Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   3 *     and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
   4 *  Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
   5 *
   6 *  Routines for control of EMU8000 chip
   7 *
   8 *   This program is free software; you can redistribute it and/or modify
   9 *   it under the terms of the GNU General Public License as published by
  10 *   the Free Software Foundation; either version 2 of the License, or
  11 *   (at your option) any later version.
  12 *
  13 *   This program is distributed in the hope that it will be useful,
  14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *   GNU General Public License for more details.
  17 *
  18 *   You should have received a copy of the GNU General Public License
  19 *   along with this program; if not, write to the Free Software
  20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  21 */
  22
  23#include <linux/wait.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/ioport.h>
  27#include <linux/export.h>
  28#include <linux/delay.h>
  29#include <linux/io.h>
  30#include <sound/core.h>
  31#include <sound/emu8000.h>
  32#include <sound/emu8000_reg.h>
  33#include <linux/uaccess.h>
  34#include <linux/init.h>
  35#include <sound/control.h>
  36#include <sound/initval.h>
  37
  38/*
  39 * emu8000 register controls
  40 */
  41
  42/*
  43 * The following routines read and write registers on the emu8000.  They
  44 * should always be called via the EMU8000*READ/WRITE macros and never
  45 * directly.  The macros handle the port number and command word.
  46 */
  47/* Write a word */
  48void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
  49{
  50	unsigned long flags;
  51	spin_lock_irqsave(&emu->reg_lock, flags);
  52	if (reg != emu->last_reg) {
  53		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  54		emu->last_reg = reg;
  55	}
  56	outw((unsigned short)val, port); /* Send data */
  57	spin_unlock_irqrestore(&emu->reg_lock, flags);
  58}
  59
  60/* Read a word */
  61unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
  62{
  63	unsigned short res;
  64	unsigned long flags;
  65	spin_lock_irqsave(&emu->reg_lock, flags);
  66	if (reg != emu->last_reg) {
  67		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  68		emu->last_reg = reg;
  69	}
  70	res = inw(port);	/* Read data */
  71	spin_unlock_irqrestore(&emu->reg_lock, flags);
  72	return res;
  73}
  74
  75/* Write a double word */
  76void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
  77{
  78	unsigned long flags;
  79	spin_lock_irqsave(&emu->reg_lock, flags);
  80	if (reg != emu->last_reg) {
  81		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  82		emu->last_reg = reg;
  83	}
  84	outw((unsigned short)val, port); /* Send low word of data */
  85	outw((unsigned short)(val>>16), port+2); /* Send high word of data */
  86	spin_unlock_irqrestore(&emu->reg_lock, flags);
  87}
  88
  89/* Read a double word */
  90unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
  91{
  92	unsigned short low;
  93	unsigned int res;
  94	unsigned long flags;
  95	spin_lock_irqsave(&emu->reg_lock, flags);
  96	if (reg != emu->last_reg) {
  97		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  98		emu->last_reg = reg;
  99	}
 100	low = inw(port);	/* Read low word of data */
 101	res = low + (inw(port+2) << 16);
 102	spin_unlock_irqrestore(&emu->reg_lock, flags);
 103	return res;
 104}
 105
 106/*
 107 * Set up / close a channel to be used for DMA.
 108 */
 109/*exported*/ void
 110snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
 111{
 112	unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
 113	mode &= EMU8000_RAM_MODE_MASK;
 114	if (mode == EMU8000_RAM_CLOSE) {
 115		EMU8000_CCCA_WRITE(emu, ch, 0);
 116		EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
 117		return;
 118	}
 119	EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
 120	EMU8000_VTFT_WRITE(emu, ch, 0);
 121	EMU8000_CVCF_WRITE(emu, ch, 0);
 122	EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
 123	EMU8000_CPF_WRITE(emu, ch, 0x40000000);
 124	EMU8000_PSST_WRITE(emu, ch, 0);
 125	EMU8000_CSL_WRITE(emu, ch, 0);
 126	if (mode == EMU8000_RAM_WRITE) /* DMA write */
 127		EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
 128	else	   /* DMA read */
 129		EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
 130}
 131
 132/*
 133 */
 134static void
 135snd_emu8000_read_wait(struct snd_emu8000 *emu)
 136{
 137	while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
 138		schedule_timeout_interruptible(1);
 139		if (signal_pending(current))
 140			break;
 141	}
 142}
 143
 144/*
 145 */
 146static void
 147snd_emu8000_write_wait(struct snd_emu8000 *emu)
 148{
 149	while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
 150		schedule_timeout_interruptible(1);
 151		if (signal_pending(current))
 152			break;
 153	}
 154}
 155
 156/*
 157 * detect a card at the given port
 158 */
 159static int
 160snd_emu8000_detect(struct snd_emu8000 *emu)
 161{
 162	/* Initialise */
 163	EMU8000_HWCF1_WRITE(emu, 0x0059);
 164	EMU8000_HWCF2_WRITE(emu, 0x0020);
 165	EMU8000_HWCF3_WRITE(emu, 0x0000);
 166	/* Check for a recognisable emu8000 */
 167	/*
 168	if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
 169		return -ENODEV;
 170		*/
 171	if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
 172		return -ENODEV;
 173	if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
 174		return -ENODEV;
 175
 176	snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
 177                    emu->port1);
 178	return 0;
 179}
 180
 181
 182/*
 183 * intiailize audio channels
 184 */
 185static void
 186init_audio(struct snd_emu8000 *emu)
 187{
 188	int ch;
 189
 190	/* turn off envelope engines */
 191	for (ch = 0; ch < EMU8000_CHANNELS; ch++)
 192		EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
 193  
 194	/* reset all other parameters to zero */
 195	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
 196		EMU8000_ENVVOL_WRITE(emu, ch, 0);
 197		EMU8000_ENVVAL_WRITE(emu, ch, 0);
 198		EMU8000_DCYSUS_WRITE(emu, ch, 0);
 199		EMU8000_ATKHLDV_WRITE(emu, ch, 0);
 200		EMU8000_LFO1VAL_WRITE(emu, ch, 0);
 201		EMU8000_ATKHLD_WRITE(emu, ch, 0);
 202		EMU8000_LFO2VAL_WRITE(emu, ch, 0);
 203		EMU8000_IP_WRITE(emu, ch, 0);
 204		EMU8000_IFATN_WRITE(emu, ch, 0);
 205		EMU8000_PEFE_WRITE(emu, ch, 0);
 206		EMU8000_FMMOD_WRITE(emu, ch, 0);
 207		EMU8000_TREMFRQ_WRITE(emu, ch, 0);
 208		EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
 209		EMU8000_PTRX_WRITE(emu, ch, 0);
 210		EMU8000_VTFT_WRITE(emu, ch, 0);
 211		EMU8000_PSST_WRITE(emu, ch, 0);
 212		EMU8000_CSL_WRITE(emu, ch, 0);
 213		EMU8000_CCCA_WRITE(emu, ch, 0);
 214	}
 215
 216	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
 217		EMU8000_CPF_WRITE(emu, ch, 0);
 218		EMU8000_CVCF_WRITE(emu, ch, 0);
 219	}
 220}
 221
 222
 223/*
 224 * initialize DMA address
 225 */
 226static void
 227init_dma(struct snd_emu8000 *emu)
 228{
 229	EMU8000_SMALR_WRITE(emu, 0);
 230	EMU8000_SMARR_WRITE(emu, 0);
 231	EMU8000_SMALW_WRITE(emu, 0);
 232	EMU8000_SMARW_WRITE(emu, 0);
 233}
 234
 235/*
 236 * initialization arrays; from ADIP
 237 */
 238static unsigned short init1[128] = {
 239	0x03ff, 0x0030,  0x07ff, 0x0130, 0x0bff, 0x0230,  0x0fff, 0x0330,
 240	0x13ff, 0x0430,  0x17ff, 0x0530, 0x1bff, 0x0630,  0x1fff, 0x0730,
 241	0x23ff, 0x0830,  0x27ff, 0x0930, 0x2bff, 0x0a30,  0x2fff, 0x0b30,
 242	0x33ff, 0x0c30,  0x37ff, 0x0d30, 0x3bff, 0x0e30,  0x3fff, 0x0f30,
 243
 244	0x43ff, 0x0030,  0x47ff, 0x0130, 0x4bff, 0x0230,  0x4fff, 0x0330,
 245	0x53ff, 0x0430,  0x57ff, 0x0530, 0x5bff, 0x0630,  0x5fff, 0x0730,
 246	0x63ff, 0x0830,  0x67ff, 0x0930, 0x6bff, 0x0a30,  0x6fff, 0x0b30,
 247	0x73ff, 0x0c30,  0x77ff, 0x0d30, 0x7bff, 0x0e30,  0x7fff, 0x0f30,
 248
 249	0x83ff, 0x0030,  0x87ff, 0x0130, 0x8bff, 0x0230,  0x8fff, 0x0330,
 250	0x93ff, 0x0430,  0x97ff, 0x0530, 0x9bff, 0x0630,  0x9fff, 0x0730,
 251	0xa3ff, 0x0830,  0xa7ff, 0x0930, 0xabff, 0x0a30,  0xafff, 0x0b30,
 252	0xb3ff, 0x0c30,  0xb7ff, 0x0d30, 0xbbff, 0x0e30,  0xbfff, 0x0f30,
 253
 254	0xc3ff, 0x0030,  0xc7ff, 0x0130, 0xcbff, 0x0230,  0xcfff, 0x0330,
 255	0xd3ff, 0x0430,  0xd7ff, 0x0530, 0xdbff, 0x0630,  0xdfff, 0x0730,
 256	0xe3ff, 0x0830,  0xe7ff, 0x0930, 0xebff, 0x0a30,  0xefff, 0x0b30,
 257	0xf3ff, 0x0c30,  0xf7ff, 0x0d30, 0xfbff, 0x0e30,  0xffff, 0x0f30,
 258};
 259
 260static unsigned short init2[128] = {
 261	0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
 262	0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
 263	0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
 264	0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
 265
 266	0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
 267	0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
 268	0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
 269	0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
 270
 271	0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
 272	0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
 273	0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
 274	0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
 275
 276	0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
 277	0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
 278	0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
 279	0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
 280};
 281
 282static unsigned short init3[128] = {
 283	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
 284	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
 285	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
 286	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
 287
 288	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
 289	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
 290	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
 291	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
 292
 293	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
 294	0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
 295	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
 296	0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
 297
 298	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
 299	0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
 300	0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
 301	0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
 302};
 303
 304static unsigned short init4[128] = {
 305	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
 306	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
 307	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
 308	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
 309
 310	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
 311	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
 312	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
 313	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
 314
 315	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
 316	0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
 317	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
 318	0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
 319
 320	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
 321	0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
 322	0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
 323	0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
 324};
 325
 326/* send an initialization array
 327 * Taken from the oss driver, not obvious from the doc how this
 328 * is meant to work
 329 */
 330static void
 331send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
 332{
 333	int i;
 334	unsigned short *p;
 335
 336	p = data;
 337	for (i = 0; i < size; i++, p++)
 338		EMU8000_INIT1_WRITE(emu, i, *p);
 339	for (i = 0; i < size; i++, p++)
 340		EMU8000_INIT2_WRITE(emu, i, *p);
 341	for (i = 0; i < size; i++, p++)
 342		EMU8000_INIT3_WRITE(emu, i, *p);
 343	for (i = 0; i < size; i++, p++)
 344		EMU8000_INIT4_WRITE(emu, i, *p);
 345}
 346
 347
 348/*
 349 * Send initialization arrays to start up, this just follows the
 350 * initialisation sequence in the adip.
 351 */
 352static void
 353init_arrays(struct snd_emu8000 *emu)
 354{
 355	send_array(emu, init1, ARRAY_SIZE(init1)/4);
 356
 357	msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
 358	send_array(emu, init2, ARRAY_SIZE(init2)/4);
 359	send_array(emu, init3, ARRAY_SIZE(init3)/4);
 360
 361	EMU8000_HWCF4_WRITE(emu, 0);
 362	EMU8000_HWCF5_WRITE(emu, 0x83);
 363	EMU8000_HWCF6_WRITE(emu, 0x8000);
 364
 365	send_array(emu, init4, ARRAY_SIZE(init4)/4);
 366}
 367
 368
 369#define UNIQUE_ID1	0xa5b9
 370#define UNIQUE_ID2	0x9d53
 371
 372/*
 373 * Size the onboard memory.
 374 * This is written so as not to need arbitrary delays after the write. It
 375 * seems that the only way to do this is to use the one channel and keep
 376 * reallocating between read and write.
 377 */
 378static void
 379size_dram(struct snd_emu8000 *emu)
 380{
 381	int i, size;
 382
 383	if (emu->dram_checked)
 384		return;
 385
 386	size = 0;
 387
 388	/* write out a magic number */
 389	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
 390	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
 391	EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
 392	EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
 393	snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
 394	snd_emu8000_write_wait(emu);
 395
 396	/*
 397	 * Detect first 512 KiB.  If a write succeeds at the beginning of a
 398	 * 512 KiB page we assume that the whole page is there.
 399	 */
 400	EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
 401	EMU8000_SMLD_READ(emu); /* discard stale data  */
 402	if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
 403		goto skip_detect;   /* No RAM */
 404	snd_emu8000_read_wait(emu);
 405
 406	for (size = 512 * 1024; size < EMU8000_MAX_DRAM; size += 512 * 1024) {
 407
 408		/* Write a unique data on the test address.
 409		 * if the address is out of range, the data is written on
 410		 * 0x200000(=EMU8000_DRAM_OFFSET).  Then the id word is
 411		 * changed by this data.
 412		 */
 413		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
 414		EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
 415		EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
 416		snd_emu8000_write_wait(emu);
 417
 418		/*
 419		 * read the data on the just written DRAM address
 420		 * if not the same then we have reached the end of ram.
 421		 */
 422		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
 423		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
 424		/*snd_emu8000_read_wait(emu);*/
 425		EMU8000_SMLD_READ(emu); /* discard stale data  */
 426		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
 427			break; /* no memory at this address */
 428		snd_emu8000_read_wait(emu);
 429
 430		/*
 431		 * If it is the same it could be that the address just
 432		 * wraps back to the beginning; so check to see if the
 433		 * initial value has been overwritten.
 434		 */
 435		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
 436		EMU8000_SMLD_READ(emu); /* discard stale data  */
 437		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
 438			break; /* we must have wrapped around */
 439		snd_emu8000_read_wait(emu);
 440
 441		/* Otherwise, it's valid memory. */
 442	}
 443
 444skip_detect:
 445	/* wait until FULL bit in SMAxW register is false */
 446	for (i = 0; i < 10000; i++) {
 447		if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
 448			break;
 449		schedule_timeout_interruptible(1);
 450		if (signal_pending(current))
 451			break;
 452	}
 453	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
 454	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
 455
 456	pr_info("EMU8000 [0x%lx]: %d KiB on-board DRAM detected\n",
 457		    emu->port1, size/1024);
 458
 459	emu->mem_size = size;
 460	emu->dram_checked = 1;
 461}
 462
 463
 464/*
 465 * Initiailise the FM section.  You have to do this to use sample RAM
 466 * and therefore lose 2 voices.
 467 */
 468/*exported*/ void
 469snd_emu8000_init_fm(struct snd_emu8000 *emu)
 470{
 471	unsigned long flags;
 472
 473	/* Initialize the last two channels for DRAM refresh and producing
 474	   the reverb and chorus effects for Yamaha OPL-3 synthesizer */
 475
 476	/* 31: FM left channel, 0xffffe0-0xffffe8 */
 477	EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
 478	EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
 479	EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
 480	EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
 481	EMU8000_CPF_WRITE(emu, 30, 0);
 482	EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
 483
 484	/* 32: FM right channel, 0xfffff0-0xfffff8 */
 485	EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
 486	EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
 487	EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
 488	EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
 489	EMU8000_CPF_WRITE(emu, 31, 0x8000);
 490	EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
 491
 492	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
 493
 494	spin_lock_irqsave(&emu->reg_lock, flags);
 495	while (!(inw(EMU8000_PTR(emu)) & 0x1000))
 496		;
 497	while ((inw(EMU8000_PTR(emu)) & 0x1000))
 498		;
 499	spin_unlock_irqrestore(&emu->reg_lock, flags);
 500	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
 501	/* this is really odd part.. */
 502	outb(0x3C, EMU8000_PTR(emu));
 503	outb(0, EMU8000_DATA1(emu));
 504
 505	/* skew volume & cutoff */
 506	EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
 507	EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
 508}
 509
 510
 511/*
 512 * The main initialization routine.
 513 */
 514static void
 515snd_emu8000_init_hw(struct snd_emu8000 *emu)
 516{
 517	int i;
 518
 519	emu->last_reg = 0xffff; /* reset the last register index */
 520
 521	/* initialize hardware configuration */
 522	EMU8000_HWCF1_WRITE(emu, 0x0059);
 523	EMU8000_HWCF2_WRITE(emu, 0x0020);
 524
 525	/* disable audio; this seems to reduce a clicking noise a bit.. */
 526	EMU8000_HWCF3_WRITE(emu, 0);
 527
 528	/* initialize audio channels */
 529	init_audio(emu);
 530
 531	/* initialize DMA */
 532	init_dma(emu);
 533
 534	/* initialize init arrays */
 535	init_arrays(emu);
 536
 537	/*
 538	 * Initialize the FM section of the AWE32, this is needed
 539	 * for DRAM refresh as well
 540	 */
 541	snd_emu8000_init_fm(emu);
 542
 543	/* terminate all voices */
 544	for (i = 0; i < EMU8000_DRAM_VOICES; i++)
 545		EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
 546	
 547	/* check DRAM memory size */
 548	size_dram(emu);
 549
 550	/* enable audio */
 551	EMU8000_HWCF3_WRITE(emu, 0x4);
 552
 553	/* set equzlier, chorus and reverb modes */
 554	snd_emu8000_update_equalizer(emu);
 555	snd_emu8000_update_chorus_mode(emu);
 556	snd_emu8000_update_reverb_mode(emu);
 557}
 558
 559
 560/*----------------------------------------------------------------
 561 * Bass/Treble Equalizer
 562 *----------------------------------------------------------------*/
 563
 564static unsigned short bass_parm[12][3] = {
 565	{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
 566	{0xD25B, 0xD35B, 0x0000}, /*  -8 */
 567	{0xD24C, 0xD34C, 0x0000}, /*  -6 */
 568	{0xD23D, 0xD33D, 0x0000}, /*  -4 */
 569	{0xD21F, 0xD31F, 0x0000}, /*  -2 */
 570	{0xC208, 0xC308, 0x0001}, /*   0 (HW default) */
 571	{0xC219, 0xC319, 0x0001}, /*  +2 */
 572	{0xC22A, 0xC32A, 0x0001}, /*  +4 */
 573	{0xC24C, 0xC34C, 0x0001}, /*  +6 */
 574	{0xC26E, 0xC36E, 0x0001}, /*  +8 */
 575	{0xC248, 0xC384, 0x0002}, /* +10 */
 576	{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
 577};
 578
 579static unsigned short treble_parm[12][9] = {
 580	{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
 581	{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 582	{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 583	{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 584	{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 585	{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
 586	{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
 587	{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
 588	{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
 589	{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
 590	{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
 591	{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}  /* +12 dB */
 592};
 593
 594
 595/*
 596 * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
 597 */
 598/*exported*/ void
 599snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
 600{
 601	unsigned short w;
 602	int bass = emu->bass_level;
 603	int treble = emu->treble_level;
 604
 605	if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
 606		return;
 607	EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
 608	EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
 609	EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
 610	EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
 611	EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
 612	EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
 613	EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
 614	EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
 615	EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
 616	EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
 617	w = bass_parm[bass][2] + treble_parm[treble][8];
 618	EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
 619	EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
 620}
 621
 622
 623/*----------------------------------------------------------------
 624 * Chorus mode control
 625 *----------------------------------------------------------------*/
 626
 627/*
 628 * chorus mode parameters
 629 */
 630#define SNDRV_EMU8000_CHORUS_1		0
 631#define	SNDRV_EMU8000_CHORUS_2		1
 632#define	SNDRV_EMU8000_CHORUS_3		2
 633#define	SNDRV_EMU8000_CHORUS_4		3
 634#define	SNDRV_EMU8000_CHORUS_FEEDBACK	4
 635#define	SNDRV_EMU8000_CHORUS_FLANGER	5
 636#define	SNDRV_EMU8000_CHORUS_SHORTDELAY	6
 637#define	SNDRV_EMU8000_CHORUS_SHORTDELAY2	7
 638#define SNDRV_EMU8000_CHORUS_PREDEFINED	8
 639/* user can define chorus modes up to 32 */
 640#define SNDRV_EMU8000_CHORUS_NUMBERS	32
 641
 642struct soundfont_chorus_fx {
 643	unsigned short feedback;	/* feedback level (0xE600-0xE6FF) */
 644	unsigned short delay_offset;	/* delay (0-0x0DA3) [1/44100 sec] */
 645	unsigned short lfo_depth;	/* LFO depth (0xBC00-0xBCFF) */
 646	unsigned int delay;	/* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
 647	unsigned int lfo_freq;		/* LFO freq LFO freq (0-0xFFFFFFFF) */
 648};
 649
 650/* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
 651static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
 652static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
 653	{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
 654	{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
 655	{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
 656	{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
 657	{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
 658	{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
 659	{0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
 660	{0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
 661};
 662
 663/*exported*/ int
 664snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
 665{
 666	struct soundfont_chorus_fx rec;
 667	if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
 668		snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
 669		return -EINVAL;
 670	}
 671	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
 672		return -EFAULT;
 673	chorus_parm[mode] = rec;
 674	chorus_defined[mode] = 1;
 675	return 0;
 676}
 677
 678/*exported*/ void
 679snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
 680{
 681	int effect = emu->chorus_mode;
 682	if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
 683	    (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
 684		return;
 685	EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
 686	EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
 687	EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
 688	EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
 689	EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
 690	EMU8000_HWCF6_WRITE(emu, 0x8000);
 691	EMU8000_HWCF7_WRITE(emu, 0x0000);
 692}
 693
 694/*----------------------------------------------------------------
 695 * Reverb mode control
 696 *----------------------------------------------------------------*/
 697
 698/*
 699 * reverb mode parameters
 700 */
 701#define	SNDRV_EMU8000_REVERB_ROOM1	0
 702#define SNDRV_EMU8000_REVERB_ROOM2	1
 703#define	SNDRV_EMU8000_REVERB_ROOM3	2
 704#define	SNDRV_EMU8000_REVERB_HALL1	3
 705#define	SNDRV_EMU8000_REVERB_HALL2	4
 706#define	SNDRV_EMU8000_REVERB_PLATE	5
 707#define	SNDRV_EMU8000_REVERB_DELAY	6
 708#define	SNDRV_EMU8000_REVERB_PANNINGDELAY 7
 709#define SNDRV_EMU8000_REVERB_PREDEFINED	8
 710/* user can define reverb modes up to 32 */
 711#define SNDRV_EMU8000_REVERB_NUMBERS	32
 712
 713struct soundfont_reverb_fx {
 714	unsigned short parms[28];
 715};
 716
 717/* reverb mode settings; write the following 28 data of 16 bit length
 718 *   on the corresponding ports in the reverb_cmds array
 719 */
 720static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
 721static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
 722{{  /* room 1 */
 723	0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
 724	0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
 725	0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 726	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 727}},
 728{{  /* room 2 */
 729	0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
 730	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
 731	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 732	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 733}},
 734{{  /* room 3 */
 735	0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
 736	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
 737	0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
 738	0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
 739}},
 740{{  /* hall 1 */
 741	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
 742	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
 743	0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
 744	0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
 745}},
 746{{  /* hall 2 */
 747	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
 748	0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
 749	0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 750	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 751}},
 752{{  /* plate */
 753	0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
 754	0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
 755	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 756	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 757}},
 758{{  /* delay */
 759	0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
 760	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
 761	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
 762	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
 763}},
 764{{  /* panning delay */
 765	0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
 766	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
 767	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
 768	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
 769}},
 770};
 771
 772enum { DATA1, DATA2 };
 773#define AWE_INIT1(c)	EMU8000_CMD(2,c), DATA1
 774#define AWE_INIT2(c)	EMU8000_CMD(2,c), DATA2
 775#define AWE_INIT3(c)	EMU8000_CMD(3,c), DATA1
 776#define AWE_INIT4(c)	EMU8000_CMD(3,c), DATA2
 777
 778static struct reverb_cmd_pair {
 779	unsigned short cmd, port;
 780} reverb_cmds[28] = {
 781  {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
 782  {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
 783  {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
 784  {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
 785  {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
 786  {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
 787  {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
 788};
 789
 790/*exported*/ int
 791snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
 792{
 793	struct soundfont_reverb_fx rec;
 794
 795	if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
 796		snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
 797		return -EINVAL;
 798	}
 799	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
 800		return -EFAULT;
 801	reverb_parm[mode] = rec;
 802	reverb_defined[mode] = 1;
 803	return 0;
 804}
 805
 806/*exported*/ void
 807snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
 808{
 809	int effect = emu->reverb_mode;
 810	int i;
 811
 812	if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
 813	    (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
 814		return;
 815	for (i = 0; i < 28; i++) {
 816		int port;
 817		if (reverb_cmds[i].port == DATA1)
 818			port = EMU8000_DATA1(emu);
 819		else
 820			port = EMU8000_DATA2(emu);
 821		snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
 822	}
 823}
 824
 825
 826/*----------------------------------------------------------------
 827 * mixer interface
 828 *----------------------------------------------------------------*/
 829
 830/*
 831 * bass/treble
 832 */
 833static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 834{
 835	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 836	uinfo->count = 1;
 837	uinfo->value.integer.min = 0;
 838	uinfo->value.integer.max = 11;
 839	return 0;
 840}
 841
 842static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 843{
 844	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 845	
 846	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
 847	return 0;
 848}
 849
 850static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 851{
 852	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 853	unsigned long flags;
 854	int change;
 855	unsigned short val1;
 856	
 857	val1 = ucontrol->value.integer.value[0] % 12;
 858	spin_lock_irqsave(&emu->control_lock, flags);
 859	if (kcontrol->private_value) {
 860		change = val1 != emu->treble_level;
 861		emu->treble_level = val1;
 862	} else {
 863		change = val1 != emu->bass_level;
 864		emu->bass_level = val1;
 865	}
 866	spin_unlock_irqrestore(&emu->control_lock, flags);
 867	snd_emu8000_update_equalizer(emu);
 868	return change;
 869}
 870
 871static struct snd_kcontrol_new mixer_bass_control =
 872{
 873	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 874	.name = "Synth Tone Control - Bass",
 875	.info = mixer_bass_treble_info,
 876	.get = mixer_bass_treble_get,
 877	.put = mixer_bass_treble_put,
 878	.private_value = 0,
 879};
 880
 881static struct snd_kcontrol_new mixer_treble_control =
 882{
 883	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 884	.name = "Synth Tone Control - Treble",
 885	.info = mixer_bass_treble_info,
 886	.get = mixer_bass_treble_get,
 887	.put = mixer_bass_treble_put,
 888	.private_value = 1,
 889};
 890
 891/*
 892 * chorus/reverb mode
 893 */
 894static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 895{
 896	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 897	uinfo->count = 1;
 898	uinfo->value.integer.min = 0;
 899	uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
 900	return 0;
 901}
 902
 903static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 904{
 905	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 906	
 907	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
 908	return 0;
 909}
 910
 911static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 912{
 913	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 914	unsigned long flags;
 915	int change;
 916	unsigned short val1;
 917	
 918	spin_lock_irqsave(&emu->control_lock, flags);
 919	if (kcontrol->private_value) {
 920		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
 921		change = val1 != emu->chorus_mode;
 922		emu->chorus_mode = val1;
 923	} else {
 924		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
 925		change = val1 != emu->reverb_mode;
 926		emu->reverb_mode = val1;
 927	}
 928	spin_unlock_irqrestore(&emu->control_lock, flags);
 929	if (change) {
 930		if (kcontrol->private_value)
 931			snd_emu8000_update_chorus_mode(emu);
 932		else
 933			snd_emu8000_update_reverb_mode(emu);
 934	}
 935	return change;
 936}
 937
 938static struct snd_kcontrol_new mixer_chorus_mode_control =
 939{
 940	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 941	.name = "Chorus Mode",
 942	.info = mixer_chorus_reverb_info,
 943	.get = mixer_chorus_reverb_get,
 944	.put = mixer_chorus_reverb_put,
 945	.private_value = 1,
 946};
 947
 948static struct snd_kcontrol_new mixer_reverb_mode_control =
 949{
 950	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 951	.name = "Reverb Mode",
 952	.info = mixer_chorus_reverb_info,
 953	.get = mixer_chorus_reverb_get,
 954	.put = mixer_chorus_reverb_put,
 955	.private_value = 0,
 956};
 957
 958/*
 959 * FM OPL3 chorus/reverb depth
 960 */
 961static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 962{
 963	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 964	uinfo->count = 1;
 965	uinfo->value.integer.min = 0;
 966	uinfo->value.integer.max = 255;
 967	return 0;
 968}
 969
 970static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 971{
 972	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 973	
 974	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
 975	return 0;
 976}
 977
 978static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 979{
 980	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 981	unsigned long flags;
 982	int change;
 983	unsigned short val1;
 984	
 985	val1 = ucontrol->value.integer.value[0] % 256;
 986	spin_lock_irqsave(&emu->control_lock, flags);
 987	if (kcontrol->private_value) {
 988		change = val1 != emu->fm_chorus_depth;
 989		emu->fm_chorus_depth = val1;
 990	} else {
 991		change = val1 != emu->fm_reverb_depth;
 992		emu->fm_reverb_depth = val1;
 993	}
 994	spin_unlock_irqrestore(&emu->control_lock, flags);
 995	if (change)
 996		snd_emu8000_init_fm(emu);
 997	return change;
 998}
 999
1000static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
1001{
1002	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1003	.name = "FM Chorus Depth",
1004	.info = mixer_fm_depth_info,
1005	.get = mixer_fm_depth_get,
1006	.put = mixer_fm_depth_put,
1007	.private_value = 1,
1008};
1009
1010static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
1011{
1012	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1013	.name = "FM Reverb Depth",
1014	.info = mixer_fm_depth_info,
1015	.get = mixer_fm_depth_get,
1016	.put = mixer_fm_depth_put,
1017	.private_value = 0,
1018};
1019
1020
1021static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
1022	&mixer_bass_control,
1023	&mixer_treble_control,
1024	&mixer_chorus_mode_control,
1025	&mixer_reverb_mode_control,
1026	&mixer_fm_chorus_depth_control,
1027	&mixer_fm_reverb_depth_control,
1028};
1029
1030/*
1031 * create and attach mixer elements for WaveTable treble/bass controls
1032 */
1033static int
1034snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
1035{
 
1036	int i, err = 0;
1037
1038	if (snd_BUG_ON(!emu || !card))
1039		return -EINVAL;
1040
1041	spin_lock_init(&emu->control_lock);
1042
1043	memset(emu->controls, 0, sizeof(emu->controls));
1044	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1045		if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
 
 
1046			goto __error;
 
1047	}
1048	return 0;
1049
1050__error:
1051	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1052		down_write(&card->controls_rwsem);
1053		if (emu->controls[i])
1054			snd_ctl_remove(card, emu->controls[i]);
1055		up_write(&card->controls_rwsem);
1056	}
1057	return err;
1058}
1059
1060
1061/*
1062 * free resources
1063 */
1064static int snd_emu8000_free(struct snd_emu8000 *hw)
1065{
1066	release_and_free_resource(hw->res_port1);
1067	release_and_free_resource(hw->res_port2);
1068	release_and_free_resource(hw->res_port3);
1069	kfree(hw);
1070	return 0;
1071}
1072
1073/*
1074 */
1075static int snd_emu8000_dev_free(struct snd_device *device)
1076{
1077	struct snd_emu8000 *hw = device->device_data;
1078	return snd_emu8000_free(hw);
1079}
1080
1081/*
1082 * initialize and register emu8000 synth device.
1083 */
1084int
1085snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
1086		struct snd_seq_device **awe_ret)
1087{
1088	struct snd_seq_device *awe;
1089	struct snd_emu8000 *hw;
1090	int err;
1091	static struct snd_device_ops ops = {
1092		.dev_free = snd_emu8000_dev_free,
1093	};
1094
1095	if (awe_ret)
1096		*awe_ret = NULL;
1097
1098	if (seq_ports <= 0)
1099		return 0;
1100
1101	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
1102	if (hw == NULL)
1103		return -ENOMEM;
1104	spin_lock_init(&hw->reg_lock);
1105	hw->index = index;
1106	hw->port1 = port;
1107	hw->port2 = port + 0x400;
1108	hw->port3 = port + 0x800;
1109	if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
1110	    !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
1111	    !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
1112		snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
1113		snd_emu8000_free(hw);
1114		return -EBUSY;
1115	}
1116	hw->mem_size = 0;
1117	hw->card = card;
1118	hw->seq_ports = seq_ports;
1119	hw->bass_level = 5;
1120	hw->treble_level = 9;
1121	hw->chorus_mode = 2;
1122	hw->reverb_mode = 4;
1123	hw->fm_chorus_depth = 0;
1124	hw->fm_reverb_depth = 0;
1125
1126	if (snd_emu8000_detect(hw) < 0) {
1127		snd_emu8000_free(hw);
1128		return -ENODEV;
1129	}
1130
1131	snd_emu8000_init_hw(hw);
1132	if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
1133		snd_emu8000_free(hw);
1134		return err;
1135	}
1136	
1137	if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
1138		snd_emu8000_free(hw);
1139		return err;
1140	}
1141#if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
1142	if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
1143			       sizeof(struct snd_emu8000*), &awe) >= 0) {
1144		strcpy(awe->name, "EMU-8000");
1145		*(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
1146	}
1147#else
1148	awe = NULL;
1149#endif
1150	if (awe_ret)
1151		*awe_ret = awe;
1152
1153	return 0;
1154}
1155
1156
1157/*
1158 * exported stuff
1159 */
1160
1161EXPORT_SYMBOL(snd_emu8000_poke);
1162EXPORT_SYMBOL(snd_emu8000_peek);
1163EXPORT_SYMBOL(snd_emu8000_poke_dw);
1164EXPORT_SYMBOL(snd_emu8000_peek_dw);
1165EXPORT_SYMBOL(snd_emu8000_dma_chan);
1166EXPORT_SYMBOL(snd_emu8000_init_fm);
1167EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
1168EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
1169EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
1170EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
1171EXPORT_SYMBOL(snd_emu8000_update_equalizer);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *     and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
   5 *  Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
   6 *
   7 *  Routines for control of EMU8000 chip
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/wait.h>
  11#include <linux/sched/signal.h>
  12#include <linux/slab.h>
  13#include <linux/ioport.h>
  14#include <linux/export.h>
  15#include <linux/delay.h>
  16#include <linux/io.h>
  17#include <sound/core.h>
  18#include <sound/emu8000.h>
  19#include <sound/emu8000_reg.h>
  20#include <linux/uaccess.h>
  21#include <linux/init.h>
  22#include <sound/control.h>
  23#include <sound/initval.h>
  24
  25/*
  26 * emu8000 register controls
  27 */
  28
  29/*
  30 * The following routines read and write registers on the emu8000.  They
  31 * should always be called via the EMU8000*READ/WRITE macros and never
  32 * directly.  The macros handle the port number and command word.
  33 */
  34/* Write a word */
  35void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
  36{
  37	unsigned long flags;
  38	spin_lock_irqsave(&emu->reg_lock, flags);
  39	if (reg != emu->last_reg) {
  40		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  41		emu->last_reg = reg;
  42	}
  43	outw((unsigned short)val, port); /* Send data */
  44	spin_unlock_irqrestore(&emu->reg_lock, flags);
  45}
  46
  47/* Read a word */
  48unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
  49{
  50	unsigned short res;
  51	unsigned long flags;
  52	spin_lock_irqsave(&emu->reg_lock, flags);
  53	if (reg != emu->last_reg) {
  54		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  55		emu->last_reg = reg;
  56	}
  57	res = inw(port);	/* Read data */
  58	spin_unlock_irqrestore(&emu->reg_lock, flags);
  59	return res;
  60}
  61
  62/* Write a double word */
  63void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
  64{
  65	unsigned long flags;
  66	spin_lock_irqsave(&emu->reg_lock, flags);
  67	if (reg != emu->last_reg) {
  68		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  69		emu->last_reg = reg;
  70	}
  71	outw((unsigned short)val, port); /* Send low word of data */
  72	outw((unsigned short)(val>>16), port+2); /* Send high word of data */
  73	spin_unlock_irqrestore(&emu->reg_lock, flags);
  74}
  75
  76/* Read a double word */
  77unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
  78{
  79	unsigned short low;
  80	unsigned int res;
  81	unsigned long flags;
  82	spin_lock_irqsave(&emu->reg_lock, flags);
  83	if (reg != emu->last_reg) {
  84		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
  85		emu->last_reg = reg;
  86	}
  87	low = inw(port);	/* Read low word of data */
  88	res = low + (inw(port+2) << 16);
  89	spin_unlock_irqrestore(&emu->reg_lock, flags);
  90	return res;
  91}
  92
  93/*
  94 * Set up / close a channel to be used for DMA.
  95 */
  96/*exported*/ void
  97snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
  98{
  99	unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
 100	mode &= EMU8000_RAM_MODE_MASK;
 101	if (mode == EMU8000_RAM_CLOSE) {
 102		EMU8000_CCCA_WRITE(emu, ch, 0);
 103		EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
 104		return;
 105	}
 106	EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
 107	EMU8000_VTFT_WRITE(emu, ch, 0);
 108	EMU8000_CVCF_WRITE(emu, ch, 0);
 109	EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
 110	EMU8000_CPF_WRITE(emu, ch, 0x40000000);
 111	EMU8000_PSST_WRITE(emu, ch, 0);
 112	EMU8000_CSL_WRITE(emu, ch, 0);
 113	if (mode == EMU8000_RAM_WRITE) /* DMA write */
 114		EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
 115	else	   /* DMA read */
 116		EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
 117}
 118
 119/*
 120 */
 121static void
 122snd_emu8000_read_wait(struct snd_emu8000 *emu)
 123{
 124	while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
 125		schedule_timeout_interruptible(1);
 126		if (signal_pending(current))
 127			break;
 128	}
 129}
 130
 131/*
 132 */
 133static void
 134snd_emu8000_write_wait(struct snd_emu8000 *emu)
 135{
 136	while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
 137		schedule_timeout_interruptible(1);
 138		if (signal_pending(current))
 139			break;
 140	}
 141}
 142
 143/*
 144 * detect a card at the given port
 145 */
 146static int
 147snd_emu8000_detect(struct snd_emu8000 *emu)
 148{
 149	/* Initialise */
 150	EMU8000_HWCF1_WRITE(emu, 0x0059);
 151	EMU8000_HWCF2_WRITE(emu, 0x0020);
 152	EMU8000_HWCF3_WRITE(emu, 0x0000);
 153	/* Check for a recognisable emu8000 */
 154	/*
 155	if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
 156		return -ENODEV;
 157		*/
 158	if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
 159		return -ENODEV;
 160	if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
 161		return -ENODEV;
 162
 163	snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
 164                    emu->port1);
 165	return 0;
 166}
 167
 168
 169/*
 170 * intiailize audio channels
 171 */
 172static void
 173init_audio(struct snd_emu8000 *emu)
 174{
 175	int ch;
 176
 177	/* turn off envelope engines */
 178	for (ch = 0; ch < EMU8000_CHANNELS; ch++)
 179		EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
 180  
 181	/* reset all other parameters to zero */
 182	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
 183		EMU8000_ENVVOL_WRITE(emu, ch, 0);
 184		EMU8000_ENVVAL_WRITE(emu, ch, 0);
 185		EMU8000_DCYSUS_WRITE(emu, ch, 0);
 186		EMU8000_ATKHLDV_WRITE(emu, ch, 0);
 187		EMU8000_LFO1VAL_WRITE(emu, ch, 0);
 188		EMU8000_ATKHLD_WRITE(emu, ch, 0);
 189		EMU8000_LFO2VAL_WRITE(emu, ch, 0);
 190		EMU8000_IP_WRITE(emu, ch, 0);
 191		EMU8000_IFATN_WRITE(emu, ch, 0);
 192		EMU8000_PEFE_WRITE(emu, ch, 0);
 193		EMU8000_FMMOD_WRITE(emu, ch, 0);
 194		EMU8000_TREMFRQ_WRITE(emu, ch, 0);
 195		EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
 196		EMU8000_PTRX_WRITE(emu, ch, 0);
 197		EMU8000_VTFT_WRITE(emu, ch, 0);
 198		EMU8000_PSST_WRITE(emu, ch, 0);
 199		EMU8000_CSL_WRITE(emu, ch, 0);
 200		EMU8000_CCCA_WRITE(emu, ch, 0);
 201	}
 202
 203	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
 204		EMU8000_CPF_WRITE(emu, ch, 0);
 205		EMU8000_CVCF_WRITE(emu, ch, 0);
 206	}
 207}
 208
 209
 210/*
 211 * initialize DMA address
 212 */
 213static void
 214init_dma(struct snd_emu8000 *emu)
 215{
 216	EMU8000_SMALR_WRITE(emu, 0);
 217	EMU8000_SMARR_WRITE(emu, 0);
 218	EMU8000_SMALW_WRITE(emu, 0);
 219	EMU8000_SMARW_WRITE(emu, 0);
 220}
 221
 222/*
 223 * initialization arrays; from ADIP
 224 */
 225static const unsigned short init1[128] = {
 226	0x03ff, 0x0030,  0x07ff, 0x0130, 0x0bff, 0x0230,  0x0fff, 0x0330,
 227	0x13ff, 0x0430,  0x17ff, 0x0530, 0x1bff, 0x0630,  0x1fff, 0x0730,
 228	0x23ff, 0x0830,  0x27ff, 0x0930, 0x2bff, 0x0a30,  0x2fff, 0x0b30,
 229	0x33ff, 0x0c30,  0x37ff, 0x0d30, 0x3bff, 0x0e30,  0x3fff, 0x0f30,
 230
 231	0x43ff, 0x0030,  0x47ff, 0x0130, 0x4bff, 0x0230,  0x4fff, 0x0330,
 232	0x53ff, 0x0430,  0x57ff, 0x0530, 0x5bff, 0x0630,  0x5fff, 0x0730,
 233	0x63ff, 0x0830,  0x67ff, 0x0930, 0x6bff, 0x0a30,  0x6fff, 0x0b30,
 234	0x73ff, 0x0c30,  0x77ff, 0x0d30, 0x7bff, 0x0e30,  0x7fff, 0x0f30,
 235
 236	0x83ff, 0x0030,  0x87ff, 0x0130, 0x8bff, 0x0230,  0x8fff, 0x0330,
 237	0x93ff, 0x0430,  0x97ff, 0x0530, 0x9bff, 0x0630,  0x9fff, 0x0730,
 238	0xa3ff, 0x0830,  0xa7ff, 0x0930, 0xabff, 0x0a30,  0xafff, 0x0b30,
 239	0xb3ff, 0x0c30,  0xb7ff, 0x0d30, 0xbbff, 0x0e30,  0xbfff, 0x0f30,
 240
 241	0xc3ff, 0x0030,  0xc7ff, 0x0130, 0xcbff, 0x0230,  0xcfff, 0x0330,
 242	0xd3ff, 0x0430,  0xd7ff, 0x0530, 0xdbff, 0x0630,  0xdfff, 0x0730,
 243	0xe3ff, 0x0830,  0xe7ff, 0x0930, 0xebff, 0x0a30,  0xefff, 0x0b30,
 244	0xf3ff, 0x0c30,  0xf7ff, 0x0d30, 0xfbff, 0x0e30,  0xffff, 0x0f30,
 245};
 246
 247static const unsigned short init2[128] = {
 248	0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
 249	0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
 250	0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
 251	0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
 252
 253	0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
 254	0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
 255	0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
 256	0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
 257
 258	0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
 259	0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
 260	0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
 261	0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
 262
 263	0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
 264	0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
 265	0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
 266	0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
 267};
 268
 269static const unsigned short init3[128] = {
 270	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
 271	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
 272	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
 273	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
 274
 275	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
 276	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
 277	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
 278	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
 279
 280	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
 281	0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
 282	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
 283	0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
 284
 285	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
 286	0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
 287	0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
 288	0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
 289};
 290
 291static const unsigned short init4[128] = {
 292	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
 293	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
 294	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
 295	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
 296
 297	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
 298	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
 299	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
 300	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
 301
 302	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
 303	0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
 304	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
 305	0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
 306
 307	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
 308	0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
 309	0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
 310	0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
 311};
 312
 313/* send an initialization array
 314 * Taken from the oss driver, not obvious from the doc how this
 315 * is meant to work
 316 */
 317static void
 318send_array(struct snd_emu8000 *emu, const unsigned short *data, int size)
 319{
 320	int i;
 321	const unsigned short *p;
 322
 323	p = data;
 324	for (i = 0; i < size; i++, p++)
 325		EMU8000_INIT1_WRITE(emu, i, *p);
 326	for (i = 0; i < size; i++, p++)
 327		EMU8000_INIT2_WRITE(emu, i, *p);
 328	for (i = 0; i < size; i++, p++)
 329		EMU8000_INIT3_WRITE(emu, i, *p);
 330	for (i = 0; i < size; i++, p++)
 331		EMU8000_INIT4_WRITE(emu, i, *p);
 332}
 333
 334
 335/*
 336 * Send initialization arrays to start up, this just follows the
 337 * initialisation sequence in the adip.
 338 */
 339static void
 340init_arrays(struct snd_emu8000 *emu)
 341{
 342	send_array(emu, init1, ARRAY_SIZE(init1)/4);
 343
 344	msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
 345	send_array(emu, init2, ARRAY_SIZE(init2)/4);
 346	send_array(emu, init3, ARRAY_SIZE(init3)/4);
 347
 348	EMU8000_HWCF4_WRITE(emu, 0);
 349	EMU8000_HWCF5_WRITE(emu, 0x83);
 350	EMU8000_HWCF6_WRITE(emu, 0x8000);
 351
 352	send_array(emu, init4, ARRAY_SIZE(init4)/4);
 353}
 354
 355
 356#define UNIQUE_ID1	0xa5b9
 357#define UNIQUE_ID2	0x9d53
 358
 359/*
 360 * Size the onboard memory.
 361 * This is written so as not to need arbitrary delays after the write. It
 362 * seems that the only way to do this is to use the one channel and keep
 363 * reallocating between read and write.
 364 */
 365static void
 366size_dram(struct snd_emu8000 *emu)
 367{
 368	int i, size;
 369
 370	if (emu->dram_checked)
 371		return;
 372
 373	size = 0;
 374
 375	/* write out a magic number */
 376	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
 377	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
 378	EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
 379	EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
 380	snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
 381	snd_emu8000_write_wait(emu);
 382
 383	/*
 384	 * Detect first 512 KiB.  If a write succeeds at the beginning of a
 385	 * 512 KiB page we assume that the whole page is there.
 386	 */
 387	EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
 388	EMU8000_SMLD_READ(emu); /* discard stale data  */
 389	if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
 390		goto skip_detect;   /* No RAM */
 391	snd_emu8000_read_wait(emu);
 392
 393	for (size = 512 * 1024; size < EMU8000_MAX_DRAM; size += 512 * 1024) {
 394
 395		/* Write a unique data on the test address.
 396		 * if the address is out of range, the data is written on
 397		 * 0x200000(=EMU8000_DRAM_OFFSET).  Then the id word is
 398		 * changed by this data.
 399		 */
 400		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
 401		EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
 402		EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
 403		snd_emu8000_write_wait(emu);
 404
 405		/*
 406		 * read the data on the just written DRAM address
 407		 * if not the same then we have reached the end of ram.
 408		 */
 409		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
 410		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
 411		/*snd_emu8000_read_wait(emu);*/
 412		EMU8000_SMLD_READ(emu); /* discard stale data  */
 413		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
 414			break; /* no memory at this address */
 415		snd_emu8000_read_wait(emu);
 416
 417		/*
 418		 * If it is the same it could be that the address just
 419		 * wraps back to the beginning; so check to see if the
 420		 * initial value has been overwritten.
 421		 */
 422		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
 423		EMU8000_SMLD_READ(emu); /* discard stale data  */
 424		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
 425			break; /* we must have wrapped around */
 426		snd_emu8000_read_wait(emu);
 427
 428		/* Otherwise, it's valid memory. */
 429	}
 430
 431skip_detect:
 432	/* wait until FULL bit in SMAxW register is false */
 433	for (i = 0; i < 10000; i++) {
 434		if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
 435			break;
 436		schedule_timeout_interruptible(1);
 437		if (signal_pending(current))
 438			break;
 439	}
 440	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
 441	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
 442
 443	pr_info("EMU8000 [0x%lx]: %d KiB on-board DRAM detected\n",
 444		    emu->port1, size/1024);
 445
 446	emu->mem_size = size;
 447	emu->dram_checked = 1;
 448}
 449
 450
 451/*
 452 * Initiailise the FM section.  You have to do this to use sample RAM
 453 * and therefore lose 2 voices.
 454 */
 455/*exported*/ void
 456snd_emu8000_init_fm(struct snd_emu8000 *emu)
 457{
 458	unsigned long flags;
 459
 460	/* Initialize the last two channels for DRAM refresh and producing
 461	   the reverb and chorus effects for Yamaha OPL-3 synthesizer */
 462
 463	/* 31: FM left channel, 0xffffe0-0xffffe8 */
 464	EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
 465	EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
 466	EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
 467	EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
 468	EMU8000_CPF_WRITE(emu, 30, 0);
 469	EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
 470
 471	/* 32: FM right channel, 0xfffff0-0xfffff8 */
 472	EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
 473	EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
 474	EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
 475	EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
 476	EMU8000_CPF_WRITE(emu, 31, 0x8000);
 477	EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
 478
 479	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
 480
 481	spin_lock_irqsave(&emu->reg_lock, flags);
 482	while (!(inw(EMU8000_PTR(emu)) & 0x1000))
 483		;
 484	while ((inw(EMU8000_PTR(emu)) & 0x1000))
 485		;
 486	spin_unlock_irqrestore(&emu->reg_lock, flags);
 487	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
 488	/* this is really odd part.. */
 489	outb(0x3C, EMU8000_PTR(emu));
 490	outb(0, EMU8000_DATA1(emu));
 491
 492	/* skew volume & cutoff */
 493	EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
 494	EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
 495}
 496
 497
 498/*
 499 * The main initialization routine.
 500 */
 501static void
 502snd_emu8000_init_hw(struct snd_emu8000 *emu)
 503{
 504	int i;
 505
 506	emu->last_reg = 0xffff; /* reset the last register index */
 507
 508	/* initialize hardware configuration */
 509	EMU8000_HWCF1_WRITE(emu, 0x0059);
 510	EMU8000_HWCF2_WRITE(emu, 0x0020);
 511
 512	/* disable audio; this seems to reduce a clicking noise a bit.. */
 513	EMU8000_HWCF3_WRITE(emu, 0);
 514
 515	/* initialize audio channels */
 516	init_audio(emu);
 517
 518	/* initialize DMA */
 519	init_dma(emu);
 520
 521	/* initialize init arrays */
 522	init_arrays(emu);
 523
 524	/*
 525	 * Initialize the FM section of the AWE32, this is needed
 526	 * for DRAM refresh as well
 527	 */
 528	snd_emu8000_init_fm(emu);
 529
 530	/* terminate all voices */
 531	for (i = 0; i < EMU8000_DRAM_VOICES; i++)
 532		EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
 533	
 534	/* check DRAM memory size */
 535	size_dram(emu);
 536
 537	/* enable audio */
 538	EMU8000_HWCF3_WRITE(emu, 0x4);
 539
 540	/* set equzlier, chorus and reverb modes */
 541	snd_emu8000_update_equalizer(emu);
 542	snd_emu8000_update_chorus_mode(emu);
 543	snd_emu8000_update_reverb_mode(emu);
 544}
 545
 546
 547/*----------------------------------------------------------------
 548 * Bass/Treble Equalizer
 549 *----------------------------------------------------------------*/
 550
 551static const unsigned short bass_parm[12][3] = {
 552	{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
 553	{0xD25B, 0xD35B, 0x0000}, /*  -8 */
 554	{0xD24C, 0xD34C, 0x0000}, /*  -6 */
 555	{0xD23D, 0xD33D, 0x0000}, /*  -4 */
 556	{0xD21F, 0xD31F, 0x0000}, /*  -2 */
 557	{0xC208, 0xC308, 0x0001}, /*   0 (HW default) */
 558	{0xC219, 0xC319, 0x0001}, /*  +2 */
 559	{0xC22A, 0xC32A, 0x0001}, /*  +4 */
 560	{0xC24C, 0xC34C, 0x0001}, /*  +6 */
 561	{0xC26E, 0xC36E, 0x0001}, /*  +8 */
 562	{0xC248, 0xC384, 0x0002}, /* +10 */
 563	{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
 564};
 565
 566static const unsigned short treble_parm[12][9] = {
 567	{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
 568	{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 569	{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 570	{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 571	{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
 572	{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
 573	{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
 574	{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
 575	{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
 576	{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
 577	{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
 578	{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}  /* +12 dB */
 579};
 580
 581
 582/*
 583 * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
 584 */
 585/*exported*/ void
 586snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
 587{
 588	unsigned short w;
 589	int bass = emu->bass_level;
 590	int treble = emu->treble_level;
 591
 592	if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
 593		return;
 594	EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
 595	EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
 596	EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
 597	EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
 598	EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
 599	EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
 600	EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
 601	EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
 602	EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
 603	EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
 604	w = bass_parm[bass][2] + treble_parm[treble][8];
 605	EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
 606	EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
 607}
 608
 609
 610/*----------------------------------------------------------------
 611 * Chorus mode control
 612 *----------------------------------------------------------------*/
 613
 614/*
 615 * chorus mode parameters
 616 */
 617#define SNDRV_EMU8000_CHORUS_1		0
 618#define	SNDRV_EMU8000_CHORUS_2		1
 619#define	SNDRV_EMU8000_CHORUS_3		2
 620#define	SNDRV_EMU8000_CHORUS_4		3
 621#define	SNDRV_EMU8000_CHORUS_FEEDBACK	4
 622#define	SNDRV_EMU8000_CHORUS_FLANGER	5
 623#define	SNDRV_EMU8000_CHORUS_SHORTDELAY	6
 624#define	SNDRV_EMU8000_CHORUS_SHORTDELAY2	7
 625#define SNDRV_EMU8000_CHORUS_PREDEFINED	8
 626/* user can define chorus modes up to 32 */
 627#define SNDRV_EMU8000_CHORUS_NUMBERS	32
 628
 629struct soundfont_chorus_fx {
 630	unsigned short feedback;	/* feedback level (0xE600-0xE6FF) */
 631	unsigned short delay_offset;	/* delay (0-0x0DA3) [1/44100 sec] */
 632	unsigned short lfo_depth;	/* LFO depth (0xBC00-0xBCFF) */
 633	unsigned int delay;	/* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
 634	unsigned int lfo_freq;		/* LFO freq LFO freq (0-0xFFFFFFFF) */
 635};
 636
 637/* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
 638static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
 639static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
 640	{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
 641	{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
 642	{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
 643	{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
 644	{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
 645	{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
 646	{0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
 647	{0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
 648};
 649
 650/*exported*/ int
 651snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
 652{
 653	struct soundfont_chorus_fx rec;
 654	if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
 655		snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
 656		return -EINVAL;
 657	}
 658	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
 659		return -EFAULT;
 660	chorus_parm[mode] = rec;
 661	chorus_defined[mode] = 1;
 662	return 0;
 663}
 664
 665/*exported*/ void
 666snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
 667{
 668	int effect = emu->chorus_mode;
 669	if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
 670	    (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
 671		return;
 672	EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
 673	EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
 674	EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
 675	EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
 676	EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
 677	EMU8000_HWCF6_WRITE(emu, 0x8000);
 678	EMU8000_HWCF7_WRITE(emu, 0x0000);
 679}
 680
 681/*----------------------------------------------------------------
 682 * Reverb mode control
 683 *----------------------------------------------------------------*/
 684
 685/*
 686 * reverb mode parameters
 687 */
 688#define	SNDRV_EMU8000_REVERB_ROOM1	0
 689#define SNDRV_EMU8000_REVERB_ROOM2	1
 690#define	SNDRV_EMU8000_REVERB_ROOM3	2
 691#define	SNDRV_EMU8000_REVERB_HALL1	3
 692#define	SNDRV_EMU8000_REVERB_HALL2	4
 693#define	SNDRV_EMU8000_REVERB_PLATE	5
 694#define	SNDRV_EMU8000_REVERB_DELAY	6
 695#define	SNDRV_EMU8000_REVERB_PANNINGDELAY 7
 696#define SNDRV_EMU8000_REVERB_PREDEFINED	8
 697/* user can define reverb modes up to 32 */
 698#define SNDRV_EMU8000_REVERB_NUMBERS	32
 699
 700struct soundfont_reverb_fx {
 701	unsigned short parms[28];
 702};
 703
 704/* reverb mode settings; write the following 28 data of 16 bit length
 705 *   on the corresponding ports in the reverb_cmds array
 706 */
 707static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
 708static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
 709{{  /* room 1 */
 710	0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
 711	0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
 712	0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 713	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 714}},
 715{{  /* room 2 */
 716	0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
 717	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
 718	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 719	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 720}},
 721{{  /* room 3 */
 722	0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
 723	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
 724	0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
 725	0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
 726}},
 727{{  /* hall 1 */
 728	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
 729	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
 730	0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
 731	0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
 732}},
 733{{  /* hall 2 */
 734	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
 735	0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
 736	0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 737	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 738}},
 739{{  /* plate */
 740	0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
 741	0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
 742	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
 743	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
 744}},
 745{{  /* delay */
 746	0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
 747	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
 748	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
 749	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
 750}},
 751{{  /* panning delay */
 752	0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
 753	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
 754	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
 755	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
 756}},
 757};
 758
 759enum { DATA1, DATA2 };
 760#define AWE_INIT1(c)	EMU8000_CMD(2,c), DATA1
 761#define AWE_INIT2(c)	EMU8000_CMD(2,c), DATA2
 762#define AWE_INIT3(c)	EMU8000_CMD(3,c), DATA1
 763#define AWE_INIT4(c)	EMU8000_CMD(3,c), DATA2
 764
 765static struct reverb_cmd_pair {
 766	unsigned short cmd, port;
 767} reverb_cmds[28] = {
 768  {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
 769  {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
 770  {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
 771  {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
 772  {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
 773  {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
 774  {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
 775};
 776
 777/*exported*/ int
 778snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
 779{
 780	struct soundfont_reverb_fx rec;
 781
 782	if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
 783		snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
 784		return -EINVAL;
 785	}
 786	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
 787		return -EFAULT;
 788	reverb_parm[mode] = rec;
 789	reverb_defined[mode] = 1;
 790	return 0;
 791}
 792
 793/*exported*/ void
 794snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
 795{
 796	int effect = emu->reverb_mode;
 797	int i;
 798
 799	if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
 800	    (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
 801		return;
 802	for (i = 0; i < 28; i++) {
 803		int port;
 804		if (reverb_cmds[i].port == DATA1)
 805			port = EMU8000_DATA1(emu);
 806		else
 807			port = EMU8000_DATA2(emu);
 808		snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
 809	}
 810}
 811
 812
 813/*----------------------------------------------------------------
 814 * mixer interface
 815 *----------------------------------------------------------------*/
 816
 817/*
 818 * bass/treble
 819 */
 820static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 821{
 822	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 823	uinfo->count = 1;
 824	uinfo->value.integer.min = 0;
 825	uinfo->value.integer.max = 11;
 826	return 0;
 827}
 828
 829static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 830{
 831	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 832	
 833	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
 834	return 0;
 835}
 836
 837static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 838{
 839	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 840	unsigned long flags;
 841	int change;
 842	unsigned short val1;
 843	
 844	val1 = ucontrol->value.integer.value[0] % 12;
 845	spin_lock_irqsave(&emu->control_lock, flags);
 846	if (kcontrol->private_value) {
 847		change = val1 != emu->treble_level;
 848		emu->treble_level = val1;
 849	} else {
 850		change = val1 != emu->bass_level;
 851		emu->bass_level = val1;
 852	}
 853	spin_unlock_irqrestore(&emu->control_lock, flags);
 854	snd_emu8000_update_equalizer(emu);
 855	return change;
 856}
 857
 858static const struct snd_kcontrol_new mixer_bass_control =
 859{
 860	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 861	.name = "Synth Tone Control - Bass",
 862	.info = mixer_bass_treble_info,
 863	.get = mixer_bass_treble_get,
 864	.put = mixer_bass_treble_put,
 865	.private_value = 0,
 866};
 867
 868static const struct snd_kcontrol_new mixer_treble_control =
 869{
 870	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 871	.name = "Synth Tone Control - Treble",
 872	.info = mixer_bass_treble_info,
 873	.get = mixer_bass_treble_get,
 874	.put = mixer_bass_treble_put,
 875	.private_value = 1,
 876};
 877
 878/*
 879 * chorus/reverb mode
 880 */
 881static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 882{
 883	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 884	uinfo->count = 1;
 885	uinfo->value.integer.min = 0;
 886	uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
 887	return 0;
 888}
 889
 890static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 891{
 892	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 893	
 894	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
 895	return 0;
 896}
 897
 898static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 899{
 900	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 901	unsigned long flags;
 902	int change;
 903	unsigned short val1;
 904	
 905	spin_lock_irqsave(&emu->control_lock, flags);
 906	if (kcontrol->private_value) {
 907		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
 908		change = val1 != emu->chorus_mode;
 909		emu->chorus_mode = val1;
 910	} else {
 911		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
 912		change = val1 != emu->reverb_mode;
 913		emu->reverb_mode = val1;
 914	}
 915	spin_unlock_irqrestore(&emu->control_lock, flags);
 916	if (change) {
 917		if (kcontrol->private_value)
 918			snd_emu8000_update_chorus_mode(emu);
 919		else
 920			snd_emu8000_update_reverb_mode(emu);
 921	}
 922	return change;
 923}
 924
 925static const struct snd_kcontrol_new mixer_chorus_mode_control =
 926{
 927	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 928	.name = "Chorus Mode",
 929	.info = mixer_chorus_reverb_info,
 930	.get = mixer_chorus_reverb_get,
 931	.put = mixer_chorus_reverb_put,
 932	.private_value = 1,
 933};
 934
 935static const struct snd_kcontrol_new mixer_reverb_mode_control =
 936{
 937	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 938	.name = "Reverb Mode",
 939	.info = mixer_chorus_reverb_info,
 940	.get = mixer_chorus_reverb_get,
 941	.put = mixer_chorus_reverb_put,
 942	.private_value = 0,
 943};
 944
 945/*
 946 * FM OPL3 chorus/reverb depth
 947 */
 948static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 949{
 950	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 951	uinfo->count = 1;
 952	uinfo->value.integer.min = 0;
 953	uinfo->value.integer.max = 255;
 954	return 0;
 955}
 956
 957static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 958{
 959	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 960	
 961	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
 962	return 0;
 963}
 964
 965static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 966{
 967	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
 968	unsigned long flags;
 969	int change;
 970	unsigned short val1;
 971	
 972	val1 = ucontrol->value.integer.value[0] % 256;
 973	spin_lock_irqsave(&emu->control_lock, flags);
 974	if (kcontrol->private_value) {
 975		change = val1 != emu->fm_chorus_depth;
 976		emu->fm_chorus_depth = val1;
 977	} else {
 978		change = val1 != emu->fm_reverb_depth;
 979		emu->fm_reverb_depth = val1;
 980	}
 981	spin_unlock_irqrestore(&emu->control_lock, flags);
 982	if (change)
 983		snd_emu8000_init_fm(emu);
 984	return change;
 985}
 986
 987static const struct snd_kcontrol_new mixer_fm_chorus_depth_control =
 988{
 989	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 990	.name = "FM Chorus Depth",
 991	.info = mixer_fm_depth_info,
 992	.get = mixer_fm_depth_get,
 993	.put = mixer_fm_depth_put,
 994	.private_value = 1,
 995};
 996
 997static const struct snd_kcontrol_new mixer_fm_reverb_depth_control =
 998{
 999	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1000	.name = "FM Reverb Depth",
1001	.info = mixer_fm_depth_info,
1002	.get = mixer_fm_depth_get,
1003	.put = mixer_fm_depth_put,
1004	.private_value = 0,
1005};
1006
1007
1008static const struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
1009	&mixer_bass_control,
1010	&mixer_treble_control,
1011	&mixer_chorus_mode_control,
1012	&mixer_reverb_mode_control,
1013	&mixer_fm_chorus_depth_control,
1014	&mixer_fm_reverb_depth_control,
1015};
1016
1017/*
1018 * create and attach mixer elements for WaveTable treble/bass controls
1019 */
1020static int
1021snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
1022{
1023	struct snd_kcontrol *kctl;
1024	int i, err = 0;
1025
1026	if (snd_BUG_ON(!emu || !card))
1027		return -EINVAL;
1028
1029	spin_lock_init(&emu->control_lock);
1030
1031	memset(emu->controls, 0, sizeof(emu->controls));
1032	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1033		kctl = snd_ctl_new1(mixer_defs[i], emu);
1034		err = snd_ctl_add(card, kctl);
1035		if (err < 0)
1036			goto __error;
1037		emu->controls[i] = kctl;
1038	}
1039	return 0;
1040
1041__error:
1042	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1043		down_write(&card->controls_rwsem);
1044		if (emu->controls[i])
1045			snd_ctl_remove(card, emu->controls[i]);
1046		up_write(&card->controls_rwsem);
1047	}
1048	return err;
1049}
1050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051/*
1052 * initialize and register emu8000 synth device.
1053 */
1054int
1055snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
1056		struct snd_seq_device **awe_ret)
1057{
1058	struct snd_seq_device *awe;
1059	struct snd_emu8000 *hw;
1060	int err;
 
 
 
1061
1062	if (awe_ret)
1063		*awe_ret = NULL;
1064
1065	if (seq_ports <= 0)
1066		return 0;
1067
1068	hw = devm_kzalloc(card->dev, sizeof(*hw), GFP_KERNEL);
1069	if (hw == NULL)
1070		return -ENOMEM;
1071	spin_lock_init(&hw->reg_lock);
1072	hw->index = index;
1073	hw->port1 = port;
1074	hw->port2 = port + 0x400;
1075	hw->port3 = port + 0x800;
1076	if (!devm_request_region(card->dev, hw->port1, 4, "Emu8000-1") ||
1077	    !devm_request_region(card->dev, hw->port2, 4, "Emu8000-2") ||
1078	    !devm_request_region(card->dev, hw->port3, 4, "Emu8000-3")) {
1079		snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
 
1080		return -EBUSY;
1081	}
1082	hw->mem_size = 0;
1083	hw->card = card;
1084	hw->seq_ports = seq_ports;
1085	hw->bass_level = 5;
1086	hw->treble_level = 9;
1087	hw->chorus_mode = 2;
1088	hw->reverb_mode = 4;
1089	hw->fm_chorus_depth = 0;
1090	hw->fm_reverb_depth = 0;
1091
1092	if (snd_emu8000_detect(hw) < 0)
 
1093		return -ENODEV;
 
1094
1095	snd_emu8000_init_hw(hw);
1096	err = snd_emu8000_create_mixer(card, hw);
1097	if (err < 0)
1098		return err;
1099#if IS_ENABLED(CONFIG_SND_SEQUENCER)
 
 
 
 
 
 
1100	if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
1101			       sizeof(struct snd_emu8000*), &awe) >= 0) {
1102		strcpy(awe->name, "EMU-8000");
1103		*(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
1104	}
1105#else
1106	awe = NULL;
1107#endif
1108	if (awe_ret)
1109		*awe_ret = awe;
1110
1111	return 0;
1112}
1113
1114
1115/*
1116 * exported stuff
1117 */
1118
1119EXPORT_SYMBOL(snd_emu8000_poke);
1120EXPORT_SYMBOL(snd_emu8000_peek);
1121EXPORT_SYMBOL(snd_emu8000_poke_dw);
1122EXPORT_SYMBOL(snd_emu8000_peek_dw);
1123EXPORT_SYMBOL(snd_emu8000_dma_chan);
1124EXPORT_SYMBOL(snd_emu8000_init_fm);
1125EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
1126EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
1127EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
1128EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
1129EXPORT_SYMBOL(snd_emu8000_update_equalizer);