Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
  3 *
  4 * Copyright (C) 2004-2013 Synopsys, Inc.
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, this list of conditions, and the following disclaimer,
 11 *    without modification.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. The names of the above-listed copyright holders may not be used
 16 *    to endorse or promote products derived from this software without
 17 *    specific prior written permission.
 18 *
 19 * ALTERNATIVELY, this software may be distributed under the terms of the
 20 * GNU General Public License ("GPL") as published by the Free Software
 21 * Foundation; either version 2 of the License, or (at your option) any
 22 * later version.
 23 *
 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 35 */
 
 36#ifndef __DWC2_HCD_H__
 37#define __DWC2_HCD_H__
 38
 39/*
 40 * This file contains the structures, constants, and interfaces for the
 41 * Host Contoller Driver (HCD)
 42 *
 43 * The Host Controller Driver (HCD) is responsible for translating requests
 44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
 45 * It isolates the USBD from the specifics of the controller by providing an
 46 * API to the USBD.
 47 */
 48
 49struct dwc2_qh;
 50
 51/**
 52 * struct dwc2_host_chan - Software host channel descriptor
 53 *
 54 * @hc_num:             Host channel number, used for register address lookup
 55 * @dev_addr:           Address of the device
 56 * @ep_num:             Endpoint of the device
 57 * @ep_is_in:           Endpoint direction
 58 * @speed:              Device speed. One of the following values:
 59 *                       - USB_SPEED_LOW
 60 *                       - USB_SPEED_FULL
 61 *                       - USB_SPEED_HIGH
 62 * @ep_type:            Endpoint type. One of the following values:
 63 *                       - USB_ENDPOINT_XFER_CONTROL: 0
 64 *                       - USB_ENDPOINT_XFER_ISOC:    1
 65 *                       - USB_ENDPOINT_XFER_BULK:    2
 66 *                       - USB_ENDPOINT_XFER_INTR:    3
 67 * @max_packet:         Max packet size in bytes
 68 * @data_pid_start:     PID for initial transaction.
 69 *                       0: DATA0
 70 *                       1: DATA2
 71 *                       2: DATA1
 72 *                       3: MDATA (non-Control EP),
 73 *                          SETUP (Control EP)
 74 * @multi_count:        Number of additional periodic transactions per
 75 *                      (micro)frame
 76 * @xfer_buf:           Pointer to current transfer buffer position
 77 * @xfer_dma:           DMA address of xfer_buf
 
 
 78 * @xfer_len:           Total number of bytes to transfer
 79 * @xfer_count:         Number of bytes transferred so far
 80 * @start_pkt_count:    Packet count at start of transfer
 81 * @xfer_started:       True if the transfer has been started
 82 * @ping:               True if a PING request should be issued on this channel
 83 * @error_state:        True if the error count for this transaction is non-zero
 84 * @halt_on_queue:      True if this channel should be halted the next time a
 85 *                      request is queued for the channel. This is necessary in
 86 *                      slave mode if no request queue space is available when
 87 *                      an attempt is made to halt the channel.
 88 * @halt_pending:       True if the host channel has been halted, but the core
 89 *                      is not finished flushing queued requests
 90 * @do_split:           Enable split for the channel
 91 * @complete_split:     Enable complete split
 92 * @hub_addr:           Address of high speed hub for the split
 93 * @hub_port:           Port of the low/full speed device for the split
 94 * @xact_pos:           Split transaction position. One of the following values:
 95 *                       - DWC2_HCSPLT_XACTPOS_MID
 96 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 97 *                       - DWC2_HCSPLT_XACTPOS_END
 98 *                       - DWC2_HCSPLT_XACTPOS_ALL
 99 * @requests:           Number of requests issued for this channel since it was
100 *                      assigned to the current transfer (not counting PINGs)
101 * @schinfo:            Scheduling micro-frame bitmap
102 * @ntd:                Number of transfer descriptors for the transfer
103 * @halt_status:        Reason for halting the host channel
104 * @hcint               Contents of the HCINT register when the interrupt came
105 * @qh:                 QH for the transfer being processed by this channel
106 * @hc_list_entry:      For linking to list of host channels
107 * @desc_list_addr:     Current QH's descriptor list DMA address
108 * @desc_list_sz:       Current QH's descriptor list size
109 * @split_order_list_entry: List entry for keeping track of the order of splits
110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115struct dwc2_host_chan {
116	u8 hc_num;
117
118	unsigned dev_addr:7;
119	unsigned ep_num:4;
120	unsigned ep_is_in:1;
121	unsigned speed:4;
122	unsigned ep_type:2;
123	unsigned max_packet:11;
124	unsigned data_pid_start:2;
125#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130
131	unsigned multi_count:2;
132
133	u8 *xfer_buf;
134	dma_addr_t xfer_dma;
 
135	u32 xfer_len;
136	u32 xfer_count;
137	u16 start_pkt_count;
138	u8 xfer_started;
139	u8 do_ping;
140	u8 error_state;
141	u8 halt_on_queue;
142	u8 halt_pending;
143	u8 do_split;
144	u8 complete_split;
145	u8 hub_addr;
146	u8 hub_port;
147	u8 xact_pos;
148#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
149#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
150#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
151#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
152
153	u8 requests;
154	u8 schinfo;
155	u16 ntd;
156	enum dwc2_halt_status halt_status;
157	u32 hcint;
158	struct dwc2_qh *qh;
159	struct list_head hc_list_entry;
160	dma_addr_t desc_list_addr;
161	u32 desc_list_sz;
162	struct list_head split_order_list_entry;
163};
164
165struct dwc2_hcd_pipe_info {
166	u8 dev_addr;
167	u8 ep_num;
168	u8 pipe_type;
169	u8 pipe_dir;
170	u16 mps;
 
171};
172
173struct dwc2_hcd_iso_packet_desc {
174	u32 offset;
175	u32 length;
176	u32 actual_length;
177	u32 status;
178};
179
180struct dwc2_qtd;
181
182struct dwc2_hcd_urb {
183	void *priv;
184	struct dwc2_qtd *qtd;
185	void *buf;
186	dma_addr_t dma;
187	void *setup_packet;
188	dma_addr_t setup_dma;
189	u32 length;
190	u32 actual_length;
191	u32 status;
192	u32 error_count;
193	u32 packet_count;
194	u32 flags;
195	u16 interval;
196	struct dwc2_hcd_pipe_info pipe_info;
197	struct dwc2_hcd_iso_packet_desc iso_descs[0];
198};
199
200/* Phases for control transfers */
201enum dwc2_control_phase {
202	DWC2_CONTROL_SETUP,
203	DWC2_CONTROL_DATA,
204	DWC2_CONTROL_STATUS,
205};
206
207/* Transaction types */
208enum dwc2_transaction_type {
209	DWC2_TRANSACTION_NONE,
210	DWC2_TRANSACTION_PERIODIC,
211	DWC2_TRANSACTION_NON_PERIODIC,
212	DWC2_TRANSACTION_ALL,
213};
214
215/* The number of elements per LS bitmap (per port on multi_tt) */
216#define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
217						     BITS_PER_LONG)
218
219/**
220 * struct dwc2_tt - dwc2 data associated with a usb_tt
221 *
222 * @refcount:           Number of Queue Heads (QHs) holding a reference.
223 * @usb_tt:             Pointer back to the official usb_tt.
224 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
225 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
226 *			elements (so sizeof(long) times that in bytes).
227 *
228 * This structure is stored in the hcpriv of the official usb_tt.
229 */
230struct dwc2_tt {
231	int refcount;
232	struct usb_tt *usb_tt;
233	unsigned long periodic_bitmaps[];
234};
235
236/**
237 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
238 *
239 * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
240 *                         the main bus schedule is tightly packed and this
241 *			   time should be interpreted as tightly packed (so
242 *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
243 *			   instead of 125 us).
244 * @duration_us:           How long this transfer goes.
245 */
246
247struct dwc2_hs_transfer_time {
248	u32 start_schedule_us;
249	u16 duration_us;
250};
251
252/**
253 * struct dwc2_qh - Software queue head structure
254 *
255 * @hsotg:              The HCD state structure for the DWC OTG controller
256 * @ep_type:            Endpoint type. One of the following values:
257 *                       - USB_ENDPOINT_XFER_CONTROL
258 *                       - USB_ENDPOINT_XFER_BULK
259 *                       - USB_ENDPOINT_XFER_INT
260 *                       - USB_ENDPOINT_XFER_ISOC
261 * @ep_is_in:           Endpoint direction
262 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 
263 * @dev_speed:          Device speed. One of the following values:
264 *                       - USB_SPEED_LOW
265 *                       - USB_SPEED_FULL
266 *                       - USB_SPEED_HIGH
267 * @data_toggle:        Determines the PID of the next data packet for
268 *                      non-controltransfers. Ignored for control transfers.
269 *                      One of the following values:
270 *                       - DWC2_HC_PID_DATA0
271 *                       - DWC2_HC_PID_DATA1
272 * @ping_state:         Ping state
273 * @do_split:           Full/low speed endpoint on high-speed hub requires split
274 * @td_first:           Index of first activated isochronous transfer descriptor
275 * @td_last:            Index of last activated isochronous transfer descriptor
276 * @host_us:            Bandwidth in microseconds per transfer as seen by host
277 * @device_us:          Bandwidth in microseconds per transfer as seen by device
278 * @host_interval:      Interval between transfers as seen by the host.  If
279 *                      the host is high speed and the device is low speed this
280 *                      will be 8 times device interval.
281 * @device_interval:    Interval between transfers as seen by the device.
282 *                      interval.
283 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
284 *                      the bus.  We'll move the qh to active here.  If the
285 *                      host is in high speed mode this will be a uframe.  If
286 *                      the host is in low speed mode this will be a full frame.
287 * @start_active_frame: If we are partway through a split transfer, this will be
288 *			what next_active_frame was when we started.  Otherwise
289 *			it should always be the same as next_active_frame.
290 * @num_hs_transfers:   Number of transfers in hs_transfers.
291 *                      Normally this is 1 but can be more than one for splits.
292 *                      Always >= 1 unless the host is in low/full speed mode.
293 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
294 *                      bus.  Not used if host is in low or full speed mode (but
295 *                      note that it IS USED if the device is low or full speed
296 *                      as long as the HOST is in high speed mode).
297 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
298 *                           schedule that's being used by this device.  This
299 *			     will be on the periodic_bitmap in a
300 *                           "struct dwc2_tt".  Not used if this device is high
301 *                           speed.  Note that this is in "schedule slice" which
302 *                           is tightly packed.
303 * @ls_duration_us:     Duration on the low speed bus schedule.
304 * @ntd:                Actual number of transfer descriptors in a list
 
 
 
305 * @qtd_list:           List of QTDs for this QH
306 * @channel:            Host channel currently processing transfers for this QH
307 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
308 *                      schedule
309 * @desc_list:          List of transfer descriptors
310 * @desc_list_dma:      Physical address of desc_list
311 * @desc_list_sz:       Size of descriptors list
312 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
313 *                      descriptor and indicates original XferSize value for the
314 *                      descriptor
315 * @unreserve_timer:    Timer for releasing periodic reservation.
316 * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
 
317 * @ttport:             Port number within our tt.
318 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
319 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
320 * @schedule_low_speed: True if we have a low/full speed component (either the
321 *			host is in low/full speed mode or do_split).
 
 
 
322 *
 
323 * A Queue Head (QH) holds the static characteristics of an endpoint and
324 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
325 * be entered in either the non-periodic or periodic schedule.
326 */
327struct dwc2_qh {
328	struct dwc2_hsotg *hsotg;
329	u8 ep_type;
330	u8 ep_is_in;
331	u16 maxp;
 
332	u8 dev_speed;
333	u8 data_toggle;
334	u8 ping_state;
335	u8 do_split;
336	u8 td_first;
337	u8 td_last;
338	u16 host_us;
339	u16 device_us;
340	u16 host_interval;
341	u16 device_interval;
342	u16 next_active_frame;
343	u16 start_active_frame;
344	s16 num_hs_transfers;
345	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
346	u32 ls_start_schedule_slice;
347	u16 ntd;
 
 
348	struct list_head qtd_list;
349	struct dwc2_host_chan *channel;
350	struct list_head qh_list_entry;
351	struct dwc2_hcd_dma_desc *desc_list;
352	dma_addr_t desc_list_dma;
353	u32 desc_list_sz;
354	u32 *n_bytes;
355	struct timer_list unreserve_timer;
 
356	struct dwc2_tt *dwc_tt;
357	int ttport;
358	unsigned tt_buffer_dirty:1;
359	unsigned unreserve_pending:1;
360	unsigned schedule_low_speed:1;
 
 
361};
362
363/**
364 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
365 *
366 * @control_phase:      Current phase for control transfers (Setup, Data, or
367 *                      Status)
368 * @in_process:         Indicates if this QTD is currently processed by HW
369 * @data_toggle:        Determines the PID of the next data packet for the
370 *                      data phase of control transfers. Ignored for other
371 *                      transfer types. One of the following values:
372 *                       - DWC2_HC_PID_DATA0
373 *                       - DWC2_HC_PID_DATA1
374 * @complete_split:     Keeps track of the current split type for FS/LS
375 *                      endpoints on a HS Hub
376 * @isoc_split_pos:     Position of the ISOC split in full/low speed
377 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
378 *                      transfer. A frame descriptor describes the buffer
379 *                      position and length of the data to be transferred in the
380 *                      next scheduled (micro)frame of an isochronous transfer.
381 *                      It also holds status for that transaction. The frame
382 *                      index starts at 0.
383 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
384 *                      current frame
385 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
386 * @error_count:        Holds the number of bus errors that have occurred for
387 *                      a transaction within this transfer
388 * @n_desc:             Number of DMA descriptors for this QTD
389 * @isoc_frame_index_last: Last activated frame (packet) index, used in
390 *                      descriptor DMA mode only
 
391 * @urb:                URB for this transfer
392 * @qh:                 Queue head for this QTD
393 * @qtd_list_entry:     For linking to the QH's list of QTDs
 
 
 
 
394 *
395 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
396 * interrupt, or isochronous transfer. A single QTD is created for each URB
397 * (of one of these types) submitted to the HCD. The transfer associated with
398 * a QTD may require one or multiple transactions.
399 *
400 * A QTD is linked to a Queue Head, which is entered in either the
401 * non-periodic or periodic schedule for execution. When a QTD is chosen for
402 * execution, some or all of its transactions may be executed. After
403 * execution, the state of the QTD is updated. The QTD may be retired if all
404 * its transactions are complete or if an error occurred. Otherwise, it
405 * remains in the schedule so more transactions can be executed later.
406 */
407struct dwc2_qtd {
408	enum dwc2_control_phase control_phase;
409	u8 in_process;
410	u8 data_toggle;
411	u8 complete_split;
412	u8 isoc_split_pos;
413	u16 isoc_frame_index;
414	u16 isoc_split_offset;
415	u16 isoc_td_last;
416	u16 isoc_td_first;
417	u32 ssplit_out_xfer_count;
418	u8 error_count;
419	u8 n_desc;
420	u16 isoc_frame_index_last;
 
421	struct dwc2_hcd_urb *urb;
422	struct dwc2_qh *qh;
423	struct list_head qtd_list_entry;
424};
425
426#ifdef DEBUG
427struct hc_xfer_info {
428	struct dwc2_hsotg *hsotg;
429	struct dwc2_host_chan *chan;
430};
431#endif
432
433u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
434
435/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
436static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
437{
438	return (struct usb_hcd *)hsotg->priv;
439}
440
441/*
442 * Inline used to disable one channel interrupt. Channel interrupts are
443 * disabled when the channel is halted or released by the interrupt handler.
444 * There is no need to handle further interrupts of that type until the
445 * channel is re-assigned. In fact, subsequent handling may cause crashes
446 * because the channel structures are cleaned up when the channel is released.
447 */
448static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
449{
450	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
451
452	mask &= ~intr;
453	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
454}
455
456void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
457void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
458		  enum dwc2_halt_status halt_status);
459void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
460				 struct dwc2_host_chan *chan);
461
462/*
463 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
464 * are read as 1, they won't clear when written back.
465 */
466static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
467{
468	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
469
470	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
471	return hprt0;
472}
473
474static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
475{
476	return pipe->ep_num;
477}
478
479static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
480{
481	return pipe->pipe_type;
482}
483
484static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
 
 
 
 
 
485{
486	return pipe->mps;
487}
488
489static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
490{
491	return pipe->dev_addr;
492}
493
494static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
495{
496	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
497}
498
499static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
500{
501	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
502}
503
504static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
505{
506	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
507}
508
509static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
510{
511	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
512}
513
514static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
515{
516	return pipe->pipe_dir == USB_DIR_IN;
517}
518
519static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
520{
521	return !dwc2_hcd_is_pipe_in(pipe);
522}
523
524extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
525extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
526
527/* Transaction Execution Functions */
528extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
529						struct dwc2_hsotg *hsotg);
530extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
531					enum dwc2_transaction_type tr_type);
532
533/* Schedule Queue Functions */
534/* Implemented in hcd_queue.c */
535extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
536					  struct dwc2_hcd_urb *urb,
537					  gfp_t mem_flags);
538extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
539extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
540extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
541extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
542				   int sched_csplit);
543
544extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
545extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
546			    struct dwc2_qh *qh);
547
548/* Unlinks and frees a QTD */
549static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
550						struct dwc2_qtd *qtd,
551						struct dwc2_qh *qh)
552{
553	list_del(&qtd->qtd_list_entry);
554	kfree(qtd);
555}
556
557/* Descriptor DMA support functions */
558extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
559				     struct dwc2_qh *qh);
560extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
561					struct dwc2_host_chan *chan, int chnum,
562					enum dwc2_halt_status halt_status);
563
564extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
565				 gfp_t mem_flags);
566extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
567
568/* Check if QH is non-periodic */
569#define dwc2_qh_is_non_per(_qh_ptr_) \
570	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
571	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
572
573#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
574static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
575static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
576static inline bool dbg_urb(struct urb *urb) { return true; }
577static inline bool dbg_perio(void) { return true; }
578#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
579static inline bool dbg_hc(struct dwc2_host_chan *hc)
580{
581	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
582	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
583}
584
585static inline bool dbg_qh(struct dwc2_qh *qh)
586{
587	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
588	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
589}
590
591static inline bool dbg_urb(struct urb *urb)
592{
593	return usb_pipetype(urb->pipe) == PIPE_BULK ||
594	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
595}
596
597static inline bool dbg_perio(void) { return false; }
598#endif
599
600/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
601#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
602
603/* Packet size for any kind of endpoint descriptor */
604#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
605
606/*
607 * Returns true if frame1 index is greater than frame2 index. The comparison
608 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
609 * frame number when the max index frame number is reached.
610 */
611static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
612{
613	u16 diff = fr_idx1 - fr_idx2;
614	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
615
616	return diff && !sign;
617}
618
619/*
620 * Returns true if frame1 is less than or equal to frame2. The comparison is
621 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
622 * frame number when the max frame number is reached.
623 */
624static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
625{
626	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
627}
628
629/*
630 * Returns true if frame1 is greater than frame2. The comparison is done
631 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
632 * number when the max frame number is reached.
633 */
634static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
635{
636	return (frame1 != frame2) &&
637	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
638}
639
640/*
641 * Increments frame by the amount specified by inc. The addition is done
642 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
643 */
644static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
645{
646	return (frame + inc) & HFNUM_MAX_FRNUM;
647}
648
649static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
650{
651	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
652}
653
654static inline u16 dwc2_full_frame_num(u16 frame)
655{
656	return (frame & HFNUM_MAX_FRNUM) >> 3;
657}
658
659static inline u16 dwc2_micro_frame_num(u16 frame)
660{
661	return frame & 0x7;
662}
663
664/*
665 * Returns the Core Interrupt Status register contents, ANDed with the Core
666 * Interrupt Mask register contents
667 */
668static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
669{
670	return dwc2_readl(hsotg->regs + GINTSTS) &
671	       dwc2_readl(hsotg->regs + GINTMSK);
672}
673
674static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
675{
676	return dwc2_urb->status;
677}
678
679static inline u32 dwc2_hcd_urb_get_actual_length(
680		struct dwc2_hcd_urb *dwc2_urb)
681{
682	return dwc2_urb->actual_length;
683}
684
685static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
686{
687	return dwc2_urb->error_count;
688}
689
690static inline void dwc2_hcd_urb_set_iso_desc_params(
691		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
692		u32 length)
693{
694	dwc2_urb->iso_descs[desc_num].offset = offset;
695	dwc2_urb->iso_descs[desc_num].length = length;
696}
697
698static inline u32 dwc2_hcd_urb_get_iso_desc_status(
699		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
700{
701	return dwc2_urb->iso_descs[desc_num].status;
702}
703
704static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
705		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
706{
707	return dwc2_urb->iso_descs[desc_num].actual_length;
708}
709
710static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
711						  struct usb_host_endpoint *ep)
712{
713	struct dwc2_qh *qh = ep->hcpriv;
714
715	if (qh && !list_empty(&qh->qh_list_entry))
716		return 1;
717
718	return 0;
719}
720
721static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
722					    struct usb_host_endpoint *ep)
723{
724	struct dwc2_qh *qh = ep->hcpriv;
725
726	if (!qh) {
727		WARN_ON(1);
728		return 0;
729	}
730
731	return qh->host_us;
732}
733
734extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
735				      struct dwc2_host_chan *chan, int chnum,
736				      struct dwc2_qtd *qtd);
737
738/* HCD Core API */
739
740/**
741 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
742 *
743 * @hsotg: The DWC2 HCD
744 *
745 * Returns IRQ_HANDLED if interrupt is handled
746 * Return IRQ_NONE if interrupt is not handled
747 */
748extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
749
750/**
751 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
752 *
753 * @hsotg: The DWC2 HCD
754 */
755extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
756
757/**
758 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
759 * and 0 otherwise
760 *
761 * @hsotg: The DWC2 HCD
762 */
763extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
764
765/**
766 * dwc2_hcd_dump_state() - Dumps hsotg state
767 *
768 * @hsotg: The DWC2 HCD
769 *
770 * NOTE: This function will be removed once the peripheral controller code
771 * is integrated and the driver is stable
772 */
773extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
774
775/**
776 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
777 *
778 * @hsotg: The DWC2 HCD
779 *
780 * This can be used to determine average interrupt latency. Frame remaining is
781 * also shown for start transfer and two additional sample points.
782 *
783 * NOTE: This function will be removed once the peripheral controller code
784 * is integrated and the driver is stable
785 */
786extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
787
788/* URB interface */
789
790/* Transfer flags */
791#define URB_GIVEBACK_ASAP	0x1
792#define URB_SEND_ZERO_PACKET	0x2
793
794/* Host driver callbacks */
795
796extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
797extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
798extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
799			       int *hub_addr, int *hub_port);
800extern struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
801					     void *context, gfp_t mem_flags,
802					     int *ttport);
803
804extern void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
805				  struct dwc2_tt *dwc_tt);
806extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
807extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
808			       int status);
809
810#ifdef DEBUG
811/*
812 * Macro to sample the remaining PHY clocks left in the current frame. This
813 * may be used during debugging to determine the average time it takes to
814 * execute sections of code. There are two possible sample points, "a" and
815 * "b", so the _letter_ argument must be one of these values.
816 *
817 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
818 * example, "cat /sys/devices/lm0/hcd_frrem".
819 */
820#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
821do {									\
822	struct hfnum_data _hfnum_;					\
823	struct dwc2_qtd *_qtd_;						\
824									\
825	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
826			   qtd_list_entry);				\
827	if (usb_pipeint(_qtd_->urb->pipe) &&				\
828	    (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
829		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
830		switch (_hfnum_.b.frnum & 0x7) {			\
831		case 7:							\
832			(_hcd_)->hfnum_7_samples_##_letter_++;		\
833			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
834				_hfnum_.b.frrem;			\
835			break;						\
836		case 0:							\
837			(_hcd_)->hfnum_0_samples_##_letter_++;		\
838			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
839				_hfnum_.b.frrem;			\
840			break;						\
841		default:						\
842			(_hcd_)->hfnum_other_samples_##_letter_++;	\
843			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
844				_hfnum_.b.frrem;			\
845			break;						\
846		}							\
847	}								\
848} while (0)
849#else
850#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
851#endif
852
853#endif /* __DWC2_HCD_H__ */
v6.2
  1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
  2/*
  3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
  4 *
  5 * Copyright (C) 2004-2013 Synopsys, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#ifndef __DWC2_HCD_H__
  9#define __DWC2_HCD_H__
 10
 11/*
 12 * This file contains the structures, constants, and interfaces for the
 13 * Host Contoller Driver (HCD)
 14 *
 15 * The Host Controller Driver (HCD) is responsible for translating requests
 16 * from the USB Driver into the appropriate actions on the DWC_otg controller.
 17 * It isolates the USBD from the specifics of the controller by providing an
 18 * API to the USBD.
 19 */
 20
 21struct dwc2_qh;
 22
 23/**
 24 * struct dwc2_host_chan - Software host channel descriptor
 25 *
 26 * @hc_num:             Host channel number, used for register address lookup
 27 * @dev_addr:           Address of the device
 28 * @ep_num:             Endpoint of the device
 29 * @ep_is_in:           Endpoint direction
 30 * @speed:              Device speed. One of the following values:
 31 *                       - USB_SPEED_LOW
 32 *                       - USB_SPEED_FULL
 33 *                       - USB_SPEED_HIGH
 34 * @ep_type:            Endpoint type. One of the following values:
 35 *                       - USB_ENDPOINT_XFER_CONTROL: 0
 36 *                       - USB_ENDPOINT_XFER_ISOC:    1
 37 *                       - USB_ENDPOINT_XFER_BULK:    2
 38 *                       - USB_ENDPOINT_XFER_INTR:    3
 39 * @max_packet:         Max packet size in bytes
 40 * @data_pid_start:     PID for initial transaction.
 41 *                       0: DATA0
 42 *                       1: DATA2
 43 *                       2: DATA1
 44 *                       3: MDATA (non-Control EP),
 45 *                          SETUP (Control EP)
 46 * @multi_count:        Number of additional periodic transactions per
 47 *                      (micro)frame
 48 * @xfer_buf:           Pointer to current transfer buffer position
 49 * @xfer_dma:           DMA address of xfer_buf
 50 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
 51 *                      DWORD aligned
 52 * @xfer_len:           Total number of bytes to transfer
 53 * @xfer_count:         Number of bytes transferred so far
 54 * @start_pkt_count:    Packet count at start of transfer
 55 * @xfer_started:       True if the transfer has been started
 56 * @do_ping:            True if a PING request should be issued on this channel
 57 * @error_state:        True if the error count for this transaction is non-zero
 58 * @halt_on_queue:      True if this channel should be halted the next time a
 59 *                      request is queued for the channel. This is necessary in
 60 *                      slave mode if no request queue space is available when
 61 *                      an attempt is made to halt the channel.
 62 * @halt_pending:       True if the host channel has been halted, but the core
 63 *                      is not finished flushing queued requests
 64 * @do_split:           Enable split for the channel
 65 * @complete_split:     Enable complete split
 66 * @hub_addr:           Address of high speed hub for the split
 67 * @hub_port:           Port of the low/full speed device for the split
 68 * @xact_pos:           Split transaction position. One of the following values:
 69 *                       - DWC2_HCSPLT_XACTPOS_MID
 70 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 71 *                       - DWC2_HCSPLT_XACTPOS_END
 72 *                       - DWC2_HCSPLT_XACTPOS_ALL
 73 * @requests:           Number of requests issued for this channel since it was
 74 *                      assigned to the current transfer (not counting PINGs)
 75 * @schinfo:            Scheduling micro-frame bitmap
 76 * @ntd:                Number of transfer descriptors for the transfer
 77 * @halt_status:        Reason for halting the host channel
 78 * @hcint:               Contents of the HCINT register when the interrupt came
 79 * @qh:                 QH for the transfer being processed by this channel
 80 * @hc_list_entry:      For linking to list of host channels
 81 * @desc_list_addr:     Current QH's descriptor list DMA address
 82 * @desc_list_sz:       Current QH's descriptor list size
 83 * @split_order_list_entry: List entry for keeping track of the order of splits
 84 *
 85 * This structure represents the state of a single host channel when acting in
 86 * host mode. It contains the data items needed to transfer packets to an
 87 * endpoint via a host channel.
 88 */
 89struct dwc2_host_chan {
 90	u8 hc_num;
 91
 92	unsigned dev_addr:7;
 93	unsigned ep_num:4;
 94	unsigned ep_is_in:1;
 95	unsigned speed:4;
 96	unsigned ep_type:2;
 97	unsigned max_packet:11;
 98	unsigned data_pid_start:2;
 99#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
100#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
101#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
102#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
103#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
104
105	unsigned multi_count:2;
106
107	u8 *xfer_buf;
108	dma_addr_t xfer_dma;
109	dma_addr_t align_buf;
110	u32 xfer_len;
111	u32 xfer_count;
112	u16 start_pkt_count;
113	u8 xfer_started;
114	u8 do_ping;
115	u8 error_state;
116	u8 halt_on_queue;
117	u8 halt_pending;
118	u8 do_split;
119	u8 complete_split;
120	u8 hub_addr;
121	u8 hub_port;
122	u8 xact_pos;
123#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
124#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
125#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
126#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
127
128	u8 requests;
129	u8 schinfo;
130	u16 ntd;
131	enum dwc2_halt_status halt_status;
132	u32 hcint;
133	struct dwc2_qh *qh;
134	struct list_head hc_list_entry;
135	dma_addr_t desc_list_addr;
136	u32 desc_list_sz;
137	struct list_head split_order_list_entry;
138};
139
140struct dwc2_hcd_pipe_info {
141	u8 dev_addr;
142	u8 ep_num;
143	u8 pipe_type;
144	u8 pipe_dir;
145	u16 maxp;
146	u16 maxp_mult;
147};
148
149struct dwc2_hcd_iso_packet_desc {
150	u32 offset;
151	u32 length;
152	u32 actual_length;
153	u32 status;
154};
155
156struct dwc2_qtd;
157
158struct dwc2_hcd_urb {
159	void *priv;
160	struct dwc2_qtd *qtd;
161	void *buf;
162	dma_addr_t dma;
163	void *setup_packet;
164	dma_addr_t setup_dma;
165	u32 length;
166	u32 actual_length;
167	u32 status;
168	u32 error_count;
169	u32 packet_count;
170	u32 flags;
171	u16 interval;
172	struct dwc2_hcd_pipe_info pipe_info;
173	struct dwc2_hcd_iso_packet_desc iso_descs[];
174};
175
176/* Phases for control transfers */
177enum dwc2_control_phase {
178	DWC2_CONTROL_SETUP,
179	DWC2_CONTROL_DATA,
180	DWC2_CONTROL_STATUS,
181};
182
183/* Transaction types */
184enum dwc2_transaction_type {
185	DWC2_TRANSACTION_NONE,
186	DWC2_TRANSACTION_PERIODIC,
187	DWC2_TRANSACTION_NON_PERIODIC,
188	DWC2_TRANSACTION_ALL,
189};
190
191/* The number of elements per LS bitmap (per port on multi_tt) */
192#define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
193						     BITS_PER_LONG)
194
195/**
196 * struct dwc2_tt - dwc2 data associated with a usb_tt
197 *
198 * @refcount:           Number of Queue Heads (QHs) holding a reference.
199 * @usb_tt:             Pointer back to the official usb_tt.
200 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
201 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
202 *			elements (so sizeof(long) times that in bytes).
203 *
204 * This structure is stored in the hcpriv of the official usb_tt.
205 */
206struct dwc2_tt {
207	int refcount;
208	struct usb_tt *usb_tt;
209	unsigned long periodic_bitmaps[];
210};
211
212/**
213 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
214 *
215 * @start_schedule_us:  The start time on the main bus schedule.  Note that
216 *                         the main bus schedule is tightly packed and this
217 *			   time should be interpreted as tightly packed (so
218 *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
219 *			   instead of 125 us).
220 * @duration_us:           How long this transfer goes.
221 */
222
223struct dwc2_hs_transfer_time {
224	u32 start_schedule_us;
225	u16 duration_us;
226};
227
228/**
229 * struct dwc2_qh - Software queue head structure
230 *
231 * @hsotg:              The HCD state structure for the DWC OTG controller
232 * @ep_type:            Endpoint type. One of the following values:
233 *                       - USB_ENDPOINT_XFER_CONTROL
234 *                       - USB_ENDPOINT_XFER_BULK
235 *                       - USB_ENDPOINT_XFER_INT
236 *                       - USB_ENDPOINT_XFER_ISOC
237 * @ep_is_in:           Endpoint direction
238 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
239 * @maxp_mult:          Multiplier for maxp
240 * @dev_speed:          Device speed. One of the following values:
241 *                       - USB_SPEED_LOW
242 *                       - USB_SPEED_FULL
243 *                       - USB_SPEED_HIGH
244 * @data_toggle:        Determines the PID of the next data packet for
245 *                      non-controltransfers. Ignored for control transfers.
246 *                      One of the following values:
247 *                       - DWC2_HC_PID_DATA0
248 *                       - DWC2_HC_PID_DATA1
249 * @ping_state:         Ping state
250 * @do_split:           Full/low speed endpoint on high-speed hub requires split
251 * @td_first:           Index of first activated isochronous transfer descriptor
252 * @td_last:            Index of last activated isochronous transfer descriptor
253 * @host_us:            Bandwidth in microseconds per transfer as seen by host
254 * @device_us:          Bandwidth in microseconds per transfer as seen by device
255 * @host_interval:      Interval between transfers as seen by the host.  If
256 *                      the host is high speed and the device is low speed this
257 *                      will be 8 times device interval.
258 * @device_interval:    Interval between transfers as seen by the device.
259 *                      interval.
260 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
261 *                      the bus.  We'll move the qh to active here.  If the
262 *                      host is in high speed mode this will be a uframe.  If
263 *                      the host is in low speed mode this will be a full frame.
264 * @start_active_frame: If we are partway through a split transfer, this will be
265 *			what next_active_frame was when we started.  Otherwise
266 *			it should always be the same as next_active_frame.
267 * @num_hs_transfers:   Number of transfers in hs_transfers.
268 *                      Normally this is 1 but can be more than one for splits.
269 *                      Always >= 1 unless the host is in low/full speed mode.
270 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
271 *                      bus.  Not used if host is in low or full speed mode (but
272 *                      note that it IS USED if the device is low or full speed
273 *                      as long as the HOST is in high speed mode).
274 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
275 *                           schedule that's being used by this device.  This
276 *			     will be on the periodic_bitmap in a
277 *                           "struct dwc2_tt".  Not used if this device is high
278 *                           speed.  Note that this is in "schedule slice" which
279 *                           is tightly packed.
 
280 * @ntd:                Actual number of transfer descriptors in a list
281 * @dw_align_buf:       Used instead of original buffer if its physical address
282 *                      is not dword-aligned
283 * @dw_align_buf_dma:   DMA address for dw_align_buf
284 * @qtd_list:           List of QTDs for this QH
285 * @channel:            Host channel currently processing transfers for this QH
286 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
287 *                      schedule
288 * @desc_list:          List of transfer descriptors
289 * @desc_list_dma:      Physical address of desc_list
290 * @desc_list_sz:       Size of descriptors list
291 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
292 *                      descriptor and indicates original XferSize value for the
293 *                      descriptor
294 * @unreserve_timer:    Timer for releasing periodic reservation.
295 * @wait_timer:         Timer used to wait before re-queuing.
296 * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
297 * @ttport:             Port number within our tt.
298 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
299 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
300 * @schedule_low_speed: True if we have a low/full speed component (either the
301 *			host is in low/full speed mode or do_split).
302 * @want_wait:          We should wait before re-queuing; only matters for non-
303 *                      periodic transfers and is ignored for periodic ones.
304 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
305 *
306 * @tt_buffer_dirty:	True if EP's TT buffer is not clean.
307 * A Queue Head (QH) holds the static characteristics of an endpoint and
308 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
309 * be entered in either the non-periodic or periodic schedule.
310 */
311struct dwc2_qh {
312	struct dwc2_hsotg *hsotg;
313	u8 ep_type;
314	u8 ep_is_in;
315	u16 maxp;
316	u16 maxp_mult;
317	u8 dev_speed;
318	u8 data_toggle;
319	u8 ping_state;
320	u8 do_split;
321	u8 td_first;
322	u8 td_last;
323	u16 host_us;
324	u16 device_us;
325	u16 host_interval;
326	u16 device_interval;
327	u16 next_active_frame;
328	u16 start_active_frame;
329	s16 num_hs_transfers;
330	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
331	u32 ls_start_schedule_slice;
332	u16 ntd;
333	u8 *dw_align_buf;
334	dma_addr_t dw_align_buf_dma;
335	struct list_head qtd_list;
336	struct dwc2_host_chan *channel;
337	struct list_head qh_list_entry;
338	struct dwc2_dma_desc *desc_list;
339	dma_addr_t desc_list_dma;
340	u32 desc_list_sz;
341	u32 *n_bytes;
342	struct timer_list unreserve_timer;
343	struct hrtimer wait_timer;
344	struct dwc2_tt *dwc_tt;
345	int ttport;
346	unsigned tt_buffer_dirty:1;
347	unsigned unreserve_pending:1;
348	unsigned schedule_low_speed:1;
349	unsigned want_wait:1;
350	unsigned wait_timer_cancel:1;
351};
352
353/**
354 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
355 *
356 * @control_phase:      Current phase for control transfers (Setup, Data, or
357 *                      Status)
358 * @in_process:         Indicates if this QTD is currently processed by HW
359 * @data_toggle:        Determines the PID of the next data packet for the
360 *                      data phase of control transfers. Ignored for other
361 *                      transfer types. One of the following values:
362 *                       - DWC2_HC_PID_DATA0
363 *                       - DWC2_HC_PID_DATA1
364 * @complete_split:     Keeps track of the current split type for FS/LS
365 *                      endpoints on a HS Hub
366 * @isoc_split_pos:     Position of the ISOC split in full/low speed
367 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
368 *                      transfer. A frame descriptor describes the buffer
369 *                      position and length of the data to be transferred in the
370 *                      next scheduled (micro)frame of an isochronous transfer.
371 *                      It also holds status for that transaction. The frame
372 *                      index starts at 0.
373 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
374 *                      current frame
375 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
376 * @error_count:        Holds the number of bus errors that have occurred for
377 *                      a transaction within this transfer
378 * @n_desc:             Number of DMA descriptors for this QTD
379 * @isoc_frame_index_last: Last activated frame (packet) index, used in
380 *                      descriptor DMA mode only
381 * @num_naks:           Number of NAKs received on this QTD.
382 * @urb:                URB for this transfer
383 * @qh:                 Queue head for this QTD
384 * @qtd_list_entry:     For linking to the QH's list of QTDs
385 * @isoc_td_first:	Index of first activated isochronous transfer
386 *			descriptor in Descriptor DMA mode
387 * @isoc_td_last:	Index of last activated isochronous transfer
388 *			descriptor in Descriptor DMA mode
389 *
390 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
391 * interrupt, or isochronous transfer. A single QTD is created for each URB
392 * (of one of these types) submitted to the HCD. The transfer associated with
393 * a QTD may require one or multiple transactions.
394 *
395 * A QTD is linked to a Queue Head, which is entered in either the
396 * non-periodic or periodic schedule for execution. When a QTD is chosen for
397 * execution, some or all of its transactions may be executed. After
398 * execution, the state of the QTD is updated. The QTD may be retired if all
399 * its transactions are complete or if an error occurred. Otherwise, it
400 * remains in the schedule so more transactions can be executed later.
401 */
402struct dwc2_qtd {
403	enum dwc2_control_phase control_phase;
404	u8 in_process;
405	u8 data_toggle;
406	u8 complete_split;
407	u8 isoc_split_pos;
408	u16 isoc_frame_index;
409	u16 isoc_split_offset;
410	u16 isoc_td_last;
411	u16 isoc_td_first;
412	u32 ssplit_out_xfer_count;
413	u8 error_count;
414	u8 n_desc;
415	u16 isoc_frame_index_last;
416	u16 num_naks;
417	struct dwc2_hcd_urb *urb;
418	struct dwc2_qh *qh;
419	struct list_head qtd_list_entry;
420};
421
422#ifdef DEBUG
423struct hc_xfer_info {
424	struct dwc2_hsotg *hsotg;
425	struct dwc2_host_chan *chan;
426};
427#endif
428
429u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
430
431/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
432static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
433{
434	return (struct usb_hcd *)hsotg->priv;
435}
436
437/*
438 * Inline used to disable one channel interrupt. Channel interrupts are
439 * disabled when the channel is halted or released by the interrupt handler.
440 * There is no need to handle further interrupts of that type until the
441 * channel is re-assigned. In fact, subsequent handling may cause crashes
442 * because the channel structures are cleaned up when the channel is released.
443 */
444static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
445{
446	u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
447
448	mask &= ~intr;
449	dwc2_writel(hsotg, mask, HCINTMSK(chnum));
450}
451
452void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
453void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
454		  enum dwc2_halt_status halt_status);
455void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
456				 struct dwc2_host_chan *chan);
457
458/*
459 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
460 * are read as 1, they won't clear when written back.
461 */
462static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
463{
464	u32 hprt0 = dwc2_readl(hsotg, HPRT0);
465
466	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
467	return hprt0;
468}
469
470static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
471{
472	return pipe->ep_num;
473}
474
475static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
476{
477	return pipe->pipe_type;
478}
479
480static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
481{
482	return pipe->maxp;
483}
484
485static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
486{
487	return pipe->maxp_mult;
488}
489
490static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
491{
492	return pipe->dev_addr;
493}
494
495static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
496{
497	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
498}
499
500static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
501{
502	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
503}
504
505static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
506{
507	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
508}
509
510static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
511{
512	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
513}
514
515static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
516{
517	return pipe->pipe_dir == USB_DIR_IN;
518}
519
520static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
521{
522	return !dwc2_hcd_is_pipe_in(pipe);
523}
524
525int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
526void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
527
528/* Transaction Execution Functions */
529enum dwc2_transaction_type dwc2_hcd_select_transactions(
530						struct dwc2_hsotg *hsotg);
531void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
532				 enum dwc2_transaction_type tr_type);
533
534/* Schedule Queue Functions */
535/* Implemented in hcd_queue.c */
536struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
537				   struct dwc2_hcd_urb *urb,
538					  gfp_t mem_flags);
539void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
540int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
541void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
542void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
543			    int sched_csplit);
544
545void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
546int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
547		     struct dwc2_qh *qh);
548
549/* Unlinks and frees a QTD */
550static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
551						struct dwc2_qtd *qtd,
552						struct dwc2_qh *qh)
553{
554	list_del(&qtd->qtd_list_entry);
555	kfree(qtd);
556}
557
558/* Descriptor DMA support functions */
559void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
560			      struct dwc2_qh *qh);
561void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
562				 struct dwc2_host_chan *chan, int chnum,
563					enum dwc2_halt_status halt_status);
564
565int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
566			  gfp_t mem_flags);
567void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
568
569/* Check if QH is non-periodic */
570#define dwc2_qh_is_non_per(_qh_ptr_) \
571	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
572	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
573
574#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
575static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
576static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
577static inline bool dbg_urb(struct urb *urb) { return true; }
578static inline bool dbg_perio(void) { return true; }
579#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
580static inline bool dbg_hc(struct dwc2_host_chan *hc)
581{
582	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
583	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
584}
585
586static inline bool dbg_qh(struct dwc2_qh *qh)
587{
588	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
589	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
590}
591
592static inline bool dbg_urb(struct urb *urb)
593{
594	return usb_pipetype(urb->pipe) == PIPE_BULK ||
595	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
596}
597
598static inline bool dbg_perio(void) { return false; }
599#endif
600
 
 
 
 
 
 
601/*
602 * Returns true if frame1 index is greater than frame2 index. The comparison
603 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
604 * frame number when the max index frame number is reached.
605 */
606static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
607{
608	u16 diff = fr_idx1 - fr_idx2;
609	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
610
611	return diff && !sign;
612}
613
614/*
615 * Returns true if frame1 is less than or equal to frame2. The comparison is
616 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
617 * frame number when the max frame number is reached.
618 */
619static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
620{
621	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
622}
623
624/*
625 * Returns true if frame1 is greater than frame2. The comparison is done
626 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
627 * number when the max frame number is reached.
628 */
629static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
630{
631	return (frame1 != frame2) &&
632	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
633}
634
635/*
636 * Increments frame by the amount specified by inc. The addition is done
637 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
638 */
639static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
640{
641	return (frame + inc) & HFNUM_MAX_FRNUM;
642}
643
644static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
645{
646	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
647}
648
649static inline u16 dwc2_full_frame_num(u16 frame)
650{
651	return (frame & HFNUM_MAX_FRNUM) >> 3;
652}
653
654static inline u16 dwc2_micro_frame_num(u16 frame)
655{
656	return frame & 0x7;
657}
658
659/*
660 * Returns the Core Interrupt Status register contents, ANDed with the Core
661 * Interrupt Mask register contents
662 */
663static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
664{
665	return dwc2_readl(hsotg, GINTSTS) &
666	       dwc2_readl(hsotg, GINTMSK);
667}
668
669static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
670{
671	return dwc2_urb->status;
672}
673
674static inline u32 dwc2_hcd_urb_get_actual_length(
675		struct dwc2_hcd_urb *dwc2_urb)
676{
677	return dwc2_urb->actual_length;
678}
679
680static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
681{
682	return dwc2_urb->error_count;
683}
684
685static inline void dwc2_hcd_urb_set_iso_desc_params(
686		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
687		u32 length)
688{
689	dwc2_urb->iso_descs[desc_num].offset = offset;
690	dwc2_urb->iso_descs[desc_num].length = length;
691}
692
693static inline u32 dwc2_hcd_urb_get_iso_desc_status(
694		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
695{
696	return dwc2_urb->iso_descs[desc_num].status;
697}
698
699static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
700		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
701{
702	return dwc2_urb->iso_descs[desc_num].actual_length;
703}
704
705static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
706						  struct usb_host_endpoint *ep)
707{
708	struct dwc2_qh *qh = ep->hcpriv;
709
710	if (qh && !list_empty(&qh->qh_list_entry))
711		return 1;
712
713	return 0;
714}
715
716static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
717					    struct usb_host_endpoint *ep)
718{
719	struct dwc2_qh *qh = ep->hcpriv;
720
721	if (!qh) {
722		WARN_ON(1);
723		return 0;
724	}
725
726	return qh->host_us;
727}
728
729void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
730			       struct dwc2_host_chan *chan, int chnum,
731				      struct dwc2_qtd *qtd);
732
733/* HCD Core API */
734
735/**
736 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
737 *
738 * @hsotg: The DWC2 HCD
739 *
740 * Returns IRQ_HANDLED if interrupt is handled
741 * Return IRQ_NONE if interrupt is not handled
742 */
743irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
744
745/**
746 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
747 *
748 * @hsotg: The DWC2 HCD
749 */
750void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
751
752/**
753 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
754 * and 0 otherwise
755 *
756 * @hsotg: The DWC2 HCD
757 */
758int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
759
760/**
761 * dwc2_hcd_dump_state() - Dumps hsotg state
762 *
763 * @hsotg: The DWC2 HCD
764 *
765 * NOTE: This function will be removed once the peripheral controller code
766 * is integrated and the driver is stable
767 */
768void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
769
770/* URB interface */
771
772/* Transfer flags */
773#define URB_GIVEBACK_ASAP	0x1
774#define URB_SEND_ZERO_PACKET	0x2
775
776/* Host driver callbacks */
777struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
778				      void *context, gfp_t mem_flags,
779				      int *ttport);
780
781void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
782			   struct dwc2_tt *dwc_tt);
783int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
784void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
785			int status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786
787#endif /* __DWC2_HCD_H__ */