Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * The Netronix embedded controller is a microcontroller found in some
  4 * e-book readers designed by the original design manufacturer Netronix, Inc.
  5 * It contains RTC, battery monitoring, system power management, and PWM
  6 * functionality.
  7 *
  8 * This driver implements PWM output.
  9 *
 10 * Copyright 2020 Jonathan Neuschäfer <j.neuschaefer@gmx.net>
 11 *
 12 * Limitations:
 13 * - The get_state callback is not implemented, because the current state of
 14 *   the PWM output can't be read back from the hardware.
 15 * - The hardware can only generate normal polarity output.
 16 * - The period and duty cycle can't be changed together in one atomic action.
 17 */
 18
 19#include <linux/mfd/ntxec.h>
 20#include <linux/module.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/regmap.h>
 24#include <linux/types.h>
 25
 26struct ntxec_pwm {
 27	struct device *dev;
 28	struct ntxec *ec;
 29	struct pwm_chip chip;
 30};
 31
 32static struct ntxec_pwm *ntxec_pwm_from_chip(struct pwm_chip *chip)
 33{
 34	return container_of(chip, struct ntxec_pwm, chip);
 35}
 36
 37#define NTXEC_REG_AUTO_OFF_HI	0xa1
 38#define NTXEC_REG_AUTO_OFF_LO	0xa2
 39#define NTXEC_REG_ENABLE	0xa3
 40#define NTXEC_REG_PERIOD_LOW	0xa4
 41#define NTXEC_REG_PERIOD_HIGH	0xa5
 42#define NTXEC_REG_DUTY_LOW	0xa6
 43#define NTXEC_REG_DUTY_HIGH	0xa7
 44
 45/*
 46 * The time base used in the EC is 8MHz, or 125ns. Period and duty cycle are
 47 * measured in this unit.
 48 */
 49#define TIME_BASE_NS 125
 50
 51/*
 52 * The maximum input value (in nanoseconds) is determined by the time base and
 53 * the range of the hardware registers that hold the converted value.
 54 * It fits into 32 bits, so we can do our calculations in 32 bits as well.
 55 */
 56#define MAX_PERIOD_NS (TIME_BASE_NS * 0xffff)
 57
 58static int ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip *chip,
 59						   int period, int duty)
 60{
 61	struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
 62
 63	/*
 64	 * Changes to the period and duty cycle take effect as soon as the
 65	 * corresponding low byte is written, so the hardware may be configured
 66	 * to an inconsistent state after the period is written and before the
 67	 * duty cycle is fully written. If, in such a case, the old duty cycle
 68	 * is longer than the new period, the EC may output 100% for a moment.
 69	 *
 70	 * To minimize the time between the changes to period and duty cycle
 71	 * taking effect, the writes are interleaved.
 72	 */
 73
 74	struct reg_sequence regs[] = {
 75		{ NTXEC_REG_PERIOD_HIGH, ntxec_reg8(period >> 8) },
 76		{ NTXEC_REG_DUTY_HIGH, ntxec_reg8(duty >> 8) },
 77		{ NTXEC_REG_PERIOD_LOW, ntxec_reg8(period) },
 78		{ NTXEC_REG_DUTY_LOW, ntxec_reg8(duty) },
 79	};
 80
 81	return regmap_multi_reg_write(priv->ec->regmap, regs, ARRAY_SIZE(regs));
 82}
 83
 84static int ntxec_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm_dev,
 85			   const struct pwm_state *state)
 86{
 87	struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
 88	unsigned int period, duty;
 89	int res;
 90
 91	if (state->polarity != PWM_POLARITY_NORMAL)
 92		return -EINVAL;
 93
 94	period = min_t(u64, state->period, MAX_PERIOD_NS);
 95	duty   = min_t(u64, state->duty_cycle, period);
 96
 97	period /= TIME_BASE_NS;
 98	duty   /= TIME_BASE_NS;
 99
100	/*
101	 * Writing a duty cycle of zero puts the device into a state where
102	 * writing a higher duty cycle doesn't result in the brightness that it
103	 * usually results in. This can be fixed by cycling the ENABLE register.
104	 *
105	 * As a workaround, write ENABLE=0 when the duty cycle is zero.
106	 * The case that something has previously set the duty cycle to zero
107	 * but ENABLE=1, is not handled.
108	 */
109	if (state->enabled && duty != 0) {
110		res = ntxec_pwm_set_raw_period_and_duty_cycle(chip, period, duty);
111		if (res)
112			return res;
113
114		res = regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(1));
115		if (res)
116			return res;
117
118		/* Disable the auto-off timer */
119		res = regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_HI, ntxec_reg8(0xff));
120		if (res)
121			return res;
122
123		return regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_LO, ntxec_reg8(0xff));
124	} else {
125		return regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(0));
126	}
127}
128
129static const struct pwm_ops ntxec_pwm_ops = {
130	.owner = THIS_MODULE,
131	.apply = ntxec_pwm_apply,
132	/*
133	 * No .get_state callback, because the current state cannot be read
134	 * back from the hardware.
135	 */
136};
137
138static int ntxec_pwm_probe(struct platform_device *pdev)
139{
140	struct ntxec *ec = dev_get_drvdata(pdev->dev.parent);
141	struct ntxec_pwm *priv;
142	struct pwm_chip *chip;
143
144	pdev->dev.of_node = pdev->dev.parent->of_node;
145
146	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
147	if (!priv)
148		return -ENOMEM;
149
150	priv->ec = ec;
151	priv->dev = &pdev->dev;
152
153	chip = &priv->chip;
154	chip->dev = &pdev->dev;
155	chip->ops = &ntxec_pwm_ops;
156	chip->npwm = 1;
157
158	return devm_pwmchip_add(&pdev->dev, chip);
159}
160
161static struct platform_driver ntxec_pwm_driver = {
162	.driver = {
163		.name = "ntxec-pwm",
164	},
165	.probe = ntxec_pwm_probe,
166};
167module_platform_driver(ntxec_pwm_driver);
168
169MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
170MODULE_DESCRIPTION("PWM driver for Netronix EC");
171MODULE_LICENSE("GPL");
172MODULE_ALIAS("platform:ntxec-pwm");