Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Data Access Monitor
   4 *
   5 * Author: SeongJae Park <sjpark@amazon.de>
   6 */
   7
   8#define pr_fmt(fmt) "damon: " fmt
   9
  10#include <linux/damon.h>
  11#include <linux/delay.h>
  12#include <linux/kthread.h>
  13#include <linux/mm.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/damon.h>
  19
  20#ifdef CONFIG_DAMON_KUNIT_TEST
  21#undef DAMON_MIN_REGION
  22#define DAMON_MIN_REGION 1
  23#endif
  24
  25static DEFINE_MUTEX(damon_lock);
  26static int nr_running_ctxs;
  27static bool running_exclusive_ctxs;
  28
  29static DEFINE_MUTEX(damon_ops_lock);
  30static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
  31
  32static struct kmem_cache *damon_region_cache __ro_after_init;
  33
  34/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
  35static bool __damon_is_registered_ops(enum damon_ops_id id)
  36{
  37	struct damon_operations empty_ops = {};
  38
  39	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
  40		return false;
  41	return true;
  42}
  43
  44/**
  45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
  46 * @id:	Id of the damon_operations to check if registered.
  47 *
  48 * Return: true if the ops is set, false otherwise.
  49 */
  50bool damon_is_registered_ops(enum damon_ops_id id)
  51{
  52	bool registered;
  53
  54	if (id >= NR_DAMON_OPS)
  55		return false;
  56	mutex_lock(&damon_ops_lock);
  57	registered = __damon_is_registered_ops(id);
  58	mutex_unlock(&damon_ops_lock);
  59	return registered;
  60}
  61
  62/**
  63 * damon_register_ops() - Register a monitoring operations set to DAMON.
  64 * @ops:	monitoring operations set to register.
  65 *
  66 * This function registers a monitoring operations set of valid &struct
  67 * damon_operations->id so that others can find and use them later.
  68 *
  69 * Return: 0 on success, negative error code otherwise.
  70 */
  71int damon_register_ops(struct damon_operations *ops)
  72{
  73	int err = 0;
  74
  75	if (ops->id >= NR_DAMON_OPS)
  76		return -EINVAL;
  77	mutex_lock(&damon_ops_lock);
  78	/* Fail for already registered ops */
  79	if (__damon_is_registered_ops(ops->id)) {
  80		err = -EINVAL;
  81		goto out;
  82	}
  83	damon_registered_ops[ops->id] = *ops;
  84out:
  85	mutex_unlock(&damon_ops_lock);
  86	return err;
  87}
  88
  89/**
  90 * damon_select_ops() - Select a monitoring operations to use with the context.
  91 * @ctx:	monitoring context to use the operations.
  92 * @id:		id of the registered monitoring operations to select.
  93 *
  94 * This function finds registered monitoring operations set of @id and make
  95 * @ctx to use it.
  96 *
  97 * Return: 0 on success, negative error code otherwise.
  98 */
  99int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
 100{
 101	int err = 0;
 102
 103	if (id >= NR_DAMON_OPS)
 104		return -EINVAL;
 105
 106	mutex_lock(&damon_ops_lock);
 107	if (!__damon_is_registered_ops(id))
 108		err = -EINVAL;
 109	else
 110		ctx->ops = damon_registered_ops[id];
 111	mutex_unlock(&damon_ops_lock);
 112	return err;
 113}
 114
 115/*
 116 * Construct a damon_region struct
 117 *
 118 * Returns the pointer to the new struct if success, or NULL otherwise
 119 */
 120struct damon_region *damon_new_region(unsigned long start, unsigned long end)
 121{
 122	struct damon_region *region;
 123
 124	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
 125	if (!region)
 126		return NULL;
 127
 128	region->ar.start = start;
 129	region->ar.end = end;
 130	region->nr_accesses = 0;
 131	INIT_LIST_HEAD(&region->list);
 132
 133	region->age = 0;
 134	region->last_nr_accesses = 0;
 135
 136	return region;
 137}
 138
 139void damon_add_region(struct damon_region *r, struct damon_target *t)
 140{
 141	list_add_tail(&r->list, &t->regions_list);
 142	t->nr_regions++;
 143}
 144
 145static void damon_del_region(struct damon_region *r, struct damon_target *t)
 146{
 147	list_del(&r->list);
 148	t->nr_regions--;
 149}
 150
 151static void damon_free_region(struct damon_region *r)
 152{
 153	kmem_cache_free(damon_region_cache, r);
 154}
 155
 156void damon_destroy_region(struct damon_region *r, struct damon_target *t)
 157{
 158	damon_del_region(r, t);
 159	damon_free_region(r);
 160}
 161
 162/*
 163 * Check whether a region is intersecting an address range
 164 *
 165 * Returns true if it is.
 166 */
 167static bool damon_intersect(struct damon_region *r,
 168		struct damon_addr_range *re)
 169{
 170	return !(r->ar.end <= re->start || re->end <= r->ar.start);
 171}
 172
 173/*
 174 * Fill holes in regions with new regions.
 175 */
 176static int damon_fill_regions_holes(struct damon_region *first,
 177		struct damon_region *last, struct damon_target *t)
 178{
 179	struct damon_region *r = first;
 180
 181	damon_for_each_region_from(r, t) {
 182		struct damon_region *next, *newr;
 183
 184		if (r == last)
 185			break;
 186		next = damon_next_region(r);
 187		if (r->ar.end != next->ar.start) {
 188			newr = damon_new_region(r->ar.end, next->ar.start);
 189			if (!newr)
 190				return -ENOMEM;
 191			damon_insert_region(newr, r, next, t);
 192		}
 193	}
 194	return 0;
 195}
 196
 197/*
 198 * damon_set_regions() - Set regions of a target for given address ranges.
 199 * @t:		the given target.
 200 * @ranges:	array of new monitoring target ranges.
 201 * @nr_ranges:	length of @ranges.
 202 *
 203 * This function adds new regions to, or modify existing regions of a
 204 * monitoring target to fit in specific ranges.
 205 *
 206 * Return: 0 if success, or negative error code otherwise.
 207 */
 208int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
 209		unsigned int nr_ranges)
 210{
 211	struct damon_region *r, *next;
 212	unsigned int i;
 213	int err;
 214
 215	/* Remove regions which are not in the new ranges */
 216	damon_for_each_region_safe(r, next, t) {
 217		for (i = 0; i < nr_ranges; i++) {
 218			if (damon_intersect(r, &ranges[i]))
 219				break;
 220		}
 221		if (i == nr_ranges)
 222			damon_destroy_region(r, t);
 223	}
 224
 225	r = damon_first_region(t);
 226	/* Add new regions or resize existing regions to fit in the ranges */
 227	for (i = 0; i < nr_ranges; i++) {
 228		struct damon_region *first = NULL, *last, *newr;
 229		struct damon_addr_range *range;
 230
 231		range = &ranges[i];
 232		/* Get the first/last regions intersecting with the range */
 233		damon_for_each_region_from(r, t) {
 234			if (damon_intersect(r, range)) {
 235				if (!first)
 236					first = r;
 237				last = r;
 238			}
 239			if (r->ar.start >= range->end)
 240				break;
 241		}
 242		if (!first) {
 243			/* no region intersects with this range */
 244			newr = damon_new_region(
 245					ALIGN_DOWN(range->start,
 246						DAMON_MIN_REGION),
 247					ALIGN(range->end, DAMON_MIN_REGION));
 248			if (!newr)
 249				return -ENOMEM;
 250			damon_insert_region(newr, damon_prev_region(r), r, t);
 251		} else {
 252			/* resize intersecting regions to fit in this range */
 253			first->ar.start = ALIGN_DOWN(range->start,
 254					DAMON_MIN_REGION);
 255			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
 256
 257			/* fill possible holes in the range */
 258			err = damon_fill_regions_holes(first, last, t);
 259			if (err)
 260				return err;
 261		}
 262	}
 263	return 0;
 264}
 265
 266/* initialize private fields of damos_quota and return the pointer */
 267static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
 268{
 269	quota->total_charged_sz = 0;
 270	quota->total_charged_ns = 0;
 271	quota->esz = 0;
 272	quota->charged_sz = 0;
 273	quota->charged_from = 0;
 274	quota->charge_target_from = NULL;
 275	quota->charge_addr_from = 0;
 276	return quota;
 277}
 278
 279struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
 280			enum damos_action action, struct damos_quota *quota,
 281			struct damos_watermarks *wmarks)
 282{
 283	struct damos *scheme;
 284
 285	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
 286	if (!scheme)
 287		return NULL;
 288	scheme->pattern = *pattern;
 289	scheme->action = action;
 290	scheme->stat = (struct damos_stat){};
 291	INIT_LIST_HEAD(&scheme->list);
 292
 293	scheme->quota = *(damos_quota_init_priv(quota));
 294
 295	scheme->wmarks = *wmarks;
 296	scheme->wmarks.activated = true;
 297
 298	return scheme;
 299}
 300
 301void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
 302{
 303	list_add_tail(&s->list, &ctx->schemes);
 304}
 305
 306static void damon_del_scheme(struct damos *s)
 307{
 308	list_del(&s->list);
 309}
 310
 311static void damon_free_scheme(struct damos *s)
 312{
 313	kfree(s);
 314}
 315
 316void damon_destroy_scheme(struct damos *s)
 317{
 318	damon_del_scheme(s);
 319	damon_free_scheme(s);
 320}
 321
 322/*
 323 * Construct a damon_target struct
 324 *
 325 * Returns the pointer to the new struct if success, or NULL otherwise
 326 */
 327struct damon_target *damon_new_target(void)
 328{
 329	struct damon_target *t;
 330
 331	t = kmalloc(sizeof(*t), GFP_KERNEL);
 332	if (!t)
 333		return NULL;
 334
 335	t->pid = NULL;
 336	t->nr_regions = 0;
 337	INIT_LIST_HEAD(&t->regions_list);
 338	INIT_LIST_HEAD(&t->list);
 339
 340	return t;
 341}
 342
 343void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
 344{
 345	list_add_tail(&t->list, &ctx->adaptive_targets);
 346}
 347
 348bool damon_targets_empty(struct damon_ctx *ctx)
 349{
 350	return list_empty(&ctx->adaptive_targets);
 351}
 352
 353static void damon_del_target(struct damon_target *t)
 354{
 355	list_del(&t->list);
 356}
 357
 358void damon_free_target(struct damon_target *t)
 359{
 360	struct damon_region *r, *next;
 361
 362	damon_for_each_region_safe(r, next, t)
 363		damon_free_region(r);
 364	kfree(t);
 365}
 366
 367void damon_destroy_target(struct damon_target *t)
 368{
 369	damon_del_target(t);
 370	damon_free_target(t);
 371}
 372
 373unsigned int damon_nr_regions(struct damon_target *t)
 374{
 375	return t->nr_regions;
 376}
 377
 378struct damon_ctx *damon_new_ctx(void)
 379{
 380	struct damon_ctx *ctx;
 381
 382	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 383	if (!ctx)
 384		return NULL;
 385
 386	ctx->attrs.sample_interval = 5 * 1000;
 387	ctx->attrs.aggr_interval = 100 * 1000;
 388	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
 389
 390	ktime_get_coarse_ts64(&ctx->last_aggregation);
 391	ctx->last_ops_update = ctx->last_aggregation;
 392
 393	mutex_init(&ctx->kdamond_lock);
 394
 395	ctx->attrs.min_nr_regions = 10;
 396	ctx->attrs.max_nr_regions = 1000;
 397
 398	INIT_LIST_HEAD(&ctx->adaptive_targets);
 399	INIT_LIST_HEAD(&ctx->schemes);
 400
 401	return ctx;
 402}
 403
 404static void damon_destroy_targets(struct damon_ctx *ctx)
 405{
 406	struct damon_target *t, *next_t;
 407
 408	if (ctx->ops.cleanup) {
 409		ctx->ops.cleanup(ctx);
 410		return;
 411	}
 412
 413	damon_for_each_target_safe(t, next_t, ctx)
 414		damon_destroy_target(t);
 415}
 416
 417void damon_destroy_ctx(struct damon_ctx *ctx)
 418{
 419	struct damos *s, *next_s;
 420
 421	damon_destroy_targets(ctx);
 422
 423	damon_for_each_scheme_safe(s, next_s, ctx)
 424		damon_destroy_scheme(s);
 425
 426	kfree(ctx);
 427}
 428
 429/**
 430 * damon_set_attrs() - Set attributes for the monitoring.
 431 * @ctx:		monitoring context
 432 * @attrs:		monitoring attributes
 433 *
 434 * This function should not be called while the kdamond is running.
 435 * Every time interval is in micro-seconds.
 436 *
 437 * Return: 0 on success, negative error code otherwise.
 438 */
 439int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
 440{
 441	if (attrs->min_nr_regions < 3)
 442		return -EINVAL;
 443	if (attrs->min_nr_regions > attrs->max_nr_regions)
 444		return -EINVAL;
 445
 446	ctx->attrs = *attrs;
 447	return 0;
 448}
 449
 450/**
 451 * damon_set_schemes() - Set data access monitoring based operation schemes.
 452 * @ctx:	monitoring context
 453 * @schemes:	array of the schemes
 454 * @nr_schemes:	number of entries in @schemes
 455 *
 456 * This function should not be called while the kdamond of the context is
 457 * running.
 458 */
 459void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
 460			ssize_t nr_schemes)
 461{
 462	struct damos *s, *next;
 463	ssize_t i;
 464
 465	damon_for_each_scheme_safe(s, next, ctx)
 466		damon_destroy_scheme(s);
 467	for (i = 0; i < nr_schemes; i++)
 468		damon_add_scheme(ctx, schemes[i]);
 469}
 470
 471/**
 472 * damon_nr_running_ctxs() - Return number of currently running contexts.
 473 */
 474int damon_nr_running_ctxs(void)
 475{
 476	int nr_ctxs;
 477
 478	mutex_lock(&damon_lock);
 479	nr_ctxs = nr_running_ctxs;
 480	mutex_unlock(&damon_lock);
 481
 482	return nr_ctxs;
 483}
 484
 485/* Returns the size upper limit for each monitoring region */
 486static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
 487{
 488	struct damon_target *t;
 489	struct damon_region *r;
 490	unsigned long sz = 0;
 491
 492	damon_for_each_target(t, ctx) {
 493		damon_for_each_region(r, t)
 494			sz += damon_sz_region(r);
 495	}
 496
 497	if (ctx->attrs.min_nr_regions)
 498		sz /= ctx->attrs.min_nr_regions;
 499	if (sz < DAMON_MIN_REGION)
 500		sz = DAMON_MIN_REGION;
 501
 502	return sz;
 503}
 504
 505static int kdamond_fn(void *data);
 506
 507/*
 508 * __damon_start() - Starts monitoring with given context.
 509 * @ctx:	monitoring context
 510 *
 511 * This function should be called while damon_lock is hold.
 512 *
 513 * Return: 0 on success, negative error code otherwise.
 514 */
 515static int __damon_start(struct damon_ctx *ctx)
 516{
 517	int err = -EBUSY;
 518
 519	mutex_lock(&ctx->kdamond_lock);
 520	if (!ctx->kdamond) {
 521		err = 0;
 522		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
 523				nr_running_ctxs);
 524		if (IS_ERR(ctx->kdamond)) {
 525			err = PTR_ERR(ctx->kdamond);
 526			ctx->kdamond = NULL;
 527		}
 528	}
 529	mutex_unlock(&ctx->kdamond_lock);
 530
 531	return err;
 532}
 533
 534/**
 535 * damon_start() - Starts the monitorings for a given group of contexts.
 536 * @ctxs:	an array of the pointers for contexts to start monitoring
 537 * @nr_ctxs:	size of @ctxs
 538 * @exclusive:	exclusiveness of this contexts group
 539 *
 540 * This function starts a group of monitoring threads for a group of monitoring
 541 * contexts.  One thread per each context is created and run in parallel.  The
 542 * caller should handle synchronization between the threads by itself.  If
 543 * @exclusive is true and a group of threads that created by other
 544 * 'damon_start()' call is currently running, this function does nothing but
 545 * returns -EBUSY.
 546 *
 547 * Return: 0 on success, negative error code otherwise.
 548 */
 549int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
 550{
 551	int i;
 552	int err = 0;
 553
 554	mutex_lock(&damon_lock);
 555	if ((exclusive && nr_running_ctxs) ||
 556			(!exclusive && running_exclusive_ctxs)) {
 557		mutex_unlock(&damon_lock);
 558		return -EBUSY;
 559	}
 560
 561	for (i = 0; i < nr_ctxs; i++) {
 562		err = __damon_start(ctxs[i]);
 563		if (err)
 564			break;
 565		nr_running_ctxs++;
 566	}
 567	if (exclusive && nr_running_ctxs)
 568		running_exclusive_ctxs = true;
 569	mutex_unlock(&damon_lock);
 570
 571	return err;
 572}
 573
 574/*
 575 * __damon_stop() - Stops monitoring of a given context.
 576 * @ctx:	monitoring context
 577 *
 578 * Return: 0 on success, negative error code otherwise.
 579 */
 580static int __damon_stop(struct damon_ctx *ctx)
 581{
 582	struct task_struct *tsk;
 583
 584	mutex_lock(&ctx->kdamond_lock);
 585	tsk = ctx->kdamond;
 586	if (tsk) {
 587		get_task_struct(tsk);
 588		mutex_unlock(&ctx->kdamond_lock);
 589		kthread_stop(tsk);
 590		put_task_struct(tsk);
 591		return 0;
 592	}
 593	mutex_unlock(&ctx->kdamond_lock);
 594
 595	return -EPERM;
 596}
 597
 598/**
 599 * damon_stop() - Stops the monitorings for a given group of contexts.
 600 * @ctxs:	an array of the pointers for contexts to stop monitoring
 601 * @nr_ctxs:	size of @ctxs
 602 *
 603 * Return: 0 on success, negative error code otherwise.
 604 */
 605int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
 606{
 607	int i, err = 0;
 608
 609	for (i = 0; i < nr_ctxs; i++) {
 610		/* nr_running_ctxs is decremented in kdamond_fn */
 611		err = __damon_stop(ctxs[i]);
 612		if (err)
 613			break;
 614	}
 615	return err;
 616}
 617
 618/*
 619 * damon_check_reset_time_interval() - Check if a time interval is elapsed.
 620 * @baseline:	the time to check whether the interval has elapsed since
 621 * @interval:	the time interval (microseconds)
 622 *
 623 * See whether the given time interval has passed since the given baseline
 624 * time.  If so, it also updates the baseline to current time for next check.
 625 *
 626 * Return:	true if the time interval has passed, or false otherwise.
 627 */
 628static bool damon_check_reset_time_interval(struct timespec64 *baseline,
 629		unsigned long interval)
 630{
 631	struct timespec64 now;
 632
 633	ktime_get_coarse_ts64(&now);
 634	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
 635			interval * 1000)
 636		return false;
 637	*baseline = now;
 638	return true;
 639}
 640
 641/*
 642 * Check whether it is time to flush the aggregated information
 643 */
 644static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
 645{
 646	return damon_check_reset_time_interval(&ctx->last_aggregation,
 647			ctx->attrs.aggr_interval);
 648}
 649
 650/*
 651 * Reset the aggregated monitoring results ('nr_accesses' of each region).
 652 */
 653static void kdamond_reset_aggregated(struct damon_ctx *c)
 654{
 655	struct damon_target *t;
 656	unsigned int ti = 0;	/* target's index */
 657
 658	damon_for_each_target(t, c) {
 659		struct damon_region *r;
 660
 661		damon_for_each_region(r, t) {
 662			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
 663			r->last_nr_accesses = r->nr_accesses;
 664			r->nr_accesses = 0;
 665		}
 666		ti++;
 667	}
 668}
 669
 670static void damon_split_region_at(struct damon_target *t,
 671				  struct damon_region *r, unsigned long sz_r);
 672
 673static bool __damos_valid_target(struct damon_region *r, struct damos *s)
 674{
 675	unsigned long sz;
 676
 677	sz = damon_sz_region(r);
 678	return s->pattern.min_sz_region <= sz &&
 679		sz <= s->pattern.max_sz_region &&
 680		s->pattern.min_nr_accesses <= r->nr_accesses &&
 681		r->nr_accesses <= s->pattern.max_nr_accesses &&
 682		s->pattern.min_age_region <= r->age &&
 683		r->age <= s->pattern.max_age_region;
 684}
 685
 686static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
 687		struct damon_region *r, struct damos *s)
 688{
 689	bool ret = __damos_valid_target(r, s);
 690
 691	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
 692		return ret;
 693
 694	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
 695}
 696
 697/*
 698 * damos_skip_charged_region() - Check if the given region or starting part of
 699 * it is already charged for the DAMOS quota.
 700 * @t:	The target of the region.
 701 * @rp:	The pointer to the region.
 702 * @s:	The scheme to be applied.
 703 *
 704 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
 705 * action would applied to only a part of the target access pattern fulfilling
 706 * regions.  To avoid applying the scheme action to only already applied
 707 * regions, DAMON skips applying the scheme action to the regions that charged
 708 * in the previous charge window.
 709 *
 710 * This function checks if a given region should be skipped or not for the
 711 * reason.  If only the starting part of the region has previously charged,
 712 * this function splits the region into two so that the second one covers the
 713 * area that not charged in the previous charge widnow and saves the second
 714 * region in *rp and returns false, so that the caller can apply DAMON action
 715 * to the second one.
 716 *
 717 * Return: true if the region should be entirely skipped, false otherwise.
 718 */
 719static bool damos_skip_charged_region(struct damon_target *t,
 720		struct damon_region **rp, struct damos *s)
 721{
 722	struct damon_region *r = *rp;
 723	struct damos_quota *quota = &s->quota;
 724	unsigned long sz_to_skip;
 725
 726	/* Skip previously charged regions */
 727	if (quota->charge_target_from) {
 728		if (t != quota->charge_target_from)
 729			return true;
 730		if (r == damon_last_region(t)) {
 731			quota->charge_target_from = NULL;
 732			quota->charge_addr_from = 0;
 733			return true;
 734		}
 735		if (quota->charge_addr_from &&
 736				r->ar.end <= quota->charge_addr_from)
 737			return true;
 738
 739		if (quota->charge_addr_from && r->ar.start <
 740				quota->charge_addr_from) {
 741			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
 742					r->ar.start, DAMON_MIN_REGION);
 743			if (!sz_to_skip) {
 744				if (damon_sz_region(r) <= DAMON_MIN_REGION)
 745					return true;
 746				sz_to_skip = DAMON_MIN_REGION;
 747			}
 748			damon_split_region_at(t, r, sz_to_skip);
 749			r = damon_next_region(r);
 750			*rp = r;
 751		}
 752		quota->charge_target_from = NULL;
 753		quota->charge_addr_from = 0;
 754	}
 755	return false;
 756}
 757
 758static void damos_update_stat(struct damos *s,
 759		unsigned long sz_tried, unsigned long sz_applied)
 760{
 761	s->stat.nr_tried++;
 762	s->stat.sz_tried += sz_tried;
 763	if (sz_applied)
 764		s->stat.nr_applied++;
 765	s->stat.sz_applied += sz_applied;
 766}
 767
 768static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
 769		struct damon_region *r, struct damos *s)
 770{
 771	struct damos_quota *quota = &s->quota;
 772	unsigned long sz = damon_sz_region(r);
 773	struct timespec64 begin, end;
 774	unsigned long sz_applied = 0;
 775	int err = 0;
 776
 777	if (c->ops.apply_scheme) {
 778		if (quota->esz && quota->charged_sz + sz > quota->esz) {
 779			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
 780					DAMON_MIN_REGION);
 781			if (!sz)
 782				goto update_stat;
 783			damon_split_region_at(t, r, sz);
 784		}
 785		ktime_get_coarse_ts64(&begin);
 786		if (c->callback.before_damos_apply)
 787			err = c->callback.before_damos_apply(c, t, r, s);
 788		if (!err)
 789			sz_applied = c->ops.apply_scheme(c, t, r, s);
 790		ktime_get_coarse_ts64(&end);
 791		quota->total_charged_ns += timespec64_to_ns(&end) -
 792			timespec64_to_ns(&begin);
 793		quota->charged_sz += sz;
 794		if (quota->esz && quota->charged_sz >= quota->esz) {
 795			quota->charge_target_from = t;
 796			quota->charge_addr_from = r->ar.end + 1;
 797		}
 798	}
 799	if (s->action != DAMOS_STAT)
 800		r->age = 0;
 801
 802update_stat:
 803	damos_update_stat(s, sz, sz_applied);
 804}
 805
 806static void damon_do_apply_schemes(struct damon_ctx *c,
 807				   struct damon_target *t,
 808				   struct damon_region *r)
 809{
 810	struct damos *s;
 811
 812	damon_for_each_scheme(s, c) {
 813		struct damos_quota *quota = &s->quota;
 814
 815		if (!s->wmarks.activated)
 816			continue;
 817
 818		/* Check the quota */
 819		if (quota->esz && quota->charged_sz >= quota->esz)
 820			continue;
 821
 822		if (damos_skip_charged_region(t, &r, s))
 823			continue;
 824
 825		if (!damos_valid_target(c, t, r, s))
 826			continue;
 827
 828		damos_apply_scheme(c, t, r, s);
 829	}
 830}
 831
 832/* Shouldn't be called if quota->ms and quota->sz are zero */
 833static void damos_set_effective_quota(struct damos_quota *quota)
 834{
 835	unsigned long throughput;
 836	unsigned long esz;
 837
 838	if (!quota->ms) {
 839		quota->esz = quota->sz;
 840		return;
 841	}
 842
 843	if (quota->total_charged_ns)
 844		throughput = quota->total_charged_sz * 1000000 /
 845			quota->total_charged_ns;
 846	else
 847		throughput = PAGE_SIZE * 1024;
 848	esz = throughput * quota->ms;
 849
 850	if (quota->sz && quota->sz < esz)
 851		esz = quota->sz;
 852	quota->esz = esz;
 853}
 854
 855static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
 856{
 857	struct damos_quota *quota = &s->quota;
 858	struct damon_target *t;
 859	struct damon_region *r;
 860	unsigned long cumulated_sz;
 861	unsigned int score, max_score = 0;
 862
 863	if (!quota->ms && !quota->sz)
 864		return;
 865
 866	/* New charge window starts */
 867	if (time_after_eq(jiffies, quota->charged_from +
 868				msecs_to_jiffies(quota->reset_interval))) {
 869		if (quota->esz && quota->charged_sz >= quota->esz)
 870			s->stat.qt_exceeds++;
 871		quota->total_charged_sz += quota->charged_sz;
 872		quota->charged_from = jiffies;
 873		quota->charged_sz = 0;
 874		damos_set_effective_quota(quota);
 875	}
 876
 877	if (!c->ops.get_scheme_score)
 878		return;
 879
 880	/* Fill up the score histogram */
 881	memset(quota->histogram, 0, sizeof(quota->histogram));
 882	damon_for_each_target(t, c) {
 883		damon_for_each_region(r, t) {
 884			if (!__damos_valid_target(r, s))
 885				continue;
 886			score = c->ops.get_scheme_score(c, t, r, s);
 887			quota->histogram[score] += damon_sz_region(r);
 888			if (score > max_score)
 889				max_score = score;
 890		}
 891	}
 892
 893	/* Set the min score limit */
 894	for (cumulated_sz = 0, score = max_score; ; score--) {
 895		cumulated_sz += quota->histogram[score];
 896		if (cumulated_sz >= quota->esz || !score)
 897			break;
 898	}
 899	quota->min_score = score;
 900}
 901
 902static void kdamond_apply_schemes(struct damon_ctx *c)
 903{
 904	struct damon_target *t;
 905	struct damon_region *r, *next_r;
 906	struct damos *s;
 907
 908	damon_for_each_scheme(s, c) {
 909		if (!s->wmarks.activated)
 910			continue;
 911
 912		damos_adjust_quota(c, s);
 913	}
 914
 915	damon_for_each_target(t, c) {
 916		damon_for_each_region_safe(r, next_r, t)
 917			damon_do_apply_schemes(c, t, r);
 918	}
 919}
 920
 921/*
 922 * Merge two adjacent regions into one region
 923 */
 924static void damon_merge_two_regions(struct damon_target *t,
 925		struct damon_region *l, struct damon_region *r)
 926{
 927	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
 928
 929	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
 930			(sz_l + sz_r);
 931	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
 932	l->ar.end = r->ar.end;
 933	damon_destroy_region(r, t);
 934}
 935
 936/*
 937 * Merge adjacent regions having similar access frequencies
 938 *
 939 * t		target affected by this merge operation
 940 * thres	'->nr_accesses' diff threshold for the merge
 941 * sz_limit	size upper limit of each region
 942 */
 943static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
 944				   unsigned long sz_limit)
 945{
 946	struct damon_region *r, *prev = NULL, *next;
 947
 948	damon_for_each_region_safe(r, next, t) {
 949		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
 950			r->age = 0;
 951		else
 952			r->age++;
 953
 954		if (prev && prev->ar.end == r->ar.start &&
 955		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
 956		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
 957			damon_merge_two_regions(t, prev, r);
 958		else
 959			prev = r;
 960	}
 961}
 962
 963/*
 964 * Merge adjacent regions having similar access frequencies
 965 *
 966 * threshold	'->nr_accesses' diff threshold for the merge
 967 * sz_limit	size upper limit of each region
 968 *
 969 * This function merges monitoring target regions which are adjacent and their
 970 * access frequencies are similar.  This is for minimizing the monitoring
 971 * overhead under the dynamically changeable access pattern.  If a merge was
 972 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
 973 */
 974static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
 975				  unsigned long sz_limit)
 976{
 977	struct damon_target *t;
 978
 979	damon_for_each_target(t, c)
 980		damon_merge_regions_of(t, threshold, sz_limit);
 981}
 982
 983/*
 984 * Split a region in two
 985 *
 986 * r		the region to be split
 987 * sz_r		size of the first sub-region that will be made
 988 */
 989static void damon_split_region_at(struct damon_target *t,
 990				  struct damon_region *r, unsigned long sz_r)
 991{
 992	struct damon_region *new;
 993
 994	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
 995	if (!new)
 996		return;
 997
 998	r->ar.end = new->ar.start;
 999
1000	new->age = r->age;
1001	new->last_nr_accesses = r->last_nr_accesses;
1002
1003	damon_insert_region(new, r, damon_next_region(r), t);
1004}
1005
1006/* Split every region in the given target into 'nr_subs' regions */
1007static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1008{
1009	struct damon_region *r, *next;
1010	unsigned long sz_region, sz_sub = 0;
1011	int i;
1012
1013	damon_for_each_region_safe(r, next, t) {
1014		sz_region = damon_sz_region(r);
1015
1016		for (i = 0; i < nr_subs - 1 &&
1017				sz_region > 2 * DAMON_MIN_REGION; i++) {
1018			/*
1019			 * Randomly select size of left sub-region to be at
1020			 * least 10 percent and at most 90% of original region
1021			 */
1022			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1023					sz_region / 10, DAMON_MIN_REGION);
1024			/* Do not allow blank region */
1025			if (sz_sub == 0 || sz_sub >= sz_region)
1026				continue;
1027
1028			damon_split_region_at(t, r, sz_sub);
1029			sz_region = sz_sub;
1030		}
1031	}
1032}
1033
1034/*
1035 * Split every target region into randomly-sized small regions
1036 *
1037 * This function splits every target region into random-sized small regions if
1038 * current total number of the regions is equal or smaller than half of the
1039 * user-specified maximum number of regions.  This is for maximizing the
1040 * monitoring accuracy under the dynamically changeable access patterns.  If a
1041 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1042 * it.
1043 */
1044static void kdamond_split_regions(struct damon_ctx *ctx)
1045{
1046	struct damon_target *t;
1047	unsigned int nr_regions = 0;
1048	static unsigned int last_nr_regions;
1049	int nr_subregions = 2;
1050
1051	damon_for_each_target(t, ctx)
1052		nr_regions += damon_nr_regions(t);
1053
1054	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1055		return;
1056
1057	/* Maybe the middle of the region has different access frequency */
1058	if (last_nr_regions == nr_regions &&
1059			nr_regions < ctx->attrs.max_nr_regions / 3)
1060		nr_subregions = 3;
1061
1062	damon_for_each_target(t, ctx)
1063		damon_split_regions_of(t, nr_subregions);
1064
1065	last_nr_regions = nr_regions;
1066}
1067
1068/*
1069 * Check whether it is time to check and apply the operations-related data
1070 * structures.
1071 *
1072 * Returns true if it is.
1073 */
1074static bool kdamond_need_update_operations(struct damon_ctx *ctx)
1075{
1076	return damon_check_reset_time_interval(&ctx->last_ops_update,
1077			ctx->attrs.ops_update_interval);
1078}
1079
1080/*
1081 * Check whether current monitoring should be stopped
1082 *
1083 * The monitoring is stopped when either the user requested to stop, or all
1084 * monitoring targets are invalid.
1085 *
1086 * Returns true if need to stop current monitoring.
1087 */
1088static bool kdamond_need_stop(struct damon_ctx *ctx)
1089{
1090	struct damon_target *t;
1091
1092	if (kthread_should_stop())
1093		return true;
1094
1095	if (!ctx->ops.target_valid)
1096		return false;
1097
1098	damon_for_each_target(t, ctx) {
1099		if (ctx->ops.target_valid(t))
1100			return false;
1101	}
1102
1103	return true;
1104}
1105
1106static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1107{
1108	struct sysinfo i;
1109
1110	switch (metric) {
1111	case DAMOS_WMARK_FREE_MEM_RATE:
1112		si_meminfo(&i);
1113		return i.freeram * 1000 / i.totalram;
1114	default:
1115		break;
1116	}
1117	return -EINVAL;
1118}
1119
1120/*
1121 * Returns zero if the scheme is active.  Else, returns time to wait for next
1122 * watermark check in micro-seconds.
1123 */
1124static unsigned long damos_wmark_wait_us(struct damos *scheme)
1125{
1126	unsigned long metric;
1127
1128	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1129		return 0;
1130
1131	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1132	/* higher than high watermark or lower than low watermark */
1133	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1134		if (scheme->wmarks.activated)
1135			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1136					scheme->action,
1137					metric > scheme->wmarks.high ?
1138					"high" : "low");
1139		scheme->wmarks.activated = false;
1140		return scheme->wmarks.interval;
1141	}
1142
1143	/* inactive and higher than middle watermark */
1144	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1145			!scheme->wmarks.activated)
1146		return scheme->wmarks.interval;
1147
1148	if (!scheme->wmarks.activated)
1149		pr_debug("activate a scheme (%d)\n", scheme->action);
1150	scheme->wmarks.activated = true;
1151	return 0;
1152}
1153
1154static void kdamond_usleep(unsigned long usecs)
1155{
1156	/* See Documentation/timers/timers-howto.rst for the thresholds */
1157	if (usecs > 20 * USEC_PER_MSEC)
1158		schedule_timeout_idle(usecs_to_jiffies(usecs));
1159	else
1160		usleep_idle_range(usecs, usecs + 1);
1161}
1162
1163/* Returns negative error code if it's not activated but should return */
1164static int kdamond_wait_activation(struct damon_ctx *ctx)
1165{
1166	struct damos *s;
1167	unsigned long wait_time;
1168	unsigned long min_wait_time = 0;
1169	bool init_wait_time = false;
1170
1171	while (!kdamond_need_stop(ctx)) {
1172		damon_for_each_scheme(s, ctx) {
1173			wait_time = damos_wmark_wait_us(s);
1174			if (!init_wait_time || wait_time < min_wait_time) {
1175				init_wait_time = true;
1176				min_wait_time = wait_time;
1177			}
1178		}
1179		if (!min_wait_time)
1180			return 0;
1181
1182		kdamond_usleep(min_wait_time);
1183
1184		if (ctx->callback.after_wmarks_check &&
1185				ctx->callback.after_wmarks_check(ctx))
1186			break;
1187	}
1188	return -EBUSY;
1189}
1190
1191/*
1192 * The monitoring daemon that runs as a kernel thread
1193 */
1194static int kdamond_fn(void *data)
1195{
1196	struct damon_ctx *ctx = data;
1197	struct damon_target *t;
1198	struct damon_region *r, *next;
1199	unsigned int max_nr_accesses = 0;
1200	unsigned long sz_limit = 0;
1201
1202	pr_debug("kdamond (%d) starts\n", current->pid);
1203
1204	if (ctx->ops.init)
1205		ctx->ops.init(ctx);
1206	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1207		goto done;
1208
1209	sz_limit = damon_region_sz_limit(ctx);
1210
1211	while (!kdamond_need_stop(ctx)) {
1212		if (kdamond_wait_activation(ctx))
1213			break;
1214
1215		if (ctx->ops.prepare_access_checks)
1216			ctx->ops.prepare_access_checks(ctx);
1217		if (ctx->callback.after_sampling &&
1218				ctx->callback.after_sampling(ctx))
1219			break;
1220
1221		kdamond_usleep(ctx->attrs.sample_interval);
1222
1223		if (ctx->ops.check_accesses)
1224			max_nr_accesses = ctx->ops.check_accesses(ctx);
1225
1226		if (kdamond_aggregate_interval_passed(ctx)) {
1227			kdamond_merge_regions(ctx,
1228					max_nr_accesses / 10,
1229					sz_limit);
1230			if (ctx->callback.after_aggregation &&
1231					ctx->callback.after_aggregation(ctx))
1232				break;
1233			kdamond_apply_schemes(ctx);
1234			kdamond_reset_aggregated(ctx);
1235			kdamond_split_regions(ctx);
1236			if (ctx->ops.reset_aggregated)
1237				ctx->ops.reset_aggregated(ctx);
1238		}
1239
1240		if (kdamond_need_update_operations(ctx)) {
1241			if (ctx->ops.update)
1242				ctx->ops.update(ctx);
1243			sz_limit = damon_region_sz_limit(ctx);
1244		}
1245	}
1246done:
1247	damon_for_each_target(t, ctx) {
1248		damon_for_each_region_safe(r, next, t)
1249			damon_destroy_region(r, t);
1250	}
1251
1252	if (ctx->callback.before_terminate)
1253		ctx->callback.before_terminate(ctx);
1254	if (ctx->ops.cleanup)
1255		ctx->ops.cleanup(ctx);
1256
1257	pr_debug("kdamond (%d) finishes\n", current->pid);
1258	mutex_lock(&ctx->kdamond_lock);
1259	ctx->kdamond = NULL;
1260	mutex_unlock(&ctx->kdamond_lock);
1261
1262	mutex_lock(&damon_lock);
1263	nr_running_ctxs--;
1264	if (!nr_running_ctxs && running_exclusive_ctxs)
1265		running_exclusive_ctxs = false;
1266	mutex_unlock(&damon_lock);
1267
1268	return 0;
1269}
1270
1271/*
1272 * struct damon_system_ram_region - System RAM resource address region of
1273 *				    [@start, @end).
1274 * @start:	Start address of the region (inclusive).
1275 * @end:	End address of the region (exclusive).
1276 */
1277struct damon_system_ram_region {
1278	unsigned long start;
1279	unsigned long end;
1280};
1281
1282static int walk_system_ram(struct resource *res, void *arg)
1283{
1284	struct damon_system_ram_region *a = arg;
1285
1286	if (a->end - a->start < resource_size(res)) {
1287		a->start = res->start;
1288		a->end = res->end;
1289	}
1290	return 0;
1291}
1292
1293/*
1294 * Find biggest 'System RAM' resource and store its start and end address in
1295 * @start and @end, respectively.  If no System RAM is found, returns false.
1296 */
1297static bool damon_find_biggest_system_ram(unsigned long *start,
1298						unsigned long *end)
1299
1300{
1301	struct damon_system_ram_region arg = {};
1302
1303	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1304	if (arg.end <= arg.start)
1305		return false;
1306
1307	*start = arg.start;
1308	*end = arg.end;
1309	return true;
1310}
1311
1312/**
1313 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1314 * monitoring target as requested, or biggest 'System RAM'.
1315 * @t:		The monitoring target to set the region.
1316 * @start:	The pointer to the start address of the region.
1317 * @end:	The pointer to the end address of the region.
1318 *
1319 * This function sets the region of @t as requested by @start and @end.  If the
1320 * values of @start and @end are zero, however, this function finds the biggest
1321 * 'System RAM' resource and sets the region to cover the resource.  In the
1322 * latter case, this function saves the start and end addresses of the resource
1323 * in @start and @end, respectively.
1324 *
1325 * Return: 0 on success, negative error code otherwise.
1326 */
1327int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1328			unsigned long *start, unsigned long *end)
1329{
1330	struct damon_addr_range addr_range;
1331
1332	if (*start > *end)
1333		return -EINVAL;
1334
1335	if (!*start && !*end &&
1336		!damon_find_biggest_system_ram(start, end))
1337		return -EINVAL;
1338
1339	addr_range.start = *start;
1340	addr_range.end = *end;
1341	return damon_set_regions(t, &addr_range, 1);
1342}
1343
1344static int __init damon_init(void)
1345{
1346	damon_region_cache = KMEM_CACHE(damon_region, 0);
1347	if (unlikely(!damon_region_cache)) {
1348		pr_err("creating damon_region_cache fails\n");
1349		return -ENOMEM;
1350	}
1351
1352	return 0;
1353}
1354
1355subsys_initcall(damon_init);
1356
1357#include "core-test.h"