 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3058 sg.info.bb_fragments, sg.info.bb_first_free);
3059 for (i = 0; i <= 13; i++)
3060 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3061 sg.info.bb_counters[i] : 0);
3062 seq_puts(seq, " ]\n");
3063
3064 return 0;
3065}
3066
3067static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3068{
3069}
3070
3071const struct seq_operations ext4_mb_seq_groups_ops = {
3072 .start = ext4_mb_seq_groups_start,
3073 .next = ext4_mb_seq_groups_next,
3074 .stop = ext4_mb_seq_groups_stop,
3075 .show = ext4_mb_seq_groups_show,
3076};
3077
3078int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3079{
3080 struct super_block *sb = seq->private;
3081 struct ext4_sb_info *sbi = EXT4_SB(sb);
3082
3083 seq_puts(seq, "mballoc:\n");
3084 if (!sbi->s_mb_stats) {
3085 seq_puts(seq, "\tmb stats collection turned off.\n");
3086 seq_puts(
3087 seq,
3088 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3089 return 0;
3090 }
3091 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3092 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3093
3094 seq_printf(seq, "\tgroups_scanned: %u\n",
3095 atomic_read(&sbi->s_bal_groups_scanned));
3096
3097 /* CR_POWER2_ALIGNED stats */
3098 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3099 seq_printf(seq, "\t\thits: %llu\n",
3100 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3101 seq_printf(
3102 seq, "\t\tgroups_considered: %llu\n",
3103 atomic64_read(
3104 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3105 seq_printf(seq, "\t\textents_scanned: %u\n",
3106 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3107 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3108 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3109 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3110 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3111
3112 /* CR_GOAL_LEN_FAST stats */
3113 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3114 seq_printf(seq, "\t\thits: %llu\n",
3115 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3116 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3117 atomic64_read(
3118 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3119 seq_printf(seq, "\t\textents_scanned: %u\n",
3120 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3121 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3122 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3123 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3124 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3125
3126 /* CR_BEST_AVAIL_LEN stats */
3127 seq_puts(seq, "\tcr_best_avail_stats:\n");
3128 seq_printf(seq, "\t\thits: %llu\n",
3129 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3130 seq_printf(
3131 seq, "\t\tgroups_considered: %llu\n",
3132 atomic64_read(
3133 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3134 seq_printf(seq, "\t\textents_scanned: %u\n",
3135 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3136 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3137 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3138 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3139 atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3140
3141 /* CR_GOAL_LEN_SLOW stats */
3142 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3143 seq_printf(seq, "\t\thits: %llu\n",
3144 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3145 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3146 atomic64_read(
3147 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3148 seq_printf(seq, "\t\textents_scanned: %u\n",
3149 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3150 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3151 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3152
3153 /* CR_ANY_FREE stats */
3154 seq_puts(seq, "\tcr_any_free_stats:\n");
3155 seq_printf(seq, "\t\thits: %llu\n",
3156 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3157 seq_printf(
3158 seq, "\t\tgroups_considered: %llu\n",
3159 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3160 seq_printf(seq, "\t\textents_scanned: %u\n",
3161 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3162 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3163 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3164
3165 /* Aggregates */
3166 seq_printf(seq, "\textents_scanned: %u\n",
3167 atomic_read(&sbi->s_bal_ex_scanned));
3168 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3169 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3170 atomic_read(&sbi->s_bal_len_goals));
3171 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3172 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3173 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3174 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3175 atomic_read(&sbi->s_mb_buddies_generated),
3176 ext4_get_groups_count(sb));
3177 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3178 atomic64_read(&sbi->s_mb_generation_time));
3179 seq_printf(seq, "\tpreallocated: %u\n",
3180 atomic_read(&sbi->s_mb_preallocated));
3181 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3182 return 0;
3183}
3184
3185static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3186__acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3187{
3188 struct super_block *sb = pde_data(file_inode(seq->file));
3189 unsigned long position;
3190
3191 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3192 return NULL;
3193 position = *pos + 1;
3194 return (void *) ((unsigned long) position);
3195}
3196
3197static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3198{
3199 struct super_block *sb = pde_data(file_inode(seq->file));
3200 unsigned long position;
3201
3202 ++*pos;
3203 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3204 return NULL;
3205 position = *pos + 1;
3206 return (void *) ((unsigned long) position);
3207}
3208
3209static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3210{
3211 struct super_block *sb = pde_data(file_inode(seq->file));
3212 struct ext4_sb_info *sbi = EXT4_SB(sb);
3213 unsigned long position = ((unsigned long) v);
3214 struct ext4_group_info *grp;
3215 unsigned int count;
3216
3217 position--;
3218 if (position >= MB_NUM_ORDERS(sb)) {
3219 position -= MB_NUM_ORDERS(sb);
3220 if (position == 0)
3221 seq_puts(seq, "avg_fragment_size_lists:\n");
3222
3223 count = 0;
3224 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3225 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3226 bb_avg_fragment_size_node)
3227 count++;
3228 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3229 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3230 (unsigned int)position, count);
3231 return 0;
3232 }
3233
3234 if (position == 0) {
3235 seq_printf(seq, "optimize_scan: %d\n",
3236 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3237 seq_puts(seq, "max_free_order_lists:\n");
3238 }
3239 count = 0;
3240 read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3241 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3242 bb_largest_free_order_node)
3243 count++;
3244 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3245 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3246 (unsigned int)position, count);
3247
3248 return 0;
3249}
3250
3251static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3252{
3253}
3254
3255const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3256 .start = ext4_mb_seq_structs_summary_start,
3257 .next = ext4_mb_seq_structs_summary_next,
3258 .stop = ext4_mb_seq_structs_summary_stop,
3259 .show = ext4_mb_seq_structs_summary_show,
3260};
3261
3262static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3263{
3264 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3265 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3266
3267 BUG_ON(!cachep);
3268 return cachep;
3269}
3270
3271/*
3272 * Allocate the top-level s_group_info array for the specified number
3273 * of groups
3274 */
3275int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3276{
3277 struct ext4_sb_info *sbi = EXT4_SB(sb);
3278 unsigned size;
3279 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3280
3281 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3282 EXT4_DESC_PER_BLOCK_BITS(sb);
3283 if (size <= sbi->s_group_info_size)
3284 return 0;
3285
3286 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3287 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3288 if (!new_groupinfo) {
3289 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3290 return -ENOMEM;
3291 }
3292 rcu_read_lock();
3293 old_groupinfo = rcu_dereference(sbi->s_group_info);
3294 if (old_groupinfo)
3295 memcpy(new_groupinfo, old_groupinfo,
3296 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3297 rcu_read_unlock();
3298 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3299 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3300 if (old_groupinfo)
3301 ext4_kvfree_array_rcu(old_groupinfo);
3302 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3303 sbi->s_group_info_size);
3304 return 0;
3305}
3306
3307/* Create and initialize ext4_group_info data for the given group. */
3308int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3309 struct ext4_group_desc *desc)
3310{
3311 int i;
3312 int metalen = 0;
3313 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3314 struct ext4_sb_info *sbi = EXT4_SB(sb);
3315 struct ext4_group_info **meta_group_info;
3316 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3317
3318 /*
3319 * First check if this group is the first of a reserved block.
3320 * If it's true, we have to allocate a new table of pointers
3321 * to ext4_group_info structures
3322 */
3323 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3324 metalen = sizeof(*meta_group_info) <<
3325 EXT4_DESC_PER_BLOCK_BITS(sb);
3326 meta_group_info = kmalloc(metalen, GFP_NOFS);
3327 if (meta_group_info == NULL) {
3328 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3329 "for a buddy group");
3330 return -ENOMEM;
3331 }
3332 rcu_read_lock();
3333 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3334 rcu_read_unlock();
3335 }
3336
3337 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3338 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3339
3340 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3341 if (meta_group_info[i] == NULL) {
3342 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3343 goto exit_group_info;
3344 }
3345 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3346 &(meta_group_info[i]->bb_state));
3347
3348 /*
3349 * initialize bb_free to be able to skip
3350 * empty groups without initialization
3351 */
3352 if (ext4_has_group_desc_csum(sb) &&
3353 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3354 meta_group_info[i]->bb_free =
3355 ext4_free_clusters_after_init(sb, group, desc);
3356 } else {
3357 meta_group_info[i]->bb_free =
3358 ext4_free_group_clusters(sb, desc);
3359 }
3360
3361 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3362 init_rwsem(&meta_group_info[i]->alloc_sem);
3363 meta_group_info[i]->bb_free_root = RB_ROOT;
3364 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3365 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3366 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3367 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3368 meta_group_info[i]->bb_group = group;
3369
3370 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3371 return 0;
3372
3373exit_group_info:
3374 /* If a meta_group_info table has been allocated, release it now */
3375 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3376 struct ext4_group_info ***group_info;
3377
3378 rcu_read_lock();
3379 group_info = rcu_dereference(sbi->s_group_info);
3380 kfree(group_info[idx]);
3381 group_info[idx] = NULL;
3382 rcu_read_unlock();
3383 }
3384 return -ENOMEM;
3385} /* ext4_mb_add_groupinfo */
3386
3387static int ext4_mb_init_backend(struct super_block *sb)
3388{
3389 ext4_group_t ngroups = ext4_get_groups_count(sb);
3390 ext4_group_t i;
3391 struct ext4_sb_info *sbi = EXT4_SB(sb);
3392 int err;
3393 struct ext4_group_desc *desc;
3394 struct ext4_group_info ***group_info;
3395 struct kmem_cache *cachep;
3396
3397 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3398 if (err)
3399 return err;
3400
3401 sbi->s_buddy_cache = new_inode(sb);
3402 if (sbi->s_buddy_cache == NULL) {
3403 ext4_msg(sb, KERN_ERR, "can't get new inode");
3404 goto err_freesgi;
3405 }
3406 /* To avoid potentially colliding with an valid on-disk inode number,
3407 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3408 * not in the inode hash, so it should never be found by iget(), but
3409 * this will avoid confusion if it ever shows up during debugging. */
3410 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3411 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3412 for (i = 0; i < ngroups; i++) {
3413 cond_resched();
3414 desc = ext4_get_group_desc(sb, i, NULL);
3415 if (desc == NULL) {
3416 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3417 goto err_freebuddy;
3418 }
3419 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3420 goto err_freebuddy;
3421 }
3422
3423 if (ext4_has_feature_flex_bg(sb)) {
3424 /* a single flex group is supposed to be read by a single IO.
3425 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3426 * unsigned integer, so the maximum shift is 32.
3427 */
3428 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3429 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3430 goto err_freebuddy;
3431 }
3432 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3433 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3434 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3435 } else {
3436 sbi->s_mb_prefetch = 32;
3437 }
3438 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3439 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3440 /* now many real IOs to prefetch within a single allocation at cr=0
3441 * given cr=0 is an CPU-related optimization we shouldn't try to
3442 * load too many groups, at some point we should start to use what
3443 * we've got in memory.
3444 * with an average random access time 5ms, it'd take a second to get
3445 * 200 groups (* N with flex_bg), so let's make this limit 4
3446 */
3447 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3448 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3449 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3450
3451 return 0;
3452
3453err_freebuddy:
3454 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3455 while (i-- > 0) {
3456 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3457
3458 if (grp)
3459 kmem_cache_free(cachep, grp);
3460 }
3461 i = sbi->s_group_info_size;
3462 rcu_read_lock();
3463 group_info = rcu_dereference(sbi->s_group_info);
3464 while (i-- > 0)
3465 kfree(group_info[i]);
3466 rcu_read_unlock();
3467 iput(sbi->s_buddy_cache);
3468err_freesgi:
3469 rcu_read_lock();
3470 kvfree(rcu_dereference(sbi->s_group_info));
3471 rcu_read_unlock();
3472 return -ENOMEM;
3473}
3474
3475static void ext4_groupinfo_destroy_slabs(void)
3476{
3477 int i;
3478
3479 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3480 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3481 ext4_groupinfo_caches[i] = NULL;
3482 }
3483}
3484
3485static int ext4_groupinfo_create_slab(size_t size)
3486{
3487 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3488 int slab_size;
3489 int blocksize_bits = order_base_2(size);
3490 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3491 struct kmem_cache *cachep;
3492
3493 if (cache_index >= NR_GRPINFO_CACHES)
3494 return -EINVAL;
3495
3496 if (unlikely(cache_index < 0))
3497 cache_index = 0;
3498
3499 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3500 if (ext4_groupinfo_caches[cache_index]) {
3501 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3502 return 0; /* Already created */
3503 }
3504
3505 slab_size = offsetof(struct ext4_group_info,
3506 bb_counters[blocksize_bits + 2]);
3507
3508 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3509 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3510 NULL);
3511
3512 ext4_groupinfo_caches[cache_index] = cachep;
3513
3514 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3515 if (!cachep) {
3516 printk(KERN_EMERG
3517 "EXT4-fs: no memory for groupinfo slab cache\n");
3518 return -ENOMEM;
3519 }
3520
3521 return 0;
3522}
3523
3524static void ext4_discard_work(struct work_struct *work)
3525{
3526 struct ext4_sb_info *sbi = container_of(work,
3527 struct ext4_sb_info, s_discard_work);
3528 struct super_block *sb = sbi->s_sb;
3529 struct ext4_free_data *fd, *nfd;
3530 struct ext4_buddy e4b;
3531 LIST_HEAD(discard_list);
3532 ext4_group_t grp, load_grp;
3533 int err = 0;
3534
3535 spin_lock(&sbi->s_md_lock);
3536 list_splice_init(&sbi->s_discard_list, &discard_list);
3537 spin_unlock(&sbi->s_md_lock);
3538
3539 load_grp = UINT_MAX;
3540 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3541 /*
3542 * If filesystem is umounting or no memory or suffering
3543 * from no space, give up the discard
3544 */
3545 if ((sb->s_flags & SB_ACTIVE) && !err &&
3546 !atomic_read(&sbi->s_retry_alloc_pending)) {
3547 grp = fd->efd_group;
3548 if (grp != load_grp) {
3549 if (load_grp != UINT_MAX)
3550 ext4_mb_unload_buddy(&e4b);
3551
3552 err = ext4_mb_load_buddy(sb, grp, &e4b);
3553 if (err) {
3554 kmem_cache_free(ext4_free_data_cachep, fd);
3555 load_grp = UINT_MAX;
3556 continue;
3557 } else {
3558 load_grp = grp;
3559 }
3560 }
3561
3562 ext4_lock_group(sb, grp);
3563 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3564 fd->efd_start_cluster + fd->efd_count - 1, 1);
3565 ext4_unlock_group(sb, grp);
3566 }
3567 kmem_cache_free(ext4_free_data_cachep, fd);
3568 }
3569
3570 if (load_grp != UINT_MAX)
3571 ext4_mb_unload_buddy(&e4b);
3572}
3573
3574int ext4_mb_init(struct super_block *sb)
3575{
3576 struct ext4_sb_info *sbi = EXT4_SB(sb);
3577 unsigned i, j;
3578 unsigned offset, offset_incr;
3579 unsigned max;
3580 int ret;
3581
3582 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3583
3584 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3585 if (sbi->s_mb_offsets == NULL) {
3586 ret = -ENOMEM;
3587 goto out;
3588 }
3589
3590 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3591 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3592 if (sbi->s_mb_maxs == NULL) {
3593 ret = -ENOMEM;
3594 goto out;
3595 }
3596
3597 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3598 if (ret < 0)
3599 goto out;
3600
3601 /* order 0 is regular bitmap */
3602 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3603 sbi->s_mb_offsets[0] = 0;
3604
3605 i = 1;
3606 offset = 0;
3607 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3608 max = sb->s_blocksize << 2;
3609 do {
3610 sbi->s_mb_offsets[i] = offset;
3611 sbi->s_mb_maxs[i] = max;
3612 offset += offset_incr;
3613 offset_incr = offset_incr >> 1;
3614 max = max >> 1;
3615 i++;
3616 } while (i < MB_NUM_ORDERS(sb));
3617
3618 sbi->s_mb_avg_fragment_size =
3619 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3620 GFP_KERNEL);
3621 if (!sbi->s_mb_avg_fragment_size) {
3622 ret = -ENOMEM;
3623 goto out;
3624 }
3625 sbi->s_mb_avg_fragment_size_locks =
3626 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3627 GFP_KERNEL);
3628 if (!sbi->s_mb_avg_fragment_size_locks) {
3629 ret = -ENOMEM;
3630 goto out;
3631 }
3632 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3633 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3634 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3635 }
3636 sbi->s_mb_largest_free_orders =
3637 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3638 GFP_KERNEL);
3639 if (!sbi->s_mb_largest_free_orders) {
3640 ret = -ENOMEM;
3641 goto out;
3642 }
3643 sbi->s_mb_largest_free_orders_locks =
3644 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3645 GFP_KERNEL);
3646 if (!sbi->s_mb_largest_free_orders_locks) {
3647 ret = -ENOMEM;
3648 goto out;
3649 }
3650 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3651 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3652 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3653 }
3654
3655 spin_lock_init(&sbi->s_md_lock);
3656 sbi->s_mb_free_pending = 0;
3657 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3658 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3659 INIT_LIST_HEAD(&sbi->s_discard_list);
3660 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3661 atomic_set(&sbi->s_retry_alloc_pending, 0);
3662
3663 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3664 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3665 sbi->s_mb_stats = MB_DEFAULT_STATS;
3666 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3667 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3668 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3669
3670 /*
3671 * The default group preallocation is 512, which for 4k block
3672 * sizes translates to 2 megabytes. However for bigalloc file
3673 * systems, this is probably too big (i.e, if the cluster size
3674 * is 1 megabyte, then group preallocation size becomes half a
3675 * gigabyte!). As a default, we will keep a two megabyte
3676 * group pralloc size for cluster sizes up to 64k, and after
3677 * that, we will force a minimum group preallocation size of
3678 * 32 clusters. This translates to 8 megs when the cluster
3679 * size is 256k, and 32 megs when the cluster size is 1 meg,
3680 * which seems reasonable as a default.
3681 */
3682 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3683 sbi->s_cluster_bits, 32);
3684 /*
3685 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3686 * to the lowest multiple of s_stripe which is bigger than
3687 * the s_mb_group_prealloc as determined above. We want
3688 * the preallocation size to be an exact multiple of the
3689 * RAID stripe size so that preallocations don't fragment
3690 * the stripes.
3691 */
3692 if (sbi->s_stripe > 1) {
3693 sbi->s_mb_group_prealloc = roundup(
3694 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3695 }
3696
3697 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3698 if (sbi->s_locality_groups == NULL) {
3699 ret = -ENOMEM;
3700 goto out;
3701 }
3702 for_each_possible_cpu(i) {
3703 struct ext4_locality_group *lg;
3704 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3705 mutex_init(&lg->lg_mutex);
3706 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3707 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3708 spin_lock_init(&lg->lg_prealloc_lock);
3709 }
3710
3711 if (bdev_nonrot(sb->s_bdev))
3712 sbi->s_mb_max_linear_groups = 0;
3713 else
3714 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3715 /* init file for buddy data */
3716 ret = ext4_mb_init_backend(sb);
3717 if (ret != 0)
3718 goto out_free_locality_groups;
3719
3720 return 0;
3721
3722out_free_locality_groups:
3723 free_percpu(sbi->s_locality_groups);
3724 sbi->s_locality_groups = NULL;
3725out:
3726 kfree(sbi->s_mb_avg_fragment_size);
3727 kfree(sbi->s_mb_avg_fragment_size_locks);
3728 kfree(sbi->s_mb_largest_free_orders);
3729 kfree(sbi->s_mb_largest_free_orders_locks);
3730 kfree(sbi->s_mb_offsets);
3731 sbi->s_mb_offsets = NULL;
3732 kfree(sbi->s_mb_maxs);
3733 sbi->s_mb_maxs = NULL;
3734 return ret;
3735}
3736
3737/* need to called with the ext4 group lock held */
3738static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3739{
3740 struct ext4_prealloc_space *pa;
3741 struct list_head *cur, *tmp;
3742 int count = 0;
3743
3744 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3745 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3746 list_del(&pa->pa_group_list);
3747 count++;
3748 kmem_cache_free(ext4_pspace_cachep, pa);
3749 }
3750 return count;
3751}
3752
3753void ext4_mb_release(struct super_block *sb)
3754{
3755 ext4_group_t ngroups = ext4_get_groups_count(sb);
3756 ext4_group_t i;
3757 int num_meta_group_infos;
3758 struct ext4_group_info *grinfo, ***group_info;
3759 struct ext4_sb_info *sbi = EXT4_SB(sb);
3760 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3761 int count;
3762
3763 if (test_opt(sb, DISCARD)) {
3764 /*
3765 * wait the discard work to drain all of ext4_free_data
3766 */
3767 flush_work(&sbi->s_discard_work);
3768 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3769 }
3770
3771 if (sbi->s_group_info) {
3772 for (i = 0; i < ngroups; i++) {
3773 cond_resched();
3774 grinfo = ext4_get_group_info(sb, i);
3775 if (!grinfo)
3776 continue;
3777 mb_group_bb_bitmap_free(grinfo);
3778 ext4_lock_group(sb, i);
3779 count = ext4_mb_cleanup_pa(grinfo);
3780 if (count)
3781 mb_debug(sb, "mballoc: %d PAs left\n",
3782 count);
3783 ext4_unlock_group(sb, i);
3784 kmem_cache_free(cachep, grinfo);
3785 }
3786 num_meta_group_infos = (ngroups +
3787 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3788 EXT4_DESC_PER_BLOCK_BITS(sb);
3789 rcu_read_lock();
3790 group_info = rcu_dereference(sbi->s_group_info);
3791 for (i = 0; i < num_meta_group_infos; i++)
3792 kfree(group_info[i]);
3793 kvfree(group_info);
3794 rcu_read_unlock();
3795 }
3796 kfree(sbi->s_mb_avg_fragment_size);
3797 kfree(sbi->s_mb_avg_fragment_size_locks);
3798 kfree(sbi->s_mb_largest_free_orders);
3799 kfree(sbi->s_mb_largest_free_orders_locks);
3800 kfree(sbi->s_mb_offsets);
3801 kfree(sbi->s_mb_maxs);
3802 iput(sbi->s_buddy_cache);
3803 if (sbi->s_mb_stats) {
3804 ext4_msg(sb, KERN_INFO,
3805 "mballoc: %u blocks %u reqs (%u success)",
3806 atomic_read(&sbi->s_bal_allocated),
3807 atomic_read(&sbi->s_bal_reqs),
3808 atomic_read(&sbi->s_bal_success));
3809 ext4_msg(sb, KERN_INFO,
3810 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3811 "%u 2^N hits, %u breaks, %u lost",
3812 atomic_read(&sbi->s_bal_ex_scanned),
3813 atomic_read(&sbi->s_bal_groups_scanned),
3814 atomic_read(&sbi->s_bal_goals),
3815 atomic_read(&sbi->s_bal_2orders),
3816 atomic_read(&sbi->s_bal_breaks),
3817 atomic_read(&sbi->s_mb_lost_chunks));
3818 ext4_msg(sb, KERN_INFO,
3819 "mballoc: %u generated and it took %llu",
3820 atomic_read(&sbi->s_mb_buddies_generated),
3821 atomic64_read(&sbi->s_mb_generation_time));
3822 ext4_msg(sb, KERN_INFO,
3823 "mballoc: %u preallocated, %u discarded",
3824 atomic_read(&sbi->s_mb_preallocated),
3825 atomic_read(&sbi->s_mb_discarded));
3826 }
3827
3828 free_percpu(sbi->s_locality_groups);
3829}
3830
3831static inline int ext4_issue_discard(struct super_block *sb,
3832 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3833 struct bio **biop)
3834{
3835 ext4_fsblk_t discard_block;
3836
3837 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3838 ext4_group_first_block_no(sb, block_group));
3839 count = EXT4_C2B(EXT4_SB(sb), count);
3840 trace_ext4_discard_blocks(sb,
3841 (unsigned long long) discard_block, count);
3842 if (biop) {
3843 return __blkdev_issue_discard(sb->s_bdev,
3844 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3845 (sector_t)count << (sb->s_blocksize_bits - 9),
3846 GFP_NOFS, biop);
3847 } else
3848 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3849}
3850
3851static void ext4_free_data_in_buddy(struct super_block *sb,
3852 struct ext4_free_data *entry)
3853{
3854 struct ext4_buddy e4b;
3855 struct ext4_group_info *db;
3856 int err, count = 0;
3857
3858 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3859 entry->efd_count, entry->efd_group, entry);
3860
3861 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3862 /* we expect to find existing buddy because it's pinned */
3863 BUG_ON(err != 0);
3864
3865 spin_lock(&EXT4_SB(sb)->s_md_lock);
3866 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3867 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3868
3869 db = e4b.bd_info;
3870 /* there are blocks to put in buddy to make them really free */
3871 count += entry->efd_count;
3872 ext4_lock_group(sb, entry->efd_group);
3873 /* Take it out of per group rb tree */
3874 rb_erase(&entry->efd_node, &(db->bb_free_root));
3875 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3876
3877 /*
3878 * Clear the trimmed flag for the group so that the next
3879 * ext4_trim_fs can trim it.
3880 * If the volume is mounted with -o discard, online discard
3881 * is supported and the free blocks will be trimmed online.
3882 */
3883 if (!test_opt(sb, DISCARD))
3884 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3885
3886 if (!db->bb_free_root.rb_node) {
3887 /* No more items in the per group rb tree
3888 * balance refcounts from ext4_mb_free_metadata()
3889 */
3890 put_page(e4b.bd_buddy_page);
3891 put_page(e4b.bd_bitmap_page);
3892 }
3893 ext4_unlock_group(sb, entry->efd_group);
3894 ext4_mb_unload_buddy(&e4b);
3895
3896 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3897}
3898
3899/*
3900 * This function is called by the jbd2 layer once the commit has finished,
3901 * so we know we can free the blocks that were released with that commit.
3902 */
3903void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3904{
3905 struct ext4_sb_info *sbi = EXT4_SB(sb);
3906 struct ext4_free_data *entry, *tmp;
3907 LIST_HEAD(freed_data_list);
3908 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3909 bool wake;
3910
3911 list_replace_init(s_freed_head, &freed_data_list);
3912
3913 list_for_each_entry(entry, &freed_data_list, efd_list)
3914 ext4_free_data_in_buddy(sb, entry);
3915
3916 if (test_opt(sb, DISCARD)) {
3917 spin_lock(&sbi->s_md_lock);
3918 wake = list_empty(&sbi->s_discard_list);
3919 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3920 spin_unlock(&sbi->s_md_lock);
3921 if (wake)
3922 queue_work(system_unbound_wq, &sbi->s_discard_work);
3923 } else {
3924 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3925 kmem_cache_free(ext4_free_data_cachep, entry);
3926 }
3927}
3928
3929int __init ext4_init_mballoc(void)
3930{
3931 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3932 SLAB_RECLAIM_ACCOUNT);
3933 if (ext4_pspace_cachep == NULL)
3934 goto out;
3935
3936 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3937 SLAB_RECLAIM_ACCOUNT);
3938 if (ext4_ac_cachep == NULL)
3939 goto out_pa_free;
3940
3941 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3942 SLAB_RECLAIM_ACCOUNT);
3943 if (ext4_free_data_cachep == NULL)
3944 goto out_ac_free;
3945
3946 return 0;
3947
3948out_ac_free:
3949 kmem_cache_destroy(ext4_ac_cachep);
3950out_pa_free:
3951 kmem_cache_destroy(ext4_pspace_cachep);
3952out:
3953 return -ENOMEM;
3954}
3955
3956void ext4_exit_mballoc(void)
3957{
3958 /*
3959 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3960 * before destroying the slab cache.
3961 */
3962 rcu_barrier();
3963 kmem_cache_destroy(ext4_pspace_cachep);
3964 kmem_cache_destroy(ext4_ac_cachep);
3965 kmem_cache_destroy(ext4_free_data_cachep);
3966 ext4_groupinfo_destroy_slabs();
3967}
3968
3969#define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3970#define EXT4_MB_SYNC_UPDATE 0x0002
3971static int
3972ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3973 ext4_group_t group, ext4_grpblk_t blkoff,
3974 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3975{
3976 struct ext4_sb_info *sbi = EXT4_SB(sb);
3977 struct buffer_head *bitmap_bh = NULL;
3978 struct ext4_group_desc *gdp;
3979 struct buffer_head *gdp_bh;
3980 int err;
3981 unsigned int i, already, changed = len;
3982
3983 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3984 handle, sb, state, group, blkoff, len,
3985 flags, ret_changed);
3986
3987 if (ret_changed)
3988 *ret_changed = 0;
3989 bitmap_bh = ext4_read_block_bitmap(sb, group);
3990 if (IS_ERR(bitmap_bh))
3991 return PTR_ERR(bitmap_bh);
3992
3993 if (handle) {
3994 BUFFER_TRACE(bitmap_bh, "getting write access");
3995 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3996 EXT4_JTR_NONE);
3997 if (err)
3998 goto out_err;
3999 }
4000
4001 err = -EIO;
4002 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4003 if (!gdp)
4004 goto out_err;
4005
4006 if (handle) {
4007 BUFFER_TRACE(gdp_bh, "get_write_access");
4008 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4009 EXT4_JTR_NONE);
4010 if (err)
4011 goto out_err;
4012 }
4013
4014 ext4_lock_group(sb, group);
4015 if (ext4_has_group_desc_csum(sb) &&
4016 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4017 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4018 ext4_free_group_clusters_set(sb, gdp,
4019 ext4_free_clusters_after_init(sb, group, gdp));
4020 }
4021
4022 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4023 already = 0;
4024 for (i = 0; i < len; i++)
4025 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4026 state)
4027 already++;
4028 changed = len - already;
4029 }
4030
4031 if (state) {
4032 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4033 ext4_free_group_clusters_set(sb, gdp,
4034 ext4_free_group_clusters(sb, gdp) - changed);
4035 } else {
4036 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4037 ext4_free_group_clusters_set(sb, gdp,
4038 ext4_free_group_clusters(sb, gdp) + changed);
4039 }
4040
4041 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4042 ext4_group_desc_csum_set(sb, group, gdp);
4043 ext4_unlock_group(sb, group);
4044 if (ret_changed)
4045 *ret_changed = changed;
4046
4047 if (sbi->s_log_groups_per_flex) {
4048 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4049 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4050 s_flex_groups, flex_group);
4051
4052 if (state)
4053 atomic64_sub(changed, &fg->free_clusters);
4054 else
4055 atomic64_add(changed, &fg->free_clusters);
4056 }
4057
4058 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4059 if (err)
4060 goto out_err;
4061 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4062 if (err)
4063 goto out_err;
4064
4065 if (flags & EXT4_MB_SYNC_UPDATE) {
4066 sync_dirty_buffer(bitmap_bh);
4067 sync_dirty_buffer(gdp_bh);
4068 }
4069
4070out_err:
4071 brelse(bitmap_bh);
4072 return err;
4073}
4074
4075/*
4076 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4077 * Returns 0 if success or error code
4078 */
4079static noinline_for_stack int
4080ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4081 handle_t *handle, unsigned int reserv_clstrs)
4082{
4083 struct ext4_group_desc *gdp;
4084 struct ext4_sb_info *sbi;
4085 struct super_block *sb;
4086 ext4_fsblk_t block;
4087 int err, len;
4088 int flags = 0;
4089 ext4_grpblk_t changed;
4090
4091 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4092 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4093
4094 sb = ac->ac_sb;
4095 sbi = EXT4_SB(sb);
4096
4097 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4098 if (!gdp)
4099 return -EIO;
4100 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4101 ext4_free_group_clusters(sb, gdp));
4102
4103 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4104 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4105 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4106 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4107 "fs metadata", block, block+len);
4108 /* File system mounted not to panic on error
4109 * Fix the bitmap and return EFSCORRUPTED
4110 * We leak some of the blocks here.
4111 */
4112 err = ext4_mb_mark_context(handle, sb, true,
4113 ac->ac_b_ex.fe_group,
4114 ac->ac_b_ex.fe_start,
4115 ac->ac_b_ex.fe_len,
4116 0, NULL);
4117 if (!err)
4118 err = -EFSCORRUPTED;
4119 return err;
4120 }
4121
4122#ifdef AGGRESSIVE_CHECK
4123 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4124#endif
4125 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4126 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4127 flags, &changed);
4128
4129 if (err && changed == 0)
4130 return err;
4131
4132#ifdef AGGRESSIVE_CHECK
4133 BUG_ON(changed != ac->ac_b_ex.fe_len);
4134#endif
4135 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4136 /*
4137 * Now reduce the dirty block count also. Should not go negative
4138 */
4139 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4140 /* release all the reserved blocks if non delalloc */
4141 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4142 reserv_clstrs);
4143
4144 return err;
4145}
4146
4147/*
4148 * Idempotent helper for Ext4 fast commit replay path to set the state of
4149 * blocks in bitmaps and update counters.
4150 */
4151void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4152 int len, bool state)
4153{
4154 struct ext4_sb_info *sbi = EXT4_SB(sb);
4155 ext4_group_t group;
4156 ext4_grpblk_t blkoff;
4157 int err = 0;
4158 unsigned int clen, thisgrp_len;
4159
4160 while (len > 0) {
4161 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4162
4163 /*
4164 * Check to see if we are freeing blocks across a group
4165 * boundary.
4166 * In case of flex_bg, this can happen that (block, len) may
4167 * span across more than one group. In that case we need to
4168 * get the corresponding group metadata to work with.
4169 * For this we have goto again loop.
4170 */
4171 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4172 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4173 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4174
4175 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4176 ext4_error(sb, "Marking blocks in system zone - "
4177 "Block = %llu, len = %u",
4178 block, thisgrp_len);
4179 break;
4180 }
4181
4182 err = ext4_mb_mark_context(NULL, sb, state,
4183 group, blkoff, clen,
4184 EXT4_MB_BITMAP_MARKED_CHECK |
4185 EXT4_MB_SYNC_UPDATE,
4186 NULL);
4187 if (err)
4188 break;
4189
4190 block += thisgrp_len;
4191 len -= thisgrp_len;
4192 BUG_ON(len < 0);
4193 }
4194}
4195
4196/*
4197 * here we normalize request for locality group
4198 * Group request are normalized to s_mb_group_prealloc, which goes to
4199 * s_strip if we set the same via mount option.
4200 * s_mb_group_prealloc can be configured via
4201 * /sys/fs/ext4/<partition>/mb_group_prealloc
4202 *
4203 * XXX: should we try to preallocate more than the group has now?
4204 */
4205static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4206{
4207 struct super_block *sb = ac->ac_sb;
4208 struct ext4_locality_group *lg = ac->ac_lg;
4209
4210 BUG_ON(lg == NULL);
4211 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4212 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4213}
4214
4215/*
4216 * This function returns the next element to look at during inode
4217 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4218 * (ei->i_prealloc_lock)
4219 *
4220 * new_start The start of the range we want to compare
4221 * cur_start The existing start that we are comparing against
4222 * node The node of the rb_tree
4223 */
4224static inline struct rb_node*
4225ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4226{
4227 if (new_start < cur_start)
4228 return node->rb_left;
4229 else
4230 return node->rb_right;
4231}
4232
4233static inline void
4234ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4235 ext4_lblk_t start, loff_t end)
4236{
4237 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4238 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4239 struct ext4_prealloc_space *tmp_pa;
4240 ext4_lblk_t tmp_pa_start;
4241 loff_t tmp_pa_end;
4242 struct rb_node *iter;
4243
4244 read_lock(&ei->i_prealloc_lock);
4245 for (iter = ei->i_prealloc_node.rb_node; iter;
4246 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4247 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4248 pa_node.inode_node);
4249 tmp_pa_start = tmp_pa->pa_lstart;
4250 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4251
4252 spin_lock(&tmp_pa->pa_lock);
4253 if (tmp_pa->pa_deleted == 0)
4254 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4255 spin_unlock(&tmp_pa->pa_lock);
4256 }
4257 read_unlock(&ei->i_prealloc_lock);
4258}
4259
4260/*
4261 * Given an allocation context "ac" and a range "start", "end", check
4262 * and adjust boundaries if the range overlaps with any of the existing
4263 * preallocatoins stored in the corresponding inode of the allocation context.
4264 *
4265 * Parameters:
4266 * ac allocation context
4267 * start start of the new range
4268 * end end of the new range
4269 */
4270static inline void
4271ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4272 ext4_lblk_t *start, loff_t *end)
4273{
4274 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4275 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4276 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4277 struct rb_node *iter;
4278 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4279 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4280
4281 new_start = *start;
4282 new_end = *end;
4283
4284 /*
4285 * Adjust the normalized range so that it doesn't overlap with any
4286 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4287 * so it doesn't change underneath us.
4288 */
4289 read_lock(&ei->i_prealloc_lock);
4290
4291 /* Step 1: find any one immediate neighboring PA of the normalized range */
4292 for (iter = ei->i_prealloc_node.rb_node; iter;
4293 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4294 tmp_pa_start, iter)) {
4295 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4296 pa_node.inode_node);
4297 tmp_pa_start = tmp_pa->pa_lstart;
4298 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4299
4300 /* PA must not overlap original request */
4301 spin_lock(&tmp_pa->pa_lock);
4302 if (tmp_pa->pa_deleted == 0)
4303 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4304 ac->ac_o_ex.fe_logical < tmp_pa_start));
4305 spin_unlock(&tmp_pa->pa_lock);
4306 }
4307
4308 /*
4309 * Step 2: check if the found PA is left or right neighbor and
4310 * get the other neighbor
4311 */
4312 if (tmp_pa) {
4313 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4314 struct rb_node *tmp;
4315
4316 left_pa = tmp_pa;
4317 tmp = rb_next(&left_pa->pa_node.inode_node);
4318 if (tmp) {
4319 right_pa = rb_entry(tmp,
4320 struct ext4_prealloc_space,
4321 pa_node.inode_node);
4322 }
4323 } else {
4324 struct rb_node *tmp;
4325
4326 right_pa = tmp_pa;
4327 tmp = rb_prev(&right_pa->pa_node.inode_node);
4328 if (tmp) {
4329 left_pa = rb_entry(tmp,
4330 struct ext4_prealloc_space,
4331 pa_node.inode_node);
4332 }
4333 }
4334 }
4335
4336 /* Step 3: get the non deleted neighbors */
4337 if (left_pa) {
4338 for (iter = &left_pa->pa_node.inode_node;;
4339 iter = rb_prev(iter)) {
4340 if (!iter) {
4341 left_pa = NULL;
4342 break;
4343 }
4344
4345 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4346 pa_node.inode_node);
4347 left_pa = tmp_pa;
4348 spin_lock(&tmp_pa->pa_lock);
4349 if (tmp_pa->pa_deleted == 0) {
4350 spin_unlock(&tmp_pa->pa_lock);
4351 break;
4352 }
4353 spin_unlock(&tmp_pa->pa_lock);
4354 }
4355 }
4356
4357 if (right_pa) {
4358 for (iter = &right_pa->pa_node.inode_node;;
4359 iter = rb_next(iter)) {
4360 if (!iter) {
4361 right_pa = NULL;
4362 break;
4363 }
4364
4365 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4366 pa_node.inode_node);
4367 right_pa = tmp_pa;
4368 spin_lock(&tmp_pa->pa_lock);
4369 if (tmp_pa->pa_deleted == 0) {
4370 spin_unlock(&tmp_pa->pa_lock);
4371 break;
4372 }
4373 spin_unlock(&tmp_pa->pa_lock);
4374 }
4375 }
4376
4377 if (left_pa) {
4378 left_pa_end = pa_logical_end(sbi, left_pa);
4379 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4380 }
4381
4382 if (right_pa) {
4383 right_pa_start = right_pa->pa_lstart;
4384 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4385 }
4386
4387 /* Step 4: trim our normalized range to not overlap with the neighbors */
4388 if (left_pa) {
4389 if (left_pa_end > new_start)
4390 new_start = left_pa_end;
4391 }
4392
4393 if (right_pa) {
4394 if (right_pa_start < new_end)
4395 new_end = right_pa_start;
4396 }
4397 read_unlock(&ei->i_prealloc_lock);
4398
4399 /* XXX: extra loop to check we really don't overlap preallocations */
4400 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4401
4402 *start = new_start;
4403 *end = new_end;
4404}
4405
4406/*
4407 * Normalization means making request better in terms of
4408 * size and alignment
4409 */
4410static noinline_for_stack void
4411ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4412 struct ext4_allocation_request *ar)
4413{
4414 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4415 struct ext4_super_block *es = sbi->s_es;
4416 int bsbits, max;
4417 loff_t size, start_off, end;
4418 loff_t orig_size __maybe_unused;
4419 ext4_lblk_t start;
4420
4421 /* do normalize only data requests, metadata requests
4422 do not need preallocation */
4423 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4424 return;
4425
4426 /* sometime caller may want exact blocks */
4427 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4428 return;
4429
4430 /* caller may indicate that preallocation isn't
4431 * required (it's a tail, for example) */
4432 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4433 return;
4434
4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4436 ext4_mb_normalize_group_request(ac);
4437 return ;
4438 }
4439
4440 bsbits = ac->ac_sb->s_blocksize_bits;
4441
4442 /* first, let's learn actual file size
4443 * given current request is allocated */
4444 size = extent_logical_end(sbi, &ac->ac_o_ex);
4445 size = size << bsbits;
4446 if (size < i_size_read(ac->ac_inode))
4447 size = i_size_read(ac->ac_inode);
4448 orig_size = size;
4449
4450 /* max size of free chunks */
4451 max = 2 << bsbits;
4452
4453#define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4454 (req <= (size) || max <= (chunk_size))
4455
4456 /* first, try to predict filesize */
4457 /* XXX: should this table be tunable? */
4458 start_off = 0;
4459 if (size <= 16 * 1024) {
4460 size = 16 * 1024;
4461 } else if (size <= 32 * 1024) {
4462 size = 32 * 1024;
4463 } else if (size <= 64 * 1024) {
4464 size = 64 * 1024;
4465 } else if (size <= 128 * 1024) {
4466 size = 128 * 1024;
4467 } else if (size <= 256 * 1024) {
4468 size = 256 * 1024;
4469 } else if (size <= 512 * 1024) {
4470 size = 512 * 1024;
4471 } else if (size <= 1024 * 1024) {
4472 size = 1024 * 1024;
4473 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4474 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4475 (21 - bsbits)) << 21;
4476 size = 2 * 1024 * 1024;
4477 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4478 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4479 (22 - bsbits)) << 22;
4480 size = 4 * 1024 * 1024;
4481 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4482 (8<<20)>>bsbits, max, 8 * 1024)) {
4483 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4484 (23 - bsbits)) << 23;
4485 size = 8 * 1024 * 1024;
4486 } else {
4487 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4488 size = (loff_t) EXT4_C2B(sbi,
4489 ac->ac_o_ex.fe_len) << bsbits;
4490 }
4491 size = size >> bsbits;
4492 start = start_off >> bsbits;
4493
4494 /*
4495 * For tiny groups (smaller than 8MB) the chosen allocation
4496 * alignment may be larger than group size. Make sure the
4497 * alignment does not move allocation to a different group which
4498 * makes mballoc fail assertions later.
4499 */
4500 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4501 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4502
4503 /* avoid unnecessary preallocation that may trigger assertions */
4504 if (start + size > EXT_MAX_BLOCKS)
4505 size = EXT_MAX_BLOCKS - start;
4506
4507 /* don't cover already allocated blocks in selected range */
4508 if (ar->pleft && start <= ar->lleft) {
4509 size -= ar->lleft + 1 - start;
4510 start = ar->lleft + 1;
4511 }
4512 if (ar->pright && start + size - 1 >= ar->lright)
4513 size -= start + size - ar->lright;
4514
4515 /*
4516 * Trim allocation request for filesystems with artificially small
4517 * groups.
4518 */
4519 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4520 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4521
4522 end = start + size;
4523
4524 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4525
4526 size = end - start;
4527
4528 /*
4529 * In this function "start" and "size" are normalized for better
4530 * alignment and length such that we could preallocate more blocks.
4531 * This normalization is done such that original request of
4532 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4533 * "size" boundaries.
4534 * (Note fe_len can be relaxed since FS block allocation API does not
4535 * provide gurantee on number of contiguous blocks allocation since that
4536 * depends upon free space left, etc).
4537 * In case of inode pa, later we use the allocated blocks
4538 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4539 * range of goal/best blocks [start, size] to put it at the
4540 * ac_o_ex.fe_logical extent of this inode.
4541 * (See ext4_mb_use_inode_pa() for more details)
4542 */
4543 if (start + size <= ac->ac_o_ex.fe_logical ||
4544 start > ac->ac_o_ex.fe_logical) {
4545 ext4_msg(ac->ac_sb, KERN_ERR,
4546 "start %lu, size %lu, fe_logical %lu",
4547 (unsigned long) start, (unsigned long) size,
4548 (unsigned long) ac->ac_o_ex.fe_logical);
4549 BUG();
4550 }
4551 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4552
4553 /* now prepare goal request */
4554
4555 /* XXX: is it better to align blocks WRT to logical
4556 * placement or satisfy big request as is */
4557 ac->ac_g_ex.fe_logical = start;
4558 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4559 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4560
4561 /* define goal start in order to merge */
4562 if (ar->pright && (ar->lright == (start + size)) &&
4563 ar->pright >= size &&
4564 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4565 /* merge to the right */
4566 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4567 &ac->ac_g_ex.fe_group,
4568 &ac->ac_g_ex.fe_start);
4569 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4570 }
4571 if (ar->pleft && (ar->lleft + 1 == start) &&
4572 ar->pleft + 1 < ext4_blocks_count(es)) {
4573 /* merge to the left */
4574 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4575 &ac->ac_g_ex.fe_group,
4576 &ac->ac_g_ex.fe_start);
4577 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4578 }
4579
4580 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4581 orig_size, start);
4582}
4583
4584static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4585{
4586 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4587
4588 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4589 atomic_inc(&sbi->s_bal_reqs);
4590 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4591 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4592 atomic_inc(&sbi->s_bal_success);
4593
4594 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4595 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4596 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4597 }
4598
4599 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4600 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4601 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4602 atomic_inc(&sbi->s_bal_goals);
4603 /* did we allocate as much as normalizer originally wanted? */
4604 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4605 atomic_inc(&sbi->s_bal_len_goals);
4606
4607 if (ac->ac_found > sbi->s_mb_max_to_scan)
4608 atomic_inc(&sbi->s_bal_breaks);
4609 }
4610
4611 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4612 trace_ext4_mballoc_alloc(ac);
4613 else
4614 trace_ext4_mballoc_prealloc(ac);
4615}
4616
4617/*
4618 * Called on failure; free up any blocks from the inode PA for this
4619 * context. We don't need this for MB_GROUP_PA because we only change
4620 * pa_free in ext4_mb_release_context(), but on failure, we've already
4621 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4622 */
4623static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4624{
4625 struct ext4_prealloc_space *pa = ac->ac_pa;
4626 struct ext4_buddy e4b;
4627 int err;
4628
4629 if (pa == NULL) {
4630 if (ac->ac_f_ex.fe_len == 0)
4631 return;
4632 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4633 if (WARN_RATELIMIT(err,
4634 "ext4: mb_load_buddy failed (%d)", err))
4635 /*
4636 * This should never happen since we pin the
4637 * pages in the ext4_allocation_context so
4638 * ext4_mb_load_buddy() should never fail.
4639 */
4640 return;
4641 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4642 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4643 ac->ac_f_ex.fe_len);
4644 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4645 ext4_mb_unload_buddy(&e4b);
4646 return;
4647 }
4648 if (pa->pa_type == MB_INODE_PA) {
4649 spin_lock(&pa->pa_lock);
4650 pa->pa_free += ac->ac_b_ex.fe_len;
4651 spin_unlock(&pa->pa_lock);
4652 }
4653}
4654
4655/*
4656 * use blocks preallocated to inode
4657 */
4658static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4659 struct ext4_prealloc_space *pa)
4660{
4661 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4662 ext4_fsblk_t start;
4663 ext4_fsblk_t end;
4664 int len;
4665
4666 /* found preallocated blocks, use them */
4667 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4668 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4669 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4670 len = EXT4_NUM_B2C(sbi, end - start);
4671 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4672 &ac->ac_b_ex.fe_start);
4673 ac->ac_b_ex.fe_len = len;
4674 ac->ac_status = AC_STATUS_FOUND;
4675 ac->ac_pa = pa;
4676
4677 BUG_ON(start < pa->pa_pstart);
4678 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4679 BUG_ON(pa->pa_free < len);
4680 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4681 pa->pa_free -= len;
4682
4683 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4684}
4685
4686/*
4687 * use blocks preallocated to locality group
4688 */
4689static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4690 struct ext4_prealloc_space *pa)
4691{
4692 unsigned int len = ac->ac_o_ex.fe_len;
4693
4694 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4695 &ac->ac_b_ex.fe_group,
4696 &ac->ac_b_ex.fe_start);
4697 ac->ac_b_ex.fe_len = len;
4698 ac->ac_status = AC_STATUS_FOUND;
4699 ac->ac_pa = pa;
4700
4701 /* we don't correct pa_pstart or pa_len here to avoid
4702 * possible race when the group is being loaded concurrently
4703 * instead we correct pa later, after blocks are marked
4704 * in on-disk bitmap -- see ext4_mb_release_context()
4705 * Other CPUs are prevented from allocating from this pa by lg_mutex
4706 */
4707 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4708 pa->pa_lstart, len, pa);
4709}
4710
4711/*
4712 * Return the prealloc space that have minimal distance
4713 * from the goal block. @cpa is the prealloc
4714 * space that is having currently known minimal distance
4715 * from the goal block.
4716 */
4717static struct ext4_prealloc_space *
4718ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4719 struct ext4_prealloc_space *pa,
4720 struct ext4_prealloc_space *cpa)
4721{
4722 ext4_fsblk_t cur_distance, new_distance;
4723
4724 if (cpa == NULL) {
4725 atomic_inc(&pa->pa_count);
4726 return pa;
4727 }
4728 cur_distance = abs(goal_block - cpa->pa_pstart);
4729 new_distance = abs(goal_block - pa->pa_pstart);
4730
4731 if (cur_distance <= new_distance)
4732 return cpa;
4733
4734 /* drop the previous reference */
4735 atomic_dec(&cpa->pa_count);
4736 atomic_inc(&pa->pa_count);
4737 return pa;
4738}
4739
4740/*
4741 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4742 */
4743static bool
4744ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4745 struct ext4_prealloc_space *pa)
4746{
4747 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4748 ext4_fsblk_t start;
4749
4750 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4751 return true;
4752
4753 /*
4754 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4755 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4756 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4757 * consistent with ext4_mb_find_by_goal.
4758 */
4759 start = pa->pa_pstart +
4760 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4761 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4762 return false;
4763
4764 if (ac->ac_g_ex.fe_len > pa->pa_len -
4765 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4766 return false;
4767
4768 return true;
4769}
4770
4771/*
4772 * search goal blocks in preallocated space
4773 */
4774static noinline_for_stack bool
4775ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4776{
4777 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4778 int order, i;
4779 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4780 struct ext4_locality_group *lg;
4781 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4782 struct rb_node *iter;
4783 ext4_fsblk_t goal_block;
4784
4785 /* only data can be preallocated */
4786 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4787 return false;
4788
4789 /*
4790 * first, try per-file preallocation by searching the inode pa rbtree.
4791 *
4792 * Here, we can't do a direct traversal of the tree because
4793 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4794 * deleted and that can cause direct traversal to skip some entries.
4795 */
4796 read_lock(&ei->i_prealloc_lock);
4797
4798 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4799 goto try_group_pa;
4800 }
4801
4802 /*
4803 * Step 1: Find a pa with logical start immediately adjacent to the
4804 * original logical start. This could be on the left or right.
4805 *
4806 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4807 */
4808 for (iter = ei->i_prealloc_node.rb_node; iter;
4809 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4810 tmp_pa->pa_lstart, iter)) {
4811 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4812 pa_node.inode_node);
4813 }
4814
4815 /*
4816 * Step 2: The adjacent pa might be to the right of logical start, find
4817 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4818 * logical start is towards the left of original request's logical start
4819 */
4820 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4821 struct rb_node *tmp;
4822 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4823
4824 if (tmp) {
4825 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4826 pa_node.inode_node);
4827 } else {
4828 /*
4829 * If there is no adjacent pa to the left then finding
4830 * an overlapping pa is not possible hence stop searching
4831 * inode pa tree
4832 */
4833 goto try_group_pa;
4834 }
4835 }
4836
4837 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4838
4839 /*
4840 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4841 * the first non deleted adjacent pa. After this step we should have a
4842 * valid tmp_pa which is guaranteed to be non deleted.
4843 */
4844 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4845 if (!iter) {
4846 /*
4847 * no non deleted left adjacent pa, so stop searching
4848 * inode pa tree
4849 */
4850 goto try_group_pa;
4851 }
4852 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4853 pa_node.inode_node);
4854 spin_lock(&tmp_pa->pa_lock);
4855 if (tmp_pa->pa_deleted == 0) {
4856 /*
4857 * We will keep holding the pa_lock from
4858 * this point on because we don't want group discard
4859 * to delete this pa underneath us. Since group
4860 * discard is anyways an ENOSPC operation it
4861 * should be okay for it to wait a few more cycles.
4862 */
4863 break;
4864 } else {
4865 spin_unlock(&tmp_pa->pa_lock);
4866 }
4867 }
4868
4869 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4870 BUG_ON(tmp_pa->pa_deleted == 1);
4871
4872 /*
4873 * Step 4: We now have the non deleted left adjacent pa. Only this
4874 * pa can possibly satisfy the request hence check if it overlaps
4875 * original logical start and stop searching if it doesn't.
4876 */
4877 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4878 spin_unlock(&tmp_pa->pa_lock);
4879 goto try_group_pa;
4880 }
4881
4882 /* non-extent files can't have physical blocks past 2^32 */
4883 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4884 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4885 EXT4_MAX_BLOCK_FILE_PHYS)) {
4886 /*
4887 * Since PAs don't overlap, we won't find any other PA to
4888 * satisfy this.
4889 */
4890 spin_unlock(&tmp_pa->pa_lock);
4891 goto try_group_pa;
4892 }
4893
4894 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4895 atomic_inc(&tmp_pa->pa_count);
4896 ext4_mb_use_inode_pa(ac, tmp_pa);
4897 spin_unlock(&tmp_pa->pa_lock);
4898 read_unlock(&ei->i_prealloc_lock);
4899 return true;
4900 } else {
4901 /*
4902 * We found a valid overlapping pa but couldn't use it because
4903 * it had no free blocks. This should ideally never happen
4904 * because:
4905 *
4906 * 1. When a new inode pa is added to rbtree it must have
4907 * pa_free > 0 since otherwise we won't actually need
4908 * preallocation.
4909 *
4910 * 2. An inode pa that is in the rbtree can only have it's
4911 * pa_free become zero when another thread calls:
4912 * ext4_mb_new_blocks
4913 * ext4_mb_use_preallocated
4914 * ext4_mb_use_inode_pa
4915 *
4916 * 3. Further, after the above calls make pa_free == 0, we will
4917 * immediately remove it from the rbtree in:
4918 * ext4_mb_new_blocks
4919 * ext4_mb_release_context
4920 * ext4_mb_put_pa
4921 *
4922 * 4. Since the pa_free becoming 0 and pa_free getting removed
4923 * from tree both happen in ext4_mb_new_blocks, which is always
4924 * called with i_data_sem held for data allocations, we can be
4925 * sure that another process will never see a pa in rbtree with
4926 * pa_free == 0.
4927 */
4928 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4929 }
4930 spin_unlock(&tmp_pa->pa_lock);
4931try_group_pa:
4932 read_unlock(&ei->i_prealloc_lock);
4933
4934 /* can we use group allocation? */
4935 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4936 return false;
4937
4938 /* inode may have no locality group for some reason */
4939 lg = ac->ac_lg;
4940 if (lg == NULL)
4941 return false;
4942 order = fls(ac->ac_o_ex.fe_len) - 1;
4943 if (order > PREALLOC_TB_SIZE - 1)
4944 /* The max size of hash table is PREALLOC_TB_SIZE */
4945 order = PREALLOC_TB_SIZE - 1;
4946
4947 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4948 /*
4949 * search for the prealloc space that is having
4950 * minimal distance from the goal block.
4951 */
4952 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4953 rcu_read_lock();
4954 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4955 pa_node.lg_list) {
4956 spin_lock(&tmp_pa->pa_lock);
4957 if (tmp_pa->pa_deleted == 0 &&
4958 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4959
4960 cpa = ext4_mb_check_group_pa(goal_block,
4961 tmp_pa, cpa);
4962 }
4963 spin_unlock(&tmp_pa->pa_lock);
4964 }
4965 rcu_read_unlock();
4966 }
4967 if (cpa) {
4968 ext4_mb_use_group_pa(ac, cpa);
4969 return true;
4970 }
4971 return false;
4972}
4973
4974/*
4975 * the function goes through all preallocation in this group and marks them
4976 * used in in-core bitmap. buddy must be generated from this bitmap
4977 * Need to be called with ext4 group lock held
4978 */
4979static noinline_for_stack
4980void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4981 ext4_group_t group)
4982{
4983 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4984 struct ext4_prealloc_space *pa;
4985 struct list_head *cur;
4986 ext4_group_t groupnr;
4987 ext4_grpblk_t start;
4988 int preallocated = 0;
4989 int len;
4990
4991 if (!grp)
4992 return;
4993
4994 /* all form of preallocation discards first load group,
4995 * so the only competing code is preallocation use.
4996 * we don't need any locking here
4997 * notice we do NOT ignore preallocations with pa_deleted
4998 * otherwise we could leave used blocks available for
4999 * allocation in buddy when concurrent ext4_mb_put_pa()
5000 * is dropping preallocation
5001 */
5002 list_for_each(cur, &grp->bb_prealloc_list) {
5003 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5004 spin_lock(&pa->pa_lock);
5005 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5006 &groupnr, &start);
5007 len = pa->pa_len;
5008 spin_unlock(&pa->pa_lock);
5009 if (unlikely(len == 0))
5010 continue;
5011 BUG_ON(groupnr != group);
5012 mb_set_bits(bitmap, start, len);
5013 preallocated += len;
5014 }
5015 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5016}
5017
5018static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5019 struct ext4_prealloc_space *pa)
5020{
5021 struct ext4_inode_info *ei;
5022
5023 if (pa->pa_deleted) {
5024 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5025 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5026 pa->pa_len);
5027 return;
5028 }
5029
5030 pa->pa_deleted = 1;
5031
5032 if (pa->pa_type == MB_INODE_PA) {
5033 ei = EXT4_I(pa->pa_inode);
5034 atomic_dec(&ei->i_prealloc_active);
5035 }
5036}
5037
5038static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5039{
5040 BUG_ON(!pa);
5041 BUG_ON(atomic_read(&pa->pa_count));
5042 BUG_ON(pa->pa_deleted == 0);
5043 kmem_cache_free(ext4_pspace_cachep, pa);
5044}
5045
5046static void ext4_mb_pa_callback(struct rcu_head *head)
5047{
5048 struct ext4_prealloc_space *pa;
5049
5050 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5051 ext4_mb_pa_free(pa);
5052}
5053
5054/*
5055 * drops a reference to preallocated space descriptor
5056 * if this was the last reference and the space is consumed
5057 */
5058static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5059 struct super_block *sb, struct ext4_prealloc_space *pa)
5060{
5061 ext4_group_t grp;
5062 ext4_fsblk_t grp_blk;
5063 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5064
5065 /* in this short window concurrent discard can set pa_deleted */
5066 spin_lock(&pa->pa_lock);
5067 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5068 spin_unlock(&pa->pa_lock);
5069 return;
5070 }
5071
5072 if (pa->pa_deleted == 1) {
5073 spin_unlock(&pa->pa_lock);
5074 return;
5075 }
5076
5077 ext4_mb_mark_pa_deleted(sb, pa);
5078 spin_unlock(&pa->pa_lock);
5079
5080 grp_blk = pa->pa_pstart;
5081 /*
5082 * If doing group-based preallocation, pa_pstart may be in the
5083 * next group when pa is used up
5084 */
5085 if (pa->pa_type == MB_GROUP_PA)
5086 grp_blk--;
5087
5088 grp = ext4_get_group_number(sb, grp_blk);
5089
5090 /*
5091 * possible race:
5092 *
5093 * P1 (buddy init) P2 (regular allocation)
5094 * find block B in PA
5095 * copy on-disk bitmap to buddy
5096 * mark B in on-disk bitmap
5097 * drop PA from group
5098 * mark all PAs in buddy
5099 *
5100 * thus, P1 initializes buddy with B available. to prevent this
5101 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5102 * against that pair
5103 */
5104 ext4_lock_group(sb, grp);
5105 list_del(&pa->pa_group_list);
5106 ext4_unlock_group(sb, grp);
5107
5108 if (pa->pa_type == MB_INODE_PA) {
5109 write_lock(pa->pa_node_lock.inode_lock);
5110 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5111 write_unlock(pa->pa_node_lock.inode_lock);
5112 ext4_mb_pa_free(pa);
5113 } else {
5114 spin_lock(pa->pa_node_lock.lg_lock);
5115 list_del_rcu(&pa->pa_node.lg_list);
5116 spin_unlock(pa->pa_node_lock.lg_lock);
5117 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5118 }
5119}
5120
5121static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5122{
5123 struct rb_node **iter = &root->rb_node, *parent = NULL;
5124 struct ext4_prealloc_space *iter_pa, *new_pa;
5125 ext4_lblk_t iter_start, new_start;
5126
5127 while (*iter) {
5128 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5129 pa_node.inode_node);
5130 new_pa = rb_entry(new, struct ext4_prealloc_space,
5131 pa_node.inode_node);
5132 iter_start = iter_pa->pa_lstart;
5133 new_start = new_pa->pa_lstart;
5134
5135 parent = *iter;
5136 if (new_start < iter_start)
5137 iter = &((*iter)->rb_left);
5138 else
5139 iter = &((*iter)->rb_right);
5140 }
5141
5142 rb_link_node(new, parent, iter);
5143 rb_insert_color(new, root);
5144}
5145
5146/*
5147 * creates new preallocated space for given inode
5148 */
5149static noinline_for_stack void
5150ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5151{
5152 struct super_block *sb = ac->ac_sb;
5153 struct ext4_sb_info *sbi = EXT4_SB(sb);
5154 struct ext4_prealloc_space *pa;
5155 struct ext4_group_info *grp;
5156 struct ext4_inode_info *ei;
5157
5158 /* preallocate only when found space is larger then requested */
5159 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5160 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5161 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5162 BUG_ON(ac->ac_pa == NULL);
5163
5164 pa = ac->ac_pa;
5165
5166 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5167 struct ext4_free_extent ex = {
5168 .fe_logical = ac->ac_g_ex.fe_logical,
5169 .fe_len = ac->ac_orig_goal_len,
5170 };
5171 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5172
5173 /* we can't allocate as much as normalizer wants.
5174 * so, found space must get proper lstart
5175 * to cover original request */
5176 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5177 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5178
5179 /*
5180 * Use the below logic for adjusting best extent as it keeps
5181 * fragmentation in check while ensuring logical range of best
5182 * extent doesn't overflow out of goal extent:
5183 *
5184 * 1. Check if best ex can be kept at end of goal (before
5185 * cr_best_avail trimmed it) and still cover original start
5186 * 2. Else, check if best ex can be kept at start of goal and
5187 * still cover original start
5188 * 3. Else, keep the best ex at start of original request.
5189 */
5190 ex.fe_len = ac->ac_b_ex.fe_len;
5191
5192 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5193 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5194 goto adjust_bex;
5195
5196 ex.fe_logical = ac->ac_g_ex.fe_logical;
5197 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5198 goto adjust_bex;
5199
5200 ex.fe_logical = ac->ac_o_ex.fe_logical;
5201adjust_bex:
5202 ac->ac_b_ex.fe_logical = ex.fe_logical;
5203
5204 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5205 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5206 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5207 }
5208
5209 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5210 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5211 pa->pa_len = ac->ac_b_ex.fe_len;
5212 pa->pa_free = pa->pa_len;
5213 spin_lock_init(&pa->pa_lock);
5214 INIT_LIST_HEAD(&pa->pa_group_list);
5215 pa->pa_deleted = 0;
5216 pa->pa_type = MB_INODE_PA;
5217
5218 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5219 pa->pa_len, pa->pa_lstart);
5220 trace_ext4_mb_new_inode_pa(ac, pa);
5221
5222 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5223 ext4_mb_use_inode_pa(ac, pa);
5224
5225 ei = EXT4_I(ac->ac_inode);
5226 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5227 if (!grp)
5228 return;
5229
5230 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5231 pa->pa_inode = ac->ac_inode;
5232
5233 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5234
5235 write_lock(pa->pa_node_lock.inode_lock);
5236 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5237 write_unlock(pa->pa_node_lock.inode_lock);
5238 atomic_inc(&ei->i_prealloc_active);
5239}
5240
5241/*
5242 * creates new preallocated space for locality group inodes belongs to
5243 */
5244static noinline_for_stack void
5245ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5246{
5247 struct super_block *sb = ac->ac_sb;
5248 struct ext4_locality_group *lg;
5249 struct ext4_prealloc_space *pa;
5250 struct ext4_group_info *grp;
5251
5252 /* preallocate only when found space is larger then requested */
5253 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5254 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5255 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5256 BUG_ON(ac->ac_pa == NULL);
5257
5258 pa = ac->ac_pa;
5259
5260 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5261 pa->pa_lstart = pa->pa_pstart;
5262 pa->pa_len = ac->ac_b_ex.fe_len;
5263 pa->pa_free = pa->pa_len;
5264 spin_lock_init(&pa->pa_lock);
5265 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5266 INIT_LIST_HEAD(&pa->pa_group_list);
5267 pa->pa_deleted = 0;
5268 pa->pa_type = MB_GROUP_PA;
5269
5270 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5271 pa->pa_len, pa->pa_lstart);
5272 trace_ext4_mb_new_group_pa(ac, pa);
5273
5274 ext4_mb_use_group_pa(ac, pa);
5275 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5276
5277 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5278 if (!grp)
5279 return;
5280 lg = ac->ac_lg;
5281 BUG_ON(lg == NULL);
5282
5283 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5284 pa->pa_inode = NULL;
5285
5286 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5287
5288 /*
5289 * We will later add the new pa to the right bucket
5290 * after updating the pa_free in ext4_mb_release_context
5291 */
5292}
5293
5294static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5295{
5296 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5297 ext4_mb_new_group_pa(ac);
5298 else
5299 ext4_mb_new_inode_pa(ac);
5300}
5301
5302/*
5303 * finds all unused blocks in on-disk bitmap, frees them in
5304 * in-core bitmap and buddy.
5305 * @pa must be unlinked from inode and group lists, so that
5306 * nobody else can find/use it.
5307 * the caller MUST hold group/inode locks.
5308 * TODO: optimize the case when there are no in-core structures yet
5309 */
5310static noinline_for_stack void
5311ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5312 struct ext4_prealloc_space *pa)
5313{
5314 struct super_block *sb = e4b->bd_sb;
5315 struct ext4_sb_info *sbi = EXT4_SB(sb);
5316 unsigned int end;
5317 unsigned int next;
5318 ext4_group_t group;
5319 ext4_grpblk_t bit;
5320 unsigned long long grp_blk_start;
5321 int free = 0;
5322
5323 BUG_ON(pa->pa_deleted == 0);
5324 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5325 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5326 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5327 end = bit + pa->pa_len;
5328
5329 while (bit < end) {
5330 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5331 if (bit >= end)
5332 break;
5333 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5334 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5335 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5336 (unsigned) next - bit, (unsigned) group);
5337 free += next - bit;
5338
5339 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5340 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5341 EXT4_C2B(sbi, bit)),
5342 next - bit);
5343 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5344 bit = next + 1;
5345 }
5346 if (free != pa->pa_free) {
5347 ext4_msg(e4b->bd_sb, KERN_CRIT,
5348 "pa %p: logic %lu, phys. %lu, len %d",
5349 pa, (unsigned long) pa->pa_lstart,
5350 (unsigned long) pa->pa_pstart,
5351 pa->pa_len);
5352 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5353 free, pa->pa_free);
5354 /*
5355 * pa is already deleted so we use the value obtained
5356 * from the bitmap and continue.
5357 */
5358 }
5359 atomic_add(free, &sbi->s_mb_discarded);
5360}
5361
5362static noinline_for_stack void
5363ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5364 struct ext4_prealloc_space *pa)
5365{
5366 struct super_block *sb = e4b->bd_sb;
5367 ext4_group_t group;
5368 ext4_grpblk_t bit;
5369
5370 trace_ext4_mb_release_group_pa(sb, pa);
5371 BUG_ON(pa->pa_deleted == 0);
5372 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5373 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5374 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5375 e4b->bd_group, group, pa->pa_pstart);
5376 return;
5377 }
5378 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5379 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5380 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5381}
5382
5383/*
5384 * releases all preallocations in given group
5385 *
5386 * first, we need to decide discard policy:
5387 * - when do we discard
5388 * 1) ENOSPC
5389 * - how many do we discard
5390 * 1) how many requested
5391 */
5392static noinline_for_stack int
5393ext4_mb_discard_group_preallocations(struct super_block *sb,
5394 ext4_group_t group, int *busy)
5395{
5396 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5397 struct buffer_head *bitmap_bh = NULL;
5398 struct ext4_prealloc_space *pa, *tmp;
5399 LIST_HEAD(list);
5400 struct ext4_buddy e4b;
5401 struct ext4_inode_info *ei;
5402 int err;
5403 int free = 0;
5404
5405 if (!grp)
5406 return 0;
5407 mb_debug(sb, "discard preallocation for group %u\n", group);
5408 if (list_empty(&grp->bb_prealloc_list))
5409 goto out_dbg;
5410
5411 bitmap_bh = ext4_read_block_bitmap(sb, group);
5412 if (IS_ERR(bitmap_bh)) {
5413 err = PTR_ERR(bitmap_bh);
5414 ext4_error_err(sb, -err,
5415 "Error %d reading block bitmap for %u",
5416 err, group);
5417 goto out_dbg;
5418 }
5419
5420 err = ext4_mb_load_buddy(sb, group, &e4b);
5421 if (err) {
5422 ext4_warning(sb, "Error %d loading buddy information for %u",
5423 err, group);
5424 put_bh(bitmap_bh);
5425 goto out_dbg;
5426 }
5427
5428 ext4_lock_group(sb, group);
5429 list_for_each_entry_safe(pa, tmp,
5430 &grp->bb_prealloc_list, pa_group_list) {
5431 spin_lock(&pa->pa_lock);
5432 if (atomic_read(&pa->pa_count)) {
5433 spin_unlock(&pa->pa_lock);
5434 *busy = 1;
5435 continue;
5436 }
5437 if (pa->pa_deleted) {
5438 spin_unlock(&pa->pa_lock);
5439 continue;
5440 }
5441
5442 /* seems this one can be freed ... */
5443 ext4_mb_mark_pa_deleted(sb, pa);
5444
5445 if (!free)
5446 this_cpu_inc(discard_pa_seq);
5447
5448 /* we can trust pa_free ... */
5449 free += pa->pa_free;
5450
5451 spin_unlock(&pa->pa_lock);
5452
5453 list_del(&pa->pa_group_list);
5454 list_add(&pa->u.pa_tmp_list, &list);
5455 }
5456
5457 /* now free all selected PAs */
5458 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5459
5460 /* remove from object (inode or locality group) */
5461 if (pa->pa_type == MB_GROUP_PA) {
5462 spin_lock(pa->pa_node_lock.lg_lock);
5463 list_del_rcu(&pa->pa_node.lg_list);
5464 spin_unlock(pa->pa_node_lock.lg_lock);
5465 } else {
5466 write_lock(pa->pa_node_lock.inode_lock);
5467 ei = EXT4_I(pa->pa_inode);
5468 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5469 write_unlock(pa->pa_node_lock.inode_lock);
5470 }
5471
5472 list_del(&pa->u.pa_tmp_list);
5473
5474 if (pa->pa_type == MB_GROUP_PA) {
5475 ext4_mb_release_group_pa(&e4b, pa);
5476 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5477 } else {
5478 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5479 ext4_mb_pa_free(pa);
5480 }
5481 }
5482
5483 ext4_unlock_group(sb, group);
5484 ext4_mb_unload_buddy(&e4b);
5485 put_bh(bitmap_bh);
5486out_dbg:
5487 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5488 free, group, grp->bb_free);
5489 return free;
5490}
5491
5492/*
5493 * releases all non-used preallocated blocks for given inode
5494 *
5495 * It's important to discard preallocations under i_data_sem
5496 * We don't want another block to be served from the prealloc
5497 * space when we are discarding the inode prealloc space.
5498 *
5499 * FIXME!! Make sure it is valid at all the call sites
5500 */
5501void ext4_discard_preallocations(struct inode *inode)
5502{
5503 struct ext4_inode_info *ei = EXT4_I(inode);
5504 struct super_block *sb = inode->i_sb;
5505 struct buffer_head *bitmap_bh = NULL;
5506 struct ext4_prealloc_space *pa, *tmp;
5507 ext4_group_t group = 0;
5508 LIST_HEAD(list);
5509 struct ext4_buddy e4b;
5510 struct rb_node *iter;
5511 int err;
5512
5513 if (!S_ISREG(inode->i_mode))
5514 return;
5515
5516 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5517 return;
5518
5519 mb_debug(sb, "discard preallocation for inode %lu\n",
5520 inode->i_ino);
5521 trace_ext4_discard_preallocations(inode,
5522 atomic_read(&ei->i_prealloc_active));
5523
5524repeat:
5525 /* first, collect all pa's in the inode */
5526 write_lock(&ei->i_prealloc_lock);
5527 for (iter = rb_first(&ei->i_prealloc_node); iter;
5528 iter = rb_next(iter)) {
5529 pa = rb_entry(iter, struct ext4_prealloc_space,
5530 pa_node.inode_node);
5531 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5532
5533 spin_lock(&pa->pa_lock);
5534 if (atomic_read(&pa->pa_count)) {
5535 /* this shouldn't happen often - nobody should
5536 * use preallocation while we're discarding it */
5537 spin_unlock(&pa->pa_lock);
5538 write_unlock(&ei->i_prealloc_lock);
5539 ext4_msg(sb, KERN_ERR,
5540 "uh-oh! used pa while discarding");
5541 WARN_ON(1);
5542 schedule_timeout_uninterruptible(HZ);
5543 goto repeat;
5544
5545 }
5546 if (pa->pa_deleted == 0) {
5547 ext4_mb_mark_pa_deleted(sb, pa);
5548 spin_unlock(&pa->pa_lock);
5549 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5550 list_add(&pa->u.pa_tmp_list, &list);
5551 continue;
5552 }
5553
5554 /* someone is deleting pa right now */
5555 spin_unlock(&pa->pa_lock);
5556 write_unlock(&ei->i_prealloc_lock);
5557
5558 /* we have to wait here because pa_deleted
5559 * doesn't mean pa is already unlinked from
5560 * the list. as we might be called from
5561 * ->clear_inode() the inode will get freed
5562 * and concurrent thread which is unlinking
5563 * pa from inode's list may access already
5564 * freed memory, bad-bad-bad */
5565
5566 /* XXX: if this happens too often, we can
5567 * add a flag to force wait only in case
5568 * of ->clear_inode(), but not in case of
5569 * regular truncate */
5570 schedule_timeout_uninterruptible(HZ);
5571 goto repeat;
5572 }
5573 write_unlock(&ei->i_prealloc_lock);
5574
5575 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5576 BUG_ON(pa->pa_type != MB_INODE_PA);
5577 group = ext4_get_group_number(sb, pa->pa_pstart);
5578
5579 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5580 GFP_NOFS|__GFP_NOFAIL);
5581 if (err) {
5582 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5583 err, group);
5584 continue;
5585 }
5586
5587 bitmap_bh = ext4_read_block_bitmap(sb, group);
5588 if (IS_ERR(bitmap_bh)) {
5589 err = PTR_ERR(bitmap_bh);
5590 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5591 err, group);
5592 ext4_mb_unload_buddy(&e4b);
5593 continue;
5594 }
5595
5596 ext4_lock_group(sb, group);
5597 list_del(&pa->pa_group_list);
5598 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5599 ext4_unlock_group(sb, group);
5600
5601 ext4_mb_unload_buddy(&e4b);
5602 put_bh(bitmap_bh);
5603
5604 list_del(&pa->u.pa_tmp_list);
5605 ext4_mb_pa_free(pa);
5606 }
5607}
5608
5609static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5610{
5611 struct ext4_prealloc_space *pa;
5612
5613 BUG_ON(ext4_pspace_cachep == NULL);
5614 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5615 if (!pa)
5616 return -ENOMEM;
5617 atomic_set(&pa->pa_count, 1);
5618 ac->ac_pa = pa;
5619 return 0;
5620}
5621
5622static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5623{
5624 struct ext4_prealloc_space *pa = ac->ac_pa;
5625
5626 BUG_ON(!pa);
5627 ac->ac_pa = NULL;
5628 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5629 /*
5630 * current function is only called due to an error or due to
5631 * len of found blocks < len of requested blocks hence the PA has not
5632 * been added to grp->bb_prealloc_list. So we don't need to lock it
5633 */
5634 pa->pa_deleted = 1;
5635 ext4_mb_pa_free(pa);
5636}
5637
5638#ifdef CONFIG_EXT4_DEBUG
5639static inline void ext4_mb_show_pa(struct super_block *sb)
5640{
5641 ext4_group_t i, ngroups;
5642
5643 if (ext4_forced_shutdown(sb))
5644 return;
5645
5646 ngroups = ext4_get_groups_count(sb);
5647 mb_debug(sb, "groups: ");
5648 for (i = 0; i < ngroups; i++) {
5649 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5650 struct ext4_prealloc_space *pa;
5651 ext4_grpblk_t start;
5652 struct list_head *cur;
5653
5654 if (!grp)
5655 continue;
5656 ext4_lock_group(sb, i);
5657 list_for_each(cur, &grp->bb_prealloc_list) {
5658 pa = list_entry(cur, struct ext4_prealloc_space,
5659 pa_group_list);
5660 spin_lock(&pa->pa_lock);
5661 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5662 NULL, &start);
5663 spin_unlock(&pa->pa_lock);
5664 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5665 pa->pa_len);
5666 }
5667 ext4_unlock_group(sb, i);
5668 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5669 grp->bb_fragments);
5670 }
5671}
5672
5673static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5674{
5675 struct super_block *sb = ac->ac_sb;
5676
5677 if (ext4_forced_shutdown(sb))
5678 return;
5679
5680 mb_debug(sb, "Can't allocate:"
5681 " Allocation context details:");
5682 mb_debug(sb, "status %u flags 0x%x",
5683 ac->ac_status, ac->ac_flags);
5684 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5685 "goal %lu/%lu/%lu@%lu, "
5686 "best %lu/%lu/%lu@%lu cr %d",
5687 (unsigned long)ac->ac_o_ex.fe_group,
5688 (unsigned long)ac->ac_o_ex.fe_start,
5689 (unsigned long)ac->ac_o_ex.fe_len,
5690 (unsigned long)ac->ac_o_ex.fe_logical,
5691 (unsigned long)ac->ac_g_ex.fe_group,
5692 (unsigned long)ac->ac_g_ex.fe_start,
5693 (unsigned long)ac->ac_g_ex.fe_len,
5694 (unsigned long)ac->ac_g_ex.fe_logical,
5695 (unsigned long)ac->ac_b_ex.fe_group,
5696 (unsigned long)ac->ac_b_ex.fe_start,
5697 (unsigned long)ac->ac_b_ex.fe_len,
5698 (unsigned long)ac->ac_b_ex.fe_logical,
5699 (int)ac->ac_criteria);
5700 mb_debug(sb, "%u found", ac->ac_found);
5701 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5702 if (ac->ac_pa)
5703 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5704 "group pa" : "inode pa");
5705 ext4_mb_show_pa(sb);
5706}
5707#else
5708static inline void ext4_mb_show_pa(struct super_block *sb)
5709{
5710}
5711static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5712{
5713 ext4_mb_show_pa(ac->ac_sb);
5714}
5715#endif
5716
5717/*
5718 * We use locality group preallocation for small size file. The size of the
5719 * file is determined by the current size or the resulting size after
5720 * allocation which ever is larger
5721 *
5722 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5723 */
5724static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5725{
5726 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5727 int bsbits = ac->ac_sb->s_blocksize_bits;
5728 loff_t size, isize;
5729 bool inode_pa_eligible, group_pa_eligible;
5730
5731 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5732 return;
5733
5734 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5735 return;
5736
5737 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5738 inode_pa_eligible = true;
5739 size = extent_logical_end(sbi, &ac->ac_o_ex);
5740 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5741 >> bsbits;
5742
5743 /* No point in using inode preallocation for closed files */
5744 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5745 !inode_is_open_for_write(ac->ac_inode))
5746 inode_pa_eligible = false;
5747
5748 size = max(size, isize);
5749 /* Don't use group allocation for large files */
5750 if (size > sbi->s_mb_stream_request)
5751 group_pa_eligible = false;
5752
5753 if (!group_pa_eligible) {
5754 if (inode_pa_eligible)
5755 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5756 else
5757 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5758 return;
5759 }
5760
5761 BUG_ON(ac->ac_lg != NULL);
5762 /*
5763 * locality group prealloc space are per cpu. The reason for having
5764 * per cpu locality group is to reduce the contention between block
5765 * request from multiple CPUs.
5766 */
5767 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5768
5769 /* we're going to use group allocation */
5770 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5771
5772 /* serialize all allocations in the group */
5773 mutex_lock(&ac->ac_lg->lg_mutex);
5774}
5775
5776static noinline_for_stack void
5777ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5778 struct ext4_allocation_request *ar)
5779{
5780 struct super_block *sb = ar->inode->i_sb;
5781 struct ext4_sb_info *sbi = EXT4_SB(sb);
5782 struct ext4_super_block *es = sbi->s_es;
5783 ext4_group_t group;
5784 unsigned int len;
5785 ext4_fsblk_t goal;
5786 ext4_grpblk_t block;
5787
5788 /* we can't allocate > group size */
5789 len = ar->len;
5790
5791 /* just a dirty hack to filter too big requests */
5792 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5793 len = EXT4_CLUSTERS_PER_GROUP(sb);
5794
5795 /* start searching from the goal */
5796 goal = ar->goal;
5797 if (goal < le32_to_cpu(es->s_first_data_block) ||
5798 goal >= ext4_blocks_count(es))
5799 goal = le32_to_cpu(es->s_first_data_block);
5800 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5801
5802 /* set up allocation goals */
5803 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5804 ac->ac_status = AC_STATUS_CONTINUE;
5805 ac->ac_sb = sb;
5806 ac->ac_inode = ar->inode;
5807 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5808 ac->ac_o_ex.fe_group = group;
5809 ac->ac_o_ex.fe_start = block;
5810 ac->ac_o_ex.fe_len = len;
5811 ac->ac_g_ex = ac->ac_o_ex;
5812 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5813 ac->ac_flags = ar->flags;
5814
5815 /* we have to define context: we'll work with a file or
5816 * locality group. this is a policy, actually */
5817 ext4_mb_group_or_file(ac);
5818
5819 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5820 "left: %u/%u, right %u/%u to %swritable\n",
5821 (unsigned) ar->len, (unsigned) ar->logical,
5822 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5823 (unsigned) ar->lleft, (unsigned) ar->pleft,
5824 (unsigned) ar->lright, (unsigned) ar->pright,
5825 inode_is_open_for_write(ar->inode) ? "" : "non-");
5826}
5827
5828static noinline_for_stack void
5829ext4_mb_discard_lg_preallocations(struct super_block *sb,
5830 struct ext4_locality_group *lg,
5831 int order, int total_entries)
5832{
5833 ext4_group_t group = 0;
5834 struct ext4_buddy e4b;
5835 LIST_HEAD(discard_list);
5836 struct ext4_prealloc_space *pa, *tmp;
5837
5838 mb_debug(sb, "discard locality group preallocation\n");
5839
5840 spin_lock(&lg->lg_prealloc_lock);
5841 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5842 pa_node.lg_list,
5843 lockdep_is_held(&lg->lg_prealloc_lock)) {
5844 spin_lock(&pa->pa_lock);
5845 if (atomic_read(&pa->pa_count)) {
5846 /*
5847 * This is the pa that we just used
5848 * for block allocation. So don't
5849 * free that
5850 */
5851 spin_unlock(&pa->pa_lock);
5852 continue;
5853 }
5854 if (pa->pa_deleted) {
5855 spin_unlock(&pa->pa_lock);
5856 continue;
5857 }
5858 /* only lg prealloc space */
5859 BUG_ON(pa->pa_type != MB_GROUP_PA);
5860
5861 /* seems this one can be freed ... */
5862 ext4_mb_mark_pa_deleted(sb, pa);
5863 spin_unlock(&pa->pa_lock);
5864
5865 list_del_rcu(&pa->pa_node.lg_list);
5866 list_add(&pa->u.pa_tmp_list, &discard_list);
5867
5868 total_entries--;
5869 if (total_entries <= 5) {
5870 /*
5871 * we want to keep only 5 entries
5872 * allowing it to grow to 8. This
5873 * mak sure we don't call discard
5874 * soon for this list.
5875 */
5876 break;
5877 }
5878 }
5879 spin_unlock(&lg->lg_prealloc_lock);
5880
5881 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5882 int err;
5883
5884 group = ext4_get_group_number(sb, pa->pa_pstart);
5885 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5886 GFP_NOFS|__GFP_NOFAIL);
5887 if (err) {
5888 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5889 err, group);
5890 continue;
5891 }
5892 ext4_lock_group(sb, group);
5893 list_del(&pa->pa_group_list);
5894 ext4_mb_release_group_pa(&e4b, pa);
5895 ext4_unlock_group(sb, group);
5896
5897 ext4_mb_unload_buddy(&e4b);
5898 list_del(&pa->u.pa_tmp_list);
5899 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5900 }
5901}
5902
5903/*
5904 * We have incremented pa_count. So it cannot be freed at this
5905 * point. Also we hold lg_mutex. So no parallel allocation is
5906 * possible from this lg. That means pa_free cannot be updated.
5907 *
5908 * A parallel ext4_mb_discard_group_preallocations is possible.
5909 * which can cause the lg_prealloc_list to be updated.
5910 */
5911
5912static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5913{
5914 int order, added = 0, lg_prealloc_count = 1;
5915 struct super_block *sb = ac->ac_sb;
5916 struct ext4_locality_group *lg = ac->ac_lg;
5917 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5918
5919 order = fls(pa->pa_free) - 1;
5920 if (order > PREALLOC_TB_SIZE - 1)
5921 /* The max size of hash table is PREALLOC_TB_SIZE */
5922 order = PREALLOC_TB_SIZE - 1;
5923 /* Add the prealloc space to lg */
5924 spin_lock(&lg->lg_prealloc_lock);
5925 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5926 pa_node.lg_list,
5927 lockdep_is_held(&lg->lg_prealloc_lock)) {
5928 spin_lock(&tmp_pa->pa_lock);
5929 if (tmp_pa->pa_deleted) {
5930 spin_unlock(&tmp_pa->pa_lock);
5931 continue;
5932 }
5933 if (!added && pa->pa_free < tmp_pa->pa_free) {
5934 /* Add to the tail of the previous entry */
5935 list_add_tail_rcu(&pa->pa_node.lg_list,
5936 &tmp_pa->pa_node.lg_list);
5937 added = 1;
5938 /*
5939 * we want to count the total
5940 * number of entries in the list
5941 */
5942 }
5943 spin_unlock(&tmp_pa->pa_lock);
5944 lg_prealloc_count++;
5945 }
5946 if (!added)
5947 list_add_tail_rcu(&pa->pa_node.lg_list,
5948 &lg->lg_prealloc_list[order]);
5949 spin_unlock(&lg->lg_prealloc_lock);
5950
5951 /* Now trim the list to be not more than 8 elements */
5952 if (lg_prealloc_count > 8)
5953 ext4_mb_discard_lg_preallocations(sb, lg,
5954 order, lg_prealloc_count);
5955}
5956
5957/*
5958 * release all resource we used in allocation
5959 */
5960static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5961{
5962 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5963 struct ext4_prealloc_space *pa = ac->ac_pa;
5964 if (pa) {
5965 if (pa->pa_type == MB_GROUP_PA) {
5966 /* see comment in ext4_mb_use_group_pa() */
5967 spin_lock(&pa->pa_lock);
5968 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5969 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5970 pa->pa_free -= ac->ac_b_ex.fe_len;
5971 pa->pa_len -= ac->ac_b_ex.fe_len;
5972 spin_unlock(&pa->pa_lock);
5973
5974 /*
5975 * We want to add the pa to the right bucket.
5976 * Remove it from the list and while adding
5977 * make sure the list to which we are adding
5978 * doesn't grow big.
5979 */
5980 if (likely(pa->pa_free)) {
5981 spin_lock(pa->pa_node_lock.lg_lock);
5982 list_del_rcu(&pa->pa_node.lg_list);
5983 spin_unlock(pa->pa_node_lock.lg_lock);
5984 ext4_mb_add_n_trim(ac);
5985 }
5986 }
5987
5988 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5989 }
5990 if (ac->ac_bitmap_page)
5991 put_page(ac->ac_bitmap_page);
5992 if (ac->ac_buddy_page)
5993 put_page(ac->ac_buddy_page);
5994 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5995 mutex_unlock(&ac->ac_lg->lg_mutex);
5996 ext4_mb_collect_stats(ac);
5997}
5998
5999static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6000{
6001 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6002 int ret;
6003 int freed = 0, busy = 0;
6004 int retry = 0;
6005
6006 trace_ext4_mb_discard_preallocations(sb, needed);
6007
6008 if (needed == 0)
6009 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6010 repeat:
6011 for (i = 0; i < ngroups && needed > 0; i++) {
6012 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6013 freed += ret;
6014 needed -= ret;
6015 cond_resched();
6016 }
6017
6018 if (needed > 0 && busy && ++retry < 3) {
6019 busy = 0;
6020 goto repeat;
6021 }
6022
6023 return freed;
6024}
6025
6026static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6027 struct ext4_allocation_context *ac, u64 *seq)
6028{
6029 int freed;
6030 u64 seq_retry = 0;
6031 bool ret = false;
6032
6033 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6034 if (freed) {
6035 ret = true;
6036 goto out_dbg;
6037 }
6038 seq_retry = ext4_get_discard_pa_seq_sum();
6039 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6040 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6041 *seq = seq_retry;
6042 ret = true;
6043 }
6044
6045out_dbg:
6046 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6047 return ret;
6048}
6049
6050/*
6051 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6052 * linearly starting at the goal block and also excludes the blocks which
6053 * are going to be in use after fast commit replay.
6054 */
6055static ext4_fsblk_t
6056ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6057{
6058 struct buffer_head *bitmap_bh;
6059 struct super_block *sb = ar->inode->i_sb;
6060 struct ext4_sb_info *sbi = EXT4_SB(sb);
6061 ext4_group_t group, nr;
6062 ext4_grpblk_t blkoff;
6063 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6064 ext4_grpblk_t i = 0;
6065 ext4_fsblk_t goal, block;
6066 struct ext4_super_block *es = sbi->s_es;
6067
6068 goal = ar->goal;
6069 if (goal < le32_to_cpu(es->s_first_data_block) ||
6070 goal >= ext4_blocks_count(es))
6071 goal = le32_to_cpu(es->s_first_data_block);
6072
6073 ar->len = 0;
6074 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6075 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6076 bitmap_bh = ext4_read_block_bitmap(sb, group);
6077 if (IS_ERR(bitmap_bh)) {
6078 *errp = PTR_ERR(bitmap_bh);
6079 pr_warn("Failed to read block bitmap\n");
6080 return 0;
6081 }
6082
6083 while (1) {
6084 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6085 blkoff);
6086 if (i >= max)
6087 break;
6088 if (ext4_fc_replay_check_excluded(sb,
6089 ext4_group_first_block_no(sb, group) +
6090 EXT4_C2B(sbi, i))) {
6091 blkoff = i + 1;
6092 } else
6093 break;
6094 }
6095 brelse(bitmap_bh);
6096 if (i < max)
6097 break;
6098
6099 if (++group >= ext4_get_groups_count(sb))
6100 group = 0;
6101
6102 blkoff = 0;
6103 }
6104
6105 if (i >= max) {
6106 *errp = -ENOSPC;
6107 return 0;
6108 }
6109
6110 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6111 ext4_mb_mark_bb(sb, block, 1, true);
6112 ar->len = 1;
6113
6114 return block;
6115}
6116
6117/*
6118 * Main entry point into mballoc to allocate blocks
6119 * it tries to use preallocation first, then falls back
6120 * to usual allocation
6121 */
6122ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6123 struct ext4_allocation_request *ar, int *errp)
6124{
6125 struct ext4_allocation_context *ac = NULL;
6126 struct ext4_sb_info *sbi;
6127 struct super_block *sb;
6128 ext4_fsblk_t block = 0;
6129 unsigned int inquota = 0;
6130 unsigned int reserv_clstrs = 0;
6131 int retries = 0;
6132 u64 seq;
6133
6134 might_sleep();
6135 sb = ar->inode->i_sb;
6136 sbi = EXT4_SB(sb);
6137
6138 trace_ext4_request_blocks(ar);
6139 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6140 return ext4_mb_new_blocks_simple(ar, errp);
6141
6142 /* Allow to use superuser reservation for quota file */
6143 if (ext4_is_quota_file(ar->inode))
6144 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6145
6146 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6147 /* Without delayed allocation we need to verify
6148 * there is enough free blocks to do block allocation
6149 * and verify allocation doesn't exceed the quota limits.
6150 */
6151 while (ar->len &&
6152 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6153
6154 /* let others to free the space */
6155 cond_resched();
6156 ar->len = ar->len >> 1;
6157 }
6158 if (!ar->len) {
6159 ext4_mb_show_pa(sb);
6160 *errp = -ENOSPC;
6161 return 0;
6162 }
6163 reserv_clstrs = ar->len;
6164 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6165 dquot_alloc_block_nofail(ar->inode,
6166 EXT4_C2B(sbi, ar->len));
6167 } else {
6168 while (ar->len &&
6169 dquot_alloc_block(ar->inode,
6170 EXT4_C2B(sbi, ar->len))) {
6171
6172 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6173 ar->len--;
6174 }
6175 }
6176 inquota = ar->len;
6177 if (ar->len == 0) {
6178 *errp = -EDQUOT;
6179 goto out;
6180 }
6181 }
6182
6183 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6184 if (!ac) {
6185 ar->len = 0;
6186 *errp = -ENOMEM;
6187 goto out;
6188 }
6189
6190 ext4_mb_initialize_context(ac, ar);
6191
6192 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6193 seq = this_cpu_read(discard_pa_seq);
6194 if (!ext4_mb_use_preallocated(ac)) {
6195 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6196 ext4_mb_normalize_request(ac, ar);
6197
6198 *errp = ext4_mb_pa_alloc(ac);
6199 if (*errp)
6200 goto errout;
6201repeat:
6202 /* allocate space in core */
6203 *errp = ext4_mb_regular_allocator(ac);
6204 /*
6205 * pa allocated above is added to grp->bb_prealloc_list only
6206 * when we were able to allocate some block i.e. when
6207 * ac->ac_status == AC_STATUS_FOUND.
6208 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6209 * So we have to free this pa here itself.
6210 */
6211 if (*errp) {
6212 ext4_mb_pa_put_free(ac);
6213 ext4_discard_allocated_blocks(ac);
6214 goto errout;
6215 }
6216 if (ac->ac_status == AC_STATUS_FOUND &&
6217 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6218 ext4_mb_pa_put_free(ac);
6219 }
6220 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6221 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6222 if (*errp) {
6223 ext4_discard_allocated_blocks(ac);
6224 goto errout;
6225 } else {
6226 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6227 ar->len = ac->ac_b_ex.fe_len;
6228 }
6229 } else {
6230 if (++retries < 3 &&
6231 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6232 goto repeat;
6233 /*
6234 * If block allocation fails then the pa allocated above
6235 * needs to be freed here itself.
6236 */
6237 ext4_mb_pa_put_free(ac);
6238 *errp = -ENOSPC;
6239 }
6240
6241 if (*errp) {
6242errout:
6243 ac->ac_b_ex.fe_len = 0;
6244 ar->len = 0;
6245 ext4_mb_show_ac(ac);
6246 }
6247 ext4_mb_release_context(ac);
6248 kmem_cache_free(ext4_ac_cachep, ac);
6249out:
6250 if (inquota && ar->len < inquota)
6251 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6252 if (!ar->len) {
6253 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6254 /* release all the reserved blocks if non delalloc */
6255 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6256 reserv_clstrs);
6257 }
6258
6259 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6260
6261 return block;
6262}
6263
6264/*
6265 * We can merge two free data extents only if the physical blocks
6266 * are contiguous, AND the extents were freed by the same transaction,
6267 * AND the blocks are associated with the same group.
6268 */
6269static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6270 struct ext4_free_data *entry,
6271 struct ext4_free_data *new_entry,
6272 struct rb_root *entry_rb_root)
6273{
6274 if ((entry->efd_tid != new_entry->efd_tid) ||
6275 (entry->efd_group != new_entry->efd_group))
6276 return;
6277 if (entry->efd_start_cluster + entry->efd_count ==
6278 new_entry->efd_start_cluster) {
6279 new_entry->efd_start_cluster = entry->efd_start_cluster;
6280 new_entry->efd_count += entry->efd_count;
6281 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6282 entry->efd_start_cluster) {
6283 new_entry->efd_count += entry->efd_count;
6284 } else
6285 return;
6286 spin_lock(&sbi->s_md_lock);
6287 list_del(&entry->efd_list);
6288 spin_unlock(&sbi->s_md_lock);
6289 rb_erase(&entry->efd_node, entry_rb_root);
6290 kmem_cache_free(ext4_free_data_cachep, entry);
6291}
6292
6293static noinline_for_stack void
6294ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6295 struct ext4_free_data *new_entry)
6296{
6297 ext4_group_t group = e4b->bd_group;
6298 ext4_grpblk_t cluster;
6299 ext4_grpblk_t clusters = new_entry->efd_count;
6300 struct ext4_free_data *entry;
6301 struct ext4_group_info *db = e4b->bd_info;
6302 struct super_block *sb = e4b->bd_sb;
6303 struct ext4_sb_info *sbi = EXT4_SB(sb);
6304 struct rb_node **n = &db->bb_free_root.rb_node, *node;
6305 struct rb_node *parent = NULL, *new_node;
6306
6307 BUG_ON(!ext4_handle_valid(handle));
6308 BUG_ON(e4b->bd_bitmap_page == NULL);
6309 BUG_ON(e4b->bd_buddy_page == NULL);
6310
6311 new_node = &new_entry->efd_node;
6312 cluster = new_entry->efd_start_cluster;
6313
6314 if (!*n) {
6315 /* first free block exent. We need to
6316 protect buddy cache from being freed,
6317 * otherwise we'll refresh it from
6318 * on-disk bitmap and lose not-yet-available
6319 * blocks */
6320 get_page(e4b->bd_buddy_page);
6321 get_page(e4b->bd_bitmap_page);
6322 }
6323 while (*n) {
6324 parent = *n;
6325 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6326 if (cluster < entry->efd_start_cluster)
6327 n = &(*n)->rb_left;
6328 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6329 n = &(*n)->rb_right;
6330 else {
6331 ext4_grp_locked_error(sb, group, 0,
6332 ext4_group_first_block_no(sb, group) +
6333 EXT4_C2B(sbi, cluster),
6334 "Block already on to-be-freed list");
6335 kmem_cache_free(ext4_free_data_cachep, new_entry);
6336 return;
6337 }
6338 }
6339
6340 rb_link_node(new_node, parent, n);
6341 rb_insert_color(new_node, &db->bb_free_root);
6342
6343 /* Now try to see the extent can be merged to left and right */
6344 node = rb_prev(new_node);
6345 if (node) {
6346 entry = rb_entry(node, struct ext4_free_data, efd_node);
6347 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6348 &(db->bb_free_root));
6349 }
6350
6351 node = rb_next(new_node);
6352 if (node) {
6353 entry = rb_entry(node, struct ext4_free_data, efd_node);
6354 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6355 &(db->bb_free_root));
6356 }
6357
6358 spin_lock(&sbi->s_md_lock);
6359 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6360 sbi->s_mb_free_pending += clusters;
6361 spin_unlock(&sbi->s_md_lock);
6362}
6363
6364static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6365 unsigned long count)
6366{
6367 struct super_block *sb = inode->i_sb;
6368 ext4_group_t group;
6369 ext4_grpblk_t blkoff;
6370
6371 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6372 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6373 EXT4_MB_BITMAP_MARKED_CHECK |
6374 EXT4_MB_SYNC_UPDATE,
6375 NULL);
6376}
6377
6378/**
6379 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6380 * Used by ext4_free_blocks()
6381 * @handle: handle for this transaction
6382 * @inode: inode
6383 * @block: starting physical block to be freed
6384 * @count: number of blocks to be freed
6385 * @flags: flags used by ext4_free_blocks
6386 */
6387static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6388 ext4_fsblk_t block, unsigned long count,
6389 int flags)
6390{
6391 struct super_block *sb = inode->i_sb;
6392 struct ext4_group_info *grp;
6393 unsigned int overflow;
6394 ext4_grpblk_t bit;
6395 ext4_group_t block_group;
6396 struct ext4_sb_info *sbi;
6397 struct ext4_buddy e4b;
6398 unsigned int count_clusters;
6399 int err = 0;
6400 int mark_flags = 0;
6401 ext4_grpblk_t changed;
6402
6403 sbi = EXT4_SB(sb);
6404
6405 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6406 !ext4_inode_block_valid(inode, block, count)) {
6407 ext4_error(sb, "Freeing blocks in system zone - "
6408 "Block = %llu, count = %lu", block, count);
6409 /* err = 0. ext4_std_error should be a no op */
6410 goto error_out;
6411 }
6412 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6413
6414do_more:
6415 overflow = 0;
6416 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6417
6418 grp = ext4_get_group_info(sb, block_group);
6419 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6420 return;
6421
6422 /*
6423 * Check to see if we are freeing blocks across a group
6424 * boundary.
6425 */
6426 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6427 overflow = EXT4_C2B(sbi, bit) + count -
6428 EXT4_BLOCKS_PER_GROUP(sb);
6429 count -= overflow;
6430 /* The range changed so it's no longer validated */
6431 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6432 }
6433 count_clusters = EXT4_NUM_B2C(sbi, count);
6434 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6435
6436 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6437 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6438 GFP_NOFS|__GFP_NOFAIL);
6439 if (err)
6440 goto error_out;
6441
6442 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6443 !ext4_inode_block_valid(inode, block, count)) {
6444 ext4_error(sb, "Freeing blocks in system zone - "
6445 "Block = %llu, count = %lu", block, count);
6446 /* err = 0. ext4_std_error should be a no op */
6447 goto error_clean;
6448 }
6449
6450#ifdef AGGRESSIVE_CHECK
6451 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6452#endif
6453 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6454 count_clusters, mark_flags, &changed);
6455
6456
6457 if (err && changed == 0)
6458 goto error_clean;
6459
6460#ifdef AGGRESSIVE_CHECK
6461 BUG_ON(changed != count_clusters);
6462#endif
6463
6464 /*
6465 * We need to make sure we don't reuse the freed block until after the
6466 * transaction is committed. We make an exception if the inode is to be
6467 * written in writeback mode since writeback mode has weak data
6468 * consistency guarantees.
6469 */
6470 if (ext4_handle_valid(handle) &&
6471 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6472 !ext4_should_writeback_data(inode))) {
6473 struct ext4_free_data *new_entry;
6474 /*
6475 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6476 * to fail.
6477 */
6478 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6479 GFP_NOFS|__GFP_NOFAIL);
6480 new_entry->efd_start_cluster = bit;
6481 new_entry->efd_group = block_group;
6482 new_entry->efd_count = count_clusters;
6483 new_entry->efd_tid = handle->h_transaction->t_tid;
6484
6485 ext4_lock_group(sb, block_group);
6486 ext4_mb_free_metadata(handle, &e4b, new_entry);
6487 } else {
6488 if (test_opt(sb, DISCARD)) {
6489 err = ext4_issue_discard(sb, block_group, bit,
6490 count_clusters, NULL);
6491 if (err && err != -EOPNOTSUPP)
6492 ext4_msg(sb, KERN_WARNING, "discard request in"
6493 " group:%u block:%d count:%lu failed"
6494 " with %d", block_group, bit, count,
6495 err);
6496 } else
6497 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6498
6499 ext4_lock_group(sb, block_group);
6500 mb_free_blocks(inode, &e4b, bit, count_clusters);
6501 }
6502
6503 ext4_unlock_group(sb, block_group);
6504
6505 /*
6506 * on a bigalloc file system, defer the s_freeclusters_counter
6507 * update to the caller (ext4_remove_space and friends) so they
6508 * can determine if a cluster freed here should be rereserved
6509 */
6510 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6511 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6512 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6513 percpu_counter_add(&sbi->s_freeclusters_counter,
6514 count_clusters);
6515 }
6516
6517 if (overflow && !err) {
6518 block += count;
6519 count = overflow;
6520 ext4_mb_unload_buddy(&e4b);
6521 /* The range changed so it's no longer validated */
6522 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6523 goto do_more;
6524 }
6525
6526error_clean:
6527 ext4_mb_unload_buddy(&e4b);
6528error_out:
6529 ext4_std_error(sb, err);
6530}
6531
6532/**
6533 * ext4_free_blocks() -- Free given blocks and update quota
6534 * @handle: handle for this transaction
6535 * @inode: inode
6536 * @bh: optional buffer of the block to be freed
6537 * @block: starting physical block to be freed
6538 * @count: number of blocks to be freed
6539 * @flags: flags used by ext4_free_blocks
6540 */
6541void ext4_free_blocks(handle_t *handle, struct inode *inode,
6542 struct buffer_head *bh, ext4_fsblk_t block,
6543 unsigned long count, int flags)
6544{
6545 struct super_block *sb = inode->i_sb;
6546 unsigned int overflow;
6547 struct ext4_sb_info *sbi;
6548
6549 sbi = EXT4_SB(sb);
6550
6551 if (bh) {
6552 if (block)
6553 BUG_ON(block != bh->b_blocknr);
6554 else
6555 block = bh->b_blocknr;
6556 }
6557
6558 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6559 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6560 return;
6561 }
6562
6563 might_sleep();
6564
6565 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6566 !ext4_inode_block_valid(inode, block, count)) {
6567 ext4_error(sb, "Freeing blocks not in datazone - "
6568 "block = %llu, count = %lu", block, count);
6569 return;
6570 }
6571 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6572
6573 ext4_debug("freeing block %llu\n", block);
6574 trace_ext4_free_blocks(inode, block, count, flags);
6575
6576 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6577 BUG_ON(count > 1);
6578
6579 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6580 inode, bh, block);
6581 }
6582
6583 /*
6584 * If the extent to be freed does not begin on a cluster
6585 * boundary, we need to deal with partial clusters at the
6586 * beginning and end of the extent. Normally we will free
6587 * blocks at the beginning or the end unless we are explicitly
6588 * requested to avoid doing so.
6589 */
6590 overflow = EXT4_PBLK_COFF(sbi, block);
6591 if (overflow) {
6592 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6593 overflow = sbi->s_cluster_ratio - overflow;
6594 block += overflow;
6595 if (count > overflow)
6596 count -= overflow;
6597 else
6598 return;
6599 } else {
6600 block -= overflow;
6601 count += overflow;
6602 }
6603 /* The range changed so it's no longer validated */
6604 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6605 }
6606 overflow = EXT4_LBLK_COFF(sbi, count);
6607 if (overflow) {
6608 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6609 if (count > overflow)
6610 count -= overflow;
6611 else
6612 return;
6613 } else
6614 count += sbi->s_cluster_ratio - overflow;
6615 /* The range changed so it's no longer validated */
6616 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6617 }
6618
6619 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6620 int i;
6621 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6622
6623 for (i = 0; i < count; i++) {
6624 cond_resched();
6625 if (is_metadata)
6626 bh = sb_find_get_block(inode->i_sb, block + i);
6627 ext4_forget(handle, is_metadata, inode, bh, block + i);
6628 }
6629 }
6630
6631 ext4_mb_clear_bb(handle, inode, block, count, flags);
6632}
6633
6634/**
6635 * ext4_group_add_blocks() -- Add given blocks to an existing group
6636 * @handle: handle to this transaction
6637 * @sb: super block
6638 * @block: start physical block to add to the block group
6639 * @count: number of blocks to free
6640 *
6641 * This marks the blocks as free in the bitmap and buddy.
6642 */
6643int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6644 ext4_fsblk_t block, unsigned long count)
6645{
6646 ext4_group_t block_group;
6647 ext4_grpblk_t bit;
6648 struct ext4_sb_info *sbi = EXT4_SB(sb);
6649 struct ext4_buddy e4b;
6650 int err = 0;
6651 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6652 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6653 unsigned long cluster_count = last_cluster - first_cluster + 1;
6654 ext4_grpblk_t changed;
6655
6656 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6657
6658 if (cluster_count == 0)
6659 return 0;
6660
6661 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6662 /*
6663 * Check to see if we are freeing blocks across a group
6664 * boundary.
6665 */
6666 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6667 ext4_warning(sb, "too many blocks added to group %u",
6668 block_group);
6669 err = -EINVAL;
6670 goto error_out;
6671 }
6672
6673 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6674 if (err)
6675 goto error_out;
6676
6677 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6678 ext4_error(sb, "Adding blocks in system zones - "
6679 "Block = %llu, count = %lu",
6680 block, count);
6681 err = -EINVAL;
6682 goto error_clean;
6683 }
6684
6685 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6686 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6687 &changed);
6688 if (err && changed == 0)
6689 goto error_clean;
6690
6691 if (changed != cluster_count)
6692 ext4_error(sb, "bit already cleared in group %u", block_group);
6693
6694 ext4_lock_group(sb, block_group);
6695 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6696 ext4_unlock_group(sb, block_group);
6697 percpu_counter_add(&sbi->s_freeclusters_counter,
6698 changed);
6699
6700error_clean:
6701 ext4_mb_unload_buddy(&e4b);
6702error_out:
6703 ext4_std_error(sb, err);
6704 return err;
6705}
6706
6707/**
6708 * ext4_trim_extent -- function to TRIM one single free extent in the group
6709 * @sb: super block for the file system
6710 * @start: starting block of the free extent in the alloc. group
6711 * @count: number of blocks to TRIM
6712 * @e4b: ext4 buddy for the group
6713 *
6714 * Trim "count" blocks starting at "start" in the "group". To assure that no
6715 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6716 * be called with under the group lock.
6717 */
6718static int ext4_trim_extent(struct super_block *sb,
6719 int start, int count, struct ext4_buddy *e4b)
6720__releases(bitlock)
6721__acquires(bitlock)
6722{
6723 struct ext4_free_extent ex;
6724 ext4_group_t group = e4b->bd_group;
6725 int ret = 0;
6726
6727 trace_ext4_trim_extent(sb, group, start, count);
6728
6729 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6730
6731 ex.fe_start = start;
6732 ex.fe_group = group;
6733 ex.fe_len = count;
6734
6735 /*
6736 * Mark blocks used, so no one can reuse them while
6737 * being trimmed.
6738 */
6739 mb_mark_used(e4b, &ex);
6740 ext4_unlock_group(sb, group);
6741 ret = ext4_issue_discard(sb, group, start, count, NULL);
6742 ext4_lock_group(sb, group);
6743 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6744 return ret;
6745}
6746
6747static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6748 ext4_group_t grp)
6749{
6750 unsigned long nr_clusters_in_group;
6751
6752 if (grp < (ext4_get_groups_count(sb) - 1))
6753 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6754 else
6755 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6756 ext4_group_first_block_no(sb, grp))
6757 >> EXT4_CLUSTER_BITS(sb);
6758
6759 return nr_clusters_in_group - 1;
6760}
6761
6762static bool ext4_trim_interrupted(void)
6763{
6764 return fatal_signal_pending(current) || freezing(current);
6765}
6766
6767static int ext4_try_to_trim_range(struct super_block *sb,
6768 struct ext4_buddy *e4b, ext4_grpblk_t start,
6769 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6770__acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6771__releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6772{
6773 ext4_grpblk_t next, count, free_count, last, origin_start;
6774 bool set_trimmed = false;
6775 void *bitmap;
6776
6777 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6778 return 0;
6779
6780 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6781 bitmap = e4b->bd_bitmap;
6782 if (start == 0 && max >= last)
6783 set_trimmed = true;
6784 origin_start = start;
6785 start = max(e4b->bd_info->bb_first_free, start);
6786 count = 0;
6787 free_count = 0;
6788
6789 while (start <= max) {
6790 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6791 if (start > max)
6792 break;
6793
6794 next = mb_find_next_bit(bitmap, last + 1, start);
6795 if (origin_start == 0 && next >= last)
6796 set_trimmed = true;
6797
6798 if ((next - start) >= minblocks) {
6799 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6800
6801 if (ret && ret != -EOPNOTSUPP)
6802 return count;
6803 count += next - start;
6804 }
6805 free_count += next - start;
6806 start = next + 1;
6807
6808 if (ext4_trim_interrupted())
6809 return count;
6810
6811 if (need_resched()) {
6812 ext4_unlock_group(sb, e4b->bd_group);
6813 cond_resched();
6814 ext4_lock_group(sb, e4b->bd_group);
6815 }
6816
6817 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6818 break;
6819 }
6820
6821 if (set_trimmed)
6822 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6823
6824 return count;
6825}
6826
6827/**
6828 * ext4_trim_all_free -- function to trim all free space in alloc. group
6829 * @sb: super block for file system
6830 * @group: group to be trimmed
6831 * @start: first group block to examine
6832 * @max: last group block to examine
6833 * @minblocks: minimum extent block count
6834 *
6835 * ext4_trim_all_free walks through group's block bitmap searching for free
6836 * extents. When the free extent is found, mark it as used in group buddy
6837 * bitmap. Then issue a TRIM command on this extent and free the extent in
6838 * the group buddy bitmap.
6839 */
6840static ext4_grpblk_t
6841ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6842 ext4_grpblk_t start, ext4_grpblk_t max,
6843 ext4_grpblk_t minblocks)
6844{
6845 struct ext4_buddy e4b;
6846 int ret;
6847
6848 trace_ext4_trim_all_free(sb, group, start, max);
6849
6850 ret = ext4_mb_load_buddy(sb, group, &e4b);
6851 if (ret) {
6852 ext4_warning(sb, "Error %d loading buddy information for %u",
6853 ret, group);
6854 return ret;
6855 }
6856
6857 ext4_lock_group(sb, group);
6858
6859 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6860 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6861 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6862 else
6863 ret = 0;
6864
6865 ext4_unlock_group(sb, group);
6866 ext4_mb_unload_buddy(&e4b);
6867
6868 ext4_debug("trimmed %d blocks in the group %d\n",
6869 ret, group);
6870
6871 return ret;
6872}
6873
6874/**
6875 * ext4_trim_fs() -- trim ioctl handle function
6876 * @sb: superblock for filesystem
6877 * @range: fstrim_range structure
6878 *
6879 * start: First Byte to trim
6880 * len: number of Bytes to trim from start
6881 * minlen: minimum extent length in Bytes
6882 * ext4_trim_fs goes through all allocation groups containing Bytes from
6883 * start to start+len. For each such a group ext4_trim_all_free function
6884 * is invoked to trim all free space.
6885 */
6886int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6887{
6888 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6889 struct ext4_group_info *grp;
6890 ext4_group_t group, first_group, last_group;
6891 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6892 uint64_t start, end, minlen, trimmed = 0;
6893 ext4_fsblk_t first_data_blk =
6894 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6895 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6896 int ret = 0;
6897
6898 start = range->start >> sb->s_blocksize_bits;
6899 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6900 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6901 range->minlen >> sb->s_blocksize_bits);
6902
6903 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6904 start >= max_blks ||
6905 range->len < sb->s_blocksize)
6906 return -EINVAL;
6907 /* No point to try to trim less than discard granularity */
6908 if (range->minlen < discard_granularity) {
6909 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6910 discard_granularity >> sb->s_blocksize_bits);
6911 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6912 goto out;
6913 }
6914 if (end >= max_blks - 1)
6915 end = max_blks - 1;
6916 if (end <= first_data_blk)
6917 goto out;
6918 if (start < first_data_blk)
6919 start = first_data_blk;
6920
6921 /* Determine first and last group to examine based on start and end */
6922 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6923 &first_group, &first_cluster);
6924 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6925 &last_group, &last_cluster);
6926
6927 /* end now represents the last cluster to discard in this group */
6928 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6929
6930 for (group = first_group; group <= last_group; group++) {
6931 if (ext4_trim_interrupted())
6932 break;
6933 grp = ext4_get_group_info(sb, group);
6934 if (!grp)
6935 continue;
6936 /* We only do this if the grp has never been initialized */
6937 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6938 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6939 if (ret)
6940 break;
6941 }
6942
6943 /*
6944 * For all the groups except the last one, last cluster will
6945 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6946 * change it for the last group, note that last_cluster is
6947 * already computed earlier by ext4_get_group_no_and_offset()
6948 */
6949 if (group == last_group)
6950 end = last_cluster;
6951 if (grp->bb_free >= minlen) {
6952 cnt = ext4_trim_all_free(sb, group, first_cluster,
6953 end, minlen);
6954 if (cnt < 0) {
6955 ret = cnt;
6956 break;
6957 }
6958 trimmed += cnt;
6959 }
6960
6961 /*
6962 * For every group except the first one, we are sure
6963 * that the first cluster to discard will be cluster #0.
6964 */
6965 first_cluster = 0;
6966 }
6967
6968 if (!ret)
6969 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6970
6971out:
6972 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6973 return ret;
6974}
6975
6976/* Iterate all the free extents in the group. */
6977int
6978ext4_mballoc_query_range(
6979 struct super_block *sb,
6980 ext4_group_t group,
6981 ext4_grpblk_t start,
6982 ext4_grpblk_t end,
6983 ext4_mballoc_query_range_fn formatter,
6984 void *priv)
6985{
6986 void *bitmap;
6987 ext4_grpblk_t next;
6988 struct ext4_buddy e4b;
6989 int error;
6990
6991 error = ext4_mb_load_buddy(sb, group, &e4b);
6992 if (error)
6993 return error;
6994 bitmap = e4b.bd_bitmap;
6995
6996 ext4_lock_group(sb, group);
6997
6998 start = max(e4b.bd_info->bb_first_free, start);
6999 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7000 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7001
7002 while (start <= end) {
7003 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7004 if (start > end)
7005 break;
7006 next = mb_find_next_bit(bitmap, end + 1, start);
7007
7008 ext4_unlock_group(sb, group);
7009 error = formatter(sb, group, start, next - start, priv);
7010 if (error)
7011 goto out_unload;
7012 ext4_lock_group(sb, group);
7013
7014 start = next + 1;
7015 }
7016
7017 ext4_unlock_group(sb, group);
7018out_unload:
7019 ext4_mb_unload_buddy(&e4b);
7020
7021 return error;
7022}
7023
7024#ifdef CONFIG_EXT4_KUNIT_TESTS
7025#include "mballoc-test.c"
7026#endif