Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * hcd.c - DesignWare HS OTG Controller host-mode routines
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37/*
  38 * This file contains the core HCD code, and implements the Linux hc_driver
  39 * API
  40 */
  41#include <linux/kernel.h>
  42#include <linux/module.h>
  43#include <linux/spinlock.h>
  44#include <linux/interrupt.h>
 
  45#include <linux/dma-mapping.h>
  46#include <linux/delay.h>
  47#include <linux/io.h>
  48#include <linux/slab.h>
  49#include <linux/usb.h>
  50
  51#include <linux/usb/hcd.h>
  52#include <linux/usb/ch11.h>
 
  53
  54#include "core.h"
  55#include "hcd.h"
  56
  57/*
  58 * =========================================================================
  59 *  Host Core Layer Functions
  60 * =========================================================================
  61 */
  62
  63/**
  64 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  65 * used in both device and host modes
  66 *
  67 * @hsotg: Programming view of the DWC_otg controller
  68 */
  69static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  70{
  71	u32 intmsk;
  72
  73	/* Clear any pending OTG Interrupts */
  74	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
  75
  76	/* Clear any pending interrupts */
  77	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
  78
  79	/* Enable the interrupts in the GINTMSK */
  80	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  81
  82	if (hsotg->core_params->dma_enable <= 0)
  83		intmsk |= GINTSTS_RXFLVL;
  84	if (hsotg->core_params->external_id_pin_ctl <= 0)
  85		intmsk |= GINTSTS_CONIDSTSCHNG;
  86
  87	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  88		  GINTSTS_SESSREQINT;
  89
  90	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
  91}
  92
  93/*
  94 * Initializes the FSLSPClkSel field of the HCFG register depending on the
  95 * PHY type
  96 */
  97static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
  98{
  99	u32 hcfg, val;
 100
 101	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
 102	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
 103	     hsotg->core_params->ulpi_fs_ls > 0) ||
 104	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
 105		/* Full speed PHY */
 106		val = HCFG_FSLSPCLKSEL_48_MHZ;
 107	} else {
 108		/* High speed PHY running at full speed or high speed */
 109		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
 110	}
 111
 112	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
 113	hcfg = dwc2_readl(hsotg->regs + HCFG);
 114	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
 115	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
 116	dwc2_writel(hcfg, hsotg->regs + HCFG);
 117}
 118
 119static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 120{
 121	u32 usbcfg, i2cctl;
 122	int retval = 0;
 123
 124	/*
 125	 * core_init() is now called on every switch so only call the
 126	 * following for the first time through
 127	 */
 128	if (select_phy) {
 129		dev_dbg(hsotg->dev, "FS PHY selected\n");
 130
 131		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 132		if (!(usbcfg & GUSBCFG_PHYSEL)) {
 133			usbcfg |= GUSBCFG_PHYSEL;
 134			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 135
 136			/* Reset after a PHY select */
 137			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
 138
 139			if (retval) {
 140				dev_err(hsotg->dev,
 141					"%s: Reset failed, aborting", __func__);
 142				return retval;
 143			}
 144		}
 145	}
 146
 147	/*
 148	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
 149	 * do this on HNP Dev/Host mode switches (done in dev_init and
 150	 * host_init).
 151	 */
 152	if (dwc2_is_host_mode(hsotg))
 153		dwc2_init_fs_ls_pclk_sel(hsotg);
 154
 155	if (hsotg->core_params->i2c_enable > 0) {
 156		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
 157
 158		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
 159		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 160		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
 161		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 162
 163		/* Program GI2CCTL.I2CEn */
 164		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
 165		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
 166		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
 167		i2cctl &= ~GI2CCTL_I2CEN;
 168		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
 169		i2cctl |= GI2CCTL_I2CEN;
 170		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
 171	}
 172
 173	return retval;
 174}
 175
 176static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 177{
 178	u32 usbcfg, usbcfg_old;
 179	int retval = 0;
 180
 181	if (!select_phy)
 182		return 0;
 183
 184	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 185	usbcfg_old = usbcfg;
 186
 187	/*
 188	 * HS PHY parameters. These parameters are preserved during soft reset
 189	 * so only program the first time. Do a soft reset immediately after
 190	 * setting phyif.
 191	 */
 192	switch (hsotg->core_params->phy_type) {
 193	case DWC2_PHY_TYPE_PARAM_ULPI:
 194		/* ULPI interface */
 195		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
 196		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
 197		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
 198		if (hsotg->core_params->phy_ulpi_ddr > 0)
 199			usbcfg |= GUSBCFG_DDRSEL;
 200		break;
 201	case DWC2_PHY_TYPE_PARAM_UTMI:
 202		/* UTMI+ interface */
 203		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
 204		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
 205		if (hsotg->core_params->phy_utmi_width == 16)
 206			usbcfg |= GUSBCFG_PHYIF16;
 207		break;
 208	default:
 209		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
 210		break;
 211	}
 212
 213	if (usbcfg != usbcfg_old) {
 214		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 215
 216		/* Reset after setting the PHY parameters */
 217		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
 218		if (retval) {
 219			dev_err(hsotg->dev,
 220				"%s: Reset failed, aborting", __func__);
 221			return retval;
 222		}
 223	}
 224
 225	return retval;
 226}
 227
 228static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 229{
 230	u32 usbcfg;
 231	int retval = 0;
 232
 233	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
 234	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
 235		/* If FS mode with FS PHY */
 236		retval = dwc2_fs_phy_init(hsotg, select_phy);
 237		if (retval)
 238			return retval;
 239	} else {
 240		/* High speed PHY */
 241		retval = dwc2_hs_phy_init(hsotg, select_phy);
 242		if (retval)
 243			return retval;
 244	}
 245
 246	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
 247	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
 248	    hsotg->core_params->ulpi_fs_ls > 0) {
 249		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
 250		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 251		usbcfg |= GUSBCFG_ULPI_FS_LS;
 252		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
 253		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 254	} else {
 255		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 256		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
 257		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
 258		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 259	}
 260
 261	return retval;
 262}
 263
 264static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
 265{
 266	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
 267
 268	switch (hsotg->hw_params.arch) {
 269	case GHWCFG2_EXT_DMA_ARCH:
 270		dev_err(hsotg->dev, "External DMA Mode not supported\n");
 271		return -EINVAL;
 272
 273	case GHWCFG2_INT_DMA_ARCH:
 274		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
 275		if (hsotg->core_params->ahbcfg != -1) {
 276			ahbcfg &= GAHBCFG_CTRL_MASK;
 277			ahbcfg |= hsotg->core_params->ahbcfg &
 278				  ~GAHBCFG_CTRL_MASK;
 279		}
 280		break;
 281
 282	case GHWCFG2_SLAVE_ONLY_ARCH:
 283	default:
 284		dev_dbg(hsotg->dev, "Slave Only Mode\n");
 285		break;
 286	}
 287
 288	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
 289		hsotg->core_params->dma_enable,
 290		hsotg->core_params->dma_desc_enable);
 291
 292	if (hsotg->core_params->dma_enable > 0) {
 293		if (hsotg->core_params->dma_desc_enable > 0)
 294			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
 295		else
 296			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
 297	} else {
 298		dev_dbg(hsotg->dev, "Using Slave mode\n");
 299		hsotg->core_params->dma_desc_enable = 0;
 300	}
 301
 302	if (hsotg->core_params->dma_enable > 0)
 303		ahbcfg |= GAHBCFG_DMA_EN;
 
 
 304
 305	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
 306
 307	return 0;
 308}
 309
 310static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 311{
 312	u32 usbcfg;
 313
 314	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 315	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 316
 317	switch (hsotg->hw_params.op_mode) {
 318	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 319		if (hsotg->core_params->otg_cap ==
 320				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
 321			usbcfg |= GUSBCFG_HNPCAP;
 322		if (hsotg->core_params->otg_cap !=
 323				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 324			usbcfg |= GUSBCFG_SRPCAP;
 325		break;
 326
 327	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 328	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 329	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 330		if (hsotg->core_params->otg_cap !=
 331				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 332			usbcfg |= GUSBCFG_SRPCAP;
 333		break;
 334
 335	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 336	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 337	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 338	default:
 339		break;
 340	}
 341
 342	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343}
 344
 345/**
 346 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 347 *
 348 * @hsotg: Programming view of DWC_otg controller
 349 */
 350static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 351{
 352	u32 intmsk;
 353
 354	dev_dbg(hsotg->dev, "%s()\n", __func__);
 355
 356	/* Disable all interrupts */
 357	dwc2_writel(0, hsotg->regs + GINTMSK);
 358	dwc2_writel(0, hsotg->regs + HAINTMSK);
 359
 360	/* Enable the common interrupts */
 361	dwc2_enable_common_interrupts(hsotg);
 362
 363	/* Enable host mode interrupts without disturbing common interrupts */
 364	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 365	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 366	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 367}
 368
 369/**
 370 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 371 *
 372 * @hsotg: Programming view of DWC_otg controller
 373 */
 374static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 375{
 376	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 377
 378	/* Disable host mode interrupts without disturbing common interrupts */
 379	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 380		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 381	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 382}
 383
 384/*
 385 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 386 * For system that have a total fifo depth that is smaller than the default
 387 * RX + TX fifo size.
 388 *
 389 * @hsotg: Programming view of DWC_otg controller
 390 */
 391static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 392{
 393	struct dwc2_core_params *params = hsotg->core_params;
 394	struct dwc2_hw_params *hw = &hsotg->hw_params;
 395	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 396
 397	total_fifo_size = hw->total_fifo_size;
 398	rxfsiz = params->host_rx_fifo_size;
 399	nptxfsiz = params->host_nperio_tx_fifo_size;
 400	ptxfsiz = params->host_perio_tx_fifo_size;
 401
 402	/*
 403	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 404	 * allocation with support for high bandwidth endpoints. Synopsys
 405	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
 406	 * non-periodic as 512.
 407	 */
 408	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 409		/*
 410		 * For Buffer DMA mode/Scatter Gather DMA mode
 411		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 412		 * with n = number of host channel.
 413		 * 2 * ((1024/4) + 2) = 516
 414		 */
 415		rxfsiz = 516 + hw->host_channels;
 416
 417		/*
 418		 * min non-periodic tx fifo depth
 419		 * 2 * (largest non-periodic USB packet used / 4)
 420		 * 2 * (512/4) = 256
 421		 */
 422		nptxfsiz = 256;
 423
 424		/*
 425		 * min periodic tx fifo depth
 426		 * (largest packet size*MC)/4
 427		 * (1024 * 3)/4 = 768
 428		 */
 429		ptxfsiz = 768;
 430
 431		params->host_rx_fifo_size = rxfsiz;
 432		params->host_nperio_tx_fifo_size = nptxfsiz;
 433		params->host_perio_tx_fifo_size = ptxfsiz;
 434	}
 435
 436	/*
 437	 * If the summation of RX, NPTX and PTX fifo sizes is still
 438	 * bigger than the total_fifo_size, then we have a problem.
 439	 *
 440	 * We won't be able to allocate as many endpoints. Right now,
 441	 * we're just printing an error message, but ideally this FIFO
 442	 * allocation algorithm would be improved in the future.
 443	 *
 444	 * FIXME improve this FIFO allocation algorithm.
 445	 */
 446	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 447		dev_err(hsotg->dev, "invalid fifo sizes\n");
 448}
 449
 450static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 451{
 452	struct dwc2_core_params *params = hsotg->core_params;
 453	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 454
 455	if (!params->enable_dynamic_fifo)
 456		return;
 457
 458	dwc2_calculate_dynamic_fifo(hsotg);
 459
 460	/* Rx FIFO */
 461	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
 462	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 463	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 464	grxfsiz |= params->host_rx_fifo_size <<
 465		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 466	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
 467	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 468		dwc2_readl(hsotg->regs + GRXFSIZ));
 469
 470	/* Non-periodic Tx FIFO */
 471	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 472		dwc2_readl(hsotg->regs + GNPTXFSIZ));
 473	nptxfsiz = params->host_nperio_tx_fifo_size <<
 474		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 475	nptxfsiz |= params->host_rx_fifo_size <<
 476		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 477	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
 478	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 479		dwc2_readl(hsotg->regs + GNPTXFSIZ));
 480
 481	/* Periodic Tx FIFO */
 482	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 483		dwc2_readl(hsotg->regs + HPTXFSIZ));
 484	hptxfsiz = params->host_perio_tx_fifo_size <<
 485		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 486	hptxfsiz |= (params->host_rx_fifo_size +
 487		     params->host_nperio_tx_fifo_size) <<
 488		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 489	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
 490	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 491		dwc2_readl(hsotg->regs + HPTXFSIZ));
 492
 493	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
 494	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
 495		/*
 
 496		 * Global DFIFOCFG calculation for Host mode -
 497		 * include RxFIFO, NPTXFIFO and HPTXFIFO
 498		 */
 499		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
 500		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 501		dfifocfg |= (params->host_rx_fifo_size +
 502			     params->host_nperio_tx_fifo_size +
 503			     params->host_perio_tx_fifo_size) <<
 504			    GDFIFOCFG_EPINFOBASE_SHIFT &
 505			    GDFIFOCFG_EPINFOBASE_MASK;
 506		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
 507	}
 508}
 509
 510/**
 511 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 512 * the HFIR register according to PHY type and speed
 513 *
 514 * @hsotg: Programming view of DWC_otg controller
 515 *
 516 * NOTE: The caller can modify the value of the HFIR register only after the
 517 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 518 * has been set
 519 */
 520u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 521{
 522	u32 usbcfg;
 523	u32 hprt0;
 524	int clock = 60;	/* default value */
 525
 526	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 527	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
 528
 529	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 530	    !(usbcfg & GUSBCFG_PHYIF16))
 531		clock = 60;
 532	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 533	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 534		clock = 48;
 535	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 536	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 537		clock = 30;
 538	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 539	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 540		clock = 60;
 541	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 542	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 543		clock = 48;
 544	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 545	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 546		clock = 48;
 547	if ((usbcfg & GUSBCFG_PHYSEL) &&
 548	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 549		clock = 48;
 550
 551	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 552		/* High speed case */
 553		return 125 * clock - 1;
 554
 555	/* FS/LS case */
 556	return 1000 * clock - 1;
 557}
 558
 559/**
 560 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 561 * buffer
 562 *
 563 * @core_if: Programming view of DWC_otg controller
 564 * @dest:    Destination buffer for the packet
 565 * @bytes:   Number of bytes to copy to the destination
 566 */
 567void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 568{
 569	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
 570	u32 *data_buf = (u32 *)dest;
 571	int word_count = (bytes + 3) / 4;
 572	int i;
 573
 574	/*
 575	 * Todo: Account for the case where dest is not dword aligned. This
 576	 * requires reading data from the FIFO into a u32 temp buffer, then
 577	 * moving it into the data buffer.
 578	 */
 579
 580	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 581
 582	for (i = 0; i < word_count; i++, data_buf++)
 583		*data_buf = dwc2_readl(fifo);
 584}
 585
 586/**
 587 * dwc2_dump_channel_info() - Prints the state of a host channel
 588 *
 589 * @hsotg: Programming view of DWC_otg controller
 590 * @chan:  Pointer to the channel to dump
 591 *
 592 * Must be called with interrupt disabled and spinlock held
 593 *
 594 * NOTE: This function will be removed once the peripheral controller code
 595 * is integrated and the driver is stable
 596 */
 597static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 598				   struct dwc2_host_chan *chan)
 599{
 600#ifdef VERBOSE_DEBUG
 601	int num_channels = hsotg->core_params->host_channels;
 602	struct dwc2_qh *qh;
 603	u32 hcchar;
 604	u32 hcsplt;
 605	u32 hctsiz;
 606	u32 hc_dma;
 607	int i;
 608
 609	if (!chan)
 610		return;
 611
 612	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
 613	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
 614	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
 615	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
 616
 617	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 618	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 619		hcchar, hcsplt);
 620	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 621		hctsiz, hc_dma);
 622	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 623		chan->dev_addr, chan->ep_num, chan->ep_is_in);
 624	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 625	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 626	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 627	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 628	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 629	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 630	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 631		(unsigned long)chan->xfer_dma);
 632	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 633	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 634	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 635	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 636			    qh_list_entry)
 637		dev_dbg(hsotg->dev, "    %p\n", qh);
 
 
 
 
 638	dev_dbg(hsotg->dev, "  NP active sched:\n");
 639	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 640			    qh_list_entry)
 641		dev_dbg(hsotg->dev, "    %p\n", qh);
 642	dev_dbg(hsotg->dev, "  Channels:\n");
 643	for (i = 0; i < num_channels; i++) {
 644		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 645
 646		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 647	}
 648#endif /* VERBOSE_DEBUG */
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651/*
 652 * =========================================================================
 653 *  Low Level Host Channel Access Functions
 654 * =========================================================================
 655 */
 656
 657static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 658				      struct dwc2_host_chan *chan)
 659{
 660	u32 hcintmsk = HCINTMSK_CHHLTD;
 661
 662	switch (chan->ep_type) {
 663	case USB_ENDPOINT_XFER_CONTROL:
 664	case USB_ENDPOINT_XFER_BULK:
 665		dev_vdbg(hsotg->dev, "control/bulk\n");
 666		hcintmsk |= HCINTMSK_XFERCOMPL;
 667		hcintmsk |= HCINTMSK_STALL;
 668		hcintmsk |= HCINTMSK_XACTERR;
 669		hcintmsk |= HCINTMSK_DATATGLERR;
 670		if (chan->ep_is_in) {
 671			hcintmsk |= HCINTMSK_BBLERR;
 672		} else {
 673			hcintmsk |= HCINTMSK_NAK;
 674			hcintmsk |= HCINTMSK_NYET;
 675			if (chan->do_ping)
 676				hcintmsk |= HCINTMSK_ACK;
 677		}
 678
 679		if (chan->do_split) {
 680			hcintmsk |= HCINTMSK_NAK;
 681			if (chan->complete_split)
 682				hcintmsk |= HCINTMSK_NYET;
 683			else
 684				hcintmsk |= HCINTMSK_ACK;
 685		}
 686
 687		if (chan->error_state)
 688			hcintmsk |= HCINTMSK_ACK;
 689		break;
 690
 691	case USB_ENDPOINT_XFER_INT:
 692		if (dbg_perio())
 693			dev_vdbg(hsotg->dev, "intr\n");
 694		hcintmsk |= HCINTMSK_XFERCOMPL;
 695		hcintmsk |= HCINTMSK_NAK;
 696		hcintmsk |= HCINTMSK_STALL;
 697		hcintmsk |= HCINTMSK_XACTERR;
 698		hcintmsk |= HCINTMSK_DATATGLERR;
 699		hcintmsk |= HCINTMSK_FRMOVRUN;
 700
 701		if (chan->ep_is_in)
 702			hcintmsk |= HCINTMSK_BBLERR;
 703		if (chan->error_state)
 704			hcintmsk |= HCINTMSK_ACK;
 705		if (chan->do_split) {
 706			if (chan->complete_split)
 707				hcintmsk |= HCINTMSK_NYET;
 708			else
 709				hcintmsk |= HCINTMSK_ACK;
 710		}
 711		break;
 712
 713	case USB_ENDPOINT_XFER_ISOC:
 714		if (dbg_perio())
 715			dev_vdbg(hsotg->dev, "isoc\n");
 716		hcintmsk |= HCINTMSK_XFERCOMPL;
 717		hcintmsk |= HCINTMSK_FRMOVRUN;
 718		hcintmsk |= HCINTMSK_ACK;
 719
 720		if (chan->ep_is_in) {
 721			hcintmsk |= HCINTMSK_XACTERR;
 722			hcintmsk |= HCINTMSK_BBLERR;
 723		}
 724		break;
 725	default:
 726		dev_err(hsotg->dev, "## Unknown EP type ##\n");
 727		break;
 728	}
 729
 730	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 731	if (dbg_hc(chan))
 732		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 733}
 734
 735static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 736				    struct dwc2_host_chan *chan)
 737{
 738	u32 hcintmsk = HCINTMSK_CHHLTD;
 739
 740	/*
 741	 * For Descriptor DMA mode core halts the channel on AHB error.
 742	 * Interrupt is not required.
 743	 */
 744	if (hsotg->core_params->dma_desc_enable <= 0) {
 745		if (dbg_hc(chan))
 746			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 747		hcintmsk |= HCINTMSK_AHBERR;
 748	} else {
 749		if (dbg_hc(chan))
 750			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 751		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 752			hcintmsk |= HCINTMSK_XFERCOMPL;
 753	}
 754
 755	if (chan->error_state && !chan->do_split &&
 756	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 757		if (dbg_hc(chan))
 758			dev_vdbg(hsotg->dev, "setting ACK\n");
 759		hcintmsk |= HCINTMSK_ACK;
 760		if (chan->ep_is_in) {
 761			hcintmsk |= HCINTMSK_DATATGLERR;
 762			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 763				hcintmsk |= HCINTMSK_NAK;
 764		}
 765	}
 766
 767	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 768	if (dbg_hc(chan))
 769		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 770}
 771
 772static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 773				struct dwc2_host_chan *chan)
 774{
 775	u32 intmsk;
 776
 777	if (hsotg->core_params->dma_enable > 0) {
 778		if (dbg_hc(chan))
 779			dev_vdbg(hsotg->dev, "DMA enabled\n");
 780		dwc2_hc_enable_dma_ints(hsotg, chan);
 781	} else {
 782		if (dbg_hc(chan))
 783			dev_vdbg(hsotg->dev, "DMA disabled\n");
 784		dwc2_hc_enable_slave_ints(hsotg, chan);
 785	}
 786
 787	/* Enable the top level host channel interrupt */
 788	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
 789	intmsk |= 1 << chan->hc_num;
 790	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
 791	if (dbg_hc(chan))
 792		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 793
 794	/* Make sure host channel interrupts are enabled */
 795	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 796	intmsk |= GINTSTS_HCHINT;
 797	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 798	if (dbg_hc(chan))
 799		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 800}
 801
 802/**
 803 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 804 * a specific endpoint
 805 *
 806 * @hsotg: Programming view of DWC_otg controller
 807 * @chan:  Information needed to initialize the host channel
 808 *
 809 * The HCCHARn register is set up with the characteristics specified in chan.
 810 * Host channel interrupts that may need to be serviced while this transfer is
 811 * in progress are enabled.
 812 */
 813static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 814{
 815	u8 hc_num = chan->hc_num;
 816	u32 hcintmsk;
 817	u32 hcchar;
 818	u32 hcsplt = 0;
 819
 820	if (dbg_hc(chan))
 821		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 822
 823	/* Clear old interrupt conditions for this host channel */
 824	hcintmsk = 0xffffffff;
 825	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 826	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
 827
 828	/* Enable channel interrupts required for this transfer */
 829	dwc2_hc_enable_ints(hsotg, chan);
 830
 831	/*
 832	 * Program the HCCHARn register with the endpoint characteristics for
 833	 * the current transfer
 834	 */
 835	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 836	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 837	if (chan->ep_is_in)
 838		hcchar |= HCCHAR_EPDIR;
 839	if (chan->speed == USB_SPEED_LOW)
 840		hcchar |= HCCHAR_LSPDDEV;
 841	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 842	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 843	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
 844	if (dbg_hc(chan)) {
 845		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 846			 hc_num, hcchar);
 847
 848		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 849			 __func__, hc_num);
 850		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
 851			 chan->dev_addr);
 852		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
 853			 chan->ep_num);
 854		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
 855			 chan->ep_is_in);
 856		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
 857			 chan->speed == USB_SPEED_LOW);
 858		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
 859			 chan->ep_type);
 860		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
 861			 chan->max_packet);
 862	}
 863
 864	/* Program the HCSPLT register for SPLITs */
 865	if (chan->do_split) {
 866		if (dbg_hc(chan))
 867			dev_vdbg(hsotg->dev,
 868				 "Programming HC %d with split --> %s\n",
 869				 hc_num,
 870				 chan->complete_split ? "CSPLIT" : "SSPLIT");
 871		if (chan->complete_split)
 872			hcsplt |= HCSPLT_COMPSPLT;
 873		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 874			  HCSPLT_XACTPOS_MASK;
 875		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 876			  HCSPLT_HUBADDR_MASK;
 877		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 878			  HCSPLT_PRTADDR_MASK;
 879		if (dbg_hc(chan)) {
 880			dev_vdbg(hsotg->dev, "	  comp split %d\n",
 881				 chan->complete_split);
 882			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
 883				 chan->xact_pos);
 884			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
 885				 chan->hub_addr);
 886			dev_vdbg(hsotg->dev, "	  hub port %d\n",
 887				 chan->hub_port);
 888			dev_vdbg(hsotg->dev, "	  is_in %d\n",
 889				 chan->ep_is_in);
 890			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
 891				 chan->max_packet);
 892			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
 893				 chan->xfer_len);
 894		}
 895	}
 896
 897	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
 898}
 899
 900/**
 901 * dwc2_hc_halt() - Attempts to halt a host channel
 902 *
 903 * @hsotg:       Controller register interface
 904 * @chan:        Host channel to halt
 905 * @halt_status: Reason for halting the channel
 906 *
 907 * This function should only be called in Slave mode or to abort a transfer in
 908 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 909 * controller halts the channel when the transfer is complete or a condition
 910 * occurs that requires application intervention.
 911 *
 912 * In slave mode, checks for a free request queue entry, then sets the Channel
 913 * Enable and Channel Disable bits of the Host Channel Characteristics
 914 * register of the specified channel to intiate the halt. If there is no free
 915 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 916 * register to flush requests for this channel. In the latter case, sets a
 917 * flag to indicate that the host channel needs to be halted when a request
 918 * queue slot is open.
 919 *
 920 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 921 * HCCHARn register. The controller ensures there is space in the request
 922 * queue before submitting the halt request.
 923 *
 924 * Some time may elapse before the core flushes any posted requests for this
 925 * host channel and halts. The Channel Halted interrupt handler completes the
 926 * deactivation of the host channel.
 927 */
 928void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 929		  enum dwc2_halt_status halt_status)
 930{
 931	u32 nptxsts, hptxsts, hcchar;
 932
 933	if (dbg_hc(chan))
 934		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
 936		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
 937
 938	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
 939	    halt_status == DWC2_HC_XFER_AHB_ERR) {
 940		/*
 941		 * Disable all channel interrupts except Ch Halted. The QTD
 942		 * and QH state associated with this transfer has been cleared
 943		 * (in the case of URB_DEQUEUE), so the channel needs to be
 944		 * shut down carefully to prevent crashes.
 945		 */
 946		u32 hcintmsk = HCINTMSK_CHHLTD;
 947
 948		dev_vdbg(hsotg->dev, "dequeue/error\n");
 949		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 950
 951		/*
 952		 * Make sure no other interrupts besides halt are currently
 953		 * pending. Handling another interrupt could cause a crash due
 954		 * to the QTD and QH state.
 955		 */
 956		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
 957
 958		/*
 959		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
 960		 * even if the channel was already halted for some other
 961		 * reason
 962		 */
 963		chan->halt_status = halt_status;
 964
 965		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
 966		if (!(hcchar & HCCHAR_CHENA)) {
 967			/*
 968			 * The channel is either already halted or it hasn't
 969			 * started yet. In DMA mode, the transfer may halt if
 970			 * it finishes normally or a condition occurs that
 971			 * requires driver intervention. Don't want to halt
 972			 * the channel again. In either Slave or DMA mode,
 973			 * it's possible that the transfer has been assigned
 974			 * to a channel, but not started yet when an URB is
 975			 * dequeued. Don't want to halt a channel that hasn't
 976			 * started yet.
 977			 */
 978			return;
 979		}
 980	}
 981	if (chan->halt_pending) {
 982		/*
 983		 * A halt has already been issued for this channel. This might
 984		 * happen when a transfer is aborted by a higher level in
 985		 * the stack.
 986		 */
 987		dev_vdbg(hsotg->dev,
 988			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
 989			 __func__, chan->hc_num);
 990		return;
 991	}
 992
 993	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
 994
 995	/* No need to set the bit in DDMA for disabling the channel */
 996	/* TODO check it everywhere channel is disabled */
 997	if (hsotg->core_params->dma_desc_enable <= 0) {
 998		if (dbg_hc(chan))
 999			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1000		hcchar |= HCCHAR_CHENA;
1001	} else {
1002		if (dbg_hc(chan))
1003			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1004	}
1005	hcchar |= HCCHAR_CHDIS;
1006
1007	if (hsotg->core_params->dma_enable <= 0) {
1008		if (dbg_hc(chan))
1009			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1010		hcchar |= HCCHAR_CHENA;
1011
1012		/* Check for space in the request queue to issue the halt */
1013		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1014		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1015			dev_vdbg(hsotg->dev, "control/bulk\n");
1016			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1017			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1018				dev_vdbg(hsotg->dev, "Disabling channel\n");
1019				hcchar &= ~HCCHAR_CHENA;
1020			}
1021		} else {
1022			if (dbg_perio())
1023				dev_vdbg(hsotg->dev, "isoc/intr\n");
1024			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1025			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1026			    hsotg->queuing_high_bandwidth) {
1027				if (dbg_perio())
1028					dev_vdbg(hsotg->dev, "Disabling channel\n");
1029				hcchar &= ~HCCHAR_CHENA;
1030			}
1031		}
1032	} else {
1033		if (dbg_hc(chan))
1034			dev_vdbg(hsotg->dev, "DMA enabled\n");
1035	}
1036
1037	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1038	chan->halt_status = halt_status;
1039
1040	if (hcchar & HCCHAR_CHENA) {
1041		if (dbg_hc(chan))
1042			dev_vdbg(hsotg->dev, "Channel enabled\n");
1043		chan->halt_pending = 1;
1044		chan->halt_on_queue = 0;
1045	} else {
1046		if (dbg_hc(chan))
1047			dev_vdbg(hsotg->dev, "Channel disabled\n");
1048		chan->halt_on_queue = 1;
1049	}
1050
1051	if (dbg_hc(chan)) {
1052		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1053			 chan->hc_num);
1054		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1055			 hcchar);
1056		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1057			 chan->halt_pending);
1058		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1059			 chan->halt_on_queue);
1060		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1061			 chan->halt_status);
1062	}
1063}
1064
1065/**
1066 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1067 *
1068 * @hsotg: Programming view of DWC_otg controller
1069 * @chan:  Identifies the host channel to clean up
1070 *
1071 * This function is normally called after a transfer is done and the host
1072 * channel is being released
1073 */
1074void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1075{
1076	u32 hcintmsk;
1077
1078	chan->xfer_started = 0;
1079
1080	list_del_init(&chan->split_order_list_entry);
1081
1082	/*
1083	 * Clear channel interrupt enables and any unhandled channel interrupt
1084	 * conditions
1085	 */
1086	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1087	hcintmsk = 0xffffffff;
1088	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1089	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1090}
1091
1092/**
1093 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1094 * which frame a periodic transfer should occur
1095 *
1096 * @hsotg:  Programming view of DWC_otg controller
1097 * @chan:   Identifies the host channel to set up and its properties
1098 * @hcchar: Current value of the HCCHAR register for the specified host channel
1099 *
1100 * This function has no effect on non-periodic transfers
1101 */
1102static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1103				       struct dwc2_host_chan *chan, u32 *hcchar)
1104{
1105	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1106	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1107		int host_speed;
1108		int xfer_ns;
1109		int xfer_us;
1110		int bytes_in_fifo;
1111		u16 fifo_space;
1112		u16 frame_number;
1113		u16 wire_frame;
1114
1115		/*
1116		 * Try to figure out if we're an even or odd frame. If we set
1117		 * even and the current frame number is even the the transfer
1118		 * will happen immediately.  Similar if both are odd. If one is
1119		 * even and the other is odd then the transfer will happen when
1120		 * the frame number ticks.
1121		 *
1122		 * There's a bit of a balancing act to get this right.
1123		 * Sometimes we may want to send data in the current frame (AK
1124		 * right away).  We might want to do this if the frame number
1125		 * _just_ ticked, but we might also want to do this in order
1126		 * to continue a split transaction that happened late in a
1127		 * microframe (so we didn't know to queue the next transfer
1128		 * until the frame number had ticked).  The problem is that we
1129		 * need a lot of knowledge to know if there's actually still
1130		 * time to send things or if it would be better to wait until
1131		 * the next frame.
1132		 *
1133		 * We can look at how much time is left in the current frame
1134		 * and make a guess about whether we'll have time to transfer.
1135		 * We'll do that.
1136		 */
1137
1138		/* Get speed host is running at */
1139		host_speed = (chan->speed != USB_SPEED_HIGH &&
1140			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1141
1142		/* See how many bytes are in the periodic FIFO right now */
1143		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1144			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1145		bytes_in_fifo = sizeof(u32) *
1146				(hsotg->core_params->host_perio_tx_fifo_size -
1147				 fifo_space);
1148
1149		/*
1150		 * Roughly estimate bus time for everything in the periodic
1151		 * queue + our new transfer.  This is "rough" because we're
1152		 * using a function that makes takes into account IN/OUT
1153		 * and INT/ISO and we're just slamming in one value for all
1154		 * transfers.  This should be an over-estimate and that should
1155		 * be OK, but we can probably tighten it.
1156		 */
1157		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1158					    chan->xfer_len + bytes_in_fifo);
1159		xfer_us = NS_TO_US(xfer_ns);
1160
1161		/* See what frame number we'll be at by the time we finish */
1162		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1163
1164		/* This is when we were scheduled to be on the wire */
1165		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1166
1167		/*
1168		 * If we'd finish _after_ the frame we're scheduled in then
1169		 * it's hopeless.  Just schedule right away and hope for the
1170		 * best.  Note that it _might_ be wise to call back into the
1171		 * scheduler to pick a better frame, but this is better than
1172		 * nothing.
1173		 */
1174		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1175			dwc2_sch_vdbg(hsotg,
1176				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1177				      chan->qh, wire_frame, frame_number,
1178				      dwc2_frame_num_dec(frame_number,
1179							 wire_frame));
1180			wire_frame = frame_number;
1181
1182			/*
1183			 * We picked a different frame number; communicate this
1184			 * back to the scheduler so it doesn't try to schedule
1185			 * another in the same frame.
1186			 *
1187			 * Remember that next_active_frame is 1 before the wire
1188			 * frame.
1189			 */
1190			chan->qh->next_active_frame =
1191				dwc2_frame_num_dec(frame_number, 1);
1192		}
1193
1194		if (wire_frame & 1)
1195			*hcchar |= HCCHAR_ODDFRM;
1196		else
1197			*hcchar &= ~HCCHAR_ODDFRM;
1198	}
1199}
1200
1201static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1202{
1203	/* Set up the initial PID for the transfer */
1204	if (chan->speed == USB_SPEED_HIGH) {
1205		if (chan->ep_is_in) {
1206			if (chan->multi_count == 1)
1207				chan->data_pid_start = DWC2_HC_PID_DATA0;
1208			else if (chan->multi_count == 2)
1209				chan->data_pid_start = DWC2_HC_PID_DATA1;
1210			else
1211				chan->data_pid_start = DWC2_HC_PID_DATA2;
1212		} else {
1213			if (chan->multi_count == 1)
1214				chan->data_pid_start = DWC2_HC_PID_DATA0;
1215			else
1216				chan->data_pid_start = DWC2_HC_PID_MDATA;
1217		}
1218	} else {
1219		chan->data_pid_start = DWC2_HC_PID_DATA0;
1220	}
1221}
1222
1223/**
1224 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1225 * the Host Channel
1226 *
1227 * @hsotg: Programming view of DWC_otg controller
1228 * @chan:  Information needed to initialize the host channel
1229 *
1230 * This function should only be called in Slave mode. For a channel associated
1231 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1232 * associated with a periodic EP, the periodic Tx FIFO is written.
1233 *
1234 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1235 * the number of bytes written to the Tx FIFO.
1236 */
1237static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1238				 struct dwc2_host_chan *chan)
1239{
1240	u32 i;
1241	u32 remaining_count;
1242	u32 byte_count;
1243	u32 dword_count;
1244	u32 __iomem *data_fifo;
1245	u32 *data_buf = (u32 *)chan->xfer_buf;
1246
1247	if (dbg_hc(chan))
1248		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1249
1250	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1251
1252	remaining_count = chan->xfer_len - chan->xfer_count;
1253	if (remaining_count > chan->max_packet)
1254		byte_count = chan->max_packet;
1255	else
1256		byte_count = remaining_count;
1257
1258	dword_count = (byte_count + 3) / 4;
1259
1260	if (((unsigned long)data_buf & 0x3) == 0) {
1261		/* xfer_buf is DWORD aligned */
1262		for (i = 0; i < dword_count; i++, data_buf++)
1263			dwc2_writel(*data_buf, data_fifo);
1264	} else {
1265		/* xfer_buf is not DWORD aligned */
1266		for (i = 0; i < dword_count; i++, data_buf++) {
1267			u32 data = data_buf[0] | data_buf[1] << 8 |
1268				   data_buf[2] << 16 | data_buf[3] << 24;
1269			dwc2_writel(data, data_fifo);
1270		}
1271	}
1272
1273	chan->xfer_count += byte_count;
1274	chan->xfer_buf += byte_count;
1275}
1276
1277/**
1278 * dwc2_hc_do_ping() - Starts a PING transfer
1279 *
1280 * @hsotg: Programming view of DWC_otg controller
1281 * @chan:  Information needed to initialize the host channel
1282 *
1283 * This function should only be called in Slave mode. The Do Ping bit is set in
1284 * the HCTSIZ register, then the channel is enabled.
1285 */
1286static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1287			    struct dwc2_host_chan *chan)
1288{
1289	u32 hcchar;
1290	u32 hctsiz;
1291
1292	if (dbg_hc(chan))
1293		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1294			 chan->hc_num);
1295
1296	hctsiz = TSIZ_DOPNG;
1297	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1298	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1299
1300	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1301	hcchar |= HCCHAR_CHENA;
1302	hcchar &= ~HCCHAR_CHDIS;
1303	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1304}
1305
1306/**
1307 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1308 * channel and starts the transfer
1309 *
1310 * @hsotg: Programming view of DWC_otg controller
1311 * @chan:  Information needed to initialize the host channel. The xfer_len value
1312 *         may be reduced to accommodate the max widths of the XferSize and
1313 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1314 *         changed to reflect the final xfer_len value.
1315 *
1316 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1317 * the caller must ensure that there is sufficient space in the request queue
1318 * and Tx Data FIFO.
1319 *
1320 * For an OUT transfer in Slave mode, it loads a data packet into the
1321 * appropriate FIFO. If necessary, additional data packets are loaded in the
1322 * Host ISR.
1323 *
1324 * For an IN transfer in Slave mode, a data packet is requested. The data
1325 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1326 * additional data packets are requested in the Host ISR.
1327 *
1328 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1329 * register along with a packet count of 1 and the channel is enabled. This
1330 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1331 * simply set to 0 since no data transfer occurs in this case.
1332 *
1333 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1334 * all the information required to perform the subsequent data transfer. In
1335 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1336 * controller performs the entire PING protocol, then starts the data
1337 * transfer.
1338 */
1339static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1340				   struct dwc2_host_chan *chan)
1341{
1342	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1343	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1344	u32 hcchar;
1345	u32 hctsiz = 0;
1346	u16 num_packets;
1347	u32 ec_mc;
1348
1349	if (dbg_hc(chan))
1350		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1351
1352	if (chan->do_ping) {
1353		if (hsotg->core_params->dma_enable <= 0) {
1354			if (dbg_hc(chan))
1355				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1356			dwc2_hc_do_ping(hsotg, chan);
1357			chan->xfer_started = 1;
1358			return;
1359		}
1360
1361		if (dbg_hc(chan))
1362			dev_vdbg(hsotg->dev, "ping, DMA\n");
1363
1364		hctsiz |= TSIZ_DOPNG;
1365	}
1366
1367	if (chan->do_split) {
1368		if (dbg_hc(chan))
1369			dev_vdbg(hsotg->dev, "split\n");
1370		num_packets = 1;
1371
1372		if (chan->complete_split && !chan->ep_is_in)
1373			/*
1374			 * For CSPLIT OUT Transfer, set the size to 0 so the
1375			 * core doesn't expect any data written to the FIFO
1376			 */
1377			chan->xfer_len = 0;
1378		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1379			chan->xfer_len = chan->max_packet;
1380		else if (!chan->ep_is_in && chan->xfer_len > 188)
1381			chan->xfer_len = 188;
1382
1383		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1384			  TSIZ_XFERSIZE_MASK;
1385
1386		/* For split set ec_mc for immediate retries */
1387		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1388		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1389			ec_mc = 3;
1390		else
1391			ec_mc = 1;
1392	} else {
1393		if (dbg_hc(chan))
1394			dev_vdbg(hsotg->dev, "no split\n");
1395		/*
1396		 * Ensure that the transfer length and packet count will fit
1397		 * in the widths allocated for them in the HCTSIZn register
1398		 */
1399		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1400		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1401			/*
1402			 * Make sure the transfer size is no larger than one
1403			 * (micro)frame's worth of data. (A check was done
1404			 * when the periodic transfer was accepted to ensure
1405			 * that a (micro)frame's worth of data can be
1406			 * programmed into a channel.)
1407			 */
1408			u32 max_periodic_len =
1409				chan->multi_count * chan->max_packet;
1410
1411			if (chan->xfer_len > max_periodic_len)
1412				chan->xfer_len = max_periodic_len;
1413		} else if (chan->xfer_len > max_hc_xfer_size) {
1414			/*
1415			 * Make sure that xfer_len is a multiple of max packet
1416			 * size
1417			 */
1418			chan->xfer_len =
1419				max_hc_xfer_size - chan->max_packet + 1;
1420		}
1421
1422		if (chan->xfer_len > 0) {
1423			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1424					chan->max_packet;
1425			if (num_packets > max_hc_pkt_count) {
1426				num_packets = max_hc_pkt_count;
1427				chan->xfer_len = num_packets * chan->max_packet;
 
 
 
 
 
 
 
 
1428			}
1429		} else {
1430			/* Need 1 packet for transfer length of 0 */
1431			num_packets = 1;
1432		}
1433
1434		if (chan->ep_is_in)
1435			/*
1436			 * Always program an integral # of max packets for IN
1437			 * transfers
1438			 */
1439			chan->xfer_len = num_packets * chan->max_packet;
1440
1441		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1442		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1443			/*
1444			 * Make sure that the multi_count field matches the
1445			 * actual transfer length
1446			 */
1447			chan->multi_count = num_packets;
1448
1449		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450			dwc2_set_pid_isoc(chan);
1451
1452		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1453			  TSIZ_XFERSIZE_MASK;
1454
1455		/* The ec_mc gets the multi_count for non-split */
1456		ec_mc = chan->multi_count;
1457	}
1458
1459	chan->start_pkt_count = num_packets;
1460	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1461	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1462		  TSIZ_SC_MC_PID_MASK;
1463	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1464	if (dbg_hc(chan)) {
1465		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1466			 hctsiz, chan->hc_num);
1467
1468		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1469			 chan->hc_num);
1470		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1471			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1472			 TSIZ_XFERSIZE_SHIFT);
1473		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1474			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1475			 TSIZ_PKTCNT_SHIFT);
1476		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1477			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1478			 TSIZ_SC_MC_PID_SHIFT);
1479	}
1480
1481	if (hsotg->core_params->dma_enable > 0) {
1482		dwc2_writel((u32)chan->xfer_dma,
1483			    hsotg->regs + HCDMA(chan->hc_num));
 
 
 
 
 
 
 
 
 
1484		if (dbg_hc(chan))
1485			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1486				 (unsigned long)chan->xfer_dma, chan->hc_num);
1487	}
1488
1489	/* Start the split */
1490	if (chan->do_split) {
1491		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1492
1493		hcsplt |= HCSPLT_SPLTENA;
1494		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1495	}
1496
1497	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1498	hcchar &= ~HCCHAR_MULTICNT_MASK;
1499	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1500	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1501
1502	if (hcchar & HCCHAR_CHDIS)
1503		dev_warn(hsotg->dev,
1504			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1505			 __func__, chan->hc_num, hcchar);
1506
1507	/* Set host channel enable after all other setup is complete */
1508	hcchar |= HCCHAR_CHENA;
1509	hcchar &= ~HCCHAR_CHDIS;
1510
1511	if (dbg_hc(chan))
1512		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1513			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1514			 HCCHAR_MULTICNT_SHIFT);
1515
1516	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1517	if (dbg_hc(chan))
1518		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1519			 chan->hc_num);
1520
1521	chan->xfer_started = 1;
1522	chan->requests++;
1523
1524	if (hsotg->core_params->dma_enable <= 0 &&
1525	    !chan->ep_is_in && chan->xfer_len > 0)
1526		/* Load OUT packet into the appropriate Tx FIFO */
1527		dwc2_hc_write_packet(hsotg, chan);
1528}
1529
1530/**
1531 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1532 * host channel and starts the transfer in Descriptor DMA mode
1533 *
1534 * @hsotg: Programming view of DWC_otg controller
1535 * @chan:  Information needed to initialize the host channel
1536 *
1537 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1538 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1539 * with micro-frame bitmap.
1540 *
1541 * Initializes HCDMA register with descriptor list address and CTD value then
1542 * starts the transfer via enabling the channel.
1543 */
1544void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1545				 struct dwc2_host_chan *chan)
1546{
1547	u32 hcchar;
1548	u32 hctsiz = 0;
1549
1550	if (chan->do_ping)
1551		hctsiz |= TSIZ_DOPNG;
1552
1553	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1554		dwc2_set_pid_isoc(chan);
1555
1556	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1557	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1558		  TSIZ_SC_MC_PID_MASK;
1559
1560	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1561	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1562
1563	/* Non-zero only for high-speed interrupt endpoints */
1564	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1565
1566	if (dbg_hc(chan)) {
1567		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1568			 chan->hc_num);
1569		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1570			 chan->data_pid_start);
1571		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1572	}
1573
1574	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1575
1576	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1577				   chan->desc_list_sz, DMA_TO_DEVICE);
1578
1579	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1580
1581	if (dbg_hc(chan))
1582		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1583			 &chan->desc_list_addr, chan->hc_num);
1584
1585	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1586	hcchar &= ~HCCHAR_MULTICNT_MASK;
1587	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1588		  HCCHAR_MULTICNT_MASK;
1589
1590	if (hcchar & HCCHAR_CHDIS)
1591		dev_warn(hsotg->dev,
1592			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1593			 __func__, chan->hc_num, hcchar);
1594
1595	/* Set host channel enable after all other setup is complete */
1596	hcchar |= HCCHAR_CHENA;
1597	hcchar &= ~HCCHAR_CHDIS;
1598
1599	if (dbg_hc(chan))
1600		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1601			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1602			 HCCHAR_MULTICNT_SHIFT);
1603
1604	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1605	if (dbg_hc(chan))
1606		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1607			 chan->hc_num);
1608
1609	chan->xfer_started = 1;
1610	chan->requests++;
1611}
1612
1613/**
1614 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1615 * a previous call to dwc2_hc_start_transfer()
1616 *
1617 * @hsotg: Programming view of DWC_otg controller
1618 * @chan:  Information needed to initialize the host channel
1619 *
1620 * The caller must ensure there is sufficient space in the request queue and Tx
1621 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1622 * the controller acts autonomously to complete transfers programmed to a host
1623 * channel.
1624 *
1625 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1626 * if there is any data remaining to be queued. For an IN transfer, another
1627 * data packet is always requested. For the SETUP phase of a control transfer,
1628 * this function does nothing.
1629 *
1630 * Return: 1 if a new request is queued, 0 if no more requests are required
1631 * for this transfer
1632 */
1633static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1634				     struct dwc2_host_chan *chan)
1635{
1636	if (dbg_hc(chan))
1637		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1638			 chan->hc_num);
1639
1640	if (chan->do_split)
1641		/* SPLITs always queue just once per channel */
1642		return 0;
1643
1644	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1645		/* SETUPs are queued only once since they can't be NAK'd */
1646		return 0;
1647
1648	if (chan->ep_is_in) {
1649		/*
1650		 * Always queue another request for other IN transfers. If
1651		 * back-to-back INs are issued and NAKs are received for both,
1652		 * the driver may still be processing the first NAK when the
1653		 * second NAK is received. When the interrupt handler clears
1654		 * the NAK interrupt for the first NAK, the second NAK will
1655		 * not be seen. So we can't depend on the NAK interrupt
1656		 * handler to requeue a NAK'd request. Instead, IN requests
1657		 * are issued each time this function is called. When the
1658		 * transfer completes, the extra requests for the channel will
1659		 * be flushed.
1660		 */
1661		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1662
1663		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1664		hcchar |= HCCHAR_CHENA;
1665		hcchar &= ~HCCHAR_CHDIS;
1666		if (dbg_hc(chan))
1667			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1668				 hcchar);
1669		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1670		chan->requests++;
1671		return 1;
1672	}
1673
1674	/* OUT transfers */
1675
1676	if (chan->xfer_count < chan->xfer_len) {
1677		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1678		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1679			u32 hcchar = dwc2_readl(hsotg->regs +
1680						HCCHAR(chan->hc_num));
1681
1682			dwc2_hc_set_even_odd_frame(hsotg, chan,
1683						   &hcchar);
1684		}
1685
1686		/* Load OUT packet into the appropriate Tx FIFO */
1687		dwc2_hc_write_packet(hsotg, chan);
1688		chan->requests++;
1689		return 1;
1690	}
1691
1692	return 0;
1693}
1694
1695/*
1696 * =========================================================================
1697 *  HCD
1698 * =========================================================================
1699 */
1700
1701/*
1702 * Processes all the URBs in a single list of QHs. Completes them with
1703 * -ETIMEDOUT and frees the QTD.
1704 *
1705 * Must be called with interrupt disabled and spinlock held
1706 */
1707static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1708				      struct list_head *qh_list)
1709{
1710	struct dwc2_qh *qh, *qh_tmp;
1711	struct dwc2_qtd *qtd, *qtd_tmp;
1712
1713	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1714		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1715					 qtd_list_entry) {
1716			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1717			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1718		}
1719	}
1720}
1721
1722static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1723			      struct list_head *qh_list)
1724{
1725	struct dwc2_qtd *qtd, *qtd_tmp;
1726	struct dwc2_qh *qh, *qh_tmp;
1727	unsigned long flags;
1728
1729	if (!qh_list->next)
1730		/* The list hasn't been initialized yet */
1731		return;
1732
1733	spin_lock_irqsave(&hsotg->lock, flags);
1734
1735	/* Ensure there are no QTDs or URBs left */
1736	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1737
1738	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1739		dwc2_hcd_qh_unlink(hsotg, qh);
1740
1741		/* Free each QTD in the QH's QTD list */
1742		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1743					 qtd_list_entry)
1744			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1745
1746		if (qh->channel && qh->channel->qh == qh)
1747			qh->channel->qh = NULL;
1748
1749		spin_unlock_irqrestore(&hsotg->lock, flags);
1750		dwc2_hcd_qh_free(hsotg, qh);
1751		spin_lock_irqsave(&hsotg->lock, flags);
1752	}
1753
1754	spin_unlock_irqrestore(&hsotg->lock, flags);
1755}
1756
1757/*
1758 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1759 * and periodic schedules. The QTD associated with each URB is removed from
1760 * the schedule and freed. This function may be called when a disconnect is
1761 * detected or when the HCD is being stopped.
1762 *
1763 * Must be called with interrupt disabled and spinlock held
1764 */
1765static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1766{
1767	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
 
1768	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1769	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1770	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1771	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1772	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1773}
1774
1775/**
1776 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1777 *
1778 * @hsotg: Pointer to struct dwc2_hsotg
1779 */
1780void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1781{
1782	u32 hprt0;
1783
1784	if (hsotg->op_state == OTG_STATE_B_HOST) {
1785		/*
1786		 * Reset the port. During a HNP mode switch the reset
1787		 * needs to occur within 1ms and have a duration of at
1788		 * least 50ms.
1789		 */
1790		hprt0 = dwc2_read_hprt0(hsotg);
1791		hprt0 |= HPRT0_RST;
1792		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1793	}
1794
1795	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1796			   msecs_to_jiffies(50));
1797}
1798
1799/* Must be called with interrupt disabled and spinlock held */
1800static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1801{
1802	int num_channels = hsotg->core_params->host_channels;
1803	struct dwc2_host_chan *channel;
1804	u32 hcchar;
1805	int i;
1806
1807	if (hsotg->core_params->dma_enable <= 0) {
1808		/* Flush out any channel requests in slave mode */
1809		for (i = 0; i < num_channels; i++) {
1810			channel = hsotg->hc_ptr_array[i];
1811			if (!list_empty(&channel->hc_list_entry))
1812				continue;
1813			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1814			if (hcchar & HCCHAR_CHENA) {
1815				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1816				hcchar |= HCCHAR_CHDIS;
1817				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1818			}
1819		}
1820	}
1821
1822	for (i = 0; i < num_channels; i++) {
1823		channel = hsotg->hc_ptr_array[i];
1824		if (!list_empty(&channel->hc_list_entry))
1825			continue;
1826		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1827		if (hcchar & HCCHAR_CHENA) {
1828			/* Halt the channel */
1829			hcchar |= HCCHAR_CHDIS;
1830			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1831		}
1832
1833		dwc2_hc_cleanup(hsotg, channel);
1834		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1835		/*
1836		 * Added for Descriptor DMA to prevent channel double cleanup in
1837		 * release_channel_ddma(), which is called from ep_disable when
1838		 * device disconnects
1839		 */
1840		channel->qh = NULL;
1841	}
1842	/* All channels have been freed, mark them available */
1843	if (hsotg->core_params->uframe_sched > 0) {
1844		hsotg->available_host_channels =
1845			hsotg->core_params->host_channels;
1846	} else {
1847		hsotg->non_periodic_channels = 0;
1848		hsotg->periodic_channels = 0;
1849	}
1850}
1851
1852/**
1853 * dwc2_hcd_connect() - Handles connect of the HCD
1854 *
1855 * @hsotg: Pointer to struct dwc2_hsotg
1856 *
1857 * Must be called with interrupt disabled and spinlock held
1858 */
1859void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1860{
1861	if (hsotg->lx_state != DWC2_L0)
1862		usb_hcd_resume_root_hub(hsotg->priv);
1863
1864	hsotg->flags.b.port_connect_status_change = 1;
1865	hsotg->flags.b.port_connect_status = 1;
1866}
1867
1868/**
1869 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1870 *
1871 * @hsotg: Pointer to struct dwc2_hsotg
1872 * @force: If true, we won't try to reconnect even if we see device connected.
1873 *
1874 * Must be called with interrupt disabled and spinlock held
1875 */
1876void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1877{
1878	u32 intr;
1879	u32 hprt0;
1880
1881	/* Set status flags for the hub driver */
1882	hsotg->flags.b.port_connect_status_change = 1;
1883	hsotg->flags.b.port_connect_status = 0;
1884
1885	/*
1886	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1887	 * interrupt mask and status bits and disabling subsequent host
1888	 * channel interrupts.
1889	 */
1890	intr = dwc2_readl(hsotg->regs + GINTMSK);
1891	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1892	dwc2_writel(intr, hsotg->regs + GINTMSK);
1893	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1894	dwc2_writel(intr, hsotg->regs + GINTSTS);
1895
1896	/*
1897	 * Turn off the vbus power only if the core has transitioned to device
1898	 * mode. If still in host mode, need to keep power on to detect a
1899	 * reconnection.
1900	 */
1901	if (dwc2_is_device_mode(hsotg)) {
1902		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1903			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1904			dwc2_writel(0, hsotg->regs + HPRT0);
1905		}
1906
1907		dwc2_disable_host_interrupts(hsotg);
1908	}
1909
1910	/* Respond with an error status to all URBs in the schedule */
1911	dwc2_kill_all_urbs(hsotg);
1912
1913	if (dwc2_is_host_mode(hsotg))
1914		/* Clean up any host channels that were in use */
1915		dwc2_hcd_cleanup_channels(hsotg);
1916
1917	dwc2_host_disconnect(hsotg);
1918
1919	/*
1920	 * Add an extra check here to see if we're actually connected but
1921	 * we don't have a detection interrupt pending.  This can happen if:
1922	 *   1. hardware sees connect
1923	 *   2. hardware sees disconnect
1924	 *   3. hardware sees connect
1925	 *   4. dwc2_port_intr() - clears connect interrupt
1926	 *   5. dwc2_handle_common_intr() - calls here
1927	 *
1928	 * Without the extra check here we will end calling disconnect
1929	 * and won't get any future interrupts to handle the connect.
1930	 */
1931	if (!force) {
1932		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1933		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1934			dwc2_hcd_connect(hsotg);
1935	}
1936}
1937
1938/**
1939 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1940 *
1941 * @hsotg: Pointer to struct dwc2_hsotg
1942 */
1943static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1944{
1945	if (hsotg->bus_suspended) {
1946		hsotg->flags.b.port_suspend_change = 1;
1947		usb_hcd_resume_root_hub(hsotg->priv);
1948	}
1949
1950	if (hsotg->lx_state == DWC2_L1)
1951		hsotg->flags.b.port_l1_change = 1;
1952}
1953
1954/**
1955 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1956 *
1957 * @hsotg: Pointer to struct dwc2_hsotg
1958 *
1959 * Must be called with interrupt disabled and spinlock held
1960 */
1961void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1962{
1963	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1964
1965	/*
1966	 * The root hub should be disconnected before this function is called.
1967	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1968	 * and the QH lists (via ..._hcd_endpoint_disable).
1969	 */
1970
1971	/* Turn off all host-specific interrupts */
1972	dwc2_disable_host_interrupts(hsotg);
1973
1974	/* Turn off the vbus power */
1975	dev_dbg(hsotg->dev, "PortPower off\n");
1976	dwc2_writel(0, hsotg->regs + HPRT0);
1977}
1978
1979/* Caller must hold driver lock */
1980static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1981				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1982				struct dwc2_qtd *qtd)
1983{
1984	u32 intr_mask;
1985	int retval;
1986	int dev_speed;
1987
1988	if (!hsotg->flags.b.port_connect_status) {
1989		/* No longer connected */
1990		dev_err(hsotg->dev, "Not connected\n");
1991		return -ENODEV;
1992	}
1993
1994	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1995
1996	/* Some configurations cannot support LS traffic on a FS root port */
1997	if ((dev_speed == USB_SPEED_LOW) &&
1998	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1999	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2000		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2001		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2002
2003		if (prtspd == HPRT0_SPD_FULL_SPEED)
2004			return -ENODEV;
2005	}
2006
2007	if (!qtd)
2008		return -EINVAL;
2009
2010	dwc2_hcd_qtd_init(qtd, urb);
2011	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2012	if (retval) {
2013		dev_err(hsotg->dev,
2014			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2015			retval);
2016		return retval;
2017	}
2018
2019	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2020	if (!(intr_mask & GINTSTS_SOF)) {
2021		enum dwc2_transaction_type tr_type;
2022
2023		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2024		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2025			/*
2026			 * Do not schedule SG transactions until qtd has
2027			 * URB_GIVEBACK_ASAP set
2028			 */
2029			return 0;
2030
2031		tr_type = dwc2_hcd_select_transactions(hsotg);
2032		if (tr_type != DWC2_TRANSACTION_NONE)
2033			dwc2_hcd_queue_transactions(hsotg, tr_type);
2034	}
2035
2036	return 0;
2037}
2038
2039/* Must be called with interrupt disabled and spinlock held */
2040static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2041				struct dwc2_hcd_urb *urb)
2042{
2043	struct dwc2_qh *qh;
2044	struct dwc2_qtd *urb_qtd;
2045
2046	urb_qtd = urb->qtd;
2047	if (!urb_qtd) {
2048		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2049		return -EINVAL;
2050	}
2051
2052	qh = urb_qtd->qh;
2053	if (!qh) {
2054		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2055		return -EINVAL;
2056	}
2057
2058	urb->priv = NULL;
2059
2060	if (urb_qtd->in_process && qh->channel) {
2061		dwc2_dump_channel_info(hsotg, qh->channel);
2062
2063		/* The QTD is in process (it has been assigned to a channel) */
2064		if (hsotg->flags.b.port_connect_status)
2065			/*
2066			 * If still connected (i.e. in host mode), halt the
2067			 * channel so it can be used for other transfers. If
2068			 * no longer connected, the host registers can't be
2069			 * written to halt the channel since the core is in
2070			 * device mode.
2071			 */
2072			dwc2_hc_halt(hsotg, qh->channel,
2073				     DWC2_HC_XFER_URB_DEQUEUE);
2074	}
2075
2076	/*
2077	 * Free the QTD and clean up the associated QH. Leave the QH in the
2078	 * schedule if it has any remaining QTDs.
2079	 */
2080	if (hsotg->core_params->dma_desc_enable <= 0) {
2081		u8 in_process = urb_qtd->in_process;
2082
2083		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2084		if (in_process) {
2085			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2086			qh->channel = NULL;
2087		} else if (list_empty(&qh->qtd_list)) {
2088			dwc2_hcd_qh_unlink(hsotg, qh);
2089		}
2090	} else {
2091		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2092	}
2093
2094	return 0;
2095}
2096
2097/* Must NOT be called with interrupt disabled or spinlock held */
2098static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2099				     struct usb_host_endpoint *ep, int retry)
2100{
2101	struct dwc2_qtd *qtd, *qtd_tmp;
2102	struct dwc2_qh *qh;
2103	unsigned long flags;
2104	int rc;
2105
2106	spin_lock_irqsave(&hsotg->lock, flags);
2107
2108	qh = ep->hcpriv;
2109	if (!qh) {
2110		rc = -EINVAL;
2111		goto err;
2112	}
2113
2114	while (!list_empty(&qh->qtd_list) && retry--) {
2115		if (retry == 0) {
2116			dev_err(hsotg->dev,
2117				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2118			rc = -EBUSY;
2119			goto err;
2120		}
2121
2122		spin_unlock_irqrestore(&hsotg->lock, flags);
2123		usleep_range(20000, 40000);
2124		spin_lock_irqsave(&hsotg->lock, flags);
2125		qh = ep->hcpriv;
2126		if (!qh) {
2127			rc = -EINVAL;
2128			goto err;
2129		}
2130	}
2131
2132	dwc2_hcd_qh_unlink(hsotg, qh);
2133
2134	/* Free each QTD in the QH's QTD list */
2135	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2136		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2137
2138	ep->hcpriv = NULL;
2139
2140	if (qh->channel && qh->channel->qh == qh)
2141		qh->channel->qh = NULL;
2142
2143	spin_unlock_irqrestore(&hsotg->lock, flags);
2144
2145	dwc2_hcd_qh_free(hsotg, qh);
2146
2147	return 0;
2148
2149err:
2150	ep->hcpriv = NULL;
2151	spin_unlock_irqrestore(&hsotg->lock, flags);
2152
2153	return rc;
2154}
2155
2156/* Must be called with interrupt disabled and spinlock held */
2157static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2158				   struct usb_host_endpoint *ep)
2159{
2160	struct dwc2_qh *qh = ep->hcpriv;
2161
2162	if (!qh)
2163		return -EINVAL;
2164
2165	qh->data_toggle = DWC2_HC_PID_DATA0;
2166
2167	return 0;
2168}
2169
2170/**
2171 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2172 * prepares the core for device mode or host mode operation
2173 *
2174 * @hsotg:         Programming view of the DWC_otg controller
2175 * @initial_setup: If true then this is the first init for this instance.
2176 */
2177static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2178{
2179	u32 usbcfg, otgctl;
2180	int retval;
2181
2182	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2183
2184	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2185
2186	/* Set ULPI External VBUS bit if needed */
2187	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2188	if (hsotg->core_params->phy_ulpi_ext_vbus ==
2189				DWC2_PHY_ULPI_EXTERNAL_VBUS)
2190		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2191
2192	/* Set external TS Dline pulsing bit if needed */
2193	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2194	if (hsotg->core_params->ts_dline > 0)
2195		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2196
2197	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2198
2199	/*
2200	 * Reset the Controller
2201	 *
2202	 * We only need to reset the controller if this is a re-init.
2203	 * For the first init we know for sure that earlier code reset us (it
2204	 * needed to in order to properly detect various parameters).
2205	 */
2206	if (!initial_setup) {
2207		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2208		if (retval) {
2209			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2210				__func__);
2211			return retval;
2212		}
2213	}
2214
2215	/*
2216	 * This needs to happen in FS mode before any other programming occurs
2217	 */
2218	retval = dwc2_phy_init(hsotg, initial_setup);
2219	if (retval)
2220		return retval;
2221
2222	/* Program the GAHBCFG Register */
2223	retval = dwc2_gahbcfg_init(hsotg);
2224	if (retval)
2225		return retval;
2226
2227	/* Program the GUSBCFG register */
2228	dwc2_gusbcfg_init(hsotg);
2229
2230	/* Program the GOTGCTL register */
2231	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2232	otgctl &= ~GOTGCTL_OTGVER;
2233	if (hsotg->core_params->otg_ver > 0)
2234		otgctl |= GOTGCTL_OTGVER;
2235	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2236	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
2237
2238	/* Clear the SRP success bit for FS-I2c */
2239	hsotg->srp_success = 0;
2240
2241	/* Enable common interrupts */
2242	dwc2_enable_common_interrupts(hsotg);
2243
2244	/*
2245	 * Do device or host initialization based on mode during PCD and
2246	 * HCD initialization
2247	 */
2248	if (dwc2_is_host_mode(hsotg)) {
2249		dev_dbg(hsotg->dev, "Host Mode\n");
2250		hsotg->op_state = OTG_STATE_A_HOST;
2251	} else {
2252		dev_dbg(hsotg->dev, "Device Mode\n");
2253		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2254	}
2255
2256	return 0;
2257}
2258
2259/**
2260 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2261 * Host mode
2262 *
2263 * @hsotg: Programming view of DWC_otg controller
2264 *
2265 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2266 * request queues. Host channels are reset to ensure that they are ready for
2267 * performing transfers.
2268 */
2269static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2270{
2271	u32 hcfg, hfir, otgctl;
2272
2273	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2274
 
 
 
 
 
 
 
 
 
 
 
 
2275	/* Restart the Phy Clock */
2276	dwc2_writel(0, hsotg->regs + PCGCTL);
2277
2278	/* Initialize Host Configuration Register */
2279	dwc2_init_fs_ls_pclk_sel(hsotg);
2280	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
2281		hcfg = dwc2_readl(hsotg->regs + HCFG);
 
2282		hcfg |= HCFG_FSLSSUPP;
2283		dwc2_writel(hcfg, hsotg->regs + HCFG);
2284	}
2285
2286	/*
2287	 * This bit allows dynamic reloading of the HFIR register during
2288	 * runtime. This bit needs to be programmed during initial configuration
2289	 * and its value must not be changed during runtime.
2290	 */
2291	if (hsotg->core_params->reload_ctl > 0) {
2292		hfir = dwc2_readl(hsotg->regs + HFIR);
2293		hfir |= HFIR_RLDCTRL;
2294		dwc2_writel(hfir, hsotg->regs + HFIR);
2295	}
2296
2297	if (hsotg->core_params->dma_desc_enable > 0) {
2298		u32 op_mode = hsotg->hw_params.op_mode;
2299
2300		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2301		    !hsotg->hw_params.dma_desc_enable ||
2302		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2303		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2304		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2305			dev_err(hsotg->dev,
2306				"Hardware does not support descriptor DMA mode -\n");
2307			dev_err(hsotg->dev,
2308				"falling back to buffer DMA mode.\n");
2309			hsotg->core_params->dma_desc_enable = 0;
2310		} else {
2311			hcfg = dwc2_readl(hsotg->regs + HCFG);
2312			hcfg |= HCFG_DESCDMA;
2313			dwc2_writel(hcfg, hsotg->regs + HCFG);
2314		}
2315	}
2316
2317	/* Configure data FIFO sizes */
2318	dwc2_config_fifos(hsotg);
2319
2320	/* TODO - check this */
2321	/* Clear Host Set HNP Enable in the OTG Control Register */
2322	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2323	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2324	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2325
2326	/* Make sure the FIFOs are flushed */
2327	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2328	dwc2_flush_rx_fifo(hsotg);
2329
2330	/* Clear Host Set HNP Enable in the OTG Control Register */
2331	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2332	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2333	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2334
2335	if (hsotg->core_params->dma_desc_enable <= 0) {
2336		int num_channels, i;
2337		u32 hcchar;
2338
2339		/* Flush out any leftover queued requests */
2340		num_channels = hsotg->core_params->host_channels;
2341		for (i = 0; i < num_channels; i++) {
2342			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2343			hcchar &= ~HCCHAR_CHENA;
2344			hcchar |= HCCHAR_CHDIS;
2345			hcchar &= ~HCCHAR_EPDIR;
2346			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
 
 
2347		}
2348
2349		/* Halt all channels to put them into a known state */
2350		for (i = 0; i < num_channels; i++) {
2351			int count = 0;
2352
2353			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2354			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2355			hcchar &= ~HCCHAR_EPDIR;
2356			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2357			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2358				__func__, i);
2359			do {
2360				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2361				if (++count > 1000) {
2362					dev_err(hsotg->dev,
2363						"Unable to clear enable on channel %d\n",
2364						i);
2365					break;
2366				}
2367				udelay(1);
2368			} while (hcchar & HCCHAR_CHENA);
2369		}
2370	}
2371
 
 
 
2372	/* Turn on the vbus power */
2373	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2374	if (hsotg->op_state == OTG_STATE_A_HOST) {
2375		u32 hprt0 = dwc2_read_hprt0(hsotg);
2376
2377		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2378			!!(hprt0 & HPRT0_PWR));
2379		if (!(hprt0 & HPRT0_PWR)) {
2380			hprt0 |= HPRT0_PWR;
2381			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2382		}
2383	}
2384
2385	dwc2_enable_host_interrupts(hsotg);
2386}
2387
2388/*
2389 * Initializes dynamic portions of the DWC_otg HCD state
2390 *
2391 * Must be called with interrupt disabled and spinlock held
2392 */
2393static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2394{
2395	struct dwc2_host_chan *chan, *chan_tmp;
2396	int num_channels;
2397	int i;
2398
2399	hsotg->flags.d32 = 0;
2400	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2401
2402	if (hsotg->core_params->uframe_sched > 0) {
2403		hsotg->available_host_channels =
2404			hsotg->core_params->host_channels;
2405	} else {
2406		hsotg->non_periodic_channels = 0;
2407		hsotg->periodic_channels = 0;
2408	}
2409
2410	/*
2411	 * Put all channels in the free channel list and clean up channel
2412	 * states
2413	 */
2414	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2415				 hc_list_entry)
2416		list_del_init(&chan->hc_list_entry);
2417
2418	num_channels = hsotg->core_params->host_channels;
2419	for (i = 0; i < num_channels; i++) {
2420		chan = hsotg->hc_ptr_array[i];
2421		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2422		dwc2_hc_cleanup(hsotg, chan);
2423	}
2424
2425	/* Initialize the DWC core for host mode operation */
2426	dwc2_core_host_init(hsotg);
2427}
2428
2429static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2430			       struct dwc2_host_chan *chan,
2431			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2432{
2433	int hub_addr, hub_port;
2434
2435	chan->do_split = 1;
2436	chan->xact_pos = qtd->isoc_split_pos;
2437	chan->complete_split = qtd->complete_split;
2438	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2439	chan->hub_addr = (u8)hub_addr;
2440	chan->hub_port = (u8)hub_port;
2441}
2442
2443static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2444			      struct dwc2_host_chan *chan,
2445			      struct dwc2_qtd *qtd)
2446{
2447	struct dwc2_hcd_urb *urb = qtd->urb;
2448	struct dwc2_hcd_iso_packet_desc *frame_desc;
2449
2450	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2451	case USB_ENDPOINT_XFER_CONTROL:
2452		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2453
2454		switch (qtd->control_phase) {
2455		case DWC2_CONTROL_SETUP:
2456			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2457			chan->do_ping = 0;
2458			chan->ep_is_in = 0;
2459			chan->data_pid_start = DWC2_HC_PID_SETUP;
2460			if (hsotg->core_params->dma_enable > 0)
2461				chan->xfer_dma = urb->setup_dma;
2462			else
2463				chan->xfer_buf = urb->setup_packet;
2464			chan->xfer_len = 8;
2465			break;
2466
2467		case DWC2_CONTROL_DATA:
2468			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2469			chan->data_pid_start = qtd->data_toggle;
2470			break;
2471
2472		case DWC2_CONTROL_STATUS:
2473			/*
2474			 * Direction is opposite of data direction or IN if no
2475			 * data
2476			 */
2477			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2478			if (urb->length == 0)
2479				chan->ep_is_in = 1;
2480			else
2481				chan->ep_is_in =
2482					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2483			if (chan->ep_is_in)
2484				chan->do_ping = 0;
2485			chan->data_pid_start = DWC2_HC_PID_DATA1;
2486			chan->xfer_len = 0;
2487			if (hsotg->core_params->dma_enable > 0)
2488				chan->xfer_dma = hsotg->status_buf_dma;
2489			else
2490				chan->xfer_buf = hsotg->status_buf;
2491			break;
2492		}
2493		break;
2494
2495	case USB_ENDPOINT_XFER_BULK:
2496		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2497		break;
2498
2499	case USB_ENDPOINT_XFER_INT:
2500		chan->ep_type = USB_ENDPOINT_XFER_INT;
2501		break;
2502
2503	case USB_ENDPOINT_XFER_ISOC:
2504		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2505		if (hsotg->core_params->dma_desc_enable > 0)
2506			break;
2507
2508		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2509		frame_desc->status = 0;
2510
2511		if (hsotg->core_params->dma_enable > 0) {
2512			chan->xfer_dma = urb->dma;
2513			chan->xfer_dma += frame_desc->offset +
2514					qtd->isoc_split_offset;
2515		} else {
2516			chan->xfer_buf = urb->buf;
2517			chan->xfer_buf += frame_desc->offset +
2518					qtd->isoc_split_offset;
2519		}
2520
2521		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2522
2523		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2524			if (chan->xfer_len <= 188)
2525				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2526			else
2527				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2528		}
2529		break;
2530	}
2531}
2532
2533#define DWC2_USB_DMA_ALIGN 4
 
 
 
 
 
 
2534
2535struct dma_aligned_buffer {
2536	void *kmalloc_ptr;
2537	void *old_xfer_buffer;
2538	u8 data[0];
2539};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540
2541static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2542{
2543	struct dma_aligned_buffer *temp;
 
2544
2545	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2546		return;
2547
2548	temp = container_of(urb->transfer_buffer,
2549		struct dma_aligned_buffer, data);
 
 
 
 
 
 
 
 
 
2550
2551	if (usb_urb_dir_in(urb))
2552		memcpy(temp->old_xfer_buffer, temp->data,
2553		       urb->transfer_buffer_length);
2554	urb->transfer_buffer = temp->old_xfer_buffer;
2555	kfree(temp->kmalloc_ptr);
2556
2557	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2558}
2559
2560static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2561{
2562	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2563	size_t kmalloc_size;
2564
2565	if (urb->num_sgs || urb->sg ||
2566	    urb->transfer_buffer_length == 0 ||
2567	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2568		return 0;
2569
2570	/* Allocate a buffer with enough padding for alignment */
 
 
 
 
2571	kmalloc_size = urb->transfer_buffer_length +
2572		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
 
2573
2574	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2575	if (!kmalloc_ptr)
2576		return -ENOMEM;
2577
2578	/* Position our struct dma_aligned_buffer such that data is aligned */
2579	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2580	temp->kmalloc_ptr = kmalloc_ptr;
2581	temp->old_xfer_buffer = urb->transfer_buffer;
 
 
 
 
2582	if (usb_urb_dir_out(urb))
2583		memcpy(temp->data, urb->transfer_buffer,
2584		       urb->transfer_buffer_length);
2585	urb->transfer_buffer = temp->data;
2586
2587	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2588
2589	return 0;
2590}
2591
2592static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2593				      gfp_t mem_flags)
2594{
2595	int ret;
2596
2597	/* We assume setup_dma is always aligned; warn if not */
2598	WARN_ON_ONCE(urb->setup_dma &&
2599		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2600
2601	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2602	if (ret)
2603		return ret;
2604
2605	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2606	if (ret)
2607		dwc2_free_dma_aligned_buffer(urb);
2608
2609	return ret;
2610}
2611
2612static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2613{
2614	usb_hcd_unmap_urb_for_dma(hcd, urb);
2615	dwc2_free_dma_aligned_buffer(urb);
2616}
2617
2618/**
2619 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2620 * channel and initializes the host channel to perform the transactions. The
2621 * host channel is removed from the free list.
2622 *
2623 * @hsotg: The HCD state structure
2624 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2625 *         to a free host channel
2626 */
2627static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2628{
2629	struct dwc2_host_chan *chan;
2630	struct dwc2_hcd_urb *urb;
2631	struct dwc2_qtd *qtd;
2632
2633	if (dbg_qh(qh))
2634		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2635
2636	if (list_empty(&qh->qtd_list)) {
2637		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2638		return -ENOMEM;
2639	}
2640
2641	if (list_empty(&hsotg->free_hc_list)) {
2642		dev_dbg(hsotg->dev, "No free channel to assign\n");
2643		return -ENOMEM;
2644	}
2645
2646	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2647				hc_list_entry);
2648
2649	/* Remove host channel from free list */
2650	list_del_init(&chan->hc_list_entry);
2651
2652	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2653	urb = qtd->urb;
2654	qh->channel = chan;
2655	qtd->in_process = 1;
2656
2657	/*
2658	 * Use usb_pipedevice to determine device address. This address is
2659	 * 0 before the SET_ADDRESS command and the correct address afterward.
2660	 */
2661	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2662	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2663	chan->speed = qh->dev_speed;
2664	chan->max_packet = dwc2_max_packet(qh->maxp);
2665
2666	chan->xfer_started = 0;
2667	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2668	chan->error_state = (qtd->error_count > 0);
2669	chan->halt_on_queue = 0;
2670	chan->halt_pending = 0;
2671	chan->requests = 0;
2672
2673	/*
2674	 * The following values may be modified in the transfer type section
2675	 * below. The xfer_len value may be reduced when the transfer is
2676	 * started to accommodate the max widths of the XferSize and PktCnt
2677	 * fields in the HCTSIZn register.
2678	 */
2679
2680	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2681	if (chan->ep_is_in)
2682		chan->do_ping = 0;
2683	else
2684		chan->do_ping = qh->ping_state;
2685
2686	chan->data_pid_start = qh->data_toggle;
2687	chan->multi_count = 1;
2688
2689	if (urb->actual_length > urb->length &&
2690		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
2691		urb->actual_length = urb->length;
2692
2693	if (hsotg->core_params->dma_enable > 0)
2694		chan->xfer_dma = urb->dma + urb->actual_length;
2695	else
2696		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2697
2698	chan->xfer_len = urb->length - urb->actual_length;
2699	chan->xfer_count = 0;
2700
2701	/* Set the split attributes if required */
2702	if (qh->do_split)
2703		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2704	else
2705		chan->do_split = 0;
2706
2707	/* Set the transfer attributes */
2708	dwc2_hc_init_xfer(hsotg, chan, qtd);
2709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2711	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2712		/*
2713		 * This value may be modified when the transfer is started
2714		 * to reflect the actual transfer length
2715		 */
2716		chan->multi_count = dwc2_hb_mult(qh->maxp);
2717
2718	if (hsotg->core_params->dma_desc_enable > 0) {
2719		chan->desc_list_addr = qh->desc_list_dma;
2720		chan->desc_list_sz = qh->desc_list_sz;
2721	}
2722
2723	dwc2_hc_init(hsotg, chan);
2724	chan->qh = qh;
2725
2726	return 0;
2727}
2728
2729/**
2730 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2731 * schedule and assigns them to available host channels. Called from the HCD
2732 * interrupt handler functions.
2733 *
2734 * @hsotg: The HCD state structure
2735 *
2736 * Return: The types of new transactions that were assigned to host channels
2737 */
2738enum dwc2_transaction_type dwc2_hcd_select_transactions(
2739		struct dwc2_hsotg *hsotg)
2740{
2741	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2742	struct list_head *qh_ptr;
2743	struct dwc2_qh *qh;
2744	int num_channels;
2745
2746#ifdef DWC2_DEBUG_SOF
2747	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2748#endif
2749
2750	/* Process entries in the periodic ready list */
2751	qh_ptr = hsotg->periodic_sched_ready.next;
2752	while (qh_ptr != &hsotg->periodic_sched_ready) {
2753		if (list_empty(&hsotg->free_hc_list))
2754			break;
2755		if (hsotg->core_params->uframe_sched > 0) {
2756			if (hsotg->available_host_channels <= 1)
2757				break;
2758			hsotg->available_host_channels--;
2759		}
2760		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2761		if (dwc2_assign_and_init_hc(hsotg, qh))
2762			break;
2763
2764		/*
2765		 * Move the QH from the periodic ready schedule to the
2766		 * periodic assigned schedule
2767		 */
2768		qh_ptr = qh_ptr->next;
2769		list_move_tail(&qh->qh_list_entry,
2770			       &hsotg->periodic_sched_assigned);
2771		ret_val = DWC2_TRANSACTION_PERIODIC;
2772	}
2773
2774	/*
2775	 * Process entries in the inactive portion of the non-periodic
2776	 * schedule. Some free host channels may not be used if they are
2777	 * reserved for periodic transfers.
2778	 */
2779	num_channels = hsotg->core_params->host_channels;
2780	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2781	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2782		if (hsotg->core_params->uframe_sched <= 0 &&
2783		    hsotg->non_periodic_channels >= num_channels -
2784						hsotg->periodic_channels)
2785			break;
2786		if (list_empty(&hsotg->free_hc_list))
2787			break;
2788		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2789		if (hsotg->core_params->uframe_sched > 0) {
2790			if (hsotg->available_host_channels < 1)
2791				break;
2792			hsotg->available_host_channels--;
2793		}
2794
2795		if (dwc2_assign_and_init_hc(hsotg, qh))
2796			break;
2797
2798		/*
2799		 * Move the QH from the non-periodic inactive schedule to the
2800		 * non-periodic active schedule
2801		 */
2802		qh_ptr = qh_ptr->next;
2803		list_move_tail(&qh->qh_list_entry,
2804			       &hsotg->non_periodic_sched_active);
2805
2806		if (ret_val == DWC2_TRANSACTION_NONE)
2807			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2808		else
2809			ret_val = DWC2_TRANSACTION_ALL;
2810
2811		if (hsotg->core_params->uframe_sched <= 0)
2812			hsotg->non_periodic_channels++;
2813	}
2814
2815	return ret_val;
2816}
2817
2818/**
2819 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2820 * a host channel associated with either a periodic or non-periodic transfer
2821 *
2822 * @hsotg: The HCD state structure
2823 * @chan:  Host channel descriptor associated with either a periodic or
2824 *         non-periodic transfer
2825 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2826 *                     for periodic transfers or the non-periodic Tx FIFO
2827 *                     for non-periodic transfers
2828 *
2829 * Return: 1 if a request is queued and more requests may be needed to
2830 * complete the transfer, 0 if no more requests are required for this
2831 * transfer, -1 if there is insufficient space in the Tx FIFO
2832 *
2833 * This function assumes that there is space available in the appropriate
2834 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2835 * it checks whether space is available in the appropriate Tx FIFO.
2836 *
2837 * Must be called with interrupt disabled and spinlock held
2838 */
2839static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2840				  struct dwc2_host_chan *chan,
2841				  u16 fifo_dwords_avail)
2842{
2843	int retval = 0;
2844
2845	if (chan->do_split)
2846		/* Put ourselves on the list to keep order straight */
2847		list_move_tail(&chan->split_order_list_entry,
2848			       &hsotg->split_order);
2849
2850	if (hsotg->core_params->dma_enable > 0) {
2851		if (hsotg->core_params->dma_desc_enable > 0) {
2852			if (!chan->xfer_started ||
2853			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2854				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2855				chan->qh->ping_state = 0;
2856			}
2857		} else if (!chan->xfer_started) {
2858			dwc2_hc_start_transfer(hsotg, chan);
2859			chan->qh->ping_state = 0;
2860		}
2861	} else if (chan->halt_pending) {
2862		/* Don't queue a request if the channel has been halted */
2863	} else if (chan->halt_on_queue) {
2864		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2865	} else if (chan->do_ping) {
2866		if (!chan->xfer_started)
2867			dwc2_hc_start_transfer(hsotg, chan);
2868	} else if (!chan->ep_is_in ||
2869		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2870		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2871			if (!chan->xfer_started) {
2872				dwc2_hc_start_transfer(hsotg, chan);
2873				retval = 1;
2874			} else {
2875				retval = dwc2_hc_continue_transfer(hsotg, chan);
2876			}
2877		} else {
2878			retval = -1;
2879		}
2880	} else {
2881		if (!chan->xfer_started) {
2882			dwc2_hc_start_transfer(hsotg, chan);
2883			retval = 1;
2884		} else {
2885			retval = dwc2_hc_continue_transfer(hsotg, chan);
2886		}
2887	}
2888
2889	return retval;
2890}
2891
2892/*
2893 * Processes periodic channels for the next frame and queues transactions for
2894 * these channels to the DWC_otg controller. After queueing transactions, the
2895 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2896 * to queue as Periodic Tx FIFO or request queue space becomes available.
2897 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2898 *
2899 * Must be called with interrupt disabled and spinlock held
2900 */
2901static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2902{
2903	struct list_head *qh_ptr;
2904	struct dwc2_qh *qh;
2905	u32 tx_status;
2906	u32 fspcavail;
2907	u32 gintmsk;
2908	int status;
2909	bool no_queue_space = false;
2910	bool no_fifo_space = false;
2911	u32 qspcavail;
2912
2913	/* If empty list then just adjust interrupt enables */
2914	if (list_empty(&hsotg->periodic_sched_assigned))
2915		goto exit;
2916
2917	if (dbg_perio())
2918		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2919
2920	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2921	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2922		    TXSTS_QSPCAVAIL_SHIFT;
2923	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2924		    TXSTS_FSPCAVAIL_SHIFT;
2925
2926	if (dbg_perio()) {
2927		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2928			 qspcavail);
2929		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2930			 fspcavail);
2931	}
2932
2933	qh_ptr = hsotg->periodic_sched_assigned.next;
2934	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2935		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2936		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2937			    TXSTS_QSPCAVAIL_SHIFT;
2938		if (qspcavail == 0) {
2939			no_queue_space = 1;
2940			break;
2941		}
2942
2943		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2944		if (!qh->channel) {
2945			qh_ptr = qh_ptr->next;
2946			continue;
2947		}
2948
2949		/* Make sure EP's TT buffer is clean before queueing qtds */
2950		if (qh->tt_buffer_dirty) {
2951			qh_ptr = qh_ptr->next;
2952			continue;
2953		}
2954
2955		/*
2956		 * Set a flag if we're queuing high-bandwidth in slave mode.
2957		 * The flag prevents any halts to get into the request queue in
2958		 * the middle of multiple high-bandwidth packets getting queued.
2959		 */
2960		if (hsotg->core_params->dma_enable <= 0 &&
2961				qh->channel->multi_count > 1)
2962			hsotg->queuing_high_bandwidth = 1;
2963
2964		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2965			    TXSTS_FSPCAVAIL_SHIFT;
2966		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2967		if (status < 0) {
2968			no_fifo_space = 1;
2969			break;
2970		}
2971
2972		/*
2973		 * In Slave mode, stay on the current transfer until there is
2974		 * nothing more to do or the high-bandwidth request count is
2975		 * reached. In DMA mode, only need to queue one request. The
2976		 * controller automatically handles multiple packets for
2977		 * high-bandwidth transfers.
2978		 */
2979		if (hsotg->core_params->dma_enable > 0 || status == 0 ||
2980		    qh->channel->requests == qh->channel->multi_count) {
2981			qh_ptr = qh_ptr->next;
2982			/*
2983			 * Move the QH from the periodic assigned schedule to
2984			 * the periodic queued schedule
2985			 */
2986			list_move_tail(&qh->qh_list_entry,
2987				       &hsotg->periodic_sched_queued);
2988
2989			/* done queuing high bandwidth */
2990			hsotg->queuing_high_bandwidth = 0;
2991		}
2992	}
2993
2994exit:
2995	if (no_queue_space || no_fifo_space ||
2996	    (hsotg->core_params->dma_enable <= 0 &&
2997	     !list_empty(&hsotg->periodic_sched_assigned))) {
2998		/*
2999		 * May need to queue more transactions as the request
3000		 * queue or Tx FIFO empties. Enable the periodic Tx
3001		 * FIFO empty interrupt. (Always use the half-empty
3002		 * level to ensure that new requests are loaded as
3003		 * soon as possible.)
3004		 */
3005		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3006		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3007			gintmsk |= GINTSTS_PTXFEMP;
3008			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3009		}
3010	} else {
3011		/*
3012		 * Disable the Tx FIFO empty interrupt since there are
3013		 * no more transactions that need to be queued right
3014		 * now. This function is called from interrupt
3015		 * handlers to queue more transactions as transfer
3016		 * states change.
3017		*/
3018		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3019		if (gintmsk & GINTSTS_PTXFEMP) {
3020			gintmsk &= ~GINTSTS_PTXFEMP;
3021			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3022		}
3023	}
3024}
3025
3026/*
3027 * Processes active non-periodic channels and queues transactions for these
3028 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3029 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3030 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3031 * FIFO Empty interrupt is disabled.
3032 *
3033 * Must be called with interrupt disabled and spinlock held
3034 */
3035static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3036{
3037	struct list_head *orig_qh_ptr;
3038	struct dwc2_qh *qh;
3039	u32 tx_status;
3040	u32 qspcavail;
3041	u32 fspcavail;
3042	u32 gintmsk;
3043	int status;
3044	int no_queue_space = 0;
3045	int no_fifo_space = 0;
3046	int more_to_do = 0;
3047
3048	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3049
3050	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3051	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052		    TXSTS_QSPCAVAIL_SHIFT;
3053	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3054		    TXSTS_FSPCAVAIL_SHIFT;
3055	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3056		 qspcavail);
3057	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3058		 fspcavail);
3059
3060	/*
3061	 * Keep track of the starting point. Skip over the start-of-list
3062	 * entry.
3063	 */
3064	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3065		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3066	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3067
3068	/*
3069	 * Process once through the active list or until no more space is
3070	 * available in the request queue or the Tx FIFO
3071	 */
3072	do {
3073		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3074		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3075			    TXSTS_QSPCAVAIL_SHIFT;
3076		if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
3077			no_queue_space = 1;
3078			break;
3079		}
3080
3081		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3082				qh_list_entry);
3083		if (!qh->channel)
3084			goto next;
3085
3086		/* Make sure EP's TT buffer is clean before queueing qtds */
3087		if (qh->tt_buffer_dirty)
3088			goto next;
3089
3090		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091			    TXSTS_FSPCAVAIL_SHIFT;
3092		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3093
3094		if (status > 0) {
3095			more_to_do = 1;
3096		} else if (status < 0) {
3097			no_fifo_space = 1;
3098			break;
3099		}
3100next:
3101		/* Advance to next QH, skipping start-of-list entry */
3102		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3103		if (hsotg->non_periodic_qh_ptr ==
3104				&hsotg->non_periodic_sched_active)
3105			hsotg->non_periodic_qh_ptr =
3106					hsotg->non_periodic_qh_ptr->next;
3107	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3108
3109	if (hsotg->core_params->dma_enable <= 0) {
3110		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3111		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3112			    TXSTS_QSPCAVAIL_SHIFT;
3113		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3114			    TXSTS_FSPCAVAIL_SHIFT;
3115		dev_vdbg(hsotg->dev,
3116			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3117			 qspcavail);
3118		dev_vdbg(hsotg->dev,
3119			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3120			 fspcavail);
3121
3122		if (more_to_do || no_queue_space || no_fifo_space) {
3123			/*
3124			 * May need to queue more transactions as the request
3125			 * queue or Tx FIFO empties. Enable the non-periodic
3126			 * Tx FIFO empty interrupt. (Always use the half-empty
3127			 * level to ensure that new requests are loaded as
3128			 * soon as possible.)
3129			 */
3130			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3131			gintmsk |= GINTSTS_NPTXFEMP;
3132			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3133		} else {
3134			/*
3135			 * Disable the Tx FIFO empty interrupt since there are
3136			 * no more transactions that need to be queued right
3137			 * now. This function is called from interrupt
3138			 * handlers to queue more transactions as transfer
3139			 * states change.
3140			 */
3141			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3142			gintmsk &= ~GINTSTS_NPTXFEMP;
3143			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3144		}
3145	}
3146}
3147
3148/**
3149 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3150 * and queues transactions for these channels to the DWC_otg controller. Called
3151 * from the HCD interrupt handler functions.
3152 *
3153 * @hsotg:   The HCD state structure
3154 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3155 *           or both)
3156 *
3157 * Must be called with interrupt disabled and spinlock held
3158 */
3159void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3160				 enum dwc2_transaction_type tr_type)
3161{
3162#ifdef DWC2_DEBUG_SOF
3163	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3164#endif
3165	/* Process host channels associated with periodic transfers */
3166	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3167	    tr_type == DWC2_TRANSACTION_ALL)
3168		dwc2_process_periodic_channels(hsotg);
3169
3170	/* Process host channels associated with non-periodic transfers */
3171	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3172	    tr_type == DWC2_TRANSACTION_ALL) {
3173		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3174			dwc2_process_non_periodic_channels(hsotg);
3175		} else {
3176			/*
3177			 * Ensure NP Tx FIFO empty interrupt is disabled when
3178			 * there are no non-periodic transfers to process
3179			 */
3180			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3181
3182			gintmsk &= ~GINTSTS_NPTXFEMP;
3183			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3184		}
3185	}
3186}
3187
3188static void dwc2_conn_id_status_change(struct work_struct *work)
3189{
3190	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3191						wf_otg);
3192	u32 count = 0;
3193	u32 gotgctl;
3194	unsigned long flags;
3195
3196	dev_dbg(hsotg->dev, "%s()\n", __func__);
3197
3198	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3199	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3200	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3201		!!(gotgctl & GOTGCTL_CONID_B));
3202
3203	/* B-Device connector (Device Mode) */
3204	if (gotgctl & GOTGCTL_CONID_B) {
 
3205		/* Wait for switch to device mode */
3206		dev_dbg(hsotg->dev, "connId B\n");
 
 
 
 
 
3207		while (!dwc2_is_device_mode(hsotg)) {
3208			dev_info(hsotg->dev,
3209				 "Waiting for Peripheral Mode, Mode=%s\n",
3210				 dwc2_is_host_mode(hsotg) ? "Host" :
3211				 "Peripheral");
3212			usleep_range(20000, 40000);
 
 
 
 
 
 
 
 
3213			if (++count > 250)
3214				break;
3215		}
3216		if (count > 250)
3217			dev_err(hsotg->dev,
3218				"Connection id status change timed out\n");
 
 
 
 
 
 
 
 
 
3219		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3220		dwc2_core_init(hsotg, false);
3221		dwc2_enable_global_interrupts(hsotg);
3222		spin_lock_irqsave(&hsotg->lock, flags);
3223		dwc2_hsotg_core_init_disconnected(hsotg, false);
3224		spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
3225		dwc2_hsotg_core_connect(hsotg);
3226	} else {
 
3227		/* A-Device connector (Host Mode) */
3228		dev_dbg(hsotg->dev, "connId A\n");
3229		while (!dwc2_is_host_mode(hsotg)) {
3230			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3231				 dwc2_is_host_mode(hsotg) ?
3232				 "Host" : "Peripheral");
3233			usleep_range(20000, 40000);
3234			if (++count > 250)
3235				break;
3236		}
3237		if (count > 250)
3238			dev_err(hsotg->dev,
3239				"Connection id status change timed out\n");
3240		hsotg->op_state = OTG_STATE_A_HOST;
3241
 
 
 
 
 
3242		/* Initialize the Core for Host mode */
3243		dwc2_core_init(hsotg, false);
3244		dwc2_enable_global_interrupts(hsotg);
3245		dwc2_hcd_start(hsotg);
3246	}
3247}
3248
3249static void dwc2_wakeup_detected(unsigned long data)
3250{
3251	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3252	u32 hprt0;
3253
3254	dev_dbg(hsotg->dev, "%s()\n", __func__);
3255
3256	/*
3257	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3258	 * so that OPT tests pass with all PHYs.)
3259	 */
3260	hprt0 = dwc2_read_hprt0(hsotg);
3261	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3262	hprt0 &= ~HPRT0_RES;
3263	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3264	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3265		dwc2_readl(hsotg->regs + HPRT0));
3266
3267	dwc2_hcd_rem_wakeup(hsotg);
3268	hsotg->bus_suspended = 0;
3269
3270	/* Change to L0 state */
3271	hsotg->lx_state = DWC2_L0;
3272}
3273
3274static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3275{
3276	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3277
3278	return hcd->self.b_hnp_enable;
3279}
3280
3281/* Must NOT be called with interrupt disabled or spinlock held */
3282static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
 
 
 
 
 
 
 
 
 
 
3283{
3284	unsigned long flags;
3285	u32 hprt0;
3286	u32 pcgctl;
3287	u32 gotgctl;
 
3288
3289	dev_dbg(hsotg->dev, "%s()\n", __func__);
3290
3291	spin_lock_irqsave(&hsotg->lock, flags);
3292
3293	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3294		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3295		gotgctl |= GOTGCTL_HSTSETHNPEN;
3296		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3297		hsotg->op_state = OTG_STATE_A_SUSPEND;
3298	}
3299
3300	hprt0 = dwc2_read_hprt0(hsotg);
3301	hprt0 |= HPRT0_SUSP;
3302	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3303
3304	hsotg->bus_suspended = 1;
3305
3306	/*
3307	 * If hibernation is supported, Phy clock will be suspended
3308	 * after registers are backuped.
3309	 */
3310	if (!hsotg->core_params->hibernation) {
3311		/* Suspend the Phy Clock */
3312		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3313		pcgctl |= PCGCTL_STOPPCLK;
3314		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3315		udelay(10);
 
 
 
 
 
 
 
 
 
 
 
 
3316	}
3317
3318	/* For HNP the bus must be suspended for at least 200ms */
3319	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3320		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3321		pcgctl &= ~PCGCTL_STOPPCLK;
3322		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3323
3324		spin_unlock_irqrestore(&hsotg->lock, flags);
3325
3326		usleep_range(200000, 250000);
3327	} else {
3328		spin_unlock_irqrestore(&hsotg->lock, flags);
3329	}
 
 
3330}
3331
3332/* Must NOT be called with interrupt disabled or spinlock held */
3333static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
 
 
 
 
 
 
 
 
 
3334{
3335	unsigned long flags;
3336	u32 hprt0;
3337	u32 pcgctl;
3338
3339	spin_lock_irqsave(&hsotg->lock, flags);
3340
3341	/*
3342	 * If hibernation is supported, Phy clock is already resumed
3343	 * after registers restore.
3344	 */
3345	if (!hsotg->core_params->hibernation) {
3346		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3347		pcgctl &= ~PCGCTL_STOPPCLK;
3348		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
 
 
 
 
 
 
 
 
 
 
3349		spin_unlock_irqrestore(&hsotg->lock, flags);
3350		usleep_range(20000, 40000);
3351		spin_lock_irqsave(&hsotg->lock, flags);
 
3352	}
3353
3354	hprt0 = dwc2_read_hprt0(hsotg);
3355	hprt0 |= HPRT0_RES;
3356	hprt0 &= ~HPRT0_SUSP;
3357	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3358	spin_unlock_irqrestore(&hsotg->lock, flags);
3359
3360	msleep(USB_RESUME_TIMEOUT);
3361
3362	spin_lock_irqsave(&hsotg->lock, flags);
3363	hprt0 = dwc2_read_hprt0(hsotg);
3364	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3365	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3366	hsotg->bus_suspended = 0;
3367	spin_unlock_irqrestore(&hsotg->lock, flags);
3368}
3369
3370/* Handles hub class-specific requests */
3371static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3372				u16 wvalue, u16 windex, char *buf, u16 wlength)
3373{
3374	struct usb_hub_descriptor *hub_desc;
3375	int retval = 0;
3376	u32 hprt0;
3377	u32 port_status;
3378	u32 speed;
3379	u32 pcgctl;
 
3380
3381	switch (typereq) {
3382	case ClearHubFeature:
3383		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3384
3385		switch (wvalue) {
3386		case C_HUB_LOCAL_POWER:
3387		case C_HUB_OVER_CURRENT:
3388			/* Nothing required here */
3389			break;
3390
3391		default:
3392			retval = -EINVAL;
3393			dev_err(hsotg->dev,
3394				"ClearHubFeature request %1xh unknown\n",
3395				wvalue);
3396		}
3397		break;
3398
3399	case ClearPortFeature:
3400		if (wvalue != USB_PORT_FEAT_L1)
3401			if (!windex || windex > 1)
3402				goto error;
3403		switch (wvalue) {
3404		case USB_PORT_FEAT_ENABLE:
3405			dev_dbg(hsotg->dev,
3406				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407			hprt0 = dwc2_read_hprt0(hsotg);
3408			hprt0 |= HPRT0_ENA;
3409			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3410			break;
3411
3412		case USB_PORT_FEAT_SUSPEND:
3413			dev_dbg(hsotg->dev,
3414				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3415
3416			if (hsotg->bus_suspended)
3417				dwc2_port_resume(hsotg);
3418			break;
3419
3420		case USB_PORT_FEAT_POWER:
3421			dev_dbg(hsotg->dev,
3422				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3423			hprt0 = dwc2_read_hprt0(hsotg);
 
3424			hprt0 &= ~HPRT0_PWR;
3425			dwc2_writel(hprt0, hsotg->regs + HPRT0);
 
 
3426			break;
3427
3428		case USB_PORT_FEAT_INDICATOR:
3429			dev_dbg(hsotg->dev,
3430				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3431			/* Port indicator not supported */
3432			break;
3433
3434		case USB_PORT_FEAT_C_CONNECTION:
3435			/*
3436			 * Clears driver's internal Connect Status Change flag
3437			 */
3438			dev_dbg(hsotg->dev,
3439				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3440			hsotg->flags.b.port_connect_status_change = 0;
3441			break;
3442
3443		case USB_PORT_FEAT_C_RESET:
3444			/* Clears driver's internal Port Reset Change flag */
3445			dev_dbg(hsotg->dev,
3446				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3447			hsotg->flags.b.port_reset_change = 0;
3448			break;
3449
3450		case USB_PORT_FEAT_C_ENABLE:
3451			/*
3452			 * Clears the driver's internal Port Enable/Disable
3453			 * Change flag
3454			 */
3455			dev_dbg(hsotg->dev,
3456				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3457			hsotg->flags.b.port_enable_change = 0;
3458			break;
3459
3460		case USB_PORT_FEAT_C_SUSPEND:
3461			/*
3462			 * Clears the driver's internal Port Suspend Change
3463			 * flag, which is set when resume signaling on the host
3464			 * port is complete
3465			 */
3466			dev_dbg(hsotg->dev,
3467				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3468			hsotg->flags.b.port_suspend_change = 0;
3469			break;
3470
3471		case USB_PORT_FEAT_C_PORT_L1:
3472			dev_dbg(hsotg->dev,
3473				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3474			hsotg->flags.b.port_l1_change = 0;
3475			break;
3476
3477		case USB_PORT_FEAT_C_OVER_CURRENT:
3478			dev_dbg(hsotg->dev,
3479				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3480			hsotg->flags.b.port_over_current_change = 0;
3481			break;
3482
3483		default:
3484			retval = -EINVAL;
3485			dev_err(hsotg->dev,
3486				"ClearPortFeature request %1xh unknown or unsupported\n",
3487				wvalue);
3488		}
3489		break;
3490
3491	case GetHubDescriptor:
3492		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3493		hub_desc = (struct usb_hub_descriptor *)buf;
3494		hub_desc->bDescLength = 9;
3495		hub_desc->bDescriptorType = USB_DT_HUB;
3496		hub_desc->bNbrPorts = 1;
3497		hub_desc->wHubCharacteristics =
3498			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3499				    HUB_CHAR_INDV_PORT_OCPM);
3500		hub_desc->bPwrOn2PwrGood = 1;
3501		hub_desc->bHubContrCurrent = 0;
3502		hub_desc->u.hs.DeviceRemovable[0] = 0;
3503		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3504		break;
3505
3506	case GetHubStatus:
3507		dev_dbg(hsotg->dev, "GetHubStatus\n");
3508		memset(buf, 0, 4);
3509		break;
3510
3511	case GetPortStatus:
3512		dev_vdbg(hsotg->dev,
3513			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3514			 hsotg->flags.d32);
3515		if (!windex || windex > 1)
3516			goto error;
3517
3518		port_status = 0;
3519		if (hsotg->flags.b.port_connect_status_change)
3520			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3521		if (hsotg->flags.b.port_enable_change)
3522			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3523		if (hsotg->flags.b.port_suspend_change)
3524			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3525		if (hsotg->flags.b.port_l1_change)
3526			port_status |= USB_PORT_STAT_C_L1 << 16;
3527		if (hsotg->flags.b.port_reset_change)
3528			port_status |= USB_PORT_STAT_C_RESET << 16;
3529		if (hsotg->flags.b.port_over_current_change) {
3530			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3531			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3532		}
3533
3534		if (!hsotg->flags.b.port_connect_status) {
3535			/*
3536			 * The port is disconnected, which means the core is
3537			 * either in device mode or it soon will be. Just
3538			 * return 0's for the remainder of the port status
3539			 * since the port register can't be read if the core
3540			 * is in device mode.
3541			 */
3542			*(__le32 *)buf = cpu_to_le32(port_status);
3543			break;
3544		}
3545
3546		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3547		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3548
3549		if (hprt0 & HPRT0_CONNSTS)
3550			port_status |= USB_PORT_STAT_CONNECTION;
3551		if (hprt0 & HPRT0_ENA)
3552			port_status |= USB_PORT_STAT_ENABLE;
3553		if (hprt0 & HPRT0_SUSP)
3554			port_status |= USB_PORT_STAT_SUSPEND;
3555		if (hprt0 & HPRT0_OVRCURRACT)
3556			port_status |= USB_PORT_STAT_OVERCURRENT;
3557		if (hprt0 & HPRT0_RST)
3558			port_status |= USB_PORT_STAT_RESET;
3559		if (hprt0 & HPRT0_PWR)
3560			port_status |= USB_PORT_STAT_POWER;
3561
3562		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3563		if (speed == HPRT0_SPD_HIGH_SPEED)
3564			port_status |= USB_PORT_STAT_HIGH_SPEED;
3565		else if (speed == HPRT0_SPD_LOW_SPEED)
3566			port_status |= USB_PORT_STAT_LOW_SPEED;
3567
3568		if (hprt0 & HPRT0_TSTCTL_MASK)
3569			port_status |= USB_PORT_STAT_TEST;
3570		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3571
3572		if (hsotg->core_params->dma_desc_fs_enable) {
3573			/*
3574			 * Enable descriptor DMA only if a full speed
3575			 * device is connected.
3576			 */
3577			if (hsotg->new_connection &&
3578			    ((port_status &
3579			      (USB_PORT_STAT_CONNECTION |
3580			       USB_PORT_STAT_HIGH_SPEED |
3581			       USB_PORT_STAT_LOW_SPEED)) ==
3582			       USB_PORT_STAT_CONNECTION)) {
3583				u32 hcfg;
3584
3585				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3586				hsotg->core_params->dma_desc_enable = 1;
3587				hcfg = dwc2_readl(hsotg->regs + HCFG);
3588				hcfg |= HCFG_DESCDMA;
3589				dwc2_writel(hcfg, hsotg->regs + HCFG);
3590				hsotg->new_connection = false;
3591			}
3592		}
3593
3594		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3595		*(__le32 *)buf = cpu_to_le32(port_status);
3596		break;
3597
3598	case SetHubFeature:
3599		dev_dbg(hsotg->dev, "SetHubFeature\n");
3600		/* No HUB features supported */
3601		break;
3602
3603	case SetPortFeature:
3604		dev_dbg(hsotg->dev, "SetPortFeature\n");
3605		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3606			goto error;
3607
3608		if (!hsotg->flags.b.port_connect_status) {
3609			/*
3610			 * The port is disconnected, which means the core is
3611			 * either in device mode or it soon will be. Just
3612			 * return without doing anything since the port
3613			 * register can't be written if the core is in device
3614			 * mode.
3615			 */
3616			break;
3617		}
3618
3619		switch (wvalue) {
3620		case USB_PORT_FEAT_SUSPEND:
3621			dev_dbg(hsotg->dev,
3622				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3623			if (windex != hsotg->otg_port)
3624				goto error;
3625			dwc2_port_suspend(hsotg, windex);
 
3626			break;
3627
3628		case USB_PORT_FEAT_POWER:
3629			dev_dbg(hsotg->dev,
3630				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3631			hprt0 = dwc2_read_hprt0(hsotg);
 
3632			hprt0 |= HPRT0_PWR;
3633			dwc2_writel(hprt0, hsotg->regs + HPRT0);
 
 
3634			break;
3635
3636		case USB_PORT_FEAT_RESET:
3637			hprt0 = dwc2_read_hprt0(hsotg);
3638			dev_dbg(hsotg->dev,
3639				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3640			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3641			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3642			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3643			/* ??? Original driver does this */
3644			dwc2_writel(0, hsotg->regs + PCGCTL);
3645
3646			hprt0 = dwc2_read_hprt0(hsotg);
 
3647			/* Clear suspend bit if resetting from suspend state */
3648			hprt0 &= ~HPRT0_SUSP;
3649
3650			/*
3651			 * When B-Host the Port reset bit is set in the Start
3652			 * HCD Callback function, so that the reset is started
3653			 * within 1ms of the HNP success interrupt
3654			 */
3655			if (!dwc2_hcd_is_b_host(hsotg)) {
3656				hprt0 |= HPRT0_PWR | HPRT0_RST;
3657				dev_dbg(hsotg->dev,
3658					"In host mode, hprt0=%08x\n", hprt0);
3659				dwc2_writel(hprt0, hsotg->regs + HPRT0);
 
 
3660			}
3661
3662			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3663			usleep_range(50000, 70000);
3664			hprt0 &= ~HPRT0_RST;
3665			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3666			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3667			break;
3668
3669		case USB_PORT_FEAT_INDICATOR:
3670			dev_dbg(hsotg->dev,
3671				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3672			/* Not supported */
3673			break;
3674
3675		case USB_PORT_FEAT_TEST:
3676			hprt0 = dwc2_read_hprt0(hsotg);
3677			dev_dbg(hsotg->dev,
3678				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3679			hprt0 &= ~HPRT0_TSTCTL_MASK;
3680			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3681			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3682			break;
3683
3684		default:
3685			retval = -EINVAL;
3686			dev_err(hsotg->dev,
3687				"SetPortFeature %1xh unknown or unsupported\n",
3688				wvalue);
3689			break;
3690		}
3691		break;
3692
3693	default:
3694error:
3695		retval = -EINVAL;
3696		dev_dbg(hsotg->dev,
3697			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3698			typereq, windex, wvalue);
3699		break;
3700	}
3701
3702	return retval;
3703}
3704
3705static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3706{
3707	int retval;
3708
3709	if (port != 1)
3710		return -EINVAL;
3711
3712	retval = (hsotg->flags.b.port_connect_status_change ||
3713		  hsotg->flags.b.port_reset_change ||
3714		  hsotg->flags.b.port_enable_change ||
3715		  hsotg->flags.b.port_suspend_change ||
3716		  hsotg->flags.b.port_over_current_change);
3717
3718	if (retval) {
3719		dev_dbg(hsotg->dev,
3720			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3721		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3722			hsotg->flags.b.port_connect_status_change);
3723		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3724			hsotg->flags.b.port_reset_change);
3725		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3726			hsotg->flags.b.port_enable_change);
3727		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3728			hsotg->flags.b.port_suspend_change);
3729		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3730			hsotg->flags.b.port_over_current_change);
3731	}
3732
3733	return retval;
3734}
3735
3736int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3737{
3738	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3739
3740#ifdef DWC2_DEBUG_SOF
3741	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3742		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3743#endif
3744	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3745}
3746
3747int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3748{
3749	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3750	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3751	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3752	unsigned int us_per_frame;
3753	unsigned int frame_number;
3754	unsigned int remaining;
3755	unsigned int interval;
3756	unsigned int phy_clks;
3757
3758	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3759	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3760
3761	/* Extract fields */
3762	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3764	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3765
3766	/*
3767	 * Number of phy clocks since the last tick of the frame number after
3768	 * "us" has passed.
3769	 */
3770	phy_clks = (interval - remaining) +
3771		   DIV_ROUND_UP(interval * us, us_per_frame);
3772
3773	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3774}
3775
3776int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3777{
3778	return hsotg->op_state == OTG_STATE_B_HOST;
3779}
3780
3781static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3782					       int iso_desc_count,
3783					       gfp_t mem_flags)
3784{
3785	struct dwc2_hcd_urb *urb;
3786	u32 size = sizeof(*urb) + iso_desc_count *
3787		   sizeof(struct dwc2_hcd_iso_packet_desc);
3788
3789	urb = kzalloc(size, mem_flags);
3790	if (urb)
3791		urb->packet_count = iso_desc_count;
3792	return urb;
3793}
3794
3795static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3796				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3797				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
 
3798{
3799	if (dbg_perio() ||
3800	    ep_type == USB_ENDPOINT_XFER_BULK ||
3801	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3802		dev_vdbg(hsotg->dev,
3803			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3804			 dev_addr, ep_num, ep_dir, ep_type, mps);
3805	urb->pipe_info.dev_addr = dev_addr;
3806	urb->pipe_info.ep_num = ep_num;
3807	urb->pipe_info.pipe_type = ep_type;
3808	urb->pipe_info.pipe_dir = ep_dir;
3809	urb->pipe_info.mps = mps;
 
3810}
3811
3812/*
3813 * NOTE: This function will be removed once the peripheral controller code
3814 * is integrated and the driver is stable
3815 */
3816void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3817{
3818#ifdef DEBUG
3819	struct dwc2_host_chan *chan;
3820	struct dwc2_hcd_urb *urb;
3821	struct dwc2_qtd *qtd;
3822	int num_channels;
3823	u32 np_tx_status;
3824	u32 p_tx_status;
3825	int i;
3826
3827	num_channels = hsotg->core_params->host_channels;
3828	dev_dbg(hsotg->dev, "\n");
3829	dev_dbg(hsotg->dev,
3830		"************************************************************\n");
3831	dev_dbg(hsotg->dev, "HCD State:\n");
3832	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3833
3834	for (i = 0; i < num_channels; i++) {
3835		chan = hsotg->hc_ptr_array[i];
3836		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3837		dev_dbg(hsotg->dev,
3838			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3839			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3840		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3841		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3842		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3843		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3844			chan->data_pid_start);
3845		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3846		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3847			chan->xfer_started);
3848		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3849		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3850			(unsigned long)chan->xfer_dma);
3851		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3852		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3853		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3854			chan->halt_on_queue);
3855		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3856			chan->halt_pending);
3857		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3858		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3859		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3860			chan->complete_split);
3861		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3862		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3863		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3864		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3865		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3866
3867		if (chan->xfer_started) {
3868			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3869
3870			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3871			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3872			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3873			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3874			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3875			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3876			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3877			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3878			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3879			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3880		}
3881
3882		if (!(chan->xfer_started && chan->qh))
3883			continue;
3884
3885		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3886			if (!qtd->in_process)
3887				break;
3888			urb = qtd->urb;
3889			dev_dbg(hsotg->dev, "    URB Info:\n");
3890			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3891				qtd, urb);
3892			if (urb) {
3893				dev_dbg(hsotg->dev,
3894					"      Dev: %d, EP: %d %s\n",
3895					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3896					dwc2_hcd_get_ep_num(&urb->pipe_info),
3897					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3898					"IN" : "OUT");
3899				dev_dbg(hsotg->dev,
3900					"      Max packet size: %d\n",
3901					dwc2_hcd_get_mps(&urb->pipe_info));
 
3902				dev_dbg(hsotg->dev,
3903					"      transfer_buffer: %p\n",
3904					urb->buf);
3905				dev_dbg(hsotg->dev,
3906					"      transfer_dma: %08lx\n",
3907					(unsigned long)urb->dma);
3908				dev_dbg(hsotg->dev,
3909					"      transfer_buffer_length: %d\n",
3910					urb->length);
3911				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3912					urb->actual_length);
3913			}
3914		}
3915	}
3916
3917	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3918		hsotg->non_periodic_channels);
3919	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3920		hsotg->periodic_channels);
3921	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3922	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3923	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3924		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3925	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3926		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3927	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3928	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3929		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3930	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3931		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3932	dwc2_hcd_dump_frrem(hsotg);
3933	dwc2_dump_global_registers(hsotg);
3934	dwc2_dump_host_registers(hsotg);
3935	dev_dbg(hsotg->dev,
3936		"************************************************************\n");
3937	dev_dbg(hsotg->dev, "\n");
3938#endif
3939}
3940
3941/*
3942 * NOTE: This function will be removed once the peripheral controller code
3943 * is integrated and the driver is stable
3944 */
3945void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3946{
3947#ifdef DWC2_DUMP_FRREM
3948	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3949	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3950		hsotg->frrem_samples, hsotg->frrem_accum,
3951		hsotg->frrem_samples > 0 ?
3952		hsotg->frrem_accum / hsotg->frrem_samples : 0);
3953	dev_dbg(hsotg->dev, "\n");
3954	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3955	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3956		hsotg->hfnum_7_samples,
3957		hsotg->hfnum_7_frrem_accum,
3958		hsotg->hfnum_7_samples > 0 ?
3959		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
3960	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
3961	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3962		hsotg->hfnum_0_samples,
3963		hsotg->hfnum_0_frrem_accum,
3964		hsotg->hfnum_0_samples > 0 ?
3965		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
3966	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
3967	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3968		hsotg->hfnum_other_samples,
3969		hsotg->hfnum_other_frrem_accum,
3970		hsotg->hfnum_other_samples > 0 ?
3971		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
3972		0);
3973	dev_dbg(hsotg->dev, "\n");
3974	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
3975	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3976		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
3977		hsotg->hfnum_7_samples_a > 0 ?
3978		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
3979	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
3980	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3981		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
3982		hsotg->hfnum_0_samples_a > 0 ?
3983		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
3984	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
3985	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3986		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
3987		hsotg->hfnum_other_samples_a > 0 ?
3988		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
3989		: 0);
3990	dev_dbg(hsotg->dev, "\n");
3991	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
3992	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3993		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
3994		hsotg->hfnum_7_samples_b > 0 ?
3995		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
3996	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
3997	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3998		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
3999		(hsotg->hfnum_0_samples_b > 0) ?
4000		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4001	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4002	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4003		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4004		(hsotg->hfnum_other_samples_b > 0) ?
4005		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4006		: 0);
4007#endif
4008}
4009
4010struct wrapper_priv_data {
4011	struct dwc2_hsotg *hsotg;
4012};
4013
4014/* Gets the dwc2_hsotg from a usb_hcd */
4015static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4016{
4017	struct wrapper_priv_data *p;
4018
4019	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
4020	return p->hsotg;
4021}
4022
4023static int _dwc2_hcd_start(struct usb_hcd *hcd);
4024
4025void dwc2_host_start(struct dwc2_hsotg *hsotg)
4026{
4027	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4028
4029	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
4030	_dwc2_hcd_start(hcd);
4031}
4032
4033void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
4034{
4035	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4036
4037	hcd->self.is_b_host = 0;
4038}
4039
4040void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
4041			int *hub_port)
4042{
4043	struct urb *urb = context;
4044
4045	if (urb->dev->tt)
4046		*hub_addr = urb->dev->tt->hub->devnum;
4047	else
4048		*hub_addr = 0;
4049	*hub_port = urb->dev->ttport;
4050}
4051
4052/**
4053 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4054 *
4055 * This will get the dwc2_tt structure (and ttport) associated with the given
4056 * context (which is really just a struct urb pointer).
4057 *
4058 * The first time this is called for a given TT we allocate memory for our
4059 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4060 * then the refcount for the structure will go to 0 and we'll free it.
4061 *
4062 * @hsotg:     The HCD state structure for the DWC OTG controller.
4063 * @qh:        The QH structure.
4064 * @context:   The priv pointer from a struct dwc2_hcd_urb.
4065 * @mem_flags: Flags for allocating memory.
4066 * @ttport:    We'll return this device's port number here.  That's used to
4067 *             reference into the bitmap if we're on a multi_tt hub.
4068 *
4069 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4070 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4071 */
4072
4073struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4074				      gfp_t mem_flags, int *ttport)
4075{
4076	struct urb *urb = context;
4077	struct dwc2_tt *dwc_tt = NULL;
4078
4079	if (urb->dev->tt) {
4080		*ttport = urb->dev->ttport;
4081
4082		dwc_tt = urb->dev->tt->hcpriv;
4083		if (dwc_tt == NULL) {
4084			size_t bitmap_size;
4085
4086			/*
4087			 * For single_tt we need one schedule.  For multi_tt
4088			 * we need one per port.
4089			 */
4090			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4091				      sizeof(dwc_tt->periodic_bitmaps[0]);
4092			if (urb->dev->tt->multi)
4093				bitmap_size *= urb->dev->tt->hub->maxchild;
4094
4095			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4096					 mem_flags);
4097			if (dwc_tt == NULL)
4098				return NULL;
4099
4100			dwc_tt->usb_tt = urb->dev->tt;
4101			dwc_tt->usb_tt->hcpriv = dwc_tt;
4102		}
4103
4104		dwc_tt->refcount++;
4105	}
4106
4107	return dwc_tt;
4108}
4109
4110/**
4111 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4112 *
4113 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4114 * of the structure are done.
4115 *
4116 * It's OK to call this with NULL.
4117 *
4118 * @hsotg:     The HCD state structure for the DWC OTG controller.
4119 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4120 */
4121void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4122{
4123	/* Model kfree and make put of NULL a no-op */
4124	if (dwc_tt == NULL)
4125		return;
4126
4127	WARN_ON(dwc_tt->refcount < 1);
4128
4129	dwc_tt->refcount--;
4130	if (!dwc_tt->refcount) {
4131		dwc_tt->usb_tt->hcpriv = NULL;
4132		kfree(dwc_tt);
4133	}
4134}
4135
4136int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4137{
4138	struct urb *urb = context;
4139
4140	return urb->dev->speed;
4141}
4142
4143static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4144					struct urb *urb)
4145{
4146	struct usb_bus *bus = hcd_to_bus(hcd);
4147
4148	if (urb->interval)
4149		bus->bandwidth_allocated += bw / urb->interval;
4150	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4151		bus->bandwidth_isoc_reqs++;
4152	else
4153		bus->bandwidth_int_reqs++;
4154}
4155
4156static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4157				    struct urb *urb)
4158{
4159	struct usb_bus *bus = hcd_to_bus(hcd);
4160
4161	if (urb->interval)
4162		bus->bandwidth_allocated -= bw / urb->interval;
4163	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4164		bus->bandwidth_isoc_reqs--;
4165	else
4166		bus->bandwidth_int_reqs--;
4167}
4168
4169/*
4170 * Sets the final status of an URB and returns it to the upper layer. Any
4171 * required cleanup of the URB is performed.
4172 *
4173 * Must be called with interrupt disabled and spinlock held
4174 */
4175void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4176			int status)
4177{
4178	struct urb *urb;
4179	int i;
4180
4181	if (!qtd) {
4182		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4183		return;
4184	}
4185
4186	if (!qtd->urb) {
4187		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4188		return;
4189	}
4190
4191	urb = qtd->urb->priv;
4192	if (!urb) {
4193		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4194		return;
4195	}
4196
4197	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4198
4199	if (dbg_urb(urb))
4200		dev_vdbg(hsotg->dev,
4201			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4202			 __func__, urb, usb_pipedevice(urb->pipe),
4203			 usb_pipeendpoint(urb->pipe),
4204			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4205			 urb->actual_length);
4206
4207
4208	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4209		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4210		for (i = 0; i < urb->number_of_packets; ++i) {
4211			urb->iso_frame_desc[i].actual_length =
4212				dwc2_hcd_urb_get_iso_desc_actual_length(
4213						qtd->urb, i);
4214			urb->iso_frame_desc[i].status =
4215				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4216		}
4217	}
4218
4219	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4220		for (i = 0; i < urb->number_of_packets; i++)
4221			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4222				 i, urb->iso_frame_desc[i].status);
4223	}
4224
4225	urb->status = status;
4226	if (!status) {
4227		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4228		    urb->actual_length < urb->transfer_buffer_length)
4229			urb->status = -EREMOTEIO;
4230	}
4231
4232	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4233	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4234		struct usb_host_endpoint *ep = urb->ep;
4235
4236		if (ep)
4237			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4238					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4239					urb);
4240	}
4241
4242	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4243	urb->hcpriv = NULL;
4244	kfree(qtd->urb);
4245	qtd->urb = NULL;
4246
4247	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4248}
4249
4250/*
4251 * Work queue function for starting the HCD when A-Cable is connected
4252 */
4253static void dwc2_hcd_start_func(struct work_struct *work)
4254{
4255	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4256						start_work.work);
4257
4258	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4259	dwc2_host_start(hsotg);
4260}
4261
4262/*
4263 * Reset work queue function
4264 */
4265static void dwc2_hcd_reset_func(struct work_struct *work)
4266{
4267	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4268						reset_work.work);
4269	unsigned long flags;
4270	u32 hprt0;
4271
4272	dev_dbg(hsotg->dev, "USB RESET function called\n");
4273
4274	spin_lock_irqsave(&hsotg->lock, flags);
4275
4276	hprt0 = dwc2_read_hprt0(hsotg);
4277	hprt0 &= ~HPRT0_RST;
4278	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4279	hsotg->flags.b.port_reset_change = 1;
4280
4281	spin_unlock_irqrestore(&hsotg->lock, flags);
4282}
4283
 
 
 
 
 
 
 
 
 
 
 
4284/*
4285 * =========================================================================
4286 *  Linux HC Driver Functions
4287 * =========================================================================
4288 */
4289
4290/*
4291 * Initializes the DWC_otg controller and its root hub and prepares it for host
4292 * mode operation. Activates the root port. Returns 0 on success and a negative
4293 * error code on failure.
4294 */
4295static int _dwc2_hcd_start(struct usb_hcd *hcd)
4296{
4297	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4298	struct usb_bus *bus = hcd_to_bus(hcd);
4299	unsigned long flags;
 
 
4300
4301	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4302
4303	spin_lock_irqsave(&hsotg->lock, flags);
4304	hsotg->lx_state = DWC2_L0;
4305	hcd->state = HC_STATE_RUNNING;
4306	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4307
4308	if (dwc2_is_device_mode(hsotg)) {
4309		spin_unlock_irqrestore(&hsotg->lock, flags);
4310		return 0;	/* why 0 ?? */
4311	}
4312
4313	dwc2_hcd_reinit(hsotg);
4314
 
 
 
 
 
 
 
 
 
 
 
4315	/* Initialize and connect root hub if one is not already attached */
4316	if (bus->root_hub) {
4317		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4318		/* Inform the HUB driver to resume */
4319		usb_hcd_resume_root_hub(hcd);
4320	}
4321
4322	spin_unlock_irqrestore(&hsotg->lock, flags);
 
4323	return 0;
4324}
4325
4326/*
4327 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4328 * stopped.
4329 */
4330static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4331{
4332	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4333	unsigned long flags;
 
4334
4335	/* Turn off all host-specific interrupts */
4336	dwc2_disable_host_interrupts(hsotg);
4337
4338	/* Wait for interrupt processing to finish */
4339	synchronize_irq(hcd->irq);
4340
4341	spin_lock_irqsave(&hsotg->lock, flags);
 
4342	/* Ensure hcd is disconnected */
4343	dwc2_hcd_disconnect(hsotg, true);
4344	dwc2_hcd_stop(hsotg);
4345	hsotg->lx_state = DWC2_L3;
4346	hcd->state = HC_STATE_HALT;
4347	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4348	spin_unlock_irqrestore(&hsotg->lock, flags);
4349
 
 
 
 
4350	usleep_range(1000, 3000);
4351}
4352
4353static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4354{
4355	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4356	unsigned long flags;
4357	int ret = 0;
4358	u32 hprt0;
4359
4360	spin_lock_irqsave(&hsotg->lock, flags);
4361
 
 
 
4362	if (hsotg->lx_state != DWC2_L0)
4363		goto unlock;
4364
4365	if (!HCD_HW_ACCESSIBLE(hcd))
4366		goto unlock;
4367
4368	if (!hsotg->core_params->hibernation)
 
 
 
4369		goto skip_power_saving;
4370
4371	/*
4372	 * Drive USB suspend and disable port Power
4373	 * if usb bus is not suspended.
4374	 */
4375	if (!hsotg->bus_suspended) {
4376		hprt0 = dwc2_read_hprt0(hsotg);
4377		hprt0 |= HPRT0_SUSP;
4378		hprt0 &= ~HPRT0_PWR;
4379		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4380	}
4381
4382	/* Enter hibernation */
4383	ret = dwc2_enter_hibernation(hsotg);
4384	if (ret) {
4385		if (ret != -ENOTSUPP)
 
4386			dev_err(hsotg->dev,
4387				"enter hibernation failed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4388		goto skip_power_saving;
4389	}
4390
 
 
 
 
4391	/* Ask phy to be suspended */
4392	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4393		spin_unlock_irqrestore(&hsotg->lock, flags);
4394		usb_phy_set_suspend(hsotg->uphy, true);
4395		spin_lock_irqsave(&hsotg->lock, flags);
4396	}
4397
4398	/* After entering hibernation, hardware is no more accessible */
4399	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400
4401skip_power_saving:
4402	hsotg->lx_state = DWC2_L2;
4403unlock:
4404	spin_unlock_irqrestore(&hsotg->lock, flags);
4405
4406	return ret;
4407}
4408
4409static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4410{
4411	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4412	unsigned long flags;
 
4413	int ret = 0;
4414
4415	spin_lock_irqsave(&hsotg->lock, flags);
4416
 
 
 
4417	if (hsotg->lx_state != DWC2_L2)
4418		goto unlock;
4419
4420	if (!hsotg->core_params->hibernation) {
 
 
 
 
 
 
 
4421		hsotg->lx_state = DWC2_L0;
4422		goto unlock;
4423	}
4424
4425	/*
4426	 * Set HW accessible bit before powering on the controller
4427	 * since an interrupt may rise.
4428	 */
4429	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4430
4431	/*
4432	 * Enable power if not already done.
4433	 * This must not be spinlocked since duration
4434	 * of this call is unknown.
4435	 */
4436	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4437		spin_unlock_irqrestore(&hsotg->lock, flags);
4438		usb_phy_set_suspend(hsotg->uphy, false);
4439		spin_lock_irqsave(&hsotg->lock, flags);
4440	}
4441
4442	/* Exit hibernation */
4443	ret = dwc2_exit_hibernation(hsotg, true);
4444	if (ret && (ret != -ENOTSUPP))
4445		dev_err(hsotg->dev, "exit hibernation failed\n");
4446
4447	hsotg->lx_state = DWC2_L0;
4448
4449	spin_unlock_irqrestore(&hsotg->lock, flags);
 
4450
4451	if (hsotg->bus_suspended) {
4452		spin_lock_irqsave(&hsotg->lock, flags);
4453		hsotg->flags.b.port_suspend_change = 1;
4454		spin_unlock_irqrestore(&hsotg->lock, flags);
4455		dwc2_port_resume(hsotg);
4456	} else {
4457		/* Wait for controller to correctly update D+/D- level */
4458		usleep_range(3000, 5000);
4459
4460		/*
4461		 * Clear Port Enable and Port Status changes.
4462		 * Enable Port Power.
4463		 */
4464		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4465				HPRT0_ENACHG, hsotg->regs + HPRT0);
4466		/* Wait for controller to detect Port Connect */
4467		usleep_range(5000, 7000);
4468	}
4469
4470	return ret;
 
 
 
4471unlock:
4472	spin_unlock_irqrestore(&hsotg->lock, flags);
4473
4474	return ret;
4475}
4476
4477/* Returns the current frame number */
4478static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4479{
4480	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4481
4482	return dwc2_hcd_get_frame_number(hsotg);
4483}
4484
4485static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4486			       char *fn_name)
4487{
4488#ifdef VERBOSE_DEBUG
4489	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4490	char *pipetype;
4491	char *speed;
4492
4493	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4494	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4495		 usb_pipedevice(urb->pipe));
4496	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4497		 usb_pipeendpoint(urb->pipe),
4498		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4499
4500	switch (usb_pipetype(urb->pipe)) {
4501	case PIPE_CONTROL:
4502		pipetype = "CONTROL";
4503		break;
4504	case PIPE_BULK:
4505		pipetype = "BULK";
4506		break;
4507	case PIPE_INTERRUPT:
4508		pipetype = "INTERRUPT";
4509		break;
4510	case PIPE_ISOCHRONOUS:
4511		pipetype = "ISOCHRONOUS";
4512		break;
4513	default:
4514		pipetype = "UNKNOWN";
4515		break;
4516	}
4517
4518	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4519		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4520		 "IN" : "OUT");
4521
4522	switch (urb->dev->speed) {
4523	case USB_SPEED_HIGH:
4524		speed = "HIGH";
4525		break;
4526	case USB_SPEED_FULL:
4527		speed = "FULL";
4528		break;
4529	case USB_SPEED_LOW:
4530		speed = "LOW";
4531		break;
4532	default:
4533		speed = "UNKNOWN";
4534		break;
4535	}
4536
4537	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4538	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4539		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
 
 
4540	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4541		 urb->transfer_buffer_length);
4542	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4543		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4544	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4545		 urb->setup_packet, (unsigned long)urb->setup_dma);
4546	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4547
4548	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4549		int i;
4550
4551		for (i = 0; i < urb->number_of_packets; i++) {
4552			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4553			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4554				 urb->iso_frame_desc[i].offset,
4555				 urb->iso_frame_desc[i].length);
4556		}
4557	}
4558#endif
4559}
4560
4561/*
4562 * Starts processing a USB transfer request specified by a USB Request Block
4563 * (URB). mem_flags indicates the type of memory allocation to use while
4564 * processing this URB.
4565 */
4566static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4567				 gfp_t mem_flags)
4568{
4569	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4570	struct usb_host_endpoint *ep = urb->ep;
4571	struct dwc2_hcd_urb *dwc2_urb;
4572	int i;
4573	int retval;
4574	int alloc_bandwidth = 0;
4575	u8 ep_type = 0;
4576	u32 tflags = 0;
4577	void *buf;
4578	unsigned long flags;
4579	struct dwc2_qh *qh;
4580	bool qh_allocated = false;
4581	struct dwc2_qtd *qtd;
 
 
 
4582
4583	if (dbg_urb(urb)) {
4584		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4585		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4586	}
4587
4588	if (ep == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4589		return -EINVAL;
4590
4591	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4592	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4593		spin_lock_irqsave(&hsotg->lock, flags);
4594		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4595			alloc_bandwidth = 1;
4596		spin_unlock_irqrestore(&hsotg->lock, flags);
4597	}
4598
4599	switch (usb_pipetype(urb->pipe)) {
4600	case PIPE_CONTROL:
4601		ep_type = USB_ENDPOINT_XFER_CONTROL;
4602		break;
4603	case PIPE_ISOCHRONOUS:
4604		ep_type = USB_ENDPOINT_XFER_ISOC;
4605		break;
4606	case PIPE_BULK:
4607		ep_type = USB_ENDPOINT_XFER_BULK;
4608		break;
4609	case PIPE_INTERRUPT:
4610		ep_type = USB_ENDPOINT_XFER_INT;
4611		break;
4612	default:
4613		dev_warn(hsotg->dev, "Wrong ep type\n");
4614	}
4615
4616	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4617				      mem_flags);
4618	if (!dwc2_urb)
4619		return -ENOMEM;
4620
4621	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4622				  usb_pipeendpoint(urb->pipe), ep_type,
4623				  usb_pipein(urb->pipe),
4624				  usb_maxpacket(urb->dev, urb->pipe,
4625						!(usb_pipein(urb->pipe))));
4626
4627	buf = urb->transfer_buffer;
4628
4629	if (hcd->self.uses_dma) {
4630		if (!buf && (urb->transfer_dma & 3)) {
4631			dev_err(hsotg->dev,
4632				"%s: unaligned transfer with no transfer_buffer",
4633				__func__);
4634			retval = -EINVAL;
4635			goto fail0;
4636		}
4637	}
4638
4639	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4640		tflags |= URB_GIVEBACK_ASAP;
4641	if (urb->transfer_flags & URB_ZERO_PACKET)
4642		tflags |= URB_SEND_ZERO_PACKET;
4643
4644	dwc2_urb->priv = urb;
4645	dwc2_urb->buf = buf;
4646	dwc2_urb->dma = urb->transfer_dma;
4647	dwc2_urb->length = urb->transfer_buffer_length;
4648	dwc2_urb->setup_packet = urb->setup_packet;
4649	dwc2_urb->setup_dma = urb->setup_dma;
4650	dwc2_urb->flags = tflags;
4651	dwc2_urb->interval = urb->interval;
4652	dwc2_urb->status = -EINPROGRESS;
4653
4654	for (i = 0; i < urb->number_of_packets; ++i)
4655		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4656						 urb->iso_frame_desc[i].offset,
4657						 urb->iso_frame_desc[i].length);
4658
4659	urb->hcpriv = dwc2_urb;
4660	qh = (struct dwc2_qh *) ep->hcpriv;
4661	/* Create QH for the endpoint if it doesn't exist */
4662	if (!qh) {
4663		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4664		if (!qh) {
4665			retval = -ENOMEM;
4666			goto fail0;
4667		}
4668		ep->hcpriv = qh;
4669		qh_allocated = true;
4670	}
4671
4672	qtd = kzalloc(sizeof(*qtd), mem_flags);
4673	if (!qtd) {
4674		retval = -ENOMEM;
4675		goto fail1;
4676	}
4677
4678	spin_lock_irqsave(&hsotg->lock, flags);
4679	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4680	if (retval)
4681		goto fail2;
4682
4683	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4684	if (retval)
4685		goto fail3;
4686
4687	if (alloc_bandwidth) {
4688		dwc2_allocate_bus_bandwidth(hcd,
4689				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4690				urb);
4691	}
4692
4693	spin_unlock_irqrestore(&hsotg->lock, flags);
4694
4695	return 0;
4696
4697fail3:
4698	dwc2_urb->priv = NULL;
4699	usb_hcd_unlink_urb_from_ep(hcd, urb);
4700	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4701		qh->channel->qh = NULL;
4702fail2:
4703	spin_unlock_irqrestore(&hsotg->lock, flags);
4704	urb->hcpriv = NULL;
4705	kfree(qtd);
4706fail1:
4707	if (qh_allocated) {
4708		struct dwc2_qtd *qtd2, *qtd2_tmp;
4709
4710		ep->hcpriv = NULL;
4711		dwc2_hcd_qh_unlink(hsotg, qh);
4712		/* Free each QTD in the QH's QTD list */
4713		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4714							 qtd_list_entry)
4715			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4716		dwc2_hcd_qh_free(hsotg, qh);
4717	}
4718fail0:
4719	kfree(dwc2_urb);
4720
4721	return retval;
4722}
4723
4724/*
4725 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4726 */
4727static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4728				 int status)
4729{
4730	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4731	int rc;
4732	unsigned long flags;
4733
4734	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4735	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4736
4737	spin_lock_irqsave(&hsotg->lock, flags);
4738
4739	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4740	if (rc)
4741		goto out;
4742
4743	if (!urb->hcpriv) {
4744		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4745		goto out;
4746	}
4747
4748	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4749
4750	usb_hcd_unlink_urb_from_ep(hcd, urb);
4751
4752	kfree(urb->hcpriv);
4753	urb->hcpriv = NULL;
4754
4755	/* Higher layer software sets URB status */
4756	spin_unlock(&hsotg->lock);
4757	usb_hcd_giveback_urb(hcd, urb, status);
4758	spin_lock(&hsotg->lock);
4759
4760	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4761	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4762out:
4763	spin_unlock_irqrestore(&hsotg->lock, flags);
4764
4765	return rc;
4766}
4767
4768/*
4769 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4770 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4771 * must already be dequeued.
4772 */
4773static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4774				       struct usb_host_endpoint *ep)
4775{
4776	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4777
4778	dev_dbg(hsotg->dev,
4779		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4780		ep->desc.bEndpointAddress, ep->hcpriv);
4781	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4782}
4783
4784/*
4785 * Resets endpoint specific parameter values, in current version used to reset
4786 * the data toggle (as a WA). This function can be called from usb_clear_halt
4787 * routine.
4788 */
4789static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4790				     struct usb_host_endpoint *ep)
4791{
4792	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4793	unsigned long flags;
4794
4795	dev_dbg(hsotg->dev,
4796		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4797		ep->desc.bEndpointAddress);
4798
4799	spin_lock_irqsave(&hsotg->lock, flags);
4800	dwc2_hcd_endpoint_reset(hsotg, ep);
4801	spin_unlock_irqrestore(&hsotg->lock, flags);
4802}
4803
4804/*
4805 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4806 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4807 * interrupt.
4808 *
4809 * This function is called by the USB core when an interrupt occurs
4810 */
4811static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4812{
4813	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4814
4815	return dwc2_handle_hcd_intr(hsotg);
4816}
4817
4818/*
4819 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4820 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4821 * is the status change indicator for the single root port. Returns 1 if either
4822 * change indicator is 1, otherwise returns 0.
4823 */
4824static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4825{
4826	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4827
4828	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4829	return buf[0] != 0;
4830}
4831
4832/* Handles hub class-specific requests */
4833static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4834				 u16 windex, char *buf, u16 wlength)
4835{
4836	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4837					  wvalue, windex, buf, wlength);
4838	return retval;
4839}
4840
4841/* Handles hub TT buffer clear completions */
4842static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4843					       struct usb_host_endpoint *ep)
4844{
4845	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4846	struct dwc2_qh *qh;
4847	unsigned long flags;
4848
4849	qh = ep->hcpriv;
4850	if (!qh)
4851		return;
4852
4853	spin_lock_irqsave(&hsotg->lock, flags);
4854	qh->tt_buffer_dirty = 0;
4855
4856	if (hsotg->flags.b.port_connect_status)
4857		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4858
4859	spin_unlock_irqrestore(&hsotg->lock, flags);
4860}
4861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4862static struct hc_driver dwc2_hc_driver = {
4863	.description = "dwc2_hsotg",
4864	.product_desc = "DWC OTG Controller",
4865	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4866
4867	.irq = _dwc2_hcd_irq,
4868	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4869
4870	.start = _dwc2_hcd_start,
4871	.stop = _dwc2_hcd_stop,
4872	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4873	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4874	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4875	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4876	.get_frame_number = _dwc2_hcd_get_frame_number,
4877
4878	.hub_status_data = _dwc2_hcd_hub_status_data,
4879	.hub_control = _dwc2_hcd_hub_control,
4880	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4881
4882	.bus_suspend = _dwc2_hcd_suspend,
4883	.bus_resume = _dwc2_hcd_resume,
4884
4885	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4886	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4887};
4888
4889/*
4890 * Frees secondary storage associated with the dwc2_hsotg structure contained
4891 * in the struct usb_hcd field
4892 */
4893static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4894{
4895	u32 ahbcfg;
4896	u32 dctl;
4897	int i;
4898
4899	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4900
4901	/* Free memory for QH/QTD lists */
4902	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
 
4903	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4904	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4905	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4906	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4907	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4908
4909	/* Free memory for the host channels */
4910	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4911		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4912
4913		if (chan != NULL) {
4914			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4915				i, chan);
4916			hsotg->hc_ptr_array[i] = NULL;
4917			kfree(chan);
4918		}
4919	}
4920
4921	if (hsotg->core_params->dma_enable > 0) {
4922		if (hsotg->status_buf) {
4923			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4924					  hsotg->status_buf,
4925					  hsotg->status_buf_dma);
4926			hsotg->status_buf = NULL;
4927		}
4928	} else {
4929		kfree(hsotg->status_buf);
4930		hsotg->status_buf = NULL;
4931	}
4932
4933	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4934
4935	/* Disable all interrupts */
4936	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4937	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4938	dwc2_writel(0, hsotg->regs + GINTMSK);
4939
4940	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4941		dctl = dwc2_readl(hsotg->regs + DCTL);
4942		dctl |= DCTL_SFTDISCON;
4943		dwc2_writel(dctl, hsotg->regs + DCTL);
4944	}
4945
4946	if (hsotg->wq_otg) {
4947		if (!cancel_work_sync(&hsotg->wf_otg))
4948			flush_workqueue(hsotg->wq_otg);
4949		destroy_workqueue(hsotg->wq_otg);
4950	}
4951
 
 
4952	del_timer(&hsotg->wkp_timer);
4953}
4954
4955static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4956{
4957	/* Turn off all host-specific interrupts */
4958	dwc2_disable_host_interrupts(hsotg);
4959
4960	dwc2_hcd_free(hsotg);
4961}
4962
4963/*
4964 * Initializes the HCD. This function allocates memory for and initializes the
4965 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4966 * USB bus with the core and calls the hc_driver->start() function. It returns
4967 * a negative error on failure.
4968 */
4969int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4970{
 
 
4971	struct usb_hcd *hcd;
4972	struct dwc2_host_chan *channel;
4973	u32 hcfg;
4974	int i, num_channels;
4975	int retval;
4976
4977	if (usb_disabled())
4978		return -ENODEV;
4979
4980	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4981
4982	retval = -ENOMEM;
4983
4984	hcfg = dwc2_readl(hsotg->regs + HCFG);
4985	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4986
4987#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4988	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4989					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
 
4990	if (!hsotg->frame_num_array)
4991		goto error1;
4992	hsotg->last_frame_num_array = kzalloc(
4993			sizeof(*hsotg->last_frame_num_array) *
4994			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4995	if (!hsotg->last_frame_num_array)
4996		goto error1;
4997#endif
4998	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
4999
5000	/* Check if the bus driver or platform code has setup a dma_mask */
5001	if (hsotg->core_params->dma_enable > 0 &&
5002	    hsotg->dev->dma_mask == NULL) {
5003		dev_warn(hsotg->dev,
5004			 "dma_mask not set, disabling DMA\n");
5005		hsotg->core_params->dma_enable = 0;
5006		hsotg->core_params->dma_desc_enable = 0;
5007	}
5008
5009	/* Set device flags indicating whether the HCD supports DMA */
5010	if (hsotg->core_params->dma_enable > 0) {
5011		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5012			dev_warn(hsotg->dev, "can't set DMA mask\n");
5013		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5014			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5015	}
5016
 
 
 
 
 
 
 
 
5017	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5018	if (!hcd)
5019		goto error1;
5020
5021	if (hsotg->core_params->dma_enable <= 0)
5022		hcd->self.uses_dma = 0;
5023
5024	hcd->has_tt = 1;
5025
5026	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
 
 
 
 
 
 
 
 
5027	hsotg->priv = hcd;
5028
5029	/*
5030	 * Disable the global interrupt until all the interrupt handlers are
5031	 * installed
5032	 */
5033	dwc2_disable_global_interrupts(hsotg);
5034
5035	/* Initialize the DWC_otg core, and select the Phy type */
5036	retval = dwc2_core_init(hsotg, true);
5037	if (retval)
5038		goto error2;
5039
5040	/* Create new workqueue and init work */
5041	retval = -ENOMEM;
5042	hsotg->wq_otg = create_singlethread_workqueue("dwc2");
5043	if (!hsotg->wq_otg) {
5044		dev_err(hsotg->dev, "Failed to create workqueue\n");
5045		goto error2;
5046	}
5047	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5048
5049	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5050		    (unsigned long)hsotg);
5051
5052	/* Initialize the non-periodic schedule */
5053	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
 
5054	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5055
5056	/* Initialize the periodic schedule */
5057	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5058	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5059	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5060	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5061
5062	INIT_LIST_HEAD(&hsotg->split_order);
5063
5064	/*
5065	 * Create a host channel descriptor for each host channel implemented
5066	 * in the controller. Initialize the channel descriptor array.
5067	 */
5068	INIT_LIST_HEAD(&hsotg->free_hc_list);
5069	num_channels = hsotg->core_params->host_channels;
5070	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5071
5072	for (i = 0; i < num_channels; i++) {
5073		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5074		if (channel == NULL)
5075			goto error3;
5076		channel->hc_num = i;
5077		INIT_LIST_HEAD(&channel->split_order_list_entry);
5078		hsotg->hc_ptr_array[i] = channel;
5079	}
5080
5081	/* Initialize hsotg start work */
5082	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5083
5084	/* Initialize port reset work */
5085	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
 
5086
5087	/*
5088	 * Allocate space for storing data on status transactions. Normally no
5089	 * data is sent, but this space acts as a bit bucket. This must be
5090	 * done after usb_add_hcd since that function allocates the DMA buffer
5091	 * pool.
5092	 */
5093	if (hsotg->core_params->dma_enable > 0)
5094		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5095					DWC2_HCD_STATUS_BUF_SIZE,
5096					&hsotg->status_buf_dma, GFP_KERNEL);
5097	else
5098		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5099					  GFP_KERNEL);
5100
5101	if (!hsotg->status_buf)
5102		goto error3;
5103
5104	/*
5105	 * Create kmem caches to handle descriptor buffers in descriptor
5106	 * DMA mode.
5107	 * Alignment must be set to 512 bytes.
5108	 */
5109	if (hsotg->core_params->dma_desc_enable ||
5110	    hsotg->core_params->dma_desc_fs_enable) {
5111		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5112				sizeof(struct dwc2_hcd_dma_desc) *
5113				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5114				NULL);
5115		if (!hsotg->desc_gen_cache) {
5116			dev_err(hsotg->dev,
5117				"unable to create dwc2 generic desc cache\n");
5118
5119			/*
5120			 * Disable descriptor dma mode since it will not be
5121			 * usable.
5122			 */
5123			hsotg->core_params->dma_desc_enable = 0;
5124			hsotg->core_params->dma_desc_fs_enable = 0;
5125		}
5126
5127		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5128				sizeof(struct dwc2_hcd_dma_desc) *
5129				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5130		if (!hsotg->desc_hsisoc_cache) {
5131			dev_err(hsotg->dev,
5132				"unable to create dwc2 hs isoc desc cache\n");
5133
5134			kmem_cache_destroy(hsotg->desc_gen_cache);
5135
5136			/*
5137			 * Disable descriptor dma mode since it will not be
5138			 * usable.
5139			 */
5140			hsotg->core_params->dma_desc_enable = 0;
5141			hsotg->core_params->dma_desc_fs_enable = 0;
5142		}
5143	}
5144
 
 
 
 
 
 
 
 
 
 
 
 
 
5145	hsotg->otg_port = 1;
5146	hsotg->frame_list = NULL;
5147	hsotg->frame_list_dma = 0;
5148	hsotg->periodic_qh_count = 0;
5149
5150	/* Initiate lx_state to L3 disconnected state */
5151	hsotg->lx_state = DWC2_L3;
5152
5153	hcd->self.otg_port = hsotg->otg_port;
5154
5155	/* Don't support SG list at this point */
5156	hcd->self.sg_tablesize = 0;
5157
 
 
5158	if (!IS_ERR_OR_NULL(hsotg->uphy))
5159		otg_set_host(hsotg->uphy->otg, &hcd->self);
5160
5161	/*
5162	 * Finish generic HCD initialization and start the HCD. This function
5163	 * allocates the DMA buffer pool, registers the USB bus, requests the
5164	 * IRQ line, and calls hcd_start method.
5165	 */
5166	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5167	if (retval < 0)
5168		goto error4;
5169
5170	device_wakeup_enable(hcd->self.controller);
5171
5172	dwc2_hcd_dump_state(hsotg);
5173
5174	dwc2_enable_global_interrupts(hsotg);
5175
5176	return 0;
5177
5178error4:
5179	kmem_cache_destroy(hsotg->desc_gen_cache);
5180	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
 
5181error3:
5182	dwc2_hcd_release(hsotg);
5183error2:
5184	usb_put_hcd(hcd);
5185error1:
5186	kfree(hsotg->core_params);
5187
5188#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5189	kfree(hsotg->last_frame_num_array);
5190	kfree(hsotg->frame_num_array);
5191#endif
5192
5193	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5194	return retval;
5195}
5196
5197/*
5198 * Removes the HCD.
5199 * Frees memory and resources associated with the HCD and deregisters the bus.
5200 */
5201void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5202{
5203	struct usb_hcd *hcd;
5204
5205	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5206
5207	hcd = dwc2_hsotg_to_hcd(hsotg);
5208	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5209
5210	if (!hcd) {
5211		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5212			__func__);
5213		return;
5214	}
5215
5216	if (!IS_ERR_OR_NULL(hsotg->uphy))
5217		otg_set_host(hsotg->uphy->otg, NULL);
5218
5219	usb_remove_hcd(hcd);
5220	hsotg->priv = NULL;
5221
5222	kmem_cache_destroy(hsotg->desc_gen_cache);
5223	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
 
5224
5225	dwc2_hcd_release(hsotg);
5226	usb_put_hcd(hcd);
5227
5228#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5229	kfree(hsotg->last_frame_num_array);
5230	kfree(hsotg->frame_num_array);
5231#endif
5232}
5233
5234/**
5235 * dwc2_backup_host_registers() - Backup controller host registers.
5236 * When suspending usb bus, registers needs to be backuped
5237 * if controller power is disabled once suspended.
5238 *
5239 * @hsotg: Programming view of the DWC_otg controller
5240 */
5241int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5242{
5243	struct dwc2_hregs_backup *hr;
5244	int i;
5245
5246	dev_dbg(hsotg->dev, "%s\n", __func__);
5247
5248	/* Backup Host regs */
5249	hr = &hsotg->hr_backup;
5250	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5251	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5252	for (i = 0; i < hsotg->core_params->host_channels; ++i)
5253		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5254
5255	hr->hprt0 = dwc2_read_hprt0(hsotg);
5256	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
 
5257	hr->valid = true;
5258
5259	return 0;
5260}
5261
5262/**
5263 * dwc2_restore_host_registers() - Restore controller host registers.
5264 * When resuming usb bus, device registers needs to be restored
5265 * if controller power were disabled.
5266 *
5267 * @hsotg: Programming view of the DWC_otg controller
5268 */
5269int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5270{
5271	struct dwc2_hregs_backup *hr;
5272	int i;
5273
5274	dev_dbg(hsotg->dev, "%s\n", __func__);
5275
5276	/* Restore host regs */
5277	hr = &hsotg->hr_backup;
5278	if (!hr->valid) {
5279		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5280			__func__);
5281		return -EINVAL;
5282	}
5283	hr->valid = false;
5284
5285	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5286	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5287
5288	for (i = 0; i < hsotg->core_params->host_channels; ++i)
5289		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5290
5291	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5292	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
 
5293	hsotg->frame_number = 0;
5294
5295	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5296}
v6.2
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.c - DesignWare HS OTG Controller host-mode routines
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8/*
   9 * This file contains the core HCD code, and implements the Linux hc_driver
  10 * API
  11 */
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/spinlock.h>
  15#include <linux/interrupt.h>
  16#include <linux/platform_device.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/delay.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/usb.h>
  22
  23#include <linux/usb/hcd.h>
  24#include <linux/usb/ch11.h>
  25#include <linux/usb/of.h>
  26
  27#include "core.h"
  28#include "hcd.h"
  29
  30/*
  31 * =========================================================================
  32 *  Host Core Layer Functions
  33 * =========================================================================
  34 */
  35
  36/**
  37 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  38 * used in both device and host modes
  39 *
  40 * @hsotg: Programming view of the DWC_otg controller
  41 */
  42static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  43{
  44	u32 intmsk;
  45
  46	/* Clear any pending OTG Interrupts */
  47	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
  48
  49	/* Clear any pending interrupts */
  50	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
  51
  52	/* Enable the interrupts in the GINTMSK */
  53	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  54
  55	if (!hsotg->params.host_dma)
  56		intmsk |= GINTSTS_RXFLVL;
  57	if (!hsotg->params.external_id_pin_ctl)
  58		intmsk |= GINTSTS_CONIDSTSCHNG;
  59
  60	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  61		  GINTSTS_SESSREQINT;
  62
  63	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
  64		intmsk |= GINTSTS_LPMTRANRCVD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65
  66	dwc2_writel(hsotg, intmsk, GINTMSK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67}
  68
  69static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
  70{
  71	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
  72
  73	switch (hsotg->hw_params.arch) {
  74	case GHWCFG2_EXT_DMA_ARCH:
  75		dev_err(hsotg->dev, "External DMA Mode not supported\n");
  76		return -EINVAL;
  77
  78	case GHWCFG2_INT_DMA_ARCH:
  79		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
  80		if (hsotg->params.ahbcfg != -1) {
  81			ahbcfg &= GAHBCFG_CTRL_MASK;
  82			ahbcfg |= hsotg->params.ahbcfg &
  83				  ~GAHBCFG_CTRL_MASK;
  84		}
  85		break;
  86
  87	case GHWCFG2_SLAVE_ONLY_ARCH:
  88	default:
  89		dev_dbg(hsotg->dev, "Slave Only Mode\n");
  90		break;
  91	}
  92
  93	if (hsotg->params.host_dma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94		ahbcfg |= GAHBCFG_DMA_EN;
  95	else
  96		hsotg->params.dma_desc_enable = false;
  97
  98	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
  99
 100	return 0;
 101}
 102
 103static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 104{
 105	u32 usbcfg;
 106
 107	usbcfg = dwc2_readl(hsotg, GUSBCFG);
 108	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 109
 110	switch (hsotg->hw_params.op_mode) {
 111	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 112		if (hsotg->params.otg_caps.hnp_support &&
 113		    hsotg->params.otg_caps.srp_support)
 114			usbcfg |= GUSBCFG_HNPCAP;
 115		fallthrough;
 
 
 
 116
 117	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 118	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 119	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 120		if (hsotg->params.otg_caps.srp_support)
 
 121			usbcfg |= GUSBCFG_SRPCAP;
 122		break;
 123
 124	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 125	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 126	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 127	default:
 128		break;
 129	}
 130
 131	dwc2_writel(hsotg, usbcfg, GUSBCFG);
 132}
 133
 134static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
 135{
 136	if (hsotg->vbus_supply)
 137		return regulator_enable(hsotg->vbus_supply);
 138
 139	return 0;
 140}
 141
 142static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
 143{
 144	if (hsotg->vbus_supply)
 145		return regulator_disable(hsotg->vbus_supply);
 146
 147	return 0;
 148}
 149
 150/**
 151 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 152 *
 153 * @hsotg: Programming view of DWC_otg controller
 154 */
 155static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 156{
 157	u32 intmsk;
 158
 159	dev_dbg(hsotg->dev, "%s()\n", __func__);
 160
 161	/* Disable all interrupts */
 162	dwc2_writel(hsotg, 0, GINTMSK);
 163	dwc2_writel(hsotg, 0, HAINTMSK);
 164
 165	/* Enable the common interrupts */
 166	dwc2_enable_common_interrupts(hsotg);
 167
 168	/* Enable host mode interrupts without disturbing common interrupts */
 169	intmsk = dwc2_readl(hsotg, GINTMSK);
 170	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 171	dwc2_writel(hsotg, intmsk, GINTMSK);
 172}
 173
 174/**
 175 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 176 *
 177 * @hsotg: Programming view of DWC_otg controller
 178 */
 179static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 180{
 181	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
 182
 183	/* Disable host mode interrupts without disturbing common interrupts */
 184	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 185		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 186	dwc2_writel(hsotg, intmsk, GINTMSK);
 187}
 188
 189/*
 190 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 191 * For system that have a total fifo depth that is smaller than the default
 192 * RX + TX fifo size.
 193 *
 194 * @hsotg: Programming view of DWC_otg controller
 195 */
 196static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 197{
 198	struct dwc2_core_params *params = &hsotg->params;
 199	struct dwc2_hw_params *hw = &hsotg->hw_params;
 200	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 201
 202	total_fifo_size = hw->total_fifo_size;
 203	rxfsiz = params->host_rx_fifo_size;
 204	nptxfsiz = params->host_nperio_tx_fifo_size;
 205	ptxfsiz = params->host_perio_tx_fifo_size;
 206
 207	/*
 208	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 209	 * allocation with support for high bandwidth endpoints. Synopsys
 210	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
 211	 * non-periodic as 512.
 212	 */
 213	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 214		/*
 215		 * For Buffer DMA mode/Scatter Gather DMA mode
 216		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 217		 * with n = number of host channel.
 218		 * 2 * ((1024/4) + 2) = 516
 219		 */
 220		rxfsiz = 516 + hw->host_channels;
 221
 222		/*
 223		 * min non-periodic tx fifo depth
 224		 * 2 * (largest non-periodic USB packet used / 4)
 225		 * 2 * (512/4) = 256
 226		 */
 227		nptxfsiz = 256;
 228
 229		/*
 230		 * min periodic tx fifo depth
 231		 * (largest packet size*MC)/4
 232		 * (1024 * 3)/4 = 768
 233		 */
 234		ptxfsiz = 768;
 235
 236		params->host_rx_fifo_size = rxfsiz;
 237		params->host_nperio_tx_fifo_size = nptxfsiz;
 238		params->host_perio_tx_fifo_size = ptxfsiz;
 239	}
 240
 241	/*
 242	 * If the summation of RX, NPTX and PTX fifo sizes is still
 243	 * bigger than the total_fifo_size, then we have a problem.
 244	 *
 245	 * We won't be able to allocate as many endpoints. Right now,
 246	 * we're just printing an error message, but ideally this FIFO
 247	 * allocation algorithm would be improved in the future.
 248	 *
 249	 * FIXME improve this FIFO allocation algorithm.
 250	 */
 251	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 252		dev_err(hsotg->dev, "invalid fifo sizes\n");
 253}
 254
 255static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 256{
 257	struct dwc2_core_params *params = &hsotg->params;
 258	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 259
 260	if (!params->enable_dynamic_fifo)
 261		return;
 262
 263	dwc2_calculate_dynamic_fifo(hsotg);
 264
 265	/* Rx FIFO */
 266	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
 267	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 268	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 269	grxfsiz |= params->host_rx_fifo_size <<
 270		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 271	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
 272	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 273		dwc2_readl(hsotg, GRXFSIZ));
 274
 275	/* Non-periodic Tx FIFO */
 276	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 277		dwc2_readl(hsotg, GNPTXFSIZ));
 278	nptxfsiz = params->host_nperio_tx_fifo_size <<
 279		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 280	nptxfsiz |= params->host_rx_fifo_size <<
 281		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 282	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
 283	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 284		dwc2_readl(hsotg, GNPTXFSIZ));
 285
 286	/* Periodic Tx FIFO */
 287	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 288		dwc2_readl(hsotg, HPTXFSIZ));
 289	hptxfsiz = params->host_perio_tx_fifo_size <<
 290		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 291	hptxfsiz |= (params->host_rx_fifo_size +
 292		     params->host_nperio_tx_fifo_size) <<
 293		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 294	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
 295	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 296		dwc2_readl(hsotg, HPTXFSIZ));
 297
 298	if (hsotg->params.en_multiple_tx_fifo &&
 299	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
 300		/*
 301		 * This feature was implemented in 2.91a version
 302		 * Global DFIFOCFG calculation for Host mode -
 303		 * include RxFIFO, NPTXFIFO and HPTXFIFO
 304		 */
 305		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
 306		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 307		dfifocfg |= (params->host_rx_fifo_size +
 308			     params->host_nperio_tx_fifo_size +
 309			     params->host_perio_tx_fifo_size) <<
 310			    GDFIFOCFG_EPINFOBASE_SHIFT &
 311			    GDFIFOCFG_EPINFOBASE_MASK;
 312		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
 313	}
 314}
 315
 316/**
 317 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 318 * the HFIR register according to PHY type and speed
 319 *
 320 * @hsotg: Programming view of DWC_otg controller
 321 *
 322 * NOTE: The caller can modify the value of the HFIR register only after the
 323 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 324 * has been set
 325 */
 326u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 327{
 328	u32 usbcfg;
 329	u32 hprt0;
 330	int clock = 60;	/* default value */
 331
 332	usbcfg = dwc2_readl(hsotg, GUSBCFG);
 333	hprt0 = dwc2_readl(hsotg, HPRT0);
 334
 335	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 336	    !(usbcfg & GUSBCFG_PHYIF16))
 337		clock = 60;
 338	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 339	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 340		clock = 48;
 341	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 342	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 343		clock = 30;
 344	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 345	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 346		clock = 60;
 347	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 348	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 349		clock = 48;
 350	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 351	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 352		clock = 48;
 353	if ((usbcfg & GUSBCFG_PHYSEL) &&
 354	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 355		clock = 48;
 356
 357	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 358		/* High speed case */
 359		return 125 * clock - 1;
 360
 361	/* FS/LS case */
 362	return 1000 * clock - 1;
 363}
 364
 365/**
 366 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 367 * buffer
 368 *
 369 * @hsotg: Programming view of DWC_otg controller
 370 * @dest:    Destination buffer for the packet
 371 * @bytes:   Number of bytes to copy to the destination
 372 */
 373void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 374{
 
 375	u32 *data_buf = (u32 *)dest;
 376	int word_count = (bytes + 3) / 4;
 377	int i;
 378
 379	/*
 380	 * Todo: Account for the case where dest is not dword aligned. This
 381	 * requires reading data from the FIFO into a u32 temp buffer, then
 382	 * moving it into the data buffer.
 383	 */
 384
 385	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 386
 387	for (i = 0; i < word_count; i++, data_buf++)
 388		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
 389}
 390
 391/**
 392 * dwc2_dump_channel_info() - Prints the state of a host channel
 393 *
 394 * @hsotg: Programming view of DWC_otg controller
 395 * @chan:  Pointer to the channel to dump
 396 *
 397 * Must be called with interrupt disabled and spinlock held
 398 *
 399 * NOTE: This function will be removed once the peripheral controller code
 400 * is integrated and the driver is stable
 401 */
 402static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 403				   struct dwc2_host_chan *chan)
 404{
 405#ifdef VERBOSE_DEBUG
 406	int num_channels = hsotg->params.host_channels;
 407	struct dwc2_qh *qh;
 408	u32 hcchar;
 409	u32 hcsplt;
 410	u32 hctsiz;
 411	u32 hc_dma;
 412	int i;
 413
 414	if (!chan)
 415		return;
 416
 417	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 418	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
 419	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
 420	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
 421
 422	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 423	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 424		hcchar, hcsplt);
 425	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 426		hctsiz, hc_dma);
 427	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 428		chan->dev_addr, chan->ep_num, chan->ep_is_in);
 429	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 430	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 431	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 432	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 433	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 434	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 435	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 436		(unsigned long)chan->xfer_dma);
 437	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 438	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 439	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 440	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 441			    qh_list_entry)
 442		dev_dbg(hsotg->dev, "    %p\n", qh);
 443	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
 444	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
 445			    qh_list_entry)
 446		dev_dbg(hsotg->dev, "    %p\n", qh);
 447	dev_dbg(hsotg->dev, "  NP active sched:\n");
 448	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 449			    qh_list_entry)
 450		dev_dbg(hsotg->dev, "    %p\n", qh);
 451	dev_dbg(hsotg->dev, "  Channels:\n");
 452	for (i = 0; i < num_channels; i++) {
 453		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 454
 455		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 456	}
 457#endif /* VERBOSE_DEBUG */
 458}
 459
 460static int _dwc2_hcd_start(struct usb_hcd *hcd);
 461
 462static void dwc2_host_start(struct dwc2_hsotg *hsotg)
 463{
 464	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 465
 466	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
 467	_dwc2_hcd_start(hcd);
 468}
 469
 470static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
 471{
 472	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 473
 474	hcd->self.is_b_host = 0;
 475}
 476
 477static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 478			       int *hub_addr, int *hub_port)
 479{
 480	struct urb *urb = context;
 481
 482	if (urb->dev->tt)
 483		*hub_addr = urb->dev->tt->hub->devnum;
 484	else
 485		*hub_addr = 0;
 486	*hub_port = urb->dev->ttport;
 487}
 488
 489/*
 490 * =========================================================================
 491 *  Low Level Host Channel Access Functions
 492 * =========================================================================
 493 */
 494
 495static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 496				      struct dwc2_host_chan *chan)
 497{
 498	u32 hcintmsk = HCINTMSK_CHHLTD;
 499
 500	switch (chan->ep_type) {
 501	case USB_ENDPOINT_XFER_CONTROL:
 502	case USB_ENDPOINT_XFER_BULK:
 503		dev_vdbg(hsotg->dev, "control/bulk\n");
 504		hcintmsk |= HCINTMSK_XFERCOMPL;
 505		hcintmsk |= HCINTMSK_STALL;
 506		hcintmsk |= HCINTMSK_XACTERR;
 507		hcintmsk |= HCINTMSK_DATATGLERR;
 508		if (chan->ep_is_in) {
 509			hcintmsk |= HCINTMSK_BBLERR;
 510		} else {
 511			hcintmsk |= HCINTMSK_NAK;
 512			hcintmsk |= HCINTMSK_NYET;
 513			if (chan->do_ping)
 514				hcintmsk |= HCINTMSK_ACK;
 515		}
 516
 517		if (chan->do_split) {
 518			hcintmsk |= HCINTMSK_NAK;
 519			if (chan->complete_split)
 520				hcintmsk |= HCINTMSK_NYET;
 521			else
 522				hcintmsk |= HCINTMSK_ACK;
 523		}
 524
 525		if (chan->error_state)
 526			hcintmsk |= HCINTMSK_ACK;
 527		break;
 528
 529	case USB_ENDPOINT_XFER_INT:
 530		if (dbg_perio())
 531			dev_vdbg(hsotg->dev, "intr\n");
 532		hcintmsk |= HCINTMSK_XFERCOMPL;
 533		hcintmsk |= HCINTMSK_NAK;
 534		hcintmsk |= HCINTMSK_STALL;
 535		hcintmsk |= HCINTMSK_XACTERR;
 536		hcintmsk |= HCINTMSK_DATATGLERR;
 537		hcintmsk |= HCINTMSK_FRMOVRUN;
 538
 539		if (chan->ep_is_in)
 540			hcintmsk |= HCINTMSK_BBLERR;
 541		if (chan->error_state)
 542			hcintmsk |= HCINTMSK_ACK;
 543		if (chan->do_split) {
 544			if (chan->complete_split)
 545				hcintmsk |= HCINTMSK_NYET;
 546			else
 547				hcintmsk |= HCINTMSK_ACK;
 548		}
 549		break;
 550
 551	case USB_ENDPOINT_XFER_ISOC:
 552		if (dbg_perio())
 553			dev_vdbg(hsotg->dev, "isoc\n");
 554		hcintmsk |= HCINTMSK_XFERCOMPL;
 555		hcintmsk |= HCINTMSK_FRMOVRUN;
 556		hcintmsk |= HCINTMSK_ACK;
 557
 558		if (chan->ep_is_in) {
 559			hcintmsk |= HCINTMSK_XACTERR;
 560			hcintmsk |= HCINTMSK_BBLERR;
 561		}
 562		break;
 563	default:
 564		dev_err(hsotg->dev, "## Unknown EP type ##\n");
 565		break;
 566	}
 567
 568	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 569	if (dbg_hc(chan))
 570		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 571}
 572
 573static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 574				    struct dwc2_host_chan *chan)
 575{
 576	u32 hcintmsk = HCINTMSK_CHHLTD;
 577
 578	/*
 579	 * For Descriptor DMA mode core halts the channel on AHB error.
 580	 * Interrupt is not required.
 581	 */
 582	if (!hsotg->params.dma_desc_enable) {
 583		if (dbg_hc(chan))
 584			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 585		hcintmsk |= HCINTMSK_AHBERR;
 586	} else {
 587		if (dbg_hc(chan))
 588			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 589		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 590			hcintmsk |= HCINTMSK_XFERCOMPL;
 591	}
 592
 593	if (chan->error_state && !chan->do_split &&
 594	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 595		if (dbg_hc(chan))
 596			dev_vdbg(hsotg->dev, "setting ACK\n");
 597		hcintmsk |= HCINTMSK_ACK;
 598		if (chan->ep_is_in) {
 599			hcintmsk |= HCINTMSK_DATATGLERR;
 600			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 601				hcintmsk |= HCINTMSK_NAK;
 602		}
 603	}
 604
 605	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 606	if (dbg_hc(chan))
 607		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 608}
 609
 610static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 611				struct dwc2_host_chan *chan)
 612{
 613	u32 intmsk;
 614
 615	if (hsotg->params.host_dma) {
 616		if (dbg_hc(chan))
 617			dev_vdbg(hsotg->dev, "DMA enabled\n");
 618		dwc2_hc_enable_dma_ints(hsotg, chan);
 619	} else {
 620		if (dbg_hc(chan))
 621			dev_vdbg(hsotg->dev, "DMA disabled\n");
 622		dwc2_hc_enable_slave_ints(hsotg, chan);
 623	}
 624
 625	/* Enable the top level host channel interrupt */
 626	intmsk = dwc2_readl(hsotg, HAINTMSK);
 627	intmsk |= 1 << chan->hc_num;
 628	dwc2_writel(hsotg, intmsk, HAINTMSK);
 629	if (dbg_hc(chan))
 630		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 631
 632	/* Make sure host channel interrupts are enabled */
 633	intmsk = dwc2_readl(hsotg, GINTMSK);
 634	intmsk |= GINTSTS_HCHINT;
 635	dwc2_writel(hsotg, intmsk, GINTMSK);
 636	if (dbg_hc(chan))
 637		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 638}
 639
 640/**
 641 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 642 * a specific endpoint
 643 *
 644 * @hsotg: Programming view of DWC_otg controller
 645 * @chan:  Information needed to initialize the host channel
 646 *
 647 * The HCCHARn register is set up with the characteristics specified in chan.
 648 * Host channel interrupts that may need to be serviced while this transfer is
 649 * in progress are enabled.
 650 */
 651static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 652{
 653	u8 hc_num = chan->hc_num;
 654	u32 hcintmsk;
 655	u32 hcchar;
 656	u32 hcsplt = 0;
 657
 658	if (dbg_hc(chan))
 659		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 660
 661	/* Clear old interrupt conditions for this host channel */
 662	hcintmsk = 0xffffffff;
 663	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 664	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
 665
 666	/* Enable channel interrupts required for this transfer */
 667	dwc2_hc_enable_ints(hsotg, chan);
 668
 669	/*
 670	 * Program the HCCHARn register with the endpoint characteristics for
 671	 * the current transfer
 672	 */
 673	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 674	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 675	if (chan->ep_is_in)
 676		hcchar |= HCCHAR_EPDIR;
 677	if (chan->speed == USB_SPEED_LOW)
 678		hcchar |= HCCHAR_LSPDDEV;
 679	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 680	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 681	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
 682	if (dbg_hc(chan)) {
 683		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 684			 hc_num, hcchar);
 685
 686		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 687			 __func__, hc_num);
 688		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
 689			 chan->dev_addr);
 690		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
 691			 chan->ep_num);
 692		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
 693			 chan->ep_is_in);
 694		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
 695			 chan->speed == USB_SPEED_LOW);
 696		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
 697			 chan->ep_type);
 698		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
 699			 chan->max_packet);
 700	}
 701
 702	/* Program the HCSPLT register for SPLITs */
 703	if (chan->do_split) {
 704		if (dbg_hc(chan))
 705			dev_vdbg(hsotg->dev,
 706				 "Programming HC %d with split --> %s\n",
 707				 hc_num,
 708				 chan->complete_split ? "CSPLIT" : "SSPLIT");
 709		if (chan->complete_split)
 710			hcsplt |= HCSPLT_COMPSPLT;
 711		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 712			  HCSPLT_XACTPOS_MASK;
 713		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 714			  HCSPLT_HUBADDR_MASK;
 715		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 716			  HCSPLT_PRTADDR_MASK;
 717		if (dbg_hc(chan)) {
 718			dev_vdbg(hsotg->dev, "	  comp split %d\n",
 719				 chan->complete_split);
 720			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
 721				 chan->xact_pos);
 722			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
 723				 chan->hub_addr);
 724			dev_vdbg(hsotg->dev, "	  hub port %d\n",
 725				 chan->hub_port);
 726			dev_vdbg(hsotg->dev, "	  is_in %d\n",
 727				 chan->ep_is_in);
 728			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
 729				 chan->max_packet);
 730			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
 731				 chan->xfer_len);
 732		}
 733	}
 734
 735	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
 736}
 737
 738/**
 739 * dwc2_hc_halt() - Attempts to halt a host channel
 740 *
 741 * @hsotg:       Controller register interface
 742 * @chan:        Host channel to halt
 743 * @halt_status: Reason for halting the channel
 744 *
 745 * This function should only be called in Slave mode or to abort a transfer in
 746 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 747 * controller halts the channel when the transfer is complete or a condition
 748 * occurs that requires application intervention.
 749 *
 750 * In slave mode, checks for a free request queue entry, then sets the Channel
 751 * Enable and Channel Disable bits of the Host Channel Characteristics
 752 * register of the specified channel to intiate the halt. If there is no free
 753 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 754 * register to flush requests for this channel. In the latter case, sets a
 755 * flag to indicate that the host channel needs to be halted when a request
 756 * queue slot is open.
 757 *
 758 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 759 * HCCHARn register. The controller ensures there is space in the request
 760 * queue before submitting the halt request.
 761 *
 762 * Some time may elapse before the core flushes any posted requests for this
 763 * host channel and halts. The Channel Halted interrupt handler completes the
 764 * deactivation of the host channel.
 765 */
 766void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 767		  enum dwc2_halt_status halt_status)
 768{
 769	u32 nptxsts, hptxsts, hcchar;
 770
 771	if (dbg_hc(chan))
 772		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 773
 774	/*
 775	 * In buffer DMA or external DMA mode channel can't be halted
 776	 * for non-split periodic channels. At the end of the next
 777	 * uframe/frame (in the worst case), the core generates a channel
 778	 * halted and disables the channel automatically.
 779	 */
 780	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
 781	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
 782		if (!chan->do_split &&
 783		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
 784		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
 785			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
 786				__func__);
 787			return;
 788		}
 789	}
 790
 791	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
 792		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
 793
 794	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
 795	    halt_status == DWC2_HC_XFER_AHB_ERR) {
 796		/*
 797		 * Disable all channel interrupts except Ch Halted. The QTD
 798		 * and QH state associated with this transfer has been cleared
 799		 * (in the case of URB_DEQUEUE), so the channel needs to be
 800		 * shut down carefully to prevent crashes.
 801		 */
 802		u32 hcintmsk = HCINTMSK_CHHLTD;
 803
 804		dev_vdbg(hsotg->dev, "dequeue/error\n");
 805		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 806
 807		/*
 808		 * Make sure no other interrupts besides halt are currently
 809		 * pending. Handling another interrupt could cause a crash due
 810		 * to the QTD and QH state.
 811		 */
 812		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
 813
 814		/*
 815		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
 816		 * even if the channel was already halted for some other
 817		 * reason
 818		 */
 819		chan->halt_status = halt_status;
 820
 821		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 822		if (!(hcchar & HCCHAR_CHENA)) {
 823			/*
 824			 * The channel is either already halted or it hasn't
 825			 * started yet. In DMA mode, the transfer may halt if
 826			 * it finishes normally or a condition occurs that
 827			 * requires driver intervention. Don't want to halt
 828			 * the channel again. In either Slave or DMA mode,
 829			 * it's possible that the transfer has been assigned
 830			 * to a channel, but not started yet when an URB is
 831			 * dequeued. Don't want to halt a channel that hasn't
 832			 * started yet.
 833			 */
 834			return;
 835		}
 836	}
 837	if (chan->halt_pending) {
 838		/*
 839		 * A halt has already been issued for this channel. This might
 840		 * happen when a transfer is aborted by a higher level in
 841		 * the stack.
 842		 */
 843		dev_vdbg(hsotg->dev,
 844			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
 845			 __func__, chan->hc_num);
 846		return;
 847	}
 848
 849	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 850
 851	/* No need to set the bit in DDMA for disabling the channel */
 852	/* TODO check it everywhere channel is disabled */
 853	if (!hsotg->params.dma_desc_enable) {
 854		if (dbg_hc(chan))
 855			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 856		hcchar |= HCCHAR_CHENA;
 857	} else {
 858		if (dbg_hc(chan))
 859			dev_dbg(hsotg->dev, "desc DMA enabled\n");
 860	}
 861	hcchar |= HCCHAR_CHDIS;
 862
 863	if (!hsotg->params.host_dma) {
 864		if (dbg_hc(chan))
 865			dev_vdbg(hsotg->dev, "DMA not enabled\n");
 866		hcchar |= HCCHAR_CHENA;
 867
 868		/* Check for space in the request queue to issue the halt */
 869		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
 870		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
 871			dev_vdbg(hsotg->dev, "control/bulk\n");
 872			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
 873			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
 874				dev_vdbg(hsotg->dev, "Disabling channel\n");
 875				hcchar &= ~HCCHAR_CHENA;
 876			}
 877		} else {
 878			if (dbg_perio())
 879				dev_vdbg(hsotg->dev, "isoc/intr\n");
 880			hptxsts = dwc2_readl(hsotg, HPTXSTS);
 881			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
 882			    hsotg->queuing_high_bandwidth) {
 883				if (dbg_perio())
 884					dev_vdbg(hsotg->dev, "Disabling channel\n");
 885				hcchar &= ~HCCHAR_CHENA;
 886			}
 887		}
 888	} else {
 889		if (dbg_hc(chan))
 890			dev_vdbg(hsotg->dev, "DMA enabled\n");
 891	}
 892
 893	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
 894	chan->halt_status = halt_status;
 895
 896	if (hcchar & HCCHAR_CHENA) {
 897		if (dbg_hc(chan))
 898			dev_vdbg(hsotg->dev, "Channel enabled\n");
 899		chan->halt_pending = 1;
 900		chan->halt_on_queue = 0;
 901	} else {
 902		if (dbg_hc(chan))
 903			dev_vdbg(hsotg->dev, "Channel disabled\n");
 904		chan->halt_on_queue = 1;
 905	}
 906
 907	if (dbg_hc(chan)) {
 908		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
 909			 chan->hc_num);
 910		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
 911			 hcchar);
 912		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
 913			 chan->halt_pending);
 914		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
 915			 chan->halt_on_queue);
 916		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
 917			 chan->halt_status);
 918	}
 919}
 920
 921/**
 922 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 923 *
 924 * @hsotg: Programming view of DWC_otg controller
 925 * @chan:  Identifies the host channel to clean up
 926 *
 927 * This function is normally called after a transfer is done and the host
 928 * channel is being released
 929 */
 930void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 931{
 932	u32 hcintmsk;
 933
 934	chan->xfer_started = 0;
 935
 936	list_del_init(&chan->split_order_list_entry);
 937
 938	/*
 939	 * Clear channel interrupt enables and any unhandled channel interrupt
 940	 * conditions
 941	 */
 942	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
 943	hcintmsk = 0xffffffff;
 944	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 945	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
 946}
 947
 948/**
 949 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 950 * which frame a periodic transfer should occur
 951 *
 952 * @hsotg:  Programming view of DWC_otg controller
 953 * @chan:   Identifies the host channel to set up and its properties
 954 * @hcchar: Current value of the HCCHAR register for the specified host channel
 955 *
 956 * This function has no effect on non-periodic transfers
 957 */
 958static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
 959				       struct dwc2_host_chan *chan, u32 *hcchar)
 960{
 961	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
 962	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
 963		int host_speed;
 964		int xfer_ns;
 965		int xfer_us;
 966		int bytes_in_fifo;
 967		u16 fifo_space;
 968		u16 frame_number;
 969		u16 wire_frame;
 970
 971		/*
 972		 * Try to figure out if we're an even or odd frame. If we set
 973		 * even and the current frame number is even the transfer
 974		 * will happen immediately.  Similar if both are odd. If one is
 975		 * even and the other is odd then the transfer will happen when
 976		 * the frame number ticks.
 977		 *
 978		 * There's a bit of a balancing act to get this right.
 979		 * Sometimes we may want to send data in the current frame (AK
 980		 * right away).  We might want to do this if the frame number
 981		 * _just_ ticked, but we might also want to do this in order
 982		 * to continue a split transaction that happened late in a
 983		 * microframe (so we didn't know to queue the next transfer
 984		 * until the frame number had ticked).  The problem is that we
 985		 * need a lot of knowledge to know if there's actually still
 986		 * time to send things or if it would be better to wait until
 987		 * the next frame.
 988		 *
 989		 * We can look at how much time is left in the current frame
 990		 * and make a guess about whether we'll have time to transfer.
 991		 * We'll do that.
 992		 */
 993
 994		/* Get speed host is running at */
 995		host_speed = (chan->speed != USB_SPEED_HIGH &&
 996			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
 997
 998		/* See how many bytes are in the periodic FIFO right now */
 999		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1000			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1001		bytes_in_fifo = sizeof(u32) *
1002				(hsotg->params.host_perio_tx_fifo_size -
1003				 fifo_space);
1004
1005		/*
1006		 * Roughly estimate bus time for everything in the periodic
1007		 * queue + our new transfer.  This is "rough" because we're
1008		 * using a function that makes takes into account IN/OUT
1009		 * and INT/ISO and we're just slamming in one value for all
1010		 * transfers.  This should be an over-estimate and that should
1011		 * be OK, but we can probably tighten it.
1012		 */
1013		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1014					    chan->xfer_len + bytes_in_fifo);
1015		xfer_us = NS_TO_US(xfer_ns);
1016
1017		/* See what frame number we'll be at by the time we finish */
1018		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1019
1020		/* This is when we were scheduled to be on the wire */
1021		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1022
1023		/*
1024		 * If we'd finish _after_ the frame we're scheduled in then
1025		 * it's hopeless.  Just schedule right away and hope for the
1026		 * best.  Note that it _might_ be wise to call back into the
1027		 * scheduler to pick a better frame, but this is better than
1028		 * nothing.
1029		 */
1030		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1031			dwc2_sch_vdbg(hsotg,
1032				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1033				      chan->qh, wire_frame, frame_number,
1034				      dwc2_frame_num_dec(frame_number,
1035							 wire_frame));
1036			wire_frame = frame_number;
1037
1038			/*
1039			 * We picked a different frame number; communicate this
1040			 * back to the scheduler so it doesn't try to schedule
1041			 * another in the same frame.
1042			 *
1043			 * Remember that next_active_frame is 1 before the wire
1044			 * frame.
1045			 */
1046			chan->qh->next_active_frame =
1047				dwc2_frame_num_dec(frame_number, 1);
1048		}
1049
1050		if (wire_frame & 1)
1051			*hcchar |= HCCHAR_ODDFRM;
1052		else
1053			*hcchar &= ~HCCHAR_ODDFRM;
1054	}
1055}
1056
1057static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1058{
1059	/* Set up the initial PID for the transfer */
1060	if (chan->speed == USB_SPEED_HIGH) {
1061		if (chan->ep_is_in) {
1062			if (chan->multi_count == 1)
1063				chan->data_pid_start = DWC2_HC_PID_DATA0;
1064			else if (chan->multi_count == 2)
1065				chan->data_pid_start = DWC2_HC_PID_DATA1;
1066			else
1067				chan->data_pid_start = DWC2_HC_PID_DATA2;
1068		} else {
1069			if (chan->multi_count == 1)
1070				chan->data_pid_start = DWC2_HC_PID_DATA0;
1071			else
1072				chan->data_pid_start = DWC2_HC_PID_MDATA;
1073		}
1074	} else {
1075		chan->data_pid_start = DWC2_HC_PID_DATA0;
1076	}
1077}
1078
1079/**
1080 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1081 * the Host Channel
1082 *
1083 * @hsotg: Programming view of DWC_otg controller
1084 * @chan:  Information needed to initialize the host channel
1085 *
1086 * This function should only be called in Slave mode. For a channel associated
1087 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1088 * associated with a periodic EP, the periodic Tx FIFO is written.
1089 *
1090 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1091 * the number of bytes written to the Tx FIFO.
1092 */
1093static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1094				 struct dwc2_host_chan *chan)
1095{
1096	u32 i;
1097	u32 remaining_count;
1098	u32 byte_count;
1099	u32 dword_count;
 
1100	u32 *data_buf = (u32 *)chan->xfer_buf;
1101
1102	if (dbg_hc(chan))
1103		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1104
 
 
1105	remaining_count = chan->xfer_len - chan->xfer_count;
1106	if (remaining_count > chan->max_packet)
1107		byte_count = chan->max_packet;
1108	else
1109		byte_count = remaining_count;
1110
1111	dword_count = (byte_count + 3) / 4;
1112
1113	if (((unsigned long)data_buf & 0x3) == 0) {
1114		/* xfer_buf is DWORD aligned */
1115		for (i = 0; i < dword_count; i++, data_buf++)
1116			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1117	} else {
1118		/* xfer_buf is not DWORD aligned */
1119		for (i = 0; i < dword_count; i++, data_buf++) {
1120			u32 data = data_buf[0] | data_buf[1] << 8 |
1121				   data_buf[2] << 16 | data_buf[3] << 24;
1122			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1123		}
1124	}
1125
1126	chan->xfer_count += byte_count;
1127	chan->xfer_buf += byte_count;
1128}
1129
1130/**
1131 * dwc2_hc_do_ping() - Starts a PING transfer
1132 *
1133 * @hsotg: Programming view of DWC_otg controller
1134 * @chan:  Information needed to initialize the host channel
1135 *
1136 * This function should only be called in Slave mode. The Do Ping bit is set in
1137 * the HCTSIZ register, then the channel is enabled.
1138 */
1139static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1140			    struct dwc2_host_chan *chan)
1141{
1142	u32 hcchar;
1143	u32 hctsiz;
1144
1145	if (dbg_hc(chan))
1146		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1147			 chan->hc_num);
1148
1149	hctsiz = TSIZ_DOPNG;
1150	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1151	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1152
1153	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1154	hcchar |= HCCHAR_CHENA;
1155	hcchar &= ~HCCHAR_CHDIS;
1156	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1157}
1158
1159/**
1160 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1161 * channel and starts the transfer
1162 *
1163 * @hsotg: Programming view of DWC_otg controller
1164 * @chan:  Information needed to initialize the host channel. The xfer_len value
1165 *         may be reduced to accommodate the max widths of the XferSize and
1166 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1167 *         changed to reflect the final xfer_len value.
1168 *
1169 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1170 * the caller must ensure that there is sufficient space in the request queue
1171 * and Tx Data FIFO.
1172 *
1173 * For an OUT transfer in Slave mode, it loads a data packet into the
1174 * appropriate FIFO. If necessary, additional data packets are loaded in the
1175 * Host ISR.
1176 *
1177 * For an IN transfer in Slave mode, a data packet is requested. The data
1178 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1179 * additional data packets are requested in the Host ISR.
1180 *
1181 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1182 * register along with a packet count of 1 and the channel is enabled. This
1183 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1184 * simply set to 0 since no data transfer occurs in this case.
1185 *
1186 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1187 * all the information required to perform the subsequent data transfer. In
1188 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1189 * controller performs the entire PING protocol, then starts the data
1190 * transfer.
1191 */
1192static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1193				   struct dwc2_host_chan *chan)
1194{
1195	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1196	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1197	u32 hcchar;
1198	u32 hctsiz = 0;
1199	u16 num_packets;
1200	u32 ec_mc;
1201
1202	if (dbg_hc(chan))
1203		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1204
1205	if (chan->do_ping) {
1206		if (!hsotg->params.host_dma) {
1207			if (dbg_hc(chan))
1208				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1209			dwc2_hc_do_ping(hsotg, chan);
1210			chan->xfer_started = 1;
1211			return;
1212		}
1213
1214		if (dbg_hc(chan))
1215			dev_vdbg(hsotg->dev, "ping, DMA\n");
1216
1217		hctsiz |= TSIZ_DOPNG;
1218	}
1219
1220	if (chan->do_split) {
1221		if (dbg_hc(chan))
1222			dev_vdbg(hsotg->dev, "split\n");
1223		num_packets = 1;
1224
1225		if (chan->complete_split && !chan->ep_is_in)
1226			/*
1227			 * For CSPLIT OUT Transfer, set the size to 0 so the
1228			 * core doesn't expect any data written to the FIFO
1229			 */
1230			chan->xfer_len = 0;
1231		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1232			chan->xfer_len = chan->max_packet;
1233		else if (!chan->ep_is_in && chan->xfer_len > 188)
1234			chan->xfer_len = 188;
1235
1236		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1237			  TSIZ_XFERSIZE_MASK;
1238
1239		/* For split set ec_mc for immediate retries */
1240		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1241		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1242			ec_mc = 3;
1243		else
1244			ec_mc = 1;
1245	} else {
1246		if (dbg_hc(chan))
1247			dev_vdbg(hsotg->dev, "no split\n");
1248		/*
1249		 * Ensure that the transfer length and packet count will fit
1250		 * in the widths allocated for them in the HCTSIZn register
1251		 */
1252		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1253		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1254			/*
1255			 * Make sure the transfer size is no larger than one
1256			 * (micro)frame's worth of data. (A check was done
1257			 * when the periodic transfer was accepted to ensure
1258			 * that a (micro)frame's worth of data can be
1259			 * programmed into a channel.)
1260			 */
1261			u32 max_periodic_len =
1262				chan->multi_count * chan->max_packet;
1263
1264			if (chan->xfer_len > max_periodic_len)
1265				chan->xfer_len = max_periodic_len;
1266		} else if (chan->xfer_len > max_hc_xfer_size) {
1267			/*
1268			 * Make sure that xfer_len is a multiple of max packet
1269			 * size
1270			 */
1271			chan->xfer_len =
1272				max_hc_xfer_size - chan->max_packet + 1;
1273		}
1274
1275		if (chan->xfer_len > 0) {
1276			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1277					chan->max_packet;
1278			if (num_packets > max_hc_pkt_count) {
1279				num_packets = max_hc_pkt_count;
1280				chan->xfer_len = num_packets * chan->max_packet;
1281			} else if (chan->ep_is_in) {
1282				/*
1283				 * Always program an integral # of max packets
1284				 * for IN transfers.
1285				 * Note: This assumes that the input buffer is
1286				 * aligned and sized accordingly.
1287				 */
1288				chan->xfer_len = num_packets * chan->max_packet;
1289			}
1290		} else {
1291			/* Need 1 packet for transfer length of 0 */
1292			num_packets = 1;
1293		}
1294
 
 
 
 
 
 
 
1295		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1296		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1297			/*
1298			 * Make sure that the multi_count field matches the
1299			 * actual transfer length
1300			 */
1301			chan->multi_count = num_packets;
1302
1303		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1304			dwc2_set_pid_isoc(chan);
1305
1306		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1307			  TSIZ_XFERSIZE_MASK;
1308
1309		/* The ec_mc gets the multi_count for non-split */
1310		ec_mc = chan->multi_count;
1311	}
1312
1313	chan->start_pkt_count = num_packets;
1314	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1315	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1316		  TSIZ_SC_MC_PID_MASK;
1317	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1318	if (dbg_hc(chan)) {
1319		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1320			 hctsiz, chan->hc_num);
1321
1322		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1323			 chan->hc_num);
1324		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1325			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1326			 TSIZ_XFERSIZE_SHIFT);
1327		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1328			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1329			 TSIZ_PKTCNT_SHIFT);
1330		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1331			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1332			 TSIZ_SC_MC_PID_SHIFT);
1333	}
1334
1335	if (hsotg->params.host_dma) {
1336		dma_addr_t dma_addr;
1337
1338		if (chan->align_buf) {
1339			if (dbg_hc(chan))
1340				dev_vdbg(hsotg->dev, "align_buf\n");
1341			dma_addr = chan->align_buf;
1342		} else {
1343			dma_addr = chan->xfer_dma;
1344		}
1345		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1346
1347		if (dbg_hc(chan))
1348			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1349				 (unsigned long)dma_addr, chan->hc_num);
1350	}
1351
1352	/* Start the split */
1353	if (chan->do_split) {
1354		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1355
1356		hcsplt |= HCSPLT_SPLTENA;
1357		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1358	}
1359
1360	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1361	hcchar &= ~HCCHAR_MULTICNT_MASK;
1362	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1363	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1364
1365	if (hcchar & HCCHAR_CHDIS)
1366		dev_warn(hsotg->dev,
1367			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1368			 __func__, chan->hc_num, hcchar);
1369
1370	/* Set host channel enable after all other setup is complete */
1371	hcchar |= HCCHAR_CHENA;
1372	hcchar &= ~HCCHAR_CHDIS;
1373
1374	if (dbg_hc(chan))
1375		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1376			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1377			 HCCHAR_MULTICNT_SHIFT);
1378
1379	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1380	if (dbg_hc(chan))
1381		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1382			 chan->hc_num);
1383
1384	chan->xfer_started = 1;
1385	chan->requests++;
1386
1387	if (!hsotg->params.host_dma &&
1388	    !chan->ep_is_in && chan->xfer_len > 0)
1389		/* Load OUT packet into the appropriate Tx FIFO */
1390		dwc2_hc_write_packet(hsotg, chan);
1391}
1392
1393/**
1394 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1395 * host channel and starts the transfer in Descriptor DMA mode
1396 *
1397 * @hsotg: Programming view of DWC_otg controller
1398 * @chan:  Information needed to initialize the host channel
1399 *
1400 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1401 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1402 * with micro-frame bitmap.
1403 *
1404 * Initializes HCDMA register with descriptor list address and CTD value then
1405 * starts the transfer via enabling the channel.
1406 */
1407void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1408				 struct dwc2_host_chan *chan)
1409{
1410	u32 hcchar;
1411	u32 hctsiz = 0;
1412
1413	if (chan->do_ping)
1414		hctsiz |= TSIZ_DOPNG;
1415
1416	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1417		dwc2_set_pid_isoc(chan);
1418
1419	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1420	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1421		  TSIZ_SC_MC_PID_MASK;
1422
1423	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1424	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1425
1426	/* Non-zero only for high-speed interrupt endpoints */
1427	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1428
1429	if (dbg_hc(chan)) {
1430		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1431			 chan->hc_num);
1432		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1433			 chan->data_pid_start);
1434		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1435	}
1436
1437	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1438
1439	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1440				   chan->desc_list_sz, DMA_TO_DEVICE);
1441
1442	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1443
1444	if (dbg_hc(chan))
1445		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1446			 &chan->desc_list_addr, chan->hc_num);
1447
1448	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1449	hcchar &= ~HCCHAR_MULTICNT_MASK;
1450	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1451		  HCCHAR_MULTICNT_MASK;
1452
1453	if (hcchar & HCCHAR_CHDIS)
1454		dev_warn(hsotg->dev,
1455			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1456			 __func__, chan->hc_num, hcchar);
1457
1458	/* Set host channel enable after all other setup is complete */
1459	hcchar |= HCCHAR_CHENA;
1460	hcchar &= ~HCCHAR_CHDIS;
1461
1462	if (dbg_hc(chan))
1463		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1464			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1465			 HCCHAR_MULTICNT_SHIFT);
1466
1467	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1468	if (dbg_hc(chan))
1469		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1470			 chan->hc_num);
1471
1472	chan->xfer_started = 1;
1473	chan->requests++;
1474}
1475
1476/**
1477 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1478 * a previous call to dwc2_hc_start_transfer()
1479 *
1480 * @hsotg: Programming view of DWC_otg controller
1481 * @chan:  Information needed to initialize the host channel
1482 *
1483 * The caller must ensure there is sufficient space in the request queue and Tx
1484 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1485 * the controller acts autonomously to complete transfers programmed to a host
1486 * channel.
1487 *
1488 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1489 * if there is any data remaining to be queued. For an IN transfer, another
1490 * data packet is always requested. For the SETUP phase of a control transfer,
1491 * this function does nothing.
1492 *
1493 * Return: 1 if a new request is queued, 0 if no more requests are required
1494 * for this transfer
1495 */
1496static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1497				     struct dwc2_host_chan *chan)
1498{
1499	if (dbg_hc(chan))
1500		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501			 chan->hc_num);
1502
1503	if (chan->do_split)
1504		/* SPLITs always queue just once per channel */
1505		return 0;
1506
1507	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1508		/* SETUPs are queued only once since they can't be NAK'd */
1509		return 0;
1510
1511	if (chan->ep_is_in) {
1512		/*
1513		 * Always queue another request for other IN transfers. If
1514		 * back-to-back INs are issued and NAKs are received for both,
1515		 * the driver may still be processing the first NAK when the
1516		 * second NAK is received. When the interrupt handler clears
1517		 * the NAK interrupt for the first NAK, the second NAK will
1518		 * not be seen. So we can't depend on the NAK interrupt
1519		 * handler to requeue a NAK'd request. Instead, IN requests
1520		 * are issued each time this function is called. When the
1521		 * transfer completes, the extra requests for the channel will
1522		 * be flushed.
1523		 */
1524		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1525
1526		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1527		hcchar |= HCCHAR_CHENA;
1528		hcchar &= ~HCCHAR_CHDIS;
1529		if (dbg_hc(chan))
1530			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1531				 hcchar);
1532		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1533		chan->requests++;
1534		return 1;
1535	}
1536
1537	/* OUT transfers */
1538
1539	if (chan->xfer_count < chan->xfer_len) {
1540		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1541		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1542			u32 hcchar = dwc2_readl(hsotg,
1543						HCCHAR(chan->hc_num));
1544
1545			dwc2_hc_set_even_odd_frame(hsotg, chan,
1546						   &hcchar);
1547		}
1548
1549		/* Load OUT packet into the appropriate Tx FIFO */
1550		dwc2_hc_write_packet(hsotg, chan);
1551		chan->requests++;
1552		return 1;
1553	}
1554
1555	return 0;
1556}
1557
1558/*
1559 * =========================================================================
1560 *  HCD
1561 * =========================================================================
1562 */
1563
1564/*
1565 * Processes all the URBs in a single list of QHs. Completes them with
1566 * -ETIMEDOUT and frees the QTD.
1567 *
1568 * Must be called with interrupt disabled and spinlock held
1569 */
1570static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1571				      struct list_head *qh_list)
1572{
1573	struct dwc2_qh *qh, *qh_tmp;
1574	struct dwc2_qtd *qtd, *qtd_tmp;
1575
1576	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1577		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1578					 qtd_list_entry) {
1579			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1580			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1581		}
1582	}
1583}
1584
1585static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1586			      struct list_head *qh_list)
1587{
1588	struct dwc2_qtd *qtd, *qtd_tmp;
1589	struct dwc2_qh *qh, *qh_tmp;
1590	unsigned long flags;
1591
1592	if (!qh_list->next)
1593		/* The list hasn't been initialized yet */
1594		return;
1595
1596	spin_lock_irqsave(&hsotg->lock, flags);
1597
1598	/* Ensure there are no QTDs or URBs left */
1599	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1600
1601	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1602		dwc2_hcd_qh_unlink(hsotg, qh);
1603
1604		/* Free each QTD in the QH's QTD list */
1605		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1606					 qtd_list_entry)
1607			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1608
1609		if (qh->channel && qh->channel->qh == qh)
1610			qh->channel->qh = NULL;
1611
1612		spin_unlock_irqrestore(&hsotg->lock, flags);
1613		dwc2_hcd_qh_free(hsotg, qh);
1614		spin_lock_irqsave(&hsotg->lock, flags);
1615	}
1616
1617	spin_unlock_irqrestore(&hsotg->lock, flags);
1618}
1619
1620/*
1621 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1622 * and periodic schedules. The QTD associated with each URB is removed from
1623 * the schedule and freed. This function may be called when a disconnect is
1624 * detected or when the HCD is being stopped.
1625 *
1626 * Must be called with interrupt disabled and spinlock held
1627 */
1628static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1629{
1630	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1631	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1632	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1633	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1634	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1635	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1636	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1637}
1638
1639/**
1640 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1641 *
1642 * @hsotg: Pointer to struct dwc2_hsotg
1643 */
1644void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1645{
1646	u32 hprt0;
1647
1648	if (hsotg->op_state == OTG_STATE_B_HOST) {
1649		/*
1650		 * Reset the port. During a HNP mode switch the reset
1651		 * needs to occur within 1ms and have a duration of at
1652		 * least 50ms.
1653		 */
1654		hprt0 = dwc2_read_hprt0(hsotg);
1655		hprt0 |= HPRT0_RST;
1656		dwc2_writel(hsotg, hprt0, HPRT0);
1657	}
1658
1659	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1660			   msecs_to_jiffies(50));
1661}
1662
1663/* Must be called with interrupt disabled and spinlock held */
1664static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1665{
1666	int num_channels = hsotg->params.host_channels;
1667	struct dwc2_host_chan *channel;
1668	u32 hcchar;
1669	int i;
1670
1671	if (!hsotg->params.host_dma) {
1672		/* Flush out any channel requests in slave mode */
1673		for (i = 0; i < num_channels; i++) {
1674			channel = hsotg->hc_ptr_array[i];
1675			if (!list_empty(&channel->hc_list_entry))
1676				continue;
1677			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1678			if (hcchar & HCCHAR_CHENA) {
1679				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1680				hcchar |= HCCHAR_CHDIS;
1681				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1682			}
1683		}
1684	}
1685
1686	for (i = 0; i < num_channels; i++) {
1687		channel = hsotg->hc_ptr_array[i];
1688		if (!list_empty(&channel->hc_list_entry))
1689			continue;
1690		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1691		if (hcchar & HCCHAR_CHENA) {
1692			/* Halt the channel */
1693			hcchar |= HCCHAR_CHDIS;
1694			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1695		}
1696
1697		dwc2_hc_cleanup(hsotg, channel);
1698		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1699		/*
1700		 * Added for Descriptor DMA to prevent channel double cleanup in
1701		 * release_channel_ddma(), which is called from ep_disable when
1702		 * device disconnects
1703		 */
1704		channel->qh = NULL;
1705	}
1706	/* All channels have been freed, mark them available */
1707	if (hsotg->params.uframe_sched) {
1708		hsotg->available_host_channels =
1709			hsotg->params.host_channels;
1710	} else {
1711		hsotg->non_periodic_channels = 0;
1712		hsotg->periodic_channels = 0;
1713	}
1714}
1715
1716/**
1717 * dwc2_hcd_connect() - Handles connect of the HCD
1718 *
1719 * @hsotg: Pointer to struct dwc2_hsotg
1720 *
1721 * Must be called with interrupt disabled and spinlock held
1722 */
1723void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1724{
1725	if (hsotg->lx_state != DWC2_L0)
1726		usb_hcd_resume_root_hub(hsotg->priv);
1727
1728	hsotg->flags.b.port_connect_status_change = 1;
1729	hsotg->flags.b.port_connect_status = 1;
1730}
1731
1732/**
1733 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1734 *
1735 * @hsotg: Pointer to struct dwc2_hsotg
1736 * @force: If true, we won't try to reconnect even if we see device connected.
1737 *
1738 * Must be called with interrupt disabled and spinlock held
1739 */
1740void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1741{
1742	u32 intr;
1743	u32 hprt0;
1744
1745	/* Set status flags for the hub driver */
1746	hsotg->flags.b.port_connect_status_change = 1;
1747	hsotg->flags.b.port_connect_status = 0;
1748
1749	/*
1750	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1751	 * interrupt mask and status bits and disabling subsequent host
1752	 * channel interrupts.
1753	 */
1754	intr = dwc2_readl(hsotg, GINTMSK);
1755	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1756	dwc2_writel(hsotg, intr, GINTMSK);
1757	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1758	dwc2_writel(hsotg, intr, GINTSTS);
1759
1760	/*
1761	 * Turn off the vbus power only if the core has transitioned to device
1762	 * mode. If still in host mode, need to keep power on to detect a
1763	 * reconnection.
1764	 */
1765	if (dwc2_is_device_mode(hsotg)) {
1766		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1767			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1768			dwc2_writel(hsotg, 0, HPRT0);
1769		}
1770
1771		dwc2_disable_host_interrupts(hsotg);
1772	}
1773
1774	/* Respond with an error status to all URBs in the schedule */
1775	dwc2_kill_all_urbs(hsotg);
1776
1777	if (dwc2_is_host_mode(hsotg))
1778		/* Clean up any host channels that were in use */
1779		dwc2_hcd_cleanup_channels(hsotg);
1780
1781	dwc2_host_disconnect(hsotg);
1782
1783	/*
1784	 * Add an extra check here to see if we're actually connected but
1785	 * we don't have a detection interrupt pending.  This can happen if:
1786	 *   1. hardware sees connect
1787	 *   2. hardware sees disconnect
1788	 *   3. hardware sees connect
1789	 *   4. dwc2_port_intr() - clears connect interrupt
1790	 *   5. dwc2_handle_common_intr() - calls here
1791	 *
1792	 * Without the extra check here we will end calling disconnect
1793	 * and won't get any future interrupts to handle the connect.
1794	 */
1795	if (!force) {
1796		hprt0 = dwc2_readl(hsotg, HPRT0);
1797		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1798			dwc2_hcd_connect(hsotg);
1799	}
1800}
1801
1802/**
1803 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1804 *
1805 * @hsotg: Pointer to struct dwc2_hsotg
1806 */
1807static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1808{
1809	if (hsotg->bus_suspended) {
1810		hsotg->flags.b.port_suspend_change = 1;
1811		usb_hcd_resume_root_hub(hsotg->priv);
1812	}
1813
1814	if (hsotg->lx_state == DWC2_L1)
1815		hsotg->flags.b.port_l1_change = 1;
1816}
1817
1818/**
1819 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1820 *
1821 * @hsotg: Pointer to struct dwc2_hsotg
1822 *
1823 * Must be called with interrupt disabled and spinlock held
1824 */
1825void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1826{
1827	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1828
1829	/*
1830	 * The root hub should be disconnected before this function is called.
1831	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1832	 * and the QH lists (via ..._hcd_endpoint_disable).
1833	 */
1834
1835	/* Turn off all host-specific interrupts */
1836	dwc2_disable_host_interrupts(hsotg);
1837
1838	/* Turn off the vbus power */
1839	dev_dbg(hsotg->dev, "PortPower off\n");
1840	dwc2_writel(hsotg, 0, HPRT0);
1841}
1842
1843/* Caller must hold driver lock */
1844static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1845				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1846				struct dwc2_qtd *qtd)
1847{
1848	u32 intr_mask;
1849	int retval;
1850	int dev_speed;
1851
1852	if (!hsotg->flags.b.port_connect_status) {
1853		/* No longer connected */
1854		dev_err(hsotg->dev, "Not connected\n");
1855		return -ENODEV;
1856	}
1857
1858	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1859
1860	/* Some configurations cannot support LS traffic on a FS root port */
1861	if ((dev_speed == USB_SPEED_LOW) &&
1862	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1863	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1864		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1865		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1866
1867		if (prtspd == HPRT0_SPD_FULL_SPEED)
1868			return -ENODEV;
1869	}
1870
1871	if (!qtd)
1872		return -EINVAL;
1873
1874	dwc2_hcd_qtd_init(qtd, urb);
1875	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1876	if (retval) {
1877		dev_err(hsotg->dev,
1878			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1879			retval);
1880		return retval;
1881	}
1882
1883	intr_mask = dwc2_readl(hsotg, GINTMSK);
1884	if (!(intr_mask & GINTSTS_SOF)) {
1885		enum dwc2_transaction_type tr_type;
1886
1887		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1888		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1889			/*
1890			 * Do not schedule SG transactions until qtd has
1891			 * URB_GIVEBACK_ASAP set
1892			 */
1893			return 0;
1894
1895		tr_type = dwc2_hcd_select_transactions(hsotg);
1896		if (tr_type != DWC2_TRANSACTION_NONE)
1897			dwc2_hcd_queue_transactions(hsotg, tr_type);
1898	}
1899
1900	return 0;
1901}
1902
1903/* Must be called with interrupt disabled and spinlock held */
1904static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1905				struct dwc2_hcd_urb *urb)
1906{
1907	struct dwc2_qh *qh;
1908	struct dwc2_qtd *urb_qtd;
1909
1910	urb_qtd = urb->qtd;
1911	if (!urb_qtd) {
1912		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1913		return -EINVAL;
1914	}
1915
1916	qh = urb_qtd->qh;
1917	if (!qh) {
1918		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1919		return -EINVAL;
1920	}
1921
1922	urb->priv = NULL;
1923
1924	if (urb_qtd->in_process && qh->channel) {
1925		dwc2_dump_channel_info(hsotg, qh->channel);
1926
1927		/* The QTD is in process (it has been assigned to a channel) */
1928		if (hsotg->flags.b.port_connect_status)
1929			/*
1930			 * If still connected (i.e. in host mode), halt the
1931			 * channel so it can be used for other transfers. If
1932			 * no longer connected, the host registers can't be
1933			 * written to halt the channel since the core is in
1934			 * device mode.
1935			 */
1936			dwc2_hc_halt(hsotg, qh->channel,
1937				     DWC2_HC_XFER_URB_DEQUEUE);
1938	}
1939
1940	/*
1941	 * Free the QTD and clean up the associated QH. Leave the QH in the
1942	 * schedule if it has any remaining QTDs.
1943	 */
1944	if (!hsotg->params.dma_desc_enable) {
1945		u8 in_process = urb_qtd->in_process;
1946
1947		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1948		if (in_process) {
1949			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1950			qh->channel = NULL;
1951		} else if (list_empty(&qh->qtd_list)) {
1952			dwc2_hcd_qh_unlink(hsotg, qh);
1953		}
1954	} else {
1955		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1956	}
1957
1958	return 0;
1959}
1960
1961/* Must NOT be called with interrupt disabled or spinlock held */
1962static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1963				     struct usb_host_endpoint *ep, int retry)
1964{
1965	struct dwc2_qtd *qtd, *qtd_tmp;
1966	struct dwc2_qh *qh;
1967	unsigned long flags;
1968	int rc;
1969
1970	spin_lock_irqsave(&hsotg->lock, flags);
1971
1972	qh = ep->hcpriv;
1973	if (!qh) {
1974		rc = -EINVAL;
1975		goto err;
1976	}
1977
1978	while (!list_empty(&qh->qtd_list) && retry--) {
1979		if (retry == 0) {
1980			dev_err(hsotg->dev,
1981				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
1982			rc = -EBUSY;
1983			goto err;
1984		}
1985
1986		spin_unlock_irqrestore(&hsotg->lock, flags);
1987		msleep(20);
1988		spin_lock_irqsave(&hsotg->lock, flags);
1989		qh = ep->hcpriv;
1990		if (!qh) {
1991			rc = -EINVAL;
1992			goto err;
1993		}
1994	}
1995
1996	dwc2_hcd_qh_unlink(hsotg, qh);
1997
1998	/* Free each QTD in the QH's QTD list */
1999	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2000		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2001
2002	ep->hcpriv = NULL;
2003
2004	if (qh->channel && qh->channel->qh == qh)
2005		qh->channel->qh = NULL;
2006
2007	spin_unlock_irqrestore(&hsotg->lock, flags);
2008
2009	dwc2_hcd_qh_free(hsotg, qh);
2010
2011	return 0;
2012
2013err:
2014	ep->hcpriv = NULL;
2015	spin_unlock_irqrestore(&hsotg->lock, flags);
2016
2017	return rc;
2018}
2019
2020/* Must be called with interrupt disabled and spinlock held */
2021static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2022				   struct usb_host_endpoint *ep)
2023{
2024	struct dwc2_qh *qh = ep->hcpriv;
2025
2026	if (!qh)
2027		return -EINVAL;
2028
2029	qh->data_toggle = DWC2_HC_PID_DATA0;
2030
2031	return 0;
2032}
2033
2034/**
2035 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2036 * prepares the core for device mode or host mode operation
2037 *
2038 * @hsotg:         Programming view of the DWC_otg controller
2039 * @initial_setup: If true then this is the first init for this instance.
2040 */
2041int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2042{
2043	u32 usbcfg, otgctl;
2044	int retval;
2045
2046	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2047
2048	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2049
2050	/* Set ULPI External VBUS bit if needed */
2051	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2052	if (hsotg->params.phy_ulpi_ext_vbus)
 
2053		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2054
2055	/* Set external TS Dline pulsing bit if needed */
2056	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2057	if (hsotg->params.ts_dline)
2058		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2059
2060	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2061
2062	/*
2063	 * Reset the Controller
2064	 *
2065	 * We only need to reset the controller if this is a re-init.
2066	 * For the first init we know for sure that earlier code reset us (it
2067	 * needed to in order to properly detect various parameters).
2068	 */
2069	if (!initial_setup) {
2070		retval = dwc2_core_reset(hsotg, false);
2071		if (retval) {
2072			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2073				__func__);
2074			return retval;
2075		}
2076	}
2077
2078	/*
2079	 * This needs to happen in FS mode before any other programming occurs
2080	 */
2081	retval = dwc2_phy_init(hsotg, initial_setup);
2082	if (retval)
2083		return retval;
2084
2085	/* Program the GAHBCFG Register */
2086	retval = dwc2_gahbcfg_init(hsotg);
2087	if (retval)
2088		return retval;
2089
2090	/* Program the GUSBCFG register */
2091	dwc2_gusbcfg_init(hsotg);
2092
2093	/* Program the GOTGCTL register */
2094	otgctl = dwc2_readl(hsotg, GOTGCTL);
2095	otgctl &= ~GOTGCTL_OTGVER;
2096	dwc2_writel(hsotg, otgctl, GOTGCTL);
 
 
 
2097
2098	/* Clear the SRP success bit for FS-I2c */
2099	hsotg->srp_success = 0;
2100
2101	/* Enable common interrupts */
2102	dwc2_enable_common_interrupts(hsotg);
2103
2104	/*
2105	 * Do device or host initialization based on mode during PCD and
2106	 * HCD initialization
2107	 */
2108	if (dwc2_is_host_mode(hsotg)) {
2109		dev_dbg(hsotg->dev, "Host Mode\n");
2110		hsotg->op_state = OTG_STATE_A_HOST;
2111	} else {
2112		dev_dbg(hsotg->dev, "Device Mode\n");
2113		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2114	}
2115
2116	return 0;
2117}
2118
2119/**
2120 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2121 * Host mode
2122 *
2123 * @hsotg: Programming view of DWC_otg controller
2124 *
2125 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2126 * request queues. Host channels are reset to ensure that they are ready for
2127 * performing transfers.
2128 */
2129static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2130{
2131	u32 hcfg, hfir, otgctl, usbcfg;
2132
2133	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2134
2135	/* Set HS/FS Timeout Calibration to 7 (max available value).
2136	 * The number of PHY clocks that the application programs in
2137	 * this field is added to the high/full speed interpacket timeout
2138	 * duration in the core to account for any additional delays
2139	 * introduced by the PHY. This can be required, because the delay
2140	 * introduced by the PHY in generating the linestate condition
2141	 * can vary from one PHY to another.
2142	 */
2143	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2144	usbcfg |= GUSBCFG_TOUTCAL(7);
2145	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2146
2147	/* Restart the Phy Clock */
2148	dwc2_writel(hsotg, 0, PCGCTL);
2149
2150	/* Initialize Host Configuration Register */
2151	dwc2_init_fs_ls_pclk_sel(hsotg);
2152	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2153	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2154		hcfg = dwc2_readl(hsotg, HCFG);
2155		hcfg |= HCFG_FSLSSUPP;
2156		dwc2_writel(hsotg, hcfg, HCFG);
2157	}
2158
2159	/*
2160	 * This bit allows dynamic reloading of the HFIR register during
2161	 * runtime. This bit needs to be programmed during initial configuration
2162	 * and its value must not be changed during runtime.
2163	 */
2164	if (hsotg->params.reload_ctl) {
2165		hfir = dwc2_readl(hsotg, HFIR);
2166		hfir |= HFIR_RLDCTRL;
2167		dwc2_writel(hsotg, hfir, HFIR);
2168	}
2169
2170	if (hsotg->params.dma_desc_enable) {
2171		u32 op_mode = hsotg->hw_params.op_mode;
2172
2173		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2174		    !hsotg->hw_params.dma_desc_enable ||
2175		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2176		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2177		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2178			dev_err(hsotg->dev,
2179				"Hardware does not support descriptor DMA mode -\n");
2180			dev_err(hsotg->dev,
2181				"falling back to buffer DMA mode.\n");
2182			hsotg->params.dma_desc_enable = false;
2183		} else {
2184			hcfg = dwc2_readl(hsotg, HCFG);
2185			hcfg |= HCFG_DESCDMA;
2186			dwc2_writel(hsotg, hcfg, HCFG);
2187		}
2188	}
2189
2190	/* Configure data FIFO sizes */
2191	dwc2_config_fifos(hsotg);
2192
2193	/* TODO - check this */
2194	/* Clear Host Set HNP Enable in the OTG Control Register */
2195	otgctl = dwc2_readl(hsotg, GOTGCTL);
2196	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2197	dwc2_writel(hsotg, otgctl, GOTGCTL);
2198
2199	/* Make sure the FIFOs are flushed */
2200	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2201	dwc2_flush_rx_fifo(hsotg);
2202
2203	/* Clear Host Set HNP Enable in the OTG Control Register */
2204	otgctl = dwc2_readl(hsotg, GOTGCTL);
2205	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2206	dwc2_writel(hsotg, otgctl, GOTGCTL);
2207
2208	if (!hsotg->params.dma_desc_enable) {
2209		int num_channels, i;
2210		u32 hcchar;
2211
2212		/* Flush out any leftover queued requests */
2213		num_channels = hsotg->params.host_channels;
2214		for (i = 0; i < num_channels; i++) {
2215			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2216			if (hcchar & HCCHAR_CHENA) {
2217				hcchar &= ~HCCHAR_CHENA;
2218				hcchar |= HCCHAR_CHDIS;
2219				hcchar &= ~HCCHAR_EPDIR;
2220				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2221			}
2222		}
2223
2224		/* Halt all channels to put them into a known state */
2225		for (i = 0; i < num_channels; i++) {
2226			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2227			if (hcchar & HCCHAR_CHENA) {
2228				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2229				hcchar &= ~HCCHAR_EPDIR;
2230				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2231				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2232					__func__, i);
2233
2234				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2235							      HCCHAR_CHENA,
2236							      1000)) {
2237					dev_warn(hsotg->dev,
2238						 "Unable to clear enable on channel %d\n",
2239						 i);
 
2240				}
2241			}
 
2242		}
2243	}
2244
2245	/* Enable ACG feature in host mode, if supported */
2246	dwc2_enable_acg(hsotg);
2247
2248	/* Turn on the vbus power */
2249	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2250	if (hsotg->op_state == OTG_STATE_A_HOST) {
2251		u32 hprt0 = dwc2_read_hprt0(hsotg);
2252
2253		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2254			!!(hprt0 & HPRT0_PWR));
2255		if (!(hprt0 & HPRT0_PWR)) {
2256			hprt0 |= HPRT0_PWR;
2257			dwc2_writel(hsotg, hprt0, HPRT0);
2258		}
2259	}
2260
2261	dwc2_enable_host_interrupts(hsotg);
2262}
2263
2264/*
2265 * Initializes dynamic portions of the DWC_otg HCD state
2266 *
2267 * Must be called with interrupt disabled and spinlock held
2268 */
2269static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2270{
2271	struct dwc2_host_chan *chan, *chan_tmp;
2272	int num_channels;
2273	int i;
2274
2275	hsotg->flags.d32 = 0;
2276	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2277
2278	if (hsotg->params.uframe_sched) {
2279		hsotg->available_host_channels =
2280			hsotg->params.host_channels;
2281	} else {
2282		hsotg->non_periodic_channels = 0;
2283		hsotg->periodic_channels = 0;
2284	}
2285
2286	/*
2287	 * Put all channels in the free channel list and clean up channel
2288	 * states
2289	 */
2290	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2291				 hc_list_entry)
2292		list_del_init(&chan->hc_list_entry);
2293
2294	num_channels = hsotg->params.host_channels;
2295	for (i = 0; i < num_channels; i++) {
2296		chan = hsotg->hc_ptr_array[i];
2297		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2298		dwc2_hc_cleanup(hsotg, chan);
2299	}
2300
2301	/* Initialize the DWC core for host mode operation */
2302	dwc2_core_host_init(hsotg);
2303}
2304
2305static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2306			       struct dwc2_host_chan *chan,
2307			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2308{
2309	int hub_addr, hub_port;
2310
2311	chan->do_split = 1;
2312	chan->xact_pos = qtd->isoc_split_pos;
2313	chan->complete_split = qtd->complete_split;
2314	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2315	chan->hub_addr = (u8)hub_addr;
2316	chan->hub_port = (u8)hub_port;
2317}
2318
2319static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2320			      struct dwc2_host_chan *chan,
2321			      struct dwc2_qtd *qtd)
2322{
2323	struct dwc2_hcd_urb *urb = qtd->urb;
2324	struct dwc2_hcd_iso_packet_desc *frame_desc;
2325
2326	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2327	case USB_ENDPOINT_XFER_CONTROL:
2328		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2329
2330		switch (qtd->control_phase) {
2331		case DWC2_CONTROL_SETUP:
2332			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2333			chan->do_ping = 0;
2334			chan->ep_is_in = 0;
2335			chan->data_pid_start = DWC2_HC_PID_SETUP;
2336			if (hsotg->params.host_dma)
2337				chan->xfer_dma = urb->setup_dma;
2338			else
2339				chan->xfer_buf = urb->setup_packet;
2340			chan->xfer_len = 8;
2341			break;
2342
2343		case DWC2_CONTROL_DATA:
2344			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2345			chan->data_pid_start = qtd->data_toggle;
2346			break;
2347
2348		case DWC2_CONTROL_STATUS:
2349			/*
2350			 * Direction is opposite of data direction or IN if no
2351			 * data
2352			 */
2353			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2354			if (urb->length == 0)
2355				chan->ep_is_in = 1;
2356			else
2357				chan->ep_is_in =
2358					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2359			if (chan->ep_is_in)
2360				chan->do_ping = 0;
2361			chan->data_pid_start = DWC2_HC_PID_DATA1;
2362			chan->xfer_len = 0;
2363			if (hsotg->params.host_dma)
2364				chan->xfer_dma = hsotg->status_buf_dma;
2365			else
2366				chan->xfer_buf = hsotg->status_buf;
2367			break;
2368		}
2369		break;
2370
2371	case USB_ENDPOINT_XFER_BULK:
2372		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2373		break;
2374
2375	case USB_ENDPOINT_XFER_INT:
2376		chan->ep_type = USB_ENDPOINT_XFER_INT;
2377		break;
2378
2379	case USB_ENDPOINT_XFER_ISOC:
2380		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2381		if (hsotg->params.dma_desc_enable)
2382			break;
2383
2384		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2385		frame_desc->status = 0;
2386
2387		if (hsotg->params.host_dma) {
2388			chan->xfer_dma = urb->dma;
2389			chan->xfer_dma += frame_desc->offset +
2390					qtd->isoc_split_offset;
2391		} else {
2392			chan->xfer_buf = urb->buf;
2393			chan->xfer_buf += frame_desc->offset +
2394					qtd->isoc_split_offset;
2395		}
2396
2397		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2398
2399		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2400			if (chan->xfer_len <= 188)
2401				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2402			else
2403				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2404		}
2405		break;
2406	}
2407}
2408
2409static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2410					    struct dwc2_qh *qh,
2411					    struct dwc2_host_chan *chan)
2412{
2413	if (!hsotg->unaligned_cache ||
2414	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2415		return -ENOMEM;
2416
2417	if (!qh->dw_align_buf) {
2418		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2419						    GFP_ATOMIC | GFP_DMA);
2420		if (!qh->dw_align_buf)
2421			return -ENOMEM;
2422	}
2423
2424	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2425					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2426					      DMA_FROM_DEVICE);
2427
2428	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2429		dev_err(hsotg->dev, "can't map align_buf\n");
2430		chan->align_buf = 0;
2431		return -EINVAL;
2432	}
2433
2434	chan->align_buf = qh->dw_align_buf_dma;
2435	return 0;
2436}
2437
2438#define DWC2_USB_DMA_ALIGN 4
2439
2440static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2441{
2442	void *stored_xfer_buffer;
2443	size_t length;
2444
2445	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2446		return;
2447
2448	/* Restore urb->transfer_buffer from the end of the allocated area */
2449	memcpy(&stored_xfer_buffer,
2450	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2451			 dma_get_cache_alignment()),
2452	       sizeof(urb->transfer_buffer));
2453
2454	if (usb_urb_dir_in(urb)) {
2455		if (usb_pipeisoc(urb->pipe))
2456			length = urb->transfer_buffer_length;
2457		else
2458			length = urb->actual_length;
2459
2460		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2461	}
2462	kfree(urb->transfer_buffer);
2463	urb->transfer_buffer = stored_xfer_buffer;
 
2464
2465	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2466}
2467
2468static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2469{
2470	void *kmalloc_ptr;
2471	size_t kmalloc_size;
2472
2473	if (urb->num_sgs || urb->sg ||
2474	    urb->transfer_buffer_length == 0 ||
2475	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2476		return 0;
2477
2478	/*
2479	 * Allocate a buffer with enough padding for original transfer_buffer
2480	 * pointer. This allocation is guaranteed to be aligned properly for
2481	 * DMA
2482	 */
2483	kmalloc_size = urb->transfer_buffer_length +
2484		(dma_get_cache_alignment() - 1) +
2485		sizeof(urb->transfer_buffer);
2486
2487	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2488	if (!kmalloc_ptr)
2489		return -ENOMEM;
2490
2491	/*
2492	 * Position value of original urb->transfer_buffer pointer to the end
2493	 * of allocation for later referencing
2494	 */
2495	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2496			 dma_get_cache_alignment()),
2497	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2498
2499	if (usb_urb_dir_out(urb))
2500		memcpy(kmalloc_ptr, urb->transfer_buffer,
2501		       urb->transfer_buffer_length);
2502	urb->transfer_buffer = kmalloc_ptr;
2503
2504	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2505
2506	return 0;
2507}
2508
2509static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2510				gfp_t mem_flags)
2511{
2512	int ret;
2513
2514	/* We assume setup_dma is always aligned; warn if not */
2515	WARN_ON_ONCE(urb->setup_dma &&
2516		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2517
2518	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2519	if (ret)
2520		return ret;
2521
2522	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2523	if (ret)
2524		dwc2_free_dma_aligned_buffer(urb);
2525
2526	return ret;
2527}
2528
2529static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2530{
2531	usb_hcd_unmap_urb_for_dma(hcd, urb);
2532	dwc2_free_dma_aligned_buffer(urb);
2533}
2534
2535/**
2536 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2537 * channel and initializes the host channel to perform the transactions. The
2538 * host channel is removed from the free list.
2539 *
2540 * @hsotg: The HCD state structure
2541 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2542 *         to a free host channel
2543 */
2544static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2545{
2546	struct dwc2_host_chan *chan;
2547	struct dwc2_hcd_urb *urb;
2548	struct dwc2_qtd *qtd;
2549
2550	if (dbg_qh(qh))
2551		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2552
2553	if (list_empty(&qh->qtd_list)) {
2554		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2555		return -ENOMEM;
2556	}
2557
2558	if (list_empty(&hsotg->free_hc_list)) {
2559		dev_dbg(hsotg->dev, "No free channel to assign\n");
2560		return -ENOMEM;
2561	}
2562
2563	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2564				hc_list_entry);
2565
2566	/* Remove host channel from free list */
2567	list_del_init(&chan->hc_list_entry);
2568
2569	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2570	urb = qtd->urb;
2571	qh->channel = chan;
2572	qtd->in_process = 1;
2573
2574	/*
2575	 * Use usb_pipedevice to determine device address. This address is
2576	 * 0 before the SET_ADDRESS command and the correct address afterward.
2577	 */
2578	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2579	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2580	chan->speed = qh->dev_speed;
2581	chan->max_packet = qh->maxp;
2582
2583	chan->xfer_started = 0;
2584	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2585	chan->error_state = (qtd->error_count > 0);
2586	chan->halt_on_queue = 0;
2587	chan->halt_pending = 0;
2588	chan->requests = 0;
2589
2590	/*
2591	 * The following values may be modified in the transfer type section
2592	 * below. The xfer_len value may be reduced when the transfer is
2593	 * started to accommodate the max widths of the XferSize and PktCnt
2594	 * fields in the HCTSIZn register.
2595	 */
2596
2597	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2598	if (chan->ep_is_in)
2599		chan->do_ping = 0;
2600	else
2601		chan->do_ping = qh->ping_state;
2602
2603	chan->data_pid_start = qh->data_toggle;
2604	chan->multi_count = 1;
2605
2606	if (urb->actual_length > urb->length &&
2607	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2608		urb->actual_length = urb->length;
2609
2610	if (hsotg->params.host_dma)
2611		chan->xfer_dma = urb->dma + urb->actual_length;
2612	else
2613		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2614
2615	chan->xfer_len = urb->length - urb->actual_length;
2616	chan->xfer_count = 0;
2617
2618	/* Set the split attributes if required */
2619	if (qh->do_split)
2620		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2621	else
2622		chan->do_split = 0;
2623
2624	/* Set the transfer attributes */
2625	dwc2_hc_init_xfer(hsotg, chan, qtd);
2626
2627	/* For non-dword aligned buffers */
2628	if (hsotg->params.host_dma && qh->do_split &&
2629	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2630		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2631		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2632			dev_err(hsotg->dev,
2633				"Failed to allocate memory to handle non-aligned buffer\n");
2634			/* Add channel back to free list */
2635			chan->align_buf = 0;
2636			chan->multi_count = 0;
2637			list_add_tail(&chan->hc_list_entry,
2638				      &hsotg->free_hc_list);
2639			qtd->in_process = 0;
2640			qh->channel = NULL;
2641			return -ENOMEM;
2642		}
2643	} else {
2644		/*
2645		 * We assume that DMA is always aligned in non-split
2646		 * case or split out case. Warn if not.
2647		 */
2648		WARN_ON_ONCE(hsotg->params.host_dma &&
2649			     (chan->xfer_dma & 0x3));
2650		chan->align_buf = 0;
2651	}
2652
2653	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2654	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2655		/*
2656		 * This value may be modified when the transfer is started
2657		 * to reflect the actual transfer length
2658		 */
2659		chan->multi_count = qh->maxp_mult;
2660
2661	if (hsotg->params.dma_desc_enable) {
2662		chan->desc_list_addr = qh->desc_list_dma;
2663		chan->desc_list_sz = qh->desc_list_sz;
2664	}
2665
2666	dwc2_hc_init(hsotg, chan);
2667	chan->qh = qh;
2668
2669	return 0;
2670}
2671
2672/**
2673 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2674 * schedule and assigns them to available host channels. Called from the HCD
2675 * interrupt handler functions.
2676 *
2677 * @hsotg: The HCD state structure
2678 *
2679 * Return: The types of new transactions that were assigned to host channels
2680 */
2681enum dwc2_transaction_type dwc2_hcd_select_transactions(
2682		struct dwc2_hsotg *hsotg)
2683{
2684	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2685	struct list_head *qh_ptr;
2686	struct dwc2_qh *qh;
2687	int num_channels;
2688
2689#ifdef DWC2_DEBUG_SOF
2690	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2691#endif
2692
2693	/* Process entries in the periodic ready list */
2694	qh_ptr = hsotg->periodic_sched_ready.next;
2695	while (qh_ptr != &hsotg->periodic_sched_ready) {
2696		if (list_empty(&hsotg->free_hc_list))
2697			break;
2698		if (hsotg->params.uframe_sched) {
2699			if (hsotg->available_host_channels <= 1)
2700				break;
2701			hsotg->available_host_channels--;
2702		}
2703		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2704		if (dwc2_assign_and_init_hc(hsotg, qh))
2705			break;
2706
2707		/*
2708		 * Move the QH from the periodic ready schedule to the
2709		 * periodic assigned schedule
2710		 */
2711		qh_ptr = qh_ptr->next;
2712		list_move_tail(&qh->qh_list_entry,
2713			       &hsotg->periodic_sched_assigned);
2714		ret_val = DWC2_TRANSACTION_PERIODIC;
2715	}
2716
2717	/*
2718	 * Process entries in the inactive portion of the non-periodic
2719	 * schedule. Some free host channels may not be used if they are
2720	 * reserved for periodic transfers.
2721	 */
2722	num_channels = hsotg->params.host_channels;
2723	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2724	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2725		if (!hsotg->params.uframe_sched &&
2726		    hsotg->non_periodic_channels >= num_channels -
2727						hsotg->periodic_channels)
2728			break;
2729		if (list_empty(&hsotg->free_hc_list))
2730			break;
2731		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2732		if (hsotg->params.uframe_sched) {
2733			if (hsotg->available_host_channels < 1)
2734				break;
2735			hsotg->available_host_channels--;
2736		}
2737
2738		if (dwc2_assign_and_init_hc(hsotg, qh))
2739			break;
2740
2741		/*
2742		 * Move the QH from the non-periodic inactive schedule to the
2743		 * non-periodic active schedule
2744		 */
2745		qh_ptr = qh_ptr->next;
2746		list_move_tail(&qh->qh_list_entry,
2747			       &hsotg->non_periodic_sched_active);
2748
2749		if (ret_val == DWC2_TRANSACTION_NONE)
2750			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2751		else
2752			ret_val = DWC2_TRANSACTION_ALL;
2753
2754		if (!hsotg->params.uframe_sched)
2755			hsotg->non_periodic_channels++;
2756	}
2757
2758	return ret_val;
2759}
2760
2761/**
2762 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2763 * a host channel associated with either a periodic or non-periodic transfer
2764 *
2765 * @hsotg: The HCD state structure
2766 * @chan:  Host channel descriptor associated with either a periodic or
2767 *         non-periodic transfer
2768 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2769 *                     for periodic transfers or the non-periodic Tx FIFO
2770 *                     for non-periodic transfers
2771 *
2772 * Return: 1 if a request is queued and more requests may be needed to
2773 * complete the transfer, 0 if no more requests are required for this
2774 * transfer, -1 if there is insufficient space in the Tx FIFO
2775 *
2776 * This function assumes that there is space available in the appropriate
2777 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2778 * it checks whether space is available in the appropriate Tx FIFO.
2779 *
2780 * Must be called with interrupt disabled and spinlock held
2781 */
2782static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2783				  struct dwc2_host_chan *chan,
2784				  u16 fifo_dwords_avail)
2785{
2786	int retval = 0;
2787
2788	if (chan->do_split)
2789		/* Put ourselves on the list to keep order straight */
2790		list_move_tail(&chan->split_order_list_entry,
2791			       &hsotg->split_order);
2792
2793	if (hsotg->params.host_dma && chan->qh) {
2794		if (hsotg->params.dma_desc_enable) {
2795			if (!chan->xfer_started ||
2796			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2797				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2798				chan->qh->ping_state = 0;
2799			}
2800		} else if (!chan->xfer_started) {
2801			dwc2_hc_start_transfer(hsotg, chan);
2802			chan->qh->ping_state = 0;
2803		}
2804	} else if (chan->halt_pending) {
2805		/* Don't queue a request if the channel has been halted */
2806	} else if (chan->halt_on_queue) {
2807		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2808	} else if (chan->do_ping) {
2809		if (!chan->xfer_started)
2810			dwc2_hc_start_transfer(hsotg, chan);
2811	} else if (!chan->ep_is_in ||
2812		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2813		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2814			if (!chan->xfer_started) {
2815				dwc2_hc_start_transfer(hsotg, chan);
2816				retval = 1;
2817			} else {
2818				retval = dwc2_hc_continue_transfer(hsotg, chan);
2819			}
2820		} else {
2821			retval = -1;
2822		}
2823	} else {
2824		if (!chan->xfer_started) {
2825			dwc2_hc_start_transfer(hsotg, chan);
2826			retval = 1;
2827		} else {
2828			retval = dwc2_hc_continue_transfer(hsotg, chan);
2829		}
2830	}
2831
2832	return retval;
2833}
2834
2835/*
2836 * Processes periodic channels for the next frame and queues transactions for
2837 * these channels to the DWC_otg controller. After queueing transactions, the
2838 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2839 * to queue as Periodic Tx FIFO or request queue space becomes available.
2840 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2841 *
2842 * Must be called with interrupt disabled and spinlock held
2843 */
2844static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2845{
2846	struct list_head *qh_ptr;
2847	struct dwc2_qh *qh;
2848	u32 tx_status;
2849	u32 fspcavail;
2850	u32 gintmsk;
2851	int status;
2852	bool no_queue_space = false;
2853	bool no_fifo_space = false;
2854	u32 qspcavail;
2855
2856	/* If empty list then just adjust interrupt enables */
2857	if (list_empty(&hsotg->periodic_sched_assigned))
2858		goto exit;
2859
2860	if (dbg_perio())
2861		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2862
2863	tx_status = dwc2_readl(hsotg, HPTXSTS);
2864	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2865		    TXSTS_QSPCAVAIL_SHIFT;
2866	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2867		    TXSTS_FSPCAVAIL_SHIFT;
2868
2869	if (dbg_perio()) {
2870		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2871			 qspcavail);
2872		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2873			 fspcavail);
2874	}
2875
2876	qh_ptr = hsotg->periodic_sched_assigned.next;
2877	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2878		tx_status = dwc2_readl(hsotg, HPTXSTS);
2879		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2880			    TXSTS_QSPCAVAIL_SHIFT;
2881		if (qspcavail == 0) {
2882			no_queue_space = true;
2883			break;
2884		}
2885
2886		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2887		if (!qh->channel) {
2888			qh_ptr = qh_ptr->next;
2889			continue;
2890		}
2891
2892		/* Make sure EP's TT buffer is clean before queueing qtds */
2893		if (qh->tt_buffer_dirty) {
2894			qh_ptr = qh_ptr->next;
2895			continue;
2896		}
2897
2898		/*
2899		 * Set a flag if we're queuing high-bandwidth in slave mode.
2900		 * The flag prevents any halts to get into the request queue in
2901		 * the middle of multiple high-bandwidth packets getting queued.
2902		 */
2903		if (!hsotg->params.host_dma &&
2904		    qh->channel->multi_count > 1)
2905			hsotg->queuing_high_bandwidth = 1;
2906
2907		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2908			    TXSTS_FSPCAVAIL_SHIFT;
2909		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2910		if (status < 0) {
2911			no_fifo_space = true;
2912			break;
2913		}
2914
2915		/*
2916		 * In Slave mode, stay on the current transfer until there is
2917		 * nothing more to do or the high-bandwidth request count is
2918		 * reached. In DMA mode, only need to queue one request. The
2919		 * controller automatically handles multiple packets for
2920		 * high-bandwidth transfers.
2921		 */
2922		if (hsotg->params.host_dma || status == 0 ||
2923		    qh->channel->requests == qh->channel->multi_count) {
2924			qh_ptr = qh_ptr->next;
2925			/*
2926			 * Move the QH from the periodic assigned schedule to
2927			 * the periodic queued schedule
2928			 */
2929			list_move_tail(&qh->qh_list_entry,
2930				       &hsotg->periodic_sched_queued);
2931
2932			/* done queuing high bandwidth */
2933			hsotg->queuing_high_bandwidth = 0;
2934		}
2935	}
2936
2937exit:
2938	if (no_queue_space || no_fifo_space ||
2939	    (!hsotg->params.host_dma &&
2940	     !list_empty(&hsotg->periodic_sched_assigned))) {
2941		/*
2942		 * May need to queue more transactions as the request
2943		 * queue or Tx FIFO empties. Enable the periodic Tx
2944		 * FIFO empty interrupt. (Always use the half-empty
2945		 * level to ensure that new requests are loaded as
2946		 * soon as possible.)
2947		 */
2948		gintmsk = dwc2_readl(hsotg, GINTMSK);
2949		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2950			gintmsk |= GINTSTS_PTXFEMP;
2951			dwc2_writel(hsotg, gintmsk, GINTMSK);
2952		}
2953	} else {
2954		/*
2955		 * Disable the Tx FIFO empty interrupt since there are
2956		 * no more transactions that need to be queued right
2957		 * now. This function is called from interrupt
2958		 * handlers to queue more transactions as transfer
2959		 * states change.
2960		 */
2961		gintmsk = dwc2_readl(hsotg, GINTMSK);
2962		if (gintmsk & GINTSTS_PTXFEMP) {
2963			gintmsk &= ~GINTSTS_PTXFEMP;
2964			dwc2_writel(hsotg, gintmsk, GINTMSK);
2965		}
2966	}
2967}
2968
2969/*
2970 * Processes active non-periodic channels and queues transactions for these
2971 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
2972 * FIFO Empty interrupt is enabled if there are more transactions to queue as
2973 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
2974 * FIFO Empty interrupt is disabled.
2975 *
2976 * Must be called with interrupt disabled and spinlock held
2977 */
2978static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
2979{
2980	struct list_head *orig_qh_ptr;
2981	struct dwc2_qh *qh;
2982	u32 tx_status;
2983	u32 qspcavail;
2984	u32 fspcavail;
2985	u32 gintmsk;
2986	int status;
2987	int no_queue_space = 0;
2988	int no_fifo_space = 0;
2989	int more_to_do = 0;
2990
2991	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
2992
2993	tx_status = dwc2_readl(hsotg, GNPTXSTS);
2994	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2995		    TXSTS_QSPCAVAIL_SHIFT;
2996	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2997		    TXSTS_FSPCAVAIL_SHIFT;
2998	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
2999		 qspcavail);
3000	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3001		 fspcavail);
3002
3003	/*
3004	 * Keep track of the starting point. Skip over the start-of-list
3005	 * entry.
3006	 */
3007	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3008		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3009	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3010
3011	/*
3012	 * Process once through the active list or until no more space is
3013	 * available in the request queue or the Tx FIFO
3014	 */
3015	do {
3016		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3017		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3018			    TXSTS_QSPCAVAIL_SHIFT;
3019		if (!hsotg->params.host_dma && qspcavail == 0) {
3020			no_queue_space = 1;
3021			break;
3022		}
3023
3024		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3025				qh_list_entry);
3026		if (!qh->channel)
3027			goto next;
3028
3029		/* Make sure EP's TT buffer is clean before queueing qtds */
3030		if (qh->tt_buffer_dirty)
3031			goto next;
3032
3033		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3034			    TXSTS_FSPCAVAIL_SHIFT;
3035		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3036
3037		if (status > 0) {
3038			more_to_do = 1;
3039		} else if (status < 0) {
3040			no_fifo_space = 1;
3041			break;
3042		}
3043next:
3044		/* Advance to next QH, skipping start-of-list entry */
3045		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3046		if (hsotg->non_periodic_qh_ptr ==
3047				&hsotg->non_periodic_sched_active)
3048			hsotg->non_periodic_qh_ptr =
3049					hsotg->non_periodic_qh_ptr->next;
3050	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3051
3052	if (!hsotg->params.host_dma) {
3053		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3054		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3055			    TXSTS_QSPCAVAIL_SHIFT;
3056		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3057			    TXSTS_FSPCAVAIL_SHIFT;
3058		dev_vdbg(hsotg->dev,
3059			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3060			 qspcavail);
3061		dev_vdbg(hsotg->dev,
3062			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3063			 fspcavail);
3064
3065		if (more_to_do || no_queue_space || no_fifo_space) {
3066			/*
3067			 * May need to queue more transactions as the request
3068			 * queue or Tx FIFO empties. Enable the non-periodic
3069			 * Tx FIFO empty interrupt. (Always use the half-empty
3070			 * level to ensure that new requests are loaded as
3071			 * soon as possible.)
3072			 */
3073			gintmsk = dwc2_readl(hsotg, GINTMSK);
3074			gintmsk |= GINTSTS_NPTXFEMP;
3075			dwc2_writel(hsotg, gintmsk, GINTMSK);
3076		} else {
3077			/*
3078			 * Disable the Tx FIFO empty interrupt since there are
3079			 * no more transactions that need to be queued right
3080			 * now. This function is called from interrupt
3081			 * handlers to queue more transactions as transfer
3082			 * states change.
3083			 */
3084			gintmsk = dwc2_readl(hsotg, GINTMSK);
3085			gintmsk &= ~GINTSTS_NPTXFEMP;
3086			dwc2_writel(hsotg, gintmsk, GINTMSK);
3087		}
3088	}
3089}
3090
3091/**
3092 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3093 * and queues transactions for these channels to the DWC_otg controller. Called
3094 * from the HCD interrupt handler functions.
3095 *
3096 * @hsotg:   The HCD state structure
3097 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3098 *           or both)
3099 *
3100 * Must be called with interrupt disabled and spinlock held
3101 */
3102void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3103				 enum dwc2_transaction_type tr_type)
3104{
3105#ifdef DWC2_DEBUG_SOF
3106	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3107#endif
3108	/* Process host channels associated with periodic transfers */
3109	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3110	    tr_type == DWC2_TRANSACTION_ALL)
3111		dwc2_process_periodic_channels(hsotg);
3112
3113	/* Process host channels associated with non-periodic transfers */
3114	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3115	    tr_type == DWC2_TRANSACTION_ALL) {
3116		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3117			dwc2_process_non_periodic_channels(hsotg);
3118		} else {
3119			/*
3120			 * Ensure NP Tx FIFO empty interrupt is disabled when
3121			 * there are no non-periodic transfers to process
3122			 */
3123			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3124
3125			gintmsk &= ~GINTSTS_NPTXFEMP;
3126			dwc2_writel(hsotg, gintmsk, GINTMSK);
3127		}
3128	}
3129}
3130
3131static void dwc2_conn_id_status_change(struct work_struct *work)
3132{
3133	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3134						wf_otg);
3135	u32 count = 0;
3136	u32 gotgctl;
3137	unsigned long flags;
3138
3139	dev_dbg(hsotg->dev, "%s()\n", __func__);
3140
3141	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3142	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3143	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3144		!!(gotgctl & GOTGCTL_CONID_B));
3145
3146	/* B-Device connector (Device Mode) */
3147	if (gotgctl & GOTGCTL_CONID_B) {
3148		dwc2_vbus_supply_exit(hsotg);
3149		/* Wait for switch to device mode */
3150		dev_dbg(hsotg->dev, "connId B\n");
3151		if (hsotg->bus_suspended) {
3152			dev_info(hsotg->dev,
3153				 "Do port resume before switching to device mode\n");
3154			dwc2_port_resume(hsotg);
3155		}
3156		while (!dwc2_is_device_mode(hsotg)) {
3157			dev_info(hsotg->dev,
3158				 "Waiting for Peripheral Mode, Mode=%s\n",
3159				 dwc2_is_host_mode(hsotg) ? "Host" :
3160				 "Peripheral");
3161			msleep(20);
3162			/*
3163			 * Sometimes the initial GOTGCTRL read is wrong, so
3164			 * check it again and jump to host mode if that was
3165			 * the case.
3166			 */
3167			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3168			if (!(gotgctl & GOTGCTL_CONID_B))
3169				goto host;
3170			if (++count > 250)
3171				break;
3172		}
3173		if (count > 250)
3174			dev_err(hsotg->dev,
3175				"Connection id status change timed out\n");
3176
3177		/*
3178		 * Exit Partial Power Down without restoring registers.
3179		 * No need to check the return value as registers
3180		 * are not being restored.
3181		 */
3182		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3183			dwc2_exit_partial_power_down(hsotg, 0, false);
3184
3185		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3186		dwc2_core_init(hsotg, false);
3187		dwc2_enable_global_interrupts(hsotg);
3188		spin_lock_irqsave(&hsotg->lock, flags);
3189		dwc2_hsotg_core_init_disconnected(hsotg, false);
3190		spin_unlock_irqrestore(&hsotg->lock, flags);
3191		/* Enable ACG feature in device mode,if supported */
3192		dwc2_enable_acg(hsotg);
3193		dwc2_hsotg_core_connect(hsotg);
3194	} else {
3195host:
3196		/* A-Device connector (Host Mode) */
3197		dev_dbg(hsotg->dev, "connId A\n");
3198		while (!dwc2_is_host_mode(hsotg)) {
3199			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3200				 dwc2_is_host_mode(hsotg) ?
3201				 "Host" : "Peripheral");
3202			msleep(20);
3203			if (++count > 250)
3204				break;
3205		}
3206		if (count > 250)
3207			dev_err(hsotg->dev,
3208				"Connection id status change timed out\n");
 
3209
3210		spin_lock_irqsave(&hsotg->lock, flags);
3211		dwc2_hsotg_disconnect(hsotg);
3212		spin_unlock_irqrestore(&hsotg->lock, flags);
3213
3214		hsotg->op_state = OTG_STATE_A_HOST;
3215		/* Initialize the Core for Host mode */
3216		dwc2_core_init(hsotg, false);
3217		dwc2_enable_global_interrupts(hsotg);
3218		dwc2_hcd_start(hsotg);
3219	}
3220}
3221
3222static void dwc2_wakeup_detected(struct timer_list *t)
3223{
3224	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3225	u32 hprt0;
3226
3227	dev_dbg(hsotg->dev, "%s()\n", __func__);
3228
3229	/*
3230	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3231	 * so that OPT tests pass with all PHYs.)
3232	 */
3233	hprt0 = dwc2_read_hprt0(hsotg);
3234	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3235	hprt0 &= ~HPRT0_RES;
3236	dwc2_writel(hsotg, hprt0, HPRT0);
3237	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3238		dwc2_readl(hsotg, HPRT0));
3239
3240	dwc2_hcd_rem_wakeup(hsotg);
3241	hsotg->bus_suspended = false;
3242
3243	/* Change to L0 state */
3244	hsotg->lx_state = DWC2_L0;
3245}
3246
3247static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3248{
3249	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3250
3251	return hcd->self.b_hnp_enable;
3252}
3253
3254/**
3255 * dwc2_port_suspend() - Put controller in suspend mode for host.
3256 *
3257 * @hsotg: Programming view of the DWC_otg controller
3258 * @windex: The control request wIndex field
3259 *
3260 * Return: non-zero if failed to enter suspend mode for host.
3261 *
3262 * This function is for entering Host mode suspend.
3263 * Must NOT be called with interrupt disabled or spinlock held.
3264 */
3265int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3266{
3267	unsigned long flags;
 
3268	u32 pcgctl;
3269	u32 gotgctl;
3270	int ret = 0;
3271
3272	dev_dbg(hsotg->dev, "%s()\n", __func__);
3273
3274	spin_lock_irqsave(&hsotg->lock, flags);
3275
3276	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3277		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3278		gotgctl |= GOTGCTL_HSTSETHNPEN;
3279		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3280		hsotg->op_state = OTG_STATE_A_SUSPEND;
3281	}
3282
3283	switch (hsotg->params.power_down) {
3284	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3285		ret = dwc2_enter_partial_power_down(hsotg);
3286		if (ret)
3287			dev_err(hsotg->dev,
3288				"enter partial_power_down failed.\n");
3289		break;
3290	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3291		/*
3292		 * Perform spin unlock and lock because in
3293		 * "dwc2_host_enter_hibernation()" function there is a spinlock
3294		 * logic which prevents servicing of any IRQ during entering
3295		 * hibernation.
3296		 */
3297		spin_unlock_irqrestore(&hsotg->lock, flags);
3298		ret = dwc2_enter_hibernation(hsotg, 1);
3299		if (ret)
3300			dev_err(hsotg->dev, "enter hibernation failed.\n");
3301		spin_lock_irqsave(&hsotg->lock, flags);
3302		break;
3303	case DWC2_POWER_DOWN_PARAM_NONE:
3304		/*
3305		 * If not hibernation nor partial power down are supported,
3306		 * clock gating is used to save power.
3307		 */
3308		if (!hsotg->params.no_clock_gating)
3309			dwc2_host_enter_clock_gating(hsotg);
3310		break;
3311	}
3312
3313	/* For HNP the bus must be suspended for at least 200ms */
3314	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3315		pcgctl = dwc2_readl(hsotg, PCGCTL);
3316		pcgctl &= ~PCGCTL_STOPPCLK;
3317		dwc2_writel(hsotg, pcgctl, PCGCTL);
3318
3319		spin_unlock_irqrestore(&hsotg->lock, flags);
3320
3321		msleep(200);
3322	} else {
3323		spin_unlock_irqrestore(&hsotg->lock, flags);
3324	}
3325
3326	return ret;
3327}
3328
3329/**
3330 * dwc2_port_resume() - Exit controller from suspend mode for host.
3331 *
3332 * @hsotg: Programming view of the DWC_otg controller
3333 *
3334 * Return: non-zero if failed to exit suspend mode for host.
3335 *
3336 * This function is for exiting Host mode suspend.
3337 * Must NOT be called with interrupt disabled or spinlock held.
3338 */
3339int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3340{
3341	unsigned long flags;
3342	int ret = 0;
 
3343
3344	spin_lock_irqsave(&hsotg->lock, flags);
3345
3346	switch (hsotg->params.power_down) {
3347	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3348		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3349		if (ret)
3350			dev_err(hsotg->dev,
3351				"exit partial_power_down failed.\n");
3352		break;
3353	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3354		/* Exit host hibernation. */
3355		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3356		if (ret)
3357			dev_err(hsotg->dev, "exit hibernation failed.\n");
3358		break;
3359	case DWC2_POWER_DOWN_PARAM_NONE:
3360		/*
3361		 * If not hibernation nor partial power down are supported,
3362		 * port resume is done using the clock gating programming flow.
3363		 */
3364		spin_unlock_irqrestore(&hsotg->lock, flags);
3365		dwc2_host_exit_clock_gating(hsotg, 0);
3366		spin_lock_irqsave(&hsotg->lock, flags);
3367		break;
3368	}
3369
 
 
 
 
3370	spin_unlock_irqrestore(&hsotg->lock, flags);
3371
3372	return ret;
 
 
 
 
 
 
 
3373}
3374
3375/* Handles hub class-specific requests */
3376static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3377				u16 wvalue, u16 windex, char *buf, u16 wlength)
3378{
3379	struct usb_hub_descriptor *hub_desc;
3380	int retval = 0;
3381	u32 hprt0;
3382	u32 port_status;
3383	u32 speed;
3384	u32 pcgctl;
3385	u32 pwr;
3386
3387	switch (typereq) {
3388	case ClearHubFeature:
3389		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3390
3391		switch (wvalue) {
3392		case C_HUB_LOCAL_POWER:
3393		case C_HUB_OVER_CURRENT:
3394			/* Nothing required here */
3395			break;
3396
3397		default:
3398			retval = -EINVAL;
3399			dev_err(hsotg->dev,
3400				"ClearHubFeature request %1xh unknown\n",
3401				wvalue);
3402		}
3403		break;
3404
3405	case ClearPortFeature:
3406		if (wvalue != USB_PORT_FEAT_L1)
3407			if (!windex || windex > 1)
3408				goto error;
3409		switch (wvalue) {
3410		case USB_PORT_FEAT_ENABLE:
3411			dev_dbg(hsotg->dev,
3412				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3413			hprt0 = dwc2_read_hprt0(hsotg);
3414			hprt0 |= HPRT0_ENA;
3415			dwc2_writel(hsotg, hprt0, HPRT0);
3416			break;
3417
3418		case USB_PORT_FEAT_SUSPEND:
3419			dev_dbg(hsotg->dev,
3420				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3421
3422			if (hsotg->bus_suspended)
3423				retval = dwc2_port_resume(hsotg);
3424			break;
3425
3426		case USB_PORT_FEAT_POWER:
3427			dev_dbg(hsotg->dev,
3428				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3429			hprt0 = dwc2_read_hprt0(hsotg);
3430			pwr = hprt0 & HPRT0_PWR;
3431			hprt0 &= ~HPRT0_PWR;
3432			dwc2_writel(hsotg, hprt0, HPRT0);
3433			if (pwr)
3434				dwc2_vbus_supply_exit(hsotg);
3435			break;
3436
3437		case USB_PORT_FEAT_INDICATOR:
3438			dev_dbg(hsotg->dev,
3439				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3440			/* Port indicator not supported */
3441			break;
3442
3443		case USB_PORT_FEAT_C_CONNECTION:
3444			/*
3445			 * Clears driver's internal Connect Status Change flag
3446			 */
3447			dev_dbg(hsotg->dev,
3448				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3449			hsotg->flags.b.port_connect_status_change = 0;
3450			break;
3451
3452		case USB_PORT_FEAT_C_RESET:
3453			/* Clears driver's internal Port Reset Change flag */
3454			dev_dbg(hsotg->dev,
3455				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3456			hsotg->flags.b.port_reset_change = 0;
3457			break;
3458
3459		case USB_PORT_FEAT_C_ENABLE:
3460			/*
3461			 * Clears the driver's internal Port Enable/Disable
3462			 * Change flag
3463			 */
3464			dev_dbg(hsotg->dev,
3465				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3466			hsotg->flags.b.port_enable_change = 0;
3467			break;
3468
3469		case USB_PORT_FEAT_C_SUSPEND:
3470			/*
3471			 * Clears the driver's internal Port Suspend Change
3472			 * flag, which is set when resume signaling on the host
3473			 * port is complete
3474			 */
3475			dev_dbg(hsotg->dev,
3476				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3477			hsotg->flags.b.port_suspend_change = 0;
3478			break;
3479
3480		case USB_PORT_FEAT_C_PORT_L1:
3481			dev_dbg(hsotg->dev,
3482				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3483			hsotg->flags.b.port_l1_change = 0;
3484			break;
3485
3486		case USB_PORT_FEAT_C_OVER_CURRENT:
3487			dev_dbg(hsotg->dev,
3488				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3489			hsotg->flags.b.port_over_current_change = 0;
3490			break;
3491
3492		default:
3493			retval = -EINVAL;
3494			dev_err(hsotg->dev,
3495				"ClearPortFeature request %1xh unknown or unsupported\n",
3496				wvalue);
3497		}
3498		break;
3499
3500	case GetHubDescriptor:
3501		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3502		hub_desc = (struct usb_hub_descriptor *)buf;
3503		hub_desc->bDescLength = 9;
3504		hub_desc->bDescriptorType = USB_DT_HUB;
3505		hub_desc->bNbrPorts = 1;
3506		hub_desc->wHubCharacteristics =
3507			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3508				    HUB_CHAR_INDV_PORT_OCPM);
3509		hub_desc->bPwrOn2PwrGood = 1;
3510		hub_desc->bHubContrCurrent = 0;
3511		hub_desc->u.hs.DeviceRemovable[0] = 0;
3512		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3513		break;
3514
3515	case GetHubStatus:
3516		dev_dbg(hsotg->dev, "GetHubStatus\n");
3517		memset(buf, 0, 4);
3518		break;
3519
3520	case GetPortStatus:
3521		dev_vdbg(hsotg->dev,
3522			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3523			 hsotg->flags.d32);
3524		if (!windex || windex > 1)
3525			goto error;
3526
3527		port_status = 0;
3528		if (hsotg->flags.b.port_connect_status_change)
3529			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3530		if (hsotg->flags.b.port_enable_change)
3531			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3532		if (hsotg->flags.b.port_suspend_change)
3533			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3534		if (hsotg->flags.b.port_l1_change)
3535			port_status |= USB_PORT_STAT_C_L1 << 16;
3536		if (hsotg->flags.b.port_reset_change)
3537			port_status |= USB_PORT_STAT_C_RESET << 16;
3538		if (hsotg->flags.b.port_over_current_change) {
3539			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3540			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3541		}
3542
3543		if (!hsotg->flags.b.port_connect_status) {
3544			/*
3545			 * The port is disconnected, which means the core is
3546			 * either in device mode or it soon will be. Just
3547			 * return 0's for the remainder of the port status
3548			 * since the port register can't be read if the core
3549			 * is in device mode.
3550			 */
3551			*(__le32 *)buf = cpu_to_le32(port_status);
3552			break;
3553		}
3554
3555		hprt0 = dwc2_readl(hsotg, HPRT0);
3556		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3557
3558		if (hprt0 & HPRT0_CONNSTS)
3559			port_status |= USB_PORT_STAT_CONNECTION;
3560		if (hprt0 & HPRT0_ENA)
3561			port_status |= USB_PORT_STAT_ENABLE;
3562		if (hprt0 & HPRT0_SUSP)
3563			port_status |= USB_PORT_STAT_SUSPEND;
3564		if (hprt0 & HPRT0_OVRCURRACT)
3565			port_status |= USB_PORT_STAT_OVERCURRENT;
3566		if (hprt0 & HPRT0_RST)
3567			port_status |= USB_PORT_STAT_RESET;
3568		if (hprt0 & HPRT0_PWR)
3569			port_status |= USB_PORT_STAT_POWER;
3570
3571		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3572		if (speed == HPRT0_SPD_HIGH_SPEED)
3573			port_status |= USB_PORT_STAT_HIGH_SPEED;
3574		else if (speed == HPRT0_SPD_LOW_SPEED)
3575			port_status |= USB_PORT_STAT_LOW_SPEED;
3576
3577		if (hprt0 & HPRT0_TSTCTL_MASK)
3578			port_status |= USB_PORT_STAT_TEST;
3579		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3580
3581		if (hsotg->params.dma_desc_fs_enable) {
3582			/*
3583			 * Enable descriptor DMA only if a full speed
3584			 * device is connected.
3585			 */
3586			if (hsotg->new_connection &&
3587			    ((port_status &
3588			      (USB_PORT_STAT_CONNECTION |
3589			       USB_PORT_STAT_HIGH_SPEED |
3590			       USB_PORT_STAT_LOW_SPEED)) ==
3591			       USB_PORT_STAT_CONNECTION)) {
3592				u32 hcfg;
3593
3594				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3595				hsotg->params.dma_desc_enable = true;
3596				hcfg = dwc2_readl(hsotg, HCFG);
3597				hcfg |= HCFG_DESCDMA;
3598				dwc2_writel(hsotg, hcfg, HCFG);
3599				hsotg->new_connection = false;
3600			}
3601		}
3602
3603		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3604		*(__le32 *)buf = cpu_to_le32(port_status);
3605		break;
3606
3607	case SetHubFeature:
3608		dev_dbg(hsotg->dev, "SetHubFeature\n");
3609		/* No HUB features supported */
3610		break;
3611
3612	case SetPortFeature:
3613		dev_dbg(hsotg->dev, "SetPortFeature\n");
3614		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3615			goto error;
3616
3617		if (!hsotg->flags.b.port_connect_status) {
3618			/*
3619			 * The port is disconnected, which means the core is
3620			 * either in device mode or it soon will be. Just
3621			 * return without doing anything since the port
3622			 * register can't be written if the core is in device
3623			 * mode.
3624			 */
3625			break;
3626		}
3627
3628		switch (wvalue) {
3629		case USB_PORT_FEAT_SUSPEND:
3630			dev_dbg(hsotg->dev,
3631				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3632			if (windex != hsotg->otg_port)
3633				goto error;
3634			if (!hsotg->bus_suspended)
3635				retval = dwc2_port_suspend(hsotg, windex);
3636			break;
3637
3638		case USB_PORT_FEAT_POWER:
3639			dev_dbg(hsotg->dev,
3640				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3641			hprt0 = dwc2_read_hprt0(hsotg);
3642			pwr = hprt0 & HPRT0_PWR;
3643			hprt0 |= HPRT0_PWR;
3644			dwc2_writel(hsotg, hprt0, HPRT0);
3645			if (!pwr)
3646				dwc2_vbus_supply_init(hsotg);
3647			break;
3648
3649		case USB_PORT_FEAT_RESET:
 
3650			dev_dbg(hsotg->dev,
3651				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3652
3653			hprt0 = dwc2_read_hprt0(hsotg);
3654
3655			if (hsotg->hibernated) {
3656				retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3657				if (retval)
3658					dev_err(hsotg->dev,
3659						"exit hibernation failed\n");
3660			}
3661
3662			if (hsotg->in_ppd) {
3663				retval = dwc2_exit_partial_power_down(hsotg, 1,
3664								      true);
3665				if (retval)
3666					dev_err(hsotg->dev,
3667						"exit partial_power_down failed\n");
3668			}
3669
3670			if (hsotg->params.power_down ==
3671			    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3672				dwc2_host_exit_clock_gating(hsotg, 0);
3673
3674			pcgctl = dwc2_readl(hsotg, PCGCTL);
3675			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3676			dwc2_writel(hsotg, pcgctl, PCGCTL);
3677			/* ??? Original driver does this */
3678			dwc2_writel(hsotg, 0, PCGCTL);
3679
3680			hprt0 = dwc2_read_hprt0(hsotg);
3681			pwr = hprt0 & HPRT0_PWR;
3682			/* Clear suspend bit if resetting from suspend state */
3683			hprt0 &= ~HPRT0_SUSP;
3684
3685			/*
3686			 * When B-Host the Port reset bit is set in the Start
3687			 * HCD Callback function, so that the reset is started
3688			 * within 1ms of the HNP success interrupt
3689			 */
3690			if (!dwc2_hcd_is_b_host(hsotg)) {
3691				hprt0 |= HPRT0_PWR | HPRT0_RST;
3692				dev_dbg(hsotg->dev,
3693					"In host mode, hprt0=%08x\n", hprt0);
3694				dwc2_writel(hsotg, hprt0, HPRT0);
3695				if (!pwr)
3696					dwc2_vbus_supply_init(hsotg);
3697			}
3698
3699			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3700			msleep(50);
3701			hprt0 &= ~HPRT0_RST;
3702			dwc2_writel(hsotg, hprt0, HPRT0);
3703			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3704			break;
3705
3706		case USB_PORT_FEAT_INDICATOR:
3707			dev_dbg(hsotg->dev,
3708				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3709			/* Not supported */
3710			break;
3711
3712		case USB_PORT_FEAT_TEST:
3713			hprt0 = dwc2_read_hprt0(hsotg);
3714			dev_dbg(hsotg->dev,
3715				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3716			hprt0 &= ~HPRT0_TSTCTL_MASK;
3717			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3718			dwc2_writel(hsotg, hprt0, HPRT0);
3719			break;
3720
3721		default:
3722			retval = -EINVAL;
3723			dev_err(hsotg->dev,
3724				"SetPortFeature %1xh unknown or unsupported\n",
3725				wvalue);
3726			break;
3727		}
3728		break;
3729
3730	default:
3731error:
3732		retval = -EINVAL;
3733		dev_dbg(hsotg->dev,
3734			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3735			typereq, windex, wvalue);
3736		break;
3737	}
3738
3739	return retval;
3740}
3741
3742static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3743{
3744	int retval;
3745
3746	if (port != 1)
3747		return -EINVAL;
3748
3749	retval = (hsotg->flags.b.port_connect_status_change ||
3750		  hsotg->flags.b.port_reset_change ||
3751		  hsotg->flags.b.port_enable_change ||
3752		  hsotg->flags.b.port_suspend_change ||
3753		  hsotg->flags.b.port_over_current_change);
3754
3755	if (retval) {
3756		dev_dbg(hsotg->dev,
3757			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3758		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3759			hsotg->flags.b.port_connect_status_change);
3760		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3761			hsotg->flags.b.port_reset_change);
3762		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3763			hsotg->flags.b.port_enable_change);
3764		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3765			hsotg->flags.b.port_suspend_change);
3766		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3767			hsotg->flags.b.port_over_current_change);
3768	}
3769
3770	return retval;
3771}
3772
3773int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3774{
3775	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3776
3777#ifdef DWC2_DEBUG_SOF
3778	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3779		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3780#endif
3781	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782}
3783
3784int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3785{
3786	u32 hprt = dwc2_readl(hsotg, HPRT0);
3787	u32 hfir = dwc2_readl(hsotg, HFIR);
3788	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3789	unsigned int us_per_frame;
3790	unsigned int frame_number;
3791	unsigned int remaining;
3792	unsigned int interval;
3793	unsigned int phy_clks;
3794
3795	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3796	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3797
3798	/* Extract fields */
3799	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3800	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3801	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3802
3803	/*
3804	 * Number of phy clocks since the last tick of the frame number after
3805	 * "us" has passed.
3806	 */
3807	phy_clks = (interval - remaining) +
3808		   DIV_ROUND_UP(interval * us, us_per_frame);
3809
3810	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3811}
3812
3813int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3814{
3815	return hsotg->op_state == OTG_STATE_B_HOST;
3816}
3817
3818static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3819					       int iso_desc_count,
3820					       gfp_t mem_flags)
3821{
3822	struct dwc2_hcd_urb *urb;
 
 
3823
3824	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3825	if (urb)
3826		urb->packet_count = iso_desc_count;
3827	return urb;
3828}
3829
3830static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3831				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3832				      u8 ep_num, u8 ep_type, u8 ep_dir,
3833				      u16 maxp, u16 maxp_mult)
3834{
3835	if (dbg_perio() ||
3836	    ep_type == USB_ENDPOINT_XFER_BULK ||
3837	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3838		dev_vdbg(hsotg->dev,
3839			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3840			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3841	urb->pipe_info.dev_addr = dev_addr;
3842	urb->pipe_info.ep_num = ep_num;
3843	urb->pipe_info.pipe_type = ep_type;
3844	urb->pipe_info.pipe_dir = ep_dir;
3845	urb->pipe_info.maxp = maxp;
3846	urb->pipe_info.maxp_mult = maxp_mult;
3847}
3848
3849/*
3850 * NOTE: This function will be removed once the peripheral controller code
3851 * is integrated and the driver is stable
3852 */
3853void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3854{
3855#ifdef DEBUG
3856	struct dwc2_host_chan *chan;
3857	struct dwc2_hcd_urb *urb;
3858	struct dwc2_qtd *qtd;
3859	int num_channels;
3860	u32 np_tx_status;
3861	u32 p_tx_status;
3862	int i;
3863
3864	num_channels = hsotg->params.host_channels;
3865	dev_dbg(hsotg->dev, "\n");
3866	dev_dbg(hsotg->dev,
3867		"************************************************************\n");
3868	dev_dbg(hsotg->dev, "HCD State:\n");
3869	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3870
3871	for (i = 0; i < num_channels; i++) {
3872		chan = hsotg->hc_ptr_array[i];
3873		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3874		dev_dbg(hsotg->dev,
3875			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3876			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3877		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3878		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3879		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3880		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3881			chan->data_pid_start);
3882		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3883		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3884			chan->xfer_started);
3885		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3886		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3887			(unsigned long)chan->xfer_dma);
3888		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3889		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3890		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3891			chan->halt_on_queue);
3892		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3893			chan->halt_pending);
3894		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3895		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3896		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3897			chan->complete_split);
3898		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3899		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3900		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3901		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3902		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3903
3904		if (chan->xfer_started) {
3905			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3906
3907			hfnum = dwc2_readl(hsotg, HFNUM);
3908			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3909			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3910			hcint = dwc2_readl(hsotg, HCINT(i));
3911			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3912			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3913			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3914			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3915			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3916			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3917		}
3918
3919		if (!(chan->xfer_started && chan->qh))
3920			continue;
3921
3922		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3923			if (!qtd->in_process)
3924				break;
3925			urb = qtd->urb;
3926			dev_dbg(hsotg->dev, "    URB Info:\n");
3927			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3928				qtd, urb);
3929			if (urb) {
3930				dev_dbg(hsotg->dev,
3931					"      Dev: %d, EP: %d %s\n",
3932					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3933					dwc2_hcd_get_ep_num(&urb->pipe_info),
3934					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3935					"IN" : "OUT");
3936				dev_dbg(hsotg->dev,
3937					"      Max packet size: %d (%d mult)\n",
3938					dwc2_hcd_get_maxp(&urb->pipe_info),
3939					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3940				dev_dbg(hsotg->dev,
3941					"      transfer_buffer: %p\n",
3942					urb->buf);
3943				dev_dbg(hsotg->dev,
3944					"      transfer_dma: %08lx\n",
3945					(unsigned long)urb->dma);
3946				dev_dbg(hsotg->dev,
3947					"      transfer_buffer_length: %d\n",
3948					urb->length);
3949				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3950					urb->actual_length);
3951			}
3952		}
3953	}
3954
3955	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3956		hsotg->non_periodic_channels);
3957	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3958		hsotg->periodic_channels);
3959	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3960	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3961	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3962		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3963	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3964		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3965	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3966	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3967		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3968	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3969		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
 
3970	dwc2_dump_global_registers(hsotg);
3971	dwc2_dump_host_registers(hsotg);
3972	dev_dbg(hsotg->dev,
3973		"************************************************************\n");
3974	dev_dbg(hsotg->dev, "\n");
3975#endif
3976}
3977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978struct wrapper_priv_data {
3979	struct dwc2_hsotg *hsotg;
3980};
3981
3982/* Gets the dwc2_hsotg from a usb_hcd */
3983static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3984{
3985	struct wrapper_priv_data *p;
3986
3987	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3988	return p->hsotg;
3989}
3990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3991/**
3992 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3993 *
3994 * This will get the dwc2_tt structure (and ttport) associated with the given
3995 * context (which is really just a struct urb pointer).
3996 *
3997 * The first time this is called for a given TT we allocate memory for our
3998 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3999 * then the refcount for the structure will go to 0 and we'll free it.
4000 *
4001 * @hsotg:     The HCD state structure for the DWC OTG controller.
 
4002 * @context:   The priv pointer from a struct dwc2_hcd_urb.
4003 * @mem_flags: Flags for allocating memory.
4004 * @ttport:    We'll return this device's port number here.  That's used to
4005 *             reference into the bitmap if we're on a multi_tt hub.
4006 *
4007 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4008 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4009 */
4010
4011struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4012				      gfp_t mem_flags, int *ttport)
4013{
4014	struct urb *urb = context;
4015	struct dwc2_tt *dwc_tt = NULL;
4016
4017	if (urb->dev->tt) {
4018		*ttport = urb->dev->ttport;
4019
4020		dwc_tt = urb->dev->tt->hcpriv;
4021		if (!dwc_tt) {
4022			size_t bitmap_size;
4023
4024			/*
4025			 * For single_tt we need one schedule.  For multi_tt
4026			 * we need one per port.
4027			 */
4028			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4029				      sizeof(dwc_tt->periodic_bitmaps[0]);
4030			if (urb->dev->tt->multi)
4031				bitmap_size *= urb->dev->tt->hub->maxchild;
4032
4033			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4034					 mem_flags);
4035			if (!dwc_tt)
4036				return NULL;
4037
4038			dwc_tt->usb_tt = urb->dev->tt;
4039			dwc_tt->usb_tt->hcpriv = dwc_tt;
4040		}
4041
4042		dwc_tt->refcount++;
4043	}
4044
4045	return dwc_tt;
4046}
4047
4048/**
4049 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4050 *
4051 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4052 * of the structure are done.
4053 *
4054 * It's OK to call this with NULL.
4055 *
4056 * @hsotg:     The HCD state structure for the DWC OTG controller.
4057 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4058 */
4059void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4060{
4061	/* Model kfree and make put of NULL a no-op */
4062	if (!dwc_tt)
4063		return;
4064
4065	WARN_ON(dwc_tt->refcount < 1);
4066
4067	dwc_tt->refcount--;
4068	if (!dwc_tt->refcount) {
4069		dwc_tt->usb_tt->hcpriv = NULL;
4070		kfree(dwc_tt);
4071	}
4072}
4073
4074int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4075{
4076	struct urb *urb = context;
4077
4078	return urb->dev->speed;
4079}
4080
4081static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4082					struct urb *urb)
4083{
4084	struct usb_bus *bus = hcd_to_bus(hcd);
4085
4086	if (urb->interval)
4087		bus->bandwidth_allocated += bw / urb->interval;
4088	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4089		bus->bandwidth_isoc_reqs++;
4090	else
4091		bus->bandwidth_int_reqs++;
4092}
4093
4094static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4095				    struct urb *urb)
4096{
4097	struct usb_bus *bus = hcd_to_bus(hcd);
4098
4099	if (urb->interval)
4100		bus->bandwidth_allocated -= bw / urb->interval;
4101	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4102		bus->bandwidth_isoc_reqs--;
4103	else
4104		bus->bandwidth_int_reqs--;
4105}
4106
4107/*
4108 * Sets the final status of an URB and returns it to the upper layer. Any
4109 * required cleanup of the URB is performed.
4110 *
4111 * Must be called with interrupt disabled and spinlock held
4112 */
4113void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4114			int status)
4115{
4116	struct urb *urb;
4117	int i;
4118
4119	if (!qtd) {
4120		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4121		return;
4122	}
4123
4124	if (!qtd->urb) {
4125		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4126		return;
4127	}
4128
4129	urb = qtd->urb->priv;
4130	if (!urb) {
4131		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4132		return;
4133	}
4134
4135	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4136
4137	if (dbg_urb(urb))
4138		dev_vdbg(hsotg->dev,
4139			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4140			 __func__, urb, usb_pipedevice(urb->pipe),
4141			 usb_pipeendpoint(urb->pipe),
4142			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4143			 urb->actual_length);
4144
 
4145	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4146		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4147		for (i = 0; i < urb->number_of_packets; ++i) {
4148			urb->iso_frame_desc[i].actual_length =
4149				dwc2_hcd_urb_get_iso_desc_actual_length(
4150						qtd->urb, i);
4151			urb->iso_frame_desc[i].status =
4152				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4153		}
4154	}
4155
4156	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4157		for (i = 0; i < urb->number_of_packets; i++)
4158			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4159				 i, urb->iso_frame_desc[i].status);
4160	}
4161
4162	urb->status = status;
4163	if (!status) {
4164		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4165		    urb->actual_length < urb->transfer_buffer_length)
4166			urb->status = -EREMOTEIO;
4167	}
4168
4169	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4170	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4171		struct usb_host_endpoint *ep = urb->ep;
4172
4173		if (ep)
4174			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4175					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4176					urb);
4177	}
4178
4179	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4180	urb->hcpriv = NULL;
4181	kfree(qtd->urb);
4182	qtd->urb = NULL;
4183
4184	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4185}
4186
4187/*
4188 * Work queue function for starting the HCD when A-Cable is connected
4189 */
4190static void dwc2_hcd_start_func(struct work_struct *work)
4191{
4192	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4193						start_work.work);
4194
4195	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4196	dwc2_host_start(hsotg);
4197}
4198
4199/*
4200 * Reset work queue function
4201 */
4202static void dwc2_hcd_reset_func(struct work_struct *work)
4203{
4204	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205						reset_work.work);
4206	unsigned long flags;
4207	u32 hprt0;
4208
4209	dev_dbg(hsotg->dev, "USB RESET function called\n");
4210
4211	spin_lock_irqsave(&hsotg->lock, flags);
4212
4213	hprt0 = dwc2_read_hprt0(hsotg);
4214	hprt0 &= ~HPRT0_RST;
4215	dwc2_writel(hsotg, hprt0, HPRT0);
4216	hsotg->flags.b.port_reset_change = 1;
4217
4218	spin_unlock_irqrestore(&hsotg->lock, flags);
4219}
4220
4221static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4222{
4223	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4224						phy_reset_work);
4225	int ret;
4226
4227	ret = phy_reset(hsotg->phy);
4228	if (ret)
4229		dev_warn(hsotg->dev, "PHY reset failed\n");
4230}
4231
4232/*
4233 * =========================================================================
4234 *  Linux HC Driver Functions
4235 * =========================================================================
4236 */
4237
4238/*
4239 * Initializes the DWC_otg controller and its root hub and prepares it for host
4240 * mode operation. Activates the root port. Returns 0 on success and a negative
4241 * error code on failure.
4242 */
4243static int _dwc2_hcd_start(struct usb_hcd *hcd)
4244{
4245	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4246	struct usb_bus *bus = hcd_to_bus(hcd);
4247	unsigned long flags;
4248	u32 hprt0;
4249	int ret;
4250
4251	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4252
4253	spin_lock_irqsave(&hsotg->lock, flags);
4254	hsotg->lx_state = DWC2_L0;
4255	hcd->state = HC_STATE_RUNNING;
4256	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4257
4258	if (dwc2_is_device_mode(hsotg)) {
4259		spin_unlock_irqrestore(&hsotg->lock, flags);
4260		return 0;	/* why 0 ?? */
4261	}
4262
4263	dwc2_hcd_reinit(hsotg);
4264
4265	hprt0 = dwc2_read_hprt0(hsotg);
4266	/* Has vbus power been turned on in dwc2_core_host_init ? */
4267	if (hprt0 & HPRT0_PWR) {
4268		/* Enable external vbus supply before resuming root hub */
4269		spin_unlock_irqrestore(&hsotg->lock, flags);
4270		ret = dwc2_vbus_supply_init(hsotg);
4271		if (ret)
4272			return ret;
4273		spin_lock_irqsave(&hsotg->lock, flags);
4274	}
4275
4276	/* Initialize and connect root hub if one is not already attached */
4277	if (bus->root_hub) {
4278		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4279		/* Inform the HUB driver to resume */
4280		usb_hcd_resume_root_hub(hcd);
4281	}
4282
4283	spin_unlock_irqrestore(&hsotg->lock, flags);
4284
4285	return 0;
4286}
4287
4288/*
4289 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4290 * stopped.
4291 */
4292static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4293{
4294	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4295	unsigned long flags;
4296	u32 hprt0;
4297
4298	/* Turn off all host-specific interrupts */
4299	dwc2_disable_host_interrupts(hsotg);
4300
4301	/* Wait for interrupt processing to finish */
4302	synchronize_irq(hcd->irq);
4303
4304	spin_lock_irqsave(&hsotg->lock, flags);
4305	hprt0 = dwc2_read_hprt0(hsotg);
4306	/* Ensure hcd is disconnected */
4307	dwc2_hcd_disconnect(hsotg, true);
4308	dwc2_hcd_stop(hsotg);
4309	hsotg->lx_state = DWC2_L3;
4310	hcd->state = HC_STATE_HALT;
4311	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4312	spin_unlock_irqrestore(&hsotg->lock, flags);
4313
4314	/* keep balanced supply init/exit by checking HPRT0_PWR */
4315	if (hprt0 & HPRT0_PWR)
4316		dwc2_vbus_supply_exit(hsotg);
4317
4318	usleep_range(1000, 3000);
4319}
4320
4321static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4322{
4323	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4324	unsigned long flags;
4325	int ret = 0;
 
4326
4327	spin_lock_irqsave(&hsotg->lock, flags);
4328
4329	if (dwc2_is_device_mode(hsotg))
4330		goto unlock;
4331
4332	if (hsotg->lx_state != DWC2_L0)
4333		goto unlock;
4334
4335	if (!HCD_HW_ACCESSIBLE(hcd))
4336		goto unlock;
4337
4338	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4339		goto unlock;
4340
4341	if (hsotg->bus_suspended)
4342		goto skip_power_saving;
4343
4344	if (hsotg->flags.b.port_connect_status == 0)
4345		goto skip_power_saving;
 
 
 
 
 
 
 
 
4346
4347	switch (hsotg->params.power_down) {
4348	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4349		/* Enter partial_power_down */
4350		ret = dwc2_enter_partial_power_down(hsotg);
4351		if (ret)
4352			dev_err(hsotg->dev,
4353				"enter partial_power_down failed\n");
4354		/* After entering suspend, hardware is not accessible */
4355		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4356		break;
4357	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4358		/* Enter hibernation */
4359		spin_unlock_irqrestore(&hsotg->lock, flags);
4360		ret = dwc2_enter_hibernation(hsotg, 1);
4361		if (ret)
4362			dev_err(hsotg->dev, "enter hibernation failed\n");
4363		spin_lock_irqsave(&hsotg->lock, flags);
4364
4365		/* After entering suspend, hardware is not accessible */
4366		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4367		break;
4368	case DWC2_POWER_DOWN_PARAM_NONE:
4369		/*
4370		 * If not hibernation nor partial power down are supported,
4371		 * clock gating is used to save power.
4372		 */
4373		if (!hsotg->params.no_clock_gating) {
4374			dwc2_host_enter_clock_gating(hsotg);
4375
4376			/* After entering suspend, hardware is not accessible */
4377			clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4378		}
4379		break;
4380	default:
4381		goto skip_power_saving;
4382	}
4383
4384	spin_unlock_irqrestore(&hsotg->lock, flags);
4385	dwc2_vbus_supply_exit(hsotg);
4386	spin_lock_irqsave(&hsotg->lock, flags);
4387
4388	/* Ask phy to be suspended */
4389	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4390		spin_unlock_irqrestore(&hsotg->lock, flags);
4391		usb_phy_set_suspend(hsotg->uphy, true);
4392		spin_lock_irqsave(&hsotg->lock, flags);
4393	}
4394
 
 
 
4395skip_power_saving:
4396	hsotg->lx_state = DWC2_L2;
4397unlock:
4398	spin_unlock_irqrestore(&hsotg->lock, flags);
4399
4400	return ret;
4401}
4402
4403static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4404{
4405	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4406	unsigned long flags;
4407	u32 hprt0;
4408	int ret = 0;
4409
4410	spin_lock_irqsave(&hsotg->lock, flags);
4411
4412	if (dwc2_is_device_mode(hsotg))
4413		goto unlock;
4414
4415	if (hsotg->lx_state != DWC2_L2)
4416		goto unlock;
4417
4418	hprt0 = dwc2_read_hprt0(hsotg);
4419
4420	/*
4421	 * Added port connection status checking which prevents exiting from
4422	 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4423	 * Power Down mode.
4424	 */
4425	if (hprt0 & HPRT0_CONNSTS) {
4426		hsotg->lx_state = DWC2_L0;
4427		goto unlock;
4428	}
4429
4430	switch (hsotg->params.power_down) {
4431	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4432		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4433		if (ret)
4434			dev_err(hsotg->dev,
4435				"exit partial_power_down failed\n");
4436		/*
4437		 * Set HW accessible bit before powering on the controller
4438		 * since an interrupt may rise.
4439		 */
4440		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4441		break;
4442	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4443		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4444		if (ret)
4445			dev_err(hsotg->dev, "exit hibernation failed.\n");
4446
4447		/*
4448		 * Set HW accessible bit before powering on the controller
4449		 * since an interrupt may rise.
4450		 */
4451		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4452		break;
4453	case DWC2_POWER_DOWN_PARAM_NONE:
4454		/*
4455		 * If not hibernation nor partial power down are supported,
4456		 * port resume is done using the clock gating programming flow.
4457		 */
4458		spin_unlock_irqrestore(&hsotg->lock, flags);
4459		dwc2_host_exit_clock_gating(hsotg, 0);
4460
4461		/*
4462		 * Initialize the Core for Host mode, as after system resume
4463		 * the global interrupts are disabled.
4464		 */
4465		dwc2_core_init(hsotg, false);
4466		dwc2_enable_global_interrupts(hsotg);
4467		dwc2_hcd_reinit(hsotg);
4468		spin_lock_irqsave(&hsotg->lock, flags);
4469
4470		/*
4471		 * Set HW accessible bit before powering on the controller
4472		 * since an interrupt may rise.
4473		 */
4474		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4475		break;
4476	default:
4477		hsotg->lx_state = DWC2_L0;
4478		goto unlock;
4479	}
4480
4481	/* Change Root port status, as port status change occurred after resume.*/
4482	hsotg->flags.b.port_suspend_change = 1;
4483
4484	/*
4485	 * Enable power if not already done.
4486	 * This must not be spinlocked since duration
4487	 * of this call is unknown.
4488	 */
4489	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4490		spin_unlock_irqrestore(&hsotg->lock, flags);
4491		usb_phy_set_suspend(hsotg->uphy, false);
4492		spin_lock_irqsave(&hsotg->lock, flags);
4493	}
4494
4495	/* Enable external vbus supply after resuming the port. */
 
 
 
 
 
 
4496	spin_unlock_irqrestore(&hsotg->lock, flags);
4497	dwc2_vbus_supply_init(hsotg);
4498
4499	/* Wait for controller to correctly update D+/D- level */
4500	usleep_range(3000, 5000);
4501	spin_lock_irqsave(&hsotg->lock, flags);
 
 
 
 
 
4502
4503	/*
4504	 * Clear Port Enable and Port Status changes.
4505	 * Enable Port Power.
4506	 */
4507	dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4508			HPRT0_ENACHG, HPRT0);
 
 
 
4509
4510	/* Wait for controller to detect Port Connect */
4511	spin_unlock_irqrestore(&hsotg->lock, flags);
4512	usleep_range(5000, 7000);
4513	spin_lock_irqsave(&hsotg->lock, flags);
4514unlock:
4515	spin_unlock_irqrestore(&hsotg->lock, flags);
4516
4517	return ret;
4518}
4519
4520/* Returns the current frame number */
4521static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4522{
4523	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4524
4525	return dwc2_hcd_get_frame_number(hsotg);
4526}
4527
4528static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4529			       char *fn_name)
4530{
4531#ifdef VERBOSE_DEBUG
4532	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4533	char *pipetype = NULL;
4534	char *speed = NULL;
4535
4536	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4537	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4538		 usb_pipedevice(urb->pipe));
4539	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4540		 usb_pipeendpoint(urb->pipe),
4541		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4542
4543	switch (usb_pipetype(urb->pipe)) {
4544	case PIPE_CONTROL:
4545		pipetype = "CONTROL";
4546		break;
4547	case PIPE_BULK:
4548		pipetype = "BULK";
4549		break;
4550	case PIPE_INTERRUPT:
4551		pipetype = "INTERRUPT";
4552		break;
4553	case PIPE_ISOCHRONOUS:
4554		pipetype = "ISOCHRONOUS";
4555		break;
 
 
 
4556	}
4557
4558	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4559		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4560		 "IN" : "OUT");
4561
4562	switch (urb->dev->speed) {
4563	case USB_SPEED_HIGH:
4564		speed = "HIGH";
4565		break;
4566	case USB_SPEED_FULL:
4567		speed = "FULL";
4568		break;
4569	case USB_SPEED_LOW:
4570		speed = "LOW";
4571		break;
4572	default:
4573		speed = "UNKNOWN";
4574		break;
4575	}
4576
4577	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4578	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4579		 usb_endpoint_maxp(&urb->ep->desc),
4580		 usb_endpoint_maxp_mult(&urb->ep->desc));
4581
4582	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4583		 urb->transfer_buffer_length);
4584	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4585		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4586	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4587		 urb->setup_packet, (unsigned long)urb->setup_dma);
4588	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4589
4590	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4591		int i;
4592
4593		for (i = 0; i < urb->number_of_packets; i++) {
4594			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4595			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4596				 urb->iso_frame_desc[i].offset,
4597				 urb->iso_frame_desc[i].length);
4598		}
4599	}
4600#endif
4601}
4602
4603/*
4604 * Starts processing a USB transfer request specified by a USB Request Block
4605 * (URB). mem_flags indicates the type of memory allocation to use while
4606 * processing this URB.
4607 */
4608static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4609				 gfp_t mem_flags)
4610{
4611	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4612	struct usb_host_endpoint *ep = urb->ep;
4613	struct dwc2_hcd_urb *dwc2_urb;
4614	int i;
4615	int retval;
4616	int alloc_bandwidth = 0;
4617	u8 ep_type = 0;
4618	u32 tflags = 0;
4619	void *buf;
4620	unsigned long flags;
4621	struct dwc2_qh *qh;
4622	bool qh_allocated = false;
4623	struct dwc2_qtd *qtd;
4624	struct dwc2_gregs_backup *gr;
4625
4626	gr = &hsotg->gr_backup;
4627
4628	if (dbg_urb(urb)) {
4629		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4630		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4631	}
4632
4633	if (hsotg->hibernated) {
4634		if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4635			retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4636		else
4637			retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4638
4639		if (retval)
4640			dev_err(hsotg->dev,
4641				"exit hibernation failed.\n");
4642	}
4643
4644	if (hsotg->in_ppd) {
4645		retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4646		if (retval)
4647			dev_err(hsotg->dev,
4648				"exit partial_power_down failed\n");
4649	}
4650
4651	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4652	    hsotg->bus_suspended) {
4653		if (dwc2_is_device_mode(hsotg))
4654			dwc2_gadget_exit_clock_gating(hsotg, 0);
4655		else
4656			dwc2_host_exit_clock_gating(hsotg, 0);
4657	}
4658
4659	if (!ep)
4660		return -EINVAL;
4661
4662	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4663	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4664		spin_lock_irqsave(&hsotg->lock, flags);
4665		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4666			alloc_bandwidth = 1;
4667		spin_unlock_irqrestore(&hsotg->lock, flags);
4668	}
4669
4670	switch (usb_pipetype(urb->pipe)) {
4671	case PIPE_CONTROL:
4672		ep_type = USB_ENDPOINT_XFER_CONTROL;
4673		break;
4674	case PIPE_ISOCHRONOUS:
4675		ep_type = USB_ENDPOINT_XFER_ISOC;
4676		break;
4677	case PIPE_BULK:
4678		ep_type = USB_ENDPOINT_XFER_BULK;
4679		break;
4680	case PIPE_INTERRUPT:
4681		ep_type = USB_ENDPOINT_XFER_INT;
4682		break;
 
 
4683	}
4684
4685	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4686				      mem_flags);
4687	if (!dwc2_urb)
4688		return -ENOMEM;
4689
4690	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4691				  usb_pipeendpoint(urb->pipe), ep_type,
4692				  usb_pipein(urb->pipe),
4693				  usb_endpoint_maxp(&ep->desc),
4694				  usb_endpoint_maxp_mult(&ep->desc));
4695
4696	buf = urb->transfer_buffer;
4697
4698	if (hcd_uses_dma(hcd)) {
4699		if (!buf && (urb->transfer_dma & 3)) {
4700			dev_err(hsotg->dev,
4701				"%s: unaligned transfer with no transfer_buffer",
4702				__func__);
4703			retval = -EINVAL;
4704			goto fail0;
4705		}
4706	}
4707
4708	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4709		tflags |= URB_GIVEBACK_ASAP;
4710	if (urb->transfer_flags & URB_ZERO_PACKET)
4711		tflags |= URB_SEND_ZERO_PACKET;
4712
4713	dwc2_urb->priv = urb;
4714	dwc2_urb->buf = buf;
4715	dwc2_urb->dma = urb->transfer_dma;
4716	dwc2_urb->length = urb->transfer_buffer_length;
4717	dwc2_urb->setup_packet = urb->setup_packet;
4718	dwc2_urb->setup_dma = urb->setup_dma;
4719	dwc2_urb->flags = tflags;
4720	dwc2_urb->interval = urb->interval;
4721	dwc2_urb->status = -EINPROGRESS;
4722
4723	for (i = 0; i < urb->number_of_packets; ++i)
4724		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4725						 urb->iso_frame_desc[i].offset,
4726						 urb->iso_frame_desc[i].length);
4727
4728	urb->hcpriv = dwc2_urb;
4729	qh = (struct dwc2_qh *)ep->hcpriv;
4730	/* Create QH for the endpoint if it doesn't exist */
4731	if (!qh) {
4732		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4733		if (!qh) {
4734			retval = -ENOMEM;
4735			goto fail0;
4736		}
4737		ep->hcpriv = qh;
4738		qh_allocated = true;
4739	}
4740
4741	qtd = kzalloc(sizeof(*qtd), mem_flags);
4742	if (!qtd) {
4743		retval = -ENOMEM;
4744		goto fail1;
4745	}
4746
4747	spin_lock_irqsave(&hsotg->lock, flags);
4748	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4749	if (retval)
4750		goto fail2;
4751
4752	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4753	if (retval)
4754		goto fail3;
4755
4756	if (alloc_bandwidth) {
4757		dwc2_allocate_bus_bandwidth(hcd,
4758				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4759				urb);
4760	}
4761
4762	spin_unlock_irqrestore(&hsotg->lock, flags);
4763
4764	return 0;
4765
4766fail3:
4767	dwc2_urb->priv = NULL;
4768	usb_hcd_unlink_urb_from_ep(hcd, urb);
4769	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4770		qh->channel->qh = NULL;
4771fail2:
4772	spin_unlock_irqrestore(&hsotg->lock, flags);
4773	urb->hcpriv = NULL;
4774	kfree(qtd);
4775fail1:
4776	if (qh_allocated) {
4777		struct dwc2_qtd *qtd2, *qtd2_tmp;
4778
4779		ep->hcpriv = NULL;
4780		dwc2_hcd_qh_unlink(hsotg, qh);
4781		/* Free each QTD in the QH's QTD list */
4782		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4783					 qtd_list_entry)
4784			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4785		dwc2_hcd_qh_free(hsotg, qh);
4786	}
4787fail0:
4788	kfree(dwc2_urb);
4789
4790	return retval;
4791}
4792
4793/*
4794 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4795 */
4796static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4797				 int status)
4798{
4799	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4800	int rc;
4801	unsigned long flags;
4802
4803	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4804	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4805
4806	spin_lock_irqsave(&hsotg->lock, flags);
4807
4808	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4809	if (rc)
4810		goto out;
4811
4812	if (!urb->hcpriv) {
4813		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4814		goto out;
4815	}
4816
4817	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4818
4819	usb_hcd_unlink_urb_from_ep(hcd, urb);
4820
4821	kfree(urb->hcpriv);
4822	urb->hcpriv = NULL;
4823
4824	/* Higher layer software sets URB status */
4825	spin_unlock(&hsotg->lock);
4826	usb_hcd_giveback_urb(hcd, urb, status);
4827	spin_lock(&hsotg->lock);
4828
4829	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4830	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4831out:
4832	spin_unlock_irqrestore(&hsotg->lock, flags);
4833
4834	return rc;
4835}
4836
4837/*
4838 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4839 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4840 * must already be dequeued.
4841 */
4842static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4843				       struct usb_host_endpoint *ep)
4844{
4845	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4846
4847	dev_dbg(hsotg->dev,
4848		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4849		ep->desc.bEndpointAddress, ep->hcpriv);
4850	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4851}
4852
4853/*
4854 * Resets endpoint specific parameter values, in current version used to reset
4855 * the data toggle (as a WA). This function can be called from usb_clear_halt
4856 * routine.
4857 */
4858static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4859				     struct usb_host_endpoint *ep)
4860{
4861	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862	unsigned long flags;
4863
4864	dev_dbg(hsotg->dev,
4865		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4866		ep->desc.bEndpointAddress);
4867
4868	spin_lock_irqsave(&hsotg->lock, flags);
4869	dwc2_hcd_endpoint_reset(hsotg, ep);
4870	spin_unlock_irqrestore(&hsotg->lock, flags);
4871}
4872
4873/*
4874 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4875 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4876 * interrupt.
4877 *
4878 * This function is called by the USB core when an interrupt occurs
4879 */
4880static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4881{
4882	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4883
4884	return dwc2_handle_hcd_intr(hsotg);
4885}
4886
4887/*
4888 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4889 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4890 * is the status change indicator for the single root port. Returns 1 if either
4891 * change indicator is 1, otherwise returns 0.
4892 */
4893static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4894{
4895	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4896
4897	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4898	return buf[0] != 0;
4899}
4900
4901/* Handles hub class-specific requests */
4902static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4903				 u16 windex, char *buf, u16 wlength)
4904{
4905	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4906					  wvalue, windex, buf, wlength);
4907	return retval;
4908}
4909
4910/* Handles hub TT buffer clear completions */
4911static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4912					       struct usb_host_endpoint *ep)
4913{
4914	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915	struct dwc2_qh *qh;
4916	unsigned long flags;
4917
4918	qh = ep->hcpriv;
4919	if (!qh)
4920		return;
4921
4922	spin_lock_irqsave(&hsotg->lock, flags);
4923	qh->tt_buffer_dirty = 0;
4924
4925	if (hsotg->flags.b.port_connect_status)
4926		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4927
4928	spin_unlock_irqrestore(&hsotg->lock, flags);
4929}
4930
4931/*
4932 * HPRT0_SPD_HIGH_SPEED: high speed
4933 * HPRT0_SPD_FULL_SPEED: full speed
4934 */
4935static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4936{
4937	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4938
4939	if (hsotg->params.speed == speed)
4940		return;
4941
4942	hsotg->params.speed = speed;
4943	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4944}
4945
4946static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4947{
4948	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4949
4950	if (!hsotg->params.change_speed_quirk)
4951		return;
4952
4953	/*
4954	 * On removal, set speed to default high-speed.
4955	 */
4956	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4957	    udev->parent->speed < USB_SPEED_HIGH) {
4958		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4959		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4960	}
4961}
4962
4963static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4964{
4965	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4966
4967	if (!hsotg->params.change_speed_quirk)
4968		return 0;
4969
4970	if (udev->speed == USB_SPEED_HIGH) {
4971		dev_info(hsotg->dev, "Set speed to high-speed\n");
4972		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4973	} else if ((udev->speed == USB_SPEED_FULL ||
4974				udev->speed == USB_SPEED_LOW)) {
4975		/*
4976		 * Change speed setting to full-speed if there's
4977		 * a full-speed or low-speed device plugged in.
4978		 */
4979		dev_info(hsotg->dev, "Set speed to full-speed\n");
4980		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4981	}
4982
4983	return 0;
4984}
4985
4986static struct hc_driver dwc2_hc_driver = {
4987	.description = "dwc2_hsotg",
4988	.product_desc = "DWC OTG Controller",
4989	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4990
4991	.irq = _dwc2_hcd_irq,
4992	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4993
4994	.start = _dwc2_hcd_start,
4995	.stop = _dwc2_hcd_stop,
4996	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4997	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4998	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4999	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5000	.get_frame_number = _dwc2_hcd_get_frame_number,
5001
5002	.hub_status_data = _dwc2_hcd_hub_status_data,
5003	.hub_control = _dwc2_hcd_hub_control,
5004	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5005
5006	.bus_suspend = _dwc2_hcd_suspend,
5007	.bus_resume = _dwc2_hcd_resume,
5008
5009	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5010	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5011};
5012
5013/*
5014 * Frees secondary storage associated with the dwc2_hsotg structure contained
5015 * in the struct usb_hcd field
5016 */
5017static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5018{
5019	u32 ahbcfg;
5020	u32 dctl;
5021	int i;
5022
5023	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5024
5025	/* Free memory for QH/QTD lists */
5026	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5027	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5028	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5029	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5030	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5031	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5032	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5033
5034	/* Free memory for the host channels */
5035	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5036		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5037
5038		if (chan) {
5039			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5040				i, chan);
5041			hsotg->hc_ptr_array[i] = NULL;
5042			kfree(chan);
5043		}
5044	}
5045
5046	if (hsotg->params.host_dma) {
5047		if (hsotg->status_buf) {
5048			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5049					  hsotg->status_buf,
5050					  hsotg->status_buf_dma);
5051			hsotg->status_buf = NULL;
5052		}
5053	} else {
5054		kfree(hsotg->status_buf);
5055		hsotg->status_buf = NULL;
5056	}
5057
5058	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5059
5060	/* Disable all interrupts */
5061	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5062	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5063	dwc2_writel(hsotg, 0, GINTMSK);
5064
5065	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5066		dctl = dwc2_readl(hsotg, DCTL);
5067		dctl |= DCTL_SFTDISCON;
5068		dwc2_writel(hsotg, dctl, DCTL);
5069	}
5070
5071	if (hsotg->wq_otg) {
5072		if (!cancel_work_sync(&hsotg->wf_otg))
5073			flush_workqueue(hsotg->wq_otg);
5074		destroy_workqueue(hsotg->wq_otg);
5075	}
5076
5077	cancel_work_sync(&hsotg->phy_reset_work);
5078
5079	del_timer(&hsotg->wkp_timer);
5080}
5081
5082static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5083{
5084	/* Turn off all host-specific interrupts */
5085	dwc2_disable_host_interrupts(hsotg);
5086
5087	dwc2_hcd_free(hsotg);
5088}
5089
5090/*
5091 * Initializes the HCD. This function allocates memory for and initializes the
5092 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5093 * USB bus with the core and calls the hc_driver->start() function. It returns
5094 * a negative error on failure.
5095 */
5096int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5097{
5098	struct platform_device *pdev = to_platform_device(hsotg->dev);
5099	struct resource *res;
5100	struct usb_hcd *hcd;
5101	struct dwc2_host_chan *channel;
5102	u32 hcfg;
5103	int i, num_channels;
5104	int retval;
5105
5106	if (usb_disabled())
5107		return -ENODEV;
5108
5109	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5110
5111	retval = -ENOMEM;
5112
5113	hcfg = dwc2_readl(hsotg, HCFG);
5114	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5115
5116#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5117	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5118					 sizeof(*hsotg->frame_num_array),
5119					 GFP_KERNEL);
5120	if (!hsotg->frame_num_array)
5121		goto error1;
5122	hsotg->last_frame_num_array =
5123		kcalloc(FRAME_NUM_ARRAY_SIZE,
5124			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5125	if (!hsotg->last_frame_num_array)
5126		goto error1;
5127#endif
5128	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5129
5130	/* Check if the bus driver or platform code has setup a dma_mask */
5131	if (hsotg->params.host_dma &&
5132	    !hsotg->dev->dma_mask) {
5133		dev_warn(hsotg->dev,
5134			 "dma_mask not set, disabling DMA\n");
5135		hsotg->params.host_dma = false;
5136		hsotg->params.dma_desc_enable = false;
5137	}
5138
5139	/* Set device flags indicating whether the HCD supports DMA */
5140	if (hsotg->params.host_dma) {
5141		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5142			dev_warn(hsotg->dev, "can't set DMA mask\n");
5143		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5144			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5145	}
5146
5147	if (hsotg->params.change_speed_quirk) {
5148		dwc2_hc_driver.free_dev = dwc2_free_dev;
5149		dwc2_hc_driver.reset_device = dwc2_reset_device;
5150	}
5151
5152	if (hsotg->params.host_dma)
5153		dwc2_hc_driver.flags |= HCD_DMA;
5154
5155	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5156	if (!hcd)
5157		goto error1;
5158
 
 
 
5159	hcd->has_tt = 1;
5160
5161	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5162	if (!res) {
5163		retval = -EINVAL;
5164		goto error2;
5165	}
5166	hcd->rsrc_start = res->start;
5167	hcd->rsrc_len = resource_size(res);
5168
5169	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5170	hsotg->priv = hcd;
5171
5172	/*
5173	 * Disable the global interrupt until all the interrupt handlers are
5174	 * installed
5175	 */
5176	dwc2_disable_global_interrupts(hsotg);
5177
5178	/* Initialize the DWC_otg core, and select the Phy type */
5179	retval = dwc2_core_init(hsotg, true);
5180	if (retval)
5181		goto error2;
5182
5183	/* Create new workqueue and init work */
5184	retval = -ENOMEM;
5185	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5186	if (!hsotg->wq_otg) {
5187		dev_err(hsotg->dev, "Failed to create workqueue\n");
5188		goto error2;
5189	}
5190	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5191
5192	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
 
5193
5194	/* Initialize the non-periodic schedule */
5195	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5196	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5197	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5198
5199	/* Initialize the periodic schedule */
5200	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5201	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5202	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5203	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5204
5205	INIT_LIST_HEAD(&hsotg->split_order);
5206
5207	/*
5208	 * Create a host channel descriptor for each host channel implemented
5209	 * in the controller. Initialize the channel descriptor array.
5210	 */
5211	INIT_LIST_HEAD(&hsotg->free_hc_list);
5212	num_channels = hsotg->params.host_channels;
5213	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5214
5215	for (i = 0; i < num_channels; i++) {
5216		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5217		if (!channel)
5218			goto error3;
5219		channel->hc_num = i;
5220		INIT_LIST_HEAD(&channel->split_order_list_entry);
5221		hsotg->hc_ptr_array[i] = channel;
5222	}
5223
5224	/* Initialize work */
5225	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
 
 
5226	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5227	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5228
5229	/*
5230	 * Allocate space for storing data on status transactions. Normally no
5231	 * data is sent, but this space acts as a bit bucket. This must be
5232	 * done after usb_add_hcd since that function allocates the DMA buffer
5233	 * pool.
5234	 */
5235	if (hsotg->params.host_dma)
5236		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5237					DWC2_HCD_STATUS_BUF_SIZE,
5238					&hsotg->status_buf_dma, GFP_KERNEL);
5239	else
5240		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5241					  GFP_KERNEL);
5242
5243	if (!hsotg->status_buf)
5244		goto error3;
5245
5246	/*
5247	 * Create kmem caches to handle descriptor buffers in descriptor
5248	 * DMA mode.
5249	 * Alignment must be set to 512 bytes.
5250	 */
5251	if (hsotg->params.dma_desc_enable ||
5252	    hsotg->params.dma_desc_fs_enable) {
5253		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5254				sizeof(struct dwc2_dma_desc) *
5255				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5256				NULL);
5257		if (!hsotg->desc_gen_cache) {
5258			dev_err(hsotg->dev,
5259				"unable to create dwc2 generic desc cache\n");
5260
5261			/*
5262			 * Disable descriptor dma mode since it will not be
5263			 * usable.
5264			 */
5265			hsotg->params.dma_desc_enable = false;
5266			hsotg->params.dma_desc_fs_enable = false;
5267		}
5268
5269		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5270				sizeof(struct dwc2_dma_desc) *
5271				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5272		if (!hsotg->desc_hsisoc_cache) {
5273			dev_err(hsotg->dev,
5274				"unable to create dwc2 hs isoc desc cache\n");
5275
5276			kmem_cache_destroy(hsotg->desc_gen_cache);
5277
5278			/*
5279			 * Disable descriptor dma mode since it will not be
5280			 * usable.
5281			 */
5282			hsotg->params.dma_desc_enable = false;
5283			hsotg->params.dma_desc_fs_enable = false;
5284		}
5285	}
5286
5287	if (hsotg->params.host_dma) {
5288		/*
5289		 * Create kmem caches to handle non-aligned buffer
5290		 * in Buffer DMA mode.
5291		 */
5292		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5293						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5294						SLAB_CACHE_DMA, NULL);
5295		if (!hsotg->unaligned_cache)
5296			dev_err(hsotg->dev,
5297				"unable to create dwc2 unaligned cache\n");
5298	}
5299
5300	hsotg->otg_port = 1;
5301	hsotg->frame_list = NULL;
5302	hsotg->frame_list_dma = 0;
5303	hsotg->periodic_qh_count = 0;
5304
5305	/* Initiate lx_state to L3 disconnected state */
5306	hsotg->lx_state = DWC2_L3;
5307
5308	hcd->self.otg_port = hsotg->otg_port;
5309
5310	/* Don't support SG list at this point */
5311	hcd->self.sg_tablesize = 0;
5312
5313	hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5314
5315	if (!IS_ERR_OR_NULL(hsotg->uphy))
5316		otg_set_host(hsotg->uphy->otg, &hcd->self);
5317
5318	/*
5319	 * Finish generic HCD initialization and start the HCD. This function
5320	 * allocates the DMA buffer pool, registers the USB bus, requests the
5321	 * IRQ line, and calls hcd_start method.
5322	 */
5323	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5324	if (retval < 0)
5325		goto error4;
5326
5327	device_wakeup_enable(hcd->self.controller);
5328
5329	dwc2_hcd_dump_state(hsotg);
5330
5331	dwc2_enable_global_interrupts(hsotg);
5332
5333	return 0;
5334
5335error4:
5336	kmem_cache_destroy(hsotg->unaligned_cache);
5337	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5338	kmem_cache_destroy(hsotg->desc_gen_cache);
5339error3:
5340	dwc2_hcd_release(hsotg);
5341error2:
5342	usb_put_hcd(hcd);
5343error1:
 
5344
5345#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5346	kfree(hsotg->last_frame_num_array);
5347	kfree(hsotg->frame_num_array);
5348#endif
5349
5350	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5351	return retval;
5352}
5353
5354/*
5355 * Removes the HCD.
5356 * Frees memory and resources associated with the HCD and deregisters the bus.
5357 */
5358void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5359{
5360	struct usb_hcd *hcd;
5361
5362	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5363
5364	hcd = dwc2_hsotg_to_hcd(hsotg);
5365	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5366
5367	if (!hcd) {
5368		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5369			__func__);
5370		return;
5371	}
5372
5373	if (!IS_ERR_OR_NULL(hsotg->uphy))
5374		otg_set_host(hsotg->uphy->otg, NULL);
5375
5376	usb_remove_hcd(hcd);
5377	hsotg->priv = NULL;
5378
5379	kmem_cache_destroy(hsotg->unaligned_cache);
5380	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5381	kmem_cache_destroy(hsotg->desc_gen_cache);
5382
5383	dwc2_hcd_release(hsotg);
5384	usb_put_hcd(hcd);
5385
5386#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5387	kfree(hsotg->last_frame_num_array);
5388	kfree(hsotg->frame_num_array);
5389#endif
5390}
5391
5392/**
5393 * dwc2_backup_host_registers() - Backup controller host registers.
5394 * When suspending usb bus, registers needs to be backuped
5395 * if controller power is disabled once suspended.
5396 *
5397 * @hsotg: Programming view of the DWC_otg controller
5398 */
5399int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5400{
5401	struct dwc2_hregs_backup *hr;
5402	int i;
5403
5404	dev_dbg(hsotg->dev, "%s\n", __func__);
5405
5406	/* Backup Host regs */
5407	hr = &hsotg->hr_backup;
5408	hr->hcfg = dwc2_readl(hsotg, HCFG);
5409	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5410	for (i = 0; i < hsotg->params.host_channels; ++i)
5411		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5412
5413	hr->hprt0 = dwc2_read_hprt0(hsotg);
5414	hr->hfir = dwc2_readl(hsotg, HFIR);
5415	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5416	hr->valid = true;
5417
5418	return 0;
5419}
5420
5421/**
5422 * dwc2_restore_host_registers() - Restore controller host registers.
5423 * When resuming usb bus, device registers needs to be restored
5424 * if controller power were disabled.
5425 *
5426 * @hsotg: Programming view of the DWC_otg controller
5427 */
5428int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5429{
5430	struct dwc2_hregs_backup *hr;
5431	int i;
5432
5433	dev_dbg(hsotg->dev, "%s\n", __func__);
5434
5435	/* Restore host regs */
5436	hr = &hsotg->hr_backup;
5437	if (!hr->valid) {
5438		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5439			__func__);
5440		return -EINVAL;
5441	}
5442	hr->valid = false;
5443
5444	dwc2_writel(hsotg, hr->hcfg, HCFG);
5445	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5446
5447	for (i = 0; i < hsotg->params.host_channels; ++i)
5448		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5449
5450	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5451	dwc2_writel(hsotg, hr->hfir, HFIR);
5452	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5453	hsotg->frame_number = 0;
5454
5455	return 0;
5456}
5457
5458/**
5459 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5460 *
5461 * @hsotg: Programming view of the DWC_otg controller
5462 */
5463int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5464{
5465	unsigned long flags;
5466	int ret = 0;
5467	u32 hprt0;
5468	u32 pcgcctl;
5469	u32 gusbcfg;
5470	u32 gpwrdn;
5471
5472	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5473	ret = dwc2_backup_global_registers(hsotg);
5474	if (ret) {
5475		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5476			__func__);
5477		return ret;
5478	}
5479	ret = dwc2_backup_host_registers(hsotg);
5480	if (ret) {
5481		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5482			__func__);
5483		return ret;
5484	}
5485
5486	/* Enter USB Suspend Mode */
5487	hprt0 = dwc2_readl(hsotg, HPRT0);
5488	hprt0 |= HPRT0_SUSP;
5489	hprt0 &= ~HPRT0_ENA;
5490	dwc2_writel(hsotg, hprt0, HPRT0);
5491
5492	/* Wait for the HPRT0.PrtSusp register field to be set */
5493	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5494		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5495
5496	/*
5497	 * We need to disable interrupts to prevent servicing of any IRQ
5498	 * during going to hibernation
5499	 */
5500	spin_lock_irqsave(&hsotg->lock, flags);
5501	hsotg->lx_state = DWC2_L2;
5502
5503	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5504	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5505		/* ULPI interface */
5506		/* Suspend the Phy Clock */
5507		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5508		pcgcctl |= PCGCTL_STOPPCLK;
5509		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5510		udelay(10);
5511
5512		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5513		gpwrdn |= GPWRDN_PMUACTV;
5514		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5515		udelay(10);
5516	} else {
5517		/* UTMI+ Interface */
5518		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5519		gpwrdn |= GPWRDN_PMUACTV;
5520		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5521		udelay(10);
5522
5523		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5524		pcgcctl |= PCGCTL_STOPPCLK;
5525		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526		udelay(10);
5527	}
5528
5529	/* Enable interrupts from wake up logic */
5530	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5531	gpwrdn |= GPWRDN_PMUINTSEL;
5532	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5533	udelay(10);
5534
5535	/* Unmask host mode interrupts in GPWRDN */
5536	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5537	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5538	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5539	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5540	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5541	udelay(10);
5542
5543	/* Enable Power Down Clamp */
5544	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5545	gpwrdn |= GPWRDN_PWRDNCLMP;
5546	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547	udelay(10);
5548
5549	/* Switch off VDD */
5550	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5551	gpwrdn |= GPWRDN_PWRDNSWTCH;
5552	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5553
5554	hsotg->hibernated = 1;
5555	hsotg->bus_suspended = 1;
5556	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5557	spin_unlock_irqrestore(&hsotg->lock, flags);
5558	return ret;
5559}
5560
5561/*
5562 * dwc2_host_exit_hibernation()
5563 *
5564 * @hsotg: Programming view of the DWC_otg controller
5565 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5566 * @param reset: indicates whether resume is initiated by Reset.
5567 *
5568 * Return: non-zero if failed to enter to hibernation.
5569 *
5570 * This function is for exiting from Host mode hibernation by
5571 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5572 */
5573int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5574			       int reset)
5575{
5576	u32 gpwrdn;
5577	u32 hprt0;
5578	int ret = 0;
5579	struct dwc2_gregs_backup *gr;
5580	struct dwc2_hregs_backup *hr;
5581
5582	gr = &hsotg->gr_backup;
5583	hr = &hsotg->hr_backup;
5584
5585	dev_dbg(hsotg->dev,
5586		"%s: called with rem_wakeup = %d reset = %d\n",
5587		__func__, rem_wakeup, reset);
5588
5589	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5590	hsotg->hibernated = 0;
5591
5592	/*
5593	 * This step is not described in functional spec but if not wait for
5594	 * this delay, mismatch interrupts occurred because just after restore
5595	 * core is in Device mode(gintsts.curmode == 0)
5596	 */
5597	mdelay(100);
5598
5599	/* Clear all pending interupts */
5600	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5601
5602	/* De-assert Restore */
5603	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5604	gpwrdn &= ~GPWRDN_RESTORE;
5605	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5606	udelay(10);
5607
5608	/* Restore GUSBCFG, HCFG */
5609	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5610	dwc2_writel(hsotg, hr->hcfg, HCFG);
5611
5612	/* De-assert Wakeup Logic */
5613	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5614	gpwrdn &= ~GPWRDN_PMUACTV;
5615	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5616	udelay(10);
5617
5618	hprt0 = hr->hprt0;
5619	hprt0 |= HPRT0_PWR;
5620	hprt0 &= ~HPRT0_ENA;
5621	hprt0 &= ~HPRT0_SUSP;
5622	dwc2_writel(hsotg, hprt0, HPRT0);
5623
5624	hprt0 = hr->hprt0;
5625	hprt0 |= HPRT0_PWR;
5626	hprt0 &= ~HPRT0_ENA;
5627	hprt0 &= ~HPRT0_SUSP;
5628
5629	if (reset) {
5630		hprt0 |= HPRT0_RST;
5631		dwc2_writel(hsotg, hprt0, HPRT0);
5632
5633		/* Wait for Resume time and then program HPRT again */
5634		mdelay(60);
5635		hprt0 &= ~HPRT0_RST;
5636		dwc2_writel(hsotg, hprt0, HPRT0);
5637	} else {
5638		hprt0 |= HPRT0_RES;
5639		dwc2_writel(hsotg, hprt0, HPRT0);
5640
5641		/* Wait for Resume time and then program HPRT again */
5642		mdelay(100);
5643		hprt0 &= ~HPRT0_RES;
5644		dwc2_writel(hsotg, hprt0, HPRT0);
5645	}
5646	/* Clear all interrupt status */
5647	hprt0 = dwc2_readl(hsotg, HPRT0);
5648	hprt0 |= HPRT0_CONNDET;
5649	hprt0 |= HPRT0_ENACHG;
5650	hprt0 &= ~HPRT0_ENA;
5651	dwc2_writel(hsotg, hprt0, HPRT0);
5652
5653	hprt0 = dwc2_readl(hsotg, HPRT0);
5654
5655	/* Clear all pending interupts */
5656	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5657
5658	/* Restore global registers */
5659	ret = dwc2_restore_global_registers(hsotg);
5660	if (ret) {
5661		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5662			__func__);
5663		return ret;
5664	}
5665
5666	/* Restore host registers */
5667	ret = dwc2_restore_host_registers(hsotg);
5668	if (ret) {
5669		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5670			__func__);
5671		return ret;
5672	}
5673
5674	if (rem_wakeup) {
5675		dwc2_hcd_rem_wakeup(hsotg);
5676		/*
5677		 * Change "port_connect_status_change" flag to re-enumerate,
5678		 * because after exit from hibernation port connection status
5679		 * is not detected.
5680		 */
5681		hsotg->flags.b.port_connect_status_change = 1;
5682	}
5683
5684	hsotg->hibernated = 0;
5685	hsotg->bus_suspended = 0;
5686	hsotg->lx_state = DWC2_L0;
5687	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5688	return ret;
5689}
5690
5691bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5692{
5693	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5694
5695	/* If the controller isn't allowed to wakeup then we can power off. */
5696	if (!device_may_wakeup(dwc2->dev))
5697		return true;
5698
5699	/*
5700	 * We don't want to power off the PHY if something under the
5701	 * root hub has wakeup enabled.
5702	 */
5703	if (usb_wakeup_enabled_descendants(root_hub))
5704		return false;
5705
5706	/* No reason to keep the PHY powered, so allow poweroff */
5707	return true;
5708}
5709
5710/**
5711 * dwc2_host_enter_partial_power_down() - Put controller in partial
5712 * power down.
5713 *
5714 * @hsotg: Programming view of the DWC_otg controller
5715 *
5716 * Return: non-zero if failed to enter host partial power down.
5717 *
5718 * This function is for entering Host mode partial power down.
5719 */
5720int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5721{
5722	u32 pcgcctl;
5723	u32 hprt0;
5724	int ret = 0;
5725
5726	dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5727
5728	/* Put this port in suspend mode. */
5729	hprt0 = dwc2_read_hprt0(hsotg);
5730	hprt0 |= HPRT0_SUSP;
5731	dwc2_writel(hsotg, hprt0, HPRT0);
5732	udelay(5);
5733
5734	/* Wait for the HPRT0.PrtSusp register field to be set */
5735	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5736		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5737
5738	/* Backup all registers */
5739	ret = dwc2_backup_global_registers(hsotg);
5740	if (ret) {
5741		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5742			__func__);
5743		return ret;
5744	}
5745
5746	ret = dwc2_backup_host_registers(hsotg);
5747	if (ret) {
5748		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5749			__func__);
5750		return ret;
5751	}
5752
5753	/*
5754	 * Clear any pending interrupts since dwc2 will not be able to
5755	 * clear them after entering partial_power_down.
5756	 */
5757	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5758
5759	/* Put the controller in low power state */
5760	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5761
5762	pcgcctl |= PCGCTL_PWRCLMP;
5763	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5764	udelay(5);
5765
5766	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5767	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5768	udelay(5);
5769
5770	pcgcctl |= PCGCTL_STOPPCLK;
5771	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5772
5773	/* Set in_ppd flag to 1 as here core enters suspend. */
5774	hsotg->in_ppd = 1;
5775	hsotg->lx_state = DWC2_L2;
5776	hsotg->bus_suspended = true;
5777
5778	dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5779
5780	return ret;
5781}
5782
5783/*
5784 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5785 * power down.
5786 *
5787 * @hsotg: Programming view of the DWC_otg controller
5788 * @rem_wakeup: indicates whether resume is initiated by Reset.
5789 * @restore: indicates whether need to restore the registers or not.
5790 *
5791 * Return: non-zero if failed to exit host partial power down.
5792 *
5793 * This function is for exiting from Host mode partial power down.
5794 */
5795int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5796				      int rem_wakeup, bool restore)
5797{
5798	u32 pcgcctl;
5799	int ret = 0;
5800	u32 hprt0;
5801
5802	dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5803
5804	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5805	pcgcctl &= ~PCGCTL_STOPPCLK;
5806	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5807	udelay(5);
5808
5809	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5810	pcgcctl &= ~PCGCTL_PWRCLMP;
5811	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5812	udelay(5);
5813
5814	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5815	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5816	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5817
5818	udelay(100);
5819	if (restore) {
5820		ret = dwc2_restore_global_registers(hsotg);
5821		if (ret) {
5822			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5823				__func__);
5824			return ret;
5825		}
5826
5827		ret = dwc2_restore_host_registers(hsotg);
5828		if (ret) {
5829			dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5830				__func__);
5831			return ret;
5832		}
5833	}
5834
5835	/* Drive resume signaling and exit suspend mode on the port. */
5836	hprt0 = dwc2_read_hprt0(hsotg);
5837	hprt0 |= HPRT0_RES;
5838	hprt0 &= ~HPRT0_SUSP;
5839	dwc2_writel(hsotg, hprt0, HPRT0);
5840	udelay(5);
5841
5842	if (!rem_wakeup) {
5843		/* Stop driveing resume signaling on the port. */
5844		hprt0 = dwc2_read_hprt0(hsotg);
5845		hprt0 &= ~HPRT0_RES;
5846		dwc2_writel(hsotg, hprt0, HPRT0);
5847
5848		hsotg->bus_suspended = false;
5849	} else {
5850		/* Turn on the port power bit. */
5851		hprt0 = dwc2_read_hprt0(hsotg);
5852		hprt0 |= HPRT0_PWR;
5853		dwc2_writel(hsotg, hprt0, HPRT0);
5854
5855		/* Connect hcd. */
5856		dwc2_hcd_connect(hsotg);
5857
5858		mod_timer(&hsotg->wkp_timer,
5859			  jiffies + msecs_to_jiffies(71));
5860	}
5861
5862	/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5863	hsotg->in_ppd = 0;
5864	hsotg->lx_state = DWC2_L0;
5865
5866	dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5867	return ret;
5868}
5869
5870/**
5871 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5872 *
5873 * @hsotg: Programming view of the DWC_otg controller
5874 *
5875 * This function is for entering Host mode clock gating.
5876 */
5877void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5878{
5879	u32 hprt0;
5880	u32 pcgctl;
5881
5882	dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5883
5884	/* Put this port in suspend mode. */
5885	hprt0 = dwc2_read_hprt0(hsotg);
5886	hprt0 |= HPRT0_SUSP;
5887	dwc2_writel(hsotg, hprt0, HPRT0);
5888
5889	/* Set the Phy Clock bit as suspend is received. */
5890	pcgctl = dwc2_readl(hsotg, PCGCTL);
5891	pcgctl |= PCGCTL_STOPPCLK;
5892	dwc2_writel(hsotg, pcgctl, PCGCTL);
5893	udelay(5);
5894
5895	/* Set the Gate hclk as suspend is received. */
5896	pcgctl = dwc2_readl(hsotg, PCGCTL);
5897	pcgctl |= PCGCTL_GATEHCLK;
5898	dwc2_writel(hsotg, pcgctl, PCGCTL);
5899	udelay(5);
5900
5901	hsotg->bus_suspended = true;
5902	hsotg->lx_state = DWC2_L2;
5903}
5904
5905/**
5906 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5907 *
5908 * @hsotg: Programming view of the DWC_otg controller
5909 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5910 *
5911 * This function is for exiting Host mode clock gating.
5912 */
5913void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5914{
5915	u32 hprt0;
5916	u32 pcgctl;
5917
5918	dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5919
5920	/* Clear the Gate hclk. */
5921	pcgctl = dwc2_readl(hsotg, PCGCTL);
5922	pcgctl &= ~PCGCTL_GATEHCLK;
5923	dwc2_writel(hsotg, pcgctl, PCGCTL);
5924	udelay(5);
5925
5926	/* Phy Clock bit. */
5927	pcgctl = dwc2_readl(hsotg, PCGCTL);
5928	pcgctl &= ~PCGCTL_STOPPCLK;
5929	dwc2_writel(hsotg, pcgctl, PCGCTL);
5930	udelay(5);
5931
5932	/* Drive resume signaling and exit suspend mode on the port. */
5933	hprt0 = dwc2_read_hprt0(hsotg);
5934	hprt0 |= HPRT0_RES;
5935	hprt0 &= ~HPRT0_SUSP;
5936	dwc2_writel(hsotg, hprt0, HPRT0);
5937	udelay(5);
5938
5939	if (!rem_wakeup) {
5940		/* In case of port resume need to wait for 40 ms */
5941		msleep(USB_RESUME_TIMEOUT);
5942
5943		/* Stop driveing resume signaling on the port. */
5944		hprt0 = dwc2_read_hprt0(hsotg);
5945		hprt0 &= ~HPRT0_RES;
5946		dwc2_writel(hsotg, hprt0, HPRT0);
5947
5948		hsotg->bus_suspended = false;
5949		hsotg->lx_state = DWC2_L0;
5950	} else {
5951		mod_timer(&hsotg->wkp_timer,
5952			  jiffies + msecs_to_jiffies(71));
5953	}
5954}