Linux Audio

Check our new training course

Loading...
v4.6
   1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
   2 *
   3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/pci.h>
  21#include <linux/ptp_classify.h>
  22
  23#include "igb.h"
  24
  25#define INCVALUE_MASK		0x7fffffff
  26#define ISGN			0x80000000
  27
  28/* The 82580 timesync updates the system timer every 8ns by 8ns,
  29 * and this update value cannot be reprogrammed.
  30 *
  31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  32 * nanoseconds time values for very long. For the 82580, SYSTIM always
  33 * counts nanoseconds, but the upper 24 bits are not available. The
  34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  35 * register, TIMINCA.
  36 *
  37 * For the 82576, the SYSTIM register time unit is affect by the
  38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  39 * field are needed to provide the nominal 16 nanosecond period,
  40 * leaving 19 bits for fractional nanoseconds.
  41 *
  42 * We scale the NIC clock cycle by a large factor so that relatively
  43 * small clock corrections can be added or subtracted at each clock
  44 * tick. The drawbacks of a large factor are a) that the clock
  45 * register overflows more quickly (not such a big deal) and b) that
  46 * the increment per tick has to fit into 24 bits.  As a result we
  47 * need to use a shift of 19 so we can fit a value of 16 into the
  48 * TIMINCA register.
  49 *
  50 *
  51 *             SYSTIMH            SYSTIML
  52 *        +--------------+   +---+---+------+
  53 *  82576 |      32      |   | 8 | 5 |  19  |
  54 *        +--------------+   +---+---+------+
  55 *         \________ 45 bits _______/  fract
  56 *
  57 *        +----------+---+   +--------------+
  58 *  82580 |    24    | 8 |   |      32      |
  59 *        +----------+---+   +--------------+
  60 *          reserved  \______ 40 bits _____/
  61 *
  62 *
  63 * The 45 bit 82576 SYSTIM overflows every
  64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  65 *
  66 * The 40 bit 82580 SYSTIM overflows every
  67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 
 
 
 
 
 
 
 
  68 */
  69
  70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
  71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
  73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
  74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
  75#define IGB_NBITS_82580			40
  76
  77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
 
  78
  79/* SYSTIM read access for the 82576 */
  80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
  81{
  82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  83	struct e1000_hw *hw = &igb->hw;
  84	u64 val;
  85	u32 lo, hi;
  86
  87	lo = rd32(E1000_SYSTIML);
  88	hi = rd32(E1000_SYSTIMH);
  89
  90	val = ((u64) hi) << 32;
  91	val |= lo;
  92
  93	return val;
  94}
  95
  96/* SYSTIM read access for the 82580 */
  97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
  98{
  99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 100	struct e1000_hw *hw = &igb->hw;
 101	u32 lo, hi;
 102	u64 val;
 103
 104	/* The timestamp latches on lowest register read. For the 82580
 105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 106	 * need to provide nanosecond resolution, so we just ignore it.
 107	 */
 108	rd32(E1000_SYSTIMR);
 109	lo = rd32(E1000_SYSTIML);
 110	hi = rd32(E1000_SYSTIMH);
 111
 112	val = ((u64) hi) << 32;
 113	val |= lo;
 114
 115	return val;
 116}
 117
 118/* SYSTIM read access for I210/I211 */
 119static void igb_ptp_read_i210(struct igb_adapter *adapter,
 120			      struct timespec64 *ts)
 121{
 122	struct e1000_hw *hw = &adapter->hw;
 123	u32 sec, nsec;
 124
 125	/* The timestamp latches on lowest register read. For I210/I211, the
 126	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 127	 * resolution, we can ignore it.
 128	 */
 129	rd32(E1000_SYSTIMR);
 130	nsec = rd32(E1000_SYSTIML);
 131	sec = rd32(E1000_SYSTIMH);
 132
 133	ts->tv_sec = sec;
 134	ts->tv_nsec = nsec;
 135}
 136
 137static void igb_ptp_write_i210(struct igb_adapter *adapter,
 138			       const struct timespec64 *ts)
 139{
 140	struct e1000_hw *hw = &adapter->hw;
 141
 142	/* Writing the SYSTIMR register is not necessary as it only provides
 143	 * sub-nanosecond resolution.
 144	 */
 145	wr32(E1000_SYSTIML, ts->tv_nsec);
 146	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 147}
 148
 149/**
 150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 151 * @adapter: board private structure
 152 * @hwtstamps: timestamp structure to update
 153 * @systim: unsigned 64bit system time value.
 154 *
 155 * We need to convert the system time value stored in the RX/TXSTMP registers
 156 * into a hwtstamp which can be used by the upper level timestamping functions.
 157 *
 158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 159 * system time value. This is needed because reading the 64 bit time
 160 * value involves reading two (or three) 32 bit registers. The first
 161 * read latches the value. Ditto for writing.
 162 *
 163 * In addition, here have extended the system time with an overflow
 164 * counter in software.
 165 **/
 166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 167				       struct skb_shared_hwtstamps *hwtstamps,
 168				       u64 systim)
 169{
 170	unsigned long flags;
 171	u64 ns;
 172
 
 
 173	switch (adapter->hw.mac.type) {
 174	case e1000_82576:
 175	case e1000_82580:
 176	case e1000_i354:
 177	case e1000_i350:
 178		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 179
 180		ns = timecounter_cyc2time(&adapter->tc, systim);
 181
 182		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 183
 184		memset(hwtstamps, 0, sizeof(*hwtstamps));
 185		hwtstamps->hwtstamp = ns_to_ktime(ns);
 186		break;
 187	case e1000_i210:
 188	case e1000_i211:
 189		memset(hwtstamps, 0, sizeof(*hwtstamps));
 190		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 191		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 192						systim & 0xFFFFFFFF);
 193		break;
 194	default:
 195		break;
 196	}
 197}
 198
 199/* PTP clock operations */
 200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 201{
 202	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 203					       ptp_caps);
 204	struct e1000_hw *hw = &igb->hw;
 205	int neg_adj = 0;
 206	u64 rate;
 207	u32 incvalue;
 208
 209	if (ppb < 0) {
 210		neg_adj = 1;
 211		ppb = -ppb;
 212	}
 213	rate = ppb;
 214	rate <<= 14;
 215	rate = div_u64(rate, 1953125);
 216
 217	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 218
 219	if (neg_adj)
 220		incvalue -= rate;
 221	else
 222		incvalue += rate;
 223
 224	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 225
 226	return 0;
 227}
 228
 229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
 230{
 231	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 232					       ptp_caps);
 233	struct e1000_hw *hw = &igb->hw;
 234	int neg_adj = 0;
 235	u64 rate;
 236	u32 inca;
 237
 238	if (ppb < 0) {
 239		neg_adj = 1;
 240		ppb = -ppb;
 241	}
 242	rate = ppb;
 243	rate <<= 26;
 244	rate = div_u64(rate, 1953125);
 245
 246	inca = rate & INCVALUE_MASK;
 247	if (neg_adj)
 248		inca |= ISGN;
 249
 250	wr32(E1000_TIMINCA, inca);
 251
 252	return 0;
 253}
 254
 255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 256{
 257	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 258					       ptp_caps);
 259	unsigned long flags;
 260
 261	spin_lock_irqsave(&igb->tmreg_lock, flags);
 262	timecounter_adjtime(&igb->tc, delta);
 263	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 264
 265	return 0;
 266}
 267
 268static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 269{
 270	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 271					       ptp_caps);
 272	unsigned long flags;
 273	struct timespec64 now, then = ns_to_timespec64(delta);
 274
 275	spin_lock_irqsave(&igb->tmreg_lock, flags);
 276
 277	igb_ptp_read_i210(igb, &now);
 278	now = timespec64_add(now, then);
 279	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 280
 281	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 282
 283	return 0;
 284}
 285
 286static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
 287				 struct timespec64 *ts)
 
 288{
 289	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 290					       ptp_caps);
 
 291	unsigned long flags;
 
 292	u64 ns;
 293
 294	spin_lock_irqsave(&igb->tmreg_lock, flags);
 295
 296	ns = timecounter_read(&igb->tc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297
 298	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 299
 300	*ts = ns_to_timespec64(ns);
 301
 302	return 0;
 303}
 304
 305static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
 306				struct timespec64 *ts)
 
 307{
 308	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 309					       ptp_caps);
 
 310	unsigned long flags;
 311
 312	spin_lock_irqsave(&igb->tmreg_lock, flags);
 313
 314	igb_ptp_read_i210(igb, ts);
 
 
 
 
 315
 316	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 317
 318	return 0;
 319}
 320
 321static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 322				 const struct timespec64 *ts)
 323{
 324	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 325					       ptp_caps);
 326	unsigned long flags;
 327	u64 ns;
 328
 329	ns = timespec64_to_ns(ts);
 330
 331	spin_lock_irqsave(&igb->tmreg_lock, flags);
 332
 333	timecounter_init(&igb->tc, &igb->cc, ns);
 334
 335	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 336
 337	return 0;
 338}
 339
 340static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 341				const struct timespec64 *ts)
 342{
 343	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 344					       ptp_caps);
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(&igb->tmreg_lock, flags);
 348
 349	igb_ptp_write_i210(igb, ts);
 350
 351	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 352
 353	return 0;
 354}
 355
 356static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 357{
 358	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 359	static const u32 mask[IGB_N_SDP] = {
 360		E1000_CTRL_SDP0_DIR,
 361		E1000_CTRL_SDP1_DIR,
 362		E1000_CTRL_EXT_SDP2_DIR,
 363		E1000_CTRL_EXT_SDP3_DIR,
 364	};
 365
 366	if (input)
 367		*ptr &= ~mask[pin];
 368	else
 369		*ptr |= mask[pin];
 370}
 371
 372static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 373{
 374	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 375		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 376	};
 377	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 378		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 379	};
 380	static const u32 ts_sdp_en[IGB_N_SDP] = {
 381		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 382	};
 383	struct e1000_hw *hw = &igb->hw;
 384	u32 ctrl, ctrl_ext, tssdp = 0;
 385
 386	ctrl = rd32(E1000_CTRL);
 387	ctrl_ext = rd32(E1000_CTRL_EXT);
 388	tssdp = rd32(E1000_TSSDP);
 389
 390	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 391
 392	/* Make sure this pin is not enabled as an output. */
 393	tssdp &= ~ts_sdp_en[pin];
 394
 395	if (chan == 1) {
 396		tssdp &= ~AUX1_SEL_SDP3;
 397		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 398	} else {
 399		tssdp &= ~AUX0_SEL_SDP3;
 400		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 401	}
 402
 403	wr32(E1000_TSSDP, tssdp);
 404	wr32(E1000_CTRL, ctrl);
 405	wr32(E1000_CTRL_EXT, ctrl_ext);
 406}
 407
 408static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 409{
 410	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412	};
 413	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415	};
 416	static const u32 ts_sdp_en[IGB_N_SDP] = {
 417		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418	};
 419	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 420		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 421		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 422	};
 423	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 424		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 425		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 426	};
 427	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 428		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 429		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 430	};
 431	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 432		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 433		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 434	};
 435	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 436		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 437		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 438	};
 439	struct e1000_hw *hw = &igb->hw;
 440	u32 ctrl, ctrl_ext, tssdp = 0;
 441
 442	ctrl = rd32(E1000_CTRL);
 443	ctrl_ext = rd32(E1000_CTRL_EXT);
 444	tssdp = rd32(E1000_TSSDP);
 445
 446	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 447
 448	/* Make sure this pin is not enabled as an input. */
 449	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 450		tssdp &= ~AUX0_TS_SDP_EN;
 451
 452	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 453		tssdp &= ~AUX1_TS_SDP_EN;
 454
 455	tssdp &= ~ts_sdp_sel_clr[pin];
 456	if (freq) {
 457		if (chan == 1)
 458			tssdp |= ts_sdp_sel_fc1[pin];
 459		else
 460			tssdp |= ts_sdp_sel_fc0[pin];
 461	} else {
 462		if (chan == 1)
 463			tssdp |= ts_sdp_sel_tt1[pin];
 464		else
 465			tssdp |= ts_sdp_sel_tt0[pin];
 466	}
 467	tssdp |= ts_sdp_en[pin];
 468
 469	wr32(E1000_TSSDP, tssdp);
 470	wr32(E1000_CTRL, ctrl);
 471	wr32(E1000_CTRL_EXT, ctrl_ext);
 472}
 473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 475				       struct ptp_clock_request *rq, int on)
 476{
 477	struct igb_adapter *igb =
 478		container_of(ptp, struct igb_adapter, ptp_caps);
 479	struct e1000_hw *hw = &igb->hw;
 480	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 481	unsigned long flags;
 482	struct timespec64 ts;
 483	int use_freq = 0, pin = -1;
 484	s64 ns;
 485
 486	switch (rq->type) {
 487	case PTP_CLK_REQ_EXTTS:
 
 
 
 
 
 
 
 
 
 
 
 
 
 488		if (on) {
 489			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 490					   rq->extts.index);
 491			if (pin < 0)
 492				return -EBUSY;
 493		}
 494		if (rq->extts.index == 1) {
 495			tsauxc_mask = TSAUXC_EN_TS1;
 496			tsim_mask = TSINTR_AUTT1;
 497		} else {
 498			tsauxc_mask = TSAUXC_EN_TS0;
 499			tsim_mask = TSINTR_AUTT0;
 500		}
 501		spin_lock_irqsave(&igb->tmreg_lock, flags);
 502		tsauxc = rd32(E1000_TSAUXC);
 503		tsim = rd32(E1000_TSIM);
 504		if (on) {
 505			igb_pin_extts(igb, rq->extts.index, pin);
 506			tsauxc |= tsauxc_mask;
 507			tsim |= tsim_mask;
 508		} else {
 509			tsauxc &= ~tsauxc_mask;
 510			tsim &= ~tsim_mask;
 511		}
 512		wr32(E1000_TSAUXC, tsauxc);
 513		wr32(E1000_TSIM, tsim);
 514		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 515		return 0;
 516
 517	case PTP_CLK_REQ_PEROUT:
 
 
 
 
 518		if (on) {
 519			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 520					   rq->perout.index);
 521			if (pin < 0)
 522				return -EBUSY;
 523		}
 524		ts.tv_sec = rq->perout.period.sec;
 525		ts.tv_nsec = rq->perout.period.nsec;
 526		ns = timespec64_to_ns(&ts);
 527		ns = ns >> 1;
 528		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 529			   (ns == 250000000LL) || (ns == 500000000LL))) {
 530			if (ns < 8LL)
 531				return -EINVAL;
 532			use_freq = 1;
 533		}
 534		ts = ns_to_timespec64(ns);
 535		if (rq->perout.index == 1) {
 536			if (use_freq) {
 537				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 538				tsim_mask = 0;
 539			} else {
 540				tsauxc_mask = TSAUXC_EN_TT1;
 541				tsim_mask = TSINTR_TT1;
 542			}
 543			trgttiml = E1000_TRGTTIML1;
 544			trgttimh = E1000_TRGTTIMH1;
 545			freqout = E1000_FREQOUT1;
 546		} else {
 547			if (use_freq) {
 548				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 549				tsim_mask = 0;
 550			} else {
 551				tsauxc_mask = TSAUXC_EN_TT0;
 552				tsim_mask = TSINTR_TT0;
 553			}
 554			trgttiml = E1000_TRGTTIML0;
 555			trgttimh = E1000_TRGTTIMH0;
 556			freqout = E1000_FREQOUT0;
 557		}
 558		spin_lock_irqsave(&igb->tmreg_lock, flags);
 559		tsauxc = rd32(E1000_TSAUXC);
 560		tsim = rd32(E1000_TSIM);
 561		if (rq->perout.index == 1) {
 562			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 563			tsim &= ~TSINTR_TT1;
 564		} else {
 565			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 566			tsim &= ~TSINTR_TT0;
 567		}
 568		if (on) {
 569			int i = rq->perout.index;
 570			igb_pin_perout(igb, i, pin, use_freq);
 571			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 572			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 573			igb->perout[i].period.tv_sec = ts.tv_sec;
 574			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 575			wr32(trgttimh, rq->perout.start.sec);
 576			wr32(trgttiml, rq->perout.start.nsec);
 577			if (use_freq)
 578				wr32(freqout, ns);
 579			tsauxc |= tsauxc_mask;
 580			tsim |= tsim_mask;
 581		}
 582		wr32(E1000_TSAUXC, tsauxc);
 583		wr32(E1000_TSIM, tsim);
 584		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 585		return 0;
 586
 587	case PTP_CLK_REQ_PPS:
 588		spin_lock_irqsave(&igb->tmreg_lock, flags);
 589		tsim = rd32(E1000_TSIM);
 590		if (on)
 591			tsim |= TSINTR_SYS_WRAP;
 592		else
 593			tsim &= ~TSINTR_SYS_WRAP;
 
 594		wr32(E1000_TSIM, tsim);
 595		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 596		return 0;
 597	}
 598
 599	return -EOPNOTSUPP;
 600}
 601
 602static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 603				  struct ptp_clock_request *rq, int on)
 604{
 605	return -EOPNOTSUPP;
 606}
 607
 608static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 609			      enum ptp_pin_function func, unsigned int chan)
 610{
 611	switch (func) {
 612	case PTP_PF_NONE:
 613	case PTP_PF_EXTTS:
 614	case PTP_PF_PEROUT:
 615		break;
 616	case PTP_PF_PHYSYNC:
 617		return -1;
 618	}
 619	return 0;
 620}
 621
 622/**
 623 * igb_ptp_tx_work
 624 * @work: pointer to work struct
 625 *
 626 * This work function polls the TSYNCTXCTL valid bit to determine when a
 627 * timestamp has been taken for the current stored skb.
 628 **/
 629static void igb_ptp_tx_work(struct work_struct *work)
 630{
 631	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 632						   ptp_tx_work);
 633	struct e1000_hw *hw = &adapter->hw;
 634	u32 tsynctxctl;
 635
 636	if (!adapter->ptp_tx_skb)
 637		return;
 638
 639	if (time_is_before_jiffies(adapter->ptp_tx_start +
 640				   IGB_PTP_TX_TIMEOUT)) {
 641		dev_kfree_skb_any(adapter->ptp_tx_skb);
 642		adapter->ptp_tx_skb = NULL;
 643		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 644		adapter->tx_hwtstamp_timeouts++;
 
 
 
 
 645		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 646		return;
 647	}
 648
 649	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 650	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 651		igb_ptp_tx_hwtstamp(adapter);
 652	else
 653		/* reschedule to check later */
 654		schedule_work(&adapter->ptp_tx_work);
 655}
 656
 657static void igb_ptp_overflow_check(struct work_struct *work)
 658{
 659	struct igb_adapter *igb =
 660		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 661	struct timespec64 ts;
 
 662
 663	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
 
 664
 
 665	pr_debug("igb overflow check at %lld.%09lu\n",
 666		 (long long) ts.tv_sec, ts.tv_nsec);
 667
 668	schedule_delayed_work(&igb->ptp_overflow_work,
 669			      IGB_SYSTIM_OVERFLOW_PERIOD);
 670}
 671
 672/**
 673 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 674 * @adapter: private network adapter structure
 675 *
 676 * This watchdog task is scheduled to detect error case where hardware has
 677 * dropped an Rx packet that was timestamped when the ring is full. The
 678 * particular error is rare but leaves the device in a state unable to timestamp
 679 * any future packets.
 680 **/
 681void igb_ptp_rx_hang(struct igb_adapter *adapter)
 682{
 683	struct e1000_hw *hw = &adapter->hw;
 684	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 685	unsigned long rx_event;
 686
 
 687	if (hw->mac.type != e1000_82576)
 688		return;
 689
 690	/* If we don't have a valid timestamp in the registers, just update the
 691	 * timeout counter and exit
 692	 */
 693	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 694		adapter->last_rx_ptp_check = jiffies;
 695		return;
 696	}
 697
 698	/* Determine the most recent watchdog or rx_timestamp event */
 699	rx_event = adapter->last_rx_ptp_check;
 700	if (time_after(adapter->last_rx_timestamp, rx_event))
 701		rx_event = adapter->last_rx_timestamp;
 702
 703	/* Only need to read the high RXSTMP register to clear the lock */
 704	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 705		rd32(E1000_RXSTMPH);
 706		adapter->last_rx_ptp_check = jiffies;
 707		adapter->rx_hwtstamp_cleared++;
 708		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 709	}
 710}
 711
 712/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 714 * @adapter: Board private structure.
 715 *
 716 * If we were asked to do hardware stamping and such a time stamp is
 717 * available, then it must have been for this skb here because we only
 718 * allow only one such packet into the queue.
 719 **/
 720static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 721{
 
 722	struct e1000_hw *hw = &adapter->hw;
 723	struct skb_shared_hwtstamps shhwtstamps;
 724	u64 regval;
 
 725
 726	regval = rd32(E1000_TXSTMPL);
 727	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 728
 729	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 730	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
 731	dev_kfree_skb_any(adapter->ptp_tx_skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	adapter->ptp_tx_skb = NULL;
 733	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 
 
 
 
 734}
 735
 736/**
 737 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 738 * @q_vector: Pointer to interrupt specific structure
 739 * @va: Pointer to address containing Rx buffer
 740 * @skb: Buffer containing timestamp and packet
 741 *
 742 * This function is meant to retrieve a timestamp from the first buffer of an
 743 * incoming frame.  The value is stored in little endian format starting on
 744 * byte 8.
 
 
 745 **/
 746void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
 747			 unsigned char *va,
 748			 struct sk_buff *skb)
 749{
 
 
 750	__le64 *regval = (__le64 *)va;
 
 
 
 
 751
 752	/* The timestamp is recorded in little endian format.
 753	 * DWORD: 0        1        2        3
 754	 * Field: Reserved Reserved SYSTIML  SYSTIMH
 755	 */
 756	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
 757				   le64_to_cpu(regval[1]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758}
 759
 760/**
 761 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 762 * @q_vector: Pointer to interrupt specific structure
 763 * @skb: Buffer containing timestamp and packet
 764 *
 765 * This function is meant to retrieve a timestamp from the internal registers
 766 * of the adapter and store it in the skb.
 767 **/
 768void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 769			 struct sk_buff *skb)
 770{
 771	struct igb_adapter *adapter = q_vector->adapter;
 772	struct e1000_hw *hw = &adapter->hw;
 
 773	u64 regval;
 774
 
 
 
 775	/* If this bit is set, then the RX registers contain the time stamp. No
 776	 * other packet will be time stamped until we read these registers, so
 777	 * read the registers to make them available again. Because only one
 778	 * packet can be time stamped at a time, we know that the register
 779	 * values must belong to this one here and therefore we don't need to
 780	 * compare any of the additional attributes stored for it.
 781	 *
 782	 * If nothing went wrong, then it should have a shared tx_flags that we
 783	 * can turn into a skb_shared_hwtstamps.
 784	 */
 785	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 786		return;
 787
 788	regval = rd32(E1000_RXSTMPL);
 789	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 790
 791	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	/* Update the last_rx_timestamp timer in order to enable watchdog check
 794	 * for error case of latched timestamp on a dropped packet.
 795	 */
 796	adapter->last_rx_timestamp = jiffies;
 797}
 798
 799/**
 800 * igb_ptp_get_ts_config - get hardware time stamping config
 801 * @netdev:
 802 * @ifreq:
 803 *
 804 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 805 * to deconstruct the settings from the registers, just return a shadow copy
 806 * of the last known settings.
 807 **/
 808int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 809{
 810	struct igb_adapter *adapter = netdev_priv(netdev);
 811	struct hwtstamp_config *config = &adapter->tstamp_config;
 812
 813	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 814		-EFAULT : 0;
 815}
 816
 817/**
 818 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 819 * @adapter: networking device structure
 820 * @config: hwtstamp configuration
 821 *
 822 * Outgoing time stamping can be enabled and disabled. Play nice and
 823 * disable it when requested, although it shouldn't case any overhead
 824 * when no packet needs it. At most one packet in the queue may be
 825 * marked for time stamping, otherwise it would be impossible to tell
 826 * for sure to which packet the hardware time stamp belongs.
 827 *
 828 * Incoming time stamping has to be configured via the hardware
 829 * filters. Not all combinations are supported, in particular event
 830 * type has to be specified. Matching the kind of event packet is
 831 * not supported, with the exception of "all V2 events regardless of
 832 * level 2 or 4".
 833 */
 834static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 835				      struct hwtstamp_config *config)
 836{
 837	struct e1000_hw *hw = &adapter->hw;
 838	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 839	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 840	u32 tsync_rx_cfg = 0;
 841	bool is_l4 = false;
 842	bool is_l2 = false;
 843	u32 regval;
 844
 845	/* reserved for future extensions */
 846	if (config->flags)
 847		return -EINVAL;
 848
 849	switch (config->tx_type) {
 850	case HWTSTAMP_TX_OFF:
 851		tsync_tx_ctl = 0;
 
 852	case HWTSTAMP_TX_ON:
 853		break;
 854	default:
 855		return -ERANGE;
 856	}
 857
 858	switch (config->rx_filter) {
 859	case HWTSTAMP_FILTER_NONE:
 860		tsync_rx_ctl = 0;
 861		break;
 862	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 863		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 864		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
 865		is_l4 = true;
 866		break;
 867	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 868		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 869		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
 870		is_l4 = true;
 871		break;
 872	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 873	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 874	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 875	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 876	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 877	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 878	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 879	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 880	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 881		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
 882		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 883		is_l2 = true;
 884		is_l4 = true;
 885		break;
 886	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 
 887	case HWTSTAMP_FILTER_ALL:
 888		/* 82576 cannot timestamp all packets, which it needs to do to
 889		 * support both V1 Sync and Delay_Req messages
 890		 */
 891		if (hw->mac.type != e1000_82576) {
 892			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 893			config->rx_filter = HWTSTAMP_FILTER_ALL;
 894			break;
 895		}
 896		/* fall through */
 897	default:
 898		config->rx_filter = HWTSTAMP_FILTER_NONE;
 899		return -ERANGE;
 900	}
 901
 902	if (hw->mac.type == e1000_82575) {
 903		if (tsync_rx_ctl | tsync_tx_ctl)
 904			return -EINVAL;
 905		return 0;
 906	}
 907
 908	/* Per-packet timestamping only works if all packets are
 909	 * timestamped, so enable timestamping in all packets as
 910	 * long as one Rx filter was configured.
 911	 */
 912	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
 913		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 914		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 915		config->rx_filter = HWTSTAMP_FILTER_ALL;
 916		is_l2 = true;
 917		is_l4 = true;
 918
 919		if ((hw->mac.type == e1000_i210) ||
 920		    (hw->mac.type == e1000_i211)) {
 921			regval = rd32(E1000_RXPBS);
 922			regval |= E1000_RXPBS_CFG_TS_EN;
 923			wr32(E1000_RXPBS, regval);
 924		}
 925	}
 926
 927	/* enable/disable TX */
 928	regval = rd32(E1000_TSYNCTXCTL);
 929	regval &= ~E1000_TSYNCTXCTL_ENABLED;
 930	regval |= tsync_tx_ctl;
 931	wr32(E1000_TSYNCTXCTL, regval);
 932
 933	/* enable/disable RX */
 934	regval = rd32(E1000_TSYNCRXCTL);
 935	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
 936	regval |= tsync_rx_ctl;
 937	wr32(E1000_TSYNCRXCTL, regval);
 938
 939	/* define which PTP packets are time stamped */
 940	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
 941
 942	/* define ethertype filter for timestamped packets */
 943	if (is_l2)
 944		wr32(E1000_ETQF(3),
 945		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
 946		      E1000_ETQF_1588 | /* enable timestamping */
 947		      ETH_P_1588));     /* 1588 eth protocol type */
 948	else
 949		wr32(E1000_ETQF(3), 0);
 950
 951	/* L4 Queue Filter[3]: filter by destination port and protocol */
 952	if (is_l4) {
 953		u32 ftqf = (IPPROTO_UDP /* UDP */
 954			| E1000_FTQF_VF_BP /* VF not compared */
 955			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
 956			| E1000_FTQF_MASK); /* mask all inputs */
 957		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
 958
 959		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
 960		wr32(E1000_IMIREXT(3),
 961		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
 962		if (hw->mac.type == e1000_82576) {
 963			/* enable source port check */
 964			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
 965			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
 966		}
 967		wr32(E1000_FTQF(3), ftqf);
 968	} else {
 969		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
 970	}
 971	wrfl();
 972
 973	/* clear TX/RX time stamp registers, just to be sure */
 974	regval = rd32(E1000_TXSTMPL);
 975	regval = rd32(E1000_TXSTMPH);
 976	regval = rd32(E1000_RXSTMPL);
 977	regval = rd32(E1000_RXSTMPH);
 978
 979	return 0;
 980}
 981
 982/**
 983 * igb_ptp_set_ts_config - set hardware time stamping config
 984 * @netdev:
 985 * @ifreq:
 986 *
 987 **/
 988int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
 989{
 990	struct igb_adapter *adapter = netdev_priv(netdev);
 991	struct hwtstamp_config config;
 992	int err;
 993
 994	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 995		return -EFAULT;
 996
 997	err = igb_ptp_set_timestamp_mode(adapter, &config);
 998	if (err)
 999		return err;
1000
1001	/* save these settings for future reference */
1002	memcpy(&adapter->tstamp_config, &config,
1003	       sizeof(adapter->tstamp_config));
1004
1005	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1006		-EFAULT : 0;
1007}
1008
 
 
 
 
 
 
 
1009void igb_ptp_init(struct igb_adapter *adapter)
1010{
1011	struct e1000_hw *hw = &adapter->hw;
1012	struct net_device *netdev = adapter->netdev;
1013	int i;
1014
1015	switch (hw->mac.type) {
1016	case e1000_82576:
1017		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1018		adapter->ptp_caps.owner = THIS_MODULE;
1019		adapter->ptp_caps.max_adj = 999999881;
1020		adapter->ptp_caps.n_ext_ts = 0;
1021		adapter->ptp_caps.pps = 0;
1022		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1023		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1024		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1025		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1026		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1027		adapter->cc.read = igb_ptp_read_82576;
1028		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1029		adapter->cc.mult = 1;
1030		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1031		/* Dial the nominal frequency. */
1032		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1033		break;
1034	case e1000_82580:
1035	case e1000_i354:
1036	case e1000_i350:
 
1037		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1038		adapter->ptp_caps.owner = THIS_MODULE;
1039		adapter->ptp_caps.max_adj = 62499999;
1040		adapter->ptp_caps.n_ext_ts = 0;
 
 
1041		adapter->ptp_caps.pps = 0;
1042		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
 
1043		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1044		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1045		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1046		adapter->ptp_caps.enable = igb_ptp_feature_enable;
 
1047		adapter->cc.read = igb_ptp_read_82580;
1048		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1049		adapter->cc.mult = 1;
1050		adapter->cc.shift = 0;
1051		/* Enable the timer functions by clearing bit 31. */
1052		wr32(E1000_TSAUXC, 0x0);
1053		break;
1054	case e1000_i210:
1055	case e1000_i211:
1056		for (i = 0; i < IGB_N_SDP; i++) {
1057			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1058
1059			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1060			ppd->index = i;
1061			ppd->func = PTP_PF_NONE;
1062		}
1063		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1064		adapter->ptp_caps.owner = THIS_MODULE;
1065		adapter->ptp_caps.max_adj = 62499999;
1066		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1067		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1068		adapter->ptp_caps.n_pins = IGB_N_SDP;
1069		adapter->ptp_caps.pps = 1;
1070		adapter->ptp_caps.pin_config = adapter->sdp_config;
1071		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1072		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1073		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1074		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1075		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1076		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1077		/* Enable the timer functions by clearing bit 31. */
1078		wr32(E1000_TSAUXC, 0x0);
1079		break;
1080	default:
1081		adapter->ptp_clock = NULL;
1082		return;
1083	}
1084
1085	wrfl();
1086
1087	spin_lock_init(&adapter->tmreg_lock);
1088	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1089
1090	/* Initialize the clock and overflow work for devices that need it. */
1091	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1092		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1093
1094		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1095	} else {
1096		timecounter_init(&adapter->tc, &adapter->cc,
1097				 ktime_to_ns(ktime_get_real()));
1098
1099		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1100				  igb_ptp_overflow_check);
1101
1102		schedule_delayed_work(&adapter->ptp_overflow_work,
1103				      IGB_SYSTIM_OVERFLOW_PERIOD);
1104	}
1105
1106	/* Initialize the time sync interrupts for devices that support it. */
1107	if (hw->mac.type >= e1000_82580) {
1108		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1109		wr32(E1000_IMS, E1000_IMS_TS);
1110	}
1111
1112	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1113	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1114
 
 
1115	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1116						&adapter->pdev->dev);
1117	if (IS_ERR(adapter->ptp_clock)) {
1118		adapter->ptp_clock = NULL;
1119		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1120	} else {
1121		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1122			 adapter->netdev->name);
1123		adapter->flags |= IGB_FLAG_PTP;
1124	}
1125}
1126
1127/**
1128 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1129 * @adapter: Board private structure.
1130 *
1131 * This function stops the PTP support and cancels the delayed work.
1132 **/
1133void igb_ptp_stop(struct igb_adapter *adapter)
1134{
1135	switch (adapter->hw.mac.type) {
1136	case e1000_82576:
1137	case e1000_82580:
1138	case e1000_i354:
1139	case e1000_i350:
1140		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1141		break;
1142	case e1000_i210:
1143	case e1000_i211:
1144		/* No delayed work to cancel. */
1145		break;
1146	default:
1147		return;
1148	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149
1150	cancel_work_sync(&adapter->ptp_tx_work);
1151	if (adapter->ptp_tx_skb) {
1152		dev_kfree_skb_any(adapter->ptp_tx_skb);
1153		adapter->ptp_tx_skb = NULL;
1154		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1155	}
 
 
 
 
 
 
 
 
 
 
 
1156
1157	if (adapter->ptp_clock) {
1158		ptp_clock_unregister(adapter->ptp_clock);
1159		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1160			 adapter->netdev->name);
1161		adapter->flags &= ~IGB_FLAG_PTP;
1162	}
1163}
1164
1165/**
1166 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1167 * @adapter: Board private structure.
1168 *
1169 * This function handles the reset work required to re-enable the PTP device.
1170 **/
1171void igb_ptp_reset(struct igb_adapter *adapter)
1172{
1173	struct e1000_hw *hw = &adapter->hw;
1174	unsigned long flags;
1175
1176	if (!(adapter->flags & IGB_FLAG_PTP))
1177		return;
1178
1179	/* reset the tstamp_config */
1180	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1181
1182	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1183
1184	switch (adapter->hw.mac.type) {
1185	case e1000_82576:
1186		/* Dial the nominal frequency. */
1187		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1188		break;
1189	case e1000_82580:
1190	case e1000_i354:
1191	case e1000_i350:
1192	case e1000_i210:
1193	case e1000_i211:
1194		wr32(E1000_TSAUXC, 0x0);
1195		wr32(E1000_TSSDP, 0x0);
1196		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
 
 
1197		wr32(E1000_IMS, E1000_IMS_TS);
1198		break;
1199	default:
1200		/* No work to do. */
1201		goto out;
1202	}
1203
1204	/* Re-initialize the timer. */
1205	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1206		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1207
1208		igb_ptp_write_i210(adapter, &ts);
1209	} else {
1210		timecounter_init(&adapter->tc, &adapter->cc,
1211				 ktime_to_ns(ktime_get_real()));
1212	}
1213out:
1214	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 
 
 
 
 
 
1215}
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK		0x7fffffff
  12#define ISGN			0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
  66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580			40
  70
  71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  72static void igb_ptp_sdp_init(struct igb_adapter *adapter);
  73
  74/* SYSTIM read access for the 82576 */
  75static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  76{
  77	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  78	struct e1000_hw *hw = &igb->hw;
  79	u64 val;
  80	u32 lo, hi;
  81
  82	lo = rd32(E1000_SYSTIML);
  83	hi = rd32(E1000_SYSTIMH);
  84
  85	val = ((u64) hi) << 32;
  86	val |= lo;
  87
  88	return val;
  89}
  90
  91/* SYSTIM read access for the 82580 */
  92static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  93{
  94	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  95	struct e1000_hw *hw = &igb->hw;
  96	u32 lo, hi;
  97	u64 val;
  98
  99	/* The timestamp latches on lowest register read. For the 82580
 100	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 101	 * need to provide nanosecond resolution, so we just ignore it.
 102	 */
 103	rd32(E1000_SYSTIMR);
 104	lo = rd32(E1000_SYSTIML);
 105	hi = rd32(E1000_SYSTIMH);
 106
 107	val = ((u64) hi) << 32;
 108	val |= lo;
 109
 110	return val;
 111}
 112
 113/* SYSTIM read access for I210/I211 */
 114static void igb_ptp_read_i210(struct igb_adapter *adapter,
 115			      struct timespec64 *ts)
 116{
 117	struct e1000_hw *hw = &adapter->hw;
 118	u32 sec, nsec;
 119
 120	/* The timestamp latches on lowest register read. For I210/I211, the
 121	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
 122	 * resolution, we can ignore it.
 123	 */
 124	rd32(E1000_SYSTIMR);
 125	nsec = rd32(E1000_SYSTIML);
 126	sec = rd32(E1000_SYSTIMH);
 127
 128	ts->tv_sec = sec;
 129	ts->tv_nsec = nsec;
 130}
 131
 132static void igb_ptp_write_i210(struct igb_adapter *adapter,
 133			       const struct timespec64 *ts)
 134{
 135	struct e1000_hw *hw = &adapter->hw;
 136
 137	/* Writing the SYSTIMR register is not necessary as it only provides
 138	 * sub-nanosecond resolution.
 139	 */
 140	wr32(E1000_SYSTIML, ts->tv_nsec);
 141	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 142}
 143
 144/**
 145 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 146 * @adapter: board private structure
 147 * @hwtstamps: timestamp structure to update
 148 * @systim: unsigned 64bit system time value.
 149 *
 150 * We need to convert the system time value stored in the RX/TXSTMP registers
 151 * into a hwtstamp which can be used by the upper level timestamping functions.
 152 *
 153 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 154 * system time value. This is needed because reading the 64 bit time
 155 * value involves reading two (or three) 32 bit registers. The first
 156 * read latches the value. Ditto for writing.
 157 *
 158 * In addition, here have extended the system time with an overflow
 159 * counter in software.
 160 **/
 161static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 162				       struct skb_shared_hwtstamps *hwtstamps,
 163				       u64 systim)
 164{
 165	unsigned long flags;
 166	u64 ns;
 167
 168	memset(hwtstamps, 0, sizeof(*hwtstamps));
 169
 170	switch (adapter->hw.mac.type) {
 171	case e1000_82576:
 172	case e1000_82580:
 173	case e1000_i354:
 174	case e1000_i350:
 175		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 
 176		ns = timecounter_cyc2time(&adapter->tc, systim);
 
 177		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 178
 
 179		hwtstamps->hwtstamp = ns_to_ktime(ns);
 180		break;
 181	case e1000_i210:
 182	case e1000_i211:
 
 183		/* Upper 32 bits contain s, lower 32 bits contain ns. */
 184		hwtstamps->hwtstamp = ktime_set(systim >> 32,
 185						systim & 0xFFFFFFFF);
 186		break;
 187	default:
 188		break;
 189	}
 190}
 191
 192/* PTP clock operations */
 193static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
 194{
 195	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 196					       ptp_caps);
 197	struct e1000_hw *hw = &igb->hw;
 198	u64 incvalue;
 
 
 
 
 
 
 
 
 
 
 199
 200	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
 
 
 
 
 
 201
 202	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 203
 204	return 0;
 205}
 206
 207static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 208{
 209	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 210					       ptp_caps);
 211	struct e1000_hw *hw = &igb->hw;
 212	int neg_adj = 0;
 213	u64 rate;
 214	u32 inca;
 215
 216	if (scaled_ppm < 0) {
 217		neg_adj = 1;
 218		scaled_ppm = -scaled_ppm;
 219	}
 220	rate = scaled_ppm;
 221	rate <<= 13;
 222	rate = div_u64(rate, 15625);
 223
 224	inca = rate & INCVALUE_MASK;
 225	if (neg_adj)
 226		inca |= ISGN;
 227
 228	wr32(E1000_TIMINCA, inca);
 229
 230	return 0;
 231}
 232
 233static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 234{
 235	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 236					       ptp_caps);
 237	unsigned long flags;
 238
 239	spin_lock_irqsave(&igb->tmreg_lock, flags);
 240	timecounter_adjtime(&igb->tc, delta);
 241	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 242
 243	return 0;
 244}
 245
 246static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 247{
 248	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 249					       ptp_caps);
 250	unsigned long flags;
 251	struct timespec64 now, then = ns_to_timespec64(delta);
 252
 253	spin_lock_irqsave(&igb->tmreg_lock, flags);
 254
 255	igb_ptp_read_i210(igb, &now);
 256	now = timespec64_add(now, then);
 257	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 258
 259	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 260
 261	return 0;
 262}
 263
 264static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 265				  struct timespec64 *ts,
 266				  struct ptp_system_timestamp *sts)
 267{
 268	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 269					       ptp_caps);
 270	struct e1000_hw *hw = &igb->hw;
 271	unsigned long flags;
 272	u32 lo, hi;
 273	u64 ns;
 274
 275	spin_lock_irqsave(&igb->tmreg_lock, flags);
 276
 277	ptp_read_system_prets(sts);
 278	lo = rd32(E1000_SYSTIML);
 279	ptp_read_system_postts(sts);
 280	hi = rd32(E1000_SYSTIMH);
 281
 282	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 283
 284	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 285
 286	*ts = ns_to_timespec64(ns);
 287
 288	return 0;
 289}
 290
 291static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 292				  struct timespec64 *ts,
 293				  struct ptp_system_timestamp *sts)
 294{
 295	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 296					       ptp_caps);
 297	struct e1000_hw *hw = &igb->hw;
 298	unsigned long flags;
 299	u32 lo, hi;
 300	u64 ns;
 301
 302	spin_lock_irqsave(&igb->tmreg_lock, flags);
 303
 304	ptp_read_system_prets(sts);
 305	rd32(E1000_SYSTIMR);
 306	ptp_read_system_postts(sts);
 307	lo = rd32(E1000_SYSTIML);
 308	hi = rd32(E1000_SYSTIMH);
 309
 310	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 311
 312	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 313
 314	*ts = ns_to_timespec64(ns);
 315
 316	return 0;
 317}
 318
 319static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 320				 struct timespec64 *ts,
 321				 struct ptp_system_timestamp *sts)
 322{
 323	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 324					       ptp_caps);
 325	struct e1000_hw *hw = &igb->hw;
 326	unsigned long flags;
 327
 328	spin_lock_irqsave(&igb->tmreg_lock, flags);
 329
 330	ptp_read_system_prets(sts);
 331	rd32(E1000_SYSTIMR);
 332	ptp_read_system_postts(sts);
 333	ts->tv_nsec = rd32(E1000_SYSTIML);
 334	ts->tv_sec = rd32(E1000_SYSTIMH);
 335
 336	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 337
 338	return 0;
 339}
 340
 341static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 342				 const struct timespec64 *ts)
 343{
 344	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 345					       ptp_caps);
 346	unsigned long flags;
 347	u64 ns;
 348
 349	ns = timespec64_to_ns(ts);
 350
 351	spin_lock_irqsave(&igb->tmreg_lock, flags);
 352
 353	timecounter_init(&igb->tc, &igb->cc, ns);
 354
 355	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 356
 357	return 0;
 358}
 359
 360static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 361				const struct timespec64 *ts)
 362{
 363	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 364					       ptp_caps);
 365	unsigned long flags;
 366
 367	spin_lock_irqsave(&igb->tmreg_lock, flags);
 368
 369	igb_ptp_write_i210(igb, ts);
 370
 371	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 372
 373	return 0;
 374}
 375
 376static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 377{
 378	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 379	static const u32 mask[IGB_N_SDP] = {
 380		E1000_CTRL_SDP0_DIR,
 381		E1000_CTRL_SDP1_DIR,
 382		E1000_CTRL_EXT_SDP2_DIR,
 383		E1000_CTRL_EXT_SDP3_DIR,
 384	};
 385
 386	if (input)
 387		*ptr &= ~mask[pin];
 388	else
 389		*ptr |= mask[pin];
 390}
 391
 392static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 393{
 394	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 395		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 396	};
 397	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 398		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 399	};
 400	static const u32 ts_sdp_en[IGB_N_SDP] = {
 401		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 402	};
 403	struct e1000_hw *hw = &igb->hw;
 404	u32 ctrl, ctrl_ext, tssdp = 0;
 405
 406	ctrl = rd32(E1000_CTRL);
 407	ctrl_ext = rd32(E1000_CTRL_EXT);
 408	tssdp = rd32(E1000_TSSDP);
 409
 410	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 411
 412	/* Make sure this pin is not enabled as an output. */
 413	tssdp &= ~ts_sdp_en[pin];
 414
 415	if (chan == 1) {
 416		tssdp &= ~AUX1_SEL_SDP3;
 417		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 418	} else {
 419		tssdp &= ~AUX0_SEL_SDP3;
 420		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 421	}
 422
 423	wr32(E1000_TSSDP, tssdp);
 424	wr32(E1000_CTRL, ctrl);
 425	wr32(E1000_CTRL_EXT, ctrl_ext);
 426}
 427
 428static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 429{
 430	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 431		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 432	};
 433	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 434		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 435	};
 436	static const u32 ts_sdp_en[IGB_N_SDP] = {
 437		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 438	};
 439	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 440		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 441		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 442	};
 443	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 444		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 445		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 446	};
 447	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 448		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 449		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 450	};
 451	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 452		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 453		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 454	};
 455	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 456		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 457		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 458	};
 459	struct e1000_hw *hw = &igb->hw;
 460	u32 ctrl, ctrl_ext, tssdp = 0;
 461
 462	ctrl = rd32(E1000_CTRL);
 463	ctrl_ext = rd32(E1000_CTRL_EXT);
 464	tssdp = rd32(E1000_TSSDP);
 465
 466	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 467
 468	/* Make sure this pin is not enabled as an input. */
 469	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 470		tssdp &= ~AUX0_TS_SDP_EN;
 471
 472	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 473		tssdp &= ~AUX1_TS_SDP_EN;
 474
 475	tssdp &= ~ts_sdp_sel_clr[pin];
 476	if (freq) {
 477		if (chan == 1)
 478			tssdp |= ts_sdp_sel_fc1[pin];
 479		else
 480			tssdp |= ts_sdp_sel_fc0[pin];
 481	} else {
 482		if (chan == 1)
 483			tssdp |= ts_sdp_sel_tt1[pin];
 484		else
 485			tssdp |= ts_sdp_sel_tt0[pin];
 486	}
 487	tssdp |= ts_sdp_en[pin];
 488
 489	wr32(E1000_TSSDP, tssdp);
 490	wr32(E1000_CTRL, ctrl);
 491	wr32(E1000_CTRL_EXT, ctrl_ext);
 492}
 493
 494static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
 495					struct ptp_clock_request *rq, int on)
 496{
 497	struct igb_adapter *igb =
 498		container_of(ptp, struct igb_adapter, ptp_caps);
 499	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
 500		systimh, level_mask, level, rem;
 501	struct e1000_hw *hw = &igb->hw;
 502	struct timespec64 ts, start;
 503	unsigned long flags;
 504	u64 systim, now;
 505	int pin = -1;
 506	s64 ns;
 507
 508	switch (rq->type) {
 509	case PTP_CLK_REQ_EXTTS:
 510		/* Reject requests with unsupported flags */
 511		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 512					PTP_RISING_EDGE |
 513					PTP_FALLING_EDGE |
 514					PTP_STRICT_FLAGS))
 515			return -EOPNOTSUPP;
 516
 517		if (on) {
 518			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 519					   rq->extts.index);
 520			if (pin < 0)
 521				return -EBUSY;
 522		}
 523		if (rq->extts.index == 1) {
 524			tsauxc_mask = TSAUXC_EN_TS1;
 525			tsim_mask = TSINTR_AUTT1;
 526		} else {
 527			tsauxc_mask = TSAUXC_EN_TS0;
 528			tsim_mask = TSINTR_AUTT0;
 529		}
 530		spin_lock_irqsave(&igb->tmreg_lock, flags);
 531		tsauxc = rd32(E1000_TSAUXC);
 532		tsim = rd32(E1000_TSIM);
 533		if (on) {
 534			igb_pin_extts(igb, rq->extts.index, pin);
 535			tsauxc |= tsauxc_mask;
 536			tsim |= tsim_mask;
 537		} else {
 538			tsauxc &= ~tsauxc_mask;
 539			tsim &= ~tsim_mask;
 540		}
 541		wr32(E1000_TSAUXC, tsauxc);
 542		wr32(E1000_TSIM, tsim);
 543		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 544		return 0;
 545
 546	case PTP_CLK_REQ_PEROUT:
 547		/* Reject requests with unsupported flags */
 548		if (rq->perout.flags)
 549			return -EOPNOTSUPP;
 550
 551		if (on) {
 552			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 553					   rq->perout.index);
 554			if (pin < 0)
 555				return -EBUSY;
 556		}
 557		ts.tv_sec = rq->perout.period.sec;
 558		ts.tv_nsec = rq->perout.period.nsec;
 559		ns = timespec64_to_ns(&ts);
 560		ns = ns >> 1;
 561		if (on && ns < 8LL)
 562			return -EINVAL;
 563		ts = ns_to_timespec64(ns);
 564		if (rq->perout.index == 1) {
 565			tsauxc_mask = TSAUXC_EN_TT1;
 566			tsim_mask = TSINTR_TT1;
 567			trgttiml = E1000_TRGTTIML1;
 568			trgttimh = E1000_TRGTTIMH1;
 569		} else {
 570			tsauxc_mask = TSAUXC_EN_TT0;
 571			tsim_mask = TSINTR_TT0;
 572			trgttiml = E1000_TRGTTIML0;
 573			trgttimh = E1000_TRGTTIMH0;
 574		}
 575		spin_lock_irqsave(&igb->tmreg_lock, flags);
 576		tsauxc = rd32(E1000_TSAUXC);
 577		tsim = rd32(E1000_TSIM);
 578		if (rq->perout.index == 1) {
 579			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 580			tsim &= ~TSINTR_TT1;
 581		} else {
 582			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 583			tsim &= ~TSINTR_TT0;
 584		}
 585		if (on) {
 586			int i = rq->perout.index;
 587
 588			/* read systim registers in sequence */
 589			rd32(E1000_SYSTIMR);
 590			systiml = rd32(E1000_SYSTIML);
 591			systimh = rd32(E1000_SYSTIMH);
 592			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 593			now = timecounter_cyc2time(&igb->tc, systim);
 594
 595			if (pin < 2) {
 596				level_mask = (i == 1) ? 0x80000 : 0x40000;
 597				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 598			} else {
 599				level_mask = (i == 1) ? 0x80 : 0x40;
 600				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 601			}
 602
 603			div_u64_rem(now, ns, &rem);
 604			systim = systim + (ns - rem);
 605
 606			/* synchronize pin level with rising/falling edges */
 607			div_u64_rem(now, ns << 1, &rem);
 608			if (rem < ns) {
 609				/* first half of period */
 610				if (level == 0) {
 611					/* output is already low, skip this period */
 612					systim += ns;
 613				}
 614			} else {
 615				/* second half of period */
 616				if (level == 1) {
 617					/* output is already high, skip this period */
 618					systim += ns;
 619				}
 620			}
 621
 622			start = ns_to_timespec64(systim + (ns - rem));
 623			igb_pin_perout(igb, i, pin, 0);
 624			igb->perout[i].start.tv_sec = start.tv_sec;
 625			igb->perout[i].start.tv_nsec = start.tv_nsec;
 626			igb->perout[i].period.tv_sec = ts.tv_sec;
 627			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 628
 629			wr32(trgttiml, (u32)systim);
 630			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
 631			tsauxc |= tsauxc_mask;
 632			tsim |= tsim_mask;
 633		}
 634		wr32(E1000_TSAUXC, tsauxc);
 635		wr32(E1000_TSIM, tsim);
 636		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 637		return 0;
 638
 639	case PTP_CLK_REQ_PPS:
 640		return -EOPNOTSUPP;
 641	}
 642
 643	return -EOPNOTSUPP;
 644}
 645
 646static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 647				       struct ptp_clock_request *rq, int on)
 648{
 649	struct igb_adapter *igb =
 650		container_of(ptp, struct igb_adapter, ptp_caps);
 651	struct e1000_hw *hw = &igb->hw;
 652	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 653	unsigned long flags;
 654	struct timespec64 ts;
 655	int use_freq = 0, pin = -1;
 656	s64 ns;
 657
 658	switch (rq->type) {
 659	case PTP_CLK_REQ_EXTTS:
 660		/* Reject requests with unsupported flags */
 661		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 662					PTP_RISING_EDGE |
 663					PTP_FALLING_EDGE |
 664					PTP_STRICT_FLAGS))
 665			return -EOPNOTSUPP;
 666
 667		/* Reject requests failing to enable both edges. */
 668		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 669		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 670		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 671			return -EOPNOTSUPP;
 672
 673		if (on) {
 674			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 675					   rq->extts.index);
 676			if (pin < 0)
 677				return -EBUSY;
 678		}
 679		if (rq->extts.index == 1) {
 680			tsauxc_mask = TSAUXC_EN_TS1;
 681			tsim_mask = TSINTR_AUTT1;
 682		} else {
 683			tsauxc_mask = TSAUXC_EN_TS0;
 684			tsim_mask = TSINTR_AUTT0;
 685		}
 686		spin_lock_irqsave(&igb->tmreg_lock, flags);
 687		tsauxc = rd32(E1000_TSAUXC);
 688		tsim = rd32(E1000_TSIM);
 689		if (on) {
 690			igb_pin_extts(igb, rq->extts.index, pin);
 691			tsauxc |= tsauxc_mask;
 692			tsim |= tsim_mask;
 693		} else {
 694			tsauxc &= ~tsauxc_mask;
 695			tsim &= ~tsim_mask;
 696		}
 697		wr32(E1000_TSAUXC, tsauxc);
 698		wr32(E1000_TSIM, tsim);
 699		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 700		return 0;
 701
 702	case PTP_CLK_REQ_PEROUT:
 703		/* Reject requests with unsupported flags */
 704		if (rq->perout.flags)
 705			return -EOPNOTSUPP;
 706
 707		if (on) {
 708			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 709					   rq->perout.index);
 710			if (pin < 0)
 711				return -EBUSY;
 712		}
 713		ts.tv_sec = rq->perout.period.sec;
 714		ts.tv_nsec = rq->perout.period.nsec;
 715		ns = timespec64_to_ns(&ts);
 716		ns = ns >> 1;
 717		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 718			   (ns == 250000000LL) || (ns == 500000000LL))) {
 719			if (ns < 8LL)
 720				return -EINVAL;
 721			use_freq = 1;
 722		}
 723		ts = ns_to_timespec64(ns);
 724		if (rq->perout.index == 1) {
 725			if (use_freq) {
 726				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 727				tsim_mask = 0;
 728			} else {
 729				tsauxc_mask = TSAUXC_EN_TT1;
 730				tsim_mask = TSINTR_TT1;
 731			}
 732			trgttiml = E1000_TRGTTIML1;
 733			trgttimh = E1000_TRGTTIMH1;
 734			freqout = E1000_FREQOUT1;
 735		} else {
 736			if (use_freq) {
 737				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 738				tsim_mask = 0;
 739			} else {
 740				tsauxc_mask = TSAUXC_EN_TT0;
 741				tsim_mask = TSINTR_TT0;
 742			}
 743			trgttiml = E1000_TRGTTIML0;
 744			trgttimh = E1000_TRGTTIMH0;
 745			freqout = E1000_FREQOUT0;
 746		}
 747		spin_lock_irqsave(&igb->tmreg_lock, flags);
 748		tsauxc = rd32(E1000_TSAUXC);
 749		tsim = rd32(E1000_TSIM);
 750		if (rq->perout.index == 1) {
 751			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 752			tsim &= ~TSINTR_TT1;
 753		} else {
 754			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 755			tsim &= ~TSINTR_TT0;
 756		}
 757		if (on) {
 758			int i = rq->perout.index;
 759			igb_pin_perout(igb, i, pin, use_freq);
 760			igb->perout[i].start.tv_sec = rq->perout.start.sec;
 761			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 762			igb->perout[i].period.tv_sec = ts.tv_sec;
 763			igb->perout[i].period.tv_nsec = ts.tv_nsec;
 764			wr32(trgttimh, rq->perout.start.sec);
 765			wr32(trgttiml, rq->perout.start.nsec);
 766			if (use_freq)
 767				wr32(freqout, ns);
 768			tsauxc |= tsauxc_mask;
 769			tsim |= tsim_mask;
 770		}
 771		wr32(E1000_TSAUXC, tsauxc);
 772		wr32(E1000_TSIM, tsim);
 773		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 774		return 0;
 775
 776	case PTP_CLK_REQ_PPS:
 777		spin_lock_irqsave(&igb->tmreg_lock, flags);
 778		tsim = rd32(E1000_TSIM);
 779		if (on)
 780			tsim |= TSINTR_SYS_WRAP;
 781		else
 782			tsim &= ~TSINTR_SYS_WRAP;
 783		igb->pps_sys_wrap_on = !!on;
 784		wr32(E1000_TSIM, tsim);
 785		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 786		return 0;
 787	}
 788
 789	return -EOPNOTSUPP;
 790}
 791
 792static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 793				  struct ptp_clock_request *rq, int on)
 794{
 795	return -EOPNOTSUPP;
 796}
 797
 798static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 799			      enum ptp_pin_function func, unsigned int chan)
 800{
 801	switch (func) {
 802	case PTP_PF_NONE:
 803	case PTP_PF_EXTTS:
 804	case PTP_PF_PEROUT:
 805		break;
 806	case PTP_PF_PHYSYNC:
 807		return -1;
 808	}
 809	return 0;
 810}
 811
 812/**
 813 * igb_ptp_tx_work
 814 * @work: pointer to work struct
 815 *
 816 * This work function polls the TSYNCTXCTL valid bit to determine when a
 817 * timestamp has been taken for the current stored skb.
 818 **/
 819static void igb_ptp_tx_work(struct work_struct *work)
 820{
 821	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 822						   ptp_tx_work);
 823	struct e1000_hw *hw = &adapter->hw;
 824	u32 tsynctxctl;
 825
 826	if (!adapter->ptp_tx_skb)
 827		return;
 828
 829	if (time_is_before_jiffies(adapter->ptp_tx_start +
 830				   IGB_PTP_TX_TIMEOUT)) {
 831		dev_kfree_skb_any(adapter->ptp_tx_skb);
 832		adapter->ptp_tx_skb = NULL;
 833		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 834		adapter->tx_hwtstamp_timeouts++;
 835		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 836		 * interrupt
 837		 */
 838		rd32(E1000_TXSTMPH);
 839		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 840		return;
 841	}
 842
 843	tsynctxctl = rd32(E1000_TSYNCTXCTL);
 844	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 845		igb_ptp_tx_hwtstamp(adapter);
 846	else
 847		/* reschedule to check later */
 848		schedule_work(&adapter->ptp_tx_work);
 849}
 850
 851static void igb_ptp_overflow_check(struct work_struct *work)
 852{
 853	struct igb_adapter *igb =
 854		container_of(work, struct igb_adapter, ptp_overflow_work.work);
 855	struct timespec64 ts;
 856	u64 ns;
 857
 858	/* Update the timecounter */
 859	ns = timecounter_read(&igb->tc);
 860
 861	ts = ns_to_timespec64(ns);
 862	pr_debug("igb overflow check at %lld.%09lu\n",
 863		 (long long) ts.tv_sec, ts.tv_nsec);
 864
 865	schedule_delayed_work(&igb->ptp_overflow_work,
 866			      IGB_SYSTIM_OVERFLOW_PERIOD);
 867}
 868
 869/**
 870 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 871 * @adapter: private network adapter structure
 872 *
 873 * This watchdog task is scheduled to detect error case where hardware has
 874 * dropped an Rx packet that was timestamped when the ring is full. The
 875 * particular error is rare but leaves the device in a state unable to timestamp
 876 * any future packets.
 877 **/
 878void igb_ptp_rx_hang(struct igb_adapter *adapter)
 879{
 880	struct e1000_hw *hw = &adapter->hw;
 881	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 882	unsigned long rx_event;
 883
 884	/* Other hardware uses per-packet timestamps */
 885	if (hw->mac.type != e1000_82576)
 886		return;
 887
 888	/* If we don't have a valid timestamp in the registers, just update the
 889	 * timeout counter and exit
 890	 */
 891	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 892		adapter->last_rx_ptp_check = jiffies;
 893		return;
 894	}
 895
 896	/* Determine the most recent watchdog or rx_timestamp event */
 897	rx_event = adapter->last_rx_ptp_check;
 898	if (time_after(adapter->last_rx_timestamp, rx_event))
 899		rx_event = adapter->last_rx_timestamp;
 900
 901	/* Only need to read the high RXSTMP register to clear the lock */
 902	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 903		rd32(E1000_RXSTMPH);
 904		adapter->last_rx_ptp_check = jiffies;
 905		adapter->rx_hwtstamp_cleared++;
 906		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 907	}
 908}
 909
 910/**
 911 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 912 * @adapter: private network adapter structure
 913 */
 914void igb_ptp_tx_hang(struct igb_adapter *adapter)
 915{
 916	struct e1000_hw *hw = &adapter->hw;
 917	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 918					      IGB_PTP_TX_TIMEOUT);
 919
 920	if (!adapter->ptp_tx_skb)
 921		return;
 922
 923	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 924		return;
 925
 926	/* If we haven't received a timestamp within the timeout, it is
 927	 * reasonable to assume that it will never occur, so we can unlock the
 928	 * timestamp bit when this occurs.
 929	 */
 930	if (timeout) {
 931		cancel_work_sync(&adapter->ptp_tx_work);
 932		dev_kfree_skb_any(adapter->ptp_tx_skb);
 933		adapter->ptp_tx_skb = NULL;
 934		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 935		adapter->tx_hwtstamp_timeouts++;
 936		/* Clear the tx valid bit in TSYNCTXCTL register to enable
 937		 * interrupt
 938		 */
 939		rd32(E1000_TXSTMPH);
 940		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 941	}
 942}
 943
 944/**
 945 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 946 * @adapter: Board private structure.
 947 *
 948 * If we were asked to do hardware stamping and such a time stamp is
 949 * available, then it must have been for this skb here because we only
 950 * allow only one such packet into the queue.
 951 **/
 952static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 953{
 954	struct sk_buff *skb = adapter->ptp_tx_skb;
 955	struct e1000_hw *hw = &adapter->hw;
 956	struct skb_shared_hwtstamps shhwtstamps;
 957	u64 regval;
 958	int adjust = 0;
 959
 960	regval = rd32(E1000_TXSTMPL);
 961	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 962
 963	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 964	/* adjust timestamp for the TX latency based on link speed */
 965	if (adapter->hw.mac.type == e1000_i210) {
 966		switch (adapter->link_speed) {
 967		case SPEED_10:
 968			adjust = IGB_I210_TX_LATENCY_10;
 969			break;
 970		case SPEED_100:
 971			adjust = IGB_I210_TX_LATENCY_100;
 972			break;
 973		case SPEED_1000:
 974			adjust = IGB_I210_TX_LATENCY_1000;
 975			break;
 976		}
 977	}
 978
 979	shhwtstamps.hwtstamp =
 980		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 981
 982	/* Clear the lock early before calling skb_tstamp_tx so that
 983	 * applications are not woken up before the lock bit is clear. We use
 984	 * a copy of the skb pointer to ensure other threads can't change it
 985	 * while we're notifying the stack.
 986	 */
 987	adapter->ptp_tx_skb = NULL;
 988	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 989
 990	/* Notify the stack and free the skb after we've unlocked */
 991	skb_tstamp_tx(skb, &shhwtstamps);
 992	dev_kfree_skb_any(skb);
 993}
 994
 995/**
 996 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 997 * @q_vector: Pointer to interrupt specific structure
 998 * @va: Pointer to address containing Rx buffer
 999 * @timestamp: Pointer where timestamp will be stored
1000 *
1001 * This function is meant to retrieve a timestamp from the first buffer of an
1002 * incoming frame.  The value is stored in little endian format starting on
1003 * byte 8
1004 *
1005 * Returns: The timestamp header length or 0 if not available
1006 **/
1007int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1008			ktime_t *timestamp)
 
1009{
1010	struct igb_adapter *adapter = q_vector->adapter;
1011	struct skb_shared_hwtstamps ts;
1012	__le64 *regval = (__le64 *)va;
1013	int adjust = 0;
1014
1015	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1016		return 0;
1017
1018	/* The timestamp is recorded in little endian format.
1019	 * DWORD: 0        1        2        3
1020	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1021	 */
1022
1023	/* check reserved dwords are zero, be/le doesn't matter for zero */
1024	if (regval[0])
1025		return 0;
1026
1027	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1028
1029	/* adjust timestamp for the RX latency based on link speed */
1030	if (adapter->hw.mac.type == e1000_i210) {
1031		switch (adapter->link_speed) {
1032		case SPEED_10:
1033			adjust = IGB_I210_RX_LATENCY_10;
1034			break;
1035		case SPEED_100:
1036			adjust = IGB_I210_RX_LATENCY_100;
1037			break;
1038		case SPEED_1000:
1039			adjust = IGB_I210_RX_LATENCY_1000;
1040			break;
1041		}
1042	}
1043
1044	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1045
1046	return IGB_TS_HDR_LEN;
1047}
1048
1049/**
1050 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1051 * @q_vector: Pointer to interrupt specific structure
1052 * @skb: Buffer containing timestamp and packet
1053 *
1054 * This function is meant to retrieve a timestamp from the internal registers
1055 * of the adapter and store it in the skb.
1056 **/
1057void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
 
1058{
1059	struct igb_adapter *adapter = q_vector->adapter;
1060	struct e1000_hw *hw = &adapter->hw;
1061	int adjust = 0;
1062	u64 regval;
1063
1064	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1065		return;
1066
1067	/* If this bit is set, then the RX registers contain the time stamp. No
1068	 * other packet will be time stamped until we read these registers, so
1069	 * read the registers to make them available again. Because only one
1070	 * packet can be time stamped at a time, we know that the register
1071	 * values must belong to this one here and therefore we don't need to
1072	 * compare any of the additional attributes stored for it.
1073	 *
1074	 * If nothing went wrong, then it should have a shared tx_flags that we
1075	 * can turn into a skb_shared_hwtstamps.
1076	 */
1077	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1078		return;
1079
1080	regval = rd32(E1000_RXSTMPL);
1081	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1082
1083	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1084
1085	/* adjust timestamp for the RX latency based on link speed */
1086	if (adapter->hw.mac.type == e1000_i210) {
1087		switch (adapter->link_speed) {
1088		case SPEED_10:
1089			adjust = IGB_I210_RX_LATENCY_10;
1090			break;
1091		case SPEED_100:
1092			adjust = IGB_I210_RX_LATENCY_100;
1093			break;
1094		case SPEED_1000:
1095			adjust = IGB_I210_RX_LATENCY_1000;
1096			break;
1097		}
1098	}
1099	skb_hwtstamps(skb)->hwtstamp =
1100		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1101
1102	/* Update the last_rx_timestamp timer in order to enable watchdog check
1103	 * for error case of latched timestamp on a dropped packet.
1104	 */
1105	adapter->last_rx_timestamp = jiffies;
1106}
1107
1108/**
1109 * igb_ptp_get_ts_config - get hardware time stamping config
1110 * @netdev: netdev struct
1111 * @ifr: interface struct
1112 *
1113 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1114 * to deconstruct the settings from the registers, just return a shadow copy
1115 * of the last known settings.
1116 **/
1117int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1118{
1119	struct igb_adapter *adapter = netdev_priv(netdev);
1120	struct hwtstamp_config *config = &adapter->tstamp_config;
1121
1122	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1123		-EFAULT : 0;
1124}
1125
1126/**
1127 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1128 * @adapter: networking device structure
1129 * @config: hwtstamp configuration
1130 *
1131 * Outgoing time stamping can be enabled and disabled. Play nice and
1132 * disable it when requested, although it shouldn't case any overhead
1133 * when no packet needs it. At most one packet in the queue may be
1134 * marked for time stamping, otherwise it would be impossible to tell
1135 * for sure to which packet the hardware time stamp belongs.
1136 *
1137 * Incoming time stamping has to be configured via the hardware
1138 * filters. Not all combinations are supported, in particular event
1139 * type has to be specified. Matching the kind of event packet is
1140 * not supported, with the exception of "all V2 events regardless of
1141 * level 2 or 4".
1142 */
1143static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1144				      struct hwtstamp_config *config)
1145{
1146	struct e1000_hw *hw = &adapter->hw;
1147	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1148	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1149	u32 tsync_rx_cfg = 0;
1150	bool is_l4 = false;
1151	bool is_l2 = false;
1152	u32 regval;
1153
 
 
 
 
1154	switch (config->tx_type) {
1155	case HWTSTAMP_TX_OFF:
1156		tsync_tx_ctl = 0;
1157		break;
1158	case HWTSTAMP_TX_ON:
1159		break;
1160	default:
1161		return -ERANGE;
1162	}
1163
1164	switch (config->rx_filter) {
1165	case HWTSTAMP_FILTER_NONE:
1166		tsync_rx_ctl = 0;
1167		break;
1168	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1169		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1170		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1171		is_l4 = true;
1172		break;
1173	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1174		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1175		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1176		is_l4 = true;
1177		break;
1178	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1179	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1180	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1181	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1182	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1183	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1184	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1185	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1186	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1187		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1188		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1189		is_l2 = true;
1190		is_l4 = true;
1191		break;
1192	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1193	case HWTSTAMP_FILTER_NTP_ALL:
1194	case HWTSTAMP_FILTER_ALL:
1195		/* 82576 cannot timestamp all packets, which it needs to do to
1196		 * support both V1 Sync and Delay_Req messages
1197		 */
1198		if (hw->mac.type != e1000_82576) {
1199			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1200			config->rx_filter = HWTSTAMP_FILTER_ALL;
1201			break;
1202		}
1203		fallthrough;
1204	default:
1205		config->rx_filter = HWTSTAMP_FILTER_NONE;
1206		return -ERANGE;
1207	}
1208
1209	if (hw->mac.type == e1000_82575) {
1210		if (tsync_rx_ctl | tsync_tx_ctl)
1211			return -EINVAL;
1212		return 0;
1213	}
1214
1215	/* Per-packet timestamping only works if all packets are
1216	 * timestamped, so enable timestamping in all packets as
1217	 * long as one Rx filter was configured.
1218	 */
1219	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1220		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1221		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1222		config->rx_filter = HWTSTAMP_FILTER_ALL;
1223		is_l2 = true;
1224		is_l4 = true;
1225
1226		if ((hw->mac.type == e1000_i210) ||
1227		    (hw->mac.type == e1000_i211)) {
1228			regval = rd32(E1000_RXPBS);
1229			regval |= E1000_RXPBS_CFG_TS_EN;
1230			wr32(E1000_RXPBS, regval);
1231		}
1232	}
1233
1234	/* enable/disable TX */
1235	regval = rd32(E1000_TSYNCTXCTL);
1236	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1237	regval |= tsync_tx_ctl;
1238	wr32(E1000_TSYNCTXCTL, regval);
1239
1240	/* enable/disable RX */
1241	regval = rd32(E1000_TSYNCRXCTL);
1242	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1243	regval |= tsync_rx_ctl;
1244	wr32(E1000_TSYNCRXCTL, regval);
1245
1246	/* define which PTP packets are time stamped */
1247	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1248
1249	/* define ethertype filter for timestamped packets */
1250	if (is_l2)
1251		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1252		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1253		      E1000_ETQF_1588 | /* enable timestamping */
1254		      ETH_P_1588));     /* 1588 eth protocol type */
1255	else
1256		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1257
1258	/* L4 Queue Filter[3]: filter by destination port and protocol */
1259	if (is_l4) {
1260		u32 ftqf = (IPPROTO_UDP /* UDP */
1261			| E1000_FTQF_VF_BP /* VF not compared */
1262			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1263			| E1000_FTQF_MASK); /* mask all inputs */
1264		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1265
1266		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1267		wr32(E1000_IMIREXT(3),
1268		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1269		if (hw->mac.type == e1000_82576) {
1270			/* enable source port check */
1271			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1272			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1273		}
1274		wr32(E1000_FTQF(3), ftqf);
1275	} else {
1276		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1277	}
1278	wrfl();
1279
1280	/* clear TX/RX time stamp registers, just to be sure */
1281	regval = rd32(E1000_TXSTMPL);
1282	regval = rd32(E1000_TXSTMPH);
1283	regval = rd32(E1000_RXSTMPL);
1284	regval = rd32(E1000_RXSTMPH);
1285
1286	return 0;
1287}
1288
1289/**
1290 * igb_ptp_set_ts_config - set hardware time stamping config
1291 * @netdev: netdev struct
1292 * @ifr: interface struct
1293 *
1294 **/
1295int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1296{
1297	struct igb_adapter *adapter = netdev_priv(netdev);
1298	struct hwtstamp_config config;
1299	int err;
1300
1301	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1302		return -EFAULT;
1303
1304	err = igb_ptp_set_timestamp_mode(adapter, &config);
1305	if (err)
1306		return err;
1307
1308	/* save these settings for future reference */
1309	memcpy(&adapter->tstamp_config, &config,
1310	       sizeof(adapter->tstamp_config));
1311
1312	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1313		-EFAULT : 0;
1314}
1315
1316/**
1317 * igb_ptp_init - Initialize PTP functionality
1318 * @adapter: Board private structure
1319 *
1320 * This function is called at device probe to initialize the PTP
1321 * functionality.
1322 */
1323void igb_ptp_init(struct igb_adapter *adapter)
1324{
1325	struct e1000_hw *hw = &adapter->hw;
1326	struct net_device *netdev = adapter->netdev;
 
1327
1328	switch (hw->mac.type) {
1329	case e1000_82576:
1330		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1331		adapter->ptp_caps.owner = THIS_MODULE;
1332		adapter->ptp_caps.max_adj = 999999881;
1333		adapter->ptp_caps.n_ext_ts = 0;
1334		adapter->ptp_caps.pps = 0;
1335		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1336		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1337		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1338		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1339		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1340		adapter->cc.read = igb_ptp_read_82576;
1341		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1342		adapter->cc.mult = 1;
1343		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1344		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
 
1345		break;
1346	case e1000_82580:
1347	case e1000_i354:
1348	case e1000_i350:
1349		igb_ptp_sdp_init(adapter);
1350		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1351		adapter->ptp_caps.owner = THIS_MODULE;
1352		adapter->ptp_caps.max_adj = 62499999;
1353		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1354		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1355		adapter->ptp_caps.n_pins = IGB_N_SDP;
1356		adapter->ptp_caps.pps = 0;
1357		adapter->ptp_caps.pin_config = adapter->sdp_config;
1358		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1359		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1360		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1361		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1362		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1363		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1364		adapter->cc.read = igb_ptp_read_82580;
1365		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1366		adapter->cc.mult = 1;
1367		adapter->cc.shift = 0;
1368		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
 
1369		break;
1370	case e1000_i210:
1371	case e1000_i211:
1372		igb_ptp_sdp_init(adapter);
 
 
 
 
 
 
1373		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1374		adapter->ptp_caps.owner = THIS_MODULE;
1375		adapter->ptp_caps.max_adj = 62499999;
1376		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1377		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1378		adapter->ptp_caps.n_pins = IGB_N_SDP;
1379		adapter->ptp_caps.pps = 1;
1380		adapter->ptp_caps.pin_config = adapter->sdp_config;
1381		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1382		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1383		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1384		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1385		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1386		adapter->ptp_caps.verify = igb_ptp_verify_pin;
 
 
1387		break;
1388	default:
1389		adapter->ptp_clock = NULL;
1390		return;
1391	}
1392
 
 
1393	spin_lock_init(&adapter->tmreg_lock);
1394	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1395
1396	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
 
 
 
 
 
 
 
 
1397		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1398				  igb_ptp_overflow_check);
1399
 
 
 
 
 
 
 
 
 
 
1400	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1401	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1402
1403	igb_ptp_reset(adapter);
1404
1405	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1406						&adapter->pdev->dev);
1407	if (IS_ERR(adapter->ptp_clock)) {
1408		adapter->ptp_clock = NULL;
1409		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1410	} else if (adapter->ptp_clock) {
1411		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1412			 adapter->netdev->name);
1413		adapter->ptp_flags |= IGB_PTP_ENABLED;
1414	}
1415}
1416
1417/**
1418 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1419 * @adapter: Board private structure.
 
 
1420 **/
1421void igb_ptp_sdp_init(struct igb_adapter *adapter)
1422{
1423	int i;
1424
1425	for (i = 0; i < IGB_N_SDP; i++) {
1426		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1427
1428		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1429		ppd->index = i;
1430		ppd->func = PTP_PF_NONE;
 
 
 
 
 
1431	}
1432}
1433
1434/**
1435 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1436 * @adapter: Board private structure
1437 *
1438 * This function stops the overflow check work and PTP Tx timestamp work, and
1439 * will prepare the device for OS suspend.
1440 */
1441void igb_ptp_suspend(struct igb_adapter *adapter)
1442{
1443	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1444		return;
1445
1446	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1447		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1448
1449	cancel_work_sync(&adapter->ptp_tx_work);
1450	if (adapter->ptp_tx_skb) {
1451		dev_kfree_skb_any(adapter->ptp_tx_skb);
1452		adapter->ptp_tx_skb = NULL;
1453		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1454	}
1455}
1456
1457/**
1458 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1459 * @adapter: Board private structure.
1460 *
1461 * This function stops the PTP support and cancels the delayed work.
1462 **/
1463void igb_ptp_stop(struct igb_adapter *adapter)
1464{
1465	igb_ptp_suspend(adapter);
1466
1467	if (adapter->ptp_clock) {
1468		ptp_clock_unregister(adapter->ptp_clock);
1469		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1470			 adapter->netdev->name);
1471		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1472	}
1473}
1474
1475/**
1476 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1477 * @adapter: Board private structure.
1478 *
1479 * This function handles the reset work required to re-enable the PTP device.
1480 **/
1481void igb_ptp_reset(struct igb_adapter *adapter)
1482{
1483	struct e1000_hw *hw = &adapter->hw;
1484	unsigned long flags;
1485
 
 
 
1486	/* reset the tstamp_config */
1487	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1488
1489	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1490
1491	switch (adapter->hw.mac.type) {
1492	case e1000_82576:
1493		/* Dial the nominal frequency. */
1494		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1495		break;
1496	case e1000_82580:
1497	case e1000_i354:
1498	case e1000_i350:
1499	case e1000_i210:
1500	case e1000_i211:
1501		wr32(E1000_TSAUXC, 0x0);
1502		wr32(E1000_TSSDP, 0x0);
1503		wr32(E1000_TSIM,
1504		     TSYNC_INTERRUPTS |
1505		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1506		wr32(E1000_IMS, E1000_IMS_TS);
1507		break;
1508	default:
1509		/* No work to do. */
1510		goto out;
1511	}
1512
1513	/* Re-initialize the timer. */
1514	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1515		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1516
1517		igb_ptp_write_i210(adapter, &ts);
1518	} else {
1519		timecounter_init(&adapter->tc, &adapter->cc,
1520				 ktime_to_ns(ktime_get_real()));
1521	}
1522out:
1523	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1524
1525	wrfl();
1526
1527	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1528		schedule_delayed_work(&adapter->ptp_overflow_work,
1529				      IGB_SYSTIM_OVERFLOW_PERIOD);
1530}