Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
 
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
 
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 
 
 
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	key->index_key.desc_len = desclen;
 280	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 281	if (!key->index_key.description)
 282		goto no_memory_3;
 
 
 283
 284	atomic_set(&key->usage, 1);
 285	init_rwsem(&key->sem);
 286	lockdep_set_class(&key->sem, &type->lock_class);
 287	key->index_key.type = type;
 288	key->user = user;
 289	key->quotalen = quotalen;
 290	key->datalen = type->def_datalen;
 291	key->uid = uid;
 292	key->gid = gid;
 293	key->perm = perm;
 
 
 294
 295	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 296		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 297	if (flags & KEY_ALLOC_TRUSTED)
 298		key->flags |= 1 << KEY_FLAG_TRUSTED;
 299	if (flags & KEY_ALLOC_BUILT_IN)
 300		key->flags |= 1 << KEY_FLAG_BUILTIN;
 
 
 
 
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 
 
 
 
 
 
 
 
 
 
 
 
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring) {
 435				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 436					set_bit(KEY_FLAG_KEEP, &key->flags);
 437
 438				__key_link(key, _edit);
 439			}
 440
 441			/* disable the authorisation key */
 442			if (authkey)
 443				key_revoke(authkey);
 444
 445			if (prep->expiry != TIME_T_MAX) {
 446				key->expiry = prep->expiry;
 447				key_schedule_gc(prep->expiry + key_gc_delay);
 448			}
 449		}
 450	}
 451
 452	mutex_unlock(&key_construction_mutex);
 453
 454	/* wake up anyone waiting for a key to be constructed */
 455	if (awaken)
 456		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 457
 458	return ret;
 459}
 460
 461/**
 462 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 463 * @key: The key to instantiate.
 464 * @data: The data to use to instantiate the keyring.
 465 * @datalen: The length of @data.
 466 * @keyring: Keyring to create a link in on success (or NULL).
 467 * @authkey: The authorisation token permitting instantiation.
 468 *
 469 * Instantiate a key that's in the uninstantiated state using the provided data
 470 * and, if successful, link it in to the destination keyring if one is
 471 * supplied.
 472 *
 473 * If successful, 0 is returned, the authorisation token is revoked and anyone
 474 * waiting for the key is woken up.  If the key was already instantiated,
 475 * -EBUSY will be returned.
 476 */
 477int key_instantiate_and_link(struct key *key,
 478			     const void *data,
 479			     size_t datalen,
 480			     struct key *keyring,
 481			     struct key *authkey)
 482{
 483	struct key_preparsed_payload prep;
 484	struct assoc_array_edit *edit;
 485	int ret;
 486
 487	memset(&prep, 0, sizeof(prep));
 
 488	prep.data = data;
 489	prep.datalen = datalen;
 490	prep.quotalen = key->type->def_datalen;
 491	prep.expiry = TIME_T_MAX;
 492	if (key->type->preparse) {
 493		ret = key->type->preparse(&prep);
 494		if (ret < 0)
 495			goto error;
 496	}
 497
 498	if (keyring) {
 499		ret = __key_link_begin(keyring, &key->index_key, &edit);
 500		if (ret < 0)
 501			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 502	}
 503
 504	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 505
 
 506	if (keyring)
 507		__key_link_end(keyring, &key->index_key, edit);
 508
 509error:
 510	if (key->type->preparse)
 511		key->type->free_preparse(&prep);
 512	return ret;
 513}
 514
 515EXPORT_SYMBOL(key_instantiate_and_link);
 516
 517/**
 518 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 519 * @key: The key to instantiate.
 520 * @timeout: The timeout on the negative key.
 521 * @error: The error to return when the key is hit.
 522 * @keyring: Keyring to create a link in on success (or NULL).
 523 * @authkey: The authorisation token permitting instantiation.
 524 *
 525 * Negatively instantiate a key that's in the uninstantiated state and, if
 526 * successful, set its timeout and stored error and link it in to the
 527 * destination keyring if one is supplied.  The key and any links to the key
 528 * will be automatically garbage collected after the timeout expires.
 529 *
 530 * Negative keys are used to rate limit repeated request_key() calls by causing
 531 * them to return the stored error code (typically ENOKEY) until the negative
 532 * key expires.
 533 *
 534 * If successful, 0 is returned, the authorisation token is revoked and anyone
 535 * waiting for the key is woken up.  If the key was already instantiated,
 536 * -EBUSY will be returned.
 537 */
 538int key_reject_and_link(struct key *key,
 539			unsigned timeout,
 540			unsigned error,
 541			struct key *keyring,
 542			struct key *authkey)
 543{
 544	struct assoc_array_edit *edit;
 545	struct timespec now;
 546	int ret, awaken, link_ret = 0;
 547
 548	key_check(key);
 549	key_check(keyring);
 550
 551	awaken = 0;
 552	ret = -EBUSY;
 553
 554	if (keyring)
 555		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 
 
 
 
 
 
 
 
 556
 557	mutex_lock(&key_construction_mutex);
 558
 559	/* can't instantiate twice */
 560	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 561		/* mark the key as being negatively instantiated */
 562		atomic_inc(&key->user->nikeys);
 563		key->reject_error = -error;
 564		smp_wmb();
 565		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 566		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 567		now = current_kernel_time();
 568		key->expiry = now.tv_sec + timeout;
 569		key_schedule_gc(key->expiry + key_gc_delay);
 570
 571		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 572			awaken = 1;
 573
 574		ret = 0;
 575
 576		/* and link it into the destination keyring */
 577		if (keyring && link_ret == 0)
 578			__key_link(key, &edit);
 579
 580		/* disable the authorisation key */
 581		if (authkey)
 582			key_revoke(authkey);
 583	}
 584
 585	mutex_unlock(&key_construction_mutex);
 586
 587	if (keyring)
 588		__key_link_end(keyring, &key->index_key, edit);
 589
 590	/* wake up anyone waiting for a key to be constructed */
 591	if (awaken)
 592		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 593
 594	return ret == 0 ? link_ret : ret;
 595}
 596EXPORT_SYMBOL(key_reject_and_link);
 597
 598/**
 599 * key_put - Discard a reference to a key.
 600 * @key: The key to discard a reference from.
 601 *
 602 * Discard a reference to a key, and when all the references are gone, we
 603 * schedule the cleanup task to come and pull it out of the tree in process
 604 * context at some later time.
 605 */
 606void key_put(struct key *key)
 607{
 608	if (key) {
 609		key_check(key);
 610
 611		if (atomic_dec_and_test(&key->usage))
 612			schedule_work(&key_gc_work);
 613	}
 614}
 615EXPORT_SYMBOL(key_put);
 616
 617/*
 618 * Find a key by its serial number.
 619 */
 620struct key *key_lookup(key_serial_t id)
 621{
 622	struct rb_node *n;
 623	struct key *key;
 624
 625	spin_lock(&key_serial_lock);
 626
 627	/* search the tree for the specified key */
 628	n = key_serial_tree.rb_node;
 629	while (n) {
 630		key = rb_entry(n, struct key, serial_node);
 631
 632		if (id < key->serial)
 633			n = n->rb_left;
 634		else if (id > key->serial)
 635			n = n->rb_right;
 636		else
 637			goto found;
 638	}
 639
 640not_found:
 641	key = ERR_PTR(-ENOKEY);
 642	goto error;
 643
 644found:
 645	/* pretend it doesn't exist if it is awaiting deletion */
 646	if (atomic_read(&key->usage) == 0)
 647		goto not_found;
 648
 649	/* this races with key_put(), but that doesn't matter since key_put()
 650	 * doesn't actually change the key
 651	 */
 652	__key_get(key);
 
 653
 654error:
 655	spin_unlock(&key_serial_lock);
 656	return key;
 657}
 658
 659/*
 660 * Find and lock the specified key type against removal.
 661 *
 662 * We return with the sem read-locked if successful.  If the type wasn't
 663 * available -ENOKEY is returned instead.
 664 */
 665struct key_type *key_type_lookup(const char *type)
 666{
 667	struct key_type *ktype;
 668
 669	down_read(&key_types_sem);
 670
 671	/* look up the key type to see if it's one of the registered kernel
 672	 * types */
 673	list_for_each_entry(ktype, &key_types_list, link) {
 674		if (strcmp(ktype->name, type) == 0)
 675			goto found_kernel_type;
 676	}
 677
 678	up_read(&key_types_sem);
 679	ktype = ERR_PTR(-ENOKEY);
 680
 681found_kernel_type:
 682	return ktype;
 683}
 684
 685void key_set_timeout(struct key *key, unsigned timeout)
 686{
 687	struct timespec now;
 688	time_t expiry = 0;
 689
 690	/* make the changes with the locks held to prevent races */
 691	down_write(&key->sem);
 692
 693	if (timeout > 0) {
 694		now = current_kernel_time();
 695		expiry = now.tv_sec + timeout;
 696	}
 697
 698	key->expiry = expiry;
 699	key_schedule_gc(key->expiry + key_gc_delay);
 700
 701	up_write(&key->sem);
 702}
 703EXPORT_SYMBOL_GPL(key_set_timeout);
 704
 705/*
 706 * Unlock a key type locked by key_type_lookup().
 707 */
 708void key_type_put(struct key_type *ktype)
 709{
 710	up_read(&key_types_sem);
 711}
 712
 713/*
 714 * Attempt to update an existing key.
 715 *
 716 * The key is given to us with an incremented refcount that we need to discard
 717 * if we get an error.
 718 */
 719static inline key_ref_t __key_update(key_ref_t key_ref,
 720				     struct key_preparsed_payload *prep)
 721{
 722	struct key *key = key_ref_to_ptr(key_ref);
 723	int ret;
 724
 725	/* need write permission on the key to update it */
 726	ret = key_permission(key_ref, KEY_NEED_WRITE);
 727	if (ret < 0)
 728		goto error;
 729
 730	ret = -EEXIST;
 731	if (!key->type->update)
 732		goto error;
 733
 734	down_write(&key->sem);
 735
 736	ret = key->type->update(key, prep);
 737	if (ret == 0)
 738		/* updating a negative key instantiates it */
 739		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 740
 741	up_write(&key->sem);
 742
 743	if (ret < 0)
 744		goto error;
 745out:
 746	return key_ref;
 747
 748error:
 749	key_put(key);
 750	key_ref = ERR_PTR(ret);
 751	goto out;
 752}
 753
 754/**
 755 * key_create_or_update - Update or create and instantiate a key.
 756 * @keyring_ref: A pointer to the destination keyring with possession flag.
 757 * @type: The type of key.
 758 * @description: The searchable description for the key.
 759 * @payload: The data to use to instantiate or update the key.
 760 * @plen: The length of @payload.
 761 * @perm: The permissions mask for a new key.
 762 * @flags: The quota flags for a new key.
 763 *
 764 * Search the destination keyring for a key of the same description and if one
 765 * is found, update it, otherwise create and instantiate a new one and create a
 766 * link to it from that keyring.
 767 *
 768 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 769 * concocted.
 770 *
 771 * Returns a pointer to the new key if successful, -ENODEV if the key type
 772 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 773 * caller isn't permitted to modify the keyring or the LSM did not permit
 774 * creation of the key.
 775 *
 776 * On success, the possession flag from the keyring ref will be tacked on to
 777 * the key ref before it is returned.
 778 */
 779key_ref_t key_create_or_update(key_ref_t keyring_ref,
 780			       const char *type,
 781			       const char *description,
 782			       const void *payload,
 783			       size_t plen,
 784			       key_perm_t perm,
 785			       unsigned long flags)
 786{
 787	struct keyring_index_key index_key = {
 788		.description	= description,
 789	};
 790	struct key_preparsed_payload prep;
 791	struct assoc_array_edit *edit;
 792	const struct cred *cred = current_cred();
 793	struct key *keyring, *key = NULL;
 794	key_ref_t key_ref;
 795	int ret;
 
 796
 797	/* look up the key type to see if it's one of the registered kernel
 798	 * types */
 799	index_key.type = key_type_lookup(type);
 800	if (IS_ERR(index_key.type)) {
 801		key_ref = ERR_PTR(-ENODEV);
 802		goto error;
 803	}
 804
 805	key_ref = ERR_PTR(-EINVAL);
 806	if (!index_key.type->instantiate ||
 807	    (!index_key.description && !index_key.type->preparse))
 808		goto error_put_type;
 809
 810	keyring = key_ref_to_ptr(keyring_ref);
 811
 812	key_check(keyring);
 813
 
 
 
 814	key_ref = ERR_PTR(-ENOTDIR);
 815	if (keyring->type != &key_type_keyring)
 816		goto error_put_type;
 817
 818	memset(&prep, 0, sizeof(prep));
 
 819	prep.data = payload;
 820	prep.datalen = plen;
 821	prep.quotalen = index_key.type->def_datalen;
 822	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 823	prep.expiry = TIME_T_MAX;
 824	if (index_key.type->preparse) {
 825		ret = index_key.type->preparse(&prep);
 826		if (ret < 0) {
 827			key_ref = ERR_PTR(ret);
 828			goto error_free_prep;
 829		}
 830		if (!index_key.description)
 831			index_key.description = prep.description;
 832		key_ref = ERR_PTR(-EINVAL);
 833		if (!index_key.description)
 834			goto error_free_prep;
 835	}
 836	index_key.desc_len = strlen(index_key.description);
 
 837
 838	key_ref = ERR_PTR(-EPERM);
 839	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 
 840		goto error_free_prep;
 841	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 842
 843	ret = __key_link_begin(keyring, &index_key, &edit);
 844	if (ret < 0) {
 845		key_ref = ERR_PTR(ret);
 846		goto error_free_prep;
 
 
 
 
 
 
 
 
 
 847	}
 848
 849	/* if we're going to allocate a new key, we're going to have
 850	 * to modify the keyring */
 851	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 852	if (ret < 0) {
 853		key_ref = ERR_PTR(ret);
 854		goto error_link_end;
 855	}
 856
 857	/* if it's possible to update this type of key, search for an existing
 858	 * key of the same type and description in the destination keyring and
 859	 * update that instead if possible
 860	 */
 861	if (index_key.type->update) {
 862		key_ref = find_key_to_update(keyring_ref, &index_key);
 863		if (key_ref)
 864			goto found_matching_key;
 865	}
 866
 867	/* if the client doesn't provide, decide on the permissions we want */
 868	if (perm == KEY_PERM_UNDEF) {
 869		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 870		perm |= KEY_USR_VIEW;
 871
 872		if (index_key.type->read)
 873			perm |= KEY_POS_READ;
 874
 875		if (index_key.type == &key_type_keyring ||
 876		    index_key.type->update)
 877			perm |= KEY_POS_WRITE;
 878	}
 879
 880	/* allocate a new key */
 881	key = key_alloc(index_key.type, index_key.description,
 882			cred->fsuid, cred->fsgid, cred, perm, flags);
 883	if (IS_ERR(key)) {
 884		key_ref = ERR_CAST(key);
 885		goto error_link_end;
 886	}
 887
 888	/* instantiate it and link it into the target keyring */
 889	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 890	if (ret < 0) {
 891		key_put(key);
 892		key_ref = ERR_PTR(ret);
 893		goto error_link_end;
 894	}
 895
 
 
 
 896	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 897
 898error_link_end:
 899	__key_link_end(keyring, &index_key, edit);
 900error_free_prep:
 901	if (index_key.type->preparse)
 902		index_key.type->free_preparse(&prep);
 903error_put_type:
 904	key_type_put(index_key.type);
 905error:
 906	return key_ref;
 907
 908 found_matching_key:
 909	/* we found a matching key, so we're going to try to update it
 910	 * - we can drop the locks first as we have the key pinned
 911	 */
 912	__key_link_end(keyring, &index_key, edit);
 913
 
 
 
 
 
 
 
 
 
 
 914	key_ref = __key_update(key_ref, &prep);
 
 
 
 
 
 
 915	goto error_free_prep;
 916}
 917EXPORT_SYMBOL(key_create_or_update);
 918
 919/**
 920 * key_update - Update a key's contents.
 921 * @key_ref: The pointer (plus possession flag) to the key.
 922 * @payload: The data to be used to update the key.
 923 * @plen: The length of @payload.
 924 *
 925 * Attempt to update the contents of a key with the given payload data.  The
 926 * caller must be granted Write permission on the key.  Negative keys can be
 927 * instantiated by this method.
 928 *
 929 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 930 * type does not support updating.  The key type may return other errors.
 931 */
 932int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 933{
 934	struct key_preparsed_payload prep;
 935	struct key *key = key_ref_to_ptr(key_ref);
 936	int ret;
 937
 938	key_check(key);
 939
 940	/* the key must be writable */
 941	ret = key_permission(key_ref, KEY_NEED_WRITE);
 942	if (ret < 0)
 943		goto error;
 944
 945	/* attempt to update it if supported */
 946	ret = -EOPNOTSUPP;
 947	if (!key->type->update)
 948		goto error;
 949
 950	memset(&prep, 0, sizeof(prep));
 951	prep.data = payload;
 952	prep.datalen = plen;
 953	prep.quotalen = key->type->def_datalen;
 954	prep.expiry = TIME_T_MAX;
 955	if (key->type->preparse) {
 956		ret = key->type->preparse(&prep);
 957		if (ret < 0)
 958			goto error;
 959	}
 960
 961	down_write(&key->sem);
 962
 963	ret = key->type->update(key, &prep);
 964	if (ret == 0)
 965		/* updating a negative key instantiates it */
 966		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 967
 968	up_write(&key->sem);
 969
 970error:
 971	if (key->type->preparse)
 972		key->type->free_preparse(&prep);
 973	return ret;
 974}
 975EXPORT_SYMBOL(key_update);
 976
 977/**
 978 * key_revoke - Revoke a key.
 979 * @key: The key to be revoked.
 980 *
 981 * Mark a key as being revoked and ask the type to free up its resources.  The
 982 * revocation timeout is set and the key and all its links will be
 983 * automatically garbage collected after key_gc_delay amount of time if they
 984 * are not manually dealt with first.
 985 */
 986void key_revoke(struct key *key)
 987{
 988	struct timespec now;
 989	time_t time;
 990
 991	key_check(key);
 992
 993	/* make sure no one's trying to change or use the key when we mark it
 994	 * - we tell lockdep that we might nest because we might be revoking an
 995	 *   authorisation key whilst holding the sem on a key we've just
 996	 *   instantiated
 997	 */
 998	down_write_nested(&key->sem, 1);
 999	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1000	    key->type->revoke)
1001		key->type->revoke(key);
1002
1003	/* set the death time to no more than the expiry time */
1004	now = current_kernel_time();
1005	time = now.tv_sec;
1006	if (key->revoked_at == 0 || key->revoked_at > time) {
1007		key->revoked_at = time;
1008		key_schedule_gc(key->revoked_at + key_gc_delay);
 
1009	}
1010
1011	up_write(&key->sem);
1012}
1013EXPORT_SYMBOL(key_revoke);
1014
1015/**
1016 * key_invalidate - Invalidate a key.
1017 * @key: The key to be invalidated.
1018 *
1019 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1020 * is ignored by all searches and other operations from this point.
1021 */
1022void key_invalidate(struct key *key)
1023{
1024	kenter("%d", key_serial(key));
1025
1026	key_check(key);
1027
1028	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1029		down_write_nested(&key->sem, 1);
1030		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 
1031			key_schedule_gc_links();
 
1032		up_write(&key->sem);
1033	}
1034}
1035EXPORT_SYMBOL(key_invalidate);
1036
1037/**
1038 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1039 * @key: The key to be instantiated
1040 * @prep: The preparsed data to load.
1041 *
1042 * Instantiate a key from preparsed data.  We assume we can just copy the data
1043 * in directly and clear the old pointers.
1044 *
1045 * This can be pointed to directly by the key type instantiate op pointer.
1046 */
1047int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1048{
1049	int ret;
1050
1051	pr_devel("==>%s()\n", __func__);
1052
1053	ret = key_payload_reserve(key, prep->quotalen);
1054	if (ret == 0) {
1055		rcu_assign_keypointer(key, prep->payload.data[0]);
1056		key->payload.data[1] = prep->payload.data[1];
1057		key->payload.data[2] = prep->payload.data[2];
1058		key->payload.data[3] = prep->payload.data[3];
1059		prep->payload.data[0] = NULL;
1060		prep->payload.data[1] = NULL;
1061		prep->payload.data[2] = NULL;
1062		prep->payload.data[3] = NULL;
1063	}
1064	pr_devel("<==%s() = %d\n", __func__, ret);
1065	return ret;
1066}
1067EXPORT_SYMBOL(generic_key_instantiate);
1068
1069/**
1070 * register_key_type - Register a type of key.
1071 * @ktype: The new key type.
1072 *
1073 * Register a new key type.
1074 *
1075 * Returns 0 on success or -EEXIST if a type of this name already exists.
1076 */
1077int register_key_type(struct key_type *ktype)
1078{
1079	struct key_type *p;
1080	int ret;
1081
1082	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1083
1084	ret = -EEXIST;
1085	down_write(&key_types_sem);
1086
1087	/* disallow key types with the same name */
1088	list_for_each_entry(p, &key_types_list, link) {
1089		if (strcmp(p->name, ktype->name) == 0)
1090			goto out;
1091	}
1092
1093	/* store the type */
1094	list_add(&ktype->link, &key_types_list);
1095
1096	pr_notice("Key type %s registered\n", ktype->name);
1097	ret = 0;
1098
1099out:
1100	up_write(&key_types_sem);
1101	return ret;
1102}
1103EXPORT_SYMBOL(register_key_type);
1104
1105/**
1106 * unregister_key_type - Unregister a type of key.
1107 * @ktype: The key type.
1108 *
1109 * Unregister a key type and mark all the extant keys of this type as dead.
1110 * Those keys of this type are then destroyed to get rid of their payloads and
1111 * they and their links will be garbage collected as soon as possible.
1112 */
1113void unregister_key_type(struct key_type *ktype)
1114{
1115	down_write(&key_types_sem);
1116	list_del_init(&ktype->link);
1117	downgrade_write(&key_types_sem);
1118	key_gc_keytype(ktype);
1119	pr_notice("Key type %s unregistered\n", ktype->name);
1120	up_read(&key_types_sem);
1121}
1122EXPORT_SYMBOL(unregister_key_type);
1123
1124/*
1125 * Initialise the key management state.
1126 */
1127void __init key_init(void)
1128{
1129	/* allocate a slab in which we can store keys */
1130	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1131			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1132
1133	/* add the special key types */
1134	list_add_tail(&key_type_keyring.link, &key_types_list);
1135	list_add_tail(&key_type_dead.link, &key_types_list);
1136	list_add_tail(&key_type_user.link, &key_types_list);
1137	list_add_tail(&key_type_logon.link, &key_types_list);
1138
1139	/* record the root user tracking */
1140	rb_link_node(&root_key_user.node,
1141		     NULL,
1142		     &key_user_tree.rb_node);
1143
1144	rb_insert_color(&root_key_user.node,
1145			&key_user_tree);
1146}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
 
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->restrict_link = restrict_link;
 298	key->last_used_at = ktime_get_real_seconds();
 299
 300	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 
 
 302	if (flags & KEY_ALLOC_BUILT_IN)
 303		key->flags |= 1 << KEY_FLAG_BUILTIN;
 304	if (flags & KEY_ALLOC_UID_KEYRING)
 305		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306	if (flags & KEY_ALLOC_SET_KEEP)
 307		key->flags |= 1 << KEY_FLAG_KEEP;
 308
 309#ifdef KEY_DEBUGGING
 310	key->magic = KEY_DEBUG_MAGIC;
 311#endif
 312
 313	/* let the security module know about the key */
 314	ret = security_key_alloc(key, cred, flags);
 315	if (ret < 0)
 316		goto security_error;
 317
 318	/* publish the key by giving it a serial number */
 319	refcount_inc(&key->domain_tag->usage);
 320	atomic_inc(&user->nkeys);
 321	key_alloc_serial(key);
 322
 323error:
 324	return key;
 325
 326security_error:
 327	kfree(key->description);
 328	kmem_cache_free(key_jar, key);
 329	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 330		spin_lock(&user->lock);
 331		user->qnkeys--;
 332		user->qnbytes -= quotalen;
 333		spin_unlock(&user->lock);
 334	}
 335	key_user_put(user);
 336	key = ERR_PTR(ret);
 337	goto error;
 338
 339no_memory_3:
 340	kmem_cache_free(key_jar, key);
 341no_memory_2:
 342	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 343		spin_lock(&user->lock);
 344		user->qnkeys--;
 345		user->qnbytes -= quotalen;
 346		spin_unlock(&user->lock);
 347	}
 348	key_user_put(user);
 349no_memory_1:
 350	key = ERR_PTR(-ENOMEM);
 351	goto error;
 352
 353no_quota:
 354	spin_unlock(&user->lock);
 355	key_user_put(user);
 356	key = ERR_PTR(-EDQUOT);
 357	goto error;
 358}
 359EXPORT_SYMBOL(key_alloc);
 360
 361/**
 362 * key_payload_reserve - Adjust data quota reservation for the key's payload
 363 * @key: The key to make the reservation for.
 364 * @datalen: The amount of data payload the caller now wants.
 365 *
 366 * Adjust the amount of the owning user's key data quota that a key reserves.
 367 * If the amount is increased, then -EDQUOT may be returned if there isn't
 368 * enough free quota available.
 369 *
 370 * If successful, 0 is returned.
 371 */
 372int key_payload_reserve(struct key *key, size_t datalen)
 373{
 374	int delta = (int)datalen - key->datalen;
 375	int ret = 0;
 376
 377	key_check(key);
 378
 379	/* contemplate the quota adjustment */
 380	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 381		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 382			key_quota_root_maxbytes : key_quota_maxbytes;
 383
 384		spin_lock(&key->user->lock);
 385
 386		if (delta > 0 &&
 387		    (key->user->qnbytes + delta > maxbytes ||
 388		     key->user->qnbytes + delta < key->user->qnbytes)) {
 389			ret = -EDQUOT;
 390		}
 391		else {
 392			key->user->qnbytes += delta;
 393			key->quotalen += delta;
 394		}
 395		spin_unlock(&key->user->lock);
 396	}
 397
 398	/* change the recorded data length if that didn't generate an error */
 399	if (ret == 0)
 400		key->datalen = datalen;
 401
 402	return ret;
 403}
 404EXPORT_SYMBOL(key_payload_reserve);
 405
 406/*
 407 * Change the key state to being instantiated.
 408 */
 409static void mark_key_instantiated(struct key *key, int reject_error)
 410{
 411	/* Commit the payload before setting the state; barrier versus
 412	 * key_read_state().
 413	 */
 414	smp_store_release(&key->state,
 415			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 416}
 417
 418/*
 419 * Instantiate a key and link it into the target keyring atomically.  Must be
 420 * called with the target keyring's semaphore writelocked.  The target key's
 421 * semaphore need not be locked as instantiation is serialised by
 422 * key_construction_mutex.
 423 */
 424static int __key_instantiate_and_link(struct key *key,
 425				      struct key_preparsed_payload *prep,
 426				      struct key *keyring,
 427				      struct key *authkey,
 428				      struct assoc_array_edit **_edit)
 429{
 430	int ret, awaken;
 431
 432	key_check(key);
 433	key_check(keyring);
 434
 435	awaken = 0;
 436	ret = -EBUSY;
 437
 438	mutex_lock(&key_construction_mutex);
 439
 440	/* can't instantiate twice */
 441	if (key->state == KEY_IS_UNINSTANTIATED) {
 442		/* instantiate the key */
 443		ret = key->type->instantiate(key, prep);
 444
 445		if (ret == 0) {
 446			/* mark the key as being instantiated */
 447			atomic_inc(&key->user->nikeys);
 448			mark_key_instantiated(key, 0);
 449			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 450
 451			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 452				awaken = 1;
 453
 454			/* and link it into the destination keyring */
 455			if (keyring) {
 456				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 457					set_bit(KEY_FLAG_KEEP, &key->flags);
 458
 459				__key_link(keyring, key, _edit);
 460			}
 461
 462			/* disable the authorisation key */
 463			if (authkey)
 464				key_invalidate(authkey);
 465
 466			if (prep->expiry != TIME64_MAX) {
 467				key->expiry = prep->expiry;
 468				key_schedule_gc(prep->expiry + key_gc_delay);
 469			}
 470		}
 471	}
 472
 473	mutex_unlock(&key_construction_mutex);
 474
 475	/* wake up anyone waiting for a key to be constructed */
 476	if (awaken)
 477		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 478
 479	return ret;
 480}
 481
 482/**
 483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 484 * @key: The key to instantiate.
 485 * @data: The data to use to instantiate the keyring.
 486 * @datalen: The length of @data.
 487 * @keyring: Keyring to create a link in on success (or NULL).
 488 * @authkey: The authorisation token permitting instantiation.
 489 *
 490 * Instantiate a key that's in the uninstantiated state using the provided data
 491 * and, if successful, link it in to the destination keyring if one is
 492 * supplied.
 493 *
 494 * If successful, 0 is returned, the authorisation token is revoked and anyone
 495 * waiting for the key is woken up.  If the key was already instantiated,
 496 * -EBUSY will be returned.
 497 */
 498int key_instantiate_and_link(struct key *key,
 499			     const void *data,
 500			     size_t datalen,
 501			     struct key *keyring,
 502			     struct key *authkey)
 503{
 504	struct key_preparsed_payload prep;
 505	struct assoc_array_edit *edit = NULL;
 506	int ret;
 507
 508	memset(&prep, 0, sizeof(prep));
 509	prep.orig_description = key->description;
 510	prep.data = data;
 511	prep.datalen = datalen;
 512	prep.quotalen = key->type->def_datalen;
 513	prep.expiry = TIME64_MAX;
 514	if (key->type->preparse) {
 515		ret = key->type->preparse(&prep);
 516		if (ret < 0)
 517			goto error;
 518	}
 519
 520	if (keyring) {
 521		ret = __key_link_lock(keyring, &key->index_key);
 522		if (ret < 0)
 523			goto error;
 524
 525		ret = __key_link_begin(keyring, &key->index_key, &edit);
 526		if (ret < 0)
 527			goto error_link_end;
 528
 529		if (keyring->restrict_link && keyring->restrict_link->check) {
 530			struct key_restriction *keyres = keyring->restrict_link;
 531
 532			ret = keyres->check(keyring, key->type, &prep.payload,
 533					    keyres->key);
 534			if (ret < 0)
 535				goto error_link_end;
 536		}
 537	}
 538
 539	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 540
 541error_link_end:
 542	if (keyring)
 543		__key_link_end(keyring, &key->index_key, edit);
 544
 545error:
 546	if (key->type->preparse)
 547		key->type->free_preparse(&prep);
 548	return ret;
 549}
 550
 551EXPORT_SYMBOL(key_instantiate_and_link);
 552
 553/**
 554 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 555 * @key: The key to instantiate.
 556 * @timeout: The timeout on the negative key.
 557 * @error: The error to return when the key is hit.
 558 * @keyring: Keyring to create a link in on success (or NULL).
 559 * @authkey: The authorisation token permitting instantiation.
 560 *
 561 * Negatively instantiate a key that's in the uninstantiated state and, if
 562 * successful, set its timeout and stored error and link it in to the
 563 * destination keyring if one is supplied.  The key and any links to the key
 564 * will be automatically garbage collected after the timeout expires.
 565 *
 566 * Negative keys are used to rate limit repeated request_key() calls by causing
 567 * them to return the stored error code (typically ENOKEY) until the negative
 568 * key expires.
 569 *
 570 * If successful, 0 is returned, the authorisation token is revoked and anyone
 571 * waiting for the key is woken up.  If the key was already instantiated,
 572 * -EBUSY will be returned.
 573 */
 574int key_reject_and_link(struct key *key,
 575			unsigned timeout,
 576			unsigned error,
 577			struct key *keyring,
 578			struct key *authkey)
 579{
 580	struct assoc_array_edit *edit = NULL;
 
 581	int ret, awaken, link_ret = 0;
 582
 583	key_check(key);
 584	key_check(keyring);
 585
 586	awaken = 0;
 587	ret = -EBUSY;
 588
 589	if (keyring) {
 590		if (keyring->restrict_link)
 591			return -EPERM;
 592
 593		link_ret = __key_link_lock(keyring, &key->index_key);
 594		if (link_ret == 0) {
 595			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 596			if (link_ret < 0)
 597				__key_link_end(keyring, &key->index_key, edit);
 598		}
 599	}
 600
 601	mutex_lock(&key_construction_mutex);
 602
 603	/* can't instantiate twice */
 604	if (key->state == KEY_IS_UNINSTANTIATED) {
 605		/* mark the key as being negatively instantiated */
 606		atomic_inc(&key->user->nikeys);
 607		mark_key_instantiated(key, -error);
 608		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 609		key->expiry = ktime_get_real_seconds() + timeout;
 
 
 
 610		key_schedule_gc(key->expiry + key_gc_delay);
 611
 612		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 613			awaken = 1;
 614
 615		ret = 0;
 616
 617		/* and link it into the destination keyring */
 618		if (keyring && link_ret == 0)
 619			__key_link(keyring, key, &edit);
 620
 621		/* disable the authorisation key */
 622		if (authkey)
 623			key_invalidate(authkey);
 624	}
 625
 626	mutex_unlock(&key_construction_mutex);
 627
 628	if (keyring && link_ret == 0)
 629		__key_link_end(keyring, &key->index_key, edit);
 630
 631	/* wake up anyone waiting for a key to be constructed */
 632	if (awaken)
 633		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 634
 635	return ret == 0 ? link_ret : ret;
 636}
 637EXPORT_SYMBOL(key_reject_and_link);
 638
 639/**
 640 * key_put - Discard a reference to a key.
 641 * @key: The key to discard a reference from.
 642 *
 643 * Discard a reference to a key, and when all the references are gone, we
 644 * schedule the cleanup task to come and pull it out of the tree in process
 645 * context at some later time.
 646 */
 647void key_put(struct key *key)
 648{
 649	if (key) {
 650		key_check(key);
 651
 652		if (refcount_dec_and_test(&key->usage))
 653			schedule_work(&key_gc_work);
 654	}
 655}
 656EXPORT_SYMBOL(key_put);
 657
 658/*
 659 * Find a key by its serial number.
 660 */
 661struct key *key_lookup(key_serial_t id)
 662{
 663	struct rb_node *n;
 664	struct key *key;
 665
 666	spin_lock(&key_serial_lock);
 667
 668	/* search the tree for the specified key */
 669	n = key_serial_tree.rb_node;
 670	while (n) {
 671		key = rb_entry(n, struct key, serial_node);
 672
 673		if (id < key->serial)
 674			n = n->rb_left;
 675		else if (id > key->serial)
 676			n = n->rb_right;
 677		else
 678			goto found;
 679	}
 680
 681not_found:
 682	key = ERR_PTR(-ENOKEY);
 683	goto error;
 684
 685found:
 686	/* A key is allowed to be looked up only if someone still owns a
 687	 * reference to it - otherwise it's awaiting the gc.
 
 
 
 
 688	 */
 689	if (!refcount_inc_not_zero(&key->usage))
 690		goto not_found;
 691
 692error:
 693	spin_unlock(&key_serial_lock);
 694	return key;
 695}
 696
 697/*
 698 * Find and lock the specified key type against removal.
 699 *
 700 * We return with the sem read-locked if successful.  If the type wasn't
 701 * available -ENOKEY is returned instead.
 702 */
 703struct key_type *key_type_lookup(const char *type)
 704{
 705	struct key_type *ktype;
 706
 707	down_read(&key_types_sem);
 708
 709	/* look up the key type to see if it's one of the registered kernel
 710	 * types */
 711	list_for_each_entry(ktype, &key_types_list, link) {
 712		if (strcmp(ktype->name, type) == 0)
 713			goto found_kernel_type;
 714	}
 715
 716	up_read(&key_types_sem);
 717	ktype = ERR_PTR(-ENOKEY);
 718
 719found_kernel_type:
 720	return ktype;
 721}
 722
 723void key_set_timeout(struct key *key, unsigned timeout)
 724{
 725	time64_t expiry = 0;
 
 726
 727	/* make the changes with the locks held to prevent races */
 728	down_write(&key->sem);
 729
 730	if (timeout > 0)
 731		expiry = ktime_get_real_seconds() + timeout;
 
 
 732
 733	key->expiry = expiry;
 734	key_schedule_gc(key->expiry + key_gc_delay);
 735
 736	up_write(&key->sem);
 737}
 738EXPORT_SYMBOL_GPL(key_set_timeout);
 739
 740/*
 741 * Unlock a key type locked by key_type_lookup().
 742 */
 743void key_type_put(struct key_type *ktype)
 744{
 745	up_read(&key_types_sem);
 746}
 747
 748/*
 749 * Attempt to update an existing key.
 750 *
 751 * The key is given to us with an incremented refcount that we need to discard
 752 * if we get an error.
 753 */
 754static inline key_ref_t __key_update(key_ref_t key_ref,
 755				     struct key_preparsed_payload *prep)
 756{
 757	struct key *key = key_ref_to_ptr(key_ref);
 758	int ret;
 759
 760	/* need write permission on the key to update it */
 761	ret = key_permission(key_ref, KEY_NEED_WRITE);
 762	if (ret < 0)
 763		goto error;
 764
 765	ret = -EEXIST;
 766	if (!key->type->update)
 767		goto error;
 768
 769	down_write(&key->sem);
 770
 771	ret = key->type->update(key, prep);
 772	if (ret == 0) {
 773		/* Updating a negative key positively instantiates it */
 774		mark_key_instantiated(key, 0);
 775		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 776	}
 777
 778	up_write(&key->sem);
 779
 780	if (ret < 0)
 781		goto error;
 782out:
 783	return key_ref;
 784
 785error:
 786	key_put(key);
 787	key_ref = ERR_PTR(ret);
 788	goto out;
 789}
 790
 791/**
 792 * key_create_or_update - Update or create and instantiate a key.
 793 * @keyring_ref: A pointer to the destination keyring with possession flag.
 794 * @type: The type of key.
 795 * @description: The searchable description for the key.
 796 * @payload: The data to use to instantiate or update the key.
 797 * @plen: The length of @payload.
 798 * @perm: The permissions mask for a new key.
 799 * @flags: The quota flags for a new key.
 800 *
 801 * Search the destination keyring for a key of the same description and if one
 802 * is found, update it, otherwise create and instantiate a new one and create a
 803 * link to it from that keyring.
 804 *
 805 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 806 * concocted.
 807 *
 808 * Returns a pointer to the new key if successful, -ENODEV if the key type
 809 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 810 * caller isn't permitted to modify the keyring or the LSM did not permit
 811 * creation of the key.
 812 *
 813 * On success, the possession flag from the keyring ref will be tacked on to
 814 * the key ref before it is returned.
 815 */
 816key_ref_t key_create_or_update(key_ref_t keyring_ref,
 817			       const char *type,
 818			       const char *description,
 819			       const void *payload,
 820			       size_t plen,
 821			       key_perm_t perm,
 822			       unsigned long flags)
 823{
 824	struct keyring_index_key index_key = {
 825		.description	= description,
 826	};
 827	struct key_preparsed_payload prep;
 828	struct assoc_array_edit *edit = NULL;
 829	const struct cred *cred = current_cred();
 830	struct key *keyring, *key = NULL;
 831	key_ref_t key_ref;
 832	int ret;
 833	struct key_restriction *restrict_link = NULL;
 834
 835	/* look up the key type to see if it's one of the registered kernel
 836	 * types */
 837	index_key.type = key_type_lookup(type);
 838	if (IS_ERR(index_key.type)) {
 839		key_ref = ERR_PTR(-ENODEV);
 840		goto error;
 841	}
 842
 843	key_ref = ERR_PTR(-EINVAL);
 844	if (!index_key.type->instantiate ||
 845	    (!index_key.description && !index_key.type->preparse))
 846		goto error_put_type;
 847
 848	keyring = key_ref_to_ptr(keyring_ref);
 849
 850	key_check(keyring);
 851
 852	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 853		restrict_link = keyring->restrict_link;
 854
 855	key_ref = ERR_PTR(-ENOTDIR);
 856	if (keyring->type != &key_type_keyring)
 857		goto error_put_type;
 858
 859	memset(&prep, 0, sizeof(prep));
 860	prep.orig_description = description;
 861	prep.data = payload;
 862	prep.datalen = plen;
 863	prep.quotalen = index_key.type->def_datalen;
 864	prep.expiry = TIME64_MAX;
 
 865	if (index_key.type->preparse) {
 866		ret = index_key.type->preparse(&prep);
 867		if (ret < 0) {
 868			key_ref = ERR_PTR(ret);
 869			goto error_free_prep;
 870		}
 871		if (!index_key.description)
 872			index_key.description = prep.description;
 873		key_ref = ERR_PTR(-EINVAL);
 874		if (!index_key.description)
 875			goto error_free_prep;
 876	}
 877	index_key.desc_len = strlen(index_key.description);
 878	key_set_index_key(&index_key);
 879
 880	ret = __key_link_lock(keyring, &index_key);
 881	if (ret < 0) {
 882		key_ref = ERR_PTR(ret);
 883		goto error_free_prep;
 884	}
 885
 886	ret = __key_link_begin(keyring, &index_key, &edit);
 887	if (ret < 0) {
 888		key_ref = ERR_PTR(ret);
 889		goto error_link_end;
 890	}
 891
 892	if (restrict_link && restrict_link->check) {
 893		ret = restrict_link->check(keyring, index_key.type,
 894					   &prep.payload, restrict_link->key);
 895		if (ret < 0) {
 896			key_ref = ERR_PTR(ret);
 897			goto error_link_end;
 898		}
 899	}
 900
 901	/* if we're going to allocate a new key, we're going to have
 902	 * to modify the keyring */
 903	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 904	if (ret < 0) {
 905		key_ref = ERR_PTR(ret);
 906		goto error_link_end;
 907	}
 908
 909	/* if it's possible to update this type of key, search for an existing
 910	 * key of the same type and description in the destination keyring and
 911	 * update that instead if possible
 912	 */
 913	if (index_key.type->update) {
 914		key_ref = find_key_to_update(keyring_ref, &index_key);
 915		if (key_ref)
 916			goto found_matching_key;
 917	}
 918
 919	/* if the client doesn't provide, decide on the permissions we want */
 920	if (perm == KEY_PERM_UNDEF) {
 921		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 922		perm |= KEY_USR_VIEW;
 923
 924		if (index_key.type->read)
 925			perm |= KEY_POS_READ;
 926
 927		if (index_key.type == &key_type_keyring ||
 928		    index_key.type->update)
 929			perm |= KEY_POS_WRITE;
 930	}
 931
 932	/* allocate a new key */
 933	key = key_alloc(index_key.type, index_key.description,
 934			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 935	if (IS_ERR(key)) {
 936		key_ref = ERR_CAST(key);
 937		goto error_link_end;
 938	}
 939
 940	/* instantiate it and link it into the target keyring */
 941	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 942	if (ret < 0) {
 943		key_put(key);
 944		key_ref = ERR_PTR(ret);
 945		goto error_link_end;
 946	}
 947
 948	ima_post_key_create_or_update(keyring, key, payload, plen,
 949				      flags, true);
 950
 951	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 952
 953error_link_end:
 954	__key_link_end(keyring, &index_key, edit);
 955error_free_prep:
 956	if (index_key.type->preparse)
 957		index_key.type->free_preparse(&prep);
 958error_put_type:
 959	key_type_put(index_key.type);
 960error:
 961	return key_ref;
 962
 963 found_matching_key:
 964	/* we found a matching key, so we're going to try to update it
 965	 * - we can drop the locks first as we have the key pinned
 966	 */
 967	__key_link_end(keyring, &index_key, edit);
 968
 969	key = key_ref_to_ptr(key_ref);
 970	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 971		ret = wait_for_key_construction(key, true);
 972		if (ret < 0) {
 973			key_ref_put(key_ref);
 974			key_ref = ERR_PTR(ret);
 975			goto error_free_prep;
 976		}
 977	}
 978
 979	key_ref = __key_update(key_ref, &prep);
 980
 981	if (!IS_ERR(key_ref))
 982		ima_post_key_create_or_update(keyring, key,
 983					      payload, plen,
 984					      flags, false);
 985
 986	goto error_free_prep;
 987}
 988EXPORT_SYMBOL(key_create_or_update);
 989
 990/**
 991 * key_update - Update a key's contents.
 992 * @key_ref: The pointer (plus possession flag) to the key.
 993 * @payload: The data to be used to update the key.
 994 * @plen: The length of @payload.
 995 *
 996 * Attempt to update the contents of a key with the given payload data.  The
 997 * caller must be granted Write permission on the key.  Negative keys can be
 998 * instantiated by this method.
 999 *
1000 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1001 * type does not support updating.  The key type may return other errors.
1002 */
1003int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1004{
1005	struct key_preparsed_payload prep;
1006	struct key *key = key_ref_to_ptr(key_ref);
1007	int ret;
1008
1009	key_check(key);
1010
1011	/* the key must be writable */
1012	ret = key_permission(key_ref, KEY_NEED_WRITE);
1013	if (ret < 0)
1014		return ret;
1015
1016	/* attempt to update it if supported */
 
1017	if (!key->type->update)
1018		return -EOPNOTSUPP;
1019
1020	memset(&prep, 0, sizeof(prep));
1021	prep.data = payload;
1022	prep.datalen = plen;
1023	prep.quotalen = key->type->def_datalen;
1024	prep.expiry = TIME64_MAX;
1025	if (key->type->preparse) {
1026		ret = key->type->preparse(&prep);
1027		if (ret < 0)
1028			goto error;
1029	}
1030
1031	down_write(&key->sem);
1032
1033	ret = key->type->update(key, &prep);
1034	if (ret == 0) {
1035		/* Updating a negative key positively instantiates it */
1036		mark_key_instantiated(key, 0);
1037		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1038	}
1039
1040	up_write(&key->sem);
1041
1042error:
1043	if (key->type->preparse)
1044		key->type->free_preparse(&prep);
1045	return ret;
1046}
1047EXPORT_SYMBOL(key_update);
1048
1049/**
1050 * key_revoke - Revoke a key.
1051 * @key: The key to be revoked.
1052 *
1053 * Mark a key as being revoked and ask the type to free up its resources.  The
1054 * revocation timeout is set and the key and all its links will be
1055 * automatically garbage collected after key_gc_delay amount of time if they
1056 * are not manually dealt with first.
1057 */
1058void key_revoke(struct key *key)
1059{
1060	time64_t time;
 
1061
1062	key_check(key);
1063
1064	/* make sure no one's trying to change or use the key when we mark it
1065	 * - we tell lockdep that we might nest because we might be revoking an
1066	 *   authorisation key whilst holding the sem on a key we've just
1067	 *   instantiated
1068	 */
1069	down_write_nested(&key->sem, 1);
1070	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1071		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1072		if (key->type->revoke)
1073			key->type->revoke(key);
1074
1075		/* set the death time to no more than the expiry time */
1076		time = ktime_get_real_seconds();
1077		if (key->revoked_at == 0 || key->revoked_at > time) {
1078			key->revoked_at = time;
1079			key_schedule_gc(key->revoked_at + key_gc_delay);
1080		}
1081	}
1082
1083	up_write(&key->sem);
1084}
1085EXPORT_SYMBOL(key_revoke);
1086
1087/**
1088 * key_invalidate - Invalidate a key.
1089 * @key: The key to be invalidated.
1090 *
1091 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1092 * is ignored by all searches and other operations from this point.
1093 */
1094void key_invalidate(struct key *key)
1095{
1096	kenter("%d", key_serial(key));
1097
1098	key_check(key);
1099
1100	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101		down_write_nested(&key->sem, 1);
1102		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1103			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1104			key_schedule_gc_links();
1105		}
1106		up_write(&key->sem);
1107	}
1108}
1109EXPORT_SYMBOL(key_invalidate);
1110
1111/**
1112 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1113 * @key: The key to be instantiated
1114 * @prep: The preparsed data to load.
1115 *
1116 * Instantiate a key from preparsed data.  We assume we can just copy the data
1117 * in directly and clear the old pointers.
1118 *
1119 * This can be pointed to directly by the key type instantiate op pointer.
1120 */
1121int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1122{
1123	int ret;
1124
1125	pr_devel("==>%s()\n", __func__);
1126
1127	ret = key_payload_reserve(key, prep->quotalen);
1128	if (ret == 0) {
1129		rcu_assign_keypointer(key, prep->payload.data[0]);
1130		key->payload.data[1] = prep->payload.data[1];
1131		key->payload.data[2] = prep->payload.data[2];
1132		key->payload.data[3] = prep->payload.data[3];
1133		prep->payload.data[0] = NULL;
1134		prep->payload.data[1] = NULL;
1135		prep->payload.data[2] = NULL;
1136		prep->payload.data[3] = NULL;
1137	}
1138	pr_devel("<==%s() = %d\n", __func__, ret);
1139	return ret;
1140}
1141EXPORT_SYMBOL(generic_key_instantiate);
1142
1143/**
1144 * register_key_type - Register a type of key.
1145 * @ktype: The new key type.
1146 *
1147 * Register a new key type.
1148 *
1149 * Returns 0 on success or -EEXIST if a type of this name already exists.
1150 */
1151int register_key_type(struct key_type *ktype)
1152{
1153	struct key_type *p;
1154	int ret;
1155
1156	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1157
1158	ret = -EEXIST;
1159	down_write(&key_types_sem);
1160
1161	/* disallow key types with the same name */
1162	list_for_each_entry(p, &key_types_list, link) {
1163		if (strcmp(p->name, ktype->name) == 0)
1164			goto out;
1165	}
1166
1167	/* store the type */
1168	list_add(&ktype->link, &key_types_list);
1169
1170	pr_notice("Key type %s registered\n", ktype->name);
1171	ret = 0;
1172
1173out:
1174	up_write(&key_types_sem);
1175	return ret;
1176}
1177EXPORT_SYMBOL(register_key_type);
1178
1179/**
1180 * unregister_key_type - Unregister a type of key.
1181 * @ktype: The key type.
1182 *
1183 * Unregister a key type and mark all the extant keys of this type as dead.
1184 * Those keys of this type are then destroyed to get rid of their payloads and
1185 * they and their links will be garbage collected as soon as possible.
1186 */
1187void unregister_key_type(struct key_type *ktype)
1188{
1189	down_write(&key_types_sem);
1190	list_del_init(&ktype->link);
1191	downgrade_write(&key_types_sem);
1192	key_gc_keytype(ktype);
1193	pr_notice("Key type %s unregistered\n", ktype->name);
1194	up_read(&key_types_sem);
1195}
1196EXPORT_SYMBOL(unregister_key_type);
1197
1198/*
1199 * Initialise the key management state.
1200 */
1201void __init key_init(void)
1202{
1203	/* allocate a slab in which we can store keys */
1204	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1205			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1206
1207	/* add the special key types */
1208	list_add_tail(&key_type_keyring.link, &key_types_list);
1209	list_add_tail(&key_type_dead.link, &key_types_list);
1210	list_add_tail(&key_type_user.link, &key_types_list);
1211	list_add_tail(&key_type_logon.link, &key_types_list);
1212
1213	/* record the root user tracking */
1214	rb_link_node(&root_key_user.node,
1215		     NULL,
1216		     &key_user_tree.rb_node);
1217
1218	rb_insert_color(&root_key_user.node,
1219			&key_user_tree);
1220}