Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Filesystem-level keyring for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * This file implements management of fscrypt master keys in the
  10 * filesystem-level keyring, including the ioctls:
  11 *
  12 * - FS_IOC_ADD_ENCRYPTION_KEY
  13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
  14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
  15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
  16 *
  17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
  18 * information about these ioctls.
  19 */
  20
  21#include <asm/unaligned.h>
  22#include <crypto/skcipher.h>
  23#include <linux/key-type.h>
  24#include <linux/random.h>
  25#include <linux/seq_file.h>
  26
  27#include "fscrypt_private.h"
  28
  29/* The master encryption keys for a filesystem (->s_master_keys) */
  30struct fscrypt_keyring {
  31	/*
  32	 * Lock that protects ->key_hashtable.  It does *not* protect the
  33	 * fscrypt_master_key structs themselves.
  34	 */
  35	spinlock_t lock;
  36
  37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
  38	struct hlist_head key_hashtable[128];
  39};
  40
  41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
  42{
  43	fscrypt_destroy_hkdf(&secret->hkdf);
  44	memzero_explicit(secret, sizeof(*secret));
  45}
  46
  47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
  48				   struct fscrypt_master_key_secret *src)
  49{
  50	memcpy(dst, src, sizeof(*dst));
  51	memzero_explicit(src, sizeof(*src));
  52}
  53
  54static void fscrypt_free_master_key(struct rcu_head *head)
  55{
  56	struct fscrypt_master_key *mk =
  57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
  58	/*
  59	 * The master key secret and any embedded subkeys should have already
  60	 * been wiped when the last active reference to the fscrypt_master_key
  61	 * struct was dropped; doing it here would be unnecessarily late.
  62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
  63	 */
  64	kfree_sensitive(mk);
  65}
  66
  67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
  68{
  69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
  70		return;
  71	/*
  72	 * No structural references left, so free ->mk_users, and also free the
  73	 * fscrypt_master_key struct itself after an RCU grace period ensures
  74	 * that concurrent keyring lookups can no longer find it.
  75	 */
  76	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
  77	key_put(mk->mk_users);
  78	mk->mk_users = NULL;
  79	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
  80}
  81
  82void fscrypt_put_master_key_activeref(struct super_block *sb,
  83				      struct fscrypt_master_key *mk)
  84{
  85	size_t i;
  86
  87	if (!refcount_dec_and_test(&mk->mk_active_refs))
  88		return;
  89	/*
  90	 * No active references left, so complete the full removal of this
  91	 * fscrypt_master_key struct by removing it from the keyring and
  92	 * destroying any subkeys embedded in it.
  93	 */
  94
  95	if (WARN_ON_ONCE(!sb->s_master_keys))
  96		return;
  97	spin_lock(&sb->s_master_keys->lock);
  98	hlist_del_rcu(&mk->mk_node);
  99	spin_unlock(&sb->s_master_keys->lock);
 100
 101	/*
 102	 * ->mk_active_refs == 0 implies that ->mk_present is false and
 103	 * ->mk_decrypted_inodes is empty.
 104	 */
 105	WARN_ON_ONCE(mk->mk_present);
 106	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
 107
 108	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
 109		fscrypt_destroy_prepared_key(
 110				sb, &mk->mk_direct_keys[i]);
 111		fscrypt_destroy_prepared_key(
 112				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
 113		fscrypt_destroy_prepared_key(
 114				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
 115	}
 116	memzero_explicit(&mk->mk_ino_hash_key,
 117			 sizeof(mk->mk_ino_hash_key));
 118	mk->mk_ino_hash_key_initialized = false;
 119
 120	/* Drop the structural ref associated with the active refs. */
 121	fscrypt_put_master_key(mk);
 122}
 123
 124/*
 125 * This transitions the key state from present to incompletely removed, and then
 126 * potentially to absent (depending on whether inodes remain).
 127 */
 128static void fscrypt_initiate_key_removal(struct super_block *sb,
 129					 struct fscrypt_master_key *mk)
 130{
 131	WRITE_ONCE(mk->mk_present, false);
 132	wipe_master_key_secret(&mk->mk_secret);
 133	fscrypt_put_master_key_activeref(sb, mk);
 134}
 135
 136static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
 137{
 138	if (spec->__reserved)
 139		return false;
 140	return master_key_spec_len(spec) != 0;
 141}
 142
 143static int fscrypt_user_key_instantiate(struct key *key,
 144					struct key_preparsed_payload *prep)
 145{
 146	/*
 147	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
 148	 * each key, regardless of the exact key size.  The amount of memory
 149	 * actually used is greater than the size of the raw key anyway.
 150	 */
 151	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
 152}
 153
 154static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
 155{
 156	seq_puts(m, key->description);
 157}
 158
 159/*
 160 * Type of key in ->mk_users.  Each key of this type represents a particular
 161 * user who has added a particular master key.
 162 *
 163 * Note that the name of this key type really should be something like
 164 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
 165 * mainly for simplicity of presentation in /proc/keys when read by a non-root
 166 * user.  And it is expected to be rare that a key is actually added by multiple
 167 * users, since users should keep their encryption keys confidential.
 168 */
 169static struct key_type key_type_fscrypt_user = {
 170	.name			= ".fscrypt",
 171	.instantiate		= fscrypt_user_key_instantiate,
 172	.describe		= fscrypt_user_key_describe,
 173};
 174
 175#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
 176	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
 177	 CONST_STRLEN("-users") + 1)
 178
 179#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
 180	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
 181
 182static void format_mk_users_keyring_description(
 183			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
 184			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 185{
 186	sprintf(description, "fscrypt-%*phN-users",
 187		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
 188}
 189
 190static void format_mk_user_description(
 191			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
 192			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 193{
 194
 195	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
 196		mk_identifier, __kuid_val(current_fsuid()));
 197}
 198
 199/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
 200static int allocate_filesystem_keyring(struct super_block *sb)
 201{
 202	struct fscrypt_keyring *keyring;
 203
 204	if (sb->s_master_keys)
 205		return 0;
 206
 207	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
 208	if (!keyring)
 209		return -ENOMEM;
 210	spin_lock_init(&keyring->lock);
 211	/*
 212	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
 213	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
 214	 * concurrent tasks can ACQUIRE it.
 215	 */
 216	smp_store_release(&sb->s_master_keys, keyring);
 217	return 0;
 218}
 219
 220/*
 221 * Release all encryption keys that have been added to the filesystem, along
 222 * with the keyring that contains them.
 223 *
 224 * This is called at unmount time, after all potentially-encrypted inodes have
 225 * been evicted.  The filesystem's underlying block device(s) are still
 226 * available at this time; this is important because after user file accesses
 227 * have been allowed, this function may need to evict keys from the keyslots of
 228 * an inline crypto engine, which requires the block device(s).
 229 */
 230void fscrypt_destroy_keyring(struct super_block *sb)
 231{
 232	struct fscrypt_keyring *keyring = sb->s_master_keys;
 233	size_t i;
 234
 235	if (!keyring)
 236		return;
 237
 238	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
 239		struct hlist_head *bucket = &keyring->key_hashtable[i];
 240		struct fscrypt_master_key *mk;
 241		struct hlist_node *tmp;
 242
 243		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
 244			/*
 245			 * Since all potentially-encrypted inodes were already
 246			 * evicted, every key remaining in the keyring should
 247			 * have an empty inode list, and should only still be in
 248			 * the keyring due to the single active ref associated
 249			 * with ->mk_present.  There should be no structural
 250			 * refs beyond the one associated with the active ref.
 251			 */
 252			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
 253			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
 254			WARN_ON_ONCE(!mk->mk_present);
 255			fscrypt_initiate_key_removal(sb, mk);
 256		}
 257	}
 258	kfree_sensitive(keyring);
 259	sb->s_master_keys = NULL;
 260}
 261
 262static struct hlist_head *
 263fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
 264		       const struct fscrypt_key_specifier *mk_spec)
 265{
 266	/*
 267	 * Since key specifiers should be "random" values, it is sufficient to
 268	 * use a trivial hash function that just takes the first several bits of
 269	 * the key specifier.
 270	 */
 271	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
 272
 273	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
 274}
 275
 276/*
 277 * Find the specified master key struct in ->s_master_keys and take a structural
 278 * ref to it.  The structural ref guarantees that the key struct continues to
 279 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
 280 * the key struct.  The structural ref needs to be dropped by
 281 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
 282 */
 283struct fscrypt_master_key *
 284fscrypt_find_master_key(struct super_block *sb,
 285			const struct fscrypt_key_specifier *mk_spec)
 286{
 287	struct fscrypt_keyring *keyring;
 288	struct hlist_head *bucket;
 289	struct fscrypt_master_key *mk;
 290
 291	/*
 292	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
 293	 * I.e., another task can publish ->s_master_keys concurrently,
 294	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
 295	 * to safely ACQUIRE the memory the other task published.
 296	 */
 297	keyring = smp_load_acquire(&sb->s_master_keys);
 298	if (keyring == NULL)
 299		return NULL; /* No keyring yet, so no keys yet. */
 300
 301	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
 302	rcu_read_lock();
 303	switch (mk_spec->type) {
 304	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
 305		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 306			if (mk->mk_spec.type ==
 307				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 308			    memcmp(mk->mk_spec.u.descriptor,
 309				   mk_spec->u.descriptor,
 310				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
 311			    refcount_inc_not_zero(&mk->mk_struct_refs))
 312				goto out;
 313		}
 314		break;
 315	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
 316		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 317			if (mk->mk_spec.type ==
 318				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 319			    memcmp(mk->mk_spec.u.identifier,
 320				   mk_spec->u.identifier,
 321				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
 322			    refcount_inc_not_zero(&mk->mk_struct_refs))
 323				goto out;
 324		}
 325		break;
 326	}
 327	mk = NULL;
 328out:
 329	rcu_read_unlock();
 330	return mk;
 331}
 332
 333static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
 334{
 335	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
 336	struct key *keyring;
 337
 338	format_mk_users_keyring_description(description,
 339					    mk->mk_spec.u.identifier);
 340	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 341				current_cred(), KEY_POS_SEARCH |
 342				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 343				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 344	if (IS_ERR(keyring))
 345		return PTR_ERR(keyring);
 346
 347	mk->mk_users = keyring;
 348	return 0;
 349}
 350
 351/*
 352 * Find the current user's "key" in the master key's ->mk_users.
 353 * Returns ERR_PTR(-ENOKEY) if not found.
 354 */
 355static struct key *find_master_key_user(struct fscrypt_master_key *mk)
 356{
 357	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 358	key_ref_t keyref;
 359
 360	format_mk_user_description(description, mk->mk_spec.u.identifier);
 361
 362	/*
 363	 * We need to mark the keyring reference as "possessed" so that we
 364	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
 365	 */
 366	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
 367				&key_type_fscrypt_user, description, false);
 368	if (IS_ERR(keyref)) {
 369		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
 370		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
 371			keyref = ERR_PTR(-ENOKEY);
 372		return ERR_CAST(keyref);
 373	}
 374	return key_ref_to_ptr(keyref);
 375}
 376
 377/*
 378 * Give the current user a "key" in ->mk_users.  This charges the user's quota
 379 * and marks the master key as added by the current user, so that it cannot be
 380 * removed by another user with the key.  Either ->mk_sem must be held for
 381 * write, or the master key must be still undergoing initialization.
 382 */
 383static int add_master_key_user(struct fscrypt_master_key *mk)
 384{
 385	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 386	struct key *mk_user;
 387	int err;
 388
 389	format_mk_user_description(description, mk->mk_spec.u.identifier);
 390	mk_user = key_alloc(&key_type_fscrypt_user, description,
 391			    current_fsuid(), current_gid(), current_cred(),
 392			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
 393	if (IS_ERR(mk_user))
 394		return PTR_ERR(mk_user);
 395
 396	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
 397	key_put(mk_user);
 398	return err;
 399}
 400
 401/*
 402 * Remove the current user's "key" from ->mk_users.
 403 * ->mk_sem must be held for write.
 404 *
 405 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
 406 */
 407static int remove_master_key_user(struct fscrypt_master_key *mk)
 408{
 409	struct key *mk_user;
 410	int err;
 411
 412	mk_user = find_master_key_user(mk);
 413	if (IS_ERR(mk_user))
 414		return PTR_ERR(mk_user);
 415	err = key_unlink(mk->mk_users, mk_user);
 416	key_put(mk_user);
 417	return err;
 418}
 419
 420/*
 421 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
 422 * insert it into sb->s_master_keys.
 423 */
 424static int add_new_master_key(struct super_block *sb,
 425			      struct fscrypt_master_key_secret *secret,
 426			      const struct fscrypt_key_specifier *mk_spec)
 427{
 428	struct fscrypt_keyring *keyring = sb->s_master_keys;
 429	struct fscrypt_master_key *mk;
 430	int err;
 431
 432	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
 433	if (!mk)
 434		return -ENOMEM;
 435
 436	init_rwsem(&mk->mk_sem);
 437	refcount_set(&mk->mk_struct_refs, 1);
 438	mk->mk_spec = *mk_spec;
 439
 440	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
 441	spin_lock_init(&mk->mk_decrypted_inodes_lock);
 442
 443	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 444		err = allocate_master_key_users_keyring(mk);
 445		if (err)
 446			goto out_put;
 447		err = add_master_key_user(mk);
 448		if (err)
 449			goto out_put;
 450	}
 451
 452	move_master_key_secret(&mk->mk_secret, secret);
 453	mk->mk_present = true;
 454	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
 455
 456	spin_lock(&keyring->lock);
 457	hlist_add_head_rcu(&mk->mk_node,
 458			   fscrypt_mk_hash_bucket(keyring, mk_spec));
 459	spin_unlock(&keyring->lock);
 460	return 0;
 461
 462out_put:
 463	fscrypt_put_master_key(mk);
 464	return err;
 465}
 466
 467#define KEY_DEAD	1
 468
 469static int add_existing_master_key(struct fscrypt_master_key *mk,
 470				   struct fscrypt_master_key_secret *secret)
 471{
 472	int err;
 473
 474	/*
 475	 * If the current user is already in ->mk_users, then there's nothing to
 476	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
 477	 * applicable for v1 policy keys, which have NULL ->mk_users.)
 478	 */
 479	if (mk->mk_users) {
 480		struct key *mk_user = find_master_key_user(mk);
 481
 482		if (mk_user != ERR_PTR(-ENOKEY)) {
 483			if (IS_ERR(mk_user))
 484				return PTR_ERR(mk_user);
 485			key_put(mk_user);
 486			return 0;
 487		}
 488		err = add_master_key_user(mk);
 489		if (err)
 490			return err;
 491	}
 492
 493	/* If the key is incompletely removed, make it present again. */
 494	if (!mk->mk_present) {
 495		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
 496			/*
 497			 * Raced with the last active ref being dropped, so the
 498			 * key has become, or is about to become, "absent".
 499			 * Therefore, we need to allocate a new key struct.
 500			 */
 501			return KEY_DEAD;
 502		}
 503		move_master_key_secret(&mk->mk_secret, secret);
 504		WRITE_ONCE(mk->mk_present, true);
 505	}
 506
 507	return 0;
 508}
 509
 510static int do_add_master_key(struct super_block *sb,
 511			     struct fscrypt_master_key_secret *secret,
 512			     const struct fscrypt_key_specifier *mk_spec)
 513{
 514	static DEFINE_MUTEX(fscrypt_add_key_mutex);
 515	struct fscrypt_master_key *mk;
 516	int err;
 517
 518	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
 519
 520	mk = fscrypt_find_master_key(sb, mk_spec);
 521	if (!mk) {
 522		/* Didn't find the key in ->s_master_keys.  Add it. */
 523		err = allocate_filesystem_keyring(sb);
 524		if (!err)
 525			err = add_new_master_key(sb, secret, mk_spec);
 526	} else {
 527		/*
 528		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
 529		 * if needed, and make the key "present" again if possible.
 530		 */
 531		down_write(&mk->mk_sem);
 532		err = add_existing_master_key(mk, secret);
 533		up_write(&mk->mk_sem);
 534		if (err == KEY_DEAD) {
 535			/*
 536			 * We found a key struct, but it's already been fully
 537			 * removed.  Ignore the old struct and add a new one.
 538			 * fscrypt_add_key_mutex means we don't need to worry
 539			 * about concurrent adds.
 540			 */
 541			err = add_new_master_key(sb, secret, mk_spec);
 542		}
 543		fscrypt_put_master_key(mk);
 544	}
 545	mutex_unlock(&fscrypt_add_key_mutex);
 546	return err;
 547}
 548
 549static int add_master_key(struct super_block *sb,
 550			  struct fscrypt_master_key_secret *secret,
 551			  struct fscrypt_key_specifier *key_spec)
 552{
 553	int err;
 554
 555	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 556		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
 557					secret->size);
 558		if (err)
 559			return err;
 560
 561		/*
 562		 * Now that the HKDF context is initialized, the raw key is no
 563		 * longer needed.
 564		 */
 565		memzero_explicit(secret->raw, secret->size);
 566
 567		/* Calculate the key identifier */
 568		err = fscrypt_hkdf_expand(&secret->hkdf,
 569					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
 570					  key_spec->u.identifier,
 571					  FSCRYPT_KEY_IDENTIFIER_SIZE);
 572		if (err)
 573			return err;
 574	}
 575	return do_add_master_key(sb, secret, key_spec);
 576}
 577
 578static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
 579{
 580	const struct fscrypt_provisioning_key_payload *payload = prep->data;
 581
 582	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
 583	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
 584		return -EINVAL;
 585
 586	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 587	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
 588		return -EINVAL;
 589
 590	if (payload->__reserved)
 591		return -EINVAL;
 592
 593	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
 594	if (!prep->payload.data[0])
 595		return -ENOMEM;
 596
 597	prep->quotalen = prep->datalen;
 598	return 0;
 599}
 600
 601static void fscrypt_provisioning_key_free_preparse(
 602					struct key_preparsed_payload *prep)
 603{
 604	kfree_sensitive(prep->payload.data[0]);
 605}
 606
 607static void fscrypt_provisioning_key_describe(const struct key *key,
 608					      struct seq_file *m)
 609{
 610	seq_puts(m, key->description);
 611	if (key_is_positive(key)) {
 612		const struct fscrypt_provisioning_key_payload *payload =
 613			key->payload.data[0];
 614
 615		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
 616	}
 617}
 618
 619static void fscrypt_provisioning_key_destroy(struct key *key)
 620{
 621	kfree_sensitive(key->payload.data[0]);
 622}
 623
 624static struct key_type key_type_fscrypt_provisioning = {
 625	.name			= "fscrypt-provisioning",
 626	.preparse		= fscrypt_provisioning_key_preparse,
 627	.free_preparse		= fscrypt_provisioning_key_free_preparse,
 628	.instantiate		= generic_key_instantiate,
 629	.describe		= fscrypt_provisioning_key_describe,
 630	.destroy		= fscrypt_provisioning_key_destroy,
 631};
 632
 633/*
 634 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
 635 * store it into 'secret'.
 636 *
 637 * The key must be of type "fscrypt-provisioning" and must have the field
 638 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
 639 * only usable with fscrypt with the particular KDF version identified by
 640 * 'type'.  We don't use the "logon" key type because there's no way to
 641 * completely restrict the use of such keys; they can be used by any kernel API
 642 * that accepts "logon" keys and doesn't require a specific service prefix.
 643 *
 644 * The ability to specify the key via Linux keyring key is intended for cases
 645 * where userspace needs to re-add keys after the filesystem is unmounted and
 646 * re-mounted.  Most users should just provide the raw key directly instead.
 647 */
 648static int get_keyring_key(u32 key_id, u32 type,
 649			   struct fscrypt_master_key_secret *secret)
 650{
 651	key_ref_t ref;
 652	struct key *key;
 653	const struct fscrypt_provisioning_key_payload *payload;
 654	int err;
 655
 656	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
 657	if (IS_ERR(ref))
 658		return PTR_ERR(ref);
 659	key = key_ref_to_ptr(ref);
 660
 661	if (key->type != &key_type_fscrypt_provisioning)
 662		goto bad_key;
 663	payload = key->payload.data[0];
 664
 665	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
 666	if (payload->type != type)
 667		goto bad_key;
 668
 669	secret->size = key->datalen - sizeof(*payload);
 670	memcpy(secret->raw, payload->raw, secret->size);
 671	err = 0;
 672	goto out_put;
 673
 674bad_key:
 675	err = -EKEYREJECTED;
 676out_put:
 677	key_ref_put(ref);
 678	return err;
 679}
 680
 681/*
 682 * Add a master encryption key to the filesystem, causing all files which were
 683 * encrypted with it to appear "unlocked" (decrypted) when accessed.
 684 *
 685 * When adding a key for use by v1 encryption policies, this ioctl is
 686 * privileged, and userspace must provide the 'key_descriptor'.
 687 *
 688 * When adding a key for use by v2+ encryption policies, this ioctl is
 689 * unprivileged.  This is needed, in general, to allow non-root users to use
 690 * encryption without encountering the visibility problems of process-subscribed
 691 * keyrings and the inability to properly remove keys.  This works by having
 692 * each key identified by its cryptographically secure hash --- the
 693 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
 694 * cannot add the wrong key for a given identifier.  Furthermore, each added key
 695 * is charged to the appropriate user's quota for the keyrings service, which
 696 * prevents a malicious user from adding too many keys.  Finally, we forbid a
 697 * user from removing a key while other users have added it too, which prevents
 698 * a user who knows another user's key from causing a denial-of-service by
 699 * removing it at an inopportune time.  (We tolerate that a user who knows a key
 700 * can prevent other users from removing it.)
 701 *
 702 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
 703 * Documentation/filesystems/fscrypt.rst.
 704 */
 705int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
 706{
 707	struct super_block *sb = file_inode(filp)->i_sb;
 708	struct fscrypt_add_key_arg __user *uarg = _uarg;
 709	struct fscrypt_add_key_arg arg;
 710	struct fscrypt_master_key_secret secret;
 711	int err;
 712
 713	if (copy_from_user(&arg, uarg, sizeof(arg)))
 714		return -EFAULT;
 715
 716	if (!valid_key_spec(&arg.key_spec))
 717		return -EINVAL;
 718
 719	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 720		return -EINVAL;
 721
 722	/*
 723	 * Only root can add keys that are identified by an arbitrary descriptor
 724	 * rather than by a cryptographic hash --- since otherwise a malicious
 725	 * user could add the wrong key.
 726	 */
 727	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 728	    !capable(CAP_SYS_ADMIN))
 729		return -EACCES;
 730
 731	memset(&secret, 0, sizeof(secret));
 732	if (arg.key_id) {
 733		if (arg.raw_size != 0)
 734			return -EINVAL;
 735		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
 736		if (err)
 737			goto out_wipe_secret;
 738	} else {
 739		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
 740		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
 741			return -EINVAL;
 742		secret.size = arg.raw_size;
 743		err = -EFAULT;
 744		if (copy_from_user(secret.raw, uarg->raw, secret.size))
 745			goto out_wipe_secret;
 746	}
 747
 748	err = add_master_key(sb, &secret, &arg.key_spec);
 749	if (err)
 750		goto out_wipe_secret;
 751
 752	/* Return the key identifier to userspace, if applicable */
 753	err = -EFAULT;
 754	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 755	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
 756			 FSCRYPT_KEY_IDENTIFIER_SIZE))
 757		goto out_wipe_secret;
 758	err = 0;
 759out_wipe_secret:
 760	wipe_master_key_secret(&secret);
 761	return err;
 762}
 763EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
 764
 765static void
 766fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
 767{
 768	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
 769
 770	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
 771
 772	memset(secret, 0, sizeof(*secret));
 773	secret->size = FSCRYPT_MAX_KEY_SIZE;
 774	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
 775}
 776
 777int fscrypt_get_test_dummy_key_identifier(
 778				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 779{
 780	struct fscrypt_master_key_secret secret;
 781	int err;
 782
 783	fscrypt_get_test_dummy_secret(&secret);
 784
 785	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
 786	if (err)
 787		goto out;
 788	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
 789				  NULL, 0, key_identifier,
 790				  FSCRYPT_KEY_IDENTIFIER_SIZE);
 791out:
 792	wipe_master_key_secret(&secret);
 793	return err;
 794}
 795
 796/**
 797 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
 798 * @sb: the filesystem instance to add the key to
 799 * @key_spec: the key specifier of the test dummy encryption key
 800 *
 801 * Add the key for the test_dummy_encryption mount option to the filesystem.  To
 802 * prevent misuse of this mount option, a per-boot random key is used instead of
 803 * a hardcoded one.  This makes it so that any encrypted files created using
 804 * this option won't be accessible after a reboot.
 805 *
 806 * Return: 0 on success, -errno on failure
 807 */
 808int fscrypt_add_test_dummy_key(struct super_block *sb,
 809			       struct fscrypt_key_specifier *key_spec)
 810{
 811	struct fscrypt_master_key_secret secret;
 812	int err;
 813
 814	fscrypt_get_test_dummy_secret(&secret);
 815	err = add_master_key(sb, &secret, key_spec);
 816	wipe_master_key_secret(&secret);
 817	return err;
 818}
 819
 820/*
 821 * Verify that the current user has added a master key with the given identifier
 822 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
 823 * their files using some other user's key which they don't actually know.
 824 * Cryptographically this isn't much of a problem, but the semantics of this
 825 * would be a bit weird, so it's best to just forbid it.
 826 *
 827 * The system administrator (CAP_FOWNER) can override this, which should be
 828 * enough for any use cases where encryption policies are being set using keys
 829 * that were chosen ahead of time but aren't available at the moment.
 830 *
 831 * Note that the key may have already removed by the time this returns, but
 832 * that's okay; we just care whether the key was there at some point.
 833 *
 834 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
 835 */
 836int fscrypt_verify_key_added(struct super_block *sb,
 837			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 838{
 839	struct fscrypt_key_specifier mk_spec;
 840	struct fscrypt_master_key *mk;
 841	struct key *mk_user;
 842	int err;
 843
 844	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 845	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
 846
 847	mk = fscrypt_find_master_key(sb, &mk_spec);
 848	if (!mk) {
 849		err = -ENOKEY;
 850		goto out;
 851	}
 852	down_read(&mk->mk_sem);
 853	mk_user = find_master_key_user(mk);
 854	if (IS_ERR(mk_user)) {
 855		err = PTR_ERR(mk_user);
 856	} else {
 857		key_put(mk_user);
 858		err = 0;
 859	}
 860	up_read(&mk->mk_sem);
 861	fscrypt_put_master_key(mk);
 862out:
 863	if (err == -ENOKEY && capable(CAP_FOWNER))
 864		err = 0;
 865	return err;
 866}
 867
 868/*
 869 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
 870 * directory, then it can have at most one dentry; however, that dentry may be
 871 * pinned by child dentries, so first try to evict the children too.
 872 */
 873static void shrink_dcache_inode(struct inode *inode)
 874{
 875	struct dentry *dentry;
 876
 877	if (S_ISDIR(inode->i_mode)) {
 878		dentry = d_find_any_alias(inode);
 879		if (dentry) {
 880			shrink_dcache_parent(dentry);
 881			dput(dentry);
 882		}
 883	}
 884	d_prune_aliases(inode);
 885}
 886
 887static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 888{
 889	struct fscrypt_inode_info *ci;
 890	struct inode *inode;
 891	struct inode *toput_inode = NULL;
 892
 893	spin_lock(&mk->mk_decrypted_inodes_lock);
 894
 895	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
 896		inode = ci->ci_inode;
 897		spin_lock(&inode->i_lock);
 898		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
 899			spin_unlock(&inode->i_lock);
 900			continue;
 901		}
 902		__iget(inode);
 903		spin_unlock(&inode->i_lock);
 904		spin_unlock(&mk->mk_decrypted_inodes_lock);
 905
 906		shrink_dcache_inode(inode);
 907		iput(toput_inode);
 908		toput_inode = inode;
 909
 910		spin_lock(&mk->mk_decrypted_inodes_lock);
 911	}
 912
 913	spin_unlock(&mk->mk_decrypted_inodes_lock);
 914	iput(toput_inode);
 915}
 916
 917static int check_for_busy_inodes(struct super_block *sb,
 918				 struct fscrypt_master_key *mk)
 919{
 920	struct list_head *pos;
 921	size_t busy_count = 0;
 922	unsigned long ino;
 923	char ino_str[50] = "";
 924
 925	spin_lock(&mk->mk_decrypted_inodes_lock);
 926
 927	list_for_each(pos, &mk->mk_decrypted_inodes)
 928		busy_count++;
 929
 930	if (busy_count == 0) {
 931		spin_unlock(&mk->mk_decrypted_inodes_lock);
 932		return 0;
 933	}
 934
 935	{
 936		/* select an example file to show for debugging purposes */
 937		struct inode *inode =
 938			list_first_entry(&mk->mk_decrypted_inodes,
 939					 struct fscrypt_inode_info,
 940					 ci_master_key_link)->ci_inode;
 941		ino = inode->i_ino;
 942	}
 943	spin_unlock(&mk->mk_decrypted_inodes_lock);
 944
 945	/* If the inode is currently being created, ino may still be 0. */
 946	if (ino)
 947		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 948
 949	fscrypt_warn(NULL,
 950		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
 951		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
 952		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
 953		     ino_str);
 954	return -EBUSY;
 955}
 956
 957static int try_to_lock_encrypted_files(struct super_block *sb,
 958				       struct fscrypt_master_key *mk)
 959{
 960	int err1;
 961	int err2;
 962
 963	/*
 964	 * An inode can't be evicted while it is dirty or has dirty pages.
 965	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
 966	 *
 967	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
 968	 * it works, and it's more important to minimize the amount of caches we
 969	 * drop than the amount of data we sync.  Also, unprivileged users can
 970	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
 971	 */
 972	down_read(&sb->s_umount);
 973	err1 = sync_filesystem(sb);
 974	up_read(&sb->s_umount);
 975	/* If a sync error occurs, still try to evict as much as possible. */
 976
 977	/*
 978	 * Inodes are pinned by their dentries, so we have to evict their
 979	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
 980	 * and inappropriate for use by unprivileged users.  So instead go
 981	 * through the inodes' alias lists and try to evict each dentry.
 982	 */
 983	evict_dentries_for_decrypted_inodes(mk);
 984
 985	/*
 986	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
 987	 * the list; any inodes for which that dropped the last reference will
 988	 * have been evicted due to fscrypt_drop_inode() detecting the key
 989	 * removal and telling the VFS to evict the inode.  So to finish, we
 990	 * just need to check whether any inodes couldn't be evicted.
 991	 */
 992	err2 = check_for_busy_inodes(sb, mk);
 993
 994	return err1 ?: err2;
 995}
 996
 997/*
 998 * Try to remove an fscrypt master encryption key.
 999 *
1000 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1001 * claim to the key, then removes the key itself if no other users have claims.
1002 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1003 * key itself.
1004 *
1005 * To "remove the key itself", first we transition the key to the "incompletely
1006 * removed" state, so that no more inodes can be unlocked with it.  Then we try
1007 * to evict all cached inodes that had been unlocked with the key.
1008 *
1009 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1010 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1011 * state where it tracks the list of remaining inodes.  Userspace can execute
1012 * the ioctl again later to retry eviction, or alternatively can re-add the key.
1013 *
1014 * For more details, see the "Removing keys" section of
1015 * Documentation/filesystems/fscrypt.rst.
1016 */
1017static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1018{
1019	struct super_block *sb = file_inode(filp)->i_sb;
1020	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1021	struct fscrypt_remove_key_arg arg;
1022	struct fscrypt_master_key *mk;
1023	u32 status_flags = 0;
1024	int err;
1025	bool inodes_remain;
1026
1027	if (copy_from_user(&arg, uarg, sizeof(arg)))
1028		return -EFAULT;
1029
1030	if (!valid_key_spec(&arg.key_spec))
1031		return -EINVAL;
1032
1033	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1034		return -EINVAL;
1035
1036	/*
1037	 * Only root can add and remove keys that are identified by an arbitrary
1038	 * descriptor rather than by a cryptographic hash.
1039	 */
1040	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1041	    !capable(CAP_SYS_ADMIN))
1042		return -EACCES;
1043
1044	/* Find the key being removed. */
1045	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1046	if (!mk)
1047		return -ENOKEY;
1048	down_write(&mk->mk_sem);
1049
1050	/* If relevant, remove current user's (or all users) claim to the key */
1051	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1052		if (all_users)
1053			err = keyring_clear(mk->mk_users);
1054		else
1055			err = remove_master_key_user(mk);
1056		if (err) {
1057			up_write(&mk->mk_sem);
1058			goto out_put_key;
1059		}
1060		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1061			/*
1062			 * Other users have still added the key too.  We removed
1063			 * the current user's claim to the key, but we still
1064			 * can't remove the key itself.
1065			 */
1066			status_flags |=
1067				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1068			err = 0;
1069			up_write(&mk->mk_sem);
1070			goto out_put_key;
1071		}
1072	}
1073
1074	/* No user claims remaining.  Initiate removal of the key. */
1075	err = -ENOKEY;
1076	if (mk->mk_present) {
1077		fscrypt_initiate_key_removal(sb, mk);
1078		err = 0;
1079	}
1080	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1081	up_write(&mk->mk_sem);
1082
1083	if (inodes_remain) {
1084		/* Some inodes still reference this key; try to evict them. */
1085		err = try_to_lock_encrypted_files(sb, mk);
1086		if (err == -EBUSY) {
1087			status_flags |=
1088				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1089			err = 0;
1090		}
1091	}
1092	/*
1093	 * We return 0 if we successfully did something: removed a claim to the
1094	 * key, initiated removal of the key, or tried locking the files again.
1095	 * Users need to check the informational status flags if they care
1096	 * whether the key has been fully removed including all files locked.
1097	 */
1098out_put_key:
1099	fscrypt_put_master_key(mk);
1100	if (err == 0)
1101		err = put_user(status_flags, &uarg->removal_status_flags);
1102	return err;
1103}
1104
1105int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1106{
1107	return do_remove_key(filp, uarg, false);
1108}
1109EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1110
1111int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1112{
1113	if (!capable(CAP_SYS_ADMIN))
1114		return -EACCES;
1115	return do_remove_key(filp, uarg, true);
1116}
1117EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1118
1119/*
1120 * Retrieve the status of an fscrypt master encryption key.
1121 *
1122 * We set ->status to indicate whether the key is absent, present, or
1123 * incompletely removed.  (For an explanation of what these statuses mean and
1124 * how they are represented internally, see struct fscrypt_master_key.)  This
1125 * field allows applications to easily determine the status of an encrypted
1126 * directory without using a hack such as trying to open a regular file in it
1127 * (which can confuse the "incompletely removed" status with absent or present).
1128 *
1129 * In addition, for v2 policy keys we allow applications to determine, via
1130 * ->status_flags and ->user_count, whether the key has been added by the
1131 * current user, by other users, or by both.  Most applications should not need
1132 * this, since ordinarily only one user should know a given key.  However, if a
1133 * secret key is shared by multiple users, applications may wish to add an
1134 * already-present key to prevent other users from removing it.  This ioctl can
1135 * be used to check whether that really is the case before the work is done to
1136 * add the key --- which might e.g. require prompting the user for a passphrase.
1137 *
1138 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1139 * Documentation/filesystems/fscrypt.rst.
1140 */
1141int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1142{
1143	struct super_block *sb = file_inode(filp)->i_sb;
1144	struct fscrypt_get_key_status_arg arg;
1145	struct fscrypt_master_key *mk;
1146	int err;
1147
1148	if (copy_from_user(&arg, uarg, sizeof(arg)))
1149		return -EFAULT;
1150
1151	if (!valid_key_spec(&arg.key_spec))
1152		return -EINVAL;
1153
1154	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1155		return -EINVAL;
1156
1157	arg.status_flags = 0;
1158	arg.user_count = 0;
1159	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1160
1161	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1162	if (!mk) {
1163		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1164		err = 0;
1165		goto out;
1166	}
1167	down_read(&mk->mk_sem);
1168
1169	if (!mk->mk_present) {
1170		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1171			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1172			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1173		err = 0;
1174		goto out_release_key;
1175	}
1176
1177	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1178	if (mk->mk_users) {
1179		struct key *mk_user;
1180
1181		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1182		mk_user = find_master_key_user(mk);
1183		if (!IS_ERR(mk_user)) {
1184			arg.status_flags |=
1185				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1186			key_put(mk_user);
1187		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1188			err = PTR_ERR(mk_user);
1189			goto out_release_key;
1190		}
1191	}
1192	err = 0;
1193out_release_key:
1194	up_read(&mk->mk_sem);
1195	fscrypt_put_master_key(mk);
1196out:
1197	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1198		err = -EFAULT;
1199	return err;
1200}
1201EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1202
1203int __init fscrypt_init_keyring(void)
1204{
1205	int err;
1206
1207	err = register_key_type(&key_type_fscrypt_user);
1208	if (err)
1209		return err;
1210
1211	err = register_key_type(&key_type_fscrypt_provisioning);
1212	if (err)
1213		goto err_unregister_fscrypt_user;
1214
1215	return 0;
1216
1217err_unregister_fscrypt_user:
1218	unregister_key_type(&key_type_fscrypt_user);
1219	return err;
1220}